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Abstract

T his thesis is primarily concerned with several geometric notions and constructions that all
have interesting history as well as useful applications. Nowadays, they are well established

and put into the framework of Cartan, respectively parabolic, geometries. After setting the scene
with some general context, we investigate selected problems with notable outcomes. In all the
situations discussed here, the constructions are used or combined in such a way that is in some
respect uncommon. Moreover, although our setting is of a rather functorial nature, we can often
provide concrete down-to-earth interpretations. We consider this symbiosis as an interesting and
not always automatic feature.
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Introduction

T ransforming a given problem into one of a different character is an influential approach, which
has dozens of incarnations across the mathematics. This opens new perspectives that help

both to solve the initial problem and, importantly, to investigate new interrelations. The success
of respective techniques depends on the control of the transition between the two settings. The
constructions discussed below exhibit very satisfactory level of control which is then demonstrated
in applications that follow. Moreover, in these applications we are able to follow the transition in
various modes.

It is a common feature of all notions and constructions discussed in this treatise that they can
be dealt within the framework of Cartan, respectively parabolic, geometries. This field is nowadays
well developed and provides a wide range of conceptual approaches and instruments.

Background

The background material is collected in chapter I. The very general principles we are going to use
are introduced in section 1. The extension and correspondence space constructions belong among
the most prominent notions, which are later combined in diverse ways.

The typical and omnipresent features of parabolic geometries—the main area of our interest—
are concentrated in section 2. These include the canonical normalization condition, underlying
Weyl structures, distinguished families of curves and basics of the BGG industry.

The previous abstract notions are concretized in section 3, where particular geometric struc-
tures are discussed. In this context, two constructions of ambient character related to projective
and conformal geometries are presented.

Most of the discussed generalities as well as many of their concrete realizations are thoroughly
described by Čap and Slovák in the monograph [15]. Therefore this book is used as the main
reference throughout this thesis.

Our contributions

Selected applications of previous general concepts, containing our original contributions, are pre-
sented in chapter II. In section 4 we discuss the geometry of chains of parabolic contact structures.
These are distinguished curves determined by the geometric structure which are, as unparametrized
curves, uniquely given by a tangent direction in one point. In this respect they behave as geodesics
of an affine, respectively projective, structure (in other respects, however, they behave very differ-
ently). As such they form a path geometry on the base manifold, which can also be described in
terms of parabolic geometries.

The most interesting results are obtained for CR and Lagrangean contact structures. It is
the main contribution of our attached article [17] that the correspondence between the initial
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geometric structure and the associated path geometry of chains can be described directly, i.e.,
without any prolongation, via a functorial extension construction provided that the initial structure
is integrable. In these cases, the construction preserves the normality of parabolic geometries
attached to the structures in question, hence allows an immediate use. The point is that we
control fully the transition—as well as a backward reconstruction of the initial structure—also in
non-flat cases. This represents an unusual usage of this kind of construction.

In section 5, an application of the construction of Fefferman type is discussed, which induces
a conformal structure of split signature on the (weighted) cotangent bundle of a projective man-
ifold. The construction preserves normality of induced parabolic geometries only in very limited
situations (in dimension two or in flat case). It might therefore seem surprising how much can be
said, including a full characterization of the induced structure, despite this unfriendly setting. This
is indeed an unexpected case, which is also emphasized as the main achievement of the attached
article [43]. In fact the construction can be seen as a composition of two sub-constructions with a
natural intermediate Lagrangean contact structure. This turns to be half-integrable which implies
the resulting conformal structure is somehow ‘half-normal’.

It is also an interesting issue that our construction can be interpreted as a conformal analogue
of the classical Patterson–Walker metric construction. This point of view is elaborated in our
associated article [42]. As an icing on the cake, we can show that such conformal structures admit
a global and explicit ambient metric, which is a rather rare phenomenon. The ambient metric
can further be described as the true Patterson–Walker metric of the Thomas ambient connection
associated to the very starting projective structure. This construction is the main subject of the
next attached article [44].

In section 6 we consider the problem of describing a generating set of absolute conformal in-
variants of curves on conformal manifolds. There is a very classical solution for curves in Euclidean
spaces, the Frenet frame construction, which is based on expressing the infinitesimal change of a
natural frame associated to a given curve. There are several attempts to apply these ideas to other
geometries, both in homogeneous and curved setting. The main complication lies in detecting rea-
sonable invariant tools to treat the problem, which is why any careful study proceeds only case
by case. Our approach in the last attached article [62] is based on a transition to the conformal
standard tractor bundle, where a natural linear connection and a parallel bundle metric are ready
to use. With these instruments, the original Frenet frame construction is easily adapted for general
curves in conformal manifolds of any signature, including null curves. As a side result we get a
new characterization of conformal circles, the distinguished curves of conformal structures.

Conception

The conception of this text is subordinated to its aim, which is introducing the results of the four
attached articles. They are, of course, not chosen randomly, but rather for their common features
which were already mentioned above. To give a reasonable exposition of the results, it is important
to describe those common features in a wider context. That is why we spend a relatively large
space with processing this background knowledge in an individual chapter I, which might help to
follow the subsequent presentation more smoothly.

Also in chapter II, where the results are presented, we take the liberty to introduce each subject
more widely than is common in journal articles. We always start with a brisk historical survey,
including some comparisons, after which the key parts follow. We help the rushing readers by
directing them to the key parts of these sections by using the label ‘action’ in the section title.
Many of the topics discussed are still subjects of a ongoing research, which is usually commented
in accompanying remarks.

Throughout the text many things are explained and many are not: we tend to explain relevant
notions from Cartan geometry, whereas we do not bother with the notions and ideas from standard
differential geometry on the level of classical textbooks, e.g., [48, 49]. Besides the notions of smooth
manifolds, connections etc., we rely on Lie groups and their actions, principal bundles and their
reductions, associated bundles and induced connections and the like. Some basics on Lie algebras
and their representations are involved as well.
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CHAPTER I

Toolkit

T hroughout this thesis we enjoy the opportunity to remain in the safe haven of Cartan geome-
tries. This is our preferred point of view and this is also why we open the current chapter by

introducing general concepts that will be repeatedly applied below. After focusing on the subclass
of parabolic geometries, we present concrete geometric structures and other related notions that
are further employed in chapter II. Individual sections are meant to be independent, although
there are many corss-references. The standard reference covering most of the material collected
here is [15]; generally, if we do not refer anywhere, details can be found in that book.

There is nothing really original in this chapter except for some remarks on Lagrangean contact
structures in section 3.5, which are useful for later considerations. Although all those observations
are rather direct and natural, we are not aware they have been published anywhere.

1 Cartan geometries

The concept of Cartan connections was developed by É. Cartan hand in hand with the method
of moving frame. These techniques proved to constitute an efficient approach to the equivalence
problem, associating a natural parallelism (connection) and essential invariants (curvatures) to a
particular geometric problem. However, learning about Cartan connections from original sources
may be somewhat troubled. One of main reasons is “the difficulty Cartan faced in trying to express
notions for which there was no truly suitable language”. This concerns primarily the conception
of principal and associated bundles, the terms in which Cartan’s ideas are nowadays usually
presented. As a gentle introduction to the topic we refer the reader to the monograph [58] by
Sharpe, probably the first comprehensive textbook on Cartan geometries, from which also the
quotation above is taken.

The driving idea to what we now call Cartan geometries is indicated in the following diagram:
Cartan geometry (of a particular type) generalizes the corresponding Klein geometry (on a ho-
mogeneous space of a particular Lie group) in an analogous way as the Riemannian geometry
generalizes the Euclidean one.

Riemannian // Cartan

Euclidean

OO

// Klein

OO
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In other words, Cartan geometry is regarded as a ‘curved’ geometry modeled over a homoge-
neous space of a particular Lie group. We employ both this terminology and this point of view
consistently below.

In the following subsections we define Cartan connection and describe some related notions and
alternative approaches, among which the tractor bundles and connections are emphasized. The
next topic concerns a construction relating Cartan geometries, respectively connections, of different
types. The motivation comes from the characterization of homogeneous Cartan connections, i.e.,
(non-flat) Cartan connections that are invariant under a group action. However, constructions of
this type apply more generally and they may have many guises as is demonstrated in what follows.

1.1 Cartan connections

With the previous motivation, we may roughly interpret Cartan’s original approach as follows
(incorporating, however, some non-original terminology to be used below). Considering a particular
geometric structure, take its homogeneous model, i.e., the most symmetric case, first. Let the model
space be the coset space G/P of a pair of principal Lie group G and its structure subgroup P ⊂ G.
In this situation, the absolute parallelism on G, the flat Cartan connection, is provided by the
Maurer–Cartan form ω : TG→ g, i.e., the left-invariant 1-form on G with values in the Lie algebra
g of G. The flatness of this connection means that the structure equation is satisfied, dω+ω∧ω = 0.
In order to emphasize the role of the Lie algebra g, the same is rather written as

dω + [ω, ω] = 0. (1.1)

Instead of the 1-form ω : TG → g one may consider its pull-backs θ := s∗ω : TU → g, the
so-called Cartan gauges, with respect to local sections s : U → G of the canonical projection
p : G→ G/P , where U ⊆ G/P . For a choice of basis of g, any gauge θ is represented by a bunch of
ordinary 1-forms on U . The structure equation (1.1) then expands to a couple of equations relating
the constituents of θ and their exterior differentials. For sections that are somehow adapted to
the geometric structure in question, these equations simplify. In a more general setting, one starts
with a local adapted coframe and other 1-forms that are consecutively adjusted in a sequence
of steps (which may often seem mysterious) so that one ends as close to the previous structure
equations as possible. This yields a ‘natural’ Cartan gauge, respectively Cartan connection, and
the invalidity of the structure equation is interpreted as the contribution of its curvature. Also,
among the pieces that obstruct the validity of the structure equation, one may distinguish the
essential ones whose vanishing imply the vanishing of all others.

Reading this overview, several natural questions have to arise; in particular, it is not clear what
are the ‘natural’ choices and restrictions to follow. In order to make the previous sketch more
serious (and ready to use), one needs a number of illustrative examples (plus a bit of Cartan’s
insight) or a general theory. It is a good news that many seemingly unrelated cases can be put on
a common foundation, which is the result of decades of later investigations. This brings especially
the notion of normalization into the game, which we exemplify in section 2. Anyhow, the existence
and description of a ‘natural’ Cartan connection associated to a particular problem is typically
not an obvious statement. For the time being, we consider Cartan connection as the given data
and focus on some related notions.

Basic definitions

We keep in mind the model Cartan geometry of type (G,P ) consists of the principal P -bundle
p : G → G/P with the Maurer–Cartan form ω : TG → g which, among other things, defines an
absolute parallelism on G and resonates with the principal (right) action of the structure group P
so that it reproduces its infinitesimal generators (fundamental vector fields) and is equivariant. A
general Cartan geometry of type (G,P ) on a smooth manifold M consists of a principal P -bundle
p : G →M with Cartan connection, which is a g-valued 1-form ω : TG → g satisfying the previous
three properties, i.e.,
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• ωu : TuG → g is a linear isomorphism, for each u ∈ G,

• ω
(
d
dt

∣∣
0
rexp tX(u)

)
= X, for each u ∈ G and X ∈ p,

• (rh)∗ω = Adh−1 ◦ω, for each h ∈ P ,

where p ⊂ g is the Lie algebra of the subgroup P ⊂ G and rh : G → G, respectively Adh : g→ g,
denotes the principal right action, respectively the adjoint action, by an element h ∈ P . Remember
that Cartan connections are not principal connections (which are p-valued 1-forms satisfying the
last two conditions).1

A morphism of two Cartan geometries of the same type is a morphism of the corresponding
principal bundles that preserves Cartan connection.

The curvature of Cartan connection ω is the g-valued 2-form on G given by

κ := dω + [ω, ω]. (1.2)

Note that κ is strictly horizontal, i.e., it vanishes under insertion of any vertical vector. Cartan
curvature vanishes identically if and only if the Cartan geometry is locally isomorphic to its
homogeneous model.

The composition of ω : TG → g with the quotient projection g → g/p is the so-called solder
form. For any u ∈ G, this yields a linear isomorphism TxM → g/p, where x = p(u). For a different
element over x, say rh(u) ∈ p−1(x) with h ∈ P , this isomorphism is afflicted by the action of
Adh−1 . Hence the identification TG ∼= G × g provided by ω descends to the identification of TM
with G ×P (g/p), the associate bundle to G with respect to the indicated P -action.

TG ω //

Tp

��

g

��
TM // g/p

Under this identification, various geometric objects on M are reflected as P -invariant objects in
g/p. Furthermore, the previous identification can be read so that a vector field on M is represented
by a P -equivariant map G → g/p, the so-called frame form. The same logic applies to any tensor
field on M , more generally, to sections of any associated bundle to G. In particular, the frame form
of the Cartan curvature κ is a P -equivariant function

G → Λ2(g/p)∗ ⊗ g. (1.3)

Composing this with the quotient projection g → g/p, we obtain a P -equivariant map G →
Λ2(g/p)∗⊗ (g/p), which represents a tensor field of type Λ2T ∗M ⊗TM , which is called the torsion
of Cartan connection ω.

Remarks

Cartan gauge is defined alike to the flat case, i.e., θ := s∗ω : TU → g, where s : U → G is a local
section of the projection p : G →M . Under change of section s′ = rh ◦ s, for h : U → P , the gauge
changes so that

θ′ = Adh−1 θ + δh, (1.4)

where δh : TU → p is the left logarithmic derivative of h, i.e., the pull-back of the Maurer–
Cartan form on P . Cartan geometry can be dealt in terms of (atlases of) Cartan gauges with the
equivalence relation given by (1.4) (on intersections of domains).

1Cartan connection determines a principal connection on G only in very specific cases of so-called reductive
geometries, see section 3.1.
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1.2 Related notions and connections

Since Cartan connection ω : TG → g is not a principal connection, it does not induce connection
neither on TM nor on any associated bundle. It, however, determines a principal connection
ω̂ : T Ĝ → g on the principal G-bundle Ĝ := G ×P G via the equivariant extension of ω from
the image of the canonical inclusion G ↪→ G ×P G (mapping u ∈ G to the equivalence class
represented by u and the unit element of G). The principal connection ω̂ induces connections on

all associated bundles to Ĝ → M . Hence the Cartan connection ω gives rise to a connection on
any associated bundle to G → M provided that the standard fibre is actually a G-module (and
not only P -module).

Cartan space

As a typical instance we have to mention the Cartan space, S := G ×P (G/P ) = Ĝ ×G (G/P ) with
the obvious G-action on G/P , which is important for several reasons. There is a canonical section
of the projection S →M (mapping x ∈M to the equivalence class represented by any u ∈ Gx and
the origin in G/P ), along which the vertical subbundle is naturally identified with G ×P (g/p),
i.e., the tangent bundle TM . This observation makes precise the intuitive idea of ‘osculating’ M
at each point by the model space G/P , the idea that may be spotted in Cartan’s work.

The induced connection on S, respectively the parallel displacement, allows to define the devel-
opment of a curve on M into the homogeneous space G/P . More concretely, for a curve c : I →M
and its canonical lift ĉ : I → S (given by the canonical section of the projection S →M), one may
transport parallelly the points ĉ(t) into a chosen fiber over x = c(t0). Locally, this draws curves
in Sx ∼= G/P passing through the origin. The previous identification depends on u ∈ Gx so that,
for rh(u) with h ∈ P , the resulting curve is shifted by the left action of h−1 on G/P . However,
fixing u ∈ Gx, this construction provides a bijection between germs of curves through x in M and
germs of curves through origin in G/P preserving the order of contact. This is an important tool
for studying curves on M via their counterparts in G/P . In particular, the curves developing to
homogeneous curves in G/P form a distinguished family of curves on M , cf. section 2.3.

Note also that sections of S →M are in bijective correspondence with reductions of Ĝ →M to
the subgroup P ⊂ G (in particular, the canonical section corresponds to the canonical reduction

G ↪→ G ×P G above). Hence, taking the principal connection on Ĝ as the prior object, Cartan
connection on the reduced bundle is given by its pull-back. In this vein, the holonomy of Cartan
connection is defined to be the holonomy of the corresponding principal connection on Ĝ and as
such it is a subgroup of G.

Tractors

Another prominent family of associated bundles with natural induced connections are the tractor
bundles, which are the vector bundles with standard fiber being a G-representation. Among these
bundles there is a particularly important one, namely, the adjoint tractor bundle A := G ×P g =
Ĝ ×G g given by the adjoint representation Ad : G→ GL(g). Among other things, this bundle is
equipped with a natural algebraic bracket { , } : A×A → A, given by the Lie bracket on g, and
a bundle projection Π : A → TM , given by the quotient projection g→ g/p and the identification
TM ∼= G ×P (g/p). Using the Cartan connection on G, sections of A → M are identified with
vector fields on G that are invariant with respect to the principal P -action.

For a P -representation ρ : P → GL(V ), let V := G×P V be the associated bundle corresponding
to ρ. The differentiation of any P -equivariant map G → V in the direction of a P -invariant vector
field is again P -equivariant, which yields a natural differential operator

D : Γ(A)× Γ(V)→ Γ(V), (1.5)

the so-called fundamental derivative.
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If V is a tractor bundle, i.e., ρ is the restriction of a homomorphism G → GL(V ) and V =

G ×P V = Ĝ ×G V , then we also have the tractor connection,

∇ : Γ(TM)× Γ(V)→ Γ(V), (1.6)

i.e., the linear connection induced by ω̂. It follows that, for any s ∈ Γ(A) and t ∈ Γ(V), these two
operations are related by

∇Π(s)t = Dst+ s • t, (1.7)

where the bundle map • : A × V → V is given by the derivative of the defining representation,
g × V → V , and Π : A → TM is as above. (In the case V = A, the map • coincides with the
bracket { , } above.) Notice an important feature behind the equality (1.7), namely, that the result
does not depend on the section s ∈ Γ(A) covering ξ = Π(s) ∈ Γ(TM).

One of often used aspects is that the curvature κ of the Cartan connection ω is naturally
interpreted as a section of Λ2T ∗M ⊗A, cf. (1.3). Denoting the curvature of the tractor connection
by R, which is a section of Λ2T ∗M ⊗ End(V), then these two objects are related by

R(ξ, η)(t) = κ(ξ, η) • t,

for any ξ, η ∈ Γ(TM) and t ∈ Γ(V). In particular, the holonomy of the tractor connection ∇
coincides with the image of the holonomy group of the principal connection ω̂ under the defining
representation G→ GL(V ).

tractor (V,∇)

��

principal (Ĝ, ω̂)

��

77

Cartan (G, ω)
* 


77

##
M

Previous reasonings indicate how to deal with Cartan geometry in terms of induced tractorial
objects. Among all conceivable tractor bundles, other popular candidates (besides the adjoint ones)
are the standard tractor bundles corresponding to the standard representation of the principal
group G. It is interesting that these entities, in the case of projective and conformal geometries,
have roots in the work of T.Y. Thomas from the similar period in which Cartan developed notions
leading to Cartan connections. Despite this coincidence, the full understanding of all relationships
is of much later date, see [2, 11].

1.3 Extension functors and correspondence spaces

The previous extension of the Cartan connection ω : TG → g of type (G,P ) to the principal

connection ω̂ : T Ĝ → g was simply driven by the inclusion P ⊂ G. This notion can be generalized
as follows.

General principal extension

In the homogeneous case, i.e., when G = G and ω = Maurer–Cartan form, the bundle Ĝ = G×PG ∼=
(G/P )×G is a homogeneous principal bundle and the principal connection ω̂ is invariant under the

action of G. More generally, any homomorphism of Lie groups i : P → Ĝ defines a homogeneous
principal Ĝ-bundle Ĝ := G×P Ĝ. For p ⊂ g and ĝ being the Lie algebras of respective Lie groups,
it follows that G-invariant principal connections on Ĝ are in bijective correspondence with linear
maps α : g→ ĝ that are compatible with i and P -equivariant, i.e., such that
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• α|p = i′, the derivative of i,

• α ◦Adh = Adi(h) ◦α, for each h ∈ P .

It also follows that, for a given Cartan geometry of type (G,P ), any such compatible pair (i, α)

determines a principal Ĝ-bundle with a principal connection ω̂ and this construction is functorial.
One just substitutes G for G and a general Cartan connection ω for the Maurer–Cartan form.
More concretely, ω̂ extends equivariantly the form α ◦ω : T Ĝ → ĝ from the image of the canonical
inclusion j : G ↪→ G ×P Ĝ, i.e., it is determined by j∗ω̂ = α ◦ ω. In this view, the construction at
the beginning of section 1.2 corresponds to Ĝ = G so that i is the inclusion P ⊂ G and α is the
identity map g = ĝ.

General Cartan extension

In a similar manner, one may characterize invariant Cartan connections and apply the correspond-
ing functor generally. In addition to the previous setting, there is a new element entering the game
in the place of the structure group of the extended principal bundle. To be more precise, let P ⊂ G
and P̃ ⊂ G̃ be the pairs of Lie groups and their closed subgroups and let p ⊂ g and p̃ ⊂ g̃ be
the corresponding Lie algebras. A Lie group homomorphism i : P → P̃ defines a homogeneous
principal P̃ -bundle G̃ := G×P P̃ and it follows that G-invariant Cartan connections of type (G̃, P̃ )

on G̃ are in bijective correspondence with linear maps α : g→ g̃ such that

• α|p = i′, the derivative of i,

• α ◦Adh = Adi(h) ◦α, for each h ∈ P ,

• the induced map α : g/p→ g̃/p̃ is a linear isomorphism.

It also follows that, for a given Cartan geometry (G →M,ω) of type (G,P ), any such compatible

pair (i, α) determines a Cartan geometry (G ×P P̃ → M, ω̃) of type (G̃, P̃ ) and this construction
is functorial. Again, the induced connection is determined by

j∗ω̃ = α ◦ ω

and its required P̃ -equivariance, where j : G ↪→ G×P P̃ is the canonical inclusion. The inner action
of P̃ , respectively its adjoint action on g̃, defines an equivalence relation on the pairs of compatible
maps (i, α) so that two equivalent pairs induce isomorphic functors.

The effect of this construction on the Cartan curvature follows easily from definitions. In the
invariant setting, i.e., starting with flat ω, the curvature κ̃ of the induced Cartan connection ω̃ is
fully given just by α : g → g̃ so that the frame form of κ̃ is constant along the image of j with
value the P -invariant element Ψα ∈ Λ2(g/p)∗ ⊗ g̃ given by

(X + p, Y + p) 7→ [α(X), α(Y )]− α([X,Y ]). (1.8)

In particular, the induced Cartan connection is flat if and only if α is a homomorphism of Lie
algebras.

To describe the general case, we use the same symbol Ψα also for the corresponding section
of Λ2T ∗M ⊗ Ã, where Ã is the adjoint tractor bundle to the induced Cartan geometry. Similarly,
since α is P -equivariant, it gives rise to a bundle map α : A → Ã, where A is the adjoint tractor
bundle to the initial Cartan geometry. Now, if κ ∈ Γ(Λ2T ∗M ⊗ A) is a curvature of the initial

Cartan connection, then the curvature κ̃ ∈ Γ(Λ2T ∗M ⊗ Ã) of the induced one is given by

κ̃ = α ◦ κ+ Ψα. (1.9)

Correspondence space

Until now we considered various bundles and connections over a common base manifold. Factor-
izing a given bundle, respectively connection, via an intermediate manifold leads to the notion of
correspondence spaces. For a Cartan geometry (G → M,ω) of type (G,P ), let Q ⊂ P ⊂ G be
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another closed subgroup and let M̃ := G/Q be the corresponding quotient space. This is called
the correspondence space of M induced by the inclusion Q ⊂ P .

Easily, M̃ is the total space of the fiber bundle over M with the standard fiber P/Q, the

initial Cartan geometry factorizes to the Cartan geometry (G → M̃, ω) of type (G,Q) and this
construction is functorial. It is also clear that the initial Cartan geometry over M is flat if and
only if the induced Cartan geometry over M̃ flat.

(G, ω)
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By its horizontality, the curvature κ of the Cartan connection ω vanishes under insertion of
any vertical vector of the projection M̃ → M . Under the identification TM̃ ∼= G ×Q (g/q), the
vertical subbundle is V ∼= G ×Q (p/q) and we highlight the previous condition as

ιvκ = 0, for any v ∈ Γ(V ). (1.10)

It is both interesting and important result that this condition locally characterizes Cartan geome-
tries obtained by the correspondence space construction.

Remarks and outlook

Combinations of the previous constructions provide an efficient approach for constructing (or
better understanding of already existing) relations between Cartan geometries of different types.
Below in this text we meet several concrete realizations belonging to this framework.

(G̃, ω̃)

P̃ extension
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The correspondence space construction is induced by the inclusionQ ⊂ P , the Cartan extension
by the pair of maps i : Q→ P̃ and α : g→ g̃ satisfying the compatibility conditions listed on the
previous page (but substituting Q in the place of P ). Let us highlight several cases:

• Correspondence spaces themselves (no further extension) appear in sections 3.2, 3.3 and
other places.

• Mutations are the constructions that correspond to i being an equality Q = P̃ and α being
a (Q-equivariant) linear isomorphism, see section 3.1.

• Constructions of Fefferman type are induced by an embedding φ : G → G̃ of Lie groups so
that i = φ|Q and α = φ′, see sections 3.5 and 5.2.

• General Cartan extension is discussed in section 4.2.
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2 Parabolic geometries

Parabolic geometries are Cartan geometries of type (G,P ) where G is a semisimple Lie group and
P ⊂ G is its parabolic subgroup. This terminology reflects the one for corresponding Lie algebras:
Lie algebra g is semisimple if it has no non-zero solvable ideal, equivalently, it is a direct sum of
simple Lie algebras, equivalently, the Killing form is non-degenerate (the Cartan’s criterion), etc.
Subalgebra p ⊂ g is parabolic if it contains the Borel subalgebra (the maximal solvable subalgebra
of g) and the ortho-complement of p in g with respect to the Killing form is the nilradical of p.

Previous explanations does not sound too convincing in the front of geometric audience. To
make a better impression, one usually adds that parabolic geometries involve such important and
well studied structures as projective, conformal, CR contact and many others. These relations
are get closer in section 3. Here we focus on several uniform features of parabolic geometries,
among which the conceptual and canonical normalization condition is the prominent one. Also,
when establishing the correspondence between concrete and more abstract notions, the relations
to ordinary G-structures with subordinate compatible connections can be dealt in generality. Next
topics to be introduced here are distinguished curves and BGG sequences.

Basics

In fact, parabolic subalgebras are related to gradings of semisimple Lie algebras, which is a more
appropriate starting position. Let

g = g−k ⊕ · · · ⊕ g0 ⊕ · · · ⊕ gk

be a |k|-grading of a semisimple Lie algebra g, i.e., [gi, gj ] ⊆ gi+j (where we consider gl = 0, for
|l| > k), and let

g = g−k ⊃ · · · ⊃ g0 ⊃ · · · ⊃ gk = gk

be the corresponding filtration, where gi := gi⊕· · ·⊕gk. This turns g into a filtered Lie algebra, i.e.,
[gi, gj ] ⊆ gi+j . Let the grading be such that the subalgebra p+ := g1 = g1 ⊕ · · · ⊕ gk is generated
by g1 or, equivalently, g− := g−k ⊕ · · · ⊕ g−1 is generated by g−1. Then p := g0 = g0 ⊕ p+ is a
parabolic subalgebra with nilradical p+.

Any parabolic subalgebra can be obtained this way, in particular, their classification corre-
sponds to the classification of gradings of g. It follows that this is equivalent to distinguishing
subsets of simple roots of g (which is pictured by crossing nodes of the corresponding Satake di-
agram). The number of distinguished elements corresponds to the dimension of the center of the
reductive subalgebra g0.

Passing to the group level, there is a freedom in choosing a Lie group G and its subgroup P
whose Lie algebras are g and p, respectively. Fixing G, the extreme choices for P ⊂ G are the
normalizer of p in G and its connected component of the identity. Under the restricted adjoint
action, the subgroup P preserves the filtration of g. Given a parabolic subgroup P ⊂ G, let G0 ⊂ P
be the subgroup preserving the gradation of g (the Lie algebra of G0 is obviously g0). This inclusion
induces an isomorphism G0

∼= P/P+, where P+ denotes the nilpotent normal subgroup exp p+.

Note that the Killing form on g provides a natural isomorphism g ∼= g∗ compatible with the
filtration, respectively gradation. This leads to a natural isomorphism of P -modules p+

∼= (g/p)∗,
respectively G0-modules p+

∼= g∗−, which we often use below without explicit mentioning. Note
also that for many considerations that follow, it is an important assumption that no simple ideal
of g is contained in g0. This is a vacuous condition for simple g and we will not emphasize it below.

2.1 Underlying data, regularity and normalization

For a parabolic geometry (G → M,ω) of type (G,P ), we now describe the induced underlying
data on M . We comment the conditions under which this association can be made bijective: the
regularity and the normality.
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Underlying data, regularity

The subgroup P+ ⊂ P acts freely on G, let us denote by G0 := G/P+ the orbit space. The fibration
G → G0, respectively G0 → M , is a principal bundle with structure group P+, respectively G0.
The P -invariant filtration of g gives rise to filtrations of the tangent bundles TG, TG0, respectively
TM (which are of length 2k+ 1, k+ 1, respectively k). Finally, the Cartan connection ω descends
to a couple of partially defined G0-equivariant 1-forms (ωi) on G0 with values in gi (where i =
−k, . . . ,−1).

(G, ω)
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In the case of trivial filtration, k = 1, we get the classical picture of G-structures on M , with
the structure group G0 ⊆ GL(g−1), where ω−1 : TG0 → g−1 plays the role of the solder form. In
general, there is an important notion of regularity tightening the relation between the filtration
of TM and the reduction to G0. The parabolic geometry (respectively its underlying structure) is
called regular if the filtration of TM is compatible with the Lie bracket of vector fields and the
corresponding Levi bracket

L : gr(TM)× gr(TM)→ gr(TM), (2.1)

i.e., the induced algebraic bracket on the associated graded bundle, coincides with the one given
by the Lie bracket in the Lie algebra g− via the identification gr(TM) ∼= G0 ×G0

g−. Hence the
notion of symbol algebra etc.

The regularity condition may be equivalently formulated in terms of the curvature κ of the
Cartan connection ω as follows. The filtration of g gives rise also to a filtration of the adjoint tractor
bundle A, which is compatible with the algebraic bracket { , } : A×A → A and the corresponding
objects on TM via the projection Π : A → TM . This leads to the notion of homogeneity degree of
sections of Λ2T ∗M ⊗A (and similar bundles). It follows that the parabolic geometry is regular if
and only if its curvature κ is of positive homogeneity. Clearly, |1|-graded or torsion-free parabolic
geometries are automatically regular.

Normalization

It is an important achievement that, up to two exceptional cases2, the correspondence between
(isomorphic classes of) regular parabolic geometries and induced underlying data can be made
bijective imposing a normalization condition. The whole story involves an abstraction of the un-
derlying data (the notion of infinitesimal flag structures), the construction of a bigger P -bundle
with a Cartan connection of type (G,P ) (via a choice of compatible principal G0-connection and
an application of a convenient extension functor discussed above) and a possible normalization
of the resulting Cartan connection (to be discussed below). This process should be seen as a
filtration adapted generalization of the standard prolongation procedure for G-structures. In the
case of |1|-graded parabolic geometries, these can indeed be related so that g1

∼= g∗−1 coincides
with the first prolongation of g0 and its second prolongation vanishes.

Now we focus on the natural normalization condition. First of all, one has to find a reasonable
description of the fact that two Cartan connections induce the same underlying data and, in such
case, a description of the difference of their curvatures. This is done in terms of the difference
map of the two connections (which is seen due to its horizontality as a 1-form Φ : TM → A), and

2These are the projective and projective contact structures, in which cases a class of connections on the base
manifold has to be added as a part of underlying data.
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the bundle map gr(T ∗M ⊗A)→ gr(Λ2T ∗M ⊗A) induced by the standard differential of the chain
complex

· · · −→ g∗− ⊗ g
∂−→ Λ2g∗− ⊗ g −→ . . . (2.2)

computing the Lie algebra cohomology of g− with coefficients in g (which is indeed G0-equivariant).
A normalization condition may be given by a subbundle of Λ2T ∗M ⊗ A, respectively by a

P -invariant subspace of Λ2(g/p)∗⊗ g, whose associated graded is complementary to im ∂. For any
parabolic geometry, there is a canonical choice given by the kernel of a natural adjoint map, the
Kostant codifferential, which is the codifferential of the complex

· · · ←− p+ ⊗ g
∂∗←− Λ2p+ ⊗ g←− . . . . (2.3)

This map is indeed P -equivariant etc.; the corresponding bundle map is denoted by the same
symbol. The Cartan connection, respectively the parabolic geometry, is normal if its curvature is
a section of ker ∂∗ ⊂ Λ2T ∗M ⊗A.

For a given Cartan connection, its potential normalization proceeds inductively according to
the homogeneity degree. A rough sketch of the process (with concrete outcomes in the case of
conformal structures) is described in section 5.2.

Harmonic curvature

For normal parabolic geometries, the composition of the curvature function κ with the quotient
projection to the cohomology space ker ∂∗ → ker ∂∗/ im ∂∗ yields the so-called harmonic curvature,
denoted by κH . In fact, P+ acts trivially on this space, which means the corresponding associated
bundle allows an interpretation in underlying terms. The adjointness of ∂ and ∂∗ gives rise to the
G0-equivariant self-adjoint endomorphism

� := ∂ ◦ ∂∗ + ∂∗ ◦ ∂,

the Kostant Laplacian. This determines a G0-invariant Hodge decomposition of the chain complex,
in particular, the kernel of this operator is isomorphic to the cohomology space in each degree.

For regular and normal parabolic geometries, it follows that the lowest non-zero homogeneous
component of κ has values in ker�, i.e., it coincides with the corresponding homogeneous compo-
nent of κH . In particular, κ vanishes identically if and only if κH does. In fact, the full curvature
can be recovered from the harmonic one via the BGG splitting operator, see section 2.4. Finally,
note that ker� is algorithmically computable as a g0-representation and often consists only of few
components, see [59].

Previous results allow to reduce many treatments involving curvature just to its harmonic
counterpart. This is also behind number of conclusions discussed below.

2.2 Weyl structures

Weyl structures provide a useful tool in transition between the two descriptions of parabolic
geometries (Cartan geometries vs. underlying data). In particular, they induce a canonical class
of compatible affine connections on the base manifold. All notions that follow have well known
preimages in conformal geometry, from which also a lot of terminology is taken.

Reductions, splittings, connections

Let (G →M,ω) be a parabolic geometry of type G/P and let G0 = G/P+ →M be the underlying
principal G0-bundle as above. A Weyl structure is a global G0-equivariant section σ : G0 → G of
the P+-projection G → G0, i.e., a reduction of the P -principal bundle G → M to the subgroup
G0 ⊂ P . The pull-back σ∗ω : TG0 → g of the Cartan connection decomposes into G0-equivariant
pieces in accord with the grading of g. The negative component σ∗ω− : TG0 → g− provides
an identification of the filtered tangent bundle TM with the associated graded gr(TM), hence
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a splitting of the filtration of TM . The zeroth component σ∗ω0 : TG0 → g0 defines a principal
G0-connection, hence also an induced connection on any associated bundle; they are jointly called
the Weyl connections. The positive component σ∗ω+ : TG0 → p+ can be interpreted as a 1-form
TM → T ∗M , respectively a section of T ∗M ⊗ T ∗M , and is called the Rho or Schouten tensor.

(G, ω)
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The splitting of the filtration of the tangent, respectively cotangent, bundle caused by a choice
of Weyl structure applies similarly to any associated bundle corresponding to a P -representation
V that is completely reducible as a G0-representation. There is a P -invariant filtration of V with
the property that the action of P+ shifts each subspace to the next smaller one. This yields a
filtration of V = G ×P V ,

V ⊃ V0 ⊃ V1 ⊃ . . . , (2.4)

and a choice of a Weyl structure provides an identification of V with its associated graded gr(V) ∼=
G0×G0

V . The filtration of V may be described directly via a natural bundle map • : T ∗M×V → V
induced by the derived action of p+ on V and the identification T ∗M ∼= G ×P p+.

In the case when V is a tractor bundle, this map is the restriction of the characteristic map
• : A × V → V (as in (1.7)) under the natural inclusion T ∗M ⊂ A (given by p+ ⊂ g), which
is independent of a choice of Weyl structure. On the other hand, since g− ⊂ g as a G0-module,
a choice of Weyl structure yields an inclusion of bundles TM ⊂ A, respectively their associated
graded. In this context we can express the tractor connection ∇, according to (1.6), as follows. For
a Weyl structure σ, let D and P be the corresponding Weyl connection on V and the Rho tensor,
respectively. A comparison of the fundamental derivative D with these objects yields that

∇ξt = Dξt+ P(ξ) • t+ ξ • t, (2.5)

for each ξ ∈ Γ(TM) and t ∈ Γ(V). This can further be expanded with respect to the induced
splitting of A and V, which yields the concrete formulas that appear below.

Although the constituents of (2.5) depend on a choice of Weyl structure, the resulting tractor
connection does not. In the just indicated approach this follows for free, while a direct check of
this fact can be a rather tedious exercise. This would involve the knowledge of the transformation
rules of respective objects according to a change of Weyl structure.

Changes of Weyl structures

Two Weyl structures σ and σ̂ differ by a G0-equivariant map Υ : G0 → p+ so that

σ̂(u) = rexp Υ(u)(σ(u)), (2.6)

for each u ∈ G0. Such Υ corresponds to a 1-form on M , more precisely, to a section of the associated
graded bundle gr(T ∗M). Weyl structures thus form an affine bundle over M modeled on this vector
bundle. The bundle of Weyl structures can also be described as W := G ×P P/G0 → M ; indeed,
sections of this bundle are in bijective correspondence with Weyl structures σ : G0 → G. The
Cartan connection on G induces a surprisingly rich geometric structure on the total space of W,
which is discovered and employed only recently, see [45, 14].

The effect of a change of Weyl structure on various associated quantities can be described in
terms of corresponding 1-forms. Below we meet explicit formulas only for |1|-graded geometries,
in which cases the uniform background is as follows. For Weyl structures σ and σ̂ differing by
Υ ∈ Γ(T ∗M) as in (2.6), let (v0, v1, v2, . . . ) and (v̂0, v̂1, v̂2, . . . ) be the corresponding splittings of
an element of a natural bundle V = G ×P V , labeled so that the zeroth gradation component is
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the projecting part, i.e., a quotient of the whole V, cf. (2.4). Then, expanding the action of exp Υ,
it easily follows that

v̂0 = v0, v̂1 = v1 −Υ • v0, v̂2 = v2 −Υ • v1 + 1
2Υ •Υ • v0, . . . . (2.7)

Further, the corresponding Weyl connections D and D̂ on V are related as

D̂ξv = Dξv − {Υ, ξ} • v (2.8)

and the corresponding Rho tensors P and P̂ differ as

P̂(ξ) = P(ξ) +DξΥ + 1
2{Υ, {Υ, ξ}}, (2.9)

where ξ ∈ Γ(TM) and v ∈ Γ(V).

Scales

Scales are sections of scale bundles, which are oriented line bundles convenient to a given parabolic
geometry. The point is that sections of a scale bundle determine special Weyl structures, called
exact, whereas general Weyl structures correspond to principal connections on them. Note that
the terminology reflects the fact that the 1-form Υ measuring the difference between two exact
Weyl structures is exact.

As associated bundles to G0 → M , scale bundles are given by a representation G0 → R+.
As such they can be classified by certain elements from the center of g0 (describing the derived
representation). Any scale bundle is identified with the quotient bundle G0/G

′
0 → M , where G′0

is the kernel of the defining representation. In particular, sections of this bundle correspond to
reductions of the principal G0-bundle G0 → M to the structure group G′0. Thus, exact Weyl
connections have reduced holonomies, corresponding to the parallelity of the geometric quantity
related to a choice of scale.

For |1|-graded geometries, the center of g0 is 1-dimensional (consisting of multiples of the
grading element), hence G′0 is just the semisimple part of the reductive group G0.

Curvature invariants

Likewise to the decomposition of the pullback of the Cartan connection with respect to a Weyl
structure, one may decompose the pullback of its curvature. These data allow an interpretation
of the Cartan, respectively harmonic, curvature in underlying terms as well as an alternative
treatment of parabolic geometries themselves.

Bellow we need some details only for |1|-graded geometries, in which case the general discussion
simplifies considerably as follows. For a normal Cartan connection ω and a Weyl structure σ, let
D be the corresponding Weyl connection on TM and let R be its curvature tensor. Let κ be the
curvature of ω and let σ∗κ =: T + W + Y be the decomposition of its pullback to G0 according
to the grading g = g−1 ⊕ g0 ⊕ g1. The individual components, interpreted as 2-forms on M with
values in TM , End0(TM) and T ∗M , are the torsion, Weyl curvature and Cotton–York tensor of
D, respectively. It follows the last two tensors may be expressed in previous terms as

W = R+ ∂P, Y = dDP,

where ∂ is the bundle map induced by the differential (2.2) and dD is the covariant exterior
derivative determined by D. Note that the first non-zero tensor in the sequence (T,W, Y ) is an
invariant of the structure, i.e., is independent of the choice of Weyl structure, as it corresponds to
the lowest non-zero homogeneous component of the harmonic curvature κH .



2 Parabolic geometries 17

2.3 Distinguished curves

As for any Cartan geometry (G →M,ω), the notion of development of curves described in section
1.2 allows to distinguish (families of) curves on M using their counterparts in the corresponding
homogeneous space G/P . The prominent curves there are the exponential curves, respectively
orbits of 1-parameter subgroups of G. Within the framework of parabolic geometries we usually
restrict to such curves whose generators lie in g− ⊂ g. The corresponding curves on M are called
the distinguished curves.3

Besides the development, there are other ways to distinguished curves in parabolic geometry.
For instance, for a curve c : I →M , the following properties are equivalent:

• The curve c admits a development into a curve L(t) = exp(tX)/P in G/P , where X ∈ g−.

• The curve c admits a lift ĉ : I → G such that ω(ĉ′(t)) ∈ symL, for all t, where symL ⊂ g is
the symmetry algebra of L.

• The curve c admits a lift ĉ : I → G such that ω(ĉ′(t)) = X, for all t.

• The curve c admits a lift ĉ : I → A such that Dĉc
′ = 0, where D is the fundamental

derivative.

• There is a Weyl structure such that Dc′c
′ = 0 and P(c′) = 0, where D and P is the corre-

sponding Weyl connection and Rho tensor, respectively.

In the second condition, the symmetry algebra symL ⊂ g consists of those infinitesimal auto-
morphisms of G/P that are everywhere tangent to L. The third condition can be rephrased so
that the curve is the projection to M of the flow of a constant vector field in G. In the fourth
condition, the lift to the adjoint tractor bundle A is the same as a P -invariant vector field in G
over the curve, hence a lift to G whose tangent field is extended as required. The relation to the
last condition follows from relations between D, P and D as is behind (2.5).

Remarks

It is worth emphasizing that, for different distinguished curves with the same trajectory, the
freedom in possible reparametrizations is not arbitrary. It turns out that the only eventualities are
either projective of affine ones.

For a finer discussion of possible types of distinguished curves and their properties, we further
restrict the set of possible generators in g− ⊂ g. It follows that these types can be classified accord-
ing to G0-invariant subsets A ⊂ g−. Different subsets contained in a common P -hull correspond
to different types of distinguished curves sharing the same tangent vectors (this may happen only
for more graded parabolic geometries).

Among other approaches to distinguished curves, let us mention the one from [45] employing
a natural connection on the bundle of Weyl structures. Below in section 6 we also formulate other
characterizations of distinguished curves in conformal setting (where they are named conformal
circles) using tractor calculus. Some of those ideas are easily, but not uniformly, transformable to
other parabolic geometries, cf. section 6.4.

2.4 BGG sequences

BGG sequences form a really powerful instrument of parabolic geometry. Many important invariant
operators, equations, respectively problems, can be interpreted in this framework. The general
theory was introduced by Čap, Slovák and Souček in [16], later simplified by Calderbank and
Diemer in [9]. The sequences are intrinsically constructed for any tractor bundle of given parabolic
geometry. The key player is the so-called splitting operator, let us introduce the basics.

3Even in this generality, distinguished curves can be found under various nicknames in the literature: canonical
curves, parabolic geodesics, generalized geodesics, Cartan circles and the like.
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For a given tractor bundle V = G ×P V , the starting ingredient is the exterior covariant
derivative given by the normal tractor connection ∇,

0 −→ Γ(V)
d∇−→ Γ(T ∗M ⊗ V)

d∇−→ Γ(Λ2T ∗M ⊗ V)
d∇−→ . . .

In the opposite direction it operates ∂∗, the bundle map given by the Kostant codifferential as in
(2.3), where only the coefficients are now taken in the g-module V rather than in g. This defines
the cohomology bundles Hi := ker ∂∗/ im ∂∗ and projections Πi : ker ∂∗ → Hi, both labeled by
the corresponding form degree. The crucial fact is the existence of a unique differential operator
Li : Γ(Hi)→ Γ(ker ∂∗), for any i, splitting the projection Πi and satisfying

∂∗(d∇(Li(τ))) = 0,

for all τ ∈ Γ(Hi). These are the splitting operators. The displayed property allows the composition
Θi = Πi+1 ◦ d∇ ◦ Li, which yields the sequence of BGG operators,

0 −→ Γ(H0)
Θ0−→ Γ(H1)

Θ1−→ Γ(H2)
Θ2−→ . . .

Note that his sequence forms a complex if and only if the parabolic geometry is flat.

Some applications and remarks

One of many use of BGG techniques is the reconstruction of the curvature κ ∈ Γ(Λ2T ∗M ⊗V) of
normal Cartan connection from its harmonic counterpart κH = Π2(κ). As a consequence of the
differential Bianchi identity, it follows that κ = L2(κH).

Another noteworthy application concerns the characterization of correspondence spaces dis-
cussed in section 1.3, which allows a much stronger formulation. With the notation as before, it
follows that the condition

ιvκH = 0, for any v ∈ Γ(V ), (2.10)

implies the one in (1.10), hence a local characterization of Cartan connection obtained by the
correspondence space construction. This was shown by Čap in [10].

Below we deal with first splitting, respectively first BGG, operators. Note that the first coho-
mology bundle H0 is simply the quotient V/V0, where V0 is the largest filtration component in V,
cf. (2.4). In particular, the first splitting operator maps sections of the projecting part of gr(V) to
sections of V.

3 Concrete geometries

In this section we discuss mostly those structures and constructions that appear also in chapter II.
It is a preparatory section, but it was not meant to be just a collection of conventions and notations.
References to the previous text should indicate how to see this material within the given context.
Besides concrete incarnations of the general constructions above, we are going to introduce two
ambient constructions for projective and conformal structures. Except the structures in section
3.1, all others belong among parabolic geometries.

3.1 Reductive geometries, mutations etc.

Riemannian and affine geometries are not parabolic geometries, but they are particular examples of
so-called reductive geometries, which form a subclass of Cartan geometries. It is worth reminding
some general features of these geometries.
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Reductive geometries

Reductive geometry is a Cartan geometry of type (G,H) such that the corresponding Lie algebra
admits an H-invariant decomposition g = n ⊕ h (with respect to the adjoint action).4 This is a
very strong condition with many restrictive implications.

The Cartan connection ω : TG → g of a reductive Cartan geometry splits according to the
decomposition of g into well defined H-equivariant pieces θ : TG → n and γ : TG → h. The solder
form θ provides an identification TM ∼= G ×H n. If, in addition, the homomorphism H → GL(n)
induced by the adjoint action is (infinitesimally) injective, then we get an identification of G with
a (covering of) a subbundle of the first order frame bundle of M , i.e., an ordinary G-structure
with structure group H. The form γ is the principal connection, which induces structure adapted
connections on all bundles associated to G. These induced connections coincide with the restriction
of the fundamental derivative (1.5), where the restriction (of the first argument from A to TM)
indeed makes sense only in reductive cases (when TM is a subbundle of A).

The reductivity influences also the behavior of distinguished curves. Considering the curves
corresponding to n ⊂ g, it easily follows that all of them seem like ordinary geodesics: as un-
parametrized curves, they are uniquely given by a tangent direction in one point and each of them
admits an affine class of distinguished parametrizations.

In the discussion above, we met reductive geometries in section 2.2: any Weyl structure σ of
a parabolic geometry (G → M,ω) of type (G,P ) induces a reductive Cartan geometry (G0 →
M,σ∗(ω− ⊕ ω0)) of type (P op, G0), where P op ⊂ G is the opposite parabolic subalgebra to P .
In particular, P op ∩ P = G0 and the corresponding Lie algebra is pop = g− ⊕ g0, which is a
G0-invariant decomposition. Two particular examples, which might be seen in this scheme, follow.

Affine structures

An affine structure on a smooth manifold M is given by an affine connection, i.e., a linear con-
nection on TM , which brings the notion of parallel displacement of vectors along curves. The
model is the affine space Rm with the absolute parallelism given by the translations. This is the
homogeneous space of the group of affine motions, the semidirect product of the abelian group of
translations and the general linear group, Aff(m,R) = Rm nGL(m,R). Under the identification
Rm 3 X 7→ ( 1

X ) ∈ Rm+1, the action of this group corresponds to the standard action of

G =

{(
1 0
Y A

)
: Y ∈ Rm, A ∈ GL(m,R)

}
⊂ GL(m+ 1,R). (3.1)

The stabilizer of the origin in Rm, which corresponds to the first vector from the standard basis
of Rm+1, is H = GL(n,R), which is given by Y = 0 in the previous description.

The natural decomposition g = n⊕ h, with n = Rm and h = gl(m,R) in accord with the block
decomposition above, isH-invariant. Thus the Cartan geometry is reductive, but the corresponding
G-structure is the full frame bundle (no reduction) and the only underlying object is just the affine
connection D. Since n ⊂ g is abelian, the torsion and the curvature of D corresponds to

T = dθ + [γ, θ] and R = dγ + [γ, γ],

respectively, where ω = θ ⊕ γ is the decomposition of the Cartan connection as above.

Riemannian structures

A Riemannian structure on a manifold M is given by a Riemannian metric g ∈ Γ(S2T ∗M), which
brings the notion of distance and parallel displacement provided by the Levi-Civita connection,
the unique metric connection with vanishing torsion. The model is the Euclidean space, i.e., the
affine space Rm with the standard inner product. This is the homogeneous space of the group
of rigid motions, the semidirect product of translations and the orthogonal group preserving the

4Warning: this notion has nothing to do with the reductivity of the Lie algebra g in algebraic sense.
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inner product, Euc(m) = RmnO(m), where H = O(m) is that stabilizer of the origin. According
to (3.1), the group Euc(m) ⊂ Aff(m,R) is described by restricting the values of A to O(m).

The current Cartan geometry is reductive, the corresponding G-structure is the reduction to
the orthonormal frame bundle and the Levi-Civita connection corresponds to the unique ‘normal’
Cartan connection: the normalization condition in this case is trivial (vanishing torsion) and the
fact that the first prolongation of h = o(m) is also trivial pins down the connection uniquely.

A transition from positive definite metrics to indefinite ones is reflected by a transition from
orthogonal structure groups O(m) to pseudo-orthogonal ones O(p, q), where p+ q = m, with the
model space being the pseudo-Euclidean affine space of signature (p, q).

Mutations

As we know from the very definition of Cartan geometry of type (G,H), the crucial role is played
by the structure group H and the Lie algebra g of the principal group G, whereas the group
itself enters mainly the model description, respectively extensions. In fact, in the definition of the
Cartan connection just the H-module structure of g is addressed, its Lie algebraic structure enters
the curvature.

In this sense, Riemannian structures may be viewed as Cartan geometries modeled over any
space form and not just the Euclidean space Rm ∼= Euc(m)/O(m). Indeed, the round sphere,
respectively the hyperbolic space, is the homogeneous space Sm ∼= O(m + 1)/O(m), respectively
Hm ∼= O(m, 1)/O(m), and euc(m,R), o(m + 1) and o(m, 1) are mutually isomorphic as O(m)-
modules, but not as Lie algebras. With respect to their standard block realizations, the isomor-
phisms o(m+ 1)← euc(m,R)→ o(m+ 1, 1) are given as

(
0 −kY t
kY A

)
← [
(

0 0
Y A

)
7→
(

0 lY t

lY A

)
,

where k, l ∈ R are arbitrary constants.
These are concrete examples of model mutations leading to a functorial construction described

in section 1.3. The curvature of a mutated Cartan geometry is controlled by the (constant) con-
tribution (1.8) so that (1.9) holds.

3.2 Projective geometry and Thomas cone

Projective geometries are one of the two exceptional types of parabolic geometries, for which the
underlying data described in section 2.1 are vacuous and the structure is rather given by a class
of affine connections.

Projective structures

A projective structure on a manifold M is given by a class of torsion-free projectively equivalent
affine connections, i.e., connections having the same unparametrized geodesics. The model is the
real projective space RPm, the projectivization of Rm+1, with projective lines as the distinguished
family of curves. This is the homogeneous space of the group of collineations, Proj(m,R), which
coincides with the projectivized general linear group G = PGL(m+1,R), the quotient of GL(m+
1,R) by its center. The stabilizer of the origin in RPm, respectively the first vector from the
standard basis of Rm+1, is the subgroup P ⊂ G represented by block upper-triangular matrices
according to the block decomposition indicated in (3.1).

The corresponding Lie algebras are simple g = sl(m+ 1,R) and parabolic p = g0⊕ g1 with the
corresponding grading indicated in the block form as

g =

(
g0 g1

g−1 g0

)
,

with blocks of sizes 1 and m. In particular, g is |1|-graded and we identify g−1
∼= Rm, g0

∼= gl(m,R)
and g1

∼= Rm∗. The semisimple part of g0 is g′0 ∼= sl(m,R).
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The underlying structure of the corresponding Cartan geometry consists just of family of Weyl
connections (there is no reduction of the principal frame bundle since the Levi factor G0 coincides
with GL(m,R)). The general formula (2.8) for the change of Weyl connection according to a 1-form
Υ expands in this case to

D̂ξη = Dξη + Υ(ξ)η + Υ(η)ξ,

for ξ, η ∈ Γ(TM), which indeed recovers the well known description of projectively equivalent
connections. Moreover all these connections have the same torsion, which vanishes in the normal
case. The first (and only) non-trivial harmonic curvature component is the Cotton–York tensor,
for m = 2, respectively the Weyl tensor, for m > 2. These are the obstructions to the flatness of
the projective structure.

Thomas cone

Another choice of principal Lie group to the Lie algebra g = sl(m+1,R) clearly isG = SL(m+1,R).
This group acts transitively not only on lines, but also on rays in Rm+1. Hence both the projective
space RPm and the sphere Sm, its 2-fold cover, can be considered as the homogeneous spaces of
SL(m+1,R) (only the action on RPm is not effective). In the latter case, the family of distinguished
curves is formed by great circles. The corresponding Cartan geometry modeled on Sn defines the
oriented projective structures, i.e., projective structures on oriented manifolds.

Great circles on Sm are geodesics of the standard round metric, whose Levi-Civita connection
defines the projective class of connections. Among these connections, there is a subclass of special
ones, each of which preserves a volume form (these are the exact Weyl connections in the termi-
nology of section 2.2). Volume forms on Sm correspond to sections of the canonical R+-bundle
q : Rm+1 \ {0} → Sm. It is an inspiring observation that any special connection on Sm can be de-
scribed as a ‘pull-back’ of the flat ambient connection on Rm+1 with respect to the corresponding
section of q. This is a (simplified) model interpretation of the cone, respectively ambient, descrip-
tion of projective structures, which allows a straight generalization. Before doing so, let us denote
P ⊂ G the stabilizer of a ray in Rm+1 and Q ⊂ P the stabilizer of its generating vector. Thus,
Sm ∼= G/P , Rm+1 \ {0} ∼= G/Q and P/Q ∼= R+.

Let (M, [D]) be an oriented projective structure, let (G →M,ω) be the corresponding normal

Cartan geometry of type (G,P ) and let M̃ := G/Q be the correspondence space given by the

inclusion Q ⊂ P . As usually, the tangent bundle is identified as TM̃ ∼= G ×Q (g/q), where q is the
Lie algebra of Q. As unusually, the Q-module g/q is isomorphic to the restriction of the standard

representation of G = SL(m+ 1,R) on Rm+1. Hence TM̃ is a tractor bundle over M̃ and as such

it carries an induced linear connection ∇̃, which is called the Thomas or ambient connection. This
connection has many characteristic properties: easily, it is torsion-free and preserves the canonical
volume form (given by the standard G-invariant volume on Rm+1). It is also compatible with the

principal R+-action on M̃ and any section of the projection q : M̃ → M determines a special
connection from the projective class [D]. Finally, it is Ricci flat, which is a consequence of the
normality of ω.

(G, ω)

''

��

(M̃, ∇̃)

ww

Thomas

(M, [D]) projective

It follows that the initial projective structure on M is fully encoded in the Thomas ambient
connection on M̃ . Concrete coordinate expressions and direct relations of corresponding curvature
quantities can be found in Thomas’ original work, cf. [64, chapter III]. Let us notice that this is
the place where the so-called Thomas projective parameters, the projectively invariant bunch of
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functions with suspicious transformation laws, appear. For later reference, they are given by

Π C
A B := Γ C

A B −
2

m+ 1
δC(AΓ D

B) D , (3.2)

where Γ C
A B are the Christoffel symbols of any connection from the projective class.

Relation to standard tractors

Since g/q is identified with the standard representation of the principal group G, there is a close

relation between the tangent bundle TM̃ → M̃ with its ambient connection ∇̃ and the standard
tractor bundle T = G×P Rm+1 →M with its tractor connection ∇. It follows that the latter data
can be obtained by factorizing the former ones with respect to the R+-action (which naturally

extends to TM̃). In particular, sections of the standard tractor bundle T are in bijective corre-

spondence with vector fields on M̃ which are of homogeneity −1 with respect to the R+-action

and the normality of ∇ is equivalent to the Ricci flatness of ∇̃.

The standard tractor bundle is filtered, T ⊃ T 0, so that T 0 is the tautological line bundle,
which is conventionally labeled as E(−1), the density bundle of projective weight −1. Under the

previous identification, T 0 corresponds to the vertical subbundle of the cone projection M̃ →M .
With respect to a choice of Weyl structure, the standard tractor bundle splits as

T = TM(−1)⊕ E(−1),

where TM(−1) = TM ⊗ E(−1) corresponds to the projecting part T /T 0.

There are many variants of cone constructions, but we do not know any direct analogy to the
previous one among |1|-graded parabolic geometries. Very similar approach, however, applies to
projective contact structures, see [38]. Note that the ambient construction for conformal structures
(discussed in sections 3.4 and 5.3) is significantly more complicated, though the model observations
are of similar nature.

3.3 Flag varieties and correspondence spaces

Projective, Grassmannian and Lagrangean contact manifolds are particular examples of parabolic
geometries whose homogeneous models are flag varieties, i.e., algebraic varieties of linear subspaces
of particular type in a real vector space. In fact, all parabolic homogeneous spaces G/P can
be realized (after a possible complexification) this way, which is why they are sometimes called
generalized flag varieties. Previously mentioned examples correspond to the most ordinary flags,
with simple Lie algebras g = sl(−,R) in the background. In this context we just add some details.

Real projective space RPm is the space of 1-dimensional subspaces in vector space Rm+1. It
is the homogeneous space of G = PGL(m + 1,R), respectively SL(m + 1,R), with P ⊂ G the
stabilizer of a line. This is an example of Grassmannian, respectively flag, variety of type (1,m+1).
General Grassmannian of type (p,N) is the variety of p-dimensional subspaces in vector space RN .
General flag variety of type (p1, p2, . . . , N) is the variety of flags of subspaces V 1 ⊂ V 2 ⊂ · · · ⊂ RN
of dimensions p1 < p2 < · · · < N . It is a homogeneous spaces with G as above and P ⊂ G the
stabilizer of a particular flag.

Mapping any flag V 1 ⊂ V 2 ⊂ · · · ⊂ RN to the subspace of a particular dimension (say V i)
yields a fibration of flag manifolds (whose fiber over V i consists of all flags of the current type
containing V i). As all these manifolds are homogeneous spaces of the same Lie group, the previous
fibrations are model examples of correspondences discussed in section 1.3. In particular, for flags
of depths two, we have two such fibrations:
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G = PGL(N,R)

��

�� ��

Flags (p1, p2, N)

ww ''
Flags (p1, N) Flags (p2, N)

Lagrangean contact structures

Let us consider parabolic geometries modelled on flag varieties of lines in hyperplanes, i.e., of type
(1, N − 1, N). Counting dimensions, one observes that the base manifold is odd dimensional, say
m = 2n + 1, in which case N = n + 2. Let P ⊂ G be the stabilizer of the flag determined by
the first and the first n− 1 vectors from the standard basis. The corresponding grading of the Lie
algebra g = sl(n+ 2,R) is indicated in the following block form

g =




g0 gL1 g2

gL−1 g0 gR1
g−2 gR−1 g0




with blocks of sizes 1, n and 1. In particular, g is |2|-graded with g−2
∼= R, gL−1

∼= Rn, gR−1
∼= Rn∗

etc. The decomposition g−1 = gL−1 ⊕ gR−1 is g0-invariant, the Lie bracket g−1 × g−1 → g−2 is non-
degenerate and, with respect to this map, the subspaces gL−1 and gR−1 are isotropic (aka Lagrangean,
if we interpret the bracket as a symplectic form on g−1). In particular, we have a contact grading
of g.

Lagrangean contact structure is the structure underlying the current parabolic geometry. On
a manifold M of dimension m = 2n + 1 it consists of a contact distribution H ⊂ TM and a
decomposition H = L ⊕ R into two Lagrangean subspaces with respect to the Levi form L :
H ×H → TM/H, the only non-trivial part of the Levi bracket (2.1).

Normal parabolic geometries of this type are always regular, the harmonic curvature decom-
poses according to the dimension of M as follows. For m = 3, there are two components, both
of homogeneity 4; in particular, the geometry is torsion-free. An interpretation of these object in
underlying terms yields two tensors of Cotton–York type, namely,

CL ∈ Γ(L∗ ∧ (TM/H)∗ ⊗ L∗), CR ∈ Γ(R∗ ∧ (TM/H)∗ ⊗R∗). (3.3)

For m > 3, there are two components of homogeneity 1 and one component of homogeneity 2; the
corresponding underlying objects are two torsions and one curvature of Weyl type,

TL ∈ Γ(L∗ ∧ L∗ ⊗R), TR ∈ Γ(R∗ ∧R∗ ⊗ L), W ∈ Γ(L∗ ∧R∗ ⊗ End(H)). (3.4)

It follows that vanishing of TL and TR is equivalent to the integrability of the distribution L and
R, respectively.

Projective to Lagrangean correspondence

The model correspondence of flag varieties described above reduces in the current setting to

Flags (1, n+ 1, n+ 2)

vv ))
Flags (1, n+ 2) ∼= RPn+1 Flags (n+ 1, n+ 2) ∼= RP(n+1)∗

In this picture it is easy to identify the top manifold, which is the model Lagrangean contact
manifold of dimension m = 2n+ 1, with P(T ∗RPn+1), the projectivized cotangent bundle of real
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projective space of dimension n + 1, so that its canonical contact distribution coincides with the
one spanned by the vertical subbundles of the two projections. Anyway, this is the space of contact
elements of hyperplane type in RPn+1. We come back to these interpretations in sections 3.5 and
4.3.

According to the general principles from section 1.3, this correspondence translates immedi-
ately to curved cases. Let (G → X,ω) be the normal parabolic geometry associated to a projective
structure on X. For the inclusion of structure groups (the flag stabilizers) as above, the corre-
spondence space of X is identified with its projectivized cotangent bundle M := P(T ∗X) so that
the vertical subbundle of the projection M → X is one of the two Lagrangean subspaces of the
contact distribution H ⊂ TM , say R.

(G, ω)
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(M,L⊕R)

ww

Lagrangean

(X, [D]) projective

From the description of the Lagrangean harmonic curvature components, and the fact that the
vertical subbundle is identified with R, we see that:

• for dimX = 2, i.e., dimM = 3, the induced structure on M satisfies CR = 0,

• for dimX > 2, i.e., dimM > 3, the induced structure on M satisfies TR = W = 0.

In particular, in the latter case, the induced Lagrangean contact structure is torsion-free if and
only if it is flat, which means the initial projective structure is flat. Anyway, due to the key result
materialized in (2.10), the previous equalities guarantee that, locally, the Lagrangean contact
structure is induced by a projective structure.

Note that a discussion concerning the second fibration of the correspondence above is quite
parallel because of the very symmetry of the whole picture.

Path geometries

Let us consider parabolic geometries modelled on flag varieties of lines in planes, i.e., of type
(1, 2, N). Counting dimensions, one observes that the base manifold is odd dimensional, say m =
2n + 1, in which case N = n + 2. Note that, for n = 1, we just recover the Lagrangean contact
case in the lowest dimension, hence we assume n > 1 hereafter.

Let P ⊂ G be the stabilizer of the flag determined by the first and the first two vectors from
the standard basis. The corresponding grading of the Lie algebra g = sl(n + 2,R) is indicated in
the following block form

g =




g0 gE1 g2

gE−1 g0 gV1
g−2 gV−1 g0




with blocks of sizes 1, 1 and n. In particular, g is |2|-graded with g−2
∼= Rn, gE−1

∼= R, gV−1
∼= Rn

etc. The decomposition g−1 = gE−1⊕gV−1 is g0-invariant, the Lie bracket g−1×g−1 → g−2 is trivial
on gV−1 × gV−1 and induces a linear isomorphism gE−1 ⊗ gV−1 → g−2. Since the bracket is also trivial
on gE−1 × gE−1 (because of dim gE−1 = 1), it is fully determined by the previous two bits.

Generalized path geometry is the structure underlying a regular Cartan geometry of the current
type. On a manifold M of dimension m = 2n+ 1 it consists of two transversal subbundles E, V ⊂
TM such that, for H := E ⊕ V , the filtration H ⊂ TM is compatible with the vector field
bracket and the corresponding Levi bracket (2.1) vanishes on V × V and induces an isomorphism
E ⊗ V → TM/H.
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The terminology abstracts a natural presence of such structures on the projectivized tangent
bundle of a manifold, Y , endowed with a system of paths, i.e., unparametrized curves, with the
property that through each point in each direction there passes exactly one path from the system.
The tangent directional fields of paths from the system foliate M := P(TY ) and tangent spaces
of this foliation give a line subbundle E ⊂ TM . This E is obviously contained in the tautological
subbundle H ⊂ TM and complementary to the vertical subbundle V ⊂ H of the projection
M → Y , which are there by nature. The decomposition H = E ⊕ V satisfies the above declared
properties for generalized path geometries, hence system of paths on Y determines this fancy
geometric structure on M . This way, geometric properties of systems of second order ODEs,
modulo point transformations, may be studied.

In particular, geodesics of an affine connection on Y , respectively its projectively equivalent
class, give rise to a (generalized) path geometry, which has to be somehow special. Before its full
characterization, we need to learn about the harmonic curvatures.

Generally, i.e., for any n ≥ 2, there are three harmonic curvature components, two of which are
independent of n: they are of homogeneity 2 and 3 and they correspond to torsion and curvature
of Weyl type, namely,

TE ∈ Γ(E∗ ∧ (TM/H)∗ ⊗ V ), W ∈ Γ(V ∗ ∧ (TM/H)∗ ⊗ End(V )).

The third component is a torsion whose type depends on n: for n = 2, respectively n > 2, it is of
homogeneity 1, respectively 0,

TV ∈ Γ(V ∗ ∧ V ∗ ⊗ E), respectively TV ∈ Γ(V ∗ ∧ V ∗ ⊗ TM/H). (3.5)

Note that, for generalized path geometries in dimension m = 2n + 1 > 5, the bad torsion TV
vanishes by the assumption of regularity.

Projective to path geometry correspondence

The model correspondence in the current setting is

Flags (1, 2, n+ 2)

ww %%
Flags (1, n+ 2) ∼= RPn+1 Flags (2, n+ 2)

The bottom right object is the Grassmannian of planes in Rn+2, whose dimension is 2n. The
top object, which is the model of generalized path geometry of dimension m = 2n + 1, is indeed
identified with P(TRPn+1) so that its tautological subbundle coincides with the one spanned by
the vertical subbundles of the two projections. The curved version of this correspondence is already
outlined in the previous paragraph: unparametrized geodesics of a projective structure on Y form
a system of paths, which determines E, and hence a generalized path geometry on M := P(TY ).
This is covered by the normal parabolic geometry (G → Y, ω) so that we have

(G, ω)

��
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(M,E ⊕ V )

ww

path

(Y, [D]) projective

From the description of harmonic curvature components, and the fact that the vertical sub-
bundle is identified with V , we see that:
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• the induced structure on M satisfies TV = W = 0.

In particular, the induced generalized path geometry is torsion-free if and only if it is flat, which
means the initial projective structure is flat. Due to the harmonic curvature characterization
of correspondence spaces, the previous equalities guarantee that, locally, the generalized path
geometry is induced by a projective structure or, in other words, the paths on the local leaf space
are unparametrized geodesics of an affine connection.

For dimM > 5, the condition TV = 0 is satisfied by regularity, in which cases M is always
identified with the projectivized tangent bundle of a local leaf space. Hence only W = 0 is relevant
in these dimensions.

Grassmannian to path geometry correspondence

In a similar manner, one may discuss the correspondence concerning the second fibration from the
picture above, which relates generalized path geometries and almost Grassmannian structures. An
almost Grassmannian structure on manifold Z is given by an isomorphism TZ ∼= K ⊗ L of the
tangent bundle with the tensor product of auxiliary vector bundles K and L of ranks 2 and n,
respectively. Starting with the normal parabolic geometry (G → Z, ω) to the almost Grassmannian
structure and the inclusion of parabolics given by the model description, the correspondence space
M is identified with P(K), the projectivization of the smaller auxiliary bundle over Z.

(G, ω)
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��

path (M,E ⊕ V )

((
Grassmanian (Z,K ⊗ L)

Almost Grassmannian structures of the current type are specific for n = 2, in particular, they
are torsion-free, i.e., integrable. For n > 2, it follows that the torsion of the almost Grassmannian
structure fits the torsion (3.5) of the induced Cartan geometry. Thus, such structure gives rise to
a regular geometry, i.e., to a generalized path geometry, just in the integrable case. Anyhow,

• the induced structure on M satisfies TE = 0.

Conversely, this condition for generalized path geometries allows to descend to a local leaf space,
interpreted as the space of paths, with an (integrable) Grassmannian structure. Such path ge-
ometries, respectively systems of ODEs, are of particular importance as they generically allow to
construct enough first integrals (from the Cartan curvature) to describe the paths, respectively to
solve the system, see [40].

Remarks

In the previous treatment, we observed specificities in two particular dimensions. At first, for n = 1,
the 3-dimensional Lagrangean contact structures coincide with 3-dimensional generalized path
geometries as both are given by two complementary 1-dimensional subbundles in a 2-dimensional
non-integrable distribution H ⊂ TM . Let us comment some aspects of one of correspondences
above. Let us consider a second order ODE,

y′′ = Q(x, y, y′), (3.6)

whose graphs of solutions are considered as the system of paths in the plane, Y , with local coordi-
nates (x, y). Let (x, y, p = y′) be the local coordinates of the space of contact elementsM := P(TY )
(which coincides canonically with P(T ∗Y ) in this dimension). The geometry of the ODE is fully
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encoded in the generalized path geometry on M , whose determining subbundles E and V are given
by

dp−Qdx = 0, and dy − p dx = 0,

respectively. The two fundamental invariants, which correspond to the harmonic curvatures from
(3.3), can be expressed in terms of Q and its partial derivatives with respect to y and p. These
invariants were known and used ages before their current interpretations by Lie, Tresse and others.
The one, whose vanishing guarantees that (3.6) is equivalent to a geodesic equation, turns out to
be Qpppp. In such case, the equation has the form

y′′ = A0 +A1y
′ +A2(y′)2 +A3(y′)3, (3.7)

where Ai are functions only of x and y. This equation, and the associated projective Cartan
connection, appears in Catran’s projective papers, see, e.g., [22, chapter V]. We come back to
these issues in section 5.1.

Another specific behaviour appears for generalized path geometries in dimension five, i.e., for
n = 2. In this case, the related Grassmannian structure on Z is equivalent to a conformal structure
of split signature so that its two harmonic curvatures correspond to self-dual and anti-self-dual
part of the conformal Weyl tensor. In particular, the model correspondence between 3-dimensional
projective space and 4-dimensional conformal quadric (via 5-dimensional flag variety) reveals the
classical Klein–Plücker correspondence. Note also that this picture (but complexified and primarily
read backwards) is the starting position of the far reaching Penrose twistor program, see, e.g., the
survey article [1].

3.4 Conformal geometry and ambient metric

The conformal class of the flat metric on the Euclidean space Rm defines a flat conformal structure.
But this is not an accurate conformal model since, e.g., the inversions does not act globally on
Rm. One rather takes the standard sphere Sm ⊂ Rm+1, the compactification of Rm with the
stereographic projection, as the right model. This is actually fine, but to describe satisfactorily
the group of (global) conformal automorphisms, one would further pass to the ‘celestical’ sphere
in a bigger Minkowski space Rm+1,1, i.e., to the space of its null rays. These two spheres can,
of course, be identified, but not canonically. This leads to the notion of scales etc. The current
viewpoint generalizes straightly to an arbitrary signature.

Conformal structures

Conformal structure of signature (p, q) on a manifold M of dimension m = p+q is given by a class
of conformally equivalent pseudo-Riemannian metrics of this signature, i.e., a class of metrics that
differ just by multiples of everywhere positive functions. The conformal class of metrics is viewed
as a R+-bundle over M , which is a subbundle on S2T ∗M .

The model structure arises as follows. Let Rp+1,q+1 be a vector space with an inner product of
signature (p+1, q+1) and let N ⊂ Rp+1,q+1 be the cone of non-zero null vectors. The space of rays
in N , i.e., the oriented projectivization of N , is called the Möbius sphere and denoted Sp,q. Hence
we have the projection q : N → Sp,q = N/R+. The Möbius sphere carries a natural conformal
structure of signature (p, q), whose each representative metric is given by pulling back the induced
metric from the image of a smooth section of the projection q. This conformal structure is obviously
invariant under the action of simple Lie group G = O(p+1, q+1), which acts transitively both onN
and Sp,q. Let Q ⊂ P ⊂ G be the nested subgroups stabilizing a null vector and the corresponding
ray, respectively. Thus, N ∼= G/Q, Sp,q ∼= G/P and P/Q ∼= R+. The subgroup P ⊂ G is parabolic,
the so-called Poincaré group.

For concrete matrix realizations we need some choices. Let the inner product on Rp+1,q+1 be
given in the standard basis by the Gram matrix




0 0 1
0 Ep,q 0
1 0 0


 with Ep,q =

(
Ep 0
0 −Eq

)
, (3.8)
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where Ei is the rank i identity matrix, and let P be the stabilizer of the first vector form the basis.
Then the corresponding grading of the Lie algebra g = o(p+ 1, q + 1) is indicated as

g =




g0 g1 0
g−1 g0 g1

0 g−1 g0


 ,

with blocks of sizes 1, n and 1. In particular, g is |1|-graded with g−1
∼= Rm, g0

∼= R ⊕ o(p, q)
and g1

∼= Rm∗ (of course, the blocks that are symmetric with respect to the anti-diagonal are
determined by each other).

Underlying data of the parabolic geometry of the current type are G-structures with structure
group CO(m) = R+×O(p, q), the conformal orthogonal group. The Weyl connections are the ones
which preserve the conformal class of metrics, Levi-Civita connections of representative metrics
are the exact ones. The general formula (2.8) describing the change of Weyl connections according
to parametrizing 1-forms Υ expands in this case to

D̂ξη = Dξη + Υ(ξ)η + Υ(η)ξ − g(ξ, η)Υ], (3.9)

for ξ, η ∈ Γ(TM), where g is any metric from the conformal class (and Υ] ∈ Γ(TM) is the image of
Υ ∈ Γ(T ∗M) under the corresponding isomorphism T ∗M → TM). Moreover all these connections
have the same torsion, which vanishes in the normal case. The first non-trivial harmonic curvature
component is the Cotton–York tensor, for m = 3, respectively the Weyl tensor, for m > 3 (which
splits into two components, for m = 4). These are the obstructions to the flatness of the conformal
structure.

Note that different choices of the principal Lie group to the Lie algebra g = o(p+ 1, q+ 1) lead
to variations on the current structure, some of which are subjects of later interests. Our choice
here is motivated by similar reasons as in section 3.2.

Note also that the full projectivization of the null cone N (rather than the oriented one) yields
a hyperquadric in RPn+1 as the conformal homogeneous model. In order to distinguish these two
cases, one speaks about the Möbius space rather that the Möbius sphere (which is its 2-fold cover).
The group O(p+ 1, q + 1) does not act effectively on the Möbius space and it may be substituted
by PO(p+ 1, q + 1), the quotient by center (which is Z2).

Fefferman–Graham ambient metric

The model interpretations generalize easily so that the cone of conformal metrics N ⊂ S2T ∗M ,
which forms a R+-bundle over M , is the correspondence space induced by the inclusion Q ⊂ P .
But, since the Q-action on g/q is not a restriction of a G-action, there are no easily induced
ambient objects as in section 3.2. Still, the ambient description of the model conformal structure
can be mimicked also in the general setting. Following the approach of [33] by Fefferman and
Graham, one extends the natural R+-bundle N → M by one more dimension and constructs an
ambient metric g on this bigger manifold M so that it determines the individual metrics on M
from the conformal class in the very same way as above. For this task one actually needs to control
the behaviour along the cone N ⊂M. Besides the obvious requirement that g is homogeneous of
degree 2 with respect to the R+-action, one imposes its Ricci flatness as a natural normalization
condition. The procedure is quite subtle and typically describes the ambient metric only in terms
of power series expansion.

To proceed, let I ⊂ R be an interval containing 0, let M = N × I be an ambient space and let
t, (xi) and ρ be local coordinates on R+, M and I, respectively. To describe the ambient metric,
one may start with the prescription

g = t2gij(x, ρ) dxi � dxj + 2ρdt� dt+ 2tdt� dρ, (3.10)

where gij(x, 0) corresponds to a representative metric in the conformal class [g] on M . Now,
iteratively, one determines gij(x, ρ) as a Taylor series in ρ so that the Ricci flatness condition is
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satisfied along N , i.e., for ρ = 0. Necessarily, the first order expansion is

gij(x, ρ) = gij(x) + 2Pij(x)ρ+O(ρ2), (3.11)

where P is the Schouten tensor of the representative metric g on M .

It turns out that, for general conformal structures in odd dimension, there is a (essentially
unique) solution of the problem. But, in even dimension, the construction is obstructed at a finite
order by the so-called Fefferman–Graham tensor, a conformally invariant tensor (which coincides
with the Bach tensor in dimension 4). There are not too many examples of conformal structures
for which the ambient metric is Ricci flat globally and not just asymptotically along N . We are
going to extend this rare family by a new class of members in section 5.3.

Conformal standard tractors and relation to ambient data

The conformal standard tractor bundle T is the tractor bundle corresponding to the standard
representation Rp+1,q+1 of the principal group G = O(p+ 1, q+ 1). The G-invariant inner product
on Rp+1,q+1 gives rise to a bundle metric that is preserved by the tractor connection ∇. The
standard tractor bundle is filtered, T ⊃ T 0 ⊃ T 1, so that the line bundle T 1 is identified with
E [−1], the density bundle of conformal weight −1, and T 0 is its ortho-complement with respect to
the bundle metric. With respect to a choice of Weyl structure, the standard tractor bundle splits
as

T = E [1]⊕ TM [−1]⊕ E [−1], (3.12)

where TM [−1] = TM ⊗ E [−1] and the projecting part is E [1] ∼= T /T 0. General formulas (2.5),
(2.7) etc. expand in this case to well known expressions that we employ repeatedly below.

Possible relation of the standard tractor bundle T with its bundle metric (parallel with respect
to the tractor connection) and the ambient space M with the ambient metric (parallel with respect
to its Levi-Civita connection) is not clear at all. In particular, the previous description of the
general ambient space might seem slightly artificial. However, this can be sorted out so that the
similar factorization as in section 3.2 is possible provided that we restrict to the cone N ⊂ M.
This is proved by Čap and Gover in [12], where even much weaker normalization condition on the
ambient metric is considered.
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In particular, sections of the standard tractor bundle T → M are in bijective correspondence
with ambient vector fields along N (more precisely, sections of i∗TM → N ) which are of homo-
geneity −1 with respect to the R+-action. Under this correspondence, the line subbundle T 1 ⊂ T
corresponds to the vertical subbundle of the cone projection N →M .

3.5 CR contact geometry and Fefferman space

Prototypical CR structures are induced on real submanifolds in complex spaces. Submanifolds of
the same real codimension need not be mutually equivalent under biholomorphic transformations,
hence their local geometry may be studied and invariants constructed. This was shown already



30 I Toolkit

by Poincaré in [55] for real hypersurfaces in C2, which are the simplest examples of CR contact
structures. Popular and the most symmetric ones are the hyperquadrics given by

|z1|2 + |z2|2 = 1 and Im z2 = |z1|2, (3.13)

(z1, z2) ∈ C2, which are the boundaries of the unit ball and the Siegel domain, respectively.
It follows that they are globally biholomorphically equivalent up to one point under a complex
projective map. Thus, they may be seen as different affine realizations of the same hyperquadric
in CP2, i.e., the complex projectivization of the null cone in C3 with respect to a Hermitean inner
product of signature (2, 1). This is the proper homogeneous model of 3-dimensional CR contact
structures.

Almost CR contact structures

Generalizing according to dimension and signature, let Cp+1,q+1 be a complex vector space with a
Hermitean inner product of signature (p+ 1, q+ 1) and let N ⊂ Cp+1,q+1 be the cone of non-zero
null vectors. The complex projectivization of N yields a real hyperquadric Cp,q ⊂ CPn+1, where
n = p+ q, which is the model CR contact structure of signature (p, q). It is a homogeneous space
of the simple Lie group G = SU(p + 1, q + 1), respectively PSU(p + 1, q + 1), and the stabilizer
P ⊂ G of a point of Cp,q, i.e., a complex line in N , is a parabolic subgroup. Thus, Cp,q ∼= G/P .

Let the Hermitean inner product on Cp+1,q+1 be represented by the same matrix as in (3.8)
and let P be the stabilizer of the first vector from the standard basis. Then the corresponding
grading of the Lie algebra g = su(p+ 1, q + 1) has the form

g =




g0 g1 g2

g−1 g0 g1

g−2 g−1 g0


 ,

with blocks of sizes 1, n and 1. In particular, g is |2|-graded with g−2
∼= R, g−1

∼= Cp,q, g0
∼=

C ⊕ u(p, q) etc. (of course, the blocks that are symmetric with respect to the anti-diagonal are
determined by each other). The Lie bracket g−1×g−1 → g−2 is (a multiple) of the imaginary part
of the standard Hermitean product on g−1, in particular, it is non-degenerate and of type (1, 1)
with respect to the standard complex structure.

The underlying geometric structure of the current parabolic geometry on a manifold M (of
dimension m = 2n + 1) consists of a contact distribution H ⊂ TM with an almost complex
structure J on H such that the Levi form L : H × H → TM/H is of type (1, 1) with respect
to J . Thus L is the imaginary part of a non-degenerate Hermitean form on H whose signature,
(p, q) with p + q = n, is the signature of the structure. In other words, the signature in encoded
in the map L(−, J(−)). Such structures are known as non-degenerate partially integrable almost
CR structures of hypersurface type or, shortly, almost CR contact structures. The structure is
integrable if the almost complex structure J is integrable, i.e., the corresponding Nijenhuis tensor,
which is the map H ×H → H of type (0, 2), vanishes.

The notion of partial integrability refers to the compatibility of the Levi form L with the almost
complex structure J . Both this and the stronger condition of integrability can be equivalently
stated in terms of complexifications: for H1,0⊕H0,1 being the decomposition of H⊗C ⊂ TM ⊗C
into the holomorphic and anti-holomorphic part, the almost CR structure is partially integrable
if and only if [H0,1, H0,1] ⊂ H ⊗ C, the structure is integrable if and only if [H0,1, H0,1] ⊂ H0,1.
In this view one also relates Lagrangean contact structures and almost CR contact structures as
two real forms of a complex parabolic contact structure: indeed, sl(n+ 2,R) and su(p+ 1, q + 1),
with p+ q = n, are distinct real forms of complex Lie algebra sl(n+ 2,C).

This remark concerns also the interpretation of the corresponding cohomologies and harmonic
curvatures: the two components in the Lagrangean case that are labeled CL and CR in (3.3),
respectively TL and TR in (3.4), correspond to only one component in the almost CR case. In
particular, for n = 1 (i.e., dimM = 3), there is only one harmonic curvature of Cotton–York type,
for n > 1, there is one torsion and one curvature of Weyl type (that all are somehow compatible
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with the almost complex structure J). It follows that the torsion part coincides with the Nijenhuis
tensor of J up to a multiple, hence its vanishing is equivalent to the integrability of the almost
CR structure.

Fefferman space

Fefferman’s original construction in [32] concerns hypersurfaces in complex spaces, the boundaries
of strictly pseudoconvex domains D ⊂ Cn+1. It associates a natural Lorentzian metric on ∂D×S1

so that its conformal class is invariant under biholomorphic transformations of D, respectively CR
automorphisms of ∂D. This way, the conformal geometry is used to tackle many problems of the
original complex, respectively CR, nature. The construction was later generalized for abstract CR
contact structures by several authors until it was realized it may be considered for almost CR con-
tact structures in any signature and, moreover, it allows a neat Cartan geometric reinterpretation,
see [13].

As usual, one may start with the homogeneous model and then consider generalizations. With
the usual identification of the multiplicative group C× with S1×R+, we may factorize the projec-
tion N → Cp,q = N/C× above via N/R+, which gives a S1-fibration over the model CR quadric
Cp,q.

N

��

''
N/R+ = S∗,∗

ww
N/C× = C∗,∗

To interpret this picture, we just forget about the complex structure on Cp+1,q+1 and consider
N as the cone of non-zero null vectors in R2p+2,2q+2 with respect to the inner product given by
the real part of the Hermitean inner product on Cp+1,q+1. Hence, N/R+ is the Möbius sphere
S2p+1,2q+1 with its flat (oriented) conformal structure as the Fefferman conformal structure of the
model CR quadric. The inner product on R2p+2,2q+2 is by its definition G-invariant, which yields
an embedding of Lie groups

φ : G = SU(p+ 1, q + 1) ↪→ SO(2p+ 2, 2q + 2) = G̃. (3.14)

As a homogeneous space, S2p+1,2q+1 ∼= G̃/P̃ , where P̃ ⊂ G̃ is the stabilizer of a ray in N ⊂
R2p+2,2q+2. Since also the group G acts transitively on N , we may identify S2p+1,2q+1 ∼= G/Q,

where Q ⊂ G is the preimage of P̃ ⊂ G̃ with respect to φ; roughly we write Q = G∩ P̃ . Obviously,
Q ⊂ P , where P ⊂ G is the stabilizer of the complex line containing the ray stabilized by Q.
But this is exactly the setting of section 1.3: the Möbius sphere is the correspondence space of
the model CR quadric and the Cartan connection encoding the (flat) conformal structure on the
former space can be seen as the equivariant extension of the Maurer–Cartan form on G encoding
the (flat) CR structure on the latter space.

(G̃, ω̃)
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In other words, the G-invariant conformal geometry on the model Fefferman space is controlled
by the pair of maps i = φ|Q : Q → P̃ and α = φ′ : g → g̃ via the corresponding extension
functor. The natural—and for applications also important—question is how this functor behaves
in generality, in particular, when it is compatible with the normality condition. In contrast to
previous correspondence space constructions (where there were no extension), there is no general
answer and it demands a careful analysis of curvature interrelations given by (1.9). The only
bonus in the current situation is that there is no contribution of Ψα, since α is a Lie algebra
homomorphism. It is shown in [13] that the current construction preserves the normality condition
just for integrable CR contact structures. More precisely, for (G →M,ω) being the normal Cartan

geometry describing an almost CR contact structure and (G̃ → M̃, ω̃) being the Cartan geometry
with an underlying conformal structure constructed via the extension given by the pair (i, α) as
above,

• the Cartan connection ω̃ is normal if and only if ω is torsion-free.

Remarks

For the description of the model Fefferman construction, it is sometimes useful to switch the point
of view: instead of considering a complex vector space with a Hermitean inner product and then
forgetting the complex structure, one may start with a real vector space with a pseudo-Euclidean
inner product and then imposing a compatible complex structure. The compatibility means that
the complex structure is skew with respect to the inner product. This allows to reconstruct the
Hermitean inner product which is behind the embedding (3.14). In particular, elements from
its image commute with the complex structure. Note that this embedding admits a lift to the
corresponding Spin group.

The previous factorization of the complex projectivization N → Cp,q = N/C× via N/R+ led
to the model interpretation of the Fefferman construction. Naturally, one may ask what interesting
issues appear when factorization via N/S1. It easily follows that the fibration N/S1 → Cp,q is
just a scale bundle that can be directly identified with the bundle of (positive) contact forms.

As we already noticed above, Lagrangean and almost CR contact structure correspond to dif-
ferent real forms of the contact grading of sl(n + 2,C). In fact, any complex simple Lie algebra
allows a unique (up to inner automorphism) contact grading. Up to several exceptions (including
mainly the compact forms), real simple Lie algebras also admit unique contact gradings; the corre-
sponding parabolic geometries are collectively called contact parabolic geometries. Quick comments
on these structures, in association with chains, can be found in section 4.3. A slightly extended
comment on Lagrangean contact structures follows.

Lagrangean contact structures revised

Lagrangean contact structures are defined in section 3.3 in terms of decomposition of the contact
distribution into Lagrangean subspaces, H = L⊕R, with the model being a flag variety of specific
type. Almost CR structures are defined earlier in this section in terms of an almost complex
structure J on H (i.e., an endomorphism such that J2 = − id |H) compatible with the Levi
bracket, with the model being a real hyperquadric in complex projective space. The relationship
between these two structures can be emphasized by interpreting the Lagrangean decomposition
H = L⊕R as the eigenspace decomposition of an almost para-complex structure K on H (i.e., an
endomorphism such that K2 = id |H) that is compatible with the Levi bracket. This can indeed
be precised so that, in particular, vanishing of the Nijenhuis tensor of K is equivalent to the
integrability of both L and R.

Similar affinity should, of course, be perceptible also on the level of homogeneous models. This
is indeed possible: starting with the CR description and imposing the ‘para-’ prefix everywhere, we
claim that the homogeneous model of the Lagrangean contact structure of dimension m = 2n+ 1
can be naturally identified with the ‘para-complex projectivization’ of the cone of non-zero null
vectors of a para-Hermitean inner product in a ‘para-complex vector space’ of real dimension
2n + 4. The quote marks indicate that one has to be careful about typical para-issues, i.e., that
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para-complex numbers do not form a field, hence ‘para-complex vector spaces’ are actually modules
etc. To be on the safe side, let us formulate things in real terms.

Let V be a real vector space of dimension 2n + 4 with an inner product h of signature (2p +
2, 2q + 2), where p+ q = n, and N ⊂ V be the cone of non-zero null vectors of h. Let us consider
K to be a para-complex structure on V that is skew with respect to h. This compatibility forces
the eigenspaces V+ and V− of K to be isotropic. In particular, h must have split signature and V+

and V− are dual one another with respect to h. For X ∈ V , the para-complex hull 〈X,K(X)〉 is
2-dimensional if and only if X belongs to the open subset V0 := V \{V+∪V−}; such subspaces are
called para-complex lines. Any para-complex line 〈X,K(X)〉 intersects V+ and V− in 1-dimensional
subspaces spanned by X+ := X+K(X) and X− := X−K(X), respectively. Since V− is identified
with the dual space of V+, we may interpret the latter subspace as a hyperplane in V+. Since
the identification is provided by h, the pair 〈X+〉 and 〈X−〉 represents a flag in V+ if and only if
h(X+, X−) = 0. This is also equivalent to the fact that the para-complex line is null, i.e., contained
in N or, more precisely, in N0 := N \ {V+ ∪ V−}. Altogether, we have

Proposition 3.1. The space of para-complex null lines in V = Rn+2,n+2 is naturally identified
with the flag variety of type (1, n+ 1, n+ 2).

Thus, the ‘para-complex projectivization’ of N0 recovers the model Lagrangean flag variety
together with the double fibration as displayed on page 23.

Considering the real projectivization of N , which is the Möbius space Sn+1,n+1, it has three
components in accord with the decomposition

N = V+ ∪N0 ∪ V−. (3.15)

The group G̃ = SO(n+ 2, n+ 2) acts transitively both on N and Sn+1,n+1, however, the previous
decomposition corresponds to the orbit decomposition of the subgroup of elements commuting
with K. Such elements are represented by linear isomorphisms of V+ (and their duals on V−),
hence the subgroup is isomorphic to GL(n+ 2,R). Restricting only to isomorphisms preserving a
volume form on V+, we have an embedding

φ : G = SL(n+ 2,R) ↪→ SO(n+ 2, n+ 2) = G̃. (3.16)

The compatibility of K and h allows to construct a para-Hermitean inner product on V that is
preserved by G and whose real part is h. In this context we may see G as a special ‘para-unitary’
group.

Note that map (3.16) admits a lift to the corresponding Spin group. All these observations
are employed later in section 5.2 in connection with a (closest possible) analogue of the Fefferman
construction.





CHAPTER II

Usage

H ere we collect our concrete contributions to the generalities described in the previous chapter.
The exposition is based on the attached articles, extended by motivations and commentaries

for which, usually, there is not enough space in journal publications. Although the individual
sections concern independent stories, one can easily spot many interrelations. The ordering of the
material was driven also by this aspect.

A quick summary of the results obtained is given already in chapter . The core of each of the
following sections follows the introductory historical survey. In the explanations of the results we
suppress all technical details and rather stress the key points and remarkable relations.

At this place we face a slight problem concerning the notation and terminology: as we refer
both to the attached articles and the previous preparatory text, we hope the reader will understand
that we cannot guarantee an absolute consistency.

4 Geometry of chains

Chains are non-contact distinguished curves of parabolic contact structures. Certainly, they are
best known and studied in the CR contact setting, in which case they were introduced by Cartan,
and later generalized by Chern and Moser, in the course of solution to the equivalence problem.
Despite their innocent definition and model realization, they form a rather intricate family of
curves. This is probably why chains and their behaviour became a subject of independent study.
In the introductory section we make several remarks on this account.

In the main part we focus on the conceptual description of the associated path geometry
following our article [17]. This can be attained by a general extension of Cartan geometries as
described in section 1.3. In the CR and Lagrangean contact case, this construction preserves the
normality condition for an important subclass of integrable (torsion-free) structures, in which cases
we can add further non-trivial observations. This, in particular, concerns the reconstruction of the
initial structure from the path geometry of chains.

Considering a similar adventure for other parabolic contact structures, one observes some
limitations: in most cases the whole circle of ideas works only in the flat case, for projective
contact structures the construction reduces to a construction of Fefferman type. These situations
are commented in the concluding section.
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4.1 History and unification

Cartan, Chern and Moser

The notion of chains (châınes) was introduced in the work of Cartan on real hypersurfaces in C2,
[21, 20]. On hyperquadrics (3.13), they are just the intersections with complex lines, which turn
to be either real circles or straight lines. Passing to the model projective hyperquadric in CP2,
which is the homogeneous space G/P with G = PSU(2, 1) and P ⊂ G the parabolic subgroup as in
section 3.5, it follows that chains are the homogeneous curves with generators in the 1-dimensional
subspace g−2 ⊂ g. Easily, all chains are mutually equivalent, any two points determine a unique
chain and any chain is everywhere transverse to the contact distribution. Thus, each chain (as an
unparametrized curve) is uniquely determined by a tangent direction in one point, provided it is
transverse to the complex contact subspace.

Cartan’s generalization to general real hypersurfaces M ⊂ C2 can be phrased in our terms as
follows. For G → M being the associated P -bundle with the normal Cartan connection ω, chains
are the projections of integral submanifolds of a closed differential ideal on G determined by ω.
This somehow vague description may be interpreted so that the g±1-parts of a suitable Cartan
gauge along each chain vanish.

Chains are further considered on real hypersurfaces in complex spaces of general dimension
by Chern and Moser in [25]. Firstly, chains play a key role in the construction of normal forms,
where they (and certain framings along them) are related to an external coordinate system under
biholomorphic mappings. This way, chains (and the associated framings) satisfy a system of dif-
ferential equations which is invariantly given by the hypersurface. Secondly, chains are described
intrinsically on a general (integrable) CR manifold of hypersurface type in terms of the associated
(normal) Cartan connection generalizing the above mentioned Cartan’s description.

Beside the previous views, there is another one by Fefferman via his construction discussed
in section 3.5: chains are understood as projections of null geodesics of the conformal Fefferman
space.

Unification and remarks

It is not immediately clear how all these concepts are related, if ever. Detailed comparisons of Car-
tan and Chern–Moser approach can be found in [47], many illuminating remarks are also scattered
in [4]. It follows that, in the Cartan geometric interpretation, chains coincide with projections to
the base manifold of flows of constant vector fields on G that corresponds to elements from g−2 ⊂ g.
This fits nicely to the concept of distinguished curves introduced in section 2.3. In particular, the
subalgebra of g with vanishing g±1-parts is the symmetry algebra of a model chain. Also, via
the notion of development of curves, the above listed properties of model chains remain valid in
general. And, finally, the notion of chains can be instantly transferred to any parabolic contact
geometry.

Before we fully focus on the previous standpoint, let us remark several interesting features of
chains that were studied by many authors, cf. [32, 46, 50, 51]: It holds that, any two nearby points
on strictly pseudoconvex CR contact manifolds may be connected by a chain. But, this statement
fails in general signature. Furthermore, it may happen that chains spiral into a point. Another
result, which was proved in generality by Cheng [23], is that chain preserving diffeomorphisms
between CR contact manifolds are either CR automorphisms or conjugate CR automorphisms.
We are going to recover this result in the next section.

4.2 The action: curved Cartan extension

The fact that chains (as unparametrized curves) are determined by a tangent direction at one
point means that they form a system of paths in the sense of section 3.3, restricted, however, to
the non-contact directions. Since this structure also allows a parabolic geometric description, it is
natural to look for a direct relation of the two structures via some extension construction described
in previous chapter. Experiments with the corresponding system of ODEs in homogeneous model
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give some clue on the character of such relation; see [27] for concrete outcomes in small dimensions.
The most interesting discussions concern the CR and Lagrangean contact structures, which we
reproduce here following our article [17] stimulated by [26]. According to the current exposition,
we focus on the CR case and only comment the Lagrangean one below (although the structure of
[17] is right opposite).

Let M be a smooth manifold of dimension m = 2n + 1 endowed with an almost CR contact
structure (H,J) of signature (p, q), p+q = n. Let G = PSU(p+1, q+1) and P ⊂ G be the pair of
simple Lie group and its parabolic subgroup, let p ⊂ g be their Lie algebras and let (G →M,ω) be

the corresponding regular normal parabolic geometry as in section 3.5. Let further M̃ ⊂ PTM be
the open subset of the projectivized tangent bundle of M consisting of the non-contact directions
and let E⊕V be the decomposition of the tautological subbundle of TM̃ determined by the path
geometry of chains. Let G̃ = PGL(2n + 2,R) and P̃ ⊂ G̃ be the pair of simple Lie group and

its parabolic subgroup, let p̃ ⊂ g̃ be their Lie algebras and let (G̃ → M̃, ω̃) be the corresponding
regular normal parabolic geometry as in section 3.3.

The construction

Searching for a direct relation of the two Cartan geometries, one has to investigate the homogeneous
model first. For M = G/P , the first observation is that G acts transitively on M̃ , the space of non-
contact lines in TM . The stabilizer Q ⊂ G of an appropriate element contains G0 and is contained
in P so that its Lie algebra is q = g0 ⊕ g2. In particular, M̃ is the homogeneous space G/Q and

the associated path geometry as well as the regular normal parabolic geometry (G̃ → M̃, ω̃) are
homogeneous with respect to G. From the generalities in section 1.3 we know that such Cartan
geometry can be described by a pair of compatible extension maps i : Q → P̃ and α : g → g̃. It
follows that, in the current setting, such pair is actually unique up to the natural equivalence, see
[17, Theorem 3.4].
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P̃
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To prescribe the pair (i, α) in concrete, one may fix as much as possible to satisfy all the com-
patibility conditions and eliminate the remaining freedom so that the induced parabolic geometry
is normal, i.e., that ∂̃∗Ψα = 0, for Ψα as in (1.8). For instance, according to the block decompo-
sitions as before, the following choice guarantees that α induces a linear isomorphism g/q→ g̃/p̃
and g−2 ⊂ g hits g̃E−1 ⊕ p̃ ⊂ g̃,



· Z ·
X · −Ep,qZ∗
ix −X∗Ep,q ·


 α7−→




· · · ·
x · · ·

Re(X) Im(Ep,qZ
∗) · ·

Im(X) −Re(Ep,qZ
∗) · ·


 ,

where Ep,q is as in (3.8) and ∗ denotes the conjugate transposition. This setup can be completed

and integrated to i : Q → P̃ so that the remaining compatibility and normality conditions hold,
which determines the pair (i, α) uniquely. The full matrix realization is given in [17, section 5.2].
It follows that the corresponding Ψα is non-trivial, hence we deal with general extension functor.
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Normality and applications

The first serious task concerns answering the fundamental question under which conditions the
extension functor yields a regular normal parabolic geometry. In order to tackle this problem,
a careful analysis of the Cartan curvatures in accord with (1.9) is inevitable. With a detailed
knowledge of harmonic curvatures and the properties of the map α, it turns out the direct relation
between the regular normal parabolic geometries associated to an almost CR contact structure
and its path geometry of chains is available exactly for the subclass of integrable structures:

Theorem 4.1 ([17, Theorem 5.2]). Let (M,H, J) be an almost CR contact structure and let
(G → M,ω) be the corresponding regular normal parabolic geometry of type (G,P ). Then the

parabolic geometry (G̃ → M̃, ω̃) constructed using the extension functor associated to the pair
(i, α) as above is regular and normal if and only if ω is torsion-free, i.e. the almost CR structure
is integrable.

In particular, this is automatically satisfied when dimM = 3, i.e., n = 1. With such direct rela-
tion we can control some properties of chains—for integrable CR contact structures—in relatively
easy way:

Firstly, the general principle that the induced Cartan curvature κ̃ is fully given by the CR
Cartan curvature κ and the constant contribution Ψα may be nicely specified in our setting. It
follows that the two ingredients, respectively their equivariant extensions, are well separable from
the whole curvature κ̃ in terms of certain projections. Note that this is not an obvious task since
this has to be done without the prior knowledge of the bundle extension. In particular, these two
parts can never eliminate each other, the one corresponding to Ψα is never vanishing and the
one corresponding to κ supports just the torsion of κ̃. These facts and the interpretation of the
vanishing of individual curvature components as in section 3.3 lead to the following results:

Theorem 4.2 ([17, Theorem 5.3]). Let (M,H, J) be a CR contact structure.

• There is no linear connection on TM which has the chains among its geodesics.

• The path geometry of chains is torsion-free if and only if the CR structure is flat.

Secondly, the previous separation can be pushed even further so that the equivariant extension
of Ψα, respectively κ, coincides up to a non-zero multiple with the component of the harmonic
curvature of homogeneity 3, respectively 2 (torsion), of the induced Cartan connection. This and
the explicit knowledge of Ψα, which is just an algebraic map given by (1.8), allows us to interpret
the corresponding harmonic curvature component via the complete symmetrization of the map

(ξ, η, ζ) 7→ L(ξ, J(η))J(ζ), (4.1)

for ξ, η, ζ ∈ Γ(H), where L : H×H → TM/H is the Levi bracket. This shows an intimate relation
between the initial CR contact structure and the associated path geometry of chains on the very
underlying level. Now, it is an algebraic exercise to show the following:

Theorem 4.3 ([17, Theorem 5.3]). The almost complex structure J can be reconstructed up to
sign from the harmonic curvature of the associated path geometry of chains.

In the proof one has to consider the complexification of (4.1) to H ⊗ C, which then allows
to reconstruct the subset H1,0 ∪ H0,1. This determines the almost complex structure on H up
to the sign, hence the ambiguity. Notice that particularly the signature of the CR structure is
incorporated in the path geometry of chains and the previous reasoning indicates how.

Finally, as an easy consequence, we recover the result of [23] on chain preserving transforma-
tions:

Corollary 4.4 ([17, Corollary 5.3]). A contact diffeomorphism between two CR contact manifolds
which maps chains to chains is either a CR isomorphism or a CR anti-isomorphism.
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Remarks

From the viewpoint of path geometry, chains form a complicated system of curves even in the
homogeneous model since the corresponding Cartan geometry is non-flat. However, it is torsion-
free and has a relatively large automorphism group. From the previous we know this group is
G = PSU(p + 1, q + 1), whose dimension is n2 + 4n + 3, where n = p + q. A natural question in
similar situations is whether this realizes the submaximal case or not. It follows from [52, section
5.3] that this is not the case, since the maximal automorphism group of a non-flat path geometry
has dimension 4n2 + 4n+ 6.

Since the path geometry of chains in the homogeneous model is torsion-free, the twistor space
of chains carries a canonical Grassmannian structure of type (2, 2n) (equivalently, Segre or para-
quaternionic structure). Again, this is an example of a non-flat Grassmannian structure with
relatively large (but not submaximal) automorphism group. Moreover, this is an example of a
non-flat Grassmannian (globally) symmetric space, cf. [69].

Although chains are not geodesics of any linear connection on M , there is a variational approach
to their description and study. This has been recently shown in [24] via a Finsler-like metric on
M , the so-called Kropina metric.

4.3 Other parabolic contact structures

The just described story of chains for CR contact structures has analogies for other parabolic
contact structures. The Lagrangean contact ones are, of course, the closest.

Lagrangean contact structures

In this case, the development of section 4.2 is very parallel with analogous results, which are
also described in [17]: the extension functor preserves the normality condition just in torsion-free
cases, chains are not geodesics of any linear connection and the path geometry of chains is torsion-
free just for flat Lagrangean contact structures. In the reconstruction, the harmonic curvature
component corresponding to Ψα allows to recreate the subset L ∪ R ⊂ H, i.e., the para-complex
structure on H up to sign. Hence the chain preserving diffeomorphisms are either Lagrangean
automorphism or anti-automorphism, i.e., they either preserve or swap the Lagrangean subspaces
from the decomposition L⊕R = H.

Concerning the homogeneous model, it allows several descriptions as discussed in sections
3.3 and 3.5. Anyhow, it is the correspondence space of RPn which is identified with the space
of contact elements in RPn of hyperplane type. Consequently, chains of the model Lagrangean
contact structure should be described in the underlying projective terms. Indeed, seeing them as
1-parameter families of contact elements, it easily follows that each chain consists of a pencil of
hyperplanes in RPn with a common projective line whose base points also form a projective line. In
particular, chains project to projective geodesics and this fact holds generally for any Lagrangean
contact structure induced by projective structure.

Projective contact structures

Projective contact structure (in a narrower sense) is the underlying structure of a regular normal
parabolic geometry corresponding to the contact grading of simple Lie algebra g = sp(2n+ 2,R),
where the dimension of base manifold is 2n + 1. Roughly, the structure is given by a class of
‘contact projectively equivalent’ affine connections with vanishing ‘contact torsion’, i.e., basically,
by a family of ‘contact geodesics’. In a broader sense, the condition of vanishing contact torsion may
be suppressed, which still allows a parabolic geometric description with a generalized normalization
condition. This is considered by Fox in [38], where also a subordinated projective structure on the
same manifold is described. The subordinateness means that the contact geodesics of the former
structure are among the geodesics of the latter one.
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The approach of [38] is via the ambient connections—the Thomas one for projective structures
and its direct analogue for projective contact structures. Considering the structure with vanish-
ing contact torsion, the subordinated projective structure may be interpreted as the result of a
construction of Fefferman type. In such case, geodesics in non-contact directions are exactly the
chains of the projective contact structure, hence the associated path geometry is covered just by the
correspondence space construction. This is indeed unusual situation compared to other parabolic
contact structures. Anyhow, the chain preserving transformations turn out to be automorphisms
of projective contact structures. All details can be found in our article [18].

Lie contact structures

Other parabolic contact geometries are less studied than the ones mentioned above. Among them,
probably the Lie contact structures are the most prominent as they are related to the classical Lie
sphere geometry. Lie contact structures correspond to contact gradings of simple Lie algebras g =
so(p+2, q+2), where the dimension of base manifold is 2p+2q+1. The underlying structure allows
several equivalent descriptions, among which the shortest is via a para-quaternionic structure on
the contact distribution compatible with the Levi bracket (the role of the signature (p, q) is rather
involved in this setting).

According to the development of section 4.2 one can follow the key steps including the recon-
struction of the structure from the harmonic curvature of the associated path geometry, provided
that the Lie contact geometry is torsion-free. The only defect on the neck is that, for dimensions
grater or equal to 7, this restriction implies the Lie contact structure is flat and in such cases the
used machinery seems a bit heavy. Anyhow, in the homogeneous case the path geometry of chains
is again non-flat, torsion-free, with relatively large automorphism group, see [68] for more.

Furthermore, the model Lie contact structure can be identified on the projectivized cotangent
bundle of the Möbius sphere, and this observation can be covered by a construction of Fefferman
type, see [67]. In the case of positive definite signature, interpreting chains as 1-parameter families
of contact elements, one can show that the base points of each chain form a conformal circle
which intersect the hyperplanes from the family in constant angle. In particular, chains project to
conformal circles and this fact holds for any Lie contact structure induced by conformal structure.

In low dimensions, Lie contact structures are basically equivalent to other, better studied,
parabolic contact structures: the Lie algebra isomorphisms so(4, 2) ∼= su(4, 2) and so(3, 3) ∼=
sl(4,R) indicate the equivalence to almost CR contact structures of split signature and Lagrangean
contact structures, respectively, in dimension 5. Note that the latter identification (respectively,
its complexification) is also behind the famous line-sphere correspondence by Lie.

Remaining cases

There is also an isomorphism so(6, 2) ∼= so∗(8), which is an isomorphism of real forms of the
same complex Lie algebra. Parabolic contact structures corresponding to contact gradings of so∗

algebras are almost unknown. However, it can be shown that the underlying structure consists of
a quaternionic structure on the contact distribution that is compatible with the Levi bracket. The
behaviour of chains is not studied in detail for these structures, but it is expected to be parallel
to the Lie contact case.

One may also list the structures corresponding to contact gradings of exotic simple Lie algebras.
Similarly to previous two cases, the common feature is that their harmonic curvatures consists
only of torsions, hence the same restrictions as above are expected.

5 Conformal Patterson–Walker metrics

Walker manifolds are pseudo-Riemannian manifolds admitting a parallel isotropic distribution. In
the case of split signature, there is an interesting subclass of Patterson–Walker metrics, which
are the Walker metrics induced naturally on the cotangent bundle of a manifold with an affine
connection. If the base manifold has dimension two, the construction was modified in [30] in a
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projectively invariant manner. We can grasp this construction as a construction of Fefferman type
and consider its generalization to any dimension.

In the following we recall some basics following our three main sources of inspiration, [54, 30,
53]. Then we compare various viewpoints, which should serve as a useful background for under-
standing the general Fefferman-type construction relating the associated parabolic geometries. As
emphasized already in the introductory chapter, this construction is typically non-normal, but it
is in a sense ‘half-normal’, which allows its surprisingly satisfactory treatment. This is described
in section 5.2 following our article [43].

It follows that many of the abstract functorial notions have very concrete counterparts. From
the latter perspective, new interrelations between the two geometric structures were researched
in our next article [42]. This is not treated systematically in the current exposition, but here and
there we mention concerning particular results. As a nice mixture of abstract and concrete, we are
able to draw also a very favourable ambient picture. This is described in section 5.3 following our
last article [44].

5.1 History and comparisons

Patterson and Walker

The concept of the Riemann extension appeared for the first time in the article [54] by Patterson
and Walker. This is a pseudo-Riemannian metric of split signature (n, n) with a parallel isotropic
distribution of rank n induced by a geometric data on an n-dimensional manifold. Already in that
reference, there are considered several variants of such construction, which are further modified
and generalized by many authors. What we mean by the Patterson–Walker metric is the Riemann
extension induced by a torsion-free affine connection as follows. Let (xA) be local coordinates on
M , let Γ C

A B = Γ C
B A be the Christoffel symbols of a torsion-free affine connection D on M and let

(pA) be the extended coordinates on the bigger manifold.1 Then the associated Patterson–Walker
metric is given by

g := 2 dxA � dpA − 2 Γ C
A B pC dxA � dxB . (5.1)

It is easy to see that the distribution spanned by ∂pA is isotropic and parallel with respect to
the Levi-Civita connection of g. Besides concrete local expressions and relations, it is indicated
already in [54] how to interpret the metric g in large, namely, as living on the total space of the
cotangent bundle T ∗M . We come back to this issue later in this section.

Right after this initiation, many related contributions appeared, including a local characteri-
zation of Patterson–Walker metrics and reflections of various specific properties. For instance, we
list several typical statements:

• D is flat if and only if g is flat,

• D is Ricci flat if and only if g is Ricci flat,

• D is projectively flat if and only if g is conformally flat.

These and similar results can be found in papers by Patterson, Walker, Afifi and others, see, e.g.,
[66, chapter VII, §15] for a quick introduction and many references.

Dunajski and Tod

In the 2-dimensional case, the previous construction was modified by Dunajski and Tod in [30] so
that single affine connection is substituted by a whole projective class. This was done using the
Thomas projective parameters in the place of Christoffel symbols,

ḡ := 2 dxA � dpA − 2 Π C
A B pC dxA � dxB , (5.2)

where the symbols Π C
A B are defined by (3.2).

1We use the notation that fits best to our later development, in particular, uppercase indices range from 1 to
n = dimM , while lowercase ones will range from 1 to 2n.
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It follows that the conformal structure represented by ḡ is anti-self-dual and admits a light-
like conformal Killing field, namely, k := pA∂pA . A close relation between the two structures is
demonstrated in [30, Theorem 4.1] which states that the initial projective structure is metrizable
if and only if the induced conformal structure contains Kähler or para-Kähler metric.

A proper interpretation of the extended manifold, an alternative description of the induced
conformal class and its characterization is commented below.

Nurowski and Sparling

It is a useful observation and one of our research motivations that the previous construction can be
directly related to the one by Nurowski and Sparling in [53], which is demonstrably a construction
of Fefferman type. In that article, authors are concerned with the geometry of 2-order ODE,

y′′ = Q(x, y, y′), (5.3)

in the plane (x, y) modulo point transformations; cf. remarks around (3.6). Since, in this dimension,
the corresponding path geometry is equivalent to a Lagrangean contact structure, the article
is designed in full analogy with the Cartan’s original treatment of 3-dimensional CR contact
structures. In particular, the equivalence method yields the normal Cartan connection ω associated
to the ODE together with the fundamental curvature invariants.

Moreover, this approach allows to define an analogue of the Fefferman conformal metric on a 4-
dimensional quotient of the Cartan’s principal bundle. A representative metric from the conformal
class is then explicitly given by

g̃ := (dp−Qdx)� dx− (dy − p dx)� ( 2
3 idφ+ 2

3Qp dx+ 1
6Qpp(dy − pdx)), (5.4)

where (x, y, p = y′, φ) are local extended coordinates on the Fefferman space and i is a non-zero
real constant; see [53, formula (31)].

It is shown in [53, Proposition 1] that the conformal structure [g̃] is half-flat (i.e., self-dual or
anti-self-dual) if and only if the Cartan connection ω is half-flat (i.e., one of the two fundamental
invariants vanishes). In particular, this happens for ODEs which are point-equivalent to a geodesic
equation or, in other words, for Lagrangean contact structures which are induced by a projective
structure. In such case, the resulting conformal structure is the result of composition of two func-
torial construction, namely, the correspondence space construction (from projective to Lagrangean
contact) and the Fefferman-type construction (from Lagrangean contact to conformal).

Direct comparison

In order to compare the current approach with the setting of Dunajski and Tod, we just need to
expand the condition that the ODE (5.3) is point-equivalent to a geodesic equation. From (3.7)
we know that this is equivalent to

Q = A0 +A1p+A2p
2 +A3p

3, (5.5)

where Ai are functions only of x and y and p = y′. Computing partial derivatives Qp and Qpp and
substituting into (5.4) yields

g̃ = dp� dx+ 2i
3 p dφ� dx− 2i

3 dy � dφ−
− (A0 + 1

3A1p) dx� dx− 2
3 (A1 +A2p) dx� dy − ( 1

3A2 +A3p) dy � dy.
(5.6)

To compare this metric with the one from (5.2), we need some relations among the coefficients in
(5.5), the Christoffel symbols of a representative connection and the Thomas projective parameters.
Considering the representative connection is torsion-free, it easily follows the relations are

A0 = −Γ2
11, A1 = Γ1

11 − 2Γ2
12, A2 = 2Γ1

12 − Γ2
22, A3 = Γ1

22,

Π2
11 = −A0, Π1

11 = −Π2
21 = −Π2

12 = 1
3A1, Π1

12 = Π1
21 = −Π2

22 = 1
3A2, Π1

22 = A3,
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cf., e.g., [6]. This gives the following expression of the metric from (5.2),

ḡ = dp1 � dx1 + dp2 � dx2−
− 1

3A1p1 dx1 � dx1 − 2
3A2p1 dx1 � dx2 −A3p1 dx2 � dx2+

+A0p2 dx1 � dx1 + 2
3A1p2 dx1 � dx2 + 1

3A2p2 dx2 � dx2.

(5.7)

Now, employing a coordinate transformation

x = x1, y = x2, p = −p1p2 , φ = 3
2i ln |p2|,

it is a straightforward exercise to show that

Proposition 5.1. Metrics (5.6) and (5.7) are conformally equivalent.

Conceptual comparison

An alternative way to realize the whole story is to interpret, and then modify, appropriately the
original Patterson–Walker construction. The first part of this program is scattered in literature,
the second part, including a comparison with previously used Thomas projective parameters,
is novel. This approach, initiated by [29], is developed in [42]. General interpretation and further
investigation of this construction as a construction of Fefferman type is the subject of next section.

In what follows we consider a smooth manifold M of general dimension n and a torsion-
free affine connection D. As before, let (xA) be local coordinates on M and let Γ C

A B be the
Christoffel symbols of D. But, now, let (pA) be the dual fibre coordinates of T ∗M , i.e., the
ones so that θ = pA dxA is the tautological 1-form, and let g be the Patterson–Walker metric
on T ∗M defined by (5.1). The connection D determines (and is determined by) a horizontal
distribution H ⊂ TT ∗M which is complementary to the vertical distribution V of the bundle
projection π : T ∗M → M . Via the tangent map of π, the bundle H is isomorphic to TM , whilst
V is canonically isomorphic to T ∗M . Concretely, the vertical and the horizontal distribution is
spanned by ∂pA and ∂xA +Γ C

A B pC ∂pB , respectively. The Patterson–Walker metric g is the unique
one such that both V and H are isotropic with respect to g and the value of g with one entry from
V and another entry from H is given by the natural pairing between V ∼= T ∗M and H ∼= TM .
I.e., for any ξ, η ∈ H and ϕ,ψ ∈ V ,

g(ξ, η) = g(ϕ,ψ) = 0, g(ξ, ϕ) = ϕ(Tπ ·ξ).

Note that, extending the previous natural pairing between V and H in anti-symmetric (rather
than symmetric) way, one recovers the canonical symplectic form on T ∗M ,

µ = dθ = dpA ∧ dxA. (5.8)

The relation to the Patterson–Walker metric g is provided by the almost para-complex structure,
K, induced by the decomposition H⊕V = TT ∗M so that H and V are its +1 and −1 eigenspace,
respectively. It follows that g is para-Hermitean with respect to K, i.e., g(K−,K−) = −g(−,−),
and g(−,−) = µ(K−,−). The vector field corresponding to the tautological 1-form with respect
to g, respectively µ, is the Euler vector field of the fiber vector structure,

k := pA∂pA . (5.9)

This is an important companion and one of the characteristics of the Patterson–Walker metrics
as it is its homothety, i.e., a conformal Killing field with constant divergence.

For the projective-to-conformal variant of the previous construction, let us consider its obvious
modification to weighted cotangent bundles T ∗M(w), with general w. In such cases, in order to
trivialize the density bundle, we have to assume that M is orientable and an affine connections
on M are special, i.e., volume preserving. Now, the effect of the change of the underlying affine
connection can be directly spotted with the following outcome:
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Proposition 5.2 ([42, Proposition 3.1]). Let D and D̂ be projectively equivalent special torsion-
free affine connections on M and let g and ĝ be the associated Patterson–Walker metrics on
T ∗M(w). Then g and ĝ are conformally equivalent if and only if w = 2.

Note that the definition (5.2) using Thomas projective parameters can be considered in any
dimension. It is an instructive exercise to directly compare that approach with the just mentioned
one, see [42, remark 3.3] for the details.

Altogether, the construction we are going to investigate associates to an oriented projective
structure on M a conformal structure on T ∗M(2), which we call the conformal extension or confor-
mal Patterson–Walker metric. The induced conformal structure is also oriented and, moreover, it
can be lifted to a conformal spin structure. We employ this addition as a convenient interpretative
instrument.

5.2 The action: non-normal Fefferman-type construction

Before we launch the Fefferman-type construction covering the previous observations, we have
to consult the model situation. Important preparatory observations were done in section 3.5, in
which setting we continue here. In order to be in concordance with our main reference [43], we only
decrease n (which controls dimensions of all the spaces around) by 1. We also consider the spin

group G̃ = Spin(n+ 1, n+ 1), instead of SO(n+ 1, n+ 1), as the principal one. The embedding

φ : G = SL(n+ 1,R) ↪→ Spin(n+ 1, n+ 1), (5.10)

which lifts the one from (3.16), is described in [43, section 3.2].

The construction

The group G̃ acts transitively on null rays in V = Rn+1,n+1, whereas G has three orbits in accord
with the decomposition (3.15). Let P̃ ⊂ G̃ be the stabilizer of a ray from N0, i.e., a null ray not

contained in V+ ∪ V−, and let Q = G ∩ P̃ . Obviously Q ⊂ P ′ ⊂ P , where P ′ ⊂ G is the stabilizer
of the para-complex line containing the ray stabilized by Q and P ⊂ G is the stabilizer of the
ray given by the projection to V+

∼= Rn+1. Hence the homogeneous space G/Q coincides with the

open orbit in G̃/P̃ ∼= Sn,n, the Möbius sphere, G/P ′ coincides with the oriented ‘para-complex
projectivization’ of N0, the model oriented Lagrangean flag variety, and G/P coincides with the
oriented projectivization of V+, the projective n-sphere.

(G̃, ω̃)

��

(G,ω)
' �

φ
44

**

��

��

P+(N0) ∼= G/Q

tt

$ G̃/P̃ ∼= Sn,n conformal

Flags+(1, n, n+ 1) ∼= G/P ′

tt

Lagrangean

P+(V+) ∼= G/P projective

The central part of this picture reminds the one from section 3.5, the left part is the standard
flag correspondence. In the following, we are primarily interested in the extension from projective
to conformal structures. We might therefore ignore the intermediate Lagrangean step, however,
we will see it is worth remembering it is naturally there.

For the general construction, let M be an oriented manifold of dimension n ≥ 2 endowed with
a projective structure and let (G → M,ω) be the corresponding normal parabolic geometry of
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type (G,P ). Let P̃ ⊂ G̃ and Q = G ∩ P̃ ⊂ P be as above and let p̃ ⊂ g̃ and q ⊂ p ⊂ g be
the corresponding Lie algebras. Let us consider the extension functor of Fefferman type given by
the embedding (5.10) and let (G̃ → M̃, ω̃ind) be the induced parabolic geometry with underlying

conformal spin structure on the Fefferman space M̃ = G/Q. Let us interpret and further investigate
the induced conformal structure:

First interpretations

The Fefferman space, as the quotient bundle M̃ = G/Q is identified with the associated bundle
G ×P (P/Q). Focusing on the typical fibre P/Q, one easily shows that this is isomorphic as a
P -module to the set of non-zero elements of (g/p)∗(2), the typical fibre of T ∗M(2) seeing as an

associated bundle to G. Thus, the Fefferman space M̃ is naturally identified with the weighted
cotangent bundle of projective weight 2, without the zero section, see [43, Proposition 3.1]. Similar
argument suffices to show that among the metrics from the induced conformal class there are
genuine Patterson–Walker metrics, see [43, Proposition 6.2]. (The corresponding scales, i.e., the
ones which correspond to projective scales on M , are called reduced.) Hence we know the current
construction indeed covers the conformal Patterson–Walker extension described by Proposition
5.2.

As we indicated in previous commentaries, the induced conformal structure has number of
special properties. Immediately from the algebraic setup we can easily observe several distinguished
objects, which play a role in later characterizations, see [43, Proposition 3.2]. Namely, they are pure
tractor spinors, denoted as sE and sF , and a compatible involution of the standard tractor bundle,
K, which are all parallel with respect to the induced (not necessarily normal) tractor connection.
The underlying objects are pure spinors, η and χ, and a null vector field, k, generating the 1-
dimensional intersection of the distributions ker η and kerχ. Of course, one of these distributions
forms the vertical subbundle of the projection M̃ → M and the notation is chosen so that V =
kerχ. Note also that the sum of these two distributions coincides with the ortho-complement of k
in TM̃ .

Normality

As usual, the critical problem is to detect in which cases the Fefferman-type construction preserves
the normality condition. This can be discussed either directly or by analysing the two natural steps
which are behind the current construction (cf. the model diagram above): (1) the correspondence
space construction from projective to Lagrangean contact structure and (2) the Fefferman-type
construction from Lagrangean contact to conformal structure.

From section 3.3 we know that the first construction always preserves the normality. Concern-
ing the second construction, we know from section 3.5 that the classical Fefferman construction
preserves the normality only in the torsion-free (integrable) case. The current Lagrangean setting
can be dealt in full analogy to the CR case with the very same outcome: here the torsion-freeness
means that both Lagrangean subbundles of the contact distribution are integrable. Combining
these results, we conclude with the following.

Proposition 5.3 ([43, Proposition 3.8]). Let (G →M,ω) be a normal projective parabolic geom-

etry and let
(
G̃ → M̃, ω̃ind

)
be the conformal parabolic geometry obtained by the Fefferman-type

construction.

• If dimM = 2 then ω̃ind is normal.

• If dimM > 2 then ω̃ind is normal if and only if ω is flat.

Moreover, independently of the dimension of M , ω̃ind is flat if and only if ω is flat.

Hence, the normal conformal Cartan connection in the 2-dimensional case is directly obtained
by the current Fefferman-type construction, which recovers the Nurowski–Sparling construction;
see [43, section 3.7] for a quick summary with a full characterization. In general dimension, this is
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not the case. However, from section 3.3 we know that one of the two torsions of the intermediate
Lagrangean contact geometry is trivial and it is just the contribution of the second one which spoils
the normality of the resulting conformal parabolic geometry. Thus, even though this geometry
is generally non-normal, we interpret it as ‘half-normal’ and this is what allows further, and
eventually satisfactory, manipulation.

Normalization and characterization

To start with the normalization, one has to quantify the non-normality of the induced Cartan
connection, i.e., to specify the values of ∂̃∗κ̃ind. Of course, the discussion includes a lot of tech-
nicalities which obstructs formulating results in a too relaxed way. The key observation is in [43,
Lemma 4.3], which is enough to follow the normalization process in a reasonable detail allowing
some interpretations. The process typically (for |1|-graded geometries) has two steps,

ω̃0 := ω̃ind, ω̃1 := ω̃0 + Ψ1, ω̃2 := ω̃1 + Ψ2 = ω̃nor, (5.11)

where the correction 1-forms Ψ1 and Ψ2 have values in well described submodules of p̃ = g̃0 ⊕ g̃1

and p̃+ = g̃1 and are controlled by ∂̃∗κ̃0 and ∂̃∗κ̃1, respectively. An important information about
the curvature of the normalized Cartan connection is stated in [43, Proposition 4.6], involving also
a first version of the integrability condition that controls values of κ̃nor under insertions of vectors
that are vertical with respect to the projection M̃ →M .

Previous results can be phrased so that the tractor spinor sF is parallel with respect to the
normal tractor connection. In particular, the underlying spinor field χ is pure, the tractor spinor
sF is its BGG splitting, sF = L0(χ), and the holonomy of the induced conformal structure is
reduced. The other allied tractorial objects, sE and K, need not be parallel but it turns out they
are also BGG splittings of their underlying objects, sE = L0(η) and K = L0(k), and, moreover, k
is a conformal Killing field. All these informations are condensed in [43, Proposition 4.8].

Interpreting the integrability condition in terms of the conformal Weyl tensor, W̃ , we have at
this stage the first half of the characterization theorem:

Theorem 5.4 ([43, Theorem 4.14]). A split-signature (n, n) conformal spin structure on a man-

ifold M̃ is (locally) induced by an n-dimensional projective structure via the Fefferman-type con-
struction if and only if the following properties are satisfied:

• M̃ admits a nowhere vanishing light-like conformal Killing field k such that the corresponding
tractor endomorphism K = L0(k) is an involution, i.e., K2 = idT̃ .

• M̃ admits a pure twistor spinor χ with k ∈ Γ(kerχ) such that the corresponding parallel
tractor spinor sF = L0(χ) is pure.

• K acts by minus the identity on ker sF .
• The following integrability condition holds:

vawcW̃abcd = 0, for all v, w ∈ Γ(kerχ).

For the converse direction one may use an auxiliary Cartan connection, given by

ω̃′ := ω̃nor − 1
2 ιkκ̃

nor, (5.12)

and an adapted version of the correspondence space descending theorem. This manoeuvre is de-
scribed in [43, section 4.3]. However, a detailed analysis of the Cartan curvatures brings an in-
teresting refinement, which simplifies the previous discussion and allows us to descend directly. It
follows that the Cartan connection (5.12) coincides with the induced one and that the difference
between the induced and the normal Cartan connection is, according to the notation from (5.11),

Ψ1 = − 1
2 ∂̃
∗κ̃ind = 1

2 ιkκ̃
nor, Ψ2 = 0,

see [43, Theorem 5.7]. In particular, the above indicated normalization process completes already
in the first step. Moreover, the difference term can be written explicitly using the conformal
Weyl and Cotton–York tensor. These results rely on the use of reduced scales and their intrinsic
characterization in [43, section 5.1].
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Alternative characterization

In [42] we obtained (by different means) a slightly different version of the characterization theorem
5.4. This is formulated fully in terms of underlying objects, which is also why we speak about the
conformal Patterson–Walker metric rather than Fefferman-type construction:

Theorem 5.5 ([42, Theorem 1], [43, Theorem 6.3]). A split-signature (n, n) conformal spin struc-

ture on a manifold M̃ is (locally) induced by an n-dimensional projective structure as a conformal
Patterson–Walker metric if and only if the following properties are satisfied:

• M̃ admits a nowhere vanishing light-like conformal Killing field k.

• M̃ admits a pure twistor spinor χ such that kerχ is integrable and k ∈ Γ(kerχ).

• The Lie derivative of χ with respect to the conformal Killing field k is

Lkχ = − 1
2 (n+ 1)χ. (5.13)

• The following integrability condition holds:

vrwsW̃arbs = 0, for all vr, ws ∈ Γ(kerχ).

It is easy to see that this characterization follows from the one in Theorem 5.4. For the converse
direction, one has to consider the BGG splittings K = L0(k) and sF = L0(χ), translate their
relationship and, in particular, show that K is an involution of the standard tractor bundle. All
this can be found in [43, section 6.2].

In both characterizations we collect just minimal data allowing a reconstruction of the under-
lying projective structure. From the previous exposition we know there are more typical features
of such conformal structures. For instance, the subtle condition in (5.13) implies, among other
things, that k is a homothety (and not just a conformal Killing field) of a representative metric
for which χ is parallel. This also plays the role of Euler vector field of the fiber vector structure of
the (local) identification M̃ ∼= T ∗M(2), cf. (5.9). Moreover, there is another accompanying object,
namely, the pure spinor η, which pairs non-trivially with χ and whose tractorial counterpart was
denoted as sE . This spinor field satisfies the twistor spinor equation only in the flat case.

Remarks

So far we concentrated on various interpretations and characterizations of conformal extensions
of projective structures. Concerning further relations of the two structures, there is a great space
to investigate, although a lot is already known, cf. section 5.1. In the article [42] we were able
to fully describe, in underlying projective terms, conformal Killing fields of conformal extensions
and Einstein metrics contained in the conformal class. This analysis naturally includes also the
original Patterson–Walker construction. For an illustration and later use, let us mention several
facts:

Each conformal, respectively genuine, Killing field of a Patterson–Walker metric can be uniquely
written as a sum of several individuals, one of which is a lift of a projective, respectively affine,
infinitesimal symmetry. It follows that the Killing field on T ∗M corresponding to an infinitesi-
mal affine symmetry on M is just its Hamiltonian lift with respect to the canonical symplectic
structure (5.8).

5.3 Further action: ambient constructions

Beside the properties and relations discussed so far, there are other striking features of conformal
Patterson–Walker metrics. Namely, they admit a global Fefferman–Graham ambient metric which,
moreover, has a very easy form as it is also the Patterson–Walker metric of the Thomas connection,
the ambient linear connection associated to the underlying projective structure. In particular, the
Fefferman–Graham obstruction tensor (which is the Bach tensor in dimension four) vanishes.
Following [44], we exhibit some details.



48 II Usage

Ambient relations

The ambient description for projective and conformal structures is introduced in section 3.2 and
3.4, respectively. In the following diagram we indicate the individual associations: vertically goes
the Thomas cone, respectively the Fefferman–Graham ambient, construction, horizontally goes
the Patterson–Walker construction, respectively its conformal version.

affine (M̂, ∇̂) // (M,g) Riemannian

projective (M, [D])

OO

// (M̃, [g]) conformal

OO

It is an easy observation that these constructions nicely commute in the homogeneous setting.
In particular, according to the description in section 3.5, the conformal ambient space M coincides
with V = Rn+1,n+1 = V+ × V−, which is naturally identified with T ∗V+ for current needs. In the
general setting, it is not a priori clear whether these relations still hold. One can, however, trace
the individual constructions indicated in the diagram and compare the results in the upper right
corner. The key facts—and strong motivations for such an endeavour—are that the normalization
of both Thomas and Fefferman–Graham construction is controlled by the Ricci flatness of the
respective ambient objects and this property is preserved by the Patterson–Walker construction.
Elaborating these ideas in detail, we conclude with

Theorem 5.6 ([44, Theorem 2]). Given a projective structure [D] on M , the geometric construc-
tions indicated in the previous diagram commute. In particular, the induced conformal structure
[g] admits a globally Ricci flat Fefferman–Graham ambient metric g which is itself a Patterson–
Walker metric.

In the proof we just compose the concrete expressions of the Thomas ambient connection and
the Patterson–Walker extension and, in order to accomplish the ansatz of (3.10), one innocent
coordinate transformation. This in turn yields the following explicit description of the ambient
metric:

Theorem 5.7 ([44, Theorem 1]). Let D be a torsion-free affine connection on M which preserves
a volume form. Denote local coordinates on M by (xA) and the induced canonical fibre coordinates
on T ∗M by (pA). Let Γ C

A B and RicAB denote the Christoffel symbols and the Ricci curvature of
D, respectively. Let

g = 2 dxA � dpA − 2 Γ C
A B pC dxA � dxB

be the Patterson–Walker metric induced on T ∗M by D. Then

g = 2 ρdt� dt+ 2 tdt� dρ+

+ t2
(

2 dxA � dpA − 2 Γ C
A B pC dxA � dxB +

2ρ

n− 1
RicAB dxA � dxB

)

is a globally Ricci flat Fefferman–Graham ambient metric for the conformal class [g].

Comparing with (3.11) we see that we have the simplest conceivable description: the current
ambient metric is linear in ρ, i.e., following the iterative procedure to obtain this local expression
from a representative metric, it actually stops after the first step.

Consequences

As an immediate consequence of the existence of ambient metric, the Fefferman–Graham obstruc-
tion tensor of the conformal structure whose representative metric is a Patterson–Walker metric
vanishes. This is the Bach tensor in dimension four. In general dimension, Bach tensor is not
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conformally invariant and it has nothing to do with the obstructions tensor. However, it follows
that for Patterson–Walker metrics the Bach tensor has to vanish as well.

Beside these restrictions, there is another one that is easy to read off the current description.
Namely, the Q-curvature of a Patterson–Walker metric vanishes as well. Although it is generally
very difficult to compute the Q-curvature for a given metric, things simplify significantly in the
current situation. This is shown in [44, Theorem 3], whose proof is based on the method from [34]
and a quick analysis of the ambient Laplace operator.

Remarks

Note that the other ambient objects, namely, the cone N ⊂ M and the Euler vector field E of
the R+-action, are described in previous local coordinates by ρ = 0 and E = t ∂t, respectively.
However, by the very construction, there is a more conceptual description. Firstly, as for any
Patterson–Walker metric, there is a homothety k of g. Secondly, the Euler vector field of the R+-

action on the Thomas cone M̂ is an infinitesimal affine symmetry of ∇̂, therefore its Hamiltonian
lift is a Killing field H of g. It easily follows, that Euler field E is the sum of H and (an appropriate)
multiple of k. Having this, it further follows that g(E,E) is the defining function for N ⊂M.

6 Conformal theory of curves

There is hardly more classical subject in differential geometry than the local geometry of curves in
Euclidean spaces. Nowadays, many attempts to pass the study to other geometries, both homoge-
neous and curved, are known. In this section we present several variations of the typical construct,
the Frenet–Serret frame, in the conformal geometry.

In the introductory overview we comment on the very original construction and several branches
of its possible generalizations: from Euclidean to (curved) Riemannian, from Euclidean to (homo-
geneous) Möbius and from Riemannian to general conformal setting. In this part we follow two of
three main sources of inspiration, namely, [63, 36].

Riemannian // conformal

Euclidean

OO

// Möbius

OOO�

O�

O�

The third inspiration comes from [2], where the tractorial techniques were used for the de-
scription of distinguished curves (conformal circles) and distinguished parametrizations of general
curves. We can push these ideas forward so that a tractor analogue of the Frenet frame is con-
structed, which yields a generating set of absolute conformal invariants of a general curve. This
is described in section 6.2 following our article [62], which is based on [60]. This procedure is
presented as a direct passage from (homogeneous) Möbius to general conformal setting, which
encompasses other approaches and, after possible expansion of tractorial formulas, allows their
comfortable comparisons.

On the way, we also meet a natural family of relative conformal invariants affording further
applications and generalizations. As expected, these techniques can be adapted to other parabolic
geometries, which is indicated in concluding remarks.

6.1 History and initiation

Frenet, Serret and others

For a general curve in Euclidean space, there are several ways to quantify its curving. The idea
of Frenet and Serret in 3-dimensional case, later generalized by Jordan to any dimension, is based
on the association of a natural orthonormal frame along the curve and the expression of its rate of
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change with respect to the natural parametrization, i.e., the one by the arc-length. The resulting
system is known as Frenet–Serret (or just Frenet, for short) equations, whose coefficients form a
distinguished set of (absolute) metric invariants of the curve.

For the arc-length parametrization of a generic curve, c : I → Rn, the natural starting object
is the unit tangent vector e1 = c′; the whole Frenet frame is built from its higher derivatives,
c′′, c′′′, etc., by the Gram–Schmidt process. Denoting the Frenet frame by (e1, . . . , en), the Frenet
equations read as

e′1 = κ1e2,

e′i = −κi−1ei−1 + κiei+1, for i = 2, . . . , n− 1,

e′n = −κn−1en−1,

(6.1)

where the functions κ1, . . . , κn−1 are the curvatures of the curve. The obvious symmetries of
the system reflect the fact that the frame is orthonormal. For later use, let us remark that the
expressions of initial derived vectors with respect to the Frenet frame looks like

c′ = e1, c′′ = κ1e2, c′′′ = −κ2
1e1 + κ′1e2 + κ1κ2e3, etc. (6.2)

Previous concepts were generalized to Riemannian manifolds at latest in the article [5] by
Blaschke. Basically, one has to substitute the Riemannian metric for the inner product and the
corresponding (Levi-Civita) covariant derivative for the ordinary flat one. Beside the immediate
expressions of curvatures involving the frame constituents and their derivatives, κi = e′i ·ei+1, there
are expressions in terms of initial derived vectors and volumes of corresponding parallelepipeds.
The latter formulas can be adapted easily with respect to an arbitrary parametrization of the
curve, cf. [41, 61]. This is an easy but important remark because it shows how to express absolute
invariants of curves in terms of relative ones, i.e., those which change by a functional multiple
relative to a concrete parametrization of the curve. Here the natural family of relative invariants
is formed by volumes of the parallelepipeds given by first k derived vectors along the curve, where
k = 2, . . . , n.

With the help of relative invariants one may characterize special curves for which the full Frenet
frame is not available. For instance, Euclidean straight lines, respectively Riemannian geodesics,
are the curves for which the simplest relative invariant (corresponding to k = 2 in the previous
description) vanishes.

Cartan

The Frenet frame is a particular instance of a much more general concept, the Cartan’s moving
frame. From this perspective, the Frenet frame along a curve on M is an adapted lift to the bundle
of orthonormal frames G → M (whose total space coincides with the group G = Euc(n) of rigid
motions in the flat case). If ĉ : I → G is such a lift of the curve c : I → M and ω is the Cartan
connection on G with values in the Lie algebra g = Rn n o(n) then, following the conventions as
in section 3.1, the Frenet equations (6.1) are written as

ĉ∗ω =




1 −κ1
κ1

. . .
. . .
−κn−1

κn−1




.

The first column in this decomposition just says that c′ = e1, i.e., the tangent vector of the curve
is the first vector from the frame.

The point is that Cartan’s method allows to determine the lift by a successive reduction of the
structure group yielding the invariants with increasing order.
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Schiemangk and Sulanke

In this manner, submanifolds of Möbius space Sn were studied in the series of articles starting
with [56, 63] by Schiemangk and Sulanke, where the study is subordinated to the bigger group
G = O(n+ 1, 1) of conformal transformations. In the second reference, a lift to G along a generic
curve c : I → Sn is constructed, which is, by nature, a pseudo-orthonormal moving frame in the
ambient Minkowski space Rn+1,1. As a natural starting object (called the normed representation
of the curve) it is taken a curve of null vectors in Rn+1,1 whose tangent vectors have constant
length one.

If b : I → Rn+1,1 denotes such a lift, b′, b′′ etc. its derivatives and · the inner product in the
ambient vector space, then the assumptions yield the following couple of relations

b ·b = 0, b ·b′ = 0, b ·b′′ = −1,
b′ ·b′ = 1, b′ ·b′′ = 0,

(6.3)

with the first non-trivial pairing being b′′ ·b′′. From this and the next derived vector, a conformally
invariant 1-form along the curve is extracted, namely,

ds = 4
√

b′′′ ·b′′′ − (b′′ ·b′′)2 dt, (6.4)

where t is the initial parameter of c. Integration of this 1-form gives a natural parametrization of
the curve (up to additive constant), the so-called conformal arc-length.

At this stage it is easy to complete the full frame and to express its change with respect to the
natural parametrization. Hence a conformal analogue of Frenet equations and n− 1 distinguished
conformal invariants follow.

It has to be noted that there are many particular results predating the just described ones,
which would deserve careful comparisons. The list of related contributions is really huge and we
intentionally ignore most of them here. Satisfactory surveys can be found, e.g., in the introductions
of the articles [8, 7]. As an instance, we remark that the form (6.4) can be expressed in terms of
Euclidean curvatures so that

ds = 4

√
κ′21 + κ2

1κ
2
2 dt,

which is a formula that appears repeatedly in older literature, cf. [63, Proposition 1.3]. (Here, t is
the Euclidean arc-length parameter, κ1, κ2 are given by (6.1) and also (6.2) is used.)

Fialkow

To our knowledge, the first publications where the conformal invariants of curves are studied in full
generality (in positive definite signature) are [35, 36] by Fialkow, based on tensorial techniques.
In order to build the conformal Frenet frame and hence the distinguished conformal curvatures of
a curve in analogy to the general Riemannian setting, one has to describe a couple of conformally
invariant objects first:

• a natural starting object (in the place of the unit tangent vector),

• a natural derivative along the curve (in the place of the restricted Levi-Civita connection),

• a natural distinguished parametrization of the curve (in the place of the arc-length parame-
ter).

In [36, sections 3–4], these objects are explicitly introduced and named the first principal
normal, conformal derivative and conformal arc-length, respectively. Then, for generic curves, the
full frame may be constructed and the conformal curvatures extracted. Notice that there is an
exceptional curvature, completing the system of generating invariants, which does not follow from
the Frenet process and is constructed independently in [36, section 5]. Opening the article, one
quickly realizes that many formulas seem a bit complicated, if not mysterious. We are going to
show how to recover them using tractor calculus, from which—by the way—it should be clear they
cannot be easier.



52 II Usage

Before we continue, let us remark the many observed subtleties follow from a sizable freedom
in the change of covariant derivative with respect to a choice of scale, respectively Weyl structure.
It follows from (3.9) that, for any curve, a metric in the conformal class may be chosen so that the
curve is affinely parametrized geodesic. This, in particular, reveals the problem with conformally
invariant notion of osculating subspaces etc.

Bailey, Eastwood and Gover

Here we introduce the tractor approach to conformal geometry of curves following the article [2]
by Bailey, Eastwood and Gover (and adapting to our notation). For the standard tractor bundle,
T → M , associated to a conformal Riemannian structure on M as in 3.12, there is the natural
insertion E [−1] ∼= T 1 ↪→ T which we denote by X. Considering a regular curve c : I → M , a
natural conformal density along the curve is the length of its tangent vector, u := ‖c′‖ ∈ E [1].
Hence we have a lift to the standard tractor bundle, T := u−1X, which is the natural starting
object in the current setting.

T

��
I

c
//

T

CC

M

Denoting by U , U ′ etc. the derivatives of T with respect to the standard tractor connection
along the curve and by · the standard tractor metric, the following relations are easily satisfied

T · T = 0, T ·U = 0, T ·U ′ = −1,
U ·U = 1, U ·U ′ = 0,

(6.5)

with the first non-trivial pairing being U ′ ·U ′.
It is shown in [2, Proposition 2.11] that this quantity changes under reparametrizations of the

curve so that

Ũ ′ · Ũ ′ = g′−2
(
U ′ ·U ′ − 2S(g)

)
, (6.6)

where the objects decorated with tildes are related to the reparametrization t̃ = g(t) and S denotes
the Schwarzian derivative,

S(g) :=
g′′′

g′
− 3

2

(
g′′

g′

)2

.

Consequently, vanishing of U ′ ·U ′ determines a preferred family of parametrizations of the curve
with freedom given by the projective group of the line. In this derivation, there is no need to
rummage the tractor entries (basically, the chain rule and the Leibniz rule suffice). The same
result was obtained in [3, Proposition 4.1] by a direct manipulation with the expanded equation,
which is seen as direct proof of one of Cartan’s observations in [19]. Any parameter from this
preferred family is called projective.

Next, it is shown in [2, Proposition 2.12] how to characterize conformal circles in terms of
tractors. Conformal circles are distinguished curves of conformal structures in the sense of section
2.3. The name reflects the fact that on the Möbius sphere they are ordinary circles. They can
be described by a system of ODEs of 3-order. Expanding the following tractorial equations and
comparing with the determining system of ODEs, it turns out that the curve is a projectively
parametrized conformal circle if and only if it obeys

U ′ ·U ′ = 0 and U ′′ = 0. (6.7)

We are going to continue this game in the next section.
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Remarks

At latest after the comparison of starting relations (6.3) and (6.5), it should be clear that the two
approaches have the same footing. Indeed, the curved version of the former construction means
lifting to the Fefferman–Graham ambient space, M, and from section 3.4 we know how such things
are related to standard tractors:

Let the lift to the ambient space be a curve contained in the null cone, N ⊂M, whose tangent
vector field has constant length one. The lift can be interpreted as a choice of scale along the curve
and its tangent vector field can be uniquely extended to a vector field of homogeneous degree −1
in the preimage of the curve with respect to the projection N → M . After factorization by the
R+-action, this yields a section of the standard tractor bundle along the curve coinciding with T
above.

6.2 The action: tractor Frenet construction

Before constructing the full Frenet frame using tractors, we prefer to start with the notion of
relative invariants and an alternative characterization of conformal circles. The starting assump-
tions are as yet, in particular, we consider conformal structures of Riemannian signature, in which
case the standard tractor metric has signature (n+ 1, 1), where n = dimM . Remarks on general
indefinite signature follow.

Relative conformal invariants and conformal geodesics

A relative conformal invariant of weight k of a curve is a conformally invariant function, I, along
the curve that transforms under any reparametrization, t̃ = g(t), as Ĩ = g′−kI. In particular, van-
ishing, respectively non-vanishing, of any relative invariant is independent of reparametrizations.
Conformal invariants of weight 0 are the absolute ones.

The easiest relative invariant one can find by hand is the one corresponding to (6.4). Indeed,
it is an exercise to show (by continuing the reasoning behind (6.6)) that the function

U ′′ ·U ′′ − (U ′ ·U ′)2 (6.8)

is a relative conformal invariant of weight 4. However, this is also (up to the sign) the first non-
trivial determinant from the sequence of Gram matrices corresponding to T ,U ,U ′,U ′′, . . . Let us
denote by ∆i the determinant determined by the first i tractors from this sequence (in particular,
(6.8) corresponds to −∆4). It easily follows that, for i = 4, . . . , n+ 2, the Gram determinant ∆i is
a relative conformal invariant of weight i(i− 3), see [62, Lemma 2.2]. Moreover, all these function
are non-positive.

Hence we have a bunch of relative invariants to play with. On the one hand, in generic cases,
integrating an appropriate root of any of these functions along the curve yields its natural con-
formally invariant parametrization. Of course, we take the simplest one, −∆4, and call the cor-
responding parameter conformal arc-length as before. In particular, in this parametrization, −∆4

equals identically to 1.
On the other hand, vanishing of some of these invariants (which implies vanishing of all higher

ones) dictates some degeneracy, respectively specificity, of the curve. Focusing on the simplest one,
it is not surprising that we recover the conformal circles:

Proposition 6.1 ([62, Proposition 3.3]). The following conditions are equivalent:

• The curve is a conformal circle (with and arbitrary parametrization).

• The invariant U ′′ ·U ′′ − (U ′ ·U ′)2 vanishes identically.

• The rank 3 subbundle
〈
T ,U ,U ′

〉
⊂ T is parallel along the curve.

This way we extend the characterization from (6.7). Another equivalent conditions are com-
mented in section 6.4.
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Tractor Frenet frame and absolute conformal invariants

Having enough relative conformal invariants of a generic curve, one may construct the absolute
ones in various ways. Constructions of Frenet type provide a natural and minimal (in the generating
sense) set of such invariants. In our situation we may proceed as follows.

Consider a generic curve with the conformal arc-length parametrization and the sequence of
derived tractors as before. The restriction of the tractor metric to the subbundle

〈
T ,U ,U ′

〉
is

non-degenerate and has signature (2, 1). Thus its orthogonal subbundle in T is complementary and
has positive definite signature. The initial tractor frame (T ,U ,U ′,U ′′, . . . ) can be transformed
into a natural pseudo-orthonormal one (U0,U1,U2;U3, . . . ) in two steps: the first three tractors
are taken to be

U0 := T , U1 := U , U2 := −U ′ − 1
2 (U ′ ·U ′)T , (6.9)

the rest is completed by the standard Gram–Schmidt process.
Now the usual techniques yield the tractor version of conformal Frenet equations which are

gathered in [62, formula (34)]. In particular, there are n−1 distinguished curvatures, K1, . . . ,Kn−1,
among which the first one is slightly exceptional due to the character of the construction. This is
summarized in [62, Proposition 4.2] together with immediate expressions of the curvatures in terms
of Frenet tractors and their derivatives. At this stage, it is also very easy to say something about
the exceptional curvature K1 (recall the projective family of parametrizations was determined by
vanishing of U ′ ·U ′):
Proposition 6.2 ([62, Proposition 4.3]). The conformal arc-length parameter belongs to the pro-
jective family of parameters if and only if K1 = 0.

From the conceptual point of view, we are basically done. For concrete applications and com-
parisons, it is useful to express the curvatures Ki with respect to an arbitrary parametrization of
the curve. There are several strategies to do so, in [62, section 4.2] we use the relative conformal
invariants ∆j . Of course, the discussion for K1 is different from the one for remaining curva-
tures (where we just exploit well-known ideas behind the Gram–Schmidt process). Altogether, we
conclude with

Theorem 6.3 ([62, Theorem 4.6 and 4.7]). With respect to an arbitrary parametrization of the
curve, the conformal curvatures can be expressed as

Ki =

{
− 1

2 (−∆4)−
5
2

(
∆4

2 U ′ ·U ′ − 1
2∆4∆′′4 + 9

16∆′4
2
)
, for i = 1,

−(−∆4)−
1
4 (∆i+1∆i+3)

1
2 ∆i+2

−1, for i = 2, . . . , n− 1.

Remarks on indefinite signature

On a conformal manifold of indefinite signature, a rough local division of curves reflects types of
tangent vectors, which may be space-, time- or light-like. The curves of first two types can be lifted
to the standard tractor bundle as before (with the obvious sign adjustment in the time-like case),
in the third case we have to consider higher derivatives. In any case, though the basic ideas and
instruments described above remain, some subtleties appear.

Let us consider space-, respectively time-like, curves here (light-like curves are dealt individually
in the next section). The first difference to the previous discussion concerns our favourite relative
invariants: because now the standard tractor bundle allows isotropic subspaces of higher dimension,
vanishing of ∆i does not imply the determining tractors are linearly dependent. In particular, in the
characterization of conformal circles (which are well defined for any space- or time-like direction)
in Proposition 6.1, the second condition is weaker than the others. Also, these invariants may have
various signs which should be taken into account when defining the conformal arc-length. In the
construction of the tractor Frenet frame, both the subbundle

〈
T ,U ,U ′

〉
⊂ T and its orthogonal

complement may have sundry signatures. Hence the construction has to be adapted with regard
to a finer classification of types of curves, which can be done, e.g., via the sequence of signatures
of subbundles generated by the derived tractors of increasing order. This is why the discussion
branches quickly and it is fully manageable only in concrete situations, cf. [62, Remark 4.4(3)].
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6.3 Further action: r-null curves

For the light-like curves, aka null curves, one has to find a substitute for the density u = ‖c′‖ ∈ E [1]
that was formerly used for the lift to T and that vanishes now. This leads us to the notion of ‘order
of nullity’, respectively r-null curves, which are the curves c : I →M whose first r derived vectors
c′, . . . , c(r) are linearly independent and null, whereas c(r+1) is not null. Although the individual
higher derivatives depend on the choice of scale according to (3.9), the notion of r-null curves
is well defined. On conformal manifolds of signature (p, q), the highest possible r equals to the
smaller of the numbers p and q.

For an r-null curve, the norm of c(r+1) provides an appropriate substitute for u ∈ E [1], hence
the lift to T . In this vein, space- and time-like curves can be seen as 0-null curves and with this
perspective one should read the following outcomes. Indeed, most of previous concepts generalize
swimmingly up to some shift in orders related to the value of r.

Projective parametrizations and relative invariants

Concerning the analogue of the starting relations (6.5), the pattern is the same only shifted so

that the first non-trivial pairing is U (r+1) · U (r+1). Analysis of the change of this quantity with
regard to a reparametrization of the curve reveals a similar behaviour as in (6.6). Hence vanishing
of this function determines a preferred parametrizations of the curve with the projective freedom:

Proposition 6.4 ([62, Proposition 5.1]). For any admissible r, any r-null curve carries a preferred
family of projective parameters.

Concerning the relative conformal invariants ∆i, the first non-trivial one is ∆2r+4. Both their
total amount and particular weights depend on r so that

Lemma 6.5 ([62, Lemma 5.2]). Along any r-null curve, the Gram determinant ∆i, for i =
2r + 4, . . . , n+ 2, is a relative conformal invariant of weight i(i− 2r − 3).

As before, the simplest of these invariants can be used to define a natural parametrization of
the curve, the so-called pseudo-arc-length, provided it is nowhere vanishing. But a simple counts
show that all of them may vanish automatically even for generic r-null curves (this happens for
maximal r in the case of split signature). This is a good reason to search for another source of
relative conformal invariants.

The typical situation with vanishing ∆2r+4 occurs when the tractors T ,U , . . . ,U (2r+2) are
linearly dependent. This condition can be phrased as a tractor linear ODE, whose coefficients are
functions expressible in terms of pairings of the initial tractors. To this equation one may associate
the so-called Wilczynski invariants, which form a set of 2r + 1 essential invariants denoted as
Θ3, . . . ,Θ2r+3. As a matter of fact, each Θi is a relative conformal invariant of weight i. Expressing
the coefficients of our equation, it follows that the subleading one vanishes, in which case it is easier
to gain concrete formulas for Θi (at least for small i) and they indeed can be found in ancient
literature, cf. [57, 65]. Altogether, for an r-null curve, the first three Wilczynski invariants are

Θ3 = 0, Θ4 = −εβ − r(r + 3)

10
εα′′ +

(r + 3)(2r + 5)(5r + 4)

10(r + 1)(r + 2)(2r + 3)
α2, Θ5 = 0,

where ε := U (r)·U (r) = ±1, α := U (r+1)·U (r+1) and β := U (r+2)·U (r+2), see [62, Proposition 5.5].

Note that, for r = 0 and ε = 1 (which holds in positive definite signature), the invariant Θ4

recovers ∆4, i.e., the one in (6.8) up to the sign. For general r, the considered tractor equation is

equivalent to the trivial equation U (2r+2) = 0 if and only if all its Wilczynski invariants vanish. In
our setting, this is equivalent to vanishing of U (j) ·U (j), for any j = r+1, . . . , 2r+2. This innocent
remark serves as a preparation to an appropriate generalization of the notion of conformal circles.
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Conformal null helices

For any space- or time-like curve with an arbitrary parametrization, c : I → M , a metric in the
conformal class may be chosen so that c′′ = 0. For null curves, this condition holds only if the curve
is null geodesic, i.e. the null curve whose acceleration vector c′′ (and consequently all higher order
vectors) is proportional to the tangent one c′. These curves, although very important, cannot be
lifted to the standard tractor bundle in the sense considered here. That is why they are excluded
from our considerations.

For an r-null curve, it follows that the vectors c′, . . . , c(2r+1) are linearly independent for any
choice of scale. Therefore we cannot achieve any of the conditions c′ = 0, . . . , c(2r+1) = 0 by a
conformal change of metric. The simplest conceivable statement is

Lemma 6.6 ([62, Lemma 5.7]). For an r-null curve with an arbitrary parametrization, a metric
in the conformal class may be chosen so that c(r+1) ·c(r+1) = ±1 and c(2r+2) = 0.

Now we are ready to identify the closest relatives of conformal circles among r-null curves. The
simplest conceivable generalization of Proposition 6.1 (and surrounding notions) turns out to be

Theorem 6.7 ([62, Theorem 5.8]). For an r-null curve, the following conditions are equivalent:

• The curve with a projective parametrization (i.e., satisfying U (r+1) · U (r+1) = 0) obeys

U (2r+2) = 0.

• The curve with and arbitrary parametrization obeys that the subbundle
〈
T ,U , . . . ,U (2r+1)

〉
⊂

T is parallel along the curve and all Wilczynski invariants vanish Θ3 = · · · = Θ2r+3 = 0.

• There is a metric in the conformal class such that c(r+1) ·c(r+1) = ±1, c(2r+2) = 0 and
P(c′,−) = 0.

The parallelity assumption in the second condition implies ∆2r+4 = 0, but the opposite im-
plication does not hold in general (which should be corrected in the original formulation of the
statement in [62]). In the flat case, the former condition means that the conformal r-null helix is
contained in the conformal image of a (2r + 1)-dimensional Euclidean subspace. With the third
condition, it easily follows that these curves are just the conformal images of so-called null Cartan
helices, cf. [28]. This is why we call the curves satisfying (any of) previous three conditions the
conformal r-null helices. Note that these curves are not distinguished curves in the sense of section
2.3, where they are controlled by (subsets of) g− ⊂ g. However, weakening this restriction, the
currently distinguished curves may be considered in a similar way.

Tractor Frenet frame

Constructing the tractor Frenet frame, we face the very similar problems as described at the end
of section 6.2. In contrast to the case r = 0, there is also a freedom in accomplishing the first
step, i.e., in an analogy of the transformation (6.9). Of course, any additional choice influences
the corresponding tractor Frenet equations and hence the resulting system of absolute invariants.
This is why the construction cannot be declared as canonical.

Anyhow, we count n− r− 1 conformal curvatures of an r-null curve, some of which depend on
the described choices. But the first of them is not influenced by any choice and its interpretation
is analogous to the one in Proposition 6.2.

Instead of a toothless general reasoning, it is more illuminating to analyse some concrete
situations. For the case of Lorentzian signature, this is done in [62, section 5.4], where we refer
for details and inspirations for further investigations.

6.4 Comparisons and remarks

As promised in the introduction, expanding our tractorial formulas, one generates concrete (and
usually ugly) tensorial expressions. These allow to compare the previously studied notions with
our current approach. In particular, we can detect the Fialkow’s objects listed in section 6.1 among
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our tractors and their individual slots. These, and other comparisons to existing literature, are
discussed in [62, section 4.3]. Also the exceptional curvatures that appear both in Fialkow’s and
our approach can be related satisfactorily, see [62, remark 4.8].

Instead of standard tractor bundle, one may consider other ones. As a natural and prominent
candidate, there is the adjoint tractor bundle. In the conformal case, A ∼= T ∧ T and the natural
lift of curve c : I → M to A : I → A is provided by A := T ∧ U (according to the notation
above). With the corresponding tractor connection and parallel bundle metric, one may mimic the
previous development at least in detecting distinguished parametrizations, constructing families
of relative invariants and characterizing conformal circles, respectively other distinguished curves.

Since the adjoint tractor bundle carries a parallel bundle metric for any parabolic geometry
(induced by the Killing form on the background Lie algebra), we consider this object as an appro-
priate candidate to experiment with. It also carries additional structures, whose role to the study
of curves is not yet investigated. Only several experiments have been done in the context of CR
and Lagrangean contact geometries.

Recently, several studies of curves in conformal and other geometries appear that use tractorial
(and related) techniques, see [31, 37, 39].
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[43] M. Hammerl, K. Sagerschnig, J. Šilhan, A. Taghavi-Chabert, and V. Žádńık. A projective-to-
conformal fefferman-type construction. Symmetry, Integr. Geom. Methods Appl., 13(081):1–
33, 2017.
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ON THE GEOMETRY OF CHAINS

Andreas Čap & Vojtěch Žádńık

Abstract

The chains studied in this paper generalize Chern–Moser chains
for CR structures. They form a distinguished family of one dimen-
sional submanifolds in manifolds endowed with a parabolic contact
structure. Both the parabolic contact structure and the system of
chains can be equivalently encoded as Cartan geometries (of differ-
ent types). The aim of this paper is to study the relation between
these two Cartan geometries for Lagrangean contact structures
and partially integrable almost CR structures.

We develop a general method for extending Cartan geometries
which generalizes the Cartan geometry interpretation of Feffer-
man’s construction of a conformal structure associated to a CR
structure. For the two structures in question, we show that the
Cartan geometry associated to the family of chains can be ob-
tained in that way if and only if the original parabolic contact
structure is torsion free. In particular, the procedure works ex-
actly on the subclass of (integrable) CR structures.

This tight relation between the two Cartan geometries leads to
an explicit description of the Cartan curvature associated to the
family of chains. On the one hand, this shows that the homo-
geneous models for the two parabolic contact structures give rise
to examples of non–flat path geometries with large automorphism
groups. On the other hand, we show that one may (almost) re-
construct the underlying torsion free parabolic contact structure
from the Cartan curvature associated to the chains. In particular,
this leads to a very conceptual proof of the fact that chain pre-
serving contact diffeomorphisms are either isomorphisms or anti–
isomorphisms of parabolic contact structures.
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1. Introduction

Parabolic contact structures are a class of geometric structures hav-
ing an underlying contact structure. They admit a canonical normal
Cartan connection corresponding to a contact grading of a simple Lie al-
gebra. The best known examples of such structures are non–degenerate
partially integrable almost CR structures of hypersurface type. The
construction of the canonical Cartan connection is due to Chern and
Moser ([11]) for the subclass of CR structures, and to Tanaka ([20]) in
general.

In the approach of Chern and Moser, a central role is played by a
canonical class of unparametrized curves called chains. For each point x
and each direction ξ at x, which is transverse to the contact distribution,
there is a unique chain through x in direction ξ. In addition, each
chain comes with a projective class of distinguished parametrizations.
The notion of chains easily generalizes to arbitrary parabolic contact
structures, and the chains are easy to describe in terms of the Cartan
connection.

A path geometry on a smooth manifoldM is given by a smooth family
of unparametrized curves on M such that for each x ∈ M and each
direction ξ at x there is a unique curve through x in direction ξ. The
best way to encode this structure is to pass to the projectivized tangent
bundle PTM , the space of all lines in TM . Then a path geometry is
given by a line subbundle in the tangent bundle of PTM with certain
properties, see [12] and [14] for a modern presentation. It turns out
that these structures are equivalent to regular normal Cartan geometries
of a certain type, which fall under the general concept of parabolic
geometries, see Section 4.7 of [4].

In the description as a Cartan geometry, path geometries immedi-
ately generalize to open subsets of the projectivized tangent bundle.
In particular, given a manifold M endowed with a parabolic contact
structure, the chains give rise to a path geometry on the open subset
P0TM ⊂ PTM formed by all lines transversal to the contact subbun-
dle. The general question addressed in this paper is how to describe the
resulting Cartan geometry on P0TM in terms of the original Cartan ge-
ometry on M . We study this in detail in the case of Lagrangean contact
structures and, in the end, briefly indicate how to deal with partially
integrable almost CR structures, which can be viewed as a different real
form of the same complex geometric structure. Q in the structure group
P The first observation is that P0TM can be obtained as a quotient of
the Cartan bundle G → M obtained from the parabolic contact struc-
ture. More precisely, there is a subgroup Q in the structure group P
such that P0TM ∼= G/Q. In particular, G is a principal Q–bundle over
P0TM and the canonical Cartan connection ω ∈ Ω1(G, g) associated to
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the parabolic contact structure can be also viewed as a Cartan connec-
tion on G → P0TM . The question then is whether the canonical Cartan
geometry (G̃ → P0TM, ω̃) determined by the path geometry of chains
can be constructed directly from (G → P0TM,ω).

To attack this problem, we study a class of extension functors map-
ping Cartan geometries of some type (G,Q) to Cartan geometries of

another type (G̃, P̃ ). These functors have the property that there is a
homomorphism between the two Cartan bundles, which relates the two
Cartan connections. We show that in order to obtain such a functor,
one needs a homomorphism i : Q → P̃ (which we assume to be in-
finitesimally injective) and a linear map α : g → g̃ which satisfy certain
compatibility conditions. There is a simple notion of equivalence for
such pairs and equivalent pairs lead to naturally isomorphic extension
functors.

There is a particular simple source of pairs (i, α) leading to exten-
sion functors as above. Namely, one may start from an infinitesimally
injective homomorphism ϕ : G → G̃, define i to be its restriction to Q
and α to be the induced homomorphism ϕ′ of Lie algebras. In a special
case, this leads to the Cartan geometry interpretation of Fefferman’s
construction of a canonical conformal structure on a circle bundle over
a CR manifold.

One can completely describe the effect of the extension functor asso-
ciated to a pair (i, α) on the curvature of the Cartan geometries. Apart
from the curvature of the original geometry, also the deviation from α
being a homomorphism of Lie algebras enters into the curvature of the
extended Cartan geometry.

An important feature of the special choice for (G̃, P̃ ) that we are
concerned with, is a uniqueness result for such extension functors. We
show (see Theorem 3.4) that if the extension functor associated to a
pair (i, α) maps locally flat geometries of type (G,Q) to regular normal

geometries of type (G̃, P̃ ), then the pair (i, α) is already determined
uniquely up to equivalence. For the two parabolic contact structures
studied in this paper, we show that there exist appropriate pairs (i, α)
in 3.5 and 5.2.

In both cases, the resulting extension functor does not produce the
canonical Cartan geometry associated to the path geometry of chains in
general. We show that the canonical Cartan connection is obtained if
and only if the original parabolic contact geometry is torsion free. For
a Lagrangean contact structure this means that the two Lagrangean
subbundles are integrable, while it is the usual integrability condition
for CR structures. This ties in nicely with the Fefferman construction,
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where one obtains a conformal structure for arbitrary partially inte-
grable almost CR structures, but the normal Cartan connection is ob-
tained by equivariant extension if and only if the structure is integrable
(and hence CR), see [5] and [6].

Finally, we discuss applications of our construction, which are based
on an analysis of the curvature of the canonical Cartan connection as-
sociated to the path geometry of chains. We show that chains never are
geodesics of a linear connection, and they give rise to a torsion free path
geometry if and only if the original parabolic contact structure is locally
flat. Then we show that the underlying parabolic contact structure can
be almost reconstructed from the harmonic curvature of the path ge-
ometry of chains. In particular, this leads to a very conceptual proof
of the fact that a contact diffeomorphism which maps chains to chains
must (essentially) preserve the original torsion free parabolic contact
structure.

Acknowledgements. Discussions with Boris Doubrov have been very
helpful.

2. Parabolic contact structures, chains, and path geometries

In this section, we will discuss the concepts of chains and the asso-
ciated path geometry for a parabolic contact structure, focusing on the
example of Lagrangean contact structures. We only briefly indicate the
changes needed to deal with general parabolic contact structures.

2.1. Lagrangean contact structures. The starting point to define
a parabolic contact structure is a simple Lie algebra g endowed with
a contact grading, i.e. a vector space decomposition g = g−2 ⊕ g−1 ⊕
g0 ⊕ g1 ⊕ g2 such that [gi, gj] ⊂ gi+j, g−2 has real dimension one, and
the bracket g−1 × g−1 → g−2 is non–degenerate. It is known that
such a grading is unique up to an inner automorphism and it exists for
each non–compact non–complex real simple Lie algebra except sl(n,H),
so(n, 1), sp(p, q), one real form of E6 and one of E7, see Section 4.2 of
[23].

Here we will mainly be concerned with the contact grading of g =
sl(n + 2,R), corresponding to the following block decomposition with
blocks of size 1, n, and 1:




g0 gL1 g2

gL−1 g0 gR1

g−2 gR−1 g0


 .

We have indicated the splittings g−1 = gL−1 ⊕ gR−1 respectively g1 =

gL1 ⊕ gR1 , which are immediately seen to be g0–invariant. Further, the
subspaces gL−1 and gR−1 of g−1 are isotropic for [ , ] : g−1 × g−1 → g−2.
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Put G := PGL(n+ 2,R), the quotient of GL(n+ 2,R) by its center.
We will view G as the quotient of the group of matrices whose determi-
nant has modulus one by the two–element subgroup generated by ± id
and work with representative matrices. The group G always has Lie
algebra g. For odd n, one can identify G with SL(n + 2,R). For even
n, G has two connected components, and the component containing the
identity can be identified with PSL(n+ 2,R).

By G0 ⊂ P ⊂ G we denote the subgroups formed by matrices which
are block diagonal respectively block upper triangular with block sizes
1, n, and 1. Then the Lie algebras of G0 and P are g0 respectively
p := g0 ⊕ g1 ⊕ g2. For g ∈ G0, the map Ad(g) : g → g preserves
the grading while for g ∈ P one obtains Ad(g)(gi) ∈ gi ⊕ · · · ⊕ g2 for
i = −1, . . . , 2. This can be used as an alternative characterization of the
two subgroups. The reason for the choice of the specific group G with
Lie algebra g is that the adjoint action identifies G0 with the group of
all automorphisms of the graded Lie algebra g−2⊕g−1 which in addition
preserve the decomposition g−1 = gL−1 ⊕ gR−1.

Let M be a smooth manifold of dimension 2n + 1 and let H ⊂ TM
be a subbundle of corank one. The Lie bracket of vector fields induces
a tensorial map L : Λ2H → TM/H, and H is called a contact structure
on M if this map is non–degenerate. A Lagrangean contact structure on
M is a contact structure H ⊂ TM together with a fixed decomposition
H = L ⊕ R such that each of the subbundles is isotropic with respect
to L. This forces the two bundles to be of rank n, and L induces
isomorphisms R ∼= L∗ ⊗ (TM/H) and L ∼= R∗ ⊗ (TM/H).

In view of the description of G0 above, the following result is a special
case of general prolongation procedures [21, 17, 7], see [19] and Section
4.1 of [4] for more information on this specific case.

Theorem 2.1. Let H = L ⊕ R be a Lagrangean contact structure
on a manifold M of dimension 2n + 1. Then there exists a principal
P–bundle p : G → M endowed with a Cartan connection ω ∈ Ω1(G, g)
such that L = Tp(ω−1(gL−1 ⊕ p)) and R = Tp(ω−1(gR−1 ⊕ p)). The pair
(G, ω) is uniquely determined up to isomorphism provided that one in
addition requires the curvature of ω to satisfy a normalization condition
discussed in 3.6.

Similarly, for any contact grading of a simple Lie algebra g and a
choice of a Lie group G with Lie algebra g, one defines a subgroup
P ⊂ G with Lie algebra g0 ⊕ g1 ⊕ g2. One then obtains an equiva-
lence of categories between regular normal parabolic geometries of type
(G,P ) and underlying geometric structures, which in particular include
a contact structure.

The second case of such structures we will be concerned with in this
paper, is partially integrable almost CR structures of hypersurface type,
see Section 5.
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2.2. Chains. Let (p : G → M,ω) be the canonical Cartan geometry
determined by a parabolic contact structure. Then one obtains an
isomorphism TM ∼= G ×P (g/p) such that H ⊂ TM corresponds to
(g−1 ⊕ p)/p ⊂ g/p. Of course, we may identify g−2 ⊕ g−1 as a vec-
tor space with g/p and use this to carry over the natural P–action to
g−2 ⊕ g−1. Let Q ⊂ P be the stabilizer of the line g−2 under this ac-
tion. By definition, this is a closed subgroup of P . Let us denote by
G0 ⊂ P the closed subgroup consisting of all elements whose adjoint
action respects the grading of g. Then G0 has Lie algebra g0 and by
Proposition 2.10 of [7], any element g ∈ P can be uniquely written in
the form g0 exp(Z1) exp(Z2) for g0 ∈ G0, Z1 ∈ g1, and Z2 ∈ g2.

Lemma 2.2. (1) An element g = g0 exp(Z1) exp(Z2) ∈ P lies in the
subgroup Q ⊂ P if and only if Z1 = 0. In particular, q = g0 ⊕ g2 and
for g ∈ Q we have Ad(g)(g−2) ⊂ g−2 ⊕ q.
(2) Let (p : G →M,ω) be the canonical Cartan geometry determined by
a parabolic contact structure. Let x ∈ M be a point and ξ ∈ TxM \Hx

a tangent vector transverse to the contact subbundle.
Then there is a point u ∈ p−1(x) ⊂ G and a unique lift ξ̃ ∈ TuG of ξ

such that ω(u)(ξ̃) ∈ g−2. The point u is unique up to the principal right
action of an element g ∈ Q ⊂ P .

Proof. (1) We first observe that for a nonzero element X ∈ g−2, the
map Z 7→ [Z,X] is a bijection g1 → g−1. This is easy to verify directly
for the examples discussed in 2.1 and 5.1. For general contact gradings
it follows from the fact that [g−2, g2] consists of all multiples of the
grading element, see Section 4.2 of [23].

By definition, g ∈ Q if and only if Ad(g)(g−2) ⊂ g−2 ⊕ p. Now from
the expression g−1 = exp(−Z2) exp(−Z1)g

−1
0 one immediately concludes

that Ad(g−1)(X) is congruent to −[Z1,X] ∈ g−1 modulo g−2⊕p. Hence
we see that g ∈ Q if and only if Z1 = 0, and the rest of (1) evidently
follows.
(2) Choose any point v ∈ p−1(x). Since the vertical bundle of G → M
equals ω−1(p), there is a unique lift η ∈ TvG of ξ such that ω(v)(η) ∈
g−2 ⊕ g−1. The assumption that ξ is transverse to Hx means that
ω(v)(η) /∈ g−1. For an element g ∈ P we can consider v ·g and Tvr

g ·η ∈
Tv·gG, where v · g = rg(v) denotes the principal right action of g on v.
Evidently, Tvr

g · η is again a lift of ξ and equivariancy of ω implies that
ω(v · g)(Tvrg · η) = Ad(g−1)(ω(v)(η)).

Writing ω(v)(η) = X−2 + X−1 we have X−2 6= 0, so from above we
see that there is an element Z ∈ g1 such that [Z,X−2] = X−1. Putting
g = exp(Z) ∈ P we conclude that ω(v · g)(Tvrg · η) ∈ g−2 ⊕ p. Hence
putting u = v · g and subtracting an appropriate vertical vector from
Tvr

g · η, we have found a couple (u, ξ̃) as required.
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Any other choice of a preimage of x has the form u ·g for some g ∈ P .
Any lift of ξ in Tu·gG is of the form Tur

g · ξ̃ + ζ for some vertical vector

ζ. Clearly, there is a choice for ζ such that ω(Tur
g · ξ̃ + ζ) ∈ g−2 if and

only if ω(Tur
g · ξ̃) ∈ g−2 ⊕ p and equivariancy of ω implies that this is

equivalent to g ∈ Q. q.e.d.

This lemma immediately leads us to chains. Fix a nonzero element
X ∈ g−2. For a point x ∈ M and a line ℓ in TxM which is transverse
to Hx, we can find a point u ∈ G such that Tup · ω−1

u (X) ∈ ℓ. Denoting

by X̃ the “constant vector field” ω−1(X) we can consider the flow of X̃
through u and project it onto M to obtain a (locally defined) smooth
curve through x whose tangent space at x is ℓ. In Section 4 of [9]
it has been shown that, as an unparametrized curve, this is uniquely
determined by x and ℓ, and it comes with a distinguished projective
family of parametrizations.

The lemma also leads us to a nice description of the space of all trans-
verse directions. For a point u ∈ G, we obtain a line in Tp(u)M which is

transverse to Hp(u), namely Tp(ω
−1
u (g−2)). This defines a smooth map

G → PTM , where PTM denotes the projectivized tangent bundle of
M . Since P acts freely on G so does Q and hence G/Q is a smooth
manifold. By the lemma, we obtain a diffeomorphism from G/Q to the
open subset P0TM ⊂ PTM formed by all lines which are transverse to
the contact distribution H.

2.3. Path geometries. Classically, path geometries are associated to
certain families of unparametrized curves in a smooth manifold. Sup-
pose that in a manifold Z we have a smooth family of curves such that
through each point of Z there is exactly one curve in each direction. Let
PTZ be the projectivized tangent bundle of Z, i.e. the space of all lines
through the origin in tangent spaces of Z. Given a line ℓ in TxZ, we can
choose the unique curve in the family which goes through x in direction
ℓ. Choosing a local regular parametrization c : I → Z of this curve
we obtain a lift c̃ : I → PTZ by defining c̃(t) to be the line in Tc(t)Z

generated by c′(t). Choosing a different regular parametrization, we
just obtain a reparametrization of c̃, so the submanifold c̃(I) ⊂ PTZ is
independent of all choices. These curves foliate PTZ, and their tangent
spaces give rise to a line subbundle E ⊂ TPTZ.

This subbundle has a special property. Similarly to the tautological
line bundle on a projective space, a projectivized tangent bundle carries
a tautological subbundle Ξ ⊂ TPTZ of rank dim(Z). By definition,
given a line ℓ ⊂ TzZ, a tangent vector ξ ∈ TℓPTZ lies in Ξℓ if and
only if its image under the tangent map of the projection PTZ → Z
lies in the line ℓ. By construction, the line subbundle E associated to a
family of curves as above always is contained in Ξ and is transverse to
the vertical subbundle V of PTZ → Z. Hence we see that Ξ = E ⊕ V .
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Conversely, having given a decomposition Ξ = E⊕V of the tautolog-
ical bundle, we can project the leaves of the foliation of PTZ defined
by E to the manifold Z to obtain a smooth family of curves in Z with
exactly one curve through each point in each direction. Hence one may
use the decomposition Ξ = E ⊕ V as an alternative definition of such a
family of curves, and this decomposition is usually referred to as a path
geometry on Z. It is easy to verify that the Lie bracket of vector fields
induces an isomorphism E ⊗ V → TPTZ/Ξ.

It turns out that path geometries also admit an equivalent description
as regular normal parabolic geometries. Putting m := dim(Z) − 1 we
consider the Lie algebra g̃ := sl(m+2,R) with the |2|–grading obtained
by a block decomposition




g̃0 g̃E1 g̃2

g̃E−1 g̃0 g̃V1

g̃−2 g̃V−1 g̃0


 ,

as in 2.1, but this time with blocks of size 1, 1, and m. Hence g̃E±1

has dimension 1 while g̃V±1 and g̃±2 are all m–dimensional. Put G̃ :=

PGL(m + 2,R) and let G̃0 ⊂ P̃ ⊂ G̃ be the subgroups formed by
matrices which are block diagonal respectively block upper triangular
with block sizes 1, 1, and m. Then G̃0 and P̃ have Lie algebras g̃0

respectively p̃ := g̃0 ⊕ g̃1 ⊕ g̃2, where g̃1 = g̃E1 ⊕ g̃V1 .

The adjoint action identifies G̃0 with the group of automorphisms
of the graded Lie algebra g̃−2 ⊕ g̃−1 which in addition preserve the
decomposition g̃−1 = g̃E−1 ⊕ g̃V−1. Hence the following result is a special
case of the general prolongation procedures [21, 17, 7], see Section 4.7
of [4] for this specific case.

Theorem 2.3. Let Z̃ be a smooth manifold of dimension 2m + 1
endowed with transversal subbundles E and V in T Z̃ of rank 1 and
m, respectively, and put Ξ := E ⊕ V ⊂ T Z̃. Suppose that the Lie
bracket of two sections of V is a section of Ξ and that the tensorial
map E ⊗ V → T Z̃/Ξ induced by the Lie bracket of vector fields is an
isomorphism.

Then there exists a principal bundle p̃ : G̃ → Z̃ with structure group
P̃ endowed with a Cartan connection ω̃ ∈ Ω1(G̃, g̃) such that E =

T p̃(ω̃−1(g̃E−1⊕p̃)) and V = T p̃(ω̃−1(g̃V−1⊕p̃)). The pair (G̃, ω̃) is uniquely
determined up to isomorphism provided that ω̃ is required to satisfy a
normalization condition discussed in 3.6.

In particular, a family of paths on Z as before gives rise to a Cartan
geometry on PTZ. This immediately generalizes to the case of an open
subset of PTZ, i.e. the case where paths are only given through each
point in an open set of directions.
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It turns out that for m 6= 2, the assumptions of the theorem already
imply that the subbundle V ⊂ T Z̃ is involutive. Then Z̃ is automati-
cally locally diffeomorphic to a projectivized tangent bundle in such a
way that V is mapped to the vertical subbundle and Ξ to the tauto-
logical subbundle. Hence for m 6= 2, the geometries discussed in the
theorem are locally isomorphic to path geometries.

2.4. The path geometry of chains. From 2.2 we see that for a man-
ifold M endowed with a parabolic contact structure the chains give rise
to a path geometry on the open subset M̃ := P0TM of the projectivized
tangent bundle of M . We can easily describe the corresponding config-
uration of bundles explicitly. Denoting by (p : G → M,ω) the Cartan
geometry induced by the parabolic contact structure, we know from 2.2
that M̃ = G/Q, where Q ⊂ P denotes the stabilizer of the line in g/p
corresponding to g−2 ⊂ g−2⊕g−1. In particular, G is a Q–principal bun-
dle over M̃ and ω is a Cartan connection on G → M̃ . This implies that
TM̃ = G ×Q g/q, and the tangent map to the projection π : M̃ → M
corresponds to the obvious projection g/q → g/p. In particular, the
vertical bundle V = ker(Tπ) corresponds to p/q ⊂ g/q. From the con-

struction of the isomorphism G/Q → M̃ in 2.2, it is evident that the
tautological bundle Ξ corresponds to (g−2⊕p)/q. By part (1) of Lemma
2.2, the subspace (g−2⊕q)/q ⊂ g/q is Q–invariant, thus it gives rise to a
line subbundle E in Ξ, which is complementary to V . By construction,
this exactly describes the path geometry determined by the chains.

If dim(M) = 2n + 1, then the dimension of M̃ is 4n + 1. Put

G̃ := PGL(2n + 2,R) and let P̃ ⊂ G̃ be the subgroup described in

2.3. Then by Theorem 2.3 the path geometry on M̃ gives rise to a
canonical principal bundle G̃ → M̃ with structure group P̃ endowed
with a canonical normal Cartan connection ω̃ ∈ Ω1(G̃, g̃). The main
question now is whether there is a direct relation between the Cartan
geometries (G → M̃ , ω) and (G̃ → M̃, ω̃).

The only reasonable way to relate these two Cartan geometries is
to consider a morphism j : G → G̃ of principal bundles and compare
the pull–back j∗ω̃ to ω. This means that j is equivariant, so we first
have to choose a group homomorphism i : Q → P̃ and require that
j(u · g) = j(u) · i(g) for all g ∈ Q. Having chosen i and j, we have
j∗ω̃ ∈ Ω1(G, g̃) and the only way to directly relate this to ω ∈ Ω1(G, g)
is to have j∗ω̃ = α ◦ ω for some linear map α : g → g̃. If we have such
a relation, then we can immediately recover G̃ from G. Consider the
map Φ : G × P̃ → G̃ defined by Φ(u, g̃) := j(u) · g̃. Equivariancy of j
immediately implies that Φ(u · g, g̃) = Φ(u, i(g)g̃), so Φ descends to a

bundle map G ×Q P̃ → G̃, where the left action of Q on P̃ is defined via
i. This is immediately seen to be an isomorphism of principal bundles,
so G̃ is obtained from G by an extension of structure group. Under this
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isomorphism, the given morphism j : G → G̃ corresponds to the natural
inclusion G → G ×Q P̃ induced by u 7→ (u, e).

3. Induced Cartan connections

In this section, we study the problem of extending Cartan connec-
tions. We derive the basic results in the setting of general Cartan ge-
ometries, and then specialize to the case of parabolic contact structures
and, in particular, Lagrangean contact structures. Some of the devel-
opments in 3.1 and 3.3 below are closely related to [15, 22].

3.1. Extension functors for Cartan geometries. Motivated by the
last observations in 2.4, let us consider the following problem. Suppose
we have given Lie groups G and G̃ with Lie algebras g and g̃, closed
subgroups Q ⊂ G and P̃ ⊂ G̃, and a homomorphism i : Q → P̃ which
is infinitesimally injective, i.e. such that i′ : q → p̃ is injective. Given a
Cartan geometry (p : G → N,ω) of type (G,Q), we put G̃ := G ×Q P̃

and denote by j : G → G̃ the canonical map. Since i is infinitesimally
injective, this is an immersion, i.e. Tuj is injective for all u ∈ G. We
want to understand under which conditions on a linear map α : g → g̃
there is a Cartan connection ω̃ ∈ Ω1(G̃, g̃) such that j∗ω̃ = α ◦ω, and if
so, whether ω̃ is uniquely determined.

Proposition 3.1. There is a Cartan connection ω̃ on G̃ such that
j∗ω̃ = α◦ω if and only if the pair (i, α) satisfies the following conditions:

(1) α ◦ Ad(g) = Ad(i(g)) ◦ α for all g ∈ Q.
(2) On the subspace q ⊂ g, the map α restricts to the derivative i′ of

i : Q→ P̃ .
(3) The map α : g/q → g̃/p̃ induced by α is a linear isomorphism.

If these conditions are satisfied, then ω̃ is uniquely determined.

Proof. Let us first assume that there is a Cartan connection ω̃ on G̃
such that j∗ω̃ = α ◦ ω. For u ∈ G, the tangent space Tj(u)G̃ is spanned

by Tuj(TuG) and the vertical subspace Vj(u)G̃. The behavior of ω̃ on
the first subspace is determined by the fact that j∗ω̃ = α ◦ ω, while on
the second subspace ω̃ has to reproduce the generators of fundamental
vector fields. Hence the restriction of ω̃ to j(G) is determined by the

fact that j∗ω̃ = α◦ω. By definition of G̃, any point ũ ∈ G̃ can be written
as j(u) · g̃ for some u ∈ G and some g̃ ∈ P̃ , so uniqueness of ω̃ follows
from equivariancy.

Still assuming that ω̃ exists, condition (1) follows from equivariancy
of j, ω, and ω̃. Equivariancy of j also implies that for A ∈ q and
the corresponding fundamental vector field ζA we get Tj ◦ ζA = ζi′(A).
Thus condition (2) follows from the fact that both ω and ω̃ reproduce
the generators of fundamental vector fields. Let p : G → N and p̃ :
G̃ → N be the bundle projections, so p̃ ◦ j = p. For ξ ∈ TuG we



ON THE GEOMETRY OF CHAINS 11

have α(ω(ξ)) = ω̃(Tuj · ξ), so if this lies in p̃ then Tuj · ξ is vertical.
But then ξ is vertical and hence ω(ξ) ∈ q. Therefore, the map α is

injective, and since both G and G̃ admit a Cartan connection, we must
have dim(g/q) = dim(N) = dim(g̃/p̃), so (3) follows.

Conversely, suppose that (1)–(3) are satisfied for (i, α) and ω is given.

For ũ ∈ G̃ and ξ̃ ∈ TũG̃ we can find elements u ∈ G, ξ ∈ TuG, A ∈ p̃,
and g̃ ∈ P̃ such that ũ = j(u) · g̃ and ξ̃ = Trg̃ · (Tj · ξ + ζA). Then

we define ω̃(ξ̃) := Ad(g̃)−1(α(ω(ξ)) + A). Using properties (1) and (2)
one verifies that this is independent of all choices. By (3), it defines a

linear isomorphism TũG̃ → g̃, and the remaining properties of a Cartan
connection are easily verified directly. q.e.d.

Any pair (i, α) which satisfies the properties (1)–(3) of the proposition
gives rise to an extension functor from Cartan geometries of type (G,Q)

to Cartan geometries of type (G̃, P̃ ): Starting from a geometry (p : G →
N,ω) of type (G,Q), one puts G̃ := G ×Q P̃ (with Q acting on P̃ via

i) and defines ω̃ ∈ Ω1(G̃, g̃) to be the unique Cartan connection on G̃
such that j∗ω̃ = α ◦ ω, where j : G → G̃ is the canonical map. For
a morphism ϕ : G1 → G2 between geometries of type (G,Q), we can

consider the principal bundle map Φ : G̃1 → G̃2 induced by ϕ× idP̃ . By
construction, this satisfies Φ ◦ j1 = j2 ◦ ϕ and we obtain

j∗1Φ∗ω̃2 = ϕ∗j∗2 ω̃2 = ϕ∗(α ◦ ω2) = α ◦ ϕ∗ω2 = α ◦ ω1.

But ω̃1 is the unique Cartan connection whose pull–back along j1 co-
incides with α ◦ ω1, which implies that Φ∗ω̃2 = ω̃1, and hence Φ is a
morphism of Cartan geometries of type (G̃, P̃ ).

There is a simple notion of equivalence for pairs (i, α). We call (i, α)

and (̂i, α̂) equivalent and write (i, α) ∼ (̂i, α̂) if and only if there is an

element g̃ ∈ P̃ such that î(g) = g̃−1i(g)g̃ and α̂ = Ad(g̃−1) ◦ α. Notice
that if (i, α) satisfies conditions (1)–(3) of the proposition, then so does
any equivalent pair. In order to distinguish between different extension
functors, for a geometry (p : G → M,ω) of type (G,Q) we will often

denote the geometry of type (G̃, P̃ ) obtained using (i, α) by (G×i P̃ , ω̃α).

Lemma 3.1. Let (i, α) and (̂i, α̂) be equivalent pairs satisfying con-
ditions (1)–(3) of the proposition. Then the resulting extension functors
for Cartan geometries are naturally isomorphic.

Proof. By assumption, there is an element g̃ ∈ P̃ such that î(g) =

g̃−1i(g)g̃ and α̂ = Ad(g̃−1) ◦ α. Let j : G → G ×i P̃ and ĵ : G → G ×î P̃

be the natural inclusions, and consider the map rg̃ ◦ j : G → G ×i P̃ .
Evidently, we have j(u · g) · g̃ = j(u) · g̃ · î(g). Hence, by the last

observation in 2.4, we obtain an isomorphism Ψ : G ×î P̃ → G×i P̃ such

that Ψ ◦ ĵ = rg̃ ◦ j. Now we compute

ĵ∗Ψ∗ω̃α = j∗(rg̃)∗ω̃α = Ad(g̃−1) ◦ j∗ω̃α = α̂ ◦ ω.
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By uniqueness, Ψ∗ω̃α = ω̃α̂, so Ψ is a morphism of Cartan geometries. It
is clear from the construction that this defines a natural transformation
between the two extension functors and an inverse can be constructed
in the same way using g̃−1 rather than g̃. q.e.d.

3.2. The relation to the Fefferman construction. There is a sim-
ple source of pairs (i, α) which satisfy conditions (1)–(3) of Proposition

3.1. Suppose that ϕ : G → G̃ is an infinitesimally injective homomor-
phism of Lie groups such that ϕ(Q) ⊂ P̃ . Then i := ϕ|Q : Q→ P̃ is an
infinitesimally injective homomorphism and α := ϕ′ : g → g̃ is a Lie al-
gebra homomorphism. Then condition (2) of Proposition 3.1 is satisfied
by construction, while condition (1) easily follows from differentiating
the equation ϕ(ghg−1) = ϕ(g)ϕ(h)ϕ(g)−1 . Hence the only nontrivial
condition is (3). Note that if (i, α) is obtained from ϕ in this way, than
any pair equivalent to (i, α) is obtained in the same way from the map

g 7→ g̃ϕ(g)g̃−1 for some g̃ ∈ G̃. The main feature of such pairs is that α
is a homomorphism of Lie algebras.

In this setting, one may actually go one step further. Suppose we have
fixed an infinitesimally injective ϕ : G→ G̃ and a closed subgroup P̃ ⊂
G̃. Then we put Q := ϕ−1(P̃ ) ⊂ G to obtain a pair (i := ϕ|Q, α := ϕ′)
and hence, if (3) holds, an extension functor from Cartan geometries

of type (G,Q) to geometries of type (G̃, P̃ ). For a closed subgroup
P ⊂ G with Q ⊂ P , one gets a functor from geometries of type (G,P )
to geometries of type (G,Q) as described in 2.2. Given a geometry

(p : G → M,ω) of type (G,P ), one defines M̃ := G/Q = G ×P (P/Q)

and (G → M̃, ω) is a geometry of type (G,Q). Combining with the
above, one gets a functor from geometries of type (G,P ) to geometries

of type (G̃, P̃ ).
The most important example of this is the Cartan geometry interpre-

tation of Fefferman’s construction of a Lorentzian conformal structure
on the total space of a certain circle bundle over a CR manifold, see
[13]. In this case G = SU(n + 1, 1), G̃ = SO(2n + 2, 2), and ϕ is the

evident inclusion. Putting P̃ the stabilizer of a real null line ℓ ⊂ R2n+4

in G̃, the group Q = G ∩ P̃ is the stabilizer of ℓ in G. Evidently, this is
contained in the stabilizer P ⊂ G of the complex null line spanned by
ℓ, and P/Q ∼= RP 1 ∼= S1. Hence the above procedure defines a functor,
which to a parabolic geometry of type (G,P ) on M associates a para-

bolic geometry of type (G̃, P̃ ) on the total space M̃ of a circle bundle
over M . More details about this can be found in [3, 5, 6]. Recently,
analogs of the Fefferman construction have been developed for certain
generic distributions in low dimensions, see [18, 2].

3.3. The effect on curvature. We next discuss the effect of exten-
sion functors of the type discussed in 3.1 on the curvature of Cartan
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geometries. This will show specific features of the special case discussed
in 3.2.

For a Cartan connection ω on a principal P–bundle G →M with val-
ues in g, one initially defines the curvature K ∈ Ω2(G, g) by K(ξ, η) :=
dω(ξ, η)+[ω(ξ), ω(η)]. This measures the amount to which the Maurer–
Cartan equation fails to hold. The defining properties of a Cartan con-
nection immediately imply that K is horizontal and P–equivariant. In
particular, K(ξ, η) = 0 for all η provided that ξ is vertical or, equiva-
lently, that ω(ξ) ∈ p.

Using the trivialization of TG provided by ω, one can pass to the
curvature function κ : G → L(Λ2(g/p), g), which is characterized by

κ(u)(X + p, Y + p) := K(u)(ω−1(X), ω−1(Y )).

This is well defined by horizontality of K, and equivariancy of K eas-
ily implies that κ is equivariant for the natural P–action on the space
L(Λ2(g/p), g), which is induced from the adjoint action on all copies of
g.

Using the setting of 3.1, suppose that (i : Q → P̃ , α : g → g̃) is
a pair satisfying the conditions (1)–(3) of Proposition 3.1. Consider
the map g × g → g̃ defined by (X,Y ) 7→ [α(X), α(Y )]g̃ − α([X,Y ]g),
which measures the deviation from α being a homomorphism of Lie
algebras. This map is evidently skew symmetric. By condition (1),
α◦Ad(g) = Ad(i(g))◦α for all g ∈ Q, which infinitesimally implies that
α ◦ ad(X) = ad(i′(X)) ◦ α for all X ∈ q, and by condition (2) we have
i′(X) = α(X) in this case. Hence this map vanishes if one of the entries
is from q ⊂ g, and we obtain a well defined linear map Λ2(g/q) → g̃.
By condition (3), α induces a linear isomorphism α : g/q → g̃/p̃, and
we conclude that we obtain a well defined map Ψα : Λ2(g̃/p̃) → g̃ by
putting

Ψα(X̃ + p̃, Ỹ + p̃) = [α(X), α(Y )] − α([X,Y ]),

where α(X) + p̃ = X̃ + p̃ and α(Y ) + p̃ = Ỹ + p̃.

Proposition 3.3. Let (i, α) be a pair satisfying conditions (1)–(3)
of Proposition 3.1. Let (p : G → N,ω) be a Cartan geometry of type

(G,Q), let (G ×i P̃ , ω̃α) be the geometry of type (G̃, P̃ ) obtained using

the extension functor associated to (i, α), and let j : G → G ×i P̃ be the
natural map.

Then the curvature functions κ and κ̃ of the two geometries satisfy

κ̃(j(u))(X̃ , Ỹ ) = α(κ(u)(α−1(X̃), α−1(Ỹ ))) + Ψα(X̃, Ỹ ),

for any X̃, Ỹ ∈ g̃/p̃, and this completely determines κ̃.
In particular, if ω is flat, then ω̃ is flat if and only if α is a homo-

morphism of Lie algebras.
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Proof. By definition, j∗ω̃α = α ◦ ω, and hence j∗dω̃α = α ◦ dω. This
immediately implies that for the curvatures K and K̃ and ξ, η ∈ X(G)
we get

K̃(j(u))(Tj · ξ, T j · η) = α(dω(u)(ξ, η)) + [α(ω(u)(ξ)), α(ω(u)(η))].

On the other hand, we get

α(K(u)(ξ, η)) = α(dω(u)(ξ, η)) + α([ω(u)(ξ), ω(u)(η)]).

Now the formula for κ̃(j(u)) follows immediately from the definition

of the curvature functions. Since κ̃ is P̃–equivariant, it is completely
determined by its restriction to j(G). The final claim follows directly,
since Ψα vanishes if and only if α is a homomorphism of Lie algebras.

q.e.d.

3.4. Uniqueness. A crucial fact for the further development is that,
passing from parabolic contact structures to the associated path geome-
tries of chains, there is actually no freedom in the choice of the pair (i, α)
up to equivalence as introduced in 3.1 above. This result certainly is
valid in a more general setting but it seems to be difficult to give a nice
formulation for conditions one has to assume.

Therefore we return to the setting of Section 2, i.e. G is semisimple,
P ⊂ G is obtained from a contact grading, Q is the subgroup described
in 2.2, and G̃ and P̃ correspond to path geometries in the appropriate
dimension as in 2.3. In this setting we can now prove:

Theorem 3.4. Let (i, α) and (̂i, α̂) be pairs satisfying conditions (1)–
(3) of Proposition 3.1. Suppose that there is a Cartan geometry (p : G →
M,ω) of type (G,Q) such that there is an isomorphism between the

geometries of type (G̃, P̃ ) obtained using (i, α) and (̂i, α̂), which covers

the identity on M . Then (i, α) and (̂i, α̂) are equivalent.

Proof. Using the notation of the proof of Lemma 3.1, suppose that
we have an isomorphism Ψ : G×i P̃ → G×î P̃ of principal bundles which
covers the identity on M and has the property that Ψ∗ω̃α̂ = ω̃α. Let
us denote by j and ĵ the natural inclusions of G into the two extended
bundles. Since Ψ covers the identity on M , there must be a smooth
function ϕ : G → P̃ such that Ψ(j(u)) = ĵ(u) · ϕ(u).

By construction we have j(u ·g) = j(u) · i(g) and ĵ(u ·g) = ĵ(u) · î(g),
and using the fact that Ψ is P̃–equivariant we obtain î(g) = ϕ(u)i(g)ϕ(u·
g)−1. On the other hand, differentiating the equation Ψ(j(u)) = ĵ(u) ·
ϕ(u), we obtain

(TΨ ◦ Tj) · ξ = (Trϕ(u) ◦ T ĵ) · ξ + ζδϕ(u)(ξ)(Ψ(j(u)))

where δϕ ∈ Ω1(G, p̃) denotes the left logarithmic derivative of ϕ : G →
P̃ . Applying ω̃α̂ to the left hand side of this equation, we simply get

(j∗Ψ∗ω̃α̂)(ξ) = (j∗ω̃α)(ξ) = α(ω(ξ)).
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Applying ω̃α̂ to the right hand side, we obtain

(ĵ∗(rϕ(u))∗ω̃α̂)(ξ) + δϕ(u)(ξ) =

Ad(ϕ(u)−1)((ĵ∗ω̃α̂)(ξ)) + δϕ(u)(ξ) =

Ad(ϕ(u)−1)(α̂(ω(ξ))) + δϕ(u)(ξ),

and we end up with the equation

(∗) α(ω(ξ)) = Ad(ϕ(u)−1)(α̂(ω(ξ))) + δϕ(u)(ξ)

for all ξ ∈ TG. Together with the relation between i and î derived
above, this shows that it suffices to show that ϕ(u) is constant to prove

that (i, α) ∼ (̂i, α̂).
By construction, δϕ(u) has values in p̃, so projecting equation (∗) to

g̃/p̃ implies that

α(ω(ξ)) + p̃ = Ad(ϕ(u)−1)(α̂(ω(ξ)) + p̃),

for all ξ ∈ TuG, where Ad is the action of P̃ on g̃/p̃ induced by the
adjoint action. By property (3) from Proposition 3.1 this implies that
α = Ad(ϕ(u)−1) ◦ α̂, so we see that Ad(ϕ(u)−1) must be independent

of u. Hence we must have ϕ(u) = g̃1ϕ1(u) for some element g̃1 ∈ P̃

and a smooth function ϕ1 : G → P̃ which has values in the kernel of
Ad. As in 2.2, any element of P̃ can be uniquely written in the form
g̃0 exp(Z̃1) exp(Z̃2) with g̃0 ∈ G̃0 and Z̃i ∈ g̃i, and such an element lies
in the kernel of Ad if and only if Ad(g̃0) restricts to the identity on g̃−
and Z̃1 = 0. Since p̃+ is dual to g̃− and g̃0 injects into L(g̃−, g̃−) the

first condition implies that Ad(g̃0) = idg̃. Since G̃ = PGL(k,R) for
some k, this implies that g̃0 is the identity.

Hence ϕ1 has values in exp(g̃2) and therefore δϕ(u) has values in g̃2.
Projecting equation (∗) to g̃/g̃2, we obtain

α(ω(ξ)) + g̃2 = Ad(ϕ(u)−1)(α̂(ω(ξ)) + g̃2),

where this time Ad denotes the natural action on g̃/g̃2. But by [23,
Lemma 3.2] an element of g̃2 vanishes provided that all brackets with
elements of g̃−1 vanish, and this easily implies that ϕ1(u) is the identity
and so ϕ is constant. q.e.d.

This result has immediate consequences on the problem of describing
the path geometry of chains associated to a parabolic contact structure.
If we start with the homogeneous model G/P for a parabolic contact
geometry, the induced path geometry of chains is defined on the homo-
geneous space G/Q. To obtain this by an extension functor as described

in 3.1, we need a homomorphism i : Q→ P̃ and a linear map α : g → g̃,
where (G̃, P̃ ) gives rise to path geometries in the appropriate dimen-
sion. The pair (i, α) has to satisfy conditions (1)–(3) of Proposition
3.1 in order to give rise to an extension functor. The only additional
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condition is that the extended geometry (G ×i P̃ , ω̃α) obtained from
(G → G/Q,ωMC ) is regular and normal. (Here ωMC denotes the left
Maurer–Cartan form.) By Theorem 2.3, a regular normal parabolic ge-

ometry of type (G̃, P̃ ) is uniquely determined by the underlying path
geometry, which is encoded into (G→ G/Q,ωMC), see 2.4.

The theorem above then implies that (i, α) is uniquely determined up
to equivalence. In view of Lemma 3.1, the extension functor obtained
from (i, α) is (up to natural isomorphism) the only extension functor
of the type discussed in 3.1 which produces the right result for the
homogeneous model (and hence for locally flat geometries).

The final step is then to study under which conditions on a geometry
of type (G,P ), the extension functor associated to (i, α) produces a

regular normal geometry of type (G̃, P̃ ).

3.5. Let us return to the case of Lagrangean contact structures as
discussed in 2.1. By definition, we have G = PGL(n+ 2,R) and P ⊂ G
is the subgroup of all matrices which are block upper triangular with
blocks of sizes 1, n, and 1. From part (1) of Lemma 2.2 one immediately
concludes thatQ ⊂ P is the subgroup formed by all matrices of the block
form 


p 0 s
0 R 0
0 0 q


 ,

such that |pq det(R)| = 1. Since the corresponding manifolds have di-
mension 2n + 1, the right group for the path geometry defined by the
chains is G̃ = PGL(2n + 2,R). The subgroup P̃ ⊂ G̃ is given by the
classes of those matrices which are block upper triangular with blocks
of sizes 1, 1, 2n. In the sequel, we will always further split the last block
into two blocks of size n.

Consider the (well defined) smooth map i : Q → P̃ and the linear
map α : g → g̃ defined by

i



p 0 s

0 R 0

0 0 q


 :=




sgn( qp)β sgn( qp)
s
pβ 0 0

0 β−1 0 0

0 0 q−1β−1R 0

0 0 0 pβ−1(R−1)t



,

α



a u d

x B v

z y c


 :=




a−c
2 d 1

2u
1
2v

t

z c−a
2

1
2y −1

2x
t

x v B − a+c
2 id 0

yt −ut 0 −Bt + a+c
2 id



,

where β :=
√
|p/q|, and id denotes the n× n identity matrix.
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Proposition 3.5. The map i : Q → P̃ is an injective group homo-
morphism and the pair (i, α) satisfies conditions (1)–(3) of Proposition
3.1. Hence it gives rise to an extension functor from Cartan geometries
of type (G,Q) to Cartan geometries of type (G̃, P̃ ).

Proof. All these facts are verified by straightforward computations,
some of which are a little tedious. q.e.d.

3.6. Regularity and normality. We next have to discuss the con-
ditions on the curvature of a Cartan connection which were used in
Theorems 2.1 and 2.3. If G is a semisimple group and P ⊂ G is par-
abolic, then one can identify (g/p)∗ with p+, the sum of all positive
grading components, via the Killing form, see [23, Lemma 3.1]. Hence
we can view the curvature function defined in 3.3 as having values in
Λ2p+ ⊗ g. Via the gradings of p+ and g, this space is naturally graded,
and the Cartan connection ω is called regular if its curvature function
has values in the part of positive homogeneity. Otherwise put, if X ∈ gi
and Y ∈ gj, then κ(u)(X + p, Y + p) ∈ gi+j+1 ⊕ · · · ⊕ gk.

Recall that a Cartan geometry is torsion free, if and only if κ has
values in Λ2p+ ⊗ p. Since elements of p+ have strictly positive homo-
geneity, this subspace is contained in the part of positive homogeneity,
and any torsion free Cartan geometry is automatically regular. Hence
regularity should be viewed as a condition which avoids particularly bad
types of torsion.

On the other hand, there is a natural map ∂∗ : Λ2p+ ⊗ g → p+ ⊗ g
defined by

∂∗(Z ∧W ⊗A) := −W ⊗ [Z,A] + Z ⊗ [W,A] − [Z,W ] ⊗A

for decomposable elements. This is the differential in the standard com-
plex computing the Lie algebra homology of p+ with coefficients in the
module g. This map is evidently equivariant for the natural P–action,
so in particular, ker(∂∗) ⊂ Λ2p+ ⊗ g is a P–submodule. The Cartan
connection ω is called normal if and only if its curvature has values in
this submodule.

To proceed with the program set out in the end of 3.4 we next have to
analyze the map Ψα : Λ2(g̃/p̃) → g̃ introduced in 3.3 in the special case
of the pair (i, α) from 3.5. As a linear space, we may identify g̃/p̃ with
g̃− = g̃E−1 ⊕ g̃V−1 ⊕ g̃−2. Note that using brackets in g̃, we may identify

g̃V−1 with g̃E1 ⊗ g̃−2 if necessary. We will view g̃−2 as R2n = Rn ⊕ Rn

and correspondingly write X ∈ g̃−2 as (X1,X2). By 〈 , 〉 we denote the
standard inner product on Rn.

Lemma 3.6. Viewing Ψα as an element of Λ2(g̃−)∗⊗ g̃, it lies in the
subspace (g̃V−1)

∗ ∧ (g̃−2)
∗ ⊗ g̃0. Denoting by W0 ∈ g̃E1 the element whose

unique nonzero entry is equal to 1, the trilinear map g̃−2 × g̃−2× g̃−2 →
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g̃−2 defined by (X,Y,Z) 7→ [Ψα(X, [Y,W0]), Z] is (up to a nonzero mul-
tiple) the complete symmetrization of the map

(X,Y,Z) 7→ 〈X1, Y2〉
(
Z1

−Z2

)
.

Proof. Let x ∈ g̃E−1 be the element whose unique nonzero entry is
equal to 1. Then an arbitrary element of g̃− can be written uniquely as
X + [Y,W0] + ax for X,Y ∈ g̃−2 and a ∈ R. From the definition of α in
3.5 we obtain

α




0 −Y t
2 0

X1 0 Y1

a Xt
2 0


 =




0 0 −1
2Y

t
2

1
2Y

t
1

a 0 1
2X

t
2 −1

2X
t
1

X1 Y1 0 0

X2 Y2 0 0



,

so this is congruent to X + [Y,W0] + ax modulo p̃. Using this, one
can now insert into the defining formula for Ψα from 3.3 and compute
directly that the result always has values in g̃0, and indeed only in the
lower right 2n × 2n block. Moreover, all the entries in that block are
made up from bilinear expressions involving one entry from g̃−2 and one
entry from g̃V−1, so we see that Ψα ∈ (g̃−2)

∗ ∧ (g̃V−1)
∗ ⊗ g̃0.

For X,Y ∈ g̃−2, one next computes that the only nonzero block in
Ψα(X, [Y,W0]) (which is a 2n× 2n–matrix) is explicitly given by

1
2

 

X1Y
t
2 + Y1X

t
2 + (Y t

2X1 + Xt
2Y1) id X1Y

t
1 + Y1X

t
1

−X2Y
t
2 − Y2X

t
2 −Y2X

t
1 −X2Y

t
1 − (Y t

2 X1 + Xt
2Y1) id

!

.

To obtain [Ψα(X, [Y,W0]), Z] ∈ g̃−2 for another element Z ∈ g̃−2, we

now simply have to apply this matrix to
(
Z1
Z2

)
. Taking into account that

〈v,w〉 = vtw = wtv for v,w ∈ Rn we obtain half the sum of all cyclic
permutations of

(〈X1, Y2〉 + 〈Y1,X2〉)
(
Z1

−Z2

)
,

which is three times the symmetrization of (X,Y,Z) 7→ 〈X1, Y2〉
(

Z1
−Z2

)
.

q.e.d.

Using this we can now complete the first part of the program outlined
in the end of 3.4:

Theorem 3.6. The extension functor associated to the pair (i, α)
from 3.5 maps locally flat Cartan geometries of type (G,Q) to torsion

free (and hence regular), normal parabolic geometries of type (G̃, P̃ ).

Proof. Let (p : G → N,ω) be a locally flat Cartan geometry of type
(G,Q). This means that ω has trivial curvature, so by Proposition 3.3,
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the curvature function κ̃ of the parabolic geometry (G ×i P̃ , ω̃α) has the
property that

κ̃(j(u)) = Ψα : Λ2(g̃/p̃) → g̃,

where j : G → G ×i P̃ is the natural map. By the lemma above, κ̃(j(u))

has values in g̃0 ⊂ p̃, and since having values in p̃ is a P̃–invariant
property, torsion freeness follows.

Similarly, since ker(∂∗) is a P̃–submodule in Λ2(g̃/p̃)∗⊗g̃, it suffices to
show that ∂∗(Ψα) = 0 to complete the proof of the theorem. This may
be checked by a direct computation, but there is a more conceptual
argument. Tracefree matrices in the lower right 2n × 2n block of g̃0

form a Lie subalgebra isomorphic to sl(2n,R) which acts on each of the
spaces Λk(g̃/p̃)∗⊗g̃. Hence we may decompose each of them into a direct

sum of irreducible representations. Since ∂∗ is a P̃–homomorphism, it
is equivariant for this action of sl(2n,R), and hence it can be nonzero
only between isomorphic irreducible components.

In the proof of the lemma we have noted that g̃−2 is the standard
representation of sl(2n,R), so the explicit formula for Ψα shows that
it sits in a component isomorphic to S3R2n∗ ⊗ R2n. There is a unique
trace from this representation to S2R2n∗, and the kernel of this is well
known to be irreducible. One immediately checks that (g̃/p̃)∗⊗ g̃ cannot
contain an irreducible component isomorphic to the kernel of this trace.
Hence we can finish the proof by showing that Ψα lies in the kernel of
that trace, which is a simple direct computation. q.e.d.

This has a nice immediate application.

Corollary 3.6. Consider the homogeneous model G → G/P of La-
grangean contact structures. Then the resulting path geometry of chains
is non–flat and hence not locally isomorphic to G̃/P̃ , but its automor-
phism group contains G. In particular, for each n ≥ 1, we obtain an
example of a non–flat torsion free path geometry on a manifold of dimen-
sion 2n+1 whose automorphism group has dimension at least n2+4n+3.

Remark. (1) In [14], the author directly constructed a torsion free
path geometry from the homogeneous model of three–dimensional La-
grangean contact structures. This construction was one of the motiva-
tions for this paper and one of the guidelines for the right choice of the
pair (i, α). The other main guideline for this choice are the computa-
tions needed to show that Ψα has values in g̃0.
(2) We shall see later that in the situation of the corollary, the dimension
of the automorphism group actually equals the dimension of G. In
particular, for n = 1, one obtains a non–flat path geometry on a three
manifold with automorphism group of dimension 8. To our knowledge,
this is the maximal possible dimension for the automorphism group of
a non–flat path geometry in this dimension.
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Via the interpretation of path geometries in terms of systems of sec-
ond order ODEs, we obtain examples of nontrivial systems of such ODEs
with large automorphism groups.

3.7. More on curvatures of regular normal geometries. We have
completed half of the program outlined in the end of 3.4 at this point.
Theorem 3.6 shows that the extension functor associated to the pair
(i, α) defined in 3.5 produces the regular normal parabolic geometry
determined by the path geometry of chains for locally flat Lagrangean
contact structures. In view of Theorem 3.4 and Lemma 3.1 this pins
down the pair (i, α) up to equivalence and hence the associated extension
functor up to isomorphism.

Hence it only remains to clarify under which conditions on a La-
grangean contact structure this extension procedure produces a regular
normal parabolic geometry. This then tells us the most general situa-
tion in which a direct relation (as discussed in 2.4 and 3.1) between the
two parabolic geometries can exist. As can already be expected from
the case of the Fefferman construction (see [3, 6]) this is a rather sub-
tle question. Moreover, the result cannot be obtained by algebraically
comparing the two normalization conditions, but one needs more in-
formation on the curvature of regular normal and torsion free normal
geometries. In particular, the proof of part (2) of the Lemma below
needs quite a lot of deep machinery for parabolic geometries.

As discussed in 3.6, the curvature function of a parabolic geometry
of type (G,P ) has values in Λ2p+ ⊗ g. Since both p+ and g are graded,
there is a natural notion of homogeneity on this space. While being of
some fixed homogeneity is not a P–invariant property, the fact that all
nonzero homogeneous components have at least some given homogeneity
is P–invariant. This is used in the definition of regularity in 3.6, which
simply says that all nonzero homogeneous components are in positive
homogeneity.

The map ∂∗ used in the definition of normality in 3.6 actually extends
to a family of maps ∂∗ : Λℓp+ ⊗ g → Λℓ−1p+ ⊗ g. These are the dif-
ferentials in the standard complex computing the Lie algebra homology
H∗(p+, g). By definition, the curvature function κ of a normal parabolic
geometry of type (G,P ) has values in ker(∂∗) ⊂ Λ2p+⊗g. Hence we can
naturally project to the quotient to obtain a function κH with values in
ker(∂∗)/ im(∂∗) = H2(p+, g). Equivariancy of κ implies that κH can be
viewed as a smooth section of the bundle G ×P H2(p+, g). This section
is called the harmonic curvature of the normal parabolic geometry. It
turns out (see [8]) that P+ acts trivially on H∗(p+, g), so this bundle
admits a direct interpretation in terms of the underlying structure. As
we shall see below, this bundle is algorithmically computable.

Now from 3.6 we know that p+
∼= (g/p)∗ as a P–module, and since

g− ⊂ g is a complementary subspace (and G0–module) to p ⊂ g we
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can identify p+ with (g−)∗ as a G0–module. Hence we can also view
the spaces Λℓp+ ⊗ g as L(Λℓg−, g), which are the chain spaces in the
standard complex computing the Lie algebra cohomology of g− with
coefficients in g. The differentials ∂ : L(Λℓg−, g) → L(Λℓ+1g−, g) in
that complex turn out to be adjoint to the maps ∂∗ with respect to a
certain inner product.

Hence we obtain an algebraic Hodge theory on each of the spaces
Λℓp+ ⊗ g, with algebraic Laplacian � = ∂∗ ◦ ∂ + ∂ ◦ ∂∗. This construc-
tion is originally due to Kostant (see [16]), whence � is usually called
the Kostant Laplacian. The kernel of � is a G0–submodule called the
harmonic subspace of Λℓp+ ⊗ g. Kostant’s version of the Bott–Borel–
Weil theorem in [16] gives a complete algorithmic description of the
G0–module ker(�). By the Hodge decomposition, ker(�) is isomorphic
to the homology group of the appropriate dimension.

We will need two general facts about the curvature of regular normal
respectively torsion free normal parabolic geometries in the sequel.

Lemma 3.7. Let (p : G → M,ω) be a regular normal parabolic ge-
ometry of type (G,P ) with curvature functions κ : G → Λ2p+ ⊗ g and
κH : G → H2(p+, g). Then we have:
(1) The lowest nonzero homogeneous component of κ has values in the
subset ker(�) ⊂ Λ2p+ ⊗ g.
(2) Suppose that (p : G →M,ω) is torsion free and that E0 ⊂ ker(�) ⊂
Λ2p+ ⊗ g is a G0–submodule such that κH has values in the image of
E0 under the natural isomorphism ker(�) → H2(p+, g) (induced by pro-
jecting ker(�) ⊂ ker(∂∗) to the quotient). Then κ has values in the
P–submodule of Λ2p+ ⊗ g generated by E0.

Proof. (1) is an application of the Bianchi identity, which goes back
to [21], see also [7, Corollary 4.10]. (2) is proved in [4, Corollary 3.2].

q.e.d.

The final bit of information we need is the explicit form of ker(�) for
the pairs (g, p) and (g̃, p̃) corresponding to Lagrangean contact struc-
tures on manifolds of dimension 2n+ 1 respectively path geometries in
dimension 4n + 1. Obtaining the explicit description of the irreducible
components of these submodules is an exercise in the application of
Kostant’s results from [16] and the algorithms from the book [1], see
also [4]. The results are listed in the tables below. The first column con-
tains the homogeneity of the component and the second column contains
the subspace that it is contained in. The actual component is always
the highest weight part in that subspace, so in particular, it lies in the
kernel of all traces one can form.
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(g, p), n = 1

homog. contained in

4 gR1 ∧ g2 ⊗ gR1

4 gL1 ∧ g2 ⊗ gL1

(g, p), n > 1

homog. contained in

2 gL1 ∧ gR1 ⊗ g0

1 Λ2gL1 ⊗ gR−1

1 Λ2gR1 ⊗ gL−1

(g̃, p̃), n = 1

homog. contained in

3 g̃V1 ∧ g̃2 ⊗ g̃0

2 g̃E1 ∧ g̃2 ⊗ g̃V−1

1 Λ2g̃V1 ⊗ g̃E−1

(g̃, p̃), n > 1

homog. contained in

3 g̃V1 ∧ g̃2 ⊗ g̃0

2 g̃E1 ∧ g̃2 ⊗ g̃V−1

0 Λ2g̃V1 ⊗ g̃−2

3.8. We are now ready to prove the main result of this article:

Theorem 3.8. Let (p : G → M,ω) be a regular normal parabolic

geometry of type (G,P ) and let (G̃ := G ×Q P̃ → P0(TM), ω̃α) be the
parabolic geometry obtained using the extension functor associated to
the pair (i, α) defined in 3.5. Then this geometry is regular and normal
if and only if (p : G →M,ω) is torsion free.

Proof. We first prove necessity of torsion freeness. From the tables in
3.7 we see that for n = 1 a regular normal parabolic geometry of type
(G,P ) is automatically torsion free, so we only have to consider the
case n > 1. If ω̃α is regular and normal, then all nonzero homogeneous
components of κ̃ are homogeneous of positive degrees. The table in
3.7 shows that then the homogeneity is at least two, and by part (1)
of Lemma 3.7 the homogeneous component of degree two sits in the
subspace g̃E1 ∧ g̃2 ⊗ g̃V−1. In particular, for any ũ ∈ G̃, the restriction of

κ̃(ũ) to Λ2g̃−2 is homogeneous of degree at least three, which implies
that κ̃(ũ) has values in g̃−1 ⊕ p̃, i.e. for the natural projection π : g̃ →
g̃/(g̃−1 ⊕ p̃) we get π ◦ κ̃(ũ) = 0.

Using the notation of the proof of Lemma 3.6, consider two elements
X,Y ∈ g̃−2. From that proof we see that

(π ◦ κ̃(j(u)))(X,Y ) = (π ◦α ◦κ(u))






0 0 0
X1 0 0
0 Xt

2 0


 ,




0 0 0
Y1 0 0
0 Y t

2 0




 .

By regularity, κ(u)(Λ2g−1) ⊂ g−1 ⊕ p. From the definition in 3.5 it is
evident that α induces a linear isomorphism g/(g−2 ⊕p) → g̃/(g̃−1 ⊕ p̃).
Hence we conclude that if ω̃α is regular and normal, then κ(u)(Λ2g−1) ⊂
p. From the table in 3.7 we see that this implies that the homogeneous
component of degree one of κ has to vanish identically, and then further
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that the homogeneous component of degree two has values in p. Since
Λ2g−2 = 0, components of homogeneity at least three automatically
have values in p, so we see that ω is torsion free.

To prove sufficiency, we first need two facts on the curvature function
κ of a torsion free normal parabolic geometry of type (G,P ). On the
one hand, the map ∂∗ as defined in 3.6 can be written as the sum
∂∗1+∂∗2 of two P–equivariant maps, with ∂∗1 corresponding to the first two
summands and ∂∗2 corresponding to the last summand in the definition.
We claim that κ has values in the kernels of both operators ∂∗i . On the
other hand, one easily verifies that the subspace p̂ ⊂ p formed by all
matrices of the form 


0 u d
0 B v
0 0 0




is a P–submodule. (Indeed, this is the preimage in p of the semisimple
part of the reductive algebra g0 = p/p+.) Our second claim is that
κ(u)(X,Y ) ∈ p̂ for all u ∈ G and all X,Y .

To prove both claims, it suffices to show that κ has values in the
P–submodule Λ2

0p+ ⊗ p̂ ⊂ Λ2p+ ⊗ p. Here Λ2
0p+ is the kernel of the

P–homomorphism Λ2p+ → p+ defined by the Lie bracket on p+, so
Λ2

0p+ ⊗ g = ker(∂∗2).
In the case n = 1, this is evident, since from the table in 3.7 we see

that the lowest nonzero homogeneous component of κ(u) is of degree 4,
vanishes on Λ2g−1 and has values in p+. For homogeneous components
of higher degree, these two properties are automatically satisfied, and
we conclude that κ(u) ∈ g1 ∧ g2 ⊗ p+ ⊂ Λ2

0p+ ⊗ p̂.
In the case n > 1, we see from the table in 3.7 that by torsion freeness

the lowest homogeneous component of κ(u) must be of homogeneity 2.
By part (1) of Lemma 3.7 it has values in ker(�) ⊂ Λ2g1⊗g0. Since this
component of ker(�) is a highest weight part, it lies in the kernel of all
possible traces, and hence it must be contained in the tensor product of
Λ2g1∩Λ2

0p+ with the semisimple part of g0. Hence ker(�) is contained in
the P–submodule Λ2

0p+ ⊗ p̂ so, by part (2) of Lemma 3.7, the curvature
function κ has values in that submodule.

In view of Proposition 3.3 and the proof of Theorem 3.6, to prove
that ω̃α is normal, it suffices to verify that the map F (u) : Λ2g̃− → g̃
defined by F (u)(X,Y ) := α(κ(u)(α−1(X), α−1(Y ))) lies in the kernel
of ∂∗ for all u ∈ G. To compute ∂∗F (u), it is better to view F (u) as
an element of Λ2p̃+ ⊗ g̃, and we want to relate this to κ(u), viewed as
an element of Λ2p+ ⊗ g. We have to compute the map ϕ : p+ → p̃+,
which is dual to the composition of the canonical projection g/q → g/p
with α−1 : g̃/p̃ → g/q, since by construction F (u) = (Λ2ϕ ⊗ α)(κ(u)).
Recall that the duality between g/p and p+ (and likewise for the other
algebra) is induced by the Killing form. Since the Killing form of a
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simple Lie algebra is uniquely determined up to a nonzero multiple by
invariance, we may as well use the trace form on both sides, which leads
to a nonzero multiple of ϕ. But then the computation is very easy,
showing that

ϕ




0 Z ψ
0 0 W
0 0 0


 =




0 ψ Z W t

0 0 0 0
0 0 0 0
0 0 0 0


 .

In particular, ϕ(p+) ⊂ g̃E1 ⊕ g̃2, which implies that ∂∗2(F (u)) = 0 for all
u.

On the other hand, the formula for α from 3.5 shows that α(p̂) ⊂
g̃V−1⊕g̃0⊕g̃E1 ⊕g̃2, and the g̃0–component is contained in the bottom right
2n× 2n block. This shows that ω̃α is regular, and that for Z ∈ p+ and
A ∈ p̂ we have [ϕ(Z), α(A)] ∈ g̃E1 ⊕ g̃2. One immediately verifies directly
that the g̃E1 –component of [ϕ(Z), α(A)] equals the g̃E1 –component of
α([Z,A]), while the g̃2–component of [ϕ(Z), α(A)] equals twice the g̃2–
component of α([Z,A]). From the definition of ∂∗1 we now conclude that
Λ2ϕ⊗α maps ker(∂∗1) to ker(∂∗1), so we also get ∂∗1(F (u)) = 0 for all u.

q.e.d.

4. Applications

For torsion free Lagrangean contact structures, Theorem 3.8 provides
us with an explicit description of the parabolic geometry determined by
the path geometry of chains. In particular, we obtain an explicit formula
for the Cartan curvature which is the basis for the applications discussed
in this section. The main result is that one can essentially reconstruct
the torsion free Lagrangean contact structure from the harmonic curva-
ture of this parabolic geometry. In particular, this implies that a contact
diffeomorphism which maps chains to chains has to either preserve or
swap the subbundles defining the Lagrangean contact structure. On the
way, we can prove that chains can never be described by linear connec-
tions and that only locally flat Lagrangean contact structures give rise
to torsion free path geometries of chains.

4.1. Decomposing the Cartan curvature. For a torsion free La-
grangean contact structure with curvature κ, the curvature κ̃ of the
normal Cartan connection associated to the path geometry of chains
is determined by the formula from Proposition 3.3, which holds on
j(G) ⊂ G ×i P̃ . In this formula, there are two terms, one of which
depends on κ while the other one only comes from the map α. Our
main task is to extract parts of κ̃ which only depend on one of the two
terms. The difficulty is that this has to be done in a geometric way
without knowing the subset j(G) in advance.
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The curvature function κ̃ has values in the P–module Λ2p̃+ ⊗ g̃, and
using the map ϕ from the proof of Theorem 3.8, the formula from Propo-
sition 3.3 reads as κ̃(j(u)) = (Λ2ϕ ⊗ α)(κ(u)) + Ψα. Now p̃+ contains
the P–invariant subspace g̃2. Correspondingly, we obtain P–invariant
subspaces Λ2g̃2 ⊂ p̃+∧ g̃2 ⊂ Λ2p̃+. In the proof of Theorem 3.8, we have
seen that ϕ has values in g̃E1 ⊕ g̃2, whence Λ2ϕ has values in p̃+ ∧ g̃2.
From Lemma 3.6 we know that Ψα ∈ p̃+ ∧ g̃2 ⊗ g̃, so we conclude that
κ̃(j(u)) lies in this P̃–submodule. By equivariancy, all values of the
curvature function lie in p̃+ ∧ g̃2 ⊗ g̃ ⊂ Λ2p̃+ ⊗ g̃.

On the quotient p̃+/g̃2, the subgroup P̃+ ⊂ P̃ acts trivially, so we can

identify this quotient with the G̃0–module g̃1 = g̃E1 ⊕ g̃V1 . Correspond-

ingly, we get P̃–equivariant projections

πE : p̃+ ∧ g̃2 ⊗ g̃ → g̃E1 ∧ g̃2 ⊗ g̃,

πV : p̃+ ∧ g̃2 ⊗ g̃ → g̃V1 ∧ g̃2 ⊗ g̃.

From the description of the image of ϕ in the proof of Theorem 3.8 we
conclude that (Λ2ϕ ⊗ α)(κ(u)) ∈ ker(πV ). On the other hand, Lemma
3.6 in particular shows that πV (Ψα) 6= 0 and Ψα ∈ ker(πE).

Theorem 4.1. Let (M,L,R) be a torsion free Lagrangean contact
structure.
(1) There is no linear connection on the tangent bundle TM which has
the chains among its geodesics.
(2) The parabolic geometry associated to the path geometry of chains

on M̃ = P0(TM) is torsion free if and only if (M,L,R) is locally flat,
i.e. locally isomorphic to the homogeneous model G/P .

Proof. (1) Suppose that ∇ is a linear connection on TM whose geode-
sics in directions transverse to L⊕R are parametrizations of the chains.
Since symmetrizing a connection does not change the geodesics, we may
without loss of generality assume that ∇ is torsion free. Then we can
look at the associated projective structure [∇] on M and use the ma-
chinery of correspondence spaces from [4]. The fact that the geodesics
of ∇ are the chains exactly means that the path geometry of chains on
M̃ is isomorphic to an open subgeometry of the correspondence space
C(M, [∇]), see 4.7 of [4]. In particular, the Cartan curvature κ̃ is the
restriction of the curvature of this correspondence space. By [4, Propo-
sition 2.4] this curvature has the property that it vanishes upon insertion

of any tangent vector contained in the vertical bundle of M̃ →M . But
this contradicts the fact that πV ◦ κ̃ 6= 0 we have observed above.
(2) By Theorem 3.6, the path geometry of chains associated to a locally
flat Lagrangean contact structure is torsion free. Conversely, if the
Cartan connection ω̃ is torsion free, then according to part (1) of Lemma
3.7 and the tables in 3.7, the lowest nonzero homogeneous component
of κ̃ must be of degree at least three, and the harmonic curvature must
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have values in g̃V1 ∧ g̃2 ⊗ g̃0 ⊂ ker(πE). By part (2) of Lemma 3.7 the
whole curvature κ̃ has values in ker(πE). Above, we have observed that
Ψα ∈ ker(πE) so we conclude that for each u ∈ G we get πE ◦ (Λ2ϕ ⊗
α)(κ(u)) = 0.

In the proof of Theorem 3.8 we have seen that ϕ is a linear isomor-
phism p+ → g̃E1 ⊕ g̃2, and hence g̃E1 ∧ g̃2 is contained in the image of
Λ2ϕ. Hence we conclude that α ◦ κ(u) = 0 and since α is injective, the
result follows. q.e.d.

4.2. Harmonic curvature. We have discussed the definition of har-
monic curvature already in 3.7. Let πH be the natural projection from
ker(∂∗) ⊂ Λ2p̃+ ⊗ g̃ to the quotient ker(∂∗)/ im(∂∗). Since this is a P̃–

equivariant map, the composition κ̃H = πH ◦ κ̃ : G̃ → ker(∂∗)/ im(∂∗)
defines a smooth section of the associated bundle G̃ ×P̃ ker(∂∗)/ im(∂∗),
which is the main geometric invariant of the parabolic geometry associ-
ated to the path geometry of chains.

From 3.7 we also know that on the quotient ker(∂∗)/ im(∂∗) the group

P̃+ acts trivially, and we may identify it with the G̃0–module ker(�) ⊂
Λ2p̃+ ⊗ g̃. From the table in 3.7, we see that this module contains two
irreducible components in positive homogeneity, which are the highest
weight components of the subrepresentations g̃E1 ∧ g̃2 ⊗ g̃V−1 respectively

g̃V1 ∧ g̃2⊗ g̃0. Correspondingly, we obtain decompositions πH = πEH +πVH
and κ̃H = κ̃EH + κ̃VH .

Lemma 4.2. Let πE and πV be the projections on p̃+∧ g̃2⊗ g̃ defined
in 4.1. Then the restriction of πEH (respectively πVH) to

ker(∂∗) ∩ (p̃+ ∧ g̃2 ⊗ g̃)

factorizes through πE (respectively πV ).

Proof. By Kostant’s version of the Bott–Borel–Weil theorem, see [16],

the G̃0–irreducible components contained in ker(�) occur with multi-
plicity one, even within Λ∗p̃+ ⊗ g̃. To obtain πE and πV , we used the
projection p̃+ ∧ g̃2 ⊗ g̃ → g̃1 ∧ g̃2 ⊗ g̃ with kernel Λ2g̃2 ⊗ g̃. By the
multiplicity one result and the fact that both components of ker(�)

are contained in g̃1 ∧ g̃2 ⊗ g̃, there is no nonzero G̃0–equivariant map
Λ2g̃2 ⊗ g̃ → ker(∂∗)/ im(∂∗). Hence each of the projections πH , πEH and

πVH factorizes through g̃1 ∧ g̃2 ⊗ g̃. Looking at the resulting map for πEH ,
we see that again by multiplicity one, the subspace g̃V1 ∧ g̃2 ⊗ g̃ must be
contained in the kernel, so we conclude that πEH factorizes through πE .

In the same way one shows that πVH factorizes through πV . q.e.d.

Proposition 4.2. Let (M,L,R) be a torsion free Lagrangean contact
structure, and let κ̃H = κ̃EH+κ̃VH be the harmonic curvature of the regular
normal parabolic geometry determined by the path geometry of chains.
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Then the function G̃ → g̃V1 ∧ g̃2⊗ g̃0 corresponding to κ̃VH is a nonzero
multiple of the unique equivariant extension of the constant function Ψα

(compare with Lemma 3.6) on j(G).

Proof. We have to compute the function πVH ◦ κ̃. By the lemma, πVH
factorizes through the projection πV introduced in 4.1, and from there
we know that πV (κ̃(j(u))) = πV (Ψα). Hence we see that (πVH ◦ κ̃)|j(G) =

πVH(Ψα). Now Ψα ∈ g̃V1 ∧ g̃2 ⊗ g̃0 by Lemma 3.6, and the values even
lie in the semisimple part of g̃0, which may be identified with sl(g̃−2).

Evidently, g̃V1
∼= g̃E−1 ⊗ g̃2 as a G̃0–module, so we may interpret Ψα

as an element of g̃E−1 ⊗ (⊗3g̃2) ⊗ g̃−2. In Lemma 3.6 and the proof of
Theorem 3.6 we have seen that in this picture Ψα lies in the irreducible
component g̃E−1 ⊗ (S3g̃2 ⊗ g̃−2)0, where the subscript denotes the trace

free part. Passing back to g̃V1 ∧ g̃2⊗ g̃0 this exactly means that Ψα lies in
the highest weight subspace, which is the intersection with ker(�). Now

πVH restricts to G̃0–equivariant linear isomorphism on this intersection,
which implies the result. q.e.d.

Remark. Similarly to the proof above, one shows that the harmonic
curvature component κ̃EH is the extension of a component of j(u) 7→
(Λ2ϕ ⊗ α)(κ(u)). Since we explicitly know Λ2ϕ ⊗ α, this can be used
to obtain a more explicit description of the second harmonic curvature
component. From part (2) of Theorem 4.1 and [4, 4.7] we see that
vanishing of κ̃EH is equivalent to local flatness of the original Lagrangean
contact structure, so κ is completely encoded in κ̃EH .

4.3. Passing to the underlying manifold. The harmonic curvature
component determined by the function κ̃VH is a section of the bundle
associated to g̃V1 ∧ g̃2 ⊗ g̃0. In the proof of Proposition 4.2 we have seen
that we can replace that space by g̃E−1⊗(⊗3g̃2)⊗g̃−2. The corresponding

bundle is E⊗⊗3F ∗⊗F → M̃ , where F := TM̃/(E⊕V ). Since E ⊂ TM̃
is a line bundle, we can view κ̃VH as a section of ⊗3F ∗ ⊗ F which is
determined up to a nonzero multiple.

To relate this to the underlying manifold M , recall that M̃ is an open
subset in the projectivized tangent bundle of M . A point in M̃ is a line
in some tangent space TxM that is transversal to Lx ⊕ Rx. We have
noted in 2.4 that TM ∼= G×P g/p and TM̃ ∼= G×Q g/q, and the tangent

map of the projection π : M̃ →M corresponds to the natural projection
g/q → g/p. Fix a point ℓ ∈ π−1(x). Then for each ξ ∈ TxM there is a

lift ξ̃ ∈ TℓM̃ and we can consider the class of ξ̃ in Fℓ = TℓM̃/(Eℓ ⊕ Vℓ).
Since Vℓ is the vertical subbundle, this class is independent of the choice
of the lift and from the explicit description of Tπ we see that restricting
to Lx ⊕Rx, we obtain a linear isomorphism Lx ⊕Rx

∼= Fℓ.
Fixing x and ℓ we therefore see that the harmonic curvature compo-

nent corresponding to κ̃VH gives rise to an element of ⊗3(Lx ⊕ Rx)
∗ ⊗
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(Lx⊕Rx), which is determined up to a nonzero multiple. To write down
this map explicitly, we first need the Levi bracket

L : (Lx ⊕Rx) × (Lx ⊕Rx) → TxM/(Lx ⊕Rx).

Since this has values in a one–dimensional space, we may view it as a
real valued bilinear map determined up to a nonzero multiple. Further,
we denote by J the almost product structure corresponding to the de-
composition L ⊕ R. This means that J is the endomorphism of L ⊕ R
which is the identity on L and minus the identity on R. Using this we
can now formulate:

Lemma 4.3. The element of ⊗3(Lx⊕Rx)
∗⊗(Lx⊕Rx) obtained from

κ̃VH above is (a nonzero multiple of) the complete symmetrization of the
map

(ξ, η, ζ) 7→ L(ξ, J(η))J(ζ).

Proof. This is a reinterpretation of the proof of Lemma 3.6. Observe
that J corresponds to the map(

X1

X2

)
7→

(
X1

−X2

)

in the notation there. Since L corresponds to [ , ] : g−1 × g−1 → g−2,
computing the bracket





0 0 0
X1 0 0
0 Xt

2 0


 ,




0 0 0
Y1 0 0
0 −Y t

2 0




 ,

we see that the expression 〈X1, Y2〉 + 〈Y1,X2〉 in the proof of Lemma
3.6 corresponds to L(ξ, J(η)). q.e.d.

4.4. Reconstructing the Lagrangean contact structure. Now we
can finally show that the Cartan curvature of the path geometry of
chains can be used to (almost) reconstruct the Lagrangean contact
structure on M that we have started from:

Theorem 4.4. Let (M,L,R) be a torsion free Lagrangean contact
structure. Then for each x ∈ M , the subset Lx ∪ Rx ⊂ TxM can be
reconstructed from the harmonic curvature of the normal parabolic ge-
ometry associated to the path geometry of chains.

Proof. In view of the results in 4.2 and 4.3 it suffices to show that
Lx ∪ Rx can be recovered from the complete symmetrization S of the
map

(ξ, η, ζ) 7→ L(ξ, J(η))J(ζ).

First we see that S(ξ, ξ, ξ) = 0 if and only if L(ξ, J(ξ)) = 0. Note that
this is always satisfied for ξ ∈ Lx ∪ Rx. Fixing an element ξ with this
property, we see that

S(ξ, ξ, η) = 2L(ξ, J(η))J(ξ).
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By non–degeneracy of L, given a nonzero element ξ we can always find
η such that L(ξ, J(η)) 6= 0. Hence we see that ξ is an eigenvector for
J (which by definition is equivalent to ξ ∈ Lx ∪ Rx) if and only if
S(ξ, ξ, ξ) = 0 and there is an element η such that S(ξ, ξ, η) is a nonzero
multiple of ξ. q.e.d.

Corollary 4.4. Let (M,L,R) be a torsion free Lagrangean contact
structure and let f : M → M be a contact diffeomorphism which
maps chains to chains. Then either f is an automorphism or an anti–
automorphism of the Lagrangean contact structure. Here anti–auto-
morphism means that Txf(Lx) = Rf(x) and Txf(Rx) = Lf(x) for all
x ∈M .

Proof. By assumption, f induces an automorphism f̃ of the path
geometry of chains associated to (M,L,R). This automorphism has to
pull back the Cartan curvature κ̃ and also the harmonic curvature κ̃H to
itself. From the theorem we conclude that this implies Txf(Lx ∪Rx) =
Lf(x) ∪ Rf(x), and this is only possible if f is an automorphism or an
anti–automorphism. q.e.d.

5. Partially integrable almost CR structures

What we have done for Lagrangean contact structures so far can be
easily adapted to deal with partially integrable almost CR structure.
We will only briefly sketch the necessary changes in this section.

5.1. A non–degenerate partially integrable almost CR structure on a
smooth manifold M is given by a contact structure H ⊂ TM together
with an almost complex structure J on H such that the Levi bracket
L has the property that L(Jξ, Jη) = L(ξ, η) for all ξ, η. Then L is the
imaginary part of a non–degenerate Hermitian form and we denote the
signature of this form by (p, q). Such a structure of signature (p, q) is
equivalent to a regular normal parabolic geometry of type (G,P ), where
G = PSU(p+ 1, q+ 1) and P ⊂ G is the stabilizer of a point in CPn+1,
n = p+ q, corresponding to a null line, see [7, 4.15]. The group G is the
quotient of SU(p+ 1, q+ 1) by its center (which is isomorphic to Zn+2)
and we will work with representative matrices as before.

We will use the Hermitian form of signature (p, q) on Cn+1 corre-
sponding to

(z0, . . . , zn+1) 7→ z0z̄n+1 + zn+1z̄0 +
∑p

j=1 |zj |2 −
∑n

j=p+1 |zj |2.

Then the decomposition on sl(n + 2,C) with block sizes 1, n, and 1
restricts to a contact grading on the Lie algebra g of G. The explicit
form for signature (n, 0) can be found in [7, 4.15]. In general, g consists
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of all matrices of the form

w Z iz
X A −IZ∗

ix −X∗I −w̄




with blocks of sizes 1, n, and 1, w ∈ C, x, z ∈ R, X ∈ Cn, Z ∈ Cn∗, and
A ∈ u(p, q) such that w − w̄ + tr(A) = 0. Here I is the diagonal matrix
with the first p entries equal to 1 and the remaining q entries equal to
−1.

It is easy to show that the subgroup Q ⊂ G corresponds to matrices
of the form 


ϕ 0 iaϕ
0 Φ 0
0 0 ϕ̄−1


 ,

with ϕ ∈ C\{0}, a ∈ R and Φ ∈ U(p, q) such that (ϕ2/|ϕ|2) det(Φ) = 1.

5.2. Next we need an analog of the pair (i, α) introduced in 3.5. As

before we start with a manifold M of dimension 2n + 1, so again G̃ =
PGL(2n+ 2,R). We will use a block decomposition into blocks of sizes
1, 1, n, and n as before. The right choice turns out to be

i



ϕ 0 iaϕ

0 Φ 0

0 0 ϕ̄−1


 :=




|ϕ| −a|ϕ| 0 0

0 |ϕ|−1 0 0

0 0 ℜ
(
|ϕ|
ϕ Φ

)
−ℑ

(
|ϕ|
ϕ Φ

)

0 0 ℑ
(
|ϕ|
ϕ Φ

)
ℜ
(
|ϕ|
ϕ Φ

)



,

α



w Z iz

X A −IZ∗

ix −X∗I −w̄


 :=




ℜ(w) −z ℜ(Z) −ℑ(Z)

x −ℜ(w) −ℑ(X∗I) −ℜ(X∗I)
ℜ(X) ℑ(IZ∗) ℜ(A) −ℑ(A) + ℑ(w)

ℑ(X) −ℜ(IZ∗) ℑ(A) −ℑ(w) ℜ(A)



,

where ℜ and ℑ denote real and imaginary part, respectively, and we
write ℑ(w) for the appropriate multiple of the identity matrix.

There is an analog of Lemma 3.6 (with similar proof), the only change
one has to make is that the map whose alternation has to be used is
given by

(X,Y,Z) 7→ (〈X1, IY1〉 + 〈X2, IY2〉)
(
−Z2

Z1

)
.
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This map has similar properties as the one from 3.6 so the analogs of
Theorem 3.6 and Corollary 3.6 hold.

Concerning the structure of ker(�) the situation is also similar to
the case of Lagrangean contact structures, since the decomposition of
ker(�) can be determined from the complexifications of g and p which
are the same in both cases. The only difference is that the two irre-
ducible components for n = 1 respectively the two irreducible compo-
nents contained in homogeneity 1 in the case n > 1 in the Lagrangean
case correspond to only one component here. This component however
has a complex structure and it consists of maps g−1 ∧ g−2 → g1 which
are complex linear in the first variable respectively maps Λ2g−1 → g−1,
which are conjugate linear in both variables. For n > 1 this component
is a torsion which is up to a nonzero multiple given by the Nijenhuis
tensor. Vanishing of this component is equivalent to torsion freeness
and to integrability of the almost CR structure, see [7, 4.16].

Theorem 5.2. Let (M,H, J) be a partially integrable almost CR
structure and let (p : G → M,ω) be the corresponding regular normal
parabolic geometry of type (G,P ). Then the parabolic geometry (G ×Q

P̃ → P0(TM), ω̃α) constructed using the extension functor associated to
the pair (i, α) from 5.1 is regular and normal if and only if ω is torsion
free, i.e. the almost CR structure is integrable.

Proof. Apart from some numerical factors which cause no problems,
this is completely parallel to the proof of Theorem 3.8. q.e.d.

Hence the direct relation between the regular normal parabolic ge-
ometries associated to a partially integrable almost CR structure re-
spectively to the associated path geometry of chains works exactly on
the subclass of CR structures.

5.3. Applications. The developments of Section 4 can be applied to
the CR case with only minimal changes. In analog of Lemma 4.3, one
obtains S ∈ ⊗3H∗

x ⊗Hx, which is the complete symmetrization of

(ξ, η, ζ) 7→ L(ξ, J(η))J(ζ),

where J is the almost complex structure on H.

Theorem 5.3. Let (M,H, J) be a CR structure.
(1) There is no linear connection on TM which has the chains among
its geodesics.
(2) The path geometry of chains is torsion free if and only if the CR
structure is locally flat.
(3) The almost complex structure J can be reconstructed up to sign from
the harmonic curvature of the associated path geometry of chains.

Proof. The only change compared to Section 4 is that one has to
extend S to the complexified bundle H⊗C. As in the proof of Theorem
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4.4 one then reconstructs the subset H1,0
x ∪ H0,1

x ⊂ Hx ⊗ C for each
x ∈ M , i.e. the union of the holomorphic and the anti–holomorphic
part. This union determines J up to sign. q.e.d.

This theorem now also implies that the signature of the CR structure,
which is encoded in L(−, J(−)), can be reconstructed from the path
geometry of chains. As a corollary, we obtain a completely indepen-
dent proof of the analog of Corollary 4.4, which is due to [10] for CR
structures:

Corollary 5.3. A contact diffeomorphism between two CR manifolds
which maps chains to chains is either a CR isomorphism or a CR anti–
isomorphism.

References

[1] R. J. Baston & M. G. Eastwood, “The Penrose Transform” Its Interaction with
Representation Theory, Oxford Science Publications, Clarendon Press, 1989,
MR 1038279, Zbl 0726.58004.

[2] R.L. Bryant, Conformal geometry and 3-plane fields on 6-manifolds, RIMS
Symposium Proceedings, vol. 1502 (2006) 1–15, arXiv:math/0511110.
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Abstract. We study a Fefferman-type construction based on the inclusion of Lie groups
SL(n + 1) into Spin(n + 1, n + 1). The construction associates a split-signature (n, n)-
conformal spin structure to a projective structure of dimension n. We prove the existence
of a canonical pure twistor spinor and a light-like conformal Killing field on the constructed
conformal space. We obtain a complete characterisation of the constructed conformal spaces
in terms of these solutions to overdetermined equations and an integrability condition on the
Weyl curvature. The Fefferman-type construction presented here can be understood as an
alternative approach to study a conformal version of classical Patterson–Walker metrics as
discussed in recent works by Dunajski–Tod and by the authors. The present work therefore
gives a complete exposition of conformal Patterson–Walker metrics from the viewpoint of
parabolic geometry.

Key words: parabolic geometry; projective structure; conformal structure; Cartan connec-
tion; Fefferman spaces; twistor spinors
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1 Introduction

In conformal geometry the geometric structure is given by an equivalence class of pseudo-
Riemannian metrics: two metrics g and ĝ are considered to be equivalent if they differ by
a positive smooth rescaling, ĝ = e2fg. In projective geometry the geometric structure is given by
an equivalence class of torsion-free affine connections: two connections D and D̂ are considered
as equivalent if they share the same geodesics (as unparametrised curves). While conformal and
projective structures both determine a corresponding class of affine connections, neither of them
induces a single distinguished connection on the tangent bundle. Instead, both structures have
canonically associated Cartan connections that govern the respective geometries and encode
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prolonged geometric data of the respective structures. It is therefore often useful when studying
projective and conformal structures to work in the framework of Cartan geometries.

The present paper investigates a geometric construction that produces a conformal class of
split-signature metrics on a 2n-dimensional manifold arising naturally from a projective class
of connections on an n-dimensional manifold. Split-signature conformal structures of this type
have appeared in several places in the literature before. The projective-to-conformal construc-
tion studied in this paper should be understood as a generalisation of the classical Riemann
extensions of affine spaces by E.M. Patterson and A.G. Walker [26]. One of the main authors
motivations for the present study was the article [15] by M. Dunajski and P. Tod, where the
Patterson–Walker construction was generalised to a projectively invariant setting in dimension
n = 2. On the other hand, in [25] conformal structures of signature (2, 2) were constructed
using Cartan connections that contain the conformal structures arising from 2-dimensional pro-
jective structures as a special case. A generalisation of this Cartan-geometric approach to higher
dimensions can be found in [24].

In this paper the construction is studied as an instance of a Fefferman-type construction, as
formalised in [6, 11], based on an inclusion of the respective Cartan structure groups SL(n+1) ↪→
Spin(n+ 1, n+ 1). We show that in the general situation n ≥ 3 the induced conformal Cartan
geometry is non-normal. To obtain information on the conformal structure it is thus important
to understand how the normal conformal Cartan connection differs from the induced one, and
the main part of the paper concerns the study of this modification. We may summarise the
main contributions of the paper as follows:

• A comprehensive treatment of the projective-to-conformal Fefferman-type construction
including a discussion of the intermediate Lagrangean contact structure (Section 3) and
a comparison with Patterson–Walker metrics (Section 6.1).

• A thorough study of the normalisation process (Section 4) and an explicit formula for the
modification needed to obtain the normal conformal Cartan connection (Section 5.2).

• The characterisation of the conformal structures obtained via our Fefferman-type con-
struction (culminating in Theorem 4.14).

Let us comment upon the characterisation in more detail. This is formulated in terms of
a conformal Killing field k and a twistor spinor χ on the conformal space together with a (con-
formally invariant) integrability curvature condition. In Theorem 4.14 the properties of k and χ
are specified in terms of corresponding conformal tractors, which nicely reflects the algebraic
setup of the Fefferman-type construction in geometric terms.

An alternative equivalent characterisation theorem was obtained by the authors in [20, Theo-
rem 1] by different means, namely, by direct computations based on spin calculus in the spirit
of [28, 29]. The conformal properties are given purely in underlying terms and do not refer to
tractors. In Section 6.2 (Theorem 6.3) we indicate how this alternative characterisation can be
obtained in the current framework.

We remark that, to our knowledge, the present work is the first comprehensive treatment of
a non-normal Fefferman-type construction and we expect that the techniques developed should
have considerable scope for applications to other similar constructions. A particularly interes-
ting case of this sort is the Fefferman construction for (non-integrable) almost CR-structures.
Possible further applications concern relations between solutions of so-called BGG-equations and
special properties of the induced conformal structures. Several such relationships were already
obtained by the authors in [20]. For instance, we can give a full description of Einstein metrics
contained in the resulting conformal class in terms of the initial projective structure. Moreover,
in [21] we were able to show that the obstruction tensor of the induced conformal structure
vanishes.
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2 Projective and conformal parabolic geometries

The standard reference for the background material on Cartan and parabolic geometries pre-
sented here is [11].

2.1 Cartan and parabolic geometries

Let G be a Lie group with Lie algebra g and P ⊆ G a closed subgroup with Lie algebra p.
A Cartan geometry (G, ω) of type (G,P ) over a smooth manifold M consists of a P -principal
bundle G →M together with a Cartan connection ω ∈ Ω1(G, g). The canonical principal bundle
G→ G/P endowed with the Maurer–Cartan form constitutes the homogeneous model for Cartan
geometries of type (G,P ).

The curvature of a Cartan connection ω is the 2-form

K ∈ Ω2(G, g), K(ξ, η) := dω(ξ, η) + [ω(ξ), ω(η)], for all ξ, η ∈ X(G),

which is equivalently encoded in the P -equivariant curvature function

κ : G → Λ2(g/p)∗ ⊗ g, κ(u)(X + p, Y + p) := K
(
ω−1(u)(X), ω−1(u)(Y )

)
. (2.1)

The curvature is a complete obstruction to a local equivalence with the homogeneous model. If
the image of κ is contained in Λ2(g/p)∗ ⊗ p the Cartan geometry is called torsion-free.

A parabolic geometry is a Cartan geometry of type (G,P ), where G is a semi-simple Lie group
and P ⊆ G is a parabolic subgroup. A subalgebra p ⊆ g is parabolic if and only if its maximal
nilpotent ideal, called nilradical p+, coincides with the orthogonal complement p⊥ of p ⊆ g with
respect to the Killing form. In particular, this yields an isomorphism (g/p)∗ ∼= p+ of P -modules.
The quotient g0 = p/p+ is called the Levi factor; it is reductive and decomposes into a semi-
simple part gss0 = [g0, g0] and the center z(g0). The respective Lie groups are Gss0 ⊆ G0 ⊆ P and
P+ ⊆ P so that P = G0 n P+ and P+ = exp(p+). An identification of g0 with a subalgebra in
p yields a grading g = g−k ⊕ · · · ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ · · · ⊕ gk, where p+ = g1 ⊕ · · · ⊕ gk. We set
g− = g−k⊕· · ·⊕g−1. If k is the depth of the grading the parabolic geometry is called |k|-graded.

The grading of g induces a grading on Λ2p+⊗g ∼= Λ2(g/p)∗⊗g. A parabolic geometry is called
regular if the curvature function κ takes values only in the components of positive homogeneity.
In particular, any torsion-free or |1|-graded parabolic geometry is regular.

Given a g-module V , there is a natural p-equivariant map, the Kostant co-differential,

∂∗ : Λk(g/p)∗ ⊗ V → Λk−1(g/p)∗ ⊗ V, (2.2)

defining the Lie algebra homology of p+ with values in V ; see, e.g., [11, Section 3.3.1] for
the explicit form. For V = g, this gives rise to a natural normalisation condition: parabolic
geometries satisfying ∂∗(κ) = 0 are called normal. The harmonic curvature κH of a normal
parabolic geometry is the image of κ under the projection ker ∂∗ → ker ∂∗/ im ∂∗. For regular
and normal parabolic geometries, the entire curvature κ is completely determined just by κH .

A Weyl structure j : G0↪→G of a parabolic geometry (G, ω) over M is a reduction of the P -
principal bundle G →M to the Levi subgroup G0 ⊆ P . The class of all Weyl structures, which
are parametrised by one-forms on M , includes a particularly important subclass of exact Weyl
structures, which are parametrised by functions on M : For |1|-graded parabolic geometries,
these correspond to further reductions of G0 → M just to the semi-simple part Gss0 of G0 or,
equivalently, to sections of the principal R+-bundle G0/G

ss
0 → M . The latter bundle is called

the bundle of scales and its sections are the scales.
For a Weyl structure j : G0 ↪→ G, the pullback j∗ω = j∗ω− + j∗ω0 + j∗ω+ of the Cartan

connection may be decomposed according to g = g− ⊕ g0 ⊕ p+. The g0-part j∗ω0 is a principal
connection on the G0-bundle G0 → M ; it induces connections on all associated bundles, which
are called (exact) Weyl connections. The p+-part j∗ω+ is the so-called Schouten tensor.
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2.2 Tractor bundles and BGG operators

Every Cartan connection ω on G → M naturally extends to a principal connection ω̂ on the
G-principal bundle Ĝ := G ×P G → M , which further induces a linear connection ∇V on any
associated vector bundle V := G ×P V = Ĝ ×G V for a G-representation V . Bundles and
connections arising in this way are called tractor bundles and tractor connections. The tractor
connections induced by normal Cartan connections are called normal tractor connections.

In particular, for the adjoint representation we obtain the adjoint tractor bundle AM :=
G ×P g. The canonical projection g → g/p and the identification TM ∼= G ×P (g/p) yield
a bundle projection Π: AM → TM ; the inclusion p+ ⊆ g and the identification p+

∼= (g/p)∗

yield a bundle inclusion T ∗M ↪→ AM . This allows us to interpret the Cartan curvature κ
from (2.1) as a 2-form Ω on M with values in AM .

The holonomy group of the principal connection ω̂ is by definition the holonomy of the Cartan
connection ω, i.e., Hol(ω) := Hol(ω̂) ⊆ G. By the holonomy of a geometric structure we mean
the holonomy of the corresponding normal Cartan connection.

In [12], and later in a simplified manner in [4], it was shown that for a tractor bundle
V = G ×P V one can associate a sequence of differential operators, which are intrinsic to the
given parabolic geometry (G, ω),

Γ(H0)
ΘV0→ Γ(H1)

ΘV1→ · · ·
ΘVn−1→ Γ(Hn).

The operators ΘVk are the BGG-operators and they operate between the sections of subquotients
Hk = ker ∂∗/im ∂∗ of the bundles of V-valued k-forms, where ∂∗ : ΛkT ∗M ⊗V → Λk−1T ∗M ⊗V
denotes the bundle map induced by the Kostant co-differential (2.2).

The first BGG-operator ΘV0 : Γ(H0) → Γ(H1) is constructed as follows. The bundle H0

is simply the quotient V/V ′, where V ′ ⊆ V is the subbundle corresponding to the largest P -
invariant filtration component in the G-representation V . It turns out, there is a distinguished
differential operator that splits the projection Π0 : V → H0, namely, the splitting operator, which
is the unique map LV0 : Γ(H0)→ Γ(V) satisfying

Π0(LV0 (σ)) = σ, ∂∗(d∇
V
LV0 (σ)) = 0, for all σ ∈ Γ(H0).

The latter condition allows to define the first BGG-operator by ΘV0 := Π1 ◦ d∇V ◦ LV0 , where
Π1 : ker ∂∗ → Γ(H1). The first BGG-operator defines an overdetermined system of differential
equations on σ ∈ Γ(H0), ΘV0 (σ) = 0, which is termed the first BGG-equation.

2.3 Further notations and conventions

In order to distinguish various objects related to projective and conformal structures, the symbols
referring to conformal data will always be endowed with tildes. To write down explicit formulae,
we employ abstract index notation, cf., e.g., [27]. Furthermore, we will use different types
of indices for projective and conformal manifolds. E.g., on a projective manifold M we write
EA := T ∗M , EA := TM , and multiple indices denote tensor products, as in E B

A := T ∗M⊗TM .
Indices between squared brackets are skew, as in E[AB] := Λ2T ∗M , and indices between round

brackets are symmetric, as in E(AB) := S2TM . Analogously, on a conformal manifold M̃ we write
Ẽa := T ∗M̃ , Ẽa := TM̃ etc. By E(w) and Ẽ[w] we denote the density bundle over M and M̃ ,
respectively. Tensor products with other natural bundles are denoted as EA(w) := EA ⊗ E(w),
Ẽ[ab][w] := Ẽ[ab] ⊗ Ẽ[w], and the like.

2.4 Projective structures

Let M be a smooth manifold of dimension n ≥ 2. A projective structure on M is given by
a class, p, of torsion-free projectively equivalent affine connections: two connections D and D̂
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are projectively equivalent if they have the same geodesics as unparametrised curves. This is
the case if and only if there is a one-form ΥA ∈ Γ(EA) such that, for all ξA ∈ Γ

(
EA
)
,

D̂Aξ
B = DAξ

B + ΥAξ
B + ΥP ξ

P δ B
A .

An oriented projective structure (M,p), which is a projective structure p on an oriented
manifold M , is equivalently encoded as a normal parabolic geometry of type (G,P ), where
G = SL(n + 1) and P = GL+(n) n Rn∗ is the stabiliser of a ray in the standard representa-
tion Rn+1.

Affine connections from the projective class p are precisely the Weyl connections of the
corresponding parabolic geometry. Exact Weyl connections are those D ∈ p which preserve
a volume form — these are also known as special affine connections. In particular, a choice
of D ∈ p reduces the structure group to G0 = GL+(n), if D is special, the structure group is
further reduced to Gss0 = SL(n).

For later purposes we now give explicit expressions of the main curvature quantities, cf., e.g.,
[2, 17]. For D ∈ p, the Schouten tensor is determined by the Ricci curvature of D; if D is special,
then the Schouten tensor is PAB = 1

n−1R
P

PA B , in particular, it is symmetric. The projective
Weyl curvature and the Cotton tensor are

W C
AB D = R C

AB D + PADδ
C
B − PBDδ

C
A , YCAB = 2D[APB]C .

Henceforth, we use a suitable normalisation of densities so that the line bundle associated to
the canonical one-dimensional representation of P has projective weight −1. Hence, comparing
with the usual notation, the density bundle of projective weight w, denoted by E(w), is just the
bundle of ordinary

( −w
n+1

)
-densities. As an associated bundle to G → M , E(w) corresponds to

the 1-dimensional representation of P given by

GL+(n) nRn∗ → R+, (A,X) 7→ det(A)w. (2.3)

The projective standard tractor bundle is the tractor bundle associated to the standard rep-
resentation of G = SL(n + 1). The projective dual standard tractor bundle is denoted by T ∗,
i.e., T ∗ := G ×P Rn+1∗. With respect to a choice of D ∈ p, we write

T ∗ =

(
EA(1)
E(1)

)
, ∇T ∗C

(
ϕA
σ

)
=

(
DCϕA + PCAσ
DCσ − ϕC

)
.

2.5 Conformal spin structures and tractor formulas

Let M̃ be a smooth manifold of dimension 2n ≥ 4. A conformal structure of signature (n, n)

on M̃ is given by a class, c, of conformally equivalent pseudo-Riemannian metrics of signa-
ture (n, n): two metrics g and ĝ are conformally equivalent if ĝ = f2g for a nowhere-vanishing

smooth function f on M̃ . It may be equivalently described as a reduction of the frame bundle
of M̃ to the structure group CO(n, n) = R+ × SO(n, n). An oriented conformal structure of
signature (n, n) is a conformal structure of signature (n, n) together with fixed orientations both
in time-like and space-like directions, equivalently, a reduction of the frame bundle to the group
COo(n, n) = R+ × SOo(n, n), the connected component of the identity. An equivariant lift of
such a reduction with respect to the 2-fold covering CSpin(n, n) = R+×Spin(n, n)→ COo(n, n)

is referred to as a conformal spin structure
(
M̃, c

)
of signature (n, n).

A conformal spin structure of signature (n, n) is equivalently encoded as a normal parabolic
geometry of type

(
G̃, P̃

)
, where G̃ = Spin(n + 1, n + 1) and P̃ = CSpin(n, n) n Rn,n∗ is the

stabiliser of an isotropic ray in the standard representation Rn+1,n+1.
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A general Weyl connection is a torsion-free affine connection D̃ such that D̃g ∈ c for any
g ∈ c. If D̃g = 0, i.e., D̃ is the Levi-Civita connection of a metric g ∈ c, it is an exact Weyl
connection. A choice of Weyl connection reduces the structure group to G̃0 = CSpin(n, n). If
the Weyl connection is exact the structure group is further reduced to G̃ss0 = Spin(n, n).

Now we briefly introduce the main curvature quantities of conformal structures, cf., e.g., [16].
For g ∈ c, the Schouten tensor,

P̃ = P̃(g) =
1

2n− 2

(
R̃ic(g)− S̃c(g)

2(2n− 1)
g

)
,

is a trace modification of the Ricci curvature R̃ic(g) by a multiple of the scalar curvature S̃c(g);
its trace is denoted J̃ = gpqP̃pq. The conformal Weyl curvature and the Cotton tensors are

W̃ c
ab d = R̃ c

ab d − 2δc[aP̃b]d + 2gd[aP̃
c

b], Ỹcab = 2D̃[aP̃b]c.

As for projective structures, we will employ a suitable parametrisation of densities so that
the canonical 1-dimensional representation of P̃ has conformal weight −1. Hence, the density
bundle of conformal weight w, denoted as Ẽ[w], is just the bundle of ordinary

(−w
2n

)
-densities.

As an associated bundle to the Cartan bundle G̃ → M̃ , it corresponds to the 1-dimensional
representation of P̃ given by

(R+ × Spin(n, n)) nR2n∗ → R+, (a,A,Z) 7→ a−w. (2.4)

In particular, the conformal structure may be seen as a section of Ẽ(ab)[2], which is called the
conformal metric and denoted by gab.

The spin bundles corresponding to the irreducible spin representations of Spin(n, n) are de-
noted by Σ̃+ and Σ̃−, and Σ̃ = Σ̃+ ⊕ Σ̃−. We employ the weighted conformal gamma matrix
γ ∈ Γ

(
Ẽa ⊗

(
End Σ̃

)
[1]
)

such that γpγq + γqγp = −2gpq. For ξ ∈ X
(
M̃
)

and χ ∈ Γ
(
Σ̃
)
, the

Clifford multiplication of ξ on χ is then written as ξ · χ = ξpγpχ.

The conformal standard tractor bundle is the associated bundle T̃ := G̃ ×
P̃
Rn+1,n+1 with

respect to the standard representation. It carries the canonical tractor metric h and the con-

formal standard tractor connection ∇̃T̃ , which preserves h. With respect to a metric g ∈ c, we
have

T̃ =



Ẽ[−1]

Ẽa[1]

Ẽ[1]


 , h =




0 0 1
0 g 0
1 0 0


 , ∇̃T̃c



ρ
ϕa
σ


 =




D̃cρ− P̃
b

c ϕb
D̃cϕa + σP̃ca + ρgca

D̃cσ − ϕc


 . (2.5)

The BGG-splitting operator is given by

LT̃0 : Γ
(
Ẽ[1]

)
→ Γ

(
T̃
)
, σ 7→




1
2n

(
−D̃pD̃p − J̃

)
σ

D̃aσ
σ


 . (2.6)

The spin tractor bundle is the associated bundle S̃ := G̃ ×
P̃

∆n+1,n+1, where ∆n+1,n+1 is the

spin representation of G̃ = Spin(n + 1, n + 1). Since we work in even signature, it decomposes
into irreducibles ∆n+1,n+1 = ∆n+1,n+1

+ ⊕ ∆n+1,n+1
− ; the corresponding bundles are denoted by

S̃± = G̃ ×
P̃

∆n+1,n+1
± . Under a choice of g ∈ c, these decompose as S̃± =

(
Σ̃∓[− 1

2
]

Σ̃±[ 1
2

]

)
, where Σ̃±
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are the natural spin bundles as before. For later use we record the formulas for the Clifford
action of T̃ on S̃ and for the spin tractor connections on S̃ = S̃+ ⊕ S̃−,



ρ
ϕa
σ


 ·

(
τ
χ

)
=

(
−ϕaγaτ +

√
2ρχ

ϕaγ
aχ−

√
2στ

)
, ∇̃S̃c

(
τ
χ

)
=

(
D̃cτ + 1√

2
P̃cpγ

pχ

D̃cχ+ 1√
2
γcτ

)
, (2.7)

cf. [19]. The BGG-splitting operator of S̃± is

L
S̃±
0 : Γ

(
Σ̃±
[

1
2

])
→ Γ

(
S̃±
)
, χ 7→

(
1√
2n
D/ χ

χ

)
, (2.8)

where D/ : Γ
(
Σ̃±
)
→ Γ

(
Σ̃∓
)
, D/ := γpD̃p, is the Dirac operator. The first BGG-operator associ-

ated to S̃± is the twistor operator

ΘS̃0 : Γ
(
Σ̃±
[

1
2

])
→ Γ

(
Ẽa ⊗ Σ̃±

[
1
2

])
, χ 7→ D̃aχ+ 1

2nγaD/ χ,

cf., e.g., [3]. Elements in the kernel of ΘS̃0 are called twistor spinors. It is well known that ΠS̃0
induces an isomorphism between ∇̃S̃-parallel sections of S̃ with ker ΘS̃0 .

The adjoint tractor bundle is the associated bundle AM̃ := G̃×
P̃

g̃ with respect to the adjoint

representation of G̃ on g̃ = so(n+1, n+1) ∼= Λ2Rn+1,n+1. The standard pairing on AM̃ induced

by the Killing form on g̃ is denoted as 〈·, ·〉 : AM̃ × AM̃ → R. Henceforth we identify AM̃
with Λ2T̃ . With respect to a metric g ∈ c,

AM̃ =




Ẽa[0]

Ẽ[a0a1][2]
∣∣ Ẽ[1]

Ẽa[2]


 .

The standard representation of g̃ on Rn+1,n+1 gives rise to the map

• : AM̃ ⊗ T̃ → T̃ ,




ρa
µa0a1

∣∣ ϕ
βa


 •



ν
ωb
σ


 =




ρrωr − ϕν
µb
rωr − σρb − νβb
βrωr + ϕσ


 . (2.9)

The normal tractor connection is given by

∇̃AM̃c




ρa
µa0a1

∣∣ ϕ
ka


 =




D̃cρa − P̃
p

c µpa − P̃caϕ(
D̃cµa0a1 + 2gc[a0ρa1]

+2P̃c[a0ka1]

)
∣∣ (D̃cϕ− P̃

p

c kp + ρc
)

D̃cka − µca + gcaϕ


 . (2.10)

Written as a two-form Ω̃ with values in Λ2T̃ , the curvature of ∇̃T̃ is

Ω̃c0c1 =



−Ỹac0c1

W̃c0c1a0a1

∣∣ 0
0


 ∈ Γ

(
Ẽ[c0c1] ⊗AM̃

)
. (2.11)

The BGG-splitting operator

LAM̃0 : Γ
(
Ẽa
)

= Γ
(
Ẽa[2]

)
→ Γ

(
AM̃

)
, ka 7→




ρa
µa0a1

∣∣ ϕ
ka


 ,
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is determined by

µa0a1 = D̃[a0ka1], ϕ = − 1

2n
gpqD̃pkq, (2.12)

ρa = − 1

4n
D̃pD̃pka +

1

4n
D̃pD̃akp +

1

4n2
D̃aD̃

pkp +
1

n
P̃
p

akp −
1

2n
J̃ka,

and the corresponding first BGG-operator of AM̃ is computed as

ΘAM̃0 : Γ
(
Ẽa[2]

)
→ Γ

(
Ẽ(ab)0 [2]

)
, ξa 7→ D̃(cξa)0 ,

where the subscript 0 denotes the trace-free part. Thus ΘAM̃0 is the conformal Killing operator
and solutions to the first BGG-equation are conformal Killing fields. In a prolonged form, the
conformal Killing equation is equivalent to

∇̃AM̃b s = ξaΩ̃ab, (2.13)

where s = LAM̃0 (ξ), see [7, 18].

3 The Fefferman-type construction

The construction of split-signature conformal structures from projective structures discussed in
this section fits into a general scheme relating parabolic geometries of different types. Namely, it
is an instance of the so-called Fefferman-type construction, whose name and general procedure
is motivated by Fefferman’s construction of a canonical conformal structure induced by a CR
structure, see [6] and [11] for a detailed discussion.

3.1 General procedure

Suppose we have two pairs of semi-simple Lie groups and parabolic subgroups, (G,P ) and
(
G̃, P̃

)
,

and a Lie group homomorphism i : G→ G̃ such that the derivative i′ : g→ g̃ is injective. Assume
further that the G-orbit of the origin in G̃/P̃ is open and that the parabolic P ⊆ G contains
Q := i−1

(
P̃
)
, the preimage of P̃ ⊆ G̃.

Given a parabolic geometry (G →M,ω) of type (G,P ), one first forms the Fefferman space

M̃ := G/Q = G ×P P/Q. (3.1)

Then
(
G → M̃, ω

)
is automatically a Cartan geometry of type (G,Q). As a next step, one

considers the extended bundle G̃ := G ×Q P̃ with respect to the homomorphism Q→ P̃ . This is

a principal bundle over M̃ with structure group P̃ and j : G ↪→ G̃ denotes the natural inclusion.
The equivariant extension of ω ∈ Ω1(G, g) yields a unique Cartan connection ω̃ind ∈ Ω1

(
G̃, g̃

)

of type
(
G̃, P̃

)
such that j∗ω̃ind = i′ ◦ ω. Altogether, one obtains a functor from parabolic

geometries (G →M,ω) of type (G,P ) to parabolic geometries
(
G̃ → M̃, ω̃ind

)
of type

(
G̃, P̃

)
.

The relation between the corresponding curvatures is as follows: The previous assumptions
yield a linear isomorphism g̃/p̃ ∼= g/q and an obvious projection g/q→ g/p, where q ⊆ p is the
Lie algebra of Q ⊆ P . Composing these two maps one obtains a linear projection g̃/p̃ → g/p,
whose dual map is denoted as ϕ : (g/p)∗ → (g̃/p̃)∗. Since i′ : g → g̃ is a homomorphism of Lie
algebras, the curvature function κ̃ind : G̃ → Λ2(g̃/p̃)∗ ⊗ g̃ is related to κ : G → Λ2(g/p)∗ ⊗ g by
κ̃ind ◦ j = (Λ2ϕ⊗ i′) ◦ κ. We note that κ̃ind is fully determined by this formula.

Since i′ is an embedding, the notation is in most cases simplified such that we write g ⊆ g̃,
q = g ∩ p̃, etc.
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3.2 Algebraic setup and the homogeneous model

Here we specify the general setup for Fefferman-type constructions from Section 3.1 according
to the description of oriented projective and conformal spin structures given in Sections 2.4
and 2.5, respectively. Let Rn+1,n+1 be the real vector space R2n+2 with an inner product, h, of
split-signature. Let ∆n+1,n+1

+ and ∆n+1,n+1
− be the irreducible spin representations of

G̃ := Spin(n+ 1, n+ 1)

as in Section 2.5. We fix two pure spinors sF ∈ ∆n+1,n+1
− and sE ∈ ∆n+1,n+1

± with non-trivial

pairing, which is assigned for later use to be 〈sE , sF 〉 = −1
2 . Note that sE lies in ∆n+1,n+1

+ if n

is even or in ∆n+1,n+1
− if n is odd.

Let us denote by E,F ⊆ Rn+1,n+1 the kernels of sE , sF with respect to the Clifford multi-
plication, i.e.,

E :=
{
X ∈ Rn+1,n+1 : X · sE = 0

}
, F :=

{
X ∈ Rn+1,n+1 : X · sF = 0

}
.

The purity of sE and sF means that E and F are maximally isotropic subspaces in Rn+1,n+1.
The other assumptions guarantee that E and F are complementary and dual each other via the
inner product h. Hence we use the decomposition

Rn+1,n+1 = E ⊕ F ∼= Rn+1 ⊕ Rn+1∗ (3.2)

to identify the spinor representation ∆n+1,n+1 = ∆n+1,n+1
+ ⊕∆n+1,n+1

− with the exterior power

algebra Λ•E ∼= Λ•Rn+1, whose irreducible subrepresentations are ∆n+1,n+1
− ∼= ΛevenRn+1 and

∆n+1,n+1
+

∼= ΛoddRn+1. When n is even, respectively, odd, we can identify
(
∆n+1,n+1
−

)∗ ∼=
∆n+1,n+1

+ , respectively
(
∆n+1,n+1
−

)∗ ∼= ∆n+1,n+1
− .

Now, let us consider the subgroup in G̃ defined by

G := {g ∈ Spin(n+ 1, n+ 1): g · sE = sE , g · sF = sF }.
This subgroup preserves the decomposition (3.2) so that the restriction of the action to F is dual
to the restriction to E. It further preserves the volume form on E, respectively F ∼= E∗, which
is determined by sE and sF according to the previous identifications. Hence G ∼= SL(n+ 1) and
this defines an embedding i : SL(n+ 1) ↪→ Spin(n+ 1, n+ 1).1

The G-invariant decomposition (3.2) determines a G-invariant skew-symmetric involution
K ∈ so(n+ 1, n+ 1) acting by the identity on E and minus the identity on F . The relationship
among K, sE and sF may be expressed as

h(X,K(Y )) = −h(K(X), Y ) = 2〈sE , (X ∧ Y ) · sF 〉, (3.3)

where

(X ∧ Y ) · sF =
1

2
(X · Y · sF − Y ·X · sF ) = X · Y · sF + h(X,Y )sF .

The spin action of g̃ is denoted by •, and thus A • s = −1
4A · s, for any A ∈ g̃ and s ∈ ∆. In

particular, K •sF = −1
2(n+1)sF and K •sE = 1

2(n+1)sE . Here we identify g̃ = so(n+1, n+1)
with Λ2Rn+1,n+1. It is convenient to split g̃ in terms of irreducible g-modules as

g̃ = Λ2(E ⊕ F ) = (E ⊗ F )0︸ ︷︷ ︸
g=sl(n+1)

⊕ (E ⊗ F )Tr ⊕ Λ2E ⊕ Λ2F︸ ︷︷ ︸
g⊥

, (3.4)

1Instead of the embedding SL(n+ 1) ↪→ Spin(n+ 1, n+ 1) we could also consider the embedding SL(n+ 1) ↪→
SO(n+ 1, n+ 1). The advantage of employing the embedding into the spin group is two-fold: on the one hand, it
is then seen directly that the induced conformal structure has a canonical spin structure, and, on the other hand,
we can then use convenient spinorial objects for its characterisation.
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where (E ⊗F )Tr = RK, and K acts as [K,φ] = 2φ, [K,ψ] = −2ψ, [K,λ] = 0, for any φ ∈ Λ2E,
ψ ∈ Λ2F and λ ∈ E ⊗ F . Further, the annihilators of sE and sF in g̃ are the subalgebras
ker sE = sl(n+ 1)⊕ Λ2E and ker sF = sl(n+ 1)⊕ Λ2F .

The homogeneous model for conformal spin structures of signature (n, n) is the space of
isotropic rays in Rn+1,n+1, G̃/P̃ ∼= Sn × Sn. The subgroup G ⊆ G̃ does not act transitively on
that space. According to the decomposition (3.2), there are three orbits: the set of rays contained
in E, the set of rays contained in F , and the set of isotropic rays that are neither contained in E
nor in F . Note that only the last orbit is open in G̃/P̃ , which is one of the requirements from
Section 3.1. Therefore, we define P̃ ⊆ G̃ to be the stabiliser of a ray through a light-like vector
ṽ ∈ Rn+1,n+1 \ (E ∪F ). Denoting by Q = i−1(P̃ ) the stabiliser of the ray R+ṽ in G, we have the
identification of G/Q with the open orbit of the origin in G̃/P̃ . The subgroup Q, which is not
parabolic, is contained in the parabolic subgroup P ⊆ G defined as the stabiliser in G of the
ray through the projection of ṽ to E. In particular, G/P is the standard projective sphere Sn,
the homogeneous model of oriented projective structures of dimension n, and G/Q → G/P is
the canonical fibration with the standard fibre P/Q, whose total space is the model Fefferman
space.

Let us denote by L = Rṽ the line spanned by the light-like vector ṽ and let L⊥ be the
orthogonal complement in Rn+1,n+1 with respect to h. The tangent space of G/Q at the origin
can be seen in three different ways, namely,

(
L⊥/L

)
[1] ∼= g/q ∼= g̃/p̃.

The latter isomorphism is induced by the embedding g ⊆ g̃, the former one by the standard
action of g ⊆ g̃ on the vector ṽ ∈ Rn+1,n+1. Both these identifications are Q-equivariant.

There are several natural Q-invariant objects that in turn yield distinguished geometric ob-
jects on the general Fefferman space. The n-dimensional Q-invariant subspace

f :=
((
F̄ + L

)
/L
)
[1] ⊆

(
L⊥/L

)
[1], where F̄ := F ∩ L⊥,

which is isomorphic to p/q ⊆ g/q, the kernel of the projection g/q→ g/p. Another n-dimensional
Q-invariant subspace is

e :=
((
Ē + L

)
/L
)
[1] ⊆

(
L⊥/L

)
[1], where Ē := E ∩ L⊥.

The intersection e ∩ f is 1-dimensional with a distinguished Q-invariant generator that corre-
sponds to the G-invariant involution K ∈ g̃,

k := K + p̃ ∈ g̃/p̃.

Note that all these objects are isotropic with respect to the natural conformal class induced
by the restriction of h to L⊥ ⊆ Rn+1.n+1. In particular, both e and f are maximally isotropic
subspaces such that

k ∈ e ∩ f ⊆ k⊥ = e+ f. (3.5)

In Section 3.1 we introduced a map ϕ : (g/p)∗ → (g̃/p̃)∗, the dual map to the projection
g̃/p̃ ∼= g/q→ g/p. The kernel of this projection is just f and the image of ϕ is identified with its
annihilator, which will be denoted by f◦. Since f is a maximally isotropic subspace in g̃/p̃ ∼= g/q,

f◦ ∼= f [−2].

Since (g̃/p̃)∗ ∼= p̃+, we may conclude with the help of explicit matrix realisations from Ap-
pendix A that f◦ = p̃+ ∩ ker sF . Moreover, we note that

(
p̃+ ∩ ker sF

)
E⊗F = p+,

(
p̃ ∩ ker sF

)
E⊗F = p, (3.6)

Λ2F ∩ p̃ = Λ2F̄ ⊆ g̃0,
[
p̃+,Λ

2F̄
]

= f◦,
[
f◦,Λ2F̄

]
= 0. (3.7)
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3.3 The Fefferman space and induced structure

The pairs of Lie groups (G,P ) and
(
G̃, P̃

)
from the previous subsection satisfy all the properties

to launch the Fefferman-type construction.

Proposition 3.1. The Fefferman-type construction for the pairs of Lie groups (G,P ) and(
G̃, P̃

)
yields a natural construction of conformal spin structures

(
M̃, c

)
of signature (n, n)

from n-dimensional oriented projective structures (M,p). The Fefferman space M̃ is identified
with the total space of the weighted cotangent bundle without the zero section T ∗M(2)\{0}.

Proof. The first part of the statement is obvious from the general setting for Fefferman-type
constructions and the Cartan-geometric description of oriented projective and conformal spin
structures.

The second part is shown due to two natural identifications: On the one hand, the Fefferman
space is by (3.1) equal to the total space of the associated bundle M̃ ∼= G ×P P/Q over M . On
the other hand, the weighted cotangent bundle to M is identified with the associated bundle
T ∗M(2) ∼= G ×P (g/p)∗(2) with respect to action of P induced by the adjoint action and the
representation (2.3) for w = 2. Hence it remains to verify that the action of P on (g/p)∗(2)\{0}
is transitive and Q is a stabiliser of a non-zero element. But this is a purely algebraic task,
which may be easily checked in a concrete matrix realisation. �

From the algebraic setup in Section 3.2 we easily conclude number of specific features of the
induced conformal structure on M̃ :

Proposition 3.2. The conformal spin structure
(
M̃, c

)
induced from an oriented projective

structure (M,p) by the Fefferman-type construction admits the following tractorial objects that
are all parallel with respect to the induced tractor connection:

(a) pure tractor spinors sE ∈ Γ
(
S̃±
)

and sF ∈ Γ
(
S̃−
)

with non-trivial pairing,

(b) a tractor endomorphism K ∈ Γ
(
AM̃

)
which is an involution, i.e., K2 = idT̃ , and which

acts by the identity, respectively minus the identity on the maximally isotropic complemen-
tary subbundles Ẽ := ker sE, respectively F̃ := ker sF of T̃ .

The corresponding underlying objects η = ΠS̃0 (sE), χ = ΠS̃0 (sF ) and k = ΠAM̃0 (K) satisfy:

(c) η ∈ Γ
(
Σ̃±
[

1
2

])
and χ ∈ Γ

(
Σ̃−
[

1
2

])
are pure spinors, whose kernels ẽ := ker η and f̃ := kerχ

have 1-dimensional intersection and f̃ coincides with the vertical subbundle of M̃ →M ,

(d) k ∈ Γ
(
TM̃

)
is a nowhere-vanishing light-like vector field generating the intersection ẽ∩ f̃ .

Proof. The G-invariant spinor sE ∈ ∆± gives rise to the tractor spinor sE ∈ Γ
(
S̃± = G ×Q

∆±
)

such that it corresponds to the constant (Q-equivariant) map G → ∆±. Hence sE is

automatically parallel with respect to the induced tractor connection on S̃±. Similar reasoning
for other G-invariant objects and their compatibility described above yield the first part of
the statement. In particular, Ẽ = G ×Q E, F̃ = G ×Q F and the decomposition T̃ = Ẽ ⊕ F̃
corresponds to the decomposition (3.2).

The filtration L ⊆ L⊥ ⊆ Rn+1,n+1 gives rise to the filtration of the standard tractor bundle,
which can be written as



Ẽ[−1]

0
0


 ⊆



Ẽ[−1]

Ẽa[1]
0


 ⊆



Ẽ[−1]

Ẽa[1]

Ẽ[1]


 = T̃ .
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In particular, the subbundles associated to Ē, F̄ ⊆ L⊥ are distinguished by the middle slot. The
corresponding Q-invariant maximally isotropic subspaces e, f ⊆ g/q determine the distributions

G ×Q e and G ×Q f in TM̃ = G ×Q g/q. According to the tractor Clifford action (2.7) it
follows that these are precisely the kernels of the spinors η and χ. Since these subspaces are
maximally isotropic, the corresponding spinors are pure. Since f ∼= p/q is the kernel of the
projection g/q → g/p, the corresponding subbundle f̃ is identified with the vertical subbundle

of the projection M̃ → M . The intersection e ∩ f is 1-dimensional and it is generated by the
projection of K ∈ g̃ to g̃/p̃. Indeed, K cannot be contained in p̃, since K acts by the identity
on E and minus the identity on F and p̃ is the stabiliser of a line that is neither contained in E
nor in F . Altogether, the corresponding vector field k on M̃ is a nowhere-vanishing generator
of ẽ ∩ f̃ , in particular, it is light-like. �

3.4 Relating tractors, Weyl structures and scales

As a technical preliminary for further study we now relate natural objects associated to the
original projective Cartan geometry (G, ω) on M and the induced conformal geometry (G̃, ω̃ind)

on the Fefferman space M̃ .
Since G ⊆ G̃, any G̃-representation V is also a G-representation, which yields compatible

tractor bundles over M and M̃ with compatible tractor connections: V = G ×P V → M
with the tractor connection ∇ induced by ω and Ṽ = G̃ ×

P̃
V = G ×Q V → M̃ with the

tractor connection ∇̃ind induced by ω̃ind. Sections of V bijectively correspond to P -equivariant
functions ϕ : G → V , while sections of Ṽ correspond to Q-equivariant functions ϕ : G → V . Since
Q ⊆ P , every section of V gives rise to a section of Ṽ, and we can view Γ(V) ⊆ Γ

(
Ṽ
)
. Now,

Proposition 3.2 in [8] admits a straightforward generalisation to Fefferman-type constructions
for which P/Q is connected and thus, in particular, to the one studied in this article:

Proposition 3.3.

(a) A section s ∈ Γ
(
Ṽ
)

is contained in Γ(V) (i.e., the corresponding Q-equivariant function ϕ

is indeed P -equivariant) if and only if ∇̃inds is strictly horizontal (i.e., va∇̃ind
a s = 0 for all

va ∈ Γ
(
f̃
)
).

(b) The restriction of ∇̃ind to Γ(V) ⊆ Γ
(
Ṽ
)

coincides with the tractor connection ∇.

Remark 3.4. Another instance of compatible bundles over M and M̃ is provided by the density
bundles E(w) and Ẽ[w], which are defined via the representation of P and P̃ as in (2.3) and (2.4),
respectively. Restricting these representations to Q, it easily follows that the notation is indeed
compatible so that we can view Γ(E(w)) ⊆ Γ

(
Ẽ[w]

)
.

Both projective and conformal density bundles can be described as associated bundles to
the respective bundles of scales. Hence everywhere positive sections of density bundles are
considered as scales. In particular, the inclusion Γ(E+(1)) ⊆ Γ

(
Ẽ+[1]

)
may be interpreted so

that any projective scale induces a conformal one. Such conformal scales will be called reduced
scales. An intrinsic characterisation of reduced scales among all conformal ones is formulated in
Proposition 5.2.

The previous remark yields that any projective exact Weyl structure on M induces a confor-
mal exact Weyl structure on M̃ . This fact can be generalised as follows:

Proposition 3.5. Any projective (exact) Weyl structure on M induces a conformal (exact)

Weyl structure on the Fefferman space M̃ .

Proof. A version of this result in a more general context was proved in [1, Proposition 6.1]: any
Weyl structure for ω induces a Weyl structure for ω̃ind if P+ ⊆ P̃ and

(
G0 ∩ P̃

)
⊆ G̃0. But both
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these conditions are satisfied as follows from the setup in Section 3.2 and explicit realisations in
Appendix A. �

Conformal Weyl structures induced by projective ones as above will be called reduced Weyl
structures.

3.5 Normality

Here we show that our Fefferman-type construction does not preserve the normality in general,
see Proposition 3.8. This can be shown directly as we did in a previous version of the article,
see arXiv:1510.03337v2. Alternatively, we can treat the construction as the composition of two
other constructions via a natural intermediate Lagrangean contact structure.

A Lagrangean contact structure on M ′ consists of a contact distribution H ⊆ TM ′ together
with a decomposition H = e′⊕f ′ into two subbundles that are maximally isotropic with respect
to the Levi form H × H → TM ′/H. Such structure on a manifold M ′ of dimension 2n − 1 is
equivalently encoded as a normal parabolic geometry of type (G,P ′), where G = SL(n+ 1) and
P ′ ⊆ G is the stabiliser of a flag of type line-hyperplane in the standard representation Rn+1.
For n > 2 there are three harmonic curvatures, two of which are torsions whose vanishing is
equivalent to the integrability of the respective subbundles e′, f ′ ⊆ H. For n = 2 there are two
harmonic curvatures of homogeneity 4, hence the Cartan connection is torsion-free. In that case
both e′ and f ′ are 1-dimensional and thus automatically integrable.

On the one hand, P ′ is contained in P , where P ⊆ G is the stabiliser of a ray in Rn+1. For
suitable choices as in Appendix A, the Lie algebra to P ′ consists of matrices of the form

p′ =



a U t w
0 B V
0 0 c


 .

Given a projective Cartan geometry (G →M,ω) of type (G,P ), it turns out that the correspon-
dence space M ′ := G/P ′ can be identified with the projectivised cotangent bundle P(T ∗M).
The Cartan geometry (G → M ′, ω) of type (G,P ′) is regular and thus it covers a natural La-
grangean contact structure on M ′. In particular, the canonical contact distribution on P(T ∗M)
coincides with H and the vertical subbundle of the projection M ′ →M coincides with one of the
two distinguished subbundles, say f ′ ⊆ H. As in general, this construction preserves normality.
In accord with [5], respectively [11, Section 4.4.2] we may state:

Proposition 3.6. Let (G → M,ω) be a normal projective parabolic geometry and let (G →
M ′, ω) be the corresponding normal Lagrangean contact parabolic geometry. The latter geometry
is torsion-free if and only if n = 2 or it is flat, i.e., the initial projective structure is flat.

On the other hand, P ′ contains Q, where Q = G ∩ P̃ as before. This allows us to consider
the Fefferman-type construction for the pairs (G,P ′) and (G̃, P̃ ). Given a Lagrangean contact

structure on M ′, it induces a conformal spin structure on M̃ = G/Q. This construction is indeed
very similar to the original Fefferman construction; one deals with different real forms of the
same complex Lie groups in the two cases. That is why the following statement and its proof
is analogous to the one for the CR case. Following [8], respectively [11, Section 4.5.2] we may
state:

Proposition 3.7. Let (G →M ′, ω) be the normal Lagrangean contact parabolic geometry and let(
G̃ → M̃, ω̃ind

)
be the conformal parabolic geometry obtained by the Fefferman-type construction.

Then ω̃ind is normal if and only if ω is torsion-free.
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Altogether, composing the two previous steps we obtain our projective-to-conformal Feffer-
man-type construction with the desired control of the normality. Note that from (3.5) and the

respective matrix realisations it follows that the induced objects on M̃ = T ∗M(2) \ {0} from
Proposition 3.2 correspond to the induced objects on M ′ = P(T ∗M). In particular, the vertical

subbundle of the projection M̃ →M ′ is spanned by k and the decomposition k⊥ = ẽ⊕ f̃ ⊆ TM̃
descends to the decomposition H = e′ ⊕ f ′ ⊆ TM ′

G̃

P̃

��
G *



77

Q

**P ′

��
P

��

M̃

yy
M ′

xx
M.

Proposition 3.8. Let (G → M,ω) be a normal projective parabolic geometry and let
(
G̃ →

M̃, ω̃ind
)

be the conformal parabolic geometry obtained by the Fefferman-type construction.

(a) If dim M = 2 then ω̃ind is normal.

(b) If dim M > 2 then ω̃ind is normal if and only if ω is flat.

Moreover, independently of the dimension of M , ω̃ind is flat if and only if ω is flat.

3.6 Remarks on torsion-free Lagrangean contact structures

At this stage it is easy to formulate a local characterisation of split-signature conformal structures
arising from torsion-free Lagrangean contact structures, see Proposition 3.10. As before, the
results and their proofs are very analogous to those in the CR case, therefore we just quickly
indicate the reasoning and point to differences.

As in Proposition 3.2, the G-invariant algebraic objects induce the tractor fields sE , sF and K
on the conformal Fefferman space that are parallel with respect to the induced tractor connection
and have the required compatibility properties. But, starting with a torsion-free Lagrangean
contact structure, the induced connection is already normal. In particular, the corresponding
underlying objects χ, η and k are pure twistor spinors and a light-like conformal Killing field,
respectively.

The existence of parallel tractors sE , sF and K with the algebraic properties as in Proposi-
tion 3.2 are by no means independent conditions:

Proposition 3.9. Let
(
M̃, c

)
be a conformal spin structure of split-signature (n, n). Then the

following conditions are locally equivalent:

(a) The spin tractor bundle admits two pure parallel tractor spinors sE ∈ Γ
(
S̃±
)

and sF ∈
Γ
(
S̃−
)

with non-trivial pairing.

(b) The conformal holonomy Hol(c) reduces to SL(n + 1) ⊆ Spin(n + 1, n + 1) preserving
a decomposition into maximally isotropic subspaces E ⊕ F = Rn+1,n+1.

(c) The adjoint tractor bundle admits a parallel involution K ∈ Γ
(
AM̃

)
, i.e., K2 = idT̃ .
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The only subtle point within the proof concerns the consequences of property (c). The
existence of a parallel skew-symmetric involution K on the standard tractor bundle immediately
implies that the conformal holonomy Hol(c) is reduced to GL(n + 1). But, analogously to the
corresponding discussion for the CR case in [9] or [23], one can show that Hol(c) is actually
contained in SL(n+ 1). The rest follows easily.

It turns out that conformal spin structures induced by torsion-free Lagrangean contact struc-
tures are locally characterised by any of the three equivalent conditions above. Indeed, according
to results from [10], the holonomy reduction of the conformal structure to G = SL(n + 1) ⊆
Spin(n+ 1, n+ 1) = G̃ yields the so-called curved orbit decomposition of M̃ , which corresponds
to the decomposition of the homogeneous model G̃/P̃ with respect to the action of G. Each

subset from the decomposition of M̃ , provided it is non-empty, further carries a geometry of
the same type as its counterpart in the homogeneous model. From Section 3.2 we know there
is one open and two closed n-dimensional orbits. The closed n-dimensional orbits carry Cartan
geometries of type (G,P ), and thus inherit projective structures, the open orbit carries a Cartan
geometry of type (G,Q). Note that the two closed orbits coincide with the zero sets of χ and η,
the open subset is the one where both spinors, and thus k, are non-vanishing. Since k is the
conformal Killing field corresponding to the parallel adjoint tractor K, it inserts trivially into
the curvature of the normal Cartan connection, cf. (2.13). Hence, according to [5], the Cartan

geometry of type (G,Q) on the open orbit of M̃ descends to a Cartan geometry of type (G,P ′)
on the local leaf space M ′ determined by k. It follows that this Cartan geometry is torsion-free
and thus determines a torsion-free Lagrangean contact structure. Altogether, following [9] we
may state the following characterisation:

Proposition 3.10. A split-signature conformal spin structure is locally induced by a torsion-
free Lagrangean contact structure via the Fefferman-type construction if and only if any of the
equivalent conditions from Proposition 3.9 holds and the underlying twistor spinors χ and η and
the conformal Killing field k are nowhere-vanishing.

3.7 The exceptional case: dimension n = 2

From Section 3.5 we know that the intermediate 3-dimensional Lagrangean contact structure
on M ′ induced by a 2-dimensional projective structure on M is torsion-free. Hence the induced
conformal Cartan geometry on M̃ is normal and thus all the equivalent conditions from Propo-
sition 3.9 are satisfied. Moreover, the fact that it comes from a projective structure implies that
any vertical vector of the projection M̃ →M inserts trivially into the Cartan curvature, i.e.,

iX κ̃(u) = 0, for all X ∈ f , u ∈ G̃. (3.8)

Analogously to the discussion before Proposition 3.10 we may conclude:

Proposition 3.11. A conformal spin structure of signature (2, 2) is locally induced by a 2-
dimensional projective structure via the Fefferman-type construction if and only if any of the
equivalent conditions from Proposition 3.9 holds, the underlying twistor spinors χ and η and
the conformal Killing field k are nowhere-vanishing and the curvature of the normal conformal
Cartan connection satisfies (3.8).

Remark 3.12. Conformal structures induced from 2-dimensional projective structures are well-
studied, see, e.g., [14, 15, 25]. Notably, the intermediate 3-dimensional Lagrangean contact
structure can be equivalently viewed as a path geometry (or the geometry associated to second
order ODEs modulo point transformations). Such structure is induced by a projective structure
(i.e., the paths are the unparametrised geodesics of the projective class of connections) if and
only if one of the two harmonic curvatures vanishes. It follows from [25] that this is equivalent to
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vanishing of the self-dual, respectively anti-self-dual part of the Weyl curvature of the induced
conformal structure. In particular, the condition (3.8) in the previous proposition can be replaced
by the condition that the conformal structure is half-flat.

4 Normalisation and characterisation

By Proposition 3.8, for n ≥ 3, the induced conformal Cartan connection associated to a non-flat
n-dimensional projective structure differs from the normal conformal Cartan connection for the
induced conformal structure. In this section we will analyse the form of the difference and
thus derive properties of the induced conformal structures. Furthermore, we will show that any
split-signature conformal manifold having these properties is locally equivalent to the conformal
structure on the Fefferman space over a projective manifold.

4.1 The normalisation process

We are going to normalise the conformal Cartan connection ω̃ind ∈ Ω1
(
G̃, g̃

)
that is induced by

a normal projective Cartan connection ω ∈ Ω1(G, g). Any other conformal Cartan connection ω̃′

differs from ω̃ind by some Ψ ∈ Ω1
(
G̃, g̃

)
so that ω̃′ = ω̃ind + Ψ. This Ψ must vanish on vertical

fields and be P̃ -equivariant. The condition on ω̃′ to induce the same conformal structure on M̃
as ω̃ind is that Ψ has values in p̃ ⊆ g̃. One can therefore regard Ψ as a P̃ -equivariant function
Ψ: G̃ → (g̃/p̃)∗ ⊗ p̃. According to the general theory as outlined in [11, Section 3.1.13] there is
a unique such Ψ such that the curvature function κ̃′ of ω̃′ satisfies ∂̃∗κ̃′ = 0, and then ω̃′ is the
normal conformal Cartan connection ω̃nor.

The failure of ω̃ind to be normal is given by ∂̃∗κ̃ind : G̃ → (g̃/p̃)∗⊗ p̃. The normalisation of ω̃ind

proceeds by homogeneity of (g̃/p̃)∗ ⊗ p̃, which decomposes into two homogeneous components
according to the decomposition p̃ = g̃0 ⊕ p̃+. In the first step of normalisation one looks for
a Ψ1 such that ω̃1 = ω̃ + Ψ1 has ∂̃∗κ̃1 taking values in the highest homogeneity, i.e., ∂̃∗κ̃1 : G̃ →
(g̃/p̃)∗ ⊗ p̃+.

To write down this first normalisation we employ Weyl structures G̃0↪→G̃. By Proposition 3.5
we can take a reduced Weyl structure, i.e., one that is induced by a reduction G0↪→G ↪→ G̃ with
respect to the structure group Q0 := Q∩G0. This allows us to project ∂̃∗κ̃ind to

(
∂̃∗κ̃ind

)
0
: G0 →

(g̃/p̃)∗ ⊗ g̃0 and to employ the G̃0-equivariant Kostant Laplacian �̃ : (g̃/p̃)∗ ⊗ g̃0 → (g̃/p̃)∗ ⊗ g̃0,
�̃ := ∂̃ ◦ ∂̃∗+ ∂̃∗ ◦ ∂̃. For the first normalisation step we need to form a map Ψ1 : G̃ → (g̃/p̃)∗⊗ p̃

that agrees with −�̃−1
(
∂̃∗κ̃ind

)
0

in the g̃0-component. If we have formed any such Ψ1 along

G0↪→G̃ we can just equivariantly extend this to all of G̃.
To proceed with the analysis of the normalisation we need to establish a couple of technical

lemmas. As before, we denote by f◦ ⊂ p̃+
∼= (g̃/p̃)∗ the annihilator of f = p/q ⊂ g/q ∼= g̃/p̃.

Recall that f◦ = ϕ(p+) ∼= f [−2].

Lemma 4.1. Let V be a g-representation contained in a g̃-representation Ṽ and denote by
φ 7→ φ̃ the inclusion Λkp+ ⊗ V ↪→ Λkp̃+ ⊗ Ṽ induced by ϕ : p+ → p̃+ and V ↪→ Ṽ . Then, for
any φ ∈ Λkp+ ⊗ V ,

∂̃∗φ− ∂̃∗φ̃ ∈ Λk−1f◦ ⊗
(
Λ2F̄ • V

)
⊆ Λk−1p̃+ ⊗ Ṽ .

In particular, for the adjoint representations, ∂∗φ = 0 if and only if ∂̃∗φ̃ ∈ Λk−1f◦ ⊗ Λ2F̄ .

Proof. For the sake of presentation, assume that φ is decomposable, i.e., of the form φ =
Z1 ∧ · · · ∧Zk ⊗ v, where Zi ∈ p+ and v ∈ V . Let us denote by the same symbols also the images
of these elements under the inclusion g ↪→ g̃ and V ↪→ Ṽ , i.e., Zi ∈ p̃ and v ∈ Ṽ , respectively.
Let Z̃i ∈ f◦ be the images of Zi under the inclusion ϕ : p+ → p̃+. Now, by definition of the
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Kostant co-differential, the difference ∂̃∗φ − ∂̃∗φ̃ evaluated on any k − 1 elements from g̃/p̃ is
a linear combination of terms of the form

(
Zi − Z̃i

)
• v. (4.1)

However, the differences Zi− Z̃i ∈ p̃ are represented by the matrices as in (A.1) in the Appendix
where only the Z-entries are non-vanishing and hence contained in Λ2F ∩ p̃ = Λ2F̄ . Thus (4.1)
belong to the image of • : Λ2F̄ × V → Ṽ and the first claim follows.

For the second claim we use that Λ2F̄ • g =
[
Λ2F̄ , g

]
⊆ Λ2F and Λ2F ∩ g = 0: since ∂̃∗φ

(evaluated on any k − 1 elements from g̃/p̃) has values in g ⊂ g̃, vanishing of ∂∗φ is equivalent
to ∂̃∗φ̃ having values in Λ2F . But ∂̃∗φ̃ has generally values in p̃ and Λ2F ∩ p̃ = Λ2F̄ , hence the
claim follows. �

Lemma 4.2. If ψ ∈ p̃+ ∧ f◦ ⊗ Λ2F̄ ⊆ Λ2p̃+ ⊗ p̃ then ∂̃∗ψ ∈ f◦ ⊗ f◦ ⊆ p̃+ ⊗ p̃+.

Proof. ψ is a sum of terms of the form Z1 ∧ Z2 ⊗ A, where Z1 ∈ p̃+, Z2 ∈ f◦ and A ∈ Λ2F̄ .
Applying the Kostant co-differential gives

∂̃∗(Z1 ∧ Z2 ⊗A) = Z1 ⊗ [Z2, A]− Z2 ⊗ [Z1, A].

Now [Z2, A] belongs to
[
f◦,Λ2F̄

]
= 0 and [Z1, A] belongs to

[
p̃+,Λ

2F̄
]

= f◦, hence the claim
follows. �

The following lemma contains the crucial information which is necessary to perform our
normalisation. We are going to specify the curvature function κ̃ind (later also κ̃nor) by describing

its values along the natural Q-reduction G ↪→ G̃ over M̃ . Recall from Section 3.2 that Λ2F̄ is
a Q-invariant subspace in g̃0, which can be identified with (Λ2f)[−2].

Lemma 4.3. For any u ∈ G, we have

∂̃∗κ̃ind(u) ∈ f◦ ⊗ Λ2F̄ ⊆ p̃+ ⊗ g̃0.

Identifying Λ2F̄ ∼=
(
Λ2f

)
[−2] and f◦ ∼= f [−2], we have in fact ∂̃∗κ̃ind(u) ∈

(
f � Λ2f

)
[−4], i.e.,

∂̃∗κ̃ind(u) is contained in the kernel of the alternation map

alt :
(
f ⊗ Λ2f

)
[−4]→

(
Λ3f

)
[−4].

Proof. It is a general assumption that ω̃ind is induced by a normal projective Cartan connection
on G, i.e., ∂∗κ(u) = 0, for any u ∈ G. Hence it follows from Lemma 4.1 that ∂̃∗κ̃ind(u) belongs
to f◦ ⊗ Λ2F̄ ∼=

(
f ⊗ Λ2f

)
[−4].

Further we need a finer discussion involving the properties of κ : G → Λ2p+ ⊗ g to show
that κ(u) belongs to the kernel of the Q-equivariant map Λ2p+ ⊗ g→

(
Λ3f

)
[−4] given by

φ 7→ alt
(
∂̃∗φ̃

)
. (4.2)

Note that any element φ ∈ Λ2p+⊗ p+ for which ∂∗φ = 0 is mapped to zero: since φ̃ ∈ Λ2p̃+⊗ p̃
and [p̃+, p̃] = p̃+, the co-differential ∂̃∗φ̃ has values in f◦ ⊗ p̃+. But, by Lemma 4.1, it also has
values in f◦ ⊗ Λ2F̄ and p̃+ ∩ Λ2F̄ = 0.

Thus it suffices to consider the harmonic elements from Λ2p+⊗g0, i.e., the ones corresponding
to the projective Weyl tensor. For that purpose we consider the simple part of Q0 = Q∩G0 which
is isomorphic to SL(n−1), cf. the matrix realisation (A.2) in the Appendix where it corresponds
to the A-block. Considering both Λ2p+ ⊗ g0

∼= Λ2Rn∗ ⊗ Rn∗ ⊗ Rn and
(
Λ3f

)
[−4] ∼= Λ3Rn∗ as
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representations of SL(n−1), the map (4.2) is either trivial or an isomorphism on each SL(n−1)-
irreducible component.

One can check that there is only one SL(n − 1)-irreducible component that occurs in both
spaces, and it is isomorphic to Λ2Rn−1∗. Hence it suffices to compute (4.2) on one element
contained in such component. Let Xn ∈ g− and Zn ∈ p+ be the two dual basis vectors stabilised
by SL(n− 1) and consider an element

φ = Z1 ∧ Z2 ⊗Xn ⊗ Zn − Z1 ∧ Z2 ⊗X1 ⊗ Z1 + Zn ∧ Z2 ⊗Xn ⊗ Z1.

Indeed φ is completely trace-free, satisfies the algebraic Bianchi identity and the SL(n−1)-orbit
of φ is isomorphic to Λ2Rn−1∗. Now,

∂̃∗φ̃ = −Z̃1 ⊗ Z̃n ∧ Z̃2 − Z̃n ⊗ Z̃1 ∧ Z̃2,

which indeed lies in the kernel of the alternation map. Hence the statement follows. �

We can now determine the form of the normal conformal Cartan connection:

Proposition 4.4. The normal conformal Cartan connection is of the form

ω̃nor = ω̃ind + Ψ1 + Ψ2,

where Ψ1 = −1
2 ∂̃
∗κ̃ind ∈ Ω1

hor

(
G̃, p̃

)
and Ψ2 ∈ Ω1

hor

(
G̃, p̃+

)
. Furthermore, along the reduction

G ↪→ G̃ we have Ψ1 ∈ Ω1
hor

(
G,Λ2F̄

)
, Ψ2 ∈ Ω1

hor(G, f◦).

Remark 4.5. Since Ψ1 and Ψ2 are horizontal, they may equivalently be regarded as bundle-

valued 1-forms on M̃ . Denoting by Λ2F̃ the associated bundle G ×Q Λ2F̄ over M̃ and by

f̃◦ ⊆ T ∗M̃ the annihilator of f̃ = kerχ ⊆ TM̃ , Proposition 4.4 says

Ψ1 ∈ Ω1
(
M̃,Λ2F̃

)
, Ψ2 ∈ Ω1

(
M̃, f̃◦

)
, Ψ1(v) = Ψ2(v) = 0, for all v ∈ Γ(kerχ).

Below we also use the corresponding frame forms, i.e., the P̃ -equivariant functions φ1 : G̃ →
(g̃/p̃)∗ ⊗ p̃ and φ2 : G̃ → (g̃/p̃)∗ ⊗ p̃+ such that, for any u ∈ G̃, Ψ1 = φ1(u) ◦ ω̃ind and Ψ2 =
φ2(u) ◦ ω̃ind. In these terms, the proposition means that along the reduction G ↪→ G̃ these maps
restrict to Q-equivariant functions

φ1 : G → f◦ ⊗ Λ2F̄ , φ2 : G → f◦ ⊗ f◦.

Further we put Ψ = Ψ1 + Ψ2 and φ = φ1 + φ2.

Proof. The Kostant Laplacian �̃ restricts to an invertible endomorphism of ((g̃/p̃)∗⊗g̃0)∩im ∂̃∗

that acts by scalar multiplication on each of the G̃0-irreducible components. Now, restricting to
G ↪→ G̃ and suppressing all arguments u ∈ G, it was shown in Lemma 4.3 that ∂̃∗κ̃ind is contained
in one of the irreducible components, namely in

(
f � Λ2f

)
[−4]. On this component �̃ acts by

multiplication by 2. Thus, the modification map accomplishing the first normalisation step is

φ1 : G → f◦ ⊗ Λ2F̄ , φ1 := −1

2
∂̃∗κ̃ind = −�̃−1∂̃∗κ̃ind.

Now, let ω̃1 := ω̃ind + φ1 ◦ ω̃ind be the modified Cartan connection. The corresponding
curvature function κ̃1 can be expressed in terms of κ̃ind, φ1 and its differential dφ1 so that

κ̃1(X,Y ) = κ̃ind(X,Y ) +
[
X,φ1(Y )

]
−
[
Y, φ1(X)

]

+ dφ1(ξ)(Y )− dφ1(η)(X)− φ1([X,Y ]) +
[
φ1(X), φ1(Y )

]
, (4.3)
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where X,Y ∈ g and ξ =
(
ω̃ind

)−1
(X), η =

(
ω̃ind

)−1
(Y ), cf. [11, formula (3.1)]. For the last term

we have
[
φ1(X), φ1(Y )

]
= 0 since φ1(X) has values in Λ2F̄ . The first three terms are

κ̃ind(X,Y ) +
[
X,φ1(Y )

]
−
[
Y, φ1(X)

]
= κ̃ind(X,Y ) + ∂̃φ1(X,Y ),

which by construction vanishes upon application of the Kostant co-differential, i.e., ∂̃∗
(
κ̃ind +

∂̃φ1
)

= 0. The remaining terms in (4.3) can be combined into a map Λ2g→ Λ2F̄ ,

(X,Y ) 7→ dφ1(ξ)(Y )− dφ1(η)(X)− φ1([X,Y ]),

which vanishes upon insertion of two elements X,Y ∈ p. Therefore, applying Lemma 4.2, we
conclude that ∂̃∗κ̃1 has values in f◦ ⊗ f◦. Thus the second modification map is

φ2 : G → f◦ ⊗ f◦, φ2 := −�̃−1∂̃∗κ̃1. �

4.2 Properties

The information provided in the previous proposition allows us to determine the properties
satisfied by the normal conformal Cartan curvature:

Proposition 4.6. The normal conformal Cartan curvature κ̃nor restricts to a map

κ̃nor : G → Λ2(g̃/p̃)∗ ⊗
(
sl(n+ 1)⊕ Λ2F

)
. (4.4)

Moreover, the following integrability condition holds:

iX κ̃
nor(u) ∈ f◦ ⊗

(
Λ2F̄ ⊕ f◦

)
, for all X ∈ f , u ∈ G. (4.5)

Proof. Let κ̃nor be the curvature function of the normal Cartan connection ω̃nor = ω̃ind + φ ◦
ω̃ind, where φ = φ1 + φ2. With the same conventions as in the proof of Proposition 4.4, [11,
formula (3.1)] yields

κ̃nor(X,Y ) = κ̃ind(X,Y ) + [X,φ(Y )]− [Y, φ(X)]

+ dφ(ξ)(Y )− dφ(η)(X)− φ([X,Y ]) + [φ(X), φ(Y )].

Clearly, κ̃ind(X,Y ) has values in sl(n + 1) and vanishes upon insertion of X ∈ p. A term of
the form [X,φ(Y )] vanishes if Y ∈ p and has values in

[
p,Λ2F̄ ⊕ f◦

]
⊆ Λ2F̄ ⊕ f◦ for X ∈ p.

A term of the form dφ(ξ)(Y ) has values in Λ2F̄ ⊕f◦ and vanishes for Y ∈ p. The term φ([X,Y ])
has values in Λ2F̄ ⊕ f◦ and vanishes for X,Y ∈ p. The last term [φ(X), φ(Y )] vanishes for all
X,Y ∈ g since φ(X) has values in Λ2F̄ ⊕ f◦. Altogether, we obtain (4.4) and (4.5). �

We observe here that it follows directly from (4.4) that the pairing of κ̃nor with the involu-
tion K vanishes, 〈κ̃nor,K〉 = 0.

To derive properties of induced tractorial and underlying objects on the conformal structure
we will need the following preparatory lemma.

Lemma 4.7. Let V be a G̃-representation and v ∈ V an element which is stabilised under
G ⊆ G̃. Let v ∈ Γ

(
Ṽ
)

be the section of the associated tractor bundle G̃ ×
P̃
V corresponding to

the constant function G → V , u 7→ v, along G. Then the covariant derivative ∇̃norv corresponds
to the Q-equivariant function

G → f◦ ⊗ V, u 7→ φ1(u) • v + φ2(u) • v.
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Proof. The covariant derivative ∇̃norv corresponds to the map

X ∈ g 7→
(
ω̃nor

)−1
(X) · v +X • v. (4.6)

The first term in (4.6) vanishes since it is the directional derivative of the constant function v.
Now ω̃nor = ω̃ind + φ1 + φ2, and since X • v = 0 the claim follows. �

We now show that the distinguished tractors sE , sF and K on the Fefferman space are all
given as BGG-splittings from their underlying objects. Moreover, several stronger properties
hold:

Proposition 4.8. Let sE ∈ Γ
(
S̃±
)
, sF ∈ Γ

(
S̃−
)

and K ∈ Γ
(
AM̃

)
be the tractor spinors and

the adjoint tractor, respectively, and let η = ΠS̃0 (sE), χ = ΠS̃0 (sF ) and k = ΠAM̃0 (K) be the
corresponding underlying objects as in Proposition 3.2.

(a) The tractor spinor sF is parallel, i.e., ∇̃norsF = 0. In particular, χ is a pure twistor

spinor, sF = L
S̃−
0 (χ) and Hol(c) ⊆ SL(n+ 1) n Λ2

(
Rn+1

)∗ ⊆ Spin(n+ 1, n+ 1).

(b) The tractor spinor sE is a BGG-splitting, i.e., ∂̃∗
(
∇̃norsE

)
= 0 and sE = L

S̃±
0 (η).

(c) The adjoint tractor K is a BGG-splitting and k is a conformal Killing field, i.e., ∂̃∗∇̃norK

= 0, K = LAM̃0 (k) and ∇̃norK = ikΩ̃
nor. Moreover, we have

ikκ̃
nor = 2φΛ2F . (4.7)

Proof. (a) Since φ1, φ2 have values in ker sF we have φ1 • sF + φ2 • sF = 0. Thus, according
to Lemma 4.7, we have ∇̃norsF = 0 and the rest is obvious.

(b) The spinor sE is of the form sE = ( ∗η ). According to Lemmas 4.3 and 4.7, φ1 has values

in
(
f � Λ2f

)
[−4] and ∂̃∗

(
∇̃norsE

)
corresponds to

∂̃∗
(
φ1 • sE

)
=

((
φ1 • η

)
Σ̃∓[− 1

2
]

0

)
.

The projection
(
φ1 • η

)
Σ̃∓[− 1

2
]

can be realised as the full (triple) Clifford action on φ1(u) ∈
(⊗3 f

)
[−4], where u ∈ G. Now it is easy to see that this action must vanish for a φ1(u) ∈(

f � Λ2f
)
[−4]: We realise φ1(u) equivalently in

(
S2f ⊗ f

)
[−4] by symmetrisation in the first

two slots, then the complete Clifford action on η vanishes because the action of the first two
slots is just a (trivial) trace multiplication.

(c) According to Lemma 4.7, ∇̃norK corresponds to φ1 • K + φ2 • K. Since K/p̃ = k ∈ f ,
the previous element lies in p̃. In particular, ∇̃norK has trivial projecting slot, and thus k =
Π0(K) is a conformal Killing field. Since φ2 •K ∈ p̃+, we have that ∂̃∗

(
∇̃norK

)
corresponds to

∂̃∗
(
φ1 • K

)
. Now φ1 • K = −K • φ1 = 2φ1, since K acts by multiplication with −2 on Λ2F̄ .

But φ1 ∈ im ∂̃∗ ⊆ ker ∂̃∗, and the expression ∂̃∗
(
φ1 • K

)
therefore vanishes. The equality

∇̃norK = ikΩ̃
nor is just (2.13) for the conformal Killing field k with its BGG-splitting K. In

terms of the Q-equivariant functions φ = φ1 + φ2 and κ̃nor along G ↪→ G̃, this can be expressed
as φ •K = ikκ̃

nor, which yields (4.7). �

We now collect the essential information about the induced conformal structure (M̃, c) which
we derived:

Proposition 4.9. Let
(
M̃, c

)
be the conformal spin structure induced from an oriented projective

structure (M,p) via the Fefferman-type construction. Then the following properties are satisfied:
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(a)
(
M̃, c

)
admits a nowhere-vanishing light-like conformal Killing field k such that the corre-

sponding tractor endomorphism K = LAM̃0 (k) is an involution, i.e., K2 = idT̃ .

(b)
(
M̃, c

)
admits a pure twistor spinor χ ∈ Γ

(
Σ̃−
[

1
2

])
with k ∈ Γ(kerχ) such that the corre-

sponding parallel tractor spinor sF = L
S̃−
0 (χ) is pure.

(c) K acts by minus the identity on ker sF .

(d) The following integrability condition holds:

vawcW̃abcd = 0, for all v, w ∈ Γ(kerχ). (W)

The only thing left to show for Proposition 4.9 is that the integrability condition (4.5) is
equivalent to the condition (W) on the Weyl tensor:

Lemma 4.10. Let
(
M̃, c

)
be a split-signature conformal spin structure endowed with trac-

tors sE, sF and K satisfying conditions (a) and (b) from Proposition 4.9. Then condition (4.5)
is equivalent to (W).

Proof. The implication (4.5) =⇒ (W) is obvious. It remains to prove the converse implica-
tion (W) =⇒ (4.5).

By (W), one has that
(
iX κ̃

nor
)
g̃0

(u) ∈
(
f ⊗Λ2f

)
[−4] ⊆ f◦⊗Λ2F̄ for X ∈ f , u ∈ G. Since sF

is parallel with respect to ∇̃nor, we have κ̃nor(u) ∈ Λ2(g̃/p̃)∗ ⊗
(
p̃ ∩ ker sF

)
. The projection of

p̃∩ker sF to p̃+ is precisely f◦, hence it follows that
(
iX κ̃

nor
)
p̃+

(u) ∈ (g̃/p̃)∗⊗ f◦, and we obtain

iX κ̃
nor(u) ∈ (g̃/p̃)∗ ⊗

(
Λ2F̄ ⊕ f◦

)
.

We now prove that iX1iX2 κ̃
nor = 0 for all X1, X2 ∈ f . For this purpose it will be useful

to work with the curvature form Ω̃nor, which we can represent as in (2.11). By (W) and the

algebraic Bianchi identity, W̃abcd vanishes upon insertion of v, w ∈ Γ(kerχ) into any two slots,

and in particular vawbW̃abcd = 0. Thus, it remains to check that vawbỸdab = 0. As in the

proof of Proposition 3.2, a vector field w ∈ Γ(kerχ) corresponds to a section
( ∗
wd

0

)
∈ Γ

(
F̃
)
.

According to (2.9),

vaΩ̃nor
ab •



∗
wd

0


 =



−vaỸrabwr
vaW̃ c

ab dw
d

0


 ∈ Γ

(
Ẽb ⊗ T̃

)
.

Since ivΩ̃
nor annihilates F̃ , it follows that vawrỸrab = 0. Using Ỹrab = −Ỹbra − Ỹabr, we obtain

also vawbỸrab = 0. �

4.3 Characterisation

We are now going to characterise the induced conformal structures. For this purpose we will
introduce the following (’intermediate’) Cartan connection form:

ω̃′ := ω̃nor − 1

2
ikκ̃

nor. (4.8)

The following observation then follows immediately from Proposition 4.4 and formula (4.7):

Lemma 4.11. The pullbacks of the Cartan connection forms ω̃′ ∈ Ω1
hor

(
G̃, g̃

)
, ω̃nor ∈ Ω1

hor

(
G̃, g̃

)

and ω̃ind ∈ Ω1
hor

(
G̃, g̃

)
to G ↪→ G̃ agree modulo forms with values in p+ ⊆ sl(n+ 1) ⊆ g̃.
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For the rest of this section, we will start with a given split-signature conformal spin struc-
ture

(
M̃, c

)
satisfying all the properties of Proposition 4.9. In particular, M̃ is endowed with

a conformal Killing field k ∈ Γ
(
TM̃

)
, and we can still use formula (4.8) to define a Cartan

connection ω̃′. The corresponding tractor connection will be denoted by ∇̃′ and the curvature
by Ω̃′ or κ̃′. The following proposition now shows that the so constructed Cartan connection ω̃′

is in fact an SL(n+ 1)-connection.

Proposition 4.12. Let
(
M̃, c

)
be a split-signature conformal (spin) structure satisfying all the

properties of Proposition 4.9. Then the sections sF and K are parallel with respect to the tractor
connection ∇̃′, i.e., ∇̃′sF = 0 and ∇̃′K = 0.

In particular, Hol(ω̃′) ⊆ SL(n + 1) ⊆ Spin(n + 1, n + 1) and ω̃′ pulls back to a Cartan
connection of type (SL(n+ 1), Q) with respect to the Q-reduction G ↪→ G̃. Along that reduction,
the curvature functions κ̃′ and κ̃nor are related according to κ̃′ =

(
κ̃nor

)
sl(n+1)

and κ̃′ satisfies

the following integrability condition:

iX κ̃
′(u) ∈ f◦ ⊗ p+, for all X ∈ f, u ∈ G. (4.9)

Proof. A tractor connection induced by ω̃′ can be written as ∇̃′ = ∇̃nor + Ψ with Ψ = −1
2 ikΩ̃

1.

That ∇̃′sF = 0 follows immediately from the fact that ∇̃′−∇̃nor = −1
2 ikΩ̃

nor has values in Λ2F̃ .

Since k is a conformal Killing field we have ∇̃norK = ikΩ̃
nor. By definition

∇̃′K = ∇̃norK− 1

2
ikΩ̃

nor •K,

which vanishes, since ikΩ̃
nor has values in Λ2F̃ and therefore 1

2 ikΩ̃
nor • K = ikΩ̃

nor. As in

Proposition 4.9, we write the decomposition of T̃ into maximally isotropic eigenspaces of K
with eigenvalues ±1 as Ẽ ⊕ F̃ . Since K is ∇̃′-parallel, it follows that this decomposition is
preserved by ∇̃′. Moreover, since F̃ is the kernel of the pure tractor spinor sF it follows that
Hol(ω̃′) ⊆ SL(n+ 1). In particular, ω̃′ reduces to a Cartan connection of type (SL(n+ 1), Q) on
a Q-principal bundle G ⊆ G̃.

We further compute that

Ω̃′ = Ω̃nor − 1

2
d∇̃

nor
ikΩ̃

nor = Ω̃nor − 1

2
d∇̃

nor∇̃norK

= Ω̃nor − 1

2
Ω̃nor •K = Ω̃nor +

1

2
K • Ω̃nor =

(
Ω̃nor

)
(Ẽ⊗F̃)0

,

where we are again using ∇̃norK = ikΩ̃
nor for the conformal Killing field k and that Ω̃nor has

values in Ẽ ⊗ F̃ ⊕ Λ2F̃ . Stated for the corresponding curvature functions, this yields κ̃′ =(
κ̃nor

)
sl(n+1)

. Moreover, since κ̃nor has values in ker sF ∩ p̃, it follows from (3.6) that (p̃ ∩
ker sF )sl(n+1) = p, thus κ̃′ has values in p.

We know from (4.5) that iX κ̃
nor has values in Λ2F̄ ⊕ f◦ for X ∈ f . But since

(
Λ2F̄

)
sl(n+1)

=

0 and (p̃+ ∩ ker sF )sl(n+1) = p+, we obtain that (iX κ̃
nor)sl(n+1) has values in p+. Finally,(

iX1iX2 κ̃
nor
)
sl(n+1)

= 0 for X1, X2 ∈ f follows immediately from (4.5), and altogether we ob-

tain (4.9). �

Next, before proving the main characterisation Theorem 4.14, we will show the following
proposition on factorisations of particular Cartan geometries. This proposition can be under-
stood as an adapted variant of [5, Theorem 2.7].

Proposition 4.13. Let
(
G → M̃, ω

)
be a Cartan geometry of type (SL(n+1), Q) with curvature

κ : G → Λ2(g/q)∗ ⊗ g and let the following conditions be satisfied:

iX1iX2κ(u) ∈ p, for all X1, X2 ∈ g/q, u ∈ G,
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iX1iX2κ(u) ∈ p+, for all X1 ∈ p/q, X2 ∈ g/q, u ∈ G,
iX1iX2κ(u) = 0, for all X1, X2 ∈ p/q, u ∈ G.

Then G is locally a P -bundle over M = G/P and ω defines a canonical projective structure
on M .

Proof. The third of the above listed conditions implies that G is locally a P -bundle G → M
by [5]. We will restrict G to assume this globally. We define M = G/P and G0 = G/P+.

Let σ : G0 → G be a G0-equivariant splitting. It follows from the second of the above listed
conditions that

LζXω = −ad(X) ◦ ω mod p+, for all X ∈ p.

Now define θ ∈ Ω1(G0, g−), γ ∈ Ω1(G0, g0) and ρ ∈ Ω1(G0, p+) via the decomposition σ∗ω =
θ⊕γ⊕ρ. Since σ is G0-equivariant and the Lie derivative is compatible with pullbacks it follows
that

Lζ̄X (θ ⊕ γ) = −ad(X) ◦ (θ ⊕ γ), for all X ∈ g0.

In particular, θ and γ are G0-equivariant and define a (reductive) Cartan geometry (G0 →
M, θ ⊕ γ) of type (Rn o SL(n),SL(n)), i.e., an affine connection on M . Since by assumption Ω
has values in p, θ ⊕ γ is torsion-free and so is the affine connection.

Now take another splitting σ′ = σ · exp Υ, for some Υ: G → p+. Since Ad(exp Υ) acts by the
identity on g− = g/p, one has (rexp Υ)∗ω = ω mod p, and thus θ is independent of the choice of
splitting. Then σ′∗ω = θ⊕γ′⊕ρ′ and θ⊕γ′ = Ad(exp Υ)◦(θ⊕γ), projected to g−⊕g0. But since
exp Υ ∈ P+, this shows that γ′ is projectively equivalent to γ. We thus obtain a well-defined
projective structure on M .

Since ω is P -torsion-free and P -equivariant modulo p+, it can be (uniquely) modified to
a normal Cartan connection ωnor ∈ Ω1(G, g) with ωnor − ω ∈ Ω1(G, p+). In particular, each
splitting σ : G0 → G is in fact a Weyl structure of the projective structure on M . �

Theorem 4.14. A split-signature (n, n) conformal spin structure c on a manifold M̃ is (locally)
induced by an n-dimensional projective structure via the Fefferman-type construction if and only
if the following properties are satisfied:

(a)
(
M̃, c

)
admits a nowhere-vanishing light-like conformal Killing field k such that the corre-

sponding tractor endomorphism K = LAM̃0 (k) is an involution, i.e., K2 = idT̃ .

(b)
(
M̃, c

)
admits a pure twistor spinor χ ∈ Γ

(
Σ̃−
[

1
2

])
with k ∈ Γ(kerχ) such that the corre-

sponding parallel tractor spinor sF = L
S̃−
0 (χ) is pure.

(c) K acts by minus the identity on ker sF .

(d) The following integrability condition holds:

vawcW̃abcd = 0, for all v, w ∈ Γ(kerχ).

Proof. Starting with a projective structure (M,p), it follows from Proposition 4.9 that the

induced conformal structure
(
M̃, c

)
has all the stated properties. On the other hand, let

(
M̃, c

)

be a conformal structure with the stated properties. Then, by Proposition 4.12, ω̃′ restricts
to a Q-equivariant Cartan connection form with values in sl(n + 1) on the reduction G ↪→ G̃.
The corresponding curvature κ̃′ takes values in p and for X ∈ f we have that iX κ̃

′ takes values
in p+. It follows from Proposition 4.13 that ω̃′ factorises to a projective structure p on the leaf
space M .
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Let us now show that the two constructions are inverse to each other. Assume first that
a conformal structure (M̃, c) is induced by a projective structure (M,p). Then according to
Lemma 4.11 ω̃′ and ω̃ind agree modulo p+. This implies that the projective structure defined
by ω̃′ is equal to the original projective structure. Conversely, assume now that (M,p) is
a projective structure with associated Cartan geometry (G, ω′) that is induced from a conformal

structure
(
M̃, c

)
with associated Cartan geometry

(
G̃, ω̃nor

)
. Since ω̃′ is not normal, but torsion-

free, there is ϕ ∈ Ω1
hor(G, p+) such that ω′+ϕ is the normal projective Cartan connection. Since

p+ ⊆ p̃ the induced conformal structure on M̃ agrees with the original conformal structure.
Thus, the Fefferman-type construction (with normalisation) and the described factorisation are
(locally) inverse to each other. �

For a reformulation of the characterisation theorem in terms of underlying objects, see Sec-
tion 6.2.

5 Reduced scales and explicit normalisation

Although we obtained the desired characterisation in Theorem 4.14, we do not yet know the
explicit relationship between the induced Cartan connection form ω̃ind and the normal conformal
Cartan connection form ω̃nor. One of the aims of the present section is to obtain a formula for
this difference, which is achieved in Theorem 5.7. As a consequence, we also obtain an explicit
formula for the curvature Ω̃ind in terms of the normal conformal Cartan curvature Ω̃nor in
Corollary 5.8. In this more refined analysis, reduced scales will play an important role.

5.1 Characterisation of reduced scales

The notion of reduced Weyl structures and reduced scales is introduced in Section 3.4. Here
we shall find an intrinsic characterisation (i.e., using the conformal structure only) of reduced
scales and discuss their properties.

As the scale bundle on the projective manifold M we may consider the positive elements in
the density bundle E(1), which is the projecting part of the dual standard tractor bundle T ∗,
see Section 2.4. Similarly, on the Fefferman space M̃ we take the positive elements in the
density bundle Ẽ(1), the projecting part of the conformal standard tractor bundle T̃ . Hence for
a projective scale ρ ∈ Γ(E+(1)) we have the tractor LT

∗
0 (ρ) ∈ Γ(T ∗); similarly, for a conformal

scale σ ∈ Γ
(
Ẽ+(1)

)
we have the tractor LT̃0 (σ) ∈ Γ

(
T̃
)
. These will be termed scale tractors.

On the one hand, reduced scales correspond to the sections of E+(1) → M seen as a subset

of all sections of Ẽ+(1) → M̃ , see Remark 3.4. On the other hand, sections of T ∗ → M are

understood as specific sections of the bundle F̃ → M̃ , which is a subbundle in T̃ → M̃ , see the
generalities in Section 3.4 and the setup of our construction in Section 3.2. It follows that these
two natural inclusions commute with the BGG-splitting operators.

Lemma 5.1. The full arrows in the following diagram commute:

Γ(T ∗) � � //

Π0

��

Γ
(
T̃
)

Π̃0
��

Γ(E+(1))

LT
∗

0

EE

� � // Γ
(
Ẽ+[1]

)
.

LT̃0

XX

Proof. Consider a projective density ρ ∈ Γ(E+(1)) on M , the corresponding tractor LT
∗

0 (ρ) ∈
Γ(T ∗), and its extension to F̃ ⊆ T̃ , which is denoted by s′. The extension of ρ ∈ Γ(E+(1))
to Ẽ+[1] obviously coincides with the projection Π̃0(s′), and it is denoted by σ. We need to show
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that s′ = LT̃0 (σ), i.e., that ∂̃∗∇̃nors′ = 0. According to Proposition 4.4, ω̃nor = ω̃ind + Ψ1 + Ψ2

with Ψ1 ∈ Ω1
(
M̃,Λ2F̃

)
, Ψ2 ∈ Ω1

(
M̃, f̃◦

)
, hence we have

∇̃nors′ = ∇̃inds′ + Ψ1 • s′ + Ψ2 • s′.

Since Λ2F̃ acts trivially on F̃ ⊆ T̃ , we have Ψ1 • s′ = 0. Since f̃◦ ⊆ T ∗M̃ , it follows that
∂̃∗
(
Ψ2 • s′

)
= 0. It thus follows that ∂̃∗

(
∇̃nors′

)
= ∂̃∗

(
∇̃inds′

)
. Let φ be the frame form

of ∇LT ∗0 (ρ). Then, according to Lemma 4.1, we have that ∂̃∗φ̃ = 0 since Λ2F • F = 0, and in

particular ∂̃∗
(
∇̃nors′

)
= 0. �

We can now characterise reduced scales in terms of the corresponding scale tractors:

Proposition 5.2. Let
(
M̃, c

)
be a conformal spin structure associated to an oriented projective

structure (M,p) via the Fefferman-type construction. Let σ ∈ Γ
(
Ẽ+[1]

)
be a conformal scale

and let s := LT̃0 (σ) ∈ Γ
(
T̃
)

be the corresponding scale tractor. Then the following statements
are equivalent:

(a) The scale σ is reduced.

(b) The tractor s is a section of F̃ ⊆ T̃ .

(c) The twistor spinor χ is parallel with respect to the Levi-Civita connection D̃ of the metric
corresponding to the scale σ.

Furthermore, in a reduced scale, the Schouten tensor is strictly horizontal, i.e., it satisfies

vaP̃ab = 0, for all va ∈ Γ(kerχ), (5.1)

and the scalar curvature J̃ vanishes.

Proof. (a) =⇒ (b): This follows from definitions and Lemma 5.1.
(b) =⇒ (c): The condition (b) means that s · sF = 0. According to (2.6), (2.8) and (2.7),

this condition expanded in slots yields

s · sF = LT̃0 (σ) · LS̃0 (χ) =



− 1

2n J̃σ
0
σ


 ·

(
1

n
√

2
D/ χ

χ

)
=

(
−
√

2
2n J̃χσ

− 1
nD/ χσ

)
=

(
0
0

)
,

where we use the Levi-Civita connection D̃ corresponding to σ. In particular, D/ χ = 0 and,
since χ is a twistor spinor, the condition (c) follows.

(c) =⇒ (b): The condition (c) yields sF =
(

0
χ

)
according to (2.8). The fact that ∇̃asF = 0

yields P̃acγ
cχ = 0 according to (2.7). Hence (5.1) holds, which in particular means J̃ = 0.

Summarising, we have

s = LT̃0 (σ) =




0
0
σ


 and sF = LS̃0 (χ) =

(
0
χ

)
. (5.2)

Hence s · sF = 0 and the condition (b) follows.
(b) and (c) =⇒ (a): According to the previous reasoning and (2.5), we have

∇̃nor
a s =




0

σP̃ab
0


 .

Hence ∇̃nors is strictly horizontal, i.e., va∇̃nor
a s = 0 for every va ∈ Γ(kerχ). Since ∇̃nor =

∇̃ind+Ψ and Ψ is horizontal, the horizontality of ∇̃nors is equivalent to the horizontality of ∇̃inds.
Altogether, the condition (a) follows from Proposition 3.3 and Lemma 5.1. �
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We will need some finer discussion on the slots of the distinguished tractor

K =




ρa
µab |ϕ
ka


 ∈ Γ

(
AM̃

)
(5.3)

in reduced scales. From Proposition 4.8 we know that K is the BGG-splitting LAM̃0 (k), which

in particular means that µab = D̃[akb] and ϕ = − 1
2nD̃

rkr according to (2.12). However, in the
following statement we only exploit the algebraic properties of K, namely, that it acts by minus
and plus the identity on F̃ and Ẽ , respectively.

Lemma 5.3. Let us fix a reduced scale. Then the expression of K as in (5.3) satisfy ρa = 0, ϕ =
−1, µa

rvr = −va for every va ∈ Γ(kerχ) and µa
rµrb = gab. Further we have µab = 〈γ[aγb]χ, η̄〉

for some η̄ ∈ Γ
(
Σ̃∓
[
−1

2

])
.

Proof. Firstly, we use K • s = −s for any s ∈ Γ
(
F̃
)
. The scale tractor s = LT̃0 (σ) of a reduced

scale σ is a section of F̃ and it has the form as in (5.2). Thus it follows from (2.9) that ρa = 0

and ϕ = −1. Next, for every va ∈ Γ(kerχ), the tractor s =
(

0
va
0

)
is clearly a section of F̃ , since

s · sF = 0. Thus it follows from (2.9) that µa
rvr = −va.

Secondly, we use K•s = s for any s ∈ Γ
(
Ẽ
)
. Considering the tractor s =

(
0
ωa
0

)
with arbitrary

ωa ∈ Γ
(
TM̃

)
, the tractor s̄ := s + K • s is a section of Ẽ , whose middle slot is ωa + µa

rωr. It
follows again from (2.9) that µa

rµrb = gab.

Thirdly, we use (3.3) which shows how K is built from sE and sF . Since the top slot of sF
vanishes, middle slots of K are given by a suitable tensor product of χ and the top slot of sE . �

We will also need more properties of conformal curvature quantities in reduced scales.

Lemma 5.4. In a reduced scale,

W̃abcdµ
cd = 0, where µab = D̃[akb], (5.4)

vcỸabc = 0, for all va ∈ Γ(kerχ). (5.5)

Proof. In slots, the condition Ω̃nor
ab • sF = 0 implies that W̃abcdγ

cγdχ = 0. Pairing both sides
of the latter equality with a spinor η̄ from Lemma 5.3 yields (5.4).

Consider two arbitrary sections va, wb of f̃ = kerχ. Conditions (W) and (5.1) imply
R̃abcdv

awd = 0. Now, inserting va and we into the Bianchi identity D̃[aR̃bc]de = 0, we ob-

tain vaweD̃aR̃bcde = 0, where we used the fact that f̃ is parallel. Since we can always regard gab

as a section of f̃ ⊗ f̃∗, this implies 0 = gecvaD̃aR̃bcde = vaD̃aR̃icbc where R̃icbc is the Ricci
tensor of D̃a. Since J̃ = 0, we have that P̃ab is proportional to R̃icab by a constant factor.
Thus vaD̃aP̃bc = 0. From (5.1) and since f̃ is parallel we also have vbD̃aP̃bc = 0. Altogether,
(5.5) follows by the definition of the Cotton tensor. �

5.2 Explicit normalisation formula

So far we discussed three Cartan connections on the Fefferman space M̃ : the induced one ω̃ind

(Section 3.3), the corresponding normal one ω̃nor (Section 4.1) and the modified auxiliary one ω̃′

(Section 4.3). Various properties of these and derived objects are enumerated in Propositions 4.9
and 4.12. The following proposition refines the integrability conditions included there.
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Proposition 5.5. Let
(
M̃, c

)
be the conformal spin structure induced from an oriented projective

structure (M,p) via the Fefferman-type construction. Then, along the reduction G ↪→ G̃,

iX κ̃
nor(u) ∈ f◦ ⊗ Λ2F̄ , for all X ∈ f, u ∈ G, (5.6)

iX κ̃
′(u) = 0, for all X ∈ f, u ∈ G. (5.7)

Proof. From (4.5) we already know that iX κ̃
nor has values in f◦⊗

(
Λ2F̄⊕f◦

)
. We note that the

top slot of sections of Λ2F̃ vanishes in reduced scales, cf. (3.7). Thus the part in f◦ corresponds
to vrỸabr for a v ∈ Γ(f̃), which however has to vanish by (5.5). Hence (5.6) follows. The last
condition (5.7) follows from κ̃′ =

(
κ̃nor

)
sl(n+1)

, cf. Proposition 4.12. �

Since ω̃′ is an SL(n+ 1)-connection on G̃ → M̃ , it is the extension of a Cartan connection ω′,
on G → M̃ . Now, due to (5.7), any section v ∈ Γ(kerχ) inserts trivially into its curvature.
But this is the standard condition on the connection ω′ to be a Cartan connection also on the
bundle G →M , i.e., to be a projective Cartan connection, cf. [5].

Furthermore, we will show that the descended Cartan connection is normal, i.e., ω′ = ω. To
do this, we first compute ∂̃∗κ̃′ and then use the relation between the co-differentials ∂∗ on M
and ∂̃∗ on M̃ discussed in Lemma 4.1.

Proposition 5.6. The curvature κ̃′ satisfies

∂̃∗κ̃′(u) = ikκ̃
nor(u) ∈ f◦ ⊗ Λ2F̄ , for all u ∈ G. (5.8)

Proof. We shall compute ∂̃∗Ω̃′ directly. First observe that using Proposition 4.12 we have
Ω̃′ =

(
Ω̃nor

)
sl(n+1)

= Ω̃nor + 1
2K • Ω̃nor. Hence ∂̃∗Ω̃′ = 1

2 ∂̃
∗(K • Ω̃nor

)
, since ∂̃∗Ω̃nor = 0.

Using (5.3) and (2.11), we compute K • Ω̃nor
ab as




ρc
µc0c1 |ϕ
kc


 •



−Ỹdab

W̃abd0d1 | 0
0


 =




ρrW̃abrc − µcrỸrab + ϕỸcab
−2W̃ab

r
[c0µc1]r + 2k[c0 Ỹc1]ab | krỸrab

krW̃abrc


 .

In a reduced scale, from the previous display together with Lemmas 5.3 and 5.4 we compute

∂̃∗
(
K • Ω̃nor

ab

)
=




0

2krW̃rac0c1 | 0
0


 = 2krΩ̃nor

ra ,

which yields (5.8). �

Theorem 5.7. Let (G, ω) be a projective normal Cartan geometry over M and let
(
G̃, ω̃ind

)
be

the conformal Cartan geometry over M̃ induced via the Fefferman-type construction. Then

(a) ω̃ind = ω̃′ = ω̃nor − 1
2 ikκ̃

nor,

(b) ω̃nor = ω̃ind + Ψ1, where Ψ1 = −1
2 ∂̃
∗κ̃ind = 1

2 ikκ̃
nor.

Proof. (a) We use that iX κ̃
′ = 0 for all X ∈ f according to (5.7). Then Proposition 5.6

together with Lemma 4.1 imply that ∂∗κ′ = 0. Thus ω′ is projectively normal, and therefore we
obtain ω̃′ = ω̃ind.

(b) The normalisation process of Proposition 4.4 provides Ψ = Ψ1 + Ψ2 such that ω̃nor =
ω̃ind + Ψ, where Ψ1, Ψ2 are the first and second normalisation steps. However since ω̃′ = ω̃ind,
it follows from Proposition 5.6 and (4.8) that ∂̃∗κ̃′ = ∂̃∗κ̃ind is, up to a constant multiple, the
difference between ω̃nor and ω̃ind. Therefore already the first normalisation step completes the
normalisation, i.e., Ψ2 = 0. �
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Using the explicit relationship provided in Theorem 5.7 we can also obtain a detailed descrip-
tion of the difference between the induced and the normal Cartan curvatures:

Corollary 5.8. In a reduced scale, we have the following relation between the curvatures of the
induced and the normal conformal Cartan connection:

Ω̃ind
ab = Ω̃nor

ab +
1

2
K • Ω̃nor

ab =




−Ỹcab
W̃abc0c1 − W̃ab

r
[c0µc1]r + k[c0 Ỹc1]ab | 0

1
2k

rW̃abrc


 . (5.9)

In particular, 1
2 ikW̃ is the torsion of the induced Cartan connection ω̃ind.

Proof. We obtained the concrete expression of K • Ω̃nor in the proof of Proposition 5.6. Now
Lemmas 5.3 and 5.4, and a short computation yields (5.9). �

6 Comparison with Patterson–Walker metrics
and alternative characterisation

In this section we will show that the Fefferman-type construction studied in this article is closely
related to the construction of so-called Patterson–Walker metrics. These are the Riemann
extensions of affine connected spaces, firstly described in [26]. A conformal version of this
construction was obtained by [15] for dimension n = 2, and was treated by the authors of the
present article in general dimension in [20].

6.1 Comparison

Let M be a smooth manifold and p : T ∗M → M its cotangent bundle. The vertical subbundle
V ⊆ T (T ∗M) of this projection is canonically isomorphic to T ∗M . An affine connection D
on M determines a complementary horizontal distribution H ⊆ T (T ∗M) that is isomorphic
to TM via the tangent map of p.

Definition 6.1. The Riemann extension or the Patterson–Walker metric associated to a tor-
sion-free affine connection D on M is the pseudo-Riemannian metric g on T ∗M fully determined
by the following conditions:

(a) both V and H are isotropic with respect to g,

(b) the value of g with one entry from V and another entry from H is given by the natural
pairing between V ∼= T ∗M and H ∼= TM .

It follows that V is parallel with respect to the Levi-Civita connection of the just constructed
metric. Hence Patterson–Walker metrics are special cases of Walker metrics, i.e., metrics ad-
mitting a parallel isotropic distribution. The explicit description of the metric g in terms of the
Christoffel symbols of D can be found in [20, 26].

The previous definition can be adapted to weighted cotangent bundles T ∗M(w) = T ∗M ⊗
E(w), provided that M is oriented and D is special, i.e., preserving a volume form on M ,
which allows a trivialisation of E(w). It turns out that Patterson–Walker metrics induced by
projectively equivalent connections are conformally equivalent if and only if w = 2 (interpreted
as a projective weight according to the conventions from Section 2.4). Altogether, we have
a natural split-signature conformal structure on T ∗M(2) induced by an oriented projective
structure (M,p).

From Section 3.3 we know that M̃ = T ∗M(2) \ {0} is the Fefferman space. Special affine
connections from p are just the exact Weyl connections of the corresponding parabolic geometry.
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The corresponding objects on M̃ are the reduced Weyl connections, respectively reduced scales,
which correspond to distinguished metrics in the conformal class, see Section 3.4. We are going
to show that these metrics are just the Patterson–Walker metrics.

Proposition 6.2. Let
(
M̃, c

)
be the conformal structure of signature (n, n) associated to an n-

dimensional projective structure (M,p) via the Fefferman-type construction. Then any metric
in c corresponding to a reduced scale is a Patterson–Walker metric.

Proof. Within the proof we refer to the notation and explicit matrix realisations from Ap-
pendix A. By definition, the Fefferman space is M̃ = G/Q, which yields TM̃ ∼= G ×Q g/q.

Conformally invariant objects on M̃ , respectively objects related to a choice of reduced scale,
correspond to data on g/q ∼= g̃/p̃ that are invariant under the action of Q, respectively Gss0 ∩Q.
Elements in g/q will be represented by matrices of the form



− z

2 ∗ ∗
X ∗ ∗
w Y t − z

2


 ,

where z, w ∈ R and X,Y ∈ Rn−1. Firstly, one verifies that

Y tX − zw, (6.1)

is the only quadratic form that is invariant under Gss0 ∩Q. Hence any reduced-scale metric in c
corresponds to the quadratic form (6.1) in a suitable frame. Secondly, the vertical subbundle

V ⊆ TM̃ corresponds to the Q-invariant subspace f = p/q ⊆ g/q given by X = 0 and w = 0.

The horizontal distribution H ⊆ TM̃ induced by a linear connection from p corresponds to the
unique (Gss0 ∩Q)-invariant subspace h ⊆ g/q complementary to f , which is given by Y = 0 and
z = 0. Obviously, both f and h are isotropic with respect to (6.1). Hence any reduced-scale
metric in c satisfies the condition (a) from Definition 6.1. Thirdly, the canonical identification
V ∼= T ∗M(2) corresponds to an isomorphism f ∼= (g/p)∗(2) of Q-modules. Identifying (g/p)∗(2)
with p+(2), it turns out to be given by



− z

2 ∗ ∗
0 ∗ ∗
0 Y t − z

2


 7→




0 Y t −z
0 0 0
0 0 0


 .

Now, the inner product of any v ∈ f and u ∈ h coincides with the pairing of the correspond-
ing elements v ∈ p+(2) and u ∈ g/p. Hence any reduced-scale metric in c satisfies also the
condition (b) from Definition 6.1 and so it is a Patterson–Walker metric. �

6.2 Alternative characterisation

We have characterised split-signature (n, n) conformal structures c on M̃ induced by an n-
dimensional projective structure via the Fefferman-type construction in Theorem 4.14. Now
we know these structures correspond to conformal Patterson–Walker metrics discussed in [20].
There we found the following characterisation in terms of underlying objects by direct computa-
tions and spin calculus. Our aim here is to indicate how to reach the same result in the current
framework.

Theorem 6.3. A split-signature (n, n) conformal spin structure c on a manifold M̃ is (locally)
induced by an n-dimensional projective structure via the Fefferman-type construction if and only
if the following properties are satisfied:

(a)
(
M̃, c

)
admits a nowhere-vanishing light-like conformal Killing field k.
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(b)
(
M̃, c

)
admits a pure twistor spinor χ such that f̃ = kerχ is integrable and k ∈ Γ

(
f̃
)
.

(c) The Lie derivative of χ with respect to the conformal Killing field k is Lkχ = −1
2(n+ 1)χ.

(d) The following integrability condition holds:

vrwsW̃arbs = 0, for all vr, ws ∈ Γ(kerχ). (W)

We now express the conditions from Proposition 4.9 in underlying terms:

(i) For a conformal Killing field k with the splitting K as in (5.3), a straightforward compu-
tation shows that the condition K2 = idT̃ is equivalent to

kaka = 0, ρaρa = 0,

µabk
b = ϕka, µabρ

b = −ϕρa,
kaρa = ϕ2 − 1, µ c

a µcb = gab + 2k(aρb). (6.2)

(ii) For a twistor spinor χ, the corresponding tractor spinor sF =
(
χ̄
χ

)
∈ Γ(S̃−) is parallel with

respect to ∇̃nor. In particular, purity of sF can be checked at one point. If χ = 0, respectively
χ̄ = 0, this tractor spinor is pure whenever χ̄, respectively χ, is pure. If χ 6= 0 and χ̄ 6= 0, the
purity of

(
χ̄
χ

)
is equivalent to χ and χ̄ being pure and their kernels having (n− 1)-dimensional

intersection, cf. [13, Proposition III-1.12] or [22, 30].

(iii) Let k be a conformal Killing field which splits to K and χ a twistor spinor which splits
to sF . Then the condition Lkχ = −1

2(n + 1)χ is equivalent to K • sF = −1
2(n + 1)sF . If the

tractor spinor sF is pure it has an (n+ 1)-dimensional maximally isotropic kernel ker sF . Then
K• sF = −1

2(n+1)sF is equivalent to K acting by minus the identity on ker sF , which therefore
coincides with the eigenspace of K corresponding to −1.

The assumption on the pure twistor spinor χ in Theorem 6.3 guarantees the existence of a
suitable compatible metric for which χ is parallel. This result is proved in [20, Proposition 4.2].
Henceforth we shall assume D̃χ = 0 where D̃ is the corresponding Levi-Civita connection.

In particular, we have sF = L
S̃−
0 (χ) =

(
0
χ

)
, which is pure and parallel by observation (ii).

Expanding the latter condition according to (2.7) yields

vaP̃ab = 0, for all va ∈ Γ(kerχ), (6.3)

For K = LAM̃0 (k), we know from observation (iii) that K acts by − id on ker sF . By the very
same reasoning as in the first part of the proof of Lemma 5.3 it follows that

ρa = 0, ϕ = −1, µa
rvr = −va, for all va ∈ Γ(kerχ). (6.4)

Now we are prepared to prove the theorem:

Proof of Theorem 6.3. If (M̃, c) is induced by a projective structure, the stated properties
hold according to Proposition 4.9 and previous observations. For the converse direction, it
remains to show that K2 = idT̃ , which is equivalently characterised by the identities (6.2).
Then the properties (a)–(d) of Proposition 4.9 will be satisfied and the result will follow from
the characterisation Theorem 4.14.

The expansion of the prolonged conformal Killing equation (2.13) for k gives

D̃akb = µab + gab, (6.5)

D̃aµbr = −2P̃a[bkr] −Wbrask
s, (6.6)
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according to (2.10) and (2.11). Next, from (6.4) we especially have µb
rkr = −kb. Applying D̃a

to both sides of this equality and using (6.5) we obtain

(
D̃aµbr

)
kr + µb

rµar + µba = −(µab + gab).

From (6.6), (W) and (6.3) we have
(
D̃aµbr

)
kr = 0, hence the previous display shows µa

rµrb = gab.
This together with (6.4) implies that all identities from (6.2) are satisfied, hence K2 = idT̃ . �

A Explicit matrix realisations

Here we provide explicit realisations of the Lie algebras introduced in Section 3.2 in terms of
matrices. We will consider the inner product h and the involution K on Rn+1,n+1 given by the
block matrices

h :=

(
0 In+1

In+1 0

)
and K :=

(
In+1 0

0 −In+1

)

with respect to the standard basis (e1, . . . , e2n+2). Then E = 〈e1, . . . , en+1〉 and F = 〈en+2, . . . ,
e2n+2〉 and the decomposition (3.4) can be written as

g̃ = Λ2(E ⊕ F ) =

(
E ⊗ F Λ2E
Λ2F E ⊗ F

)
.

For ṽ := e1 + e2n+2, the Lie algebra p̃ of the parabolic subgroup P̃ ⊆ G̃ is of the following form

p̃ =




a U t w 0 −W t −b
X B V W C −X
0 Y t c b Xt 0

0 −Y t −d −a −Xt 0
Y D −Z −U −Bt −Y
d Zt 0 −w −V t −c



, (A.1)

where a, b, c, d, w ∈ R with a − b = d − c, U, V,W,X, Y, Z ∈ Rn−1, B ∈ gl(n − 1) and C,D ∈
so(n− 1). The nilradical p̃+ = p̃⊥ is then of the form

p̃+ =




a U t w 0 −V t −a
0 0 V V 0 0
0 0 a a 0 0

0 0 −a −a 0 0
0 0 −U −U 0 0
a U t 0 −w −V t −a



.

A choice of Levi subalgebra g̃0 ⊆ p̃ determines a grading g̃ = g̃− ⊕ g̃0 ⊕ p̃+. We shall choose
g̃0 = p̃ ∩ p̃op, where p̃op ⊆ g̃ is the stabiliser of the light-like vector en+2. Explicitly,

g̃0 =




a 0 0 0 0 0
X B V 0 C −X
0 Y t c 0 Xt 0

0 −Y t −a− c −a −Xt 0
Y D −Z 0 −Bt −Y

a+ c Zt 0 0 −V t −c



.
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The embedding i′ : g ↪→ g̃ of Lie algebras has the form A 7→
(
A 0
0 −At

)
. The subgroup Q =

i−1(P̃ ) is contained in P , the stabiliser in G of v = (ṽ)E = e1; the inclusion of corresponding
Lie algebras is

q = g ∩ p̃ =



a U t w
0 A V
0 0 −a


 ⊆



a U t w
0 B V
0 Xt c


 = p,

where tr(A) = 0 and a+ tr(B) + c = 0. The standard projective grading g = g− ⊕ g0 ⊕ p+,

g− =




0 0 0
X 0 0
y 0 0


 , g0 =



a 0 0
0 B V
0 Xt c


 , p+ =




0 U t w
0 0 0
0 0 0


 ,

is compatible with the previous conformal grading so that the reduced Lie subalgebra q0 := q∩g0

coincides with the intersection of g0 ∩ g̃0. Explicitly,

q0 =



a 0 0
0 A V
0 0 −a


 , (A.2)

where tr(A) = 0.
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[6] Čap A., Two constructions with parabolic geometries, Rend. Circ. Mat. Palermo (2) Suppl. (2006), 11–37,
math.DG/0504389.
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Fefferman–Graham ambient metrics of Patterson–Walker metrics

Matthias Hammerl, Katja Sagerschnig, Josef Šilhan, Arman Taghavi-Chabert and
Vojtěch Žádńık

Abstract

Given an n-dimensional manifold N with an affine connection D, we show that the associated
Patterson–Walker metric g on T ∗N admits a global and explicit Fefferman–Graham ambient
metric. This provides a new and large class of conformal structures which are generically not
conformally Einstein but for which the ambient metric exists to all orders and can be realised in
a natural and explicit way. In particular, it follows that Patterson–Walker metrics have vanishing
Fefferman–Graham obstruction tensors. As an application of the concrete ambient metric
realisation we show in addition that Patterson–Walker metrics have vanishing Q-curvature. We
further show that the relationship between the geometric constructions mentioned above is very
close: the explicit Fefferman–Graham ambient metric is itself a Patterson–Walker metric.

1. Introduction and main result

Given a signature (p, q) conformal structure [g] on an m = p + q dimensional manifold M ,
it was shown in seminal work by Fefferman and Graham (see [7, 8]) that under specific
conditions the conformal structure can be encoded equivalently as a signature (p + 1, q + 1)
pseudo-Riemannian metric (M,g) with vanishing Ricci curvature. This description has been
fundamental in constructing and classifying conformal invariants (see, for example, [3, 7]) and
for constructing and studying conformally invariant differential operators (see [11, 12]).

To build the Fefferman–Graham ambient metric for given local coordinates x on M , one
first considers the ray bundle of metrics in the conformal class [g], written as R+ × Rm with
coordinates (t, x). The ambient space M is obtained by adding a new transversal coordinate
ρ ∈ R, and then an ansatz for the Fefferman–Graham ambient metric g is

g = t2gij(x, ρ)dx
i � dxj + 2ρdt� dt + 2tdt� dρ, (1)

where g = gij(x, 0)dxidxj is a representative metric in the conformal class. It is directly visible
from the formula that g is homogeneous of degree 2 with respect to the Euler field t∂t on M.

To show existence of a Fefferman–Graham ambient metric g for given g, the ansatz (1)
determines an iterative procedure to determine gij(x, ρ) as a Taylor series in ρ satisfying
Ric(g) = 0 to infinite order at ρ = 0. For m odd, the existence (and a natural version of
uniqueness) of g as an infinity-order series expansion in ρ is guaranteed for general gij(x). For
m = 2n even, the existence of an infinity-order jet for gij(x, ρ) with Ric(g) = 0 asymptotically
at ρ = 0 is obstructed at order n, and is controlled by the vanishing of the conformally invariant
Fefferman–Graham tensor O. Moreover, existence does not in general guarantee uniqueness.

Results which provide global Fefferman–Graham ambient metrics, where g can then be con-
structed in a natural way from g and satisfies Ric(g) = 0 globally and not just asymptotically
at ρ = 0, are rare, in both even and odd dimensions. A special instance, where global ambient
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metrics can at least be shown to exist, occurs for g real-analytic and m either being odd or m
even with the obstruction tensor O of g vanishing. The simplest case of geometric origin for
which one has global ambient metrics consists of locally conformally flat structures (M, [g]),
where (M,g) exists and is unique up to diffeomorphisms (see [8, Chapter 7]). Another well-
known geometric case are conformal structures (M, [g]) which contain an Einstein metric g: If
Ric(g) = 2λ(m− 1)g, then g on R+ ×M × R can be written directly in terms of g as

g = t2(1 + λρ)2g + 2ρdt� dt + 2tdt� dρ. (2)

In work by Thomas Leistner and Pawel Nurowski it was shown that the so-called pp-waves
admit global ambient metrics in the odd-dimensional case and under specific assumptions in the
even-dimensional case, see [14]. Concrete and explicit ambient metrics for specific examples of
families of conformal structures induced by generic 2-distributions on 5-manifolds and generic
3-distributions on 6-manifolds have been constructed in [2, 15, 16, 18]. Recent progress in
obtaining classes of conformal structures for which the Fefferman–Graham ambient metric
equations become linear and have explicit solutions was obtained in [1].

The present article expands the class of metrics for which canonical ambient metrics exist
globally to Patterson–Walker metrics: Given an affine connection D on an n-manifold N with
n � 2, which is supposed to be torsion-free and to preserve a volume form, the Patterson–
Walker metric g is a natural split-signature (n, n) metric on the total space of the co-tangent
bundle T ∗N , see [13] for historical background on Patterson–Walker metrics, references and a
modern treatment. Our main result is as follows.

Theorem 1. Let D be a torsion-free affine connection on N which preserves a volume
form. Denote local coordinates on N by xA and the induced canonical fibre coordinates on
T ∗N by pA. Let ΓA

C
B and RicAB denote the Christoffel symbols and the Ricci curvature of

D, respectively. Let

g = 2dxA � dpA − 2ΓA
C
B pC dxA � dxB (3)

be the Patterson–Walker metric induced on T ∗N by D. Then

g = 2ρdt� dt + 2tdt� dρ

+ t2
(
2dxA � dpA − 2pCΓA

C
Bdx

A � dxB +
2ρ

n− 1
RicABdx

A � dxB
) (4)

is a globally Ricci-flat Fefferman–Graham ambient metric for the conformal class [g].

For generic D, the resulting Patterson–Walker metric g is not conformally Einstein, see
[13, Theorem 2]. In particular, Theorem 1 provides a large class of conformal structures which
are not conformally Einstein but which admit globally Ricci-flat and explicit ambient metrics.

As an immediate consequence of the existence of the ambient metric for (M, [g]), the
conformally invariant Fefferman–Graham obstruction tensor O associated to [g] vanishes.

It is not difficult to check Ricci-flatness of (4) directly: Specifically, one employs [8, formula
(3.17)], which is applicable to any ambient metric in the normal form (1). The computation is
then based on the following key facts: The Ricci curvature of the Patterson–Walker metric g
is up to a constant multiple just the pullback of the Ricci curvature of D and this tensor and
its covariant derivative are totally isotropic, see [13]. We note that formula (4) for g says that
the ambient metric is in fact linear in ρ and the iterative procedure determining the ambient
metric stops after the first step.

A geometric proof of vanishing Ricci curvature is presented in the next section. This is based
on a combination of the well-known Patterson–Walker and Thomas cone constructions, both
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of which we recall. It follows directly from the geometric construction outlined below that the
Fefferman–Graham ambient metric of a Patterson–Walker metric is again a Patterson–Walker
metric, namely, the one associated to the Thomas cone connection. This nice and interesting
fact is elaborated in Theorem 2.

2. Geometric construction of the ambient metric

The association D � g generalises to a natural association from projective to conformal
structures. Recall that two affine connections D,D′ on N are called projectively related or
equivalent if they have the same geodesics as unparameterised curves, which is the case if and
only if there exists a 1-form Υ ∈ Ω1(N) with

D′
XY = DXY + Υ(X)Y + Υ(Y )X (5)

for all X,Y ∈ X(N). It is sufficient to restrict ourselves to special connections in a projective
class, that is, to those that preserve some volume form. For projective structures it is useful
to employ suitably scaled projective density bundles, defined as E(w) := (∧nTN)−w/(n+1), for
arbitrary weight w. Then a section s : N → E+(1) corresponds to a choice of a special affine
connection D in the projective equivalence class [D], and any s′ = efs corresponds to D′

projectively related to D via (5) with Υ = df . We define M := T ∗N ⊗ E(2) the (projectively)
weighted co-tangent bundle of N . Then, as was shown in [13], two projectively related affine
connections D,D′ on N induce two conformally related metrics g, g′ on M , and we therefore
have a natural association (N, [D])� (M, [g]).

The cone C := E+(1) carries the canonical and well-known Ricci-flat Thomas cone connection
∇ associated to the projective class [D], see [5, 17]. (The specific weight 1, which is different
from the one in [5], is more convenient for our computations.) We will need a local formula
for ∇: Let s : N → C be the scale corresponding to an affine connection D ∈ [D], providing
a trivialisation C ∼= R+ ×N via (x0, x) 	→ s(x)x0. In this trivialisation the Thomas cone
connection is given by

∇XY = DXY − 1

n− 1
Ric(X,Y )Z, ∇XZ = X, (6)

where X,Y ∈ X(N) and Z = x0∂x0 is the Euler field on C. It is in fact easy to see directly from
formula (6) that the thus defined affine connection ∇ on the Thomas cone C is independent of
the choice of scale and it is Ricci-flat.

Employing a local coordinate patch on N which induces coordinates xA, yA on the co-tangent
bundle T ∗N and coordinates x0, xA, yA, y0 on T ∗C ∼= R+ × T ∗N × R, the Patterson–Walker
metric g associated to ∇ is

g = 2dxA � dyA + 2dx0 � dy0 −
4

x0
yBdx

0 � dxB

− 2yCΓA
C
Bdx

A � dxB + 2
x0y0

n− 1
RicABdx

A � dxB .

(7)

Ricci-flatness of g follows directly from Ricci-flatness of ∇, see [13, Theorem 2]. Via the change
of coordinates t = x0, ρ = y0/x

0, pA = yA/(x
0)2 the metric g transforms to (4), which is the

form of a Fefferman–Graham ambient metric (1). In particular, this shows Theorem 1.
We conclude this section by summarising the construction:
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Theorem 2. Given a projective structure (N, [D]) on an n-dimensional manifold N , the
geometric constructions indicated in the following diagram commute:

In particular, the induced conformal structure [g] admits a globally Ricci-flat Fefferman–
Graham ambient metric g which is itself a Patterson–Walker metric.

Remark. As a Patterson–Walker metric, (M,g) carries a naturally induced homothety k of
degree 2, which takes the form 2pA∂pA

+ 2ρ∂ρ. According to [13, Lemma 5.1] the infinitesimal
affine symmetry Z of ∇ lifts to a Killing field, which one computes as t∂t − 2pA∂pA

− 2ρ∂ρ.
In particular it follows that the Euler field t∂t of the Fefferman–Graham ambient metric g
can be written as the sum of this Killing field and the homothety k. The tangent bundle TM
carries the maximally isotropic (n + 1)-dimensional subspace spanned by {∂pA

, ∂ρ} which is
preserved by ∇. This subspace can be equivalently described by a ∇-parallel pure spinor s
on M. The ambient Killing field k and the ambient parallel pure spinor s correspond to a
homothety k of g and a parallel pure spinor χ on M that belong to the characterising objects
of the Patterson–Walker metric g, see [13, Theorem 1].

3. Vanishing ‘Q-curvature’

The Q-curvature Qg of a given metric g is a Riemannian scalar invariant with a particularly
simple transformation law with respect to conformal change of metric. It has been introduced
by Branson in [4] and has been the subject of intense research in recent years, see, for example,
[6] for an overview. Computation of Q-curvature is notoriously difficult, see, for example, [10].
An explicit form of the Fefferman–Graham ambient metric g for a given metric g allows a
computation of Qg. Using the fact that our g is actually a Patterson–Walker metric, this
computation is particularly simple.

Theorem 3. The Patterson–Walker metric g associated to a volume-preserving, torsion-free
affine connection D has vanishing Q-curvature Qg.

Proof. We follow the computation method for Qg from [9]: For this it is necessary to compute
−Δn log(t), where Δ is the ambient Laplacian on M = R+ × T ∗N × R associated to g and
t : M → R+ is the first coordinate. Restricting −Δn log(t) to the cone R+ × T ∗N × {0} and
evaluating at t = 1 yields Qg. To show that the Q-curvature vanishes for g, it is in particular
sufficient to show that Δ log(t) = 0.

However, the function t : M → R+ is horizontal since it is just the pullback of the coordinate
function x0 : C → R+ on the Thomas cone C ∼= R+ ×N via the canonical projection T ∗C → C.
It follows from the explicit formula for the Christoffel symbols of a Patterson–Walker
metric that Δ vanishes on any horizontal function, see [13, Section 2.1]. Thus in particular
Δ log(t) = 0, and then also Qg = 0. �
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We present the general theory of curves in conformal geometry using tractor 
calculus. This primarily involves a specification of distinguished parametrizations 
and relative and absolute conformal invariants of generic curves. The absolute 
conformal invariants are defined via a tractor analogue of the classical Frenet frame 
construction and then expressed in terms of relative ones. Our approach applies 
likewise to conformal structures of any signature; in the case of indefinite signature 
we focus especially on the null curves. It also provides a conceptual tool for handling 
distinguished families of curves (conformal circles and conformal null helices) and 
conserved quantities along them.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The local geometry of curves is a classical subject, nowadays developed for various geometric structures 
using various views and methods. The study generally starts in flat spaces, the passage to general curved 
cases demands new ideas and attitudes. We are going to evolve an approach based on conformal tractor 
calculus. In this section, we present main sources of inspiration, summarize main results and introduce main 
tools needed later.

1.1. Main sources and methods

To our knowledge, the first general treatment of curves in conformal Riemannian manifolds is due to 
Fialkow [9], which is therefore used as a basic reference for comparisons. In that paper, a conformally 
invariant Frenet-like approach is developed. This primarily requires a natural distinguished parametrization 
of the curve (in the place of the arc-length parameter in the Riemannian setting), a natural starting object 
(in the place of the unit tangent vector) and a notion of derivative along the curve (in the place of the 
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restricted Levi-Civita connection). Having all these instruments, it is easy to derive a conformal analogue 
of Fernet formulas with a distinguished set of conformal invariants, the conformal curvatures of the curve. 
For generic curves in an n-dimensional manifold, this yields n − 1 conformal curvatures, one of which has 
an exceptional flavour.

The Frenet frame can be seen as an example of a more general concept of moving frame by Cartan. 
An application of the latter method for immersed submanifolds, especially curves, in the homogeneous 
Möbius space is presented by Schiemangk and Sulanke in [16] and [20], which we adduce as important 
sources of inspiration. That way, the curve in the homogeneous space is covered by a curve in the principal 
group so that the restriction of the Maurer–Cartan form to the lift reveals the generating set of invariants. 
The lift can be identified with, and practically is constructed as, a curve of (pseudo-)orthonormal frames in 
the ambient Minkowski space, whose dimension is two more higher than the dimension of the Möbius space.

Both the homogeneous principal bundle with the Maurer–Cartan form and the associated homogeneous 
vector bundle, whose fibre is the ambient Minkowski space with the induced linear connection, has a coun-
terpart over general conformal manifolds: the former leads to the notion of conformal Cartan connection, 
the latter to the Thomas standard tractor bundle with its linear connection and parallel bundle metric. 
These two approaches are basically equivalent, in this paper we exploit the latter one. One of its main 
advantages is that everything can be set off pretty directly in terms of underlying data, while it still has 
very conceptual flavour. This, on the one hand, allows one to easily adapt key ideas from the homogeneous 
setting to the tractorial one. On the other hand, expanding any tractorial formula yields a very concrete 
tensorial expression that allows comparisons to results obtained by that means. We refer to the essential 
work [2] by Bailey, Eastwood and Gover both for the generalities on tractor calculus and for an initial step 
in the study of (distinguished) curves in this manner.

Besides the just cited main sources, there is a wide literature discussing curves in conformal and other 
geometries from various aspects. A short review of the development of the topic for conformal structures 
can be found in the introduction of [5]. Another references that are close to our purposes are [3], [4] and [13]. 
An exhibition of tensorial techniques in the study of curves in related geometries can be found in [14]. For 
typical subtleties in dealing with null curves in pseudo-Riemannian geometry, see e.g. [7]. For an application 
of the Cartan’s method of moving frame to curves in a broad class of homogeneous spaces, see [6].

1.2. Aim, structure and results

We study the local differential geometry of curves in general conformal manifolds of general signature 
using the tractor calculus. Although the subject is indeed classic, the systematic tractorial approach is novel. 
This approach has not only obvious formal benefits, but also a potential for discovering new results and 
relations. In particular, the discussion for null curves in the case of indefinite signature (for which almost 
nothing is known) is very parallel to the one in positive definite case and leads to results that we, at least, 
would never obtain by other means.

The rough structure of the paper is as follows: In sections 2 and 4 we develop the theory for conformal 
Riemannian structures, in section 5 we discuss its analogies in indefinite signature. We primarily deal with 
generic curves, whereas special cases are briefly mentioned in accompanying remarks. However, the most 
special case—conformal circles—is dealt individually in section 3.

In section 2 we follow the setting of [2], where one already finds the tractorial determination of the pre-
ferred class of projective parametrizations on any curve as well as the projectively parametrized conformal 
circles. Continuing further with tractors of higher order, we build a natural reservoir of relative conformal 
invariants associated to any curve (subsection 2.3). The simplest of these leads to the notion of conformal 
arc-length, the distinguished conformally invariant parametrization of the curve (subsection 2.4). This in-
variant vanishes identically along the curve if and only if the curve is an arbitrarily parametrized conformal 
circle (Proposition 3.3). As a demonstration of the ease of use of tractors we describe some conserved quan-
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tities along projectively parametrized conformal circles on manifolds admitting an almost Einstein scale, 
respectively normal conformal Killing field (subsection 3.2).

In section 4 we launch the Frenet-like procedure to absolute conformal invariants of curve:

• construct a pseudo-orthonormal tractor Frenet frame along the given curve,
• differentiate with respect to the conformal arc-length and extract the tractor Frenet formulas,
• the coefficients of that system determine the generating set of invariants.

For the curve in an n-dimensional manifold, we have n − 1 conformal curvatures, one of which has an 
exceptional flavour. The vanishing of the exceptional curvature has an immediate interpretation relating the 
above mentioned parametrizations (Proposition 4.3). By construction, all conformal curvatures are expressed 
via the tractors from the tractor Frenet frame, i.e. with respect to the conformal arc-length parametrization. 
Alternative expressions in terms of initial tractors are also possible. In particular, for all nonexceptional 
curvatures, we have very simple formulas using the previously defined relative conformal invariants, i.e. with 
respect to an arbitrary parametrization (Theorem 4.6). For a given scale, we also indicate how to express 
conformal curvatures in terms of the Riemannian ones (subsection 4.3). Besides the pure pleasure, this effort 
allows a comparison of our invariants with those in the literature, especially in [9].

In section 5 we adapt the previous scheme to conformal manifolds of indefinite signature. In that case 
we distinguish space-, time- and light-like curves according to the type of their tangent vectors. A full 
type classification of curves (via associated tractors) becomes very rich, depending on the dimension and 
signature. The construction of the tractor Frenet frame has to be adapted to the respective type, which makes 
any attempt on its universal description impossible. Avoiding the complicated branching of the discussion, 
we only point out the main features (Remark 4.4(3)) and focus on the light-like curves. Among these 
curves we identify an appropriate analogue of conformal circles, the conformal null helices. Notably, in their 
characterization another family of relative conformal invariants of Wilczynski type appears (Theorem 5.8). 
More details on the construction of the tractor Frenet frame and expressions of the corresponding conformal 
curvatures are discussed in the case of Lorentzian signature (subsection 5.4).

1.3. Notation and conventions

Most of the following conventions is taken from [2]. A conformal structure of signature (p, q) on a smooth 
manifold M of dimension n = p + q is a class of pseudo-Riemannian metrics of signature (p, q) that differ by 
a multiple of an everywhere positive function. For all tensorial objects on M we use the standard abstract 
index notation. Thus, the symbol μa and μa refers to a section of the tangent and cotangent bundle, which 
is denoted as Ea := TM and Ea := T ∗M , respectively, multiple indices denote tensor products, e.g. μa

b

is a section of Ea
b := T ∗M ⊗ TM etc. Round brackets denote symmetrization and square brackets denote 

skew symmetrization of enclosed indices, e.g. sections of E[ab] = T ∗M ∧ T ∗M are 2-forms on M . By E [w]
we denote the density bundle of conformal weight w, which is just the bundle of ordinary (−w

n )-densities. 
Tensor products with another bundles are denoted as Ea[w] := Ea ⊗ E [w] etc. In what follows, the notation 
as μa ∈ Ea[w] always means that μa is a section (and not an element) of Ea[w], global or local according to 
the context.

Conformal structure on M can be described by the conformal metric gab which is a global section of 
E(ab)[2]. Any raising and lowering of indices is provided by the conformal metric, e.g. for μa ∈ Ea[w] we have 
μa = gabμ

b ∈ Ea[w + 2]. A conformal scale is an everywhere positive section of E [1]. The choice of scale 
σ ∈ E [1] corresponds to the choice of metric gab ∈ E(ab) from the conformal class so that gab = σ−2gab. The 
corresponding Levi-Civita connection is denoted as ∇. The Schouten tensor, which is a trace modification of 
the Ricci tensor, is denoted as Pab. Transformations of quantities under the change of scale will be denoted 
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by hats. In particular, for σ̂ = fσ, Υa = f−1∇af and any μa ∈ Ea, the Levi-Civita connection and the 
Schouten tensor change as

∇̂aμ
b = ∇aμ

b + Υaμ
b − μaΥb + μcΥcδa

b, (1)

P̂ab = Pab − ∇aΥb + ΥaΥb − 1
2ΥcΥcgab. (2)

Let Γ ⊂ M be a curve with a parametrization t : Γ → R and the tangent vector Ua so that Ua∇at = 1. 
Regular curve is called space-like, time-like, respectively light-like (or null), in accord with the type of its 
tangent vector Ua, i.e. if UcU

c > 0, UcU
c < 0, respectively UcU

c = 0. Of course, the curve may change the 
type of its tangent vectors. Since the whole study that follows is of very local nature, we restrict ourselves 
only to the (segments of) curves of fixed type. In the first two cases, the density

u :=
√

|UcU c| ∈ E [1] (3)

is nowhere vanishing and will be employed later. Henceforth we always assume Γ is smooth. Along the curve 
we use notation d

dt := U c∇c and

U ′ a := d
dt U

a, U ′′ a := d2

dt2 Ua, . . . , U (i)a := di

dti U
a (4)

for the derived vectors. By abuse of notation we often write Ua ∈ Ea which should be read as Ua ∈ Ea|Γ, and 
similarly for any other quantities defined only along the curve Γ. Note that the vector U (i)a has order i + 1
(with respect to Γ). Obviously, none of vectors in (4) is conformally invariant. For instance, the acceleration 
vector transforms according to (1) as

Û ′a = U ′ a − U cUc Υa + 2U cΥc Ua. (5)

From this it follows that, for space- and time-like curves (but not for null curves), a metric in the conformal 
class may be chosen so that U ′ a = 0, i.e. the curve is an affinely parametrized geodesic of the correspond-
ing Levi-Civita connection. This indicates the problem with a conformally invariant notion of osculating 
subspaces. Instead, we are going to make use of tractors.

The conformal standard tractor bundle T over the conformal manifold M of signature (p, q), where 
p + q = n = dim M , is the tractor bundle corresponding to the standard representation Rp+1,q+1 of the 
conformal principal group O(p + 1, q + 1). Specifically, T has rank n + 2 and for any choice of scale, it is 
identified with the direct sum

T = E [1] ⊕ Ea[−1] ⊕ E [−1]

whose components change under the conformal rescaling as

(
σ̂
μ̂a

ρ̂

)
=

⎛
⎝

σ
μa + Υaσ

ρ − Υcμ
c − 1

2ΥcΥc σ

⎞
⎠ . (6)

Here Υa is the 1-form corresponding to the change of scale as before. Note that the projecting (or primary) 
slot is the top one. The bundle T is endowed with the standard tractor connection ∇, the linear connection 
that is given by

∇a

(
σ
μb

ρ

)
=
( ∇aσ − μa

∇aμ
b + δa

bρ + Pa
bσ

∇aρ − Pacμ
c

)
.
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It follows this definition is indeed conformally invariant. The bundle T also carries the standard tractor 
metric, the bundle metric of signature (p + 1, q + 1) that is schematically represented as

(0 0 1
0 gab 0
1 0 0

)
,

i.e., for any sections U = (σ, μa, ρ) and V = (τ, νa, π) of T ,

U · V = μaν
a + σπ + ρτ.

It follows the standard tractor metric is parallel with respect to the standard tractor connection.

2. Relative conformal invariants

Throughout this section we consider conformal structures of positive definite signature. The discussion 
for space- and time-like curves in indefinite signature shows only minor differences, the null case is more 
involved, see section 5. In the first two subsections we only slightly extend the setting of [2, section 2.8]. 
Then we introduce a natural family of relative conformal invariants and the notion of conformal arc-length 
parameter of curve.

2.1. Canonical lift and initial relations

In the positive definite signature, any vector is space-like. Hence, for a regular smooth curve Γ ⊂ M with 
a fixed parametrization t, the density (3) becomes u =

√
UcU c and it is nowhere vanishing. This provides 

a lift of Γ to the standard tractor bundle T that is given by

T :=
( 0

0
u−1

)
. (7)

Along the curve we use the notation d
dt := U c∇c and

U := d
dtT , U ′ := d2

dt2T , . . . , U (i) := di+1

dti+1T (8)

for the derived tractors. The notation is chosen so that the highest order term in the middle slot of U(i) is 
a multiple of U (i)a. Note that the tractor U (i) has order i + 2 (with respect to Γ). By construction, both 
the tractor lift T and all tractors in (8) are conformally invariant objects. Explicitly, the first two derived 
tractors are

U =

⎛
⎝

0
u−1Ua

−u−3UcU
′ c

⎞
⎠ , (9)

U ′ =

⎛
⎝

−u

u−1U ′ a − 2u−3UcU
′ c Ua

−u−3UcU
′′ c − u−3U ′

cU
′ c + 3u−5(UcU

′ c)2 − u−1PcdU
cUd

⎞
⎠ . (10)

The tractors T , U , U ′ are linearly independent, and satisfy

T · T = 0, T · U = 0, T · U ′ = −1,
U · U = 1, U · U ′ = 0.

(11)
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The first nontrivial identity is

U ′ · U ′ = 3u−2U ′
cU

′ c + 2u−2UcU
′′ c − 6u−4(UcU

′ c)2 + 2PcdU
cUd. (12)

In order to simplify expressions, we will use the following notation

α := U ′ · U ′, β := U ′′ · U ′′, γ := U ′′′ · U ′′′, etc.

Initial relations above and their consequences may be schematically indicated by the Gram matrix which, 
for the sequence (T , U , U ′, U ′′, U ′′′), has the form

⎛
⎜⎜⎜⎜⎜⎝

0 0 −1 0 α

0 1 0 −α − 3
2α′

−1 0 α 1
2α′ 1

2α′′ − β

0 −α 1
2α′ β 1

2β′

α −3
2α′ 1

2α′′ − β 1
2β′ γ

⎞
⎟⎟⎟⎟⎟⎠

. (13)

Clearly, the generating rule may be written as

U (i) · U (i+j+1) =
(
U (i) · U (i+j))′ − U (i+1) · U (i+j).

Later we will need some details on the next derived tractor U ′′. As a consequence of T · U ′′ = 0, the 
projecting slot of U ′′ must vanish. With the help of (12), the middle slot of U ′′ may be expressed as

u−1U ′′ a − 3u−3UcU
′ c U ′ a +

( 3
2u−3U ′

cU
′ c − 3

2u−1(U ′ · U ′) + 2u−1U cUdPcd

)
Ua − uU cPc

a.

2.2. Reparametrizations

Let t̃ = g(t) be a reparametrization of the curve Γ. All objects related to the new parameter t̃ will be 
denoted by tildes in accord with d

dt̃
= g′ −1 d

dt , where g′ = dg
dt . In particular, Ũa = g′ −1Ua, ũ = g′ −1u and 

T̃ = g′T . Using just the chain rule and the Leibniz rule, one easily verifies that

Ũ = U + g′ −1g′′T ,

Ũ ′ = g′ −1U ′ + g′ −2g′′U + (g′ −2g′′′ − g′ −3g′′ 2)T ,

Ũ ′′ = g′ −2U ′′ + 2g′ −2S(g)U + g′ −2S(g)′ T ,

(14)

where S is the Schwarzian derivative,

S(g) := g′′′

g′ − 3
2

(
g′′

g′

)2
= (ln g′)′′ − 1

2 (ln g′)′ 2
.

According to the starting relations (11), we have

Ũ ′ · Ũ ′ = g′ −2 (U ′ · U ′ − 2S(g)
)
,

Ũ ′′ · Ũ ′′ = g′ −4 (U ′′ · U ′′ − 4S(g)U ′ · U ′ + 4S(g)2
)
.

(15)

Hence vanishing of U ′ · U ′ determines a natural projective structure on any curve, cf. [2, Proposi-
tion 2.11]:
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Proposition 2.1 ([2]). The equation U ′ · U ′ = 0, regarded as a condition on the parametrization of a curve, 
determines a preferred family of parametrizations with freedom given by the projective group of the line.

Any parameter from this family will be called projective.
From (15) it further follows that

Ũ ′′ · Ũ ′′ − (Ũ ′ · Ũ ′)2 = g′ −4 (U ′′ · U ′′ − (U ′ · U ′)2
)
.

Hence the function

Φ := U ′′ · U ′′ − (U ′ · U ′)2 = β − α2 (16)

is a relative conformal invariant of the curve.

2.3. Relative conformal invariants

In general, a relative conformal invariant of weight k of the curve Γ is a conformally invariant function 
I : Γ → R that transforms under a reparametrization t̃ = g(t) of the curve as

Ĩ = g′ −kI.

In particular, vanishing, respectively nonvanishing, of any relative invariant is independent on reparametriza-
tions. Conformal invariants of weight 0 are the absolute invariants.

Let us denote

Δi := det
(
Gram

(
T ,U ,U ′, . . . ,U (i−2)

))
, (17)

the determinant of the Gram matrix corresponding to the first i tractors from the derived sequence 
T , U , U ′, . . . . From (11) it is obvious that Δ1 = Δ2 = 0 and Δ3 = −1 independently of the curve and 
its parametrization. These three determinants are thus absolute, but trivial conformal invariants. The first 
nontrivial invariant is Δ4. From (13) it follows that

Δ4 = −β + α2 = −Φ. (18)

In general, we have

Lemma 2.2. For i = 4, . . . , n + 2, the Gram determinant Δi is a relative conformal invariant of weight 
i(i − 3).

Proof. As a generalization of (14) we have

Ũ
(j)

= g′ −jU (j) mod
〈
T ,U ,U ′, . . . ,U (j−1)〉,

for any j = 1, . . . , n. From this and properties of the determinant it follows that (17) changes under the 
reparametrization as

Δ̃i = g′ −2·2 · · · g′ −2(i−2)Δi = g′ −i(i−3)Δi,

for any i = 4, . . . , n + 2. �
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For i = 4, . . . , n + 2, the tractor metric restricted to 
〈
T ,U , . . . ,U (i−2)〉 is nondegenerate, thus vanishing 

of Δi is equivalent to the fact that the determining tractors are linearly dependent. In particular, for i ≥ 4, 
vanishing of Δi implies vanishing of Δi+1. Note also that the weight of any Δi is even, thus its sign is 
independent of all reparametrizations.

2.4. Conformal arc-length

By (16), respectively (18), we defined a nontrivial relative conformal invariant of the lowest possible 
weight and order. It is actually nonnegative:

Lemma 2.3. Φ ≥ 0.

Proof. For a parametrization belonging to the projective family of Proposition 2.1 we have Φ = U ′′ · U ′′. 
Since the top slot of U ′′ vanishes, the previous expression equals to the norm squared of the middle slot 
of U ′′ and so it is nonnegative. Since the weight of Φ is even, it is a nonnegative function independently of 
the parametrization of the curve. �

Suppose that Γ is a curve with nowhere vanishing Φ. Then

ds := 4
√

Φ(t) dt

is a well-defined conformally invariant 1-form along the curve whose integration yields a distinguished 
parametrization of the curve; it is given uniquely up to an additive constant. Such parameter is called the 
conformal arc-length. Note that if s is the conformal arc-length then Φ(s) = 1.

It will be clear from later alternative expressions that this is the same distinguished parameter as one 
finds in literature, e.g. in [9] or [5]. In the later reference, one also finds a notion of vertex, which is the 
point of curve where Φ = 0. The vertices of curves are clearly invariant under conformal transformations. 
Generic curves are vertex-free, the opposite extreme is discussed in the next section.

Remark 2.4. For space- and time-like curves in the case of general indefinite signature, the relative conformal 
invariant Φ defined by (16), respectively (18), is not necessarily nonnegative as in Lemma 2.3. It may even 
happen that it vanishes although the corresponding tractors T , U , U ′, U ′′ are linearly independent. The 
notion of vertex in such cases would rather be defined by the linear dependence of these tractors than by 
vanishing of Φ, cf. Remark 3.4(2).

3. Conformal circles and conserved quantities

We continue the exposition with the assumption of positive definite signature. The only difference in 
indefinite signature concerns the notion of conformal circles that are defined just for the space- or time-like 
directions. Reasonable analogies for null directions are discussed in subsection 5.3.

3.1. Conformal circles

In this subsection we consider the curves for which Φ vanishes identically, i.e. the curves consisting only of 
vertices. The conformal arc-length is not defined for such curves and they are excluded from the discussion 
in the main part of this paper as the most degenerate cases. However, these curves form a very distinguished 
family of curves that coincide with the so-called conformal circles, the curves which are in some sense the 
closest conformal analogues of usual geodesics on Riemannian manifolds. In the flat case, they are just the 
circles, respectively straight lines, i.e. the conformal images of Euclidean geodesics.
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Conformal circles are well known and studied (under various nicknames1) in the literature. A quick survey 
with an explanation of the relationship of the definition below to distinguished curves of Cartan’s conformal 
connection can be found in [13, section 5.1]. Conformal circles on a general conformal manifold can also be 
related to ordinary circles in the flat model via the notion of Cartan’s development of curves.

Here we adapt the notation of [1], where conformal circles are defined as the solutions to the system of 
conformally invariant third order ODE’s

U ′′ a = 3u−2UcU
′ c U ′ a − 3

2u−2U ′
cU

′ c Ua + u2U cPc
a − 2U cUdPcd Ua. (19)

Contracting, respectively skew symmetrizing (19), with Ua yields the following pair of equations equivalent 
to (19):

UaU
′′ a = 3u−2(UcU

′ c)2 − 3
2U ′

cU
′ c − u2U cUdPcd, (20)

U[aU
′′
b] = 3u−2UcU

′ c U[aU
′
b] + u2U cPc[bUa]. (21)

From (5) we know that, for any curve with an arbitrary parametrization, a metric in the conformal class 
may be chosen so that it is an affinely parametrized geodesic of the corresponding Levi-Civita connection, 
i.e. U ′ a = 0. It is then easy to see from (20) and (21) that

Proposition 3.1 ([1]). The curve is a conformal circle if and only if there is a metric in the conformal class 
such that the curve is an affinely parametrized geodesic and U cPca = 0.

From the explicit expressions in subsection 2.1 we may read the following tractorial interpretations 
of the equations above: The equation (19) is equivalent to vanishing of the middle slot of the tractor 
U ′′ + 3

2 (U ′ · U ′) U (since the primary slot is zero, this is indeed a conformally invariant condition). This 
implies that the middle slots of tractors U ′′ and U are collinear, which is just the condition (21). In 
particular, this condition is independent of any reparametrization, i.e. solutions to (21) are the conformal 
circles parametrized by an arbitrary parameter. The equation (20) is equivalent to U ′ ·U ′ = 0. In particular, 
solutions to (20) correspond to the projective parameters of the curve. Considering further the injecting slot 
of the tractor U ′′, it is shown in [2, Proposition 2.12] that

Proposition 3.2 ([2]). The curve is a projectively parametrized conformal circle if and only if it obeys

U ′ · U ′ = 0 and U ′′ = 0. (22)

We may easily generalize this statement as follows:

Proposition 3.3. The following conditions are equivalent:

(a) the curve is a conformal circle (with and arbitrary parametrization),
(b) all its points are vertices, i.e.

Φ = U ′′ · U ′′ − (U ′ · U ′)2 = 0,

(c) the rank 3 subbundle 
〈
T ,U ,U ′〉 ⊂ T is parallel along the curve.

1 E.g. they are called conformal null curves in [9] or conformal geodesics in [10] and [13]. Note that the conformal geodesics 
studied in [8] or [15] form a different, more general, class of curves.
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Proof. From subsection 2.1 we know that the tractors T , U , U ′ are linearly independent for any curve and 
its parametrization. From subsection 2.3 we know that Φ = 0 is equivalent to the fact that the tractors 
T , U , U ′, U ′′ are linearly dependent, i.e. U ′′ belongs to the subbundle 

〈
T ,U ,U ′〉 ⊂ T which is therefore 

parallel. Thus (b) and (c) are equivalent.
Among tractors T , U , U ′, U ′′, only U ′ has nonzero projecting slot. Hence the previous condition means 

that U ′′ is a linear combination of T and U . Since the middle slot of T vanishes, the previous is equivalent 
to the middle slots of U ′′ and U being collinear, which is just the condition (21). Thus (c) and (a) are 
equivalent. �
Remarks 3.4.

(1) Note the two conditions in (22) are not independent: if U ′′ = 0 then U ′ · U ′ = 0.
(2) Conformal circles in the case of indefinite signature exist only for space- or time-like directions. They 

have all of the above stated properties except the condition (b) of Proposition 3.3, which is no more 
equivalent to the others, cf. Remark 2.4.

3.2. Conserved quantities

As an application of the current approach we describe some conserved quantities (or first integrals) along 
conformal circles for some specific conformal structures. Here we consider conformal structures admitting 
almost Einstein scales or conformal Killing fields with some additional property. The description of the 
conserved quantities is easily given due to the tractorial characterization of these additional data, which 
can be found e.g. in [11].

An almost Einstein scale is a section σ ∈ E [1] satisfying the conformally invariant condition that the 
trace-free part of ∇a∇bσ + Pabσ ∈ Eab[1] vanishes. Then σ is nonvanishing on an open dense set where 
the metric gab = σ−2gab is Einstein. The tractorial characterization of this fact is that the tractor field 
LT (σ) ∈ T is parallel, where LT : E [1] → T denotes the BGG splitting operator.

Proposition 3.5. Let Γ be a conformal circle with a projective parameter t. Assume the conformal manifold M

admits an almost Einstein scale σ ∈ E [1] and let S = LT (σ) ∈ T be the corresponding parallel tractor. 
Then the function s := U ′ · S is a conserved quantity along Γ, i.e. d

dts = 0.

Proof. A projectively parametrized circle satisfies U ′′ = 0, the tractor S corresponding to an almost Einstein 
scale satisfies S′ = 0. Thus d

dt (U
′ · S) = 0. �

A conformal Killing field ka ∈ Ea is an infinitesimal symmetry of the conformal structure. This is 
equivalent to the vanishing of the trace-free part of ∇(akb) ∈ E(ab)[2]. The tractorial characterization of this 
fact is that the tractor field K := LΛ2T (ka) ∈ Λ2T satisfies

∇aK = kcΩca, (23)

where LΛ2T : Ea → Λ2T denotes the BGG splitting operator and Ωcd ∈ E[cd] ⊗ Λ2T is the curvature of the 
tractor connection ∇. Further, along the given curve, we introduce the 1-form

�a := U bΩab(U ,U ′). (24)

Proposition 3.6. Let Γ be a conformal circle with a projective parameter t. Assume the conformal manifold M

admits a conformal Killing field ka ∈ Ea satisfying ka�a = 0, and let K := LΛ2T (ka) ∈ Λ2T be the 
corresponding tractor field. Then the function k := K(U , U ′) is a conserved quantity along Γ, i.e. d

dt k = 0.
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Proof. A projectively parametrized circle satisfies U ′′ = 0. The tractor K corresponding to ka satisfies (23)
and hence ( d

dtK)(U , U ′) = ka�a = 0. Also, K is skew, thus d
dt (K(U , U ′)) = 0. �

Note that the assumption ka�a = 0 in the Proposition is automatically satisfied for normal conformal 
Killing fields which are characterized by the vanishing of (23).

Remarks 3.7.

(1) It is somewhat tedious to expand tractorial formulas for the conserved quantities s and k. To proceed, 
one needs the respective splitting operators and some manipulation. From the explicit expressions it in 
particular follows that the considered quantities are nontrivial. All that can be found already in [19]. 
Note also that both s and k are quantities of order 2, while the conformal circle equation is of order 3. 
Further related and interesting results can be found in recent article [12].

(2) Expanding (24) yields

�a = U bWabcdU
cU ′d − 2u2U b∇[aPb]cU

c,

where Wab
c
d is the conformal Weyl tensor. Remarkably, the condition �a = 0 plays a role in the 

variational approach to conformal circles, see [1, p. 218].

4. Absolute conformal invariants

For a generic curve, the relative conformal invariants Δi from section 2 are all nontrivial, provided that 
4 ≤ i ≤ n + 2. One may therefore easily build a galaxy of absolute conformal invariants. In this section we 
construct a minimal set of such invariants, which is done in a natural if not canonical way. In order to make 
the construction complete, the assumption of positive definite signature is important here. In particular, 
the standard tractor metric has signature (n + 1, 1).

4.1. Tractor Frenet formulas and conformal curvatures

Let Γ be a generic curve, let s be its conformal arc-length parameter and let T , U = d
dsT , U ′ = d

dsU , . . .
be the corresponding tractors as above. The restriction of the tractor metric to the subbundle 

〈
T ,U ,U ′〉

is nondegenerate and has signature (2, 1). Thus its orthogonal subbundle in T is complementary and has 
positive definite signature. We are going to transform the initial tractor frame (T , U , U ′, . . . ) into a natural 
pseudo-orthonormal one. Firstly, under the transformation

U0 := T , U1 := U , U2 := −U ′ − 1
2(U ′ · U ′)T , (25)

the initial relations (11) transform to

U0 · U0 = 0, U0 · U1 = 0, U0 · U2 = 1,
U1 · U1 = 1, U1 · U2 = 0,

U2 · U2 = 0.
(26)

Secondly, by the standard orthonormalization process we may complete this triple to a tractor frame

(U0,U1,U2;U3, . . . ,Un+1) (27)
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such that U i belongs to the span 
〈
T ,U , . . . ,U (i−1)〉, for all admissible i, and the corresponding Gram 

matrix is
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1

1
1

. . .
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (28)

More concretely, for any i = 3, . . . , n, the frame tractors are

U i = V i/
√

V i · V i, where

V i = U (i−1) − (U (i−1) · U i−1)U i−1 − · · ·
· · · − (U (i−1) · U0)U2 − (U (i−1) · U1)U1 − (U (i−1) · U2)U0.

(29)

The last tractor Un+1 is determined by the orthocomplement in T to the codimension one subbundle 〈
T , . . . ,U (n−1)〉 =

〈
U0, . . . ,Un

〉
up to orientation. We do not need to fix the orientation now, it is done 

only later. The frame (27) is called the tractor Frenet frame associated to the curve Γ.
Now, differentiating the constituents of the tractor Frenet frame with respect to the conformal arc-length 

s and expressing the result within that frame yields Frenet-like identities. As in the classical situation, 
it follows that the coefficients of that system determine the generating set of absolute invariants of the 
curve. The pseudo-orthonormality of the tractor Frenet frame implies a lot of symmetries among these 
coefficients.

Just from (25) we have

U ′
0 = U1, (30)

U ′
1 = K1U0 − U2, where K1 := −1

2U
′ · U ′ (31)

is the first nontrivial coefficient, the first conformal curvature of the curve. In general, for any admissible i, 
the derivative U ′

i is a linear combination of tractors U0, U1, . . . , U i+1, namely,

U ′
i = (U ′

i · U2)U0 + (U ′
i · U1)U1 + (U ′

i · U0)U2 + (U ′
i · U3)U3 + · · · + (U ′

i · U i+1)U i+1,

where the coefficients satisfy U ′
i ·U j = −U i ·U ′

j and they have to vanish if i = j or j ≥ i +2. In particular, 
from (30) we may read U ′

0 ·U1 = 1 and U ′
0 ·U j = 0, for j = 0, 2, . . . , n + 1. Similarly, from (31) we further 

read U ′
1 · U2 = K1 and U ′

1 · U j = 0, for j = 1, 3, . . . , n + 1. Substituting these facts into the previous 
display, for i = 2, we see that the only unknown coefficient is the one of U3, i.e. U ′

2 ·U3. It however follows 
that this coefficient is constant so that we have

Lemma 4.1.

U ′
2 = −K1U1 − U3. (32)

Proof. From (29), according to (25) and (11), we obtain

V 3 = U ′′ − (U ′′ · U)U + (U ′′ · U ′)T .
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Using U ′′ · U = −U ′ · U ′, which is a consequence of U · U ′ = 0, we obtain

V 3 · V 3 = U ′′ · U ′′ − (U ′ · U ′)2 = Φ = 1

and thus U3 = V 3. From (25) and (29) we know that U ′
2 equals to −U ′′ mod

〈
T ,U

〉
, respectively 

−V 3 mod
〈
U0,U1

〉
. Hence U ′

2 · U3 = −V 3 · U3 = −1. �
Following the same ideas as before, one gradually and easily obtains

U ′
3 = U0 + K2U4,

U ′
i = −Ki−2U i−1 + Ki−1U i+1, for i = 4, . . . , n,

U ′
n+1 = −Kn−1Un,

(33)

where K2, . . . , Kn−1 are the higher conformal curvatures of the curve. The bunch of equations (30), (31), 
(32) and (33) form the tractor Frenet equations associated to the curve. Schematically they may be written 
as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U ′
0

U ′
1

U ′
2

U ′
3

U ′
4

...
U ′

n+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
K1 −1

−K1 −1
1 K2

−K2
. . . . . .

Kn−1
−Kn−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U0
U1
U2

U3
U4
...

Un+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (34)

Altogether, we summarize as follows:

Proposition 4.2. The system of tractor Frenet equations determines a generating set of absolute conformal 
invariants of the curve. On a conformal Riemannian manifold of dimension n, it consists of n −1 conformal 
curvatures that are expressed, with respect to the conformal arc-length parametrization, as

Ki =
{
U ′

1 · U2, for i = 1,
U ′

i+1 · U i+2, for i = 2, . . . , n − 1.
(35)

In (31) we have an alternative expression of the first conformal curvature in terms of initial tractors. 
Thus, as a consequence of Proposition 2.1 and the ensuing definition, we obtain an interpretation of that 
invariant:

Proposition 4.3. The conformal arc-length parameter belongs to the projective family of parameters if and 
only if K1 = 0.

Remarks 4.4.

(1) The matrix in (34) is skew with respect to the inner product corresponding to (28). A change of basis 
leads to a different matrix realization, e.g., just a permutation of the frame tractors leads to following 
rewriting of (34):
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U ′
0

U ′
1

U ′
3

...
U ′

n

U ′
n+1

U ′
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
K1 −1
1 K2

−K2
. . . . . .

Kn−1
−Kn−1

−K1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U0

U1
U3
...

Un

Un+1

U2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This block decomposition reflects the standard grading of the Lie algebra so(n +1, 1) with the parabolic 
subalgebra corresponding to the block lower triangular matrices. This choice is very close to the ones 
in [20] or [5].

(2) For generic curves, the (n +2)-tuple of derived tractors is linearly independent. For specific curves, this 
is not the case and we cannot build the full tractor Frenet frame and all tractor Frenet formulas. One 
may however mimic the previous procedure as long as the tractors are independent:
If, say, the tractors T , U , U ′, . . . , U (i) are linearly independent and U (i+1) belongs to their span, 
then they form a parallel subbundle in T of rank i + 2 with the corresponding orthonormal trac-
tors U0, U1, U2, . . . , U i+1. This yields a part of the tractor Frenet formulas above, in which the first 
i −1 conformal curvatures occur; the remaining ones may be considered to be zero. (In this vein, confor-
mal circles may be considered as the most degenerate curves whose all conformal curvatures vanish, cf. 
Proposition 3.3.) In the flat case, this means that the curve itself is contained in an i-sphere, respectively 
i-plane, i.e. in the conformal image of an i-dimensional Euclidean subspace. See also [9, section 12] for 
further details.

(3) For space- and time-like curves in the case of indefinite signature, we remark the following: The same 
transformations as in (25) lead to the relations (26) where the type of curve is reflected just in the sign 
of the middle element, hence also in the signature of the subbundle 

〈
T ,U ,U ′〉 in T . The orthogonal 

complement of this subbundle in T has in general indefinite signature. Thus, the tractors V i from (29)
may have any sign, including zero. If the sign is negative, we just adjust the corresponding definition 
of U i and, accordingly, one sign in the bottom-right block of (28) changes. If the tractor V i is isotropic 
then we cannot satisfy both the diagonal form of the bottom-right block of (28) and the condition 
U i ∈ 〈T ,U , . . . ,U (i−1)〉. Of course, one can always transform given tractors to a pseudo-orthonormal 
tractor frame, but only with some additional choices. The rest remains basically the same, only the 
tractor Frenet formulas may look different and some of the resulting invariants has to be related to 
the respective choices. (Nevertheless, it is clear that the exceptional conformal curvature K1 and its 
interpretation as in Proposition 4.3 are not influenced by these issues.) These observations lead to a finer 
type characterization of space- and time-like curves. Its complete branching structure is manageable 
only in a concrete dimension and signature.

4.2. Conformal curvatures revised

In the definition above, the orientation of the last tractor from the tractor Frenet frame was a matter of 
choice. In what follows we assume the orientation of Un+1 is chosen so that it belongs to the same half-space 
as U (n) with respect to the hyperplane 

〈
U0, . . . ,Un

〉
. Thus, according to (29), we have

U (i) = V i+1 mod
〈
U0,U1, . . . ,U i

〉
, (36)
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for any i = 3, . . . , n. Also, from definitions and the tractor Frenet formulas, one progressively obtains

T = U0, U = U1, U ′ = −U2 + K1U0, U ′′ = U3 + 2K1U1 + K ′
1U0, etc. (37)

In particular, it holds U ′′ = U3 mod
〈
U0,U1,U2

〉
. Similarly, it follows that U ′′′ = K2U4 mod〈

U0,U1,U2,U3
〉

and, inductively,

U (i) = K2 · · ·Ki−1U i+1 mod
〈
U0,U1, . . . ,U i

〉
, (38)

for i = 3, . . . , n. Altogether, from (36), (38) and U i = V i/
√
V i · V i, we obtain

K2 · · ·Ki−1 =
√

V i+1 · V i+1,

which leads to the following conclusion:

Proposition 4.5. With respect to the conformal arc-length parametrization, the higher conformal curvatures 
can be expressed as

Ki =

√
V i+2 · V i+2
V i+1 · V i+1

, for i = 2, . . . , n − 1. (39)

In particular, all these curvatures are positive. The first conformal curvature K1 does not fit to this 
uniform description and its sign may be arbitrary, including zero.

An expansion of (39), according to (25) and (29), provides expressions of higher conformal curvatures in 
terms of initial tractors. Instead of exploiting this demanding procedure, we are going to use the relative 
conformal invariants from subsection 2.3. From the construction of the tractor Frenet frame it follows 
that Δi+1 = Δi(V i · V i), for all admissible i. Since Δ3 = −1, we see that all admissible determinants 
are negative. Hence we can express V i · V i as a quotient of determinants, whose substitution into (39)
yields

Ki =
√

Δi+1Δi+3

−Δi+2
. (40)

Up to this point, everything has been related to the parametrization by the conformal arc-length. Now 
we consider an arbitrary parametrization of the curve.

Theorem 4.6. With respect to an arbitrary parametrization of the curve, the higher conformal curvatures 
can be expressed as

Ki =
√

Δi+1Δi+3

−Δi+2
4
√

−Δ4
, for i = 2, . . . , n − 1. (41)

Proof. According to Lemma 2.2, the weight of the right hand side of (41) is

1
2 (i + 1)(i − 2) + 1

2 (i + 3)i − (i + 2)(i − 1) − 1 = 0,

thus it defines an absolute conformal invariant. With respect to the conformal arc-length parametrization, 
(41) coincides with (40), hence the statement follows. �
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Alternatively, the statement is deducible from (40) by the reparametrization according to subsection 2.2
and Lemma 2.2, where g′ = Φ 1

4 . That way, we may obtain also an expression of the very first conformal 
invariant, K1, which does not fit to the just given description: Its expression with respect to the conformal 
arc-length is given in (31), which transforms under reparametrizations according to (15). The substitution 
of g′ = Φ 1

4 and a small computation reveals that

Proposition 4.7. With respect to an arbitrary parametrization of the curve, the first conformal curvature can 
be expressed as

K1 = −1
2Φ− 1

2
(
U ′ · U ′ − 1

2 (ln Φ)′′ + 1
16 (ln Φ)′2) =

= −1
2Φ− 5

2
(
Φ2 U ′ · U ′ − 1

2ΦΦ′′ + 9
16Φ′ 2) .

(42)

Remarks 4.8.

(1) Not only the conformal curvatures, but the tractor Frenet frame itself can be built with respect to 
an arbitrary parametrization. E.g. expressions of the first three tractors (25) transform, under the 
reparametrization according to (14) with g′ = Φ 1

4 , so that

U0 = Φ 1
4 T ,

U1 = U + 1
4 (ln Φ)′ T ,

U2 = −Φ− 1
4
(
U ′ + 1

4 (ln Φ)′ U +
(1

2U
′ · U ′ + 1

32 (ln Φ)′2)T
)
.

(43)

(2) Our exceptional invariant K1 corresponds to a similarly exceptional invariant Jn−1 of [9, section 5] as 
follows. For any relative conformal invariant Q of weight 1, an appropriate combination of Q and its 
derivatives leads to an appropriate transformation of the new quantity under reparametrizations of the 
curve. Namely, with the same conventions as yet,

2Q̃Q̃′′ − 3Q̃′ 2 = g′ −4 (2QQ′′ − 3Q′ 2 − 2S(g)Q2) .

Combining with (15), it easily follows that the function

Q−2 U ′ · U ′ − 2Q−3Q′′ + 3Q−4Q′ 2

is an absolute conformal invariant of the curve. Now, the substitution Q = Φ 1
4 leads to an invariant, 

which differs from our K1, respectively Fialkow’s Jn−1, just by a constant multiple. (For the comparison 
with Jn−1, the formula (44) from the next subsection is needed.)

4.3. Conformal curvatures in terms of Riemannian ones

Expanding any of the above expressions for the conformal curvatures yields very concrete and very ugly 
formulas in terms of the underlying derived vectors. As a compromise between the explicitness and the 
ugliness we show how to rewrite the previous formulas in terms of the Riemannian curvatures of the curve. 
This way we will also be able to compare our invariants with their more classical counterparts.

Within this paragraph we consider a generic curve parametrized by the Riemannian arc-length parameter, 
according to a chosen scale. The corresponding Riemannian Frenet frame is denoted by (e1, . . . , en) and the 
Riemannian Frenet formulas are2

2 Warning: in this subsection we relax the abstract indices, i.e. we write ei rather than ea
i etc. The raising and lowering indices 

with respect to the chosen metric is denoted by � and �, respectively.
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e′
1 = κ1e2,

e′
i = −κi−1ei−1 + κiei+1, for i = 2, . . . , n − 1,

e′
n = −κn−1en−1,

where primes denote the derivative with respect to the Riemannian arc-length and κ1, . . . , κn−1 are the 
Riemannian curvatures of the curve. Accordingly, the expressions (3) and (4) read as

u = 1, U = e1, U ′ = κ1e2, U ′′ = −κ2
1e1 + κ′

1e2 + κ1κ2e3, etc.

Following the development of subsection 2.1, the first tractors are

T =
(0

0
1

)
, U =

( 0
e1
0

)
, U ′ =

( −1
κ1e2

−P(e1, e1)

)
,

U ′′ =
( 0

−κ2
1e1 + κ′

1e2 + κ1κ2e3 − P(e1, e1)e1 − P(e1,−)�

∗

)
.

Hence we obtain

U ′ · U ′ = κ2
1 + 2P(e1, e1),

Φ = U ′′ · U ′′ − (U ′ · U ′)2 = κ′ 2
1 + κ2

1κ
2
2 + terms involving P.

(44)

Substitution of (44) into (42) leads to an expression of the first conformal curvature K1 in terms of first 
two Riemannian curvatures κ1, κ2, some terms involving the Schouten tensor and their derivatives. The full 
expansion leads to a huge formula even in the flat case.

Formula enthusiasts may continue further in this spirit and express the higher derived tractors. We add 
some details on the Gram matrix corresponding to the first five tractors. It is displayed in (13) where, 
modulo terms involving P,

α = κ2
1, β = κ′ 2

1 + κ4
1 + κ2

1κ
2
2,

γ = 9κ2
1κ

′ 2
1 + (κ′′

1 − κ3
1 − κ1κ

2
2)2 + (2κ′

1κ2 + κ1κ
′
2)2 + κ2

1κ
2
2κ

2
3.

Of course, the term κ3 is nontrivial only if n ≥ 4. From this and (41) one could deduce an expression for 
the second conformal curvature K2 in terms of κ1, κ2, κ3, P and their derivatives. Although the result is 
expected to be messy, it can be condensed into the following neat form:

K2 =
(
κ′ 2

1 + κ2
1κ

2
2
)− 5

4
(
(2κ′ 2

1 κ2 + κ2
1κ

3
2 + κ1κ

′
1κ

′
2 − κ1κ

′′
1κ2)2 + (κ′ 2

1 + κ2
1κ

2
2)κ2

1κ
2
2κ

2
3
) 1

2 ,

modulo terms involving P.

Remark 4.9. In the flat case, for n = 3, the previous display agrees precisely with the invariant which is 
called conformal torsion in [5] (the other invariant there corresponds to our K1). Note that vanishing of K2

in such case is equivalent to κ2 = 0, or κ2 �= 0 and κ2
κ1

=
(

κ′
1

κ2
1κ2

)′
. The former condition means that the 

curve is planar, the latter one means the curve is spherical. By virtue of Remark 4.4(2), this is an expected 
behaviour.

For another comparisons let us also describe first few tractors from the tractor Frenet frame constructed 
in subsection 4.1. According to (43), the easy tractors are
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U0 = Φ 1
4

(0
0
1

)
, U1 =

⎛
⎝

0
e1

1
4 (ln Φ)′

⎞
⎠ , U2 = −Φ− 1

4

⎛
⎜⎝

−1
1
4 (ln Φ)′e1 + κ1e2
1
32 (ln Φ)′ 2 + 1

2κ2
1

⎞
⎟⎠ ,

where Φ is given in (44). The first nontrivial step concerns an expression of U3, which one calculates as

U3 = Φ− 1
2

⎛
⎝

0
κ′

1e2 + κ1κ2e3 + P(e1, e1)e1 − P(e1,−)�

κ1κ
′
1

⎞
⎠ . (45)

Remarks 4.10.

(1) Incidentally, the middle slot of the tractor in (45) corresponds to the starting quantity in Fialkow’s 
approach, the so-called first conformal normal of the curve, cf. [9, equation (4.21)]. Using this and an 
invariantly defined derivative along the curve (with respect to the conformal arc-length parameter), the 
conformal Frenet identities and the corresponding n − 2 conformal curvatures are deduced in [9, sec-
tion 4]. The last Fialkow’s conformal curvature is constructed ad hoc in [9, section 5], see the discussion 
in Remark 4.8(2).

(2) At this stage we can easily count the orders of individual invariants although some estimates could be 
done earlier. The relative conformal invariant Φ is of order 3, cf. (44). From this and (42) we see that 
the first conformal curvature K1 is of order 5. For i ≥ 2, an estimate based on (41) yields the order of 
ith conformal curvature Ki is at most i + 3, but the current expressions show it is actually i + 2.

5. Null curves in general signature

The next step is to consider possible generalizations of the previous treatment to conformal manifolds 
of arbitrary signature. Thus, in the following we suppose that M is a conformal manifold of dimension 
n = p + q and signature (p, q) and T is the standard tractor bundle with the tractor metric of signature 
(p + 1, q + 1). Generally, we should distinguish curves according to the type of tangent vectors/tractors 
and also according to the type of further tractors in the tractor Frenet frame. This leads to a diversity of 
possible cases, cf. Remark 4.4(3). The typical situation we need to understand is when the tangent vector 
together with its several derivatives generate a totally isotropic subspace of the tangent space, cf. the notion 
of r-null curves below. One can view this as a counterpart of the Riemannian setting discussed so far. In 
the last subsection we discuss the Lorentzian signature in more detail.

5.1. r-null curves

For null curves the density (3) vanishes identically and cannot be used for the lift to T . Depending on 
the signature, we may consider curves that are more and more isotropic, without being degenerate. On a 
conformal manifold of signature (p, q), for any r ≤ min{p, q}, a curve is called the r-null curve if the vectors 
Ua, . . . , U (r−1)a are linearly independent and null, whereas U (r)a is not null. Consequently, it holds

U (i)
c U (j)c =

{
0, for i + j < 2r,
(−1)r−iU

(r)
c U (r)c, for i + j = 2r.

(46)

Note that the notion of r-null curves is well defined as it does not depend on the chosen scale. Indeed, one 
can easily verify by induction using (1) that

Û (i)a = U (i)a mod 〈Ua, . . . , U (i−1)a〉,
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for all 1 ≤ i ≤ 2r. In this vein, space- and time-like curves may be termed 0-null curves. As an opposite 
extreme, we use the notation ∞-null curves for curves, whose all vectors U (i)a are isotropic; such curves 
are necessarily degenerate. The most prominent—and the most degenerate—instance of such curves are the 
null geodesics.

For an r-null curve, it follows from (1) that the norm squared of U (r)c is a nowhere vanishing density of 
conformal weight 2. Thus,

u :=
√

|U (r)
c U (r)c| ∈ E [1]

provides a lift T ∈ T as in (7), to which we add the derived tractors U , U ′ etc. as before. Explicit expressions 
are very analogous to those in (9), (10) etc. up to some shift. For i ≤ 2r, we have

U (i) =

⎛
⎜⎝

0
u−1U (i)a + · · ·

∗

⎞
⎟⎠ ,

where the zero in the primary slot appears as −u−1UcU
(i−1)c = 0 and the dots in the middle slot denote 

terms of lower order. In particular, we have T · T = · · · = U (r−1) · U (r−1) = 0 and

ε := U (r) · U (r) = ±1. (47)

The first nontrivial quantity is U (r+1) · U (r+1). In order to simplify expressions, we will use the notation

α := U (r+1) · U (r+1), β := U (r+2) · U (r+2), γ := U (r+3) · U (r+3), etc. (48)

The pattern of the initial relations remains the same as in (13) up to the signs concerning ε and a shift in 
the south-east direction. After some computation, one shows that the first few antidiagonals of the Gram 
matrix read as

U (i) · U (j) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, for i + j < 2r,
(−1)r−i ε, for i + j = 2r,
0, for i + j = 2r + 1,
(−1)r+1−i α, for i + j = 2r + 2,
(−1)r+1−i 2(r−i)+3

2 α′, for i + j = 2r + 3,
(−1)r−i β + (−1)r+1−i (r−i+2)2

2 α′′, for i + j = 2r + 4,

(49)

where we use the convention U (−1) := T .
Under the reparametrization t̃ = g(t) as in subsection 2.2, one easily verifies that T̃ = g′ r+1T , from 

which one deduces the transformations of higher order tractors. Considering U(i) := 0, for i < −1, it turns 
out that

Ũ
(k)

= g′ r−k
(
U (k) + Akg

′ −1g′′U (k−1) + (Bkg
′ −1g′′′ − Ckg

′ −2g′′ 2)U (k−2) + · · ·
)

, (50)

for k = 0, 1, . . . , where the coefficients Ak, Bk, Ck are given by the recurrence relations

Ak+1 = Ak + r − k,

Bk+1 = Bk + Ak,

Ck+1 = Ck − (r − k − 1)Ak,
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with the initial conditions A0 = r +1, B0 = 0 and C0 = 0. It is an elementary, but tedious, exercise to solve 
and tidy up this system. For k = r + 1, it turns out that

Ar+1 = 1
2 (r + 1)(r + 2),

Br+1 = 1
6 (r + 1)(r + 2)(2r + 3),

Cr+1 = −1
8 (r + 1)(r + 2)(r2 − r − 4).

From this and the initial relations it follows that

α̃ = g′ −2 (α − 2εBr+1g
′ −1g′′′ + ε(A2

r+1 + 2Cr+1)g′ −2g′′ 2) .

Since A2
r+1 + 2Cr+1 = 3Br+1, the previous simplifies to

α̃ = g′ −2 (α − 2εBr+1S(g)) . (51)

Thus, the equation α = 0, regarded as a condition on the parametrization of an r-null curve, determines a 
preferred family of parametrizations with freedom the projective group of the line. This is a generalization 
of Proposition 2.1 which just corresponds to r = 0. Altogether we may conclude with

Proposition 5.1. For any admissible r, any r-null curve carries a preferred family of projective parameters.

It is well known that null geodesics carry a preferred family of affine parameters.
Further, the Gram determinants are defined and denoted just the same as in (17). Initial relations for 

an r-null curve lead to Δi = 0, for i = 1, . . . , 2r + 2, and Δ2r+3 = −ε. The first potentially nontrivial 
determinant is Δ2r+4. Analogously to Lemma 2.2 we have

Lemma 5.2. Along any r-null curve, the Gram determinant Δi, for i = 2r + 4, . . . , n + 2, is a relative 
conformal invariant of weight i(i − 2r − 3).

For any i = 2r + 4, . . . , n + 2, the vanishing of Δi is equivalent to the fact that the determining tractors 
are linearly dependent. The weight of any Δi is even, hence its sign is not changed by reparametrizations. In 
contrast to Lemma 2.3 (corresponding to r = 0), we cannot say anything about the particular sign of Δ2r+4. 
For an r-null curve with nowhere vanishing Δ2r+4, we define the conformal pseudo-arc-length parameter by 
integration of the 1-form

ds := 2r+4
√

|Δ2r+4(t)| dt (52)

along the curve; it is given uniquely up to an additive constant. The invariant Δ2r+4 (hence also all higher 
ones) may vanish. In particular, this happens automatically if 2r + 4 > n + 2, i.e. if n < 2r + 2. From the 
introductory counts we know that r and n are related by n ≥ 2r, therefore the critical dimensions are n = 2r
and 2r + 1. In such cases, none of the just considered invariants can be used to define a natural parameter 
of the curve. However, there is another couple of relative conformal invariants as shown in subsection 5.2
below; see also Remark 5.15 for further comments.

At this stage, we sketch how to adapt the construction of the tractor Frenet frame from subsection 4.1
for r-null curves with the pseudo-arc-length defined. The smallest nondegenerate subbundle in T gradually 
built from the derived tractors is 

〈
T ,U , . . . ,U (2r+1)〉. The restriction of the tractor metric to this subbundle 
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has signature (r + 2, r + 1), respectively (r + 1, r + 2), thus its orthogonal complement in T has signature 
(p − r − 1, q − r), respectively (p − r, q − r − 1). We may always start with the prescription

U0 := T , U1 := U , . . . , U r+1 := U (r). (53)

Then we have to consider transformations determining U i ∈
〈
T ,U , . . . ,U (i−1)〉, for i = r + 2, . . . , 2r + 2, 

so that the Gram matrix corresponding to the tractors (U0, . . . , U2r+2) is antidiagonal with values ±1
(this substitutes the upper-left block in (28)). Note that in contrast to the case r = 0, the definition for 
U r+2, . . . , U2r+2 is not unique. This freedom is already visible from the first tractor of this subsequence 
which may be given as

U r+2 = −εU (r+1) − 1
2εαU (r−1) + · · · , (54)

where the dots stay for any linear combination of lower order tractors U (r−2), . . . , T . To accomplish the full 
tractor frame, i.e. to determine (U2r+3, . . . , Un+1), we continue by an orthonormalization process. Going 
along, we may meet an isotropic tractor: in such case we face the same problem as discussed in Remark 4.4(3) 
and some additional choices are inevitable.

Having constructed the tractor Frenet frame, we differentiate with respect to the conformal pseudo-arc-
length to obtain the tractor Frenet equations with the generating set of absolute conformal invariants. Just 
from (53) and (54) we easily deduce first few Frenet-like identities:

U ′
0 = U1, . . . , U ′

r = U r+1,

U ′
r+1 = K1U r − εU r+2, where K1 := −1

2εα.

Clearly, the first conformal curvature is not affected by the freedom in the construction of the tractor 
Frenet frame. From the expression of K1 and the remark preceding Proposition 5.1 we immediately have 
the following generalization of Proposition 4.3.

Proposition 5.3. The conformal pseudo-arc-length parameter belongs to the projective family of parameters 
of an r-null curve if and only if K1 = 0.

The freedom in the construction of (U r+2, . . . , U2r+2) influences the corresponding part of tractor 
Frenet equations and so the corresponding conformal curvatures, namely, K2, . . . , Kr+1. The respective 
freedom in the construction of (U2r+3, . . . , Un+1) influences some of the remaining conformal curvatures 
Kr+2, . . . , Kn−r−1. Notably, they are n − r − 1 in total.

Various expressions analogous to (35) and (39) (with respect to the conformal pseudo-arc-length param-
eter), or (41) and (42) (with respect to an arbitrary parameter) are deducible. We provide more details only 
in subsection 5.4 for the case of Lorentzian signature.

5.2. Invariants of Wilczynski type

For an r-null curve, vanishing of Δ2r+4 means that the tractors T , U , . . . , U (2r+2) are linearly dependent. 
Since the first 2r+3 tractors from this sequence are linearly independent and U (k) = T (k+1), this condition 
may be interpreted as a tractor linear ODE,

T (2r+3) + q2r+2T
(2r+2) + · · · + q1T

′ + q0T = 0, (55)

where q0, . . . , q2r+2 are functions expressible in terms of pairings of the initial tractors. Following [21, ch. II, 
§4], we may consider the so-called Wilczynski invariants of this equation, i.e. the set of 2r + 1 essential 
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invariants denoted as Θ3, . . . , Θ2r+3 (the indices indicate weights). Of course, we may associate Wilczynski 
invariants to the linear differential operator on the left hand side of (55), i.e. also to general r-null curves 
with nonzero Δ2r+4. As a matter of fact, these invariants are relative conformal invariants of the curve.

Assuming q2r+2 = 0, i.e. the so-called semi-canonical form, an explicit form of first two of these invariants 
is given by the following Lemma.

Lemma 5.4 ([17]). Let y(k) + qk−2y
(k−2) + · · · + q0y = 0 be a linear ODE of kth order in the semi-canonical 

form (qk−1 = 0). Then the first two Wilczynski invariants are

Θ3 = qk−3 − k − 2
2 q′

k−2,

Θ4 = qk−4 − k − 3
2 q′

k−3 + (k − 2)(k − 3)
10 q′′

k−2 − (5k + 7)(k − 2)(k − 3)
10k(k + 1)(k − 1) q2

k−2.

The formula for Θ3 and Θ4 was known already to Laguerre and Schlesinger, respectively, both predating 
the work of Wilczynski. Accurate references and modern treatment of this classical subject can be found in 
[18, section 4.1].

Now we need to relate coefficients qi from the equation (55) to quantities α, β, γ etc. from (48). By pairing 
both sides of (55) with T , it follows from (49) that q2r+2 = 0, i.e. the equation is in the semi-canonical 
form. Considering similarly the pairing of both sides of (55) with T ′ = U , T ′′ = U ′ and with T ′′′ = U ′′, 
one computes

q2r+2 = 0, q2r+1 = εα, q2r = 2r + 1
2 εα′, q2r−1 = −εβ + r2

2 εα′′ + α2. (56)

Combining this with Lemma 5.4, we obtain the resulting form of Θ4:

Proposition 5.5. Let ε, α and β be the quantities associated to an r-null curves (with respect to an arbitrary 
parametrization) as in (47) and (48). Then Θ3 = Θ5 = 0 and

Θ4 = −εβ − r(r + 3)
10 εα′′ + (r + 3)(2r + 5)(5r + 4)

10(r + 1)(r + 2)(2r + 3)α
2

is a relative conformal invariant of the weight 4.

Proof. Both vanishing of Θ3 and the form of Θ4 follows from (56) and Lemma 5.4, where k = 2r + 3. The 
particular weight of Θ4 follows from the definitions (48) and the exponent of g′ in (50).

To show Θ5 = 0, we shall for simplicity assume a projective parametrization of the curve, i.e. α = 0. In 
particular, the equation is in the canonical Laguerre–Forsyth form for which the expressions of Wilczynski 
invariants are well known, see [21, ch. II, eqn. (48)]. Analogously to the computation leading to (56), we 
obtain

U (i) · U (2r+5−i) = (−1)r−i 2(r − i) + 5
2 β′ and q2r−2 = −2r − 1

2 εβ′.

Now substituting coefficients q2r−1 and q2r−2 into the just referred formula, one easily verifies that 
Θ5 = 0. �

Observe that Θ4 recovers Δ4 from (18) for r = 0.
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Remarks 5.6.

(1) The Laguerre–Forsyth form of the equation is preserved by transformations with freedom the projective 
group of the line, which corresponds precisely to the condition α = 0. Also, it follows that the linear 
equation is equivalent to the trivial equation if and only if all Wilczynski invariants vanish. In our case, 
this is equivalent to the vanishing of α, β, etc. from (48) up to U (2r+2) · U (2r+2).

(2) Experiments with specific r’s suggest the equation (55) could be self-adjoint, i.e. all odd Wilczynski 
invariants vanish. This would mean that we have just r (rather than 2r) new and potentially nontrivial 
invariants Θ4, . . . , Θ2r+2.

5.3. Conformal null helices

For any space- or time-like curve with an arbitrary parametrization, a metric in the conformal class may 
be chosen so that U ′ a = 0, cf. (5). For null curves, this condition holds only if the curve is null geodesic, i.e. 
the null curve whose acceleration vector U ′ a is proportional to Ua. Consequently, all higher order vectors 
are proportional to Ua. These curves, although very important, cannot be lifted to the standard tractor 
bundle in the sense considered above. That is why they are excluded from our considerations.

For an r-null curve, we see from (46) and the subsequent discussion that the vectors Ua, . . . , U (2r)a are 
linearly independent for any choice of scale. Therefore we cannot achieve any of the conditions U ′ a = 0, 
. . . , U (2r)a = 0 by a conformal change of metric. The simplest conceivable statement is

Lemma 5.7. For an r-null curve with an arbitrary parametrization, a metric in the conformal class may be 
chosen so that U (r)

c U (r)c = ±1 and U (2r+1)a = 0.

Proof. This can be proved by various means. For the sake of latter references, we employ the tractors 
anyhow it may seem artificial. Firstly, we may always choose the metric so that U (r)

c U (r)c = ±1. With this 
assumption, the tractors associated to the curve have the form

T =
(0

0
1

)
, U =

( 0
Ua

0

)
, U ′ =

( 0
U ′ a

ρ1

)
, . . . ,

U (j) =

⎛
⎝

εj

U (j)a mod 〈Ua, . . . , U (j−2)a〉
ρj

⎞
⎠ ,

for j = 2, . . . , 2r + 1, where ρj are in general nonzero while all εj vanish except for ε2r+1 = (−1)r−1.
Secondly, the choice of metric may be adjusted so that the bottom slot of U ′ vanishes and the expressions 

of previous tractors are unchanged: according to (6), the corresponding Υa has to satisfy ΥcU
′ c = ρ1 and 

ΥcU
c = 0. Hence U ′′ =

( 0
U ′′ a

ρ2

)
, i.e. there is only the leading term in the middle slot. Inductively, we may 

achieve a rescaling so that U (j) =
(

0
U(j)a

0

)
, for all j ≤ 2r. Hence U (2r+1) =

(
(−1)r−1

U(2r+1)a

∗

)
. Finally, we may 

consider a rescaling so that the middle slot of the last tractor vanishes: according to (6), the corresponding 
Υa equals to (−1)rU (2r+1)a along the curve. Hence the statement follows. �

Now we are ready to identify the closest relatives of conformal circles among r-null curves. We know 
from preceding subsections that the first 2r+3 derived tractors T , U , . . . , U (2r+1) are linearly independent. 
Therefore we can never achieve any of the conditions U ′′ = 0, . . . , U (2r+1) = 0 for r-null curves. The 
simplest conceivable condition appears in item (a) of the following Theorem.
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Theorem 5.8. For an r-null curve, the following conditions are equivalent:

(a) the curve with a projective parametrization (α = 0) obeys U (2r+2) = 0,
(b) the curve (with and arbitrary parametrization) obeys Δ2r+4 = 0 and Θ4 = · · · = Θ2r+3 = 0,
(c) there is a metric in the conformal class such that U (r)

c U (r)c = ±1, U (2r+1)a = 0 and U cPca = 0.

Proof. Expressing the condition Δ2r+4 = 0 as (55), the equivalence of (a) and (b) follows from the general 
theory of linear differential equations and the fact that Θ3 vanishes automatically, cf. Proposition 5.5 and 
Remark 5.6(1).

For the rest we assume the scale is chosen as in the proof of Lemma 5.7. In such scale, the derived tractors 
are

T =
(0

0
1

)
, U =

( 0
Ua

0

)
, . . . , U (2r) =

⎛
⎝

0
U (2r)a

0

⎞
⎠ , U (2r+1) =

⎛
⎝

(−1)r−1

0
−U cU (2r)dPcd

⎞
⎠ .

The additional assumption U cPca = 0 from (c) then yields U (2r+2) = 0 and so (a) holds.
Conversely, from (a) it in particular follows U (2r+1) · U (2r+1) = 0, hence the bottom slot of U (2r+1) has 

to vanish. Then U (2r+2) = 0 implies that U cPca = 0 and so (c) holds. �
Any curve satisfying (any of) the conditions (a)–(c) is called conformal r-null helix. The condition 

Δ2r+4 = 0 is equivalent to the fact that the subbundle 
〈
T ,U , . . . ,U (2r+1)〉 ⊂ T of rank 2r + 3 is parallel 

along the curve. In the flat case, this means that the conformal r-null helix is contained in the conformal 
image of a (2r + 1)-dimensional Euclidean subspace. With condition (c), it easily follows that these curves 
are just the conformal images of so-called null Cartan helices, cf. [7]. Note that the conformal circles fit to 
the just given description for r = 0.

Remark 5.9. As in subsection 3.3, one may construct conserved quantities along conformal r-null helices 
on specific conformal manifolds. The two examples mentioned in Propositions 3.5 and 3.6 have obvious 
counterparts for general r, provided that the respective functions are replaced by

s := U (2r+1) · S and k := K(U ,U (2r+1)).

The reasoning is the same, explicit expressions are analogous, but more complicated.

5.4. Remarks on Lorentzian signature

In this subsection we suppose an n-dimensional conformal manifold of Lorentzian signature (n − 1, 1), 
hence the standard tractor bundle T with the bundle metric of signature (n, 2). Following the scheme of 
previous subsections, a lot of things simplify as the maximal isotropic subspace in the tangent space has 
dimension one.

The only admissible r-null curves in this signature correspond to r = 1. Therefore we may speak without 
a risk of confusion just about null curves, instead of 1-null curves. The assumption UcU

c = 0 implies that 
UcU

′ c = 0, thus the vector U ′ a must be space-like. The lift to T is provided by the density u =
√

U ′
cU

′ c. The 
smallest nondegenerate subbundle in T built from the derived tractors is of rank m5 and has signature (3, 2). 
Hence its orthogonal complement is positive definite. The first few starting relations are indicated in the 
following Gram matrix for the sequence 

(
T , U , U ′, U ′′, U ′′′, U ′′′′), cf. (48) and (49):
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⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0
0 0 0 −1 0 α

0 0 1 0 −α −3
2α′

0 −1 0 α 1
2α′ 1

2α′′ − β

1 0 −α 1
2α′ β 1

2β′

0 α −3
2α′ 1

2α′′ − β 1
2β′ γ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

The projective parametrization of the null curve corresponds to α = U ′′ · U ′′ = 0.
The trivial Gram determinants are Δ1 = Δ2 = Δ3 = Δ4 = 0 and Δ5 = 1. The first nontrivial one is

Δ6 = γ + α′′α − 2βα − 9
4α′ 2 + α3,

provided that the dimension of conformal manifold is n ≥ 4, which is assumed in the rest of this subsection 
(the special case n = 3 is dealt individually in Remark 5.15). This invariant is nonnegative:

Lemma 5.10. Δ6 ≥ 0.

Proof. For a projective parametrization of the null curve, α = 0, we have Δ6 = γ. According to this choice, 
one easily verifies that the tractor

V 5 := U ′′′′ − β U − 1
2β′ T

belongs to the orthogonal complement of the subbundle 
〈
T ,U , . . . ,U ′′′〉 in T . This complement has the 

positive definite signature, hence we conclude with γ = U ′′′′ · U ′′′′ = V 5 · V 5 ≥ 0. Since the weight of Δ6
is even, it is a nonnegative function independently of the parametrization of the curve. �

Accordingly, the 1-form (52) leading to the definition of conformal pseudo-arc-length may be substituted 
by

ds := 6
√

Δ6(t) dt. (57)

Clearly, vanishing of Δ6 is equivalent to vanishing of V 5, which yields exactly the equation (55), for 
r = 1. Among the corresponding Wilczynski invariants, there is only one nontrivial, namely,

Θ4 = − 1
25 (25β + 10α′′ − 21α2), (58)

cf. Proposition 5.5. According to Theorem 5.8, we may conclude with

Proposition 5.11. Conformal null helices are characterized by the pair of equations

Δ6 = 0 and Θ4 = 0.

To build the tractor Frenet frame, we start with

U0 := T , U1 := U , U2 := U ′. (59)

Now, all admissible transformations determining U3 and U4, so that the 5-tuple (U0, . . .U4) has the 
antidiagonal Gram matrix, are

U3 := −U ′′ − 1
2αU + k T ,

U4 := U ′′′ + αU ′ + �U + 1
2(α2 − β)T ,

(60)
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where k + � = 1
2α′. For the rest of this demonstration we choose

k = 0 and � = 1
2α′. (61)

As mentioned above, the orthocomplement to the subbundle 
〈
T , . . . ,U ′′′〉 =

〈
U0, . . . ,U4

〉
has positive 

definite signature. Therefore, we easily complete the tractor Frenet frame

(U0, . . . ,U4;U5, . . . ,Un+1)

in the spirit of (29) so that U i ∈
〈
T ,U , . . . ,U (i−1)〉, for all admissible i, and the corresponding Gram 

matrix is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
...

1
1

. . .
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Now, differentiating with respect to the conformal pseudo-arc-length we approach the identities with the 
generating set of absolute conformal invariants. Just from (59) and (60), with respect to the choice (61), we 
easily deduce first four Frenet-like identities:

U ′
0 = U1, (62)

U ′
1 = U2, (63)

U ′
2 = K1U1 − U3, where K1 := −1

2α, (64)

U ′
3 = K2U0 − K1U2 − U4, where K2 := 1

2(α2 − β). (65)

The next step is subtle, but fully analogous to the one announced in Lemma 4.1: the only coefficient in the 
expression of U ′

4, which cannot be deduced from the previous identities, is the one of U5, i.e. U ′
4 · U5. It 

however follows that this coefficient is constant, namely,

U ′
4 = −K2U1 + U5. (66)

(The crucial point in the argument is the expression of V 5 and the observation that V 5 · V 5 = Δ6. Since 
we assume parametrization by the conformal pseudo-arc-length, this equals to 1, thus U5 = V 5.) The rest 
is easy so that one quickly summarizes as

U ′
5 = −U0 + K3U6,

U ′
i = −Ki−3U i−1 + Ki−2U i+1, for i = 6, . . . , n,

U ′
n+1 = −Kn−2Un.

(67)

The cluster of equations from (62) through (66) to (67) forms the tractor Frenet equations associated to the 
null curve determining its conformal curvatures. Schematically, the tractor Frenet equations may be written 
as
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U ′
0

U ′
1

U ′
2

U ′
3

U ′
4

U ′
5

U ′
6

...
U ′

n+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1

K1 −1
K2 −K1 −1

−K2 1
−1 K3

−K3

. . . . . .
Kn−2

−Kn−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U0

U1

U2

U3

U4

U5

U6
...

Un+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Altogether, we summarize as follows:

Proposition 5.12. The system of tractor Frenet equations determines a generating set of absolute conformal 
invariants of the null curve. On a conformal manifold of Lorentzian signature and dimension n ≥ 4, it 
consists of n − 2 conformal curvatures that are expressed, with respect to the conformal pseudo-arc-length 
parametrization, as

Ki =

⎧
⎨
⎩
U ′

i+1 · U i+2, for i = 1, 2

U ′
i+2 · U i+3, for i = 3, . . . , n − 2.

Among these curvatures, only K2 depends on additional choices in the construction of U3 and U4.

As in subsection 4.2, there are alternative ways of expressing the conformal curvatures. The first two, i.e. 
the two exceptional, conformal curvatures K1 and K2 are given in terms of initial tractors with respect to the 
conformal pseudo-arc-length parametrization in (64) and (65). One may obtain the expressions with respect 
to an arbitrary reparametrization by a substitution according to (51), respectively (50), where g′ = 6

√
Δ6. 

In the former case, one ends up with the formula very similar to the one in (42), the later case is more 
ugly. For the higher conformal curvatures we may proceed as follows. Firstly, an analogue of Proposition 4.5
turns out to be

Proposition 5.13. With respect to the conformal arc-length parametrization, the higher conformal curvatures 
can be expressed as

Ki =

√
V i+3 · V i+3
V i+2 · V i+2

, for i = 3, . . . , n − 2. (68)

Secondly, it holds Δi+1 = Δi(V i · V i), for all admissible i. Since Δ5 = 1, we in particular see that all 
admissible determinants are positive. Now, expressing V i · V i via the determinants, substituting into (68)
and passing to an arbitrary parametrization, we obtain the following substitute of Theorem 4.6:

Theorem 5.14. With respect to an arbitrary parametrization, the higher conformal curvatures can be ex-
pressed as

Ki =
√

Δi+2Δi+4

Δi+3
6
√

Δ6
, for i = 3, . . . , n − 2.
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Remark 5.15. As we already noticed, the study of null curves in dimension n = 3 requires an extra care. 
The relative invariant Δ6 vanishes automatically in that case, therefore it cannot be used to define the 
distinguished parametrization of the curve. However, we still have the Wilczynski invariant Θ4 given by (58). 
Thus, for a generic null curve in 3-dimensional manifold, we define an alternative conformal pseudo-arc-length
parameter by integrating the 1-form

ds := 4
√

|Θ4(t)| dt,

instead of (57). Accordingly, we may follow the construction of conformal invariants as above with the 
following conclusion: the whole tractor Frenet frame consists just from the first five tractors displayed in 
(59)–(60) and the corresponding tractor Frenet equations are just (62)–(66), with U5 = 0. In those equations, 
two conformal invariants appear, namely, K1 and K2. It however follows from their expressions, and the 
fact that Θ4 = 1 for the current conformal pseudo-arc-length parametrization, that K2 is expressible as a 
function of K1 and its derivatives, namely,

K2 = −2
5K ′′

1 + 8
25K2

1 + 1
2 .

Therefore we end up with only one significant absolute conformal invariant, K1, as expected. An interpre-
tation of that invariant is still the same as in Propositions 5.3.

In the case that Θ4 vanishes identically, we recover the conformal null helices discussed above, cf. Propo-
sition 5.11.
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