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Abstract

This habilitation thesis is concerned with constructions of new spline-wavelet bases
on the interval and product domains, their adaptations to boundary conditions, and
their applications. This thesis is a collection of eight previously published papers
[10, 11, 13, 14, 15, 17, 19, 23]. First, we introduce the concept of a wavelet basis
on a bounded interval and on tensor product domains. Then, we review the wavelet-
Galerkin method and adaptive wavelet methods for the numerical solution of operator
equations. Finally, we discuss constructions of quadratic and cubic spline wavelets
and we comment on the collected papers. Papers [10, 11, 15] are focused on the con-
struction of well-conditioned biorthogonal spline-wavelet bases on the interval where
both primal and dual wavelets have compact support. In [13, 14, 19, 23|, a local
support of dual wavelets is not required which enables the construction of wavelets
that have smaller supports and significantly smaller condition numbers than wave-
lets of the same type but with local duals. Another advantage is the simplicity of
the construction. In [17], we constructed wavelets where the corresponding matrices,
arising from discretization of second-order differential equations with coefficients that
are piecewise polynomials of degree at most four on uniform grids, are sparse and not
only quasi-sparse as for most wavelet bases. We used the constructed bases for solving
various types of operator equations, e.g. Poisson’s equation, the Helmholtz equation,
a fourth-order boundary value problem, and the Black-Scholes equation with two state
variables. We also applied the constructed bases for option pricing under Kou’s dou-
ble exponential jump-diffusion option pricing model which is represented by a partial
integro-differential equation.
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Introduction

Wavelet bases and the fast wavelet transform are a powerful and useful tool for sig-
nal and image analysis, detection of singularities, data compression, and also for the
numerical solution of partial differential equations, integral equations, and integro-
differential equations. One of the most important properties of wavelets is that they
have vanishing moments. Vanishing wavelet moments ensure the so-called compres-
sion property of wavelets. This means that integrals of a product of a function and a
wavelet decay exponentially, dependent on the level of the wavelet if the function is
smooth enough in the support of the wavelet. This enables the obtainment of sparse
representations of functions as well as sparse representations of some operators, see
e.g. [2, 28, 72].

There are two main classes of wavelet based methods for the numerical solution
of operator equations. The first method is the wavelet-Galerkin method. Due to
vanishing moments, the wavelet-Galerkin method leads to sparse matrices not only
for differential equations but also for integral and integro-differential equations while
the Galerkin method with the standard B-spline basis leads to full matrices if the
equation contains an integral term. Another important property of wavelet bases is
that they form Riesz bases in certain spaces, such as Lebesgue, Sobolev or Besov
spaces. Due to this property, the diagonally preconditioned matrices arising from
discretization using the Galerkin method with wavelet bases have uniformly bounded
condition numbers for many types of operator equations.

The second class of methods are adaptive wavelet methods. We focus on adaptive
wavelet methods that were originally designed in [29, 30] and later modified in many
papers [43, 52, 67]. For a large class of operator equations, both linear and nonlin-
ear, it was shown that these methods converge and are asymptotically optimal in the
sense that the storage and the number of floating point operations, needed to resolve
the problem with desired accuracy, depend linearly on the number of parameters rep-
resenting the solution. Moreover, the method enables higher-order approximation if
higher-order spline-wavelet bases are used. The solution and the right-hand side of
the equation have sparse representations in a wavelet basis, i.e. they can be repre-
sented by a small number of numerically significant parameters. Similarly as in the
case of the wavelet-Galerkin method, the differential and integral operators can be
represented by sparse or quasi-sparse matrices. For a large class of problems, the ma-
trices arising from a discretization using wavelet bases can be simply preconditioned
by a diagonal preconditioner, and the condition numbers of these preconditioned ma-
trices are uniformly bounded. For more details about adaptive wavelet methods, see
[7, 29, 30, 43, 52, 67, 72].
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The first wavelet methods used orthogonal wavelets, e.g. Daubechies wavelets or
coiflets. Their disadvantages are that the most orthogonal wavelets are usually not
known in an explicit form and their smoothness is typically dependent on the length
of the support. In contrast, spline wavelets are known in a closed form, are smoother,
and have shorter support than orthogonal wavelets with the same polynomial exact-
ness and the same number of vanishing moments. Therefore, they are preferable in
numerical methods for operator equations.

This habilitation thesis is concerned with constructions of new spline-wavelet bases
on the interval and product domains, their adaptations to boundary conditions, and
their applications. The thesis is conceived as a collection of the following eight previ-
ously published articles supplemented by commentary.

[10]

[11]

[13]

[14]

[15]

[17]

[19]

[23]

Cerné, D.; Finek, V.: Construction of optimally conditioned cubic spline wave-
lets on the interval, Adv. Comput. Math. 34(2), (2011), pp. 219-252. My
contribution to this paper was 60%.

Cernd, D.; Finek, V.: Cubic spline wavelets with complementary boundary con-
ditions, Appl. Math. Comput. 219(4), (2012), pp. 1853-1865. My contribution
to this paper was 60%.

Cernd, D.;: Finek, V.: Quadratic spline wavelets with short support for fourth-
order problems, Result. Math. 66(6), (2014), pp. 525-540. My contribution to
this paper was 60%.

Cerné, D.; Finek, V.: Cubic spline wavelets with short support for fourth-order
problems, Appl. Math. Comput. 243, (2014), pp. 44-56. My contribution to
this paper was 60%.

Cernd, D.; Finek, V.: Wawvelet basis of cubic splines on the hypercube satisfying
homogeneous boundary conditions, Int. J. Wavelets Multiresolut. Inf. Process.
13(3), (2015), article No. 1550014. My contribution to this paper was 60%.

Cerng, D.; Finek, V.: Sparse wavelet representation of differential operators
with piecewise polynomial coefficients, Axioms 6, (2017), article No. 4. My
contribution to this paper was 60%.

Cernd, D.; Finek, V.: Quadratic spline wavelets with short support satisfying
homogeneous boundary conditions, Electron. Trans. Numer. Anal. 48, (2018),
pp. 15-39. My contribution to this paper was 90%.

Cerna, D.: Cubic spline wavelets with four vanishing moments on the interval
and theiwr applications to option pricing under Kou model, Int. J. Wavelets
Multiresolut. Inf. Process. 17(1), (2019), article No. 1850061.

Papers [10, 11, 15] are focused on constructions of well-conditioned biorthogonal
spline wavelet bases on the interval where both primal and dual wavelets have com-
pact support. In [13, 14, 19, 23] we do not require local support of dual wavelets,
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which enables us to construct wavelet bases that have smaller support and have sig-
nificantly smaller condition number than wavelet bases with local duals. Moreover,
their construction is significantly simpler than constructions of wavelets with local
duals, which are typically quite long and technical. In [18], we constructed wavelets
that are orthogonal to piecewise polynomials of degree at most seven on a uniform
grid. Due to this property, matrices arising from discretization of second-order differ-
ential equations with coefficients that are piecewise polynomials of degree at most four
on uniform grids are sparse. We use the constructed bases for solving various types
of operator equations, e.g. Poisson’s equation, the Helmholtz equation, fourth-order
differential equations, and the Black-Scholes equation with two state variables. We
also applied the constructed bases for option pricing under Kou’s double exponential
jump-diffusion option pricing model. Other applications are presented in Chapter 2.

This thesis is organized as follows. In Chapter 1 we briefly review a concept
of a wavelet basis on a bounded interval, the fast wavelet transform on a bounded
domain, and two constructions of wavelet bases on product domains that are based on
tensorizing univariate wavelet bases. We also describe basic principles of the wavelet-
Galerkin method and adaptive wavelet methods. Since all the papers collected in this
thesis are concerned with constructions of quadratic or cubic spline wavelets on the
interval, in Chapter 2 we present existing constructions of such types of wavelets and
their applications.

Most of the papers presented in this thesis comes from a collaboration with my
colleague Vaclav Finék. I would like to thank him for this friendly and very helpful
collaboration. Most of the presented work was done at Technical University of Liberec.
I want to express my gratitude to all of my colleagues there for all the inspiration and
help. In particular, I am grateful to Jirka Hozman and Prof. Jan Picek, who allowed
me to collaborate with them on interesting projects.
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Chapter 1

Wavelet Basis

In this chapter, we introduce the concept of a wavelet basis on the interval and prod-
uct domains, the fast wavelet transform, the wavelet-Galerkin method, and adaptive
wavelet methods.

Wavelet bases were originally constructed as orthonormal bases for the space
L? (R) and later as Riesz bases for this space. One of the possibilities of how to
use these bases and the fast wavelet transform on a bounded domain is the extension
of a function or a signal near the boundary using for example zero padding, periodiza-
tion, or symmetrization, see e.g. [7, 8]. However, this approach can lead to boundary
effects, and it is not suitable for the numerical solution of operator equations in which
a basis has to be adapted to boundary conditions. We present another approach,
one where the wavelet bases on the real line are adapted to the interval with special
boundary functions that have to be constructed, such that the resulting basis is a
Riesz basis for a chosen space and the locality of the support, smoothness of basis
functions, the number of vanishing wavelet moments, and polynomial exactness are
preserved.

1.1 Wavelet Bases on Bounded Interval

In this section, we briefly recall the concept of a wavelet basis on a bounded interval
I C R; for more details refer to [7, 28, 31, 37, 41, 72]. Let J be at most countable
index set such that each index A\ € J takes the form A = (j, k), where |\| = j € Z
denotes a level. We define

vl = /ZU?\, for v ={u},cs, r €R, (1.1)
reJ

P(T)={v:v={n}s, v €R,|v] <oo}. (1.2)

We use the standard notation L? (I) for the space of all square-integrable functions
defined on I, ||-|| for the L%norm, and (-,-) for the L%-inner product. Let H C L? (I)
be a real separable Hilbert space equipped with the inner product (-, -) ;; and the norm
|-l ;;. For example, H can be the Sobolev space H} (I) of functions whose first weak

and

5



6 CHAPTER 1. WAVELET BASIS

derivatives are in L?(I) and that vanish at boundary points. First, a wavelet basis
U = {¢y, A € J} has to be a Riesz basis for H.

Definition 1. A family ¥ = {4, \ € J} is called a Riesz basis of H, if the span of
U is dense in H and there exist constants ¢, C' € (0, 00) such that

> by

AeJ

c|lbl| < <Clbll, Vb={b}, L) (13)

H

We refer to the constants
cy = sup {c: c satisfies (1.3)} and Cy =inf{C : C satisfies (1.3)} (1.4)

as lower and upper Riesz bounds (with respect to the H-norm), respectively, and to
the number cond ¥ = Cy/cy as the condition number of U. In some papers, the
squares of the norms are used in (1.3) and the Riesz bounds are defined as c2 and
C2. Riesz basis property is crucial for a uniform boundedness of condition numbers
of the discretization matrices. The set of functions is called a Riesz sequence in H if
there exist positive constants ¢ and C' that satisfy (1.3) but the closure of this set is
not necessarily H.

We view countable sets of functions I'; ® C L? (€2) also as the column vectors and
we use the symbol (I, ©) ,; to denote the matrix

<F7 @>H = {<’77 0>H}’y€f‘,9€@ . (1-5)

It is known that the constants ¢y and Cy satisfy

Cy = v/ )\min (<\I}7 \Il>)7 C\I’ = /\ma:v (<\Ij7\11>>’ (16)

where A\ ((U, W) and A\par ((¥, U)) are the smallest and the largest eigenvalues of
the matrix (W, W), respectively. Furthermore, the functions ¢, have to be local in the
sense that

diam supp ¥, < C27M. X e 7, (1.7)

where the constant C' does not depend on A, and at a given level 5 the supports of
only finitely many wavelets overlap at any point x € I.

Another desired property of a wavelet basis W is its hierarchical structure, i.e. ¥
is of the form

v=2o,uU ]9, (1.8)
J=jo
Jo being the coarsest level. The functions from the set ®;; are called scaling functions,
and the functions from the set ¥;, j > jo, are called wavelets on the level j. Wavelets
in the inner part of the interval called inner wavelets are typically translations and
dilations of one function ¢ or several functions ', ... ¢ also called wavelets (or
mother wavelet, wavelet generator), i.e.

Yix (x) = 229 (272 —m), (1.9)
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for some [ € {1,...,p} and some k,m € Z, k dependent on m and [. Similarly the
wavelets near the boundary are derived from functions called boundary wavelets.
Another desired property is a polynomial exactness of order M > 1. This means

that the multiscale basis ;

v =, U], (1.10)
J=Jjo
jo < J, is such that spanV¥” contains all polynomials of degree at most M — 1.
Polynomial exactness determines the convergence rate of methods for the numerical
solution of operator equations.
Finally, we require that there exists L > 1, such that all functions ¥, € ¥;, jo < 7,
have L wvanishing moments, i.e.

/ka,\(aj)das:(), k=0,...,L—1. (1.11)
I

Vanishing wavelet moments are important for sparse representation of functions
and operators.

The concept of a wavelet basis is not unified in the mathematical literature and
some of the above conditions can be omitted or generalized.

1.2 Construction of Wavelet Bases

The wavelet basis W is typically constructed using a multiresolution analysis.

Definition 2. A sequence {V}};’im of closed linear subspaces V; C H is called a
multiresolution analysis, if these subspaces are nested and their union is dense in H,
ie.,

‘/}OC‘/J0+1CCV3CV3+1CCH, U‘/J:H

Jj=jo
Let the set
;= {ojn, k € I;}

be a basis for V; that is local and uniformly stable, i.e. the condition number of ®; is
bounded and the bound is independent on j. The set ®; is called a scaling basis and
similarly as functions from ®;,, the functions ¢, € ®; are called scaling functions.

In the papers presented in this thesis the scaling functions are quadratic B-splines
[10, 13, 19], cubic B-splines [10, 11, 14, 15, 23], or Hermite cubic splines [17].

Let W; be complement spaces such that V; @ W; = V;,;, where @ denotes a
direct sum, and let the sets ¥; be uniformly stable bases of ;. Then, wavelets are
constructed as the elements of a basis ¥; such that they have vanishing moments.

Now, using ®; and ¥; we define ¥ by (1.8). However, the fact that the spaces
V; form a multiresolution analysis, the scaling bases ®; are uniformly stable, and the

one-level wavelet bases W; are uniformly stable, does not imply that ¥ is a Riesz
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basis for H. In the next section, we discuss several approaches to prove the Riesz
basis property (1.3).

If U is a Riesz basis of H, then there exists a unique Riesz basis U that is biorthog-
onal to ¥, i.e.

<\11, \11>H ~1, (1.12)

where I is the (infinite) identity matrix. The basis W is called the dual basis to .
The dual basis generates a dual multiresolution spaces \N/j, 7> Jo-

In [10, 11], we constructed dual bases that are local. However, in some applications
such as solving linear PDEs, the dual basis is not directly used. Therefore, in [13,
14, 15, 17, 19, 23] we were concerned with constructions of wavelet bases without
requiring locality of duals, but with a shorter support or some special properties.

1.3 Proofs of Riesz Basis Property

While one can employ the Fourier transform to prove the Riesz basis property (1.3)
for the space L? (R), the proof of the Riesz basis property for the space H C L? (I) is
usually more complicated. We present here several possible approaches that we used
in papers collected in this thesis.

In [10, 11, 15, 17], the proof of the Riesz basis property (1.3) for ¥ is based on the
following theorem [28, 36, 45].

Theorem 3. Let jo € N and for j > jo let V; and ‘7 be subspaces of the space
H C L*(I) such that V; C Vi, Vi C Vi, cmd dim V; = dim V; < co. Let ®; be
bases of V, <I> be bases of Vj, and \If be bases ofV N Vi1, where Vl denotes the

L2-orthogonal complement of V i H. Moreover, let the Riesz bounds wzth respect to
the L*-norm of ®;, ®;, and \I/j, be uniformly bounded. Let W be composed of ®;, and
U, j > jo, as in (1.8). Furthermore, we assume that

T, = <c1>j,i>j> (1.13)

is invertible and that the spectral norm of I‘;l 15 bounded independently on j. In
addition, for some positive constants C, v and d, such that v < d, let

inf o — vl < C2 ollgey, ve H(I)NH, 0<t<d, (1.14)

vicVj

and

[0 Ho D) S c2 HUJ'HL2(I)7 v; eV, 0<s <7, (1.15)

and similarly let (1.14) and (1.15) hold for 7 and d on the dual side. Then

{¢>\/ Hw}\HHs(]) NN ‘If} (1.16)

is a Riesz sequence in H® (I) for s € (—7,7).
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Estimates of type (1.14) indicating the approximation properties of V; are called
direct or Jackson estimates. Estimates like (1.15) describe smoothness properties of
Vj, and they are often referred to as inverse or Bernstein estimates. The parameters in
these estimates depend on the polynomial exactness, the number of vanishing wavelet
moments, and the smoothness of basis functions. For more details, refer to [28, 36, 41].

In [10, 11], we constructed several biorthogonal bases for the spaces L? (I), H} (I)
and HZ (I), such that functions from these bases are local. These constructions were
quite technical and complicated, but due to biorthogonality and locality of the bases,
the proof was relatively simple using Theorem 3, because the biorthogonality property
implies that I'; is the identity matrix.

In [15, 17], we constructed spline-wavelet bases using dual multiresolution spaces
‘7j, but we did not construct corresponding biorthogonal bases because these do not
have local supports. In these cases, the main part of the proof is finding appropriate
bases i)j of the spaces \~/J and proving that the matrices I'; have desired properties.

In [13, 14, 19], we constructed wavelet bases without using dual spaces. Thus
Theorem 3 can not be used for the proof of the Riesz basis property. In these papers,
we employed the theory developed in [57], summarized in the following theorem.

Theorem 4. Let Q0 be a bounded domain and let the spaces V;, j > jo, form a
multiresolution analysis for the space L*(Q). Let H, for fixzed ¢ > 0 be a linear
subspace of L?(Q) that is itself a normed linear space and assume that there exist
positive constants Ay and As such that

a) If f € H, has decomposition f = ... f;, f; € V; then

Jj=Jjo
1A, < A> 29 |1 £501% (1.17)
Jj=Jjo

b) For each f € H, there exists a decomposition f =Y ... f;, f; € V;, such that

Jj=Jo
D217 < Al FIy, - (1.18)
Jj=Jjo

Furthermore, suppose that P; is a linear projection from Vi q onto V;, W; is the kernel
space of Pj, ®; = {¢;x, k € I;} are Riesz bases of V; with respect to the Ly—norm with
uniformly bounded condition numbers, and V; = {1, k € Z;} are Riesz bases of W;
with uniformly bounded condition numbers. If there exist constants C' and p such that
0<p<gqand

| PPyt ... Poy]| < C 2P0 (1.19)

IIl being the spectral norm, then
{27 ok € Tjo } U{27"j8,§ = o, k € I} (1.20)
is a Riesz basis of Hy.

To employ Theorem 4, one has to find appropriate projectors P; and prove the
inequality (1.19). The advantage of this approach is that it enables proving the Riesz



10 CHAPTER 1. WAVELET BASIS

basis property in the Sobolev spaces H* for values of s in some range (s1, s2), where $;
can be positive. Therefore, it is possible to use this theorem to prove the Riesz basis
property in H*® even if the Riesz basis property does not hold in L?. For example in
[19], we used this theorem to prove that the constructed set is a Riesz basis in the
spaces H} (I) and H} (I?) for I = (0,1), but numerical experiments show that the
L?-condition numbers increase with the level and they seem to be unbounded. This
suggests that the basis on I is not a Riesz basis in the space L? ().

In [23], we used a completely different approach and derived a condition under
which a union of Riesz sequences is also a Riesz sequence.

Theorem 5. Let Z and J be at most countable index sets, { fi},c7 be a Riesz sequence
with a Riesz lower bound cy, and {gi},.; be a Riesz sequence with a Riesz lower bound
¢g. Furthermore, let the matriz G with entries G, = (fu, 1), k € Z, 1 € J, satisfy

|G|/ (epeq) < 1. (1.21)
Then { fr}per U{91}ics is a Riesz sequence with a Riesz lower bound c, and

1G]]

CrCq

-min (cy, ¢g) . (1.22)

In [23], we proved the Riesz basis property separately for inner wavelets and for
boundary wavelets, and then we verified the condition (1.21) to show that their union
is also a Riesz basis.

1.4 Fast Wavelet Transform

As we have already mentioned, we view the sets of functions such as ®; and ¥, also as
columns vectors. The nestedness of the spaces V; implies the existence of a refinement
matriz M, o such that
®; =M (D). (1.23)
Since W; C Vj1, there exists a matrix M;; such that
U; =M P (1.24)

Applying (1.23) and (1.24) several times we find out that the multiscale basis ¥/
defined by (1.10) and the scaling basis ®; are interrelated by the transform T ; such

that
[0

\Ijjo
U = [ Yot | =TT, (1.25)

Jo

Wy
and the transform T ; can be expressed by

M, 0

TJ:TJ,J—l"'TJ,joa Whe[‘e TJ,j: < O I

) ) M] = (Mj,07Mj,1)7 (126)
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where 0 and T are zero and identity matrices, respectively, of appropriate sizes. This
transform is often called the fast wavelet transform (FWT).

Since V; = span ®; = span ¥/, any function f € V; has a single-scale representa-
tion

f= C?‘Pj = Z CokPik, CJ= {CJ,k}kezJ ) (1.27)

kely

and also a multiscale representation
J—1
f=ch @ +di U+ +d) Uy =) coution+ > Y distie,  (1.28)
kE€T;, j=jo keJ;

where ¢, = {cjmk}kezjo and d;j = {djx},c - Then, the vectors ¢; and

d’ = (c},d},

Jjo? —jo?

Ldr)” (1.29)
are also interrelated by the fast wavelet transform T, i.e.
c;=T,d’, (1.30)
because from (1.23) and (1.24) we obtain
¢l +dl Wy = (Mjoc; + Mjad;) @41 = ¢y . (1.31)

Schematically T; applied on d” can be visualized as a pyramid scheme,

M0 Mjo+1,0 Mjj+2,0 My 10
Cjy Cjp+1 —_— Cjp+2 s ... Cj_q Cjy .
Mjo,l/‘ Mj0+1,1/‘ Mjo+2,1/l MJ71,1/l
djo dj0+1 dj0+2 R dJ,1

Due to the local support of basis functions, the matrices M, are sparse and they
can be applied in O (N;) operations, where N; = dim V;. Thus, the fast wavelet
transform can be applied in O (N;) operations when using a pyramid scheme.

Since the matrix M; represents a basis transformation, its inverse exists. Let us
define

G; = (Gjo,Gj1) =M, ", (1.32)

where the matrix Gj is of the size #Z;11 X #Z; and the matrix G;; is of the size
#Ij+1 X #\7] Then
C; = G;Z:OC]‘+1, dj = G}:1Cj+1. (133)

Thus, the inverse fast wavelet transform (IFWT) T has the form

T;l — T—l

J?jO :

T4 ), where T;}=<%j (I)> (1.34)

The corresponding pyramid scheme is then
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Gjy_10 Gj_20 Gj_30 Gjg,0
Cy Cj_1 Cj_2 N S s ] — Cjy -
\ijl,l \‘GJ72,1 \‘GJ73,1 \Gjo,l
d, d, s d,s .. d,,

Clearly, different wavelet bases lead to different fast wavelet transforms. As men-
tioned above, FW'T can be used to transform a scaling basis to a multiscale wavelet
basis and vectors of multi-scale coefficients to vectors of single-scale coefficients. Fur-
thermore, if A is a differential or an integral operator, then FWT can be used to
transform the discretization matrix in a scaling basis (A®;, ®;) to a discretization
matrix with respect to a multiscale basis (AW ;, ¥ ;) by

(AU, ;) =TT (Ad,;, &) T.

In signal processing FWTs and IFW'Ts are widely used for signal analysis, signal
compression and decompression. FW'Ts corresponding to a wavelet basis adapted to
a bounded interval have an advantage that the boundary wavelets also have vanishing
moments and thus the boundary effects that can occur when using the standard
approach based on symmetrization of the signal are reduced. We studied this issue in
[8, 9], where we used the fast wavelet transforms corresponding to wavelet bases that
we constructed in [10] for image compression.

1.5 Wavelet Bases on Product Domains

There are several approaches for constructing a multi-dimensional wavelet basis on
a tensor product domain, for example an isotropic approach [57, 72], an anisotropic
approach [35, 45] or a sparse tensor product [44]. In this section, we recall an isotropic
and an anisotropic approach. Both constructions are based on tensorizing univariate
wavelet bases and they preserve their important properties.

We consider a product domain [ = (ay, by) X (ag, be) X. .. X% (ag, by), where a;, b; € R,
a; <b;,i=1,...,d, d € N. The construction usually starts with a Riesz basis

U ={0jor k € Lj } U{tbjr, k € T}, > jo} (1.35)

for the space H C H®*(0,1) for s in some interval (sl,s2). First, we use a simple
linear transformation to obtain a wavelet basis for the space H® (a;, b;). Let us define

L () = bk (H) (@) =ik <33 _ az-) e (ah). (1.36)

bz‘ — Q;

then ' 4 _
VO =gt ke, b ulvl, ke T i> ) (1.37)

forms a Riesz basis in H® (a;, ;).

Isotropic wavelet bases. We define the multivariate scaling functions by

G (2) =1L, 0% ) (x), @ =(z1,...,2q4) €0, (1.38)
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with k = (ki,..., kq) now being a multi-index, k € I]-D =17; x ... xZ;. We introduce
the abbreviation

| T, e=1,
Tje = { T e—o, (1.39)

i.e. the parameter e allows distinguishing between scaling functions and wavelets.
Furthermore, we denote

E={e=(e1,....eq) e € {0,1} e # (0,0,...,0)}, (1.40)
and
Th=Tier % oo % Tjegr TP = | T (1.41)
eElR

For any e = (ey,...,eq) € E, j > jo, and k = (ky,...,kq) € \7]-5, we define the
multivariate wavelet

Wy (z) = Hlewé’el,kl (), x=(x1,...,2q) €0, A=(j,e,k), (1.42)
where z
l _ gbj,kla € = 17
j,el,kl { é’)kl) el — O (143>
The wavelet basis on the hyperrectangle [J is then given by
U={tjer, ec B, ke T ,j>jo} U{djm keI}. (1.44)

We denote the multiscale basis containing wavelets up to level J as
U = {Yjen, e€ B, k€ T, jo <j<J}U{¢jou. k€I;}. (1.45)

If we start with a Riesz basis in the space L?(0,1), then the resulting basis is a
Riesz basis in the space L? (€2). The Riesz basis property in the space H® (2) can be
verified using e.g. Theorem 4. Furthermore, this approach preserves the regularity of
basis functions, the full degree of polynomial exactness, vanishing wavelet moments,
as well as locality of bases functions. For more details see e.g. [57, 72]. In this thesis,
we constructed isotropic wavelet bases and used them for the numerical solution of
differential equations in [10, 11, 13, 14, 15, 19].

Anisotropic wavelet basis. Let ¥ be a wavelet basis on the interval (a;, b;)
defined by (1.36) and (1.37). For notational simplicity, we denote J;,—1 = Z;, and

;ofl,k = ;'o,kv ke *7]‘0*17 J = {<ja k)? J=Jjo—1 ke ‘-7J} <1'46>
Then ¥ can also be expressed as
VO =Lyl j>g50—1, ke T} ={vi, AeT}. (1.47)

Recall that for the index A\ = (j, k) we denote |A| = j. We use u ® v to denote the
tensor product of functions u and v, i.e. (v ® v) (z1,22) = u (x1) v (x2). For d > 1 we
generalize the definition of the index set [J:

TJ={=0N,.. ., ) N=0iki),ji > jo— Lk € T} (1.48)
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We define multivariate basis functions as
Uy =L 05, A=(A1,..., ) €. (1.49)

Then |A| = max;—; 4 |\i| represents a level. We also denote [A\] = min;—;
Due to locality of the one-dimensional basis functions, i.e. diam supp wﬁ\ < 2=l
we have

-----

d
diam supp ¢, < ZC’?Z_Q‘)‘” <cVa W, c= max, C;. (1.50)

=1
i=1

-----

In this case, basis functions are not local in the sense that diam supp ¥, < C2~M but
only in the sense that (1.50) holds. We define the set ¥ = {¢,, A € J}, and the set

\IIJ:{w)\)\:()‘la7>‘d)7 |A’L| S‘]} (151)

If we start with a univariate Riesz basis in the space L? (0,1), then the set ¥ is
a Riesz basis of the space L? (1), see e.g. [48]. This approach also preserves the
properties of the univariate basis, such as polynomial exactness, smoothness of basis
functions, and vanishing moments, but as already mentioned the resulting functions
are local only in the sense of (1.50). For more details see [35, 45, 48]. In this thesis,
we used anisotropic wavelet bases in [15, 17, 19].

1.6 Wavelet-Galerkin Method

In this section, we recall the wavelet-Galerkin method for solving operator equations.
Let © be a bounded domain, and let H C L? () be a separable Hilbert space with
the norm ||-||;;. We denote a dual space to H as H' and by (-,-) we denote a duality
product. For an operator A : H — H' and given f € H’ we consider an operator
equation

Au = f. (1.52)
We define a corresponding bilinear form a : H x H — R by
a(u,v) = (Au,v) Vu,ve H. (1.53)
The variational problem becomes: Given f € H’, find u € H such that
a(u,v) = (f,v) VYveH. (1.54)

Let ¥ be a family of functions such that ¥ normalized in the H-norm is a wavelet
basis of H. Let U* C ¥ be a multiscale basis of the form (1.10) that contains scaling
functions at a coarsest level j, and wavelets up to level k. Let us assume that the
spaces X, = span U* form a multiresolution analysis in H.

The Galerkin formulation of (1.54) reads as: Find uy € X}, such that

a(ug,v) = {(f,v) Yvée Xj. (1.55)
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We focus on the case where the bilinear form a is continuous and coercive. Recall
that a bilinear form a : H x H — R is called continuous if there exists a constant C
such that

la(u,0)| < Cllully vl Yoo e . (1.56)

and a is called coercive if there exists a constant a > 0 such that
a(u,u) > allull? Yu € H. (1.57)

Under these assumptions, the existence and uniqueness of the solutions of equa-
tions (1.54) and (1.55) are a consequence of the Lax—Milgram theorem, see [27, 62].

Theorem 6. Lax—Milgram

Let H be a Hilbert space, let the bilinear form a : H x H — R be continuous and
coercive with constants C and « as in (1.56) and (1.57), respectively, and let f € H'.
Then the solution u of the equation

a(u,v) = (f,v)y VveH (1.58)

exists and is unique, and the stability estimate

C
lully < = 1|l (1.59)
o
holds.

The Lax—Milgramn theorem guaranties existence and uniqueness for solution u of
the variational problem (1.54) as well as the existence and uniqueness of the approx-
imate solution u; by the Galerkin method.

Now, we study the convergence rate of the Galerkin method.

Theorem 7. Céa’s lemma
If the bilinear form a : H x H — R is continuous and coercive with constants C' and
a asin (1.56) and (1.57), then

C
— < — inf — . 1.60
Ju = welly < inf = ol (1.60)
Hence, Céa’s lemma shows that the convergence rate of the Galerkin method
depends on the approximation power of the spaces X,. The term
E = inf — 1.61
k(u) = inf flu—vlly (1.61)
is known as the error of the best approximation in H. The study of this error is a
subject of approximation theory. Nowadays, approximation order is known for several
kinds of spaces Xj.
For instance, one starts with a univariate wavelet basis corresponding to a mul-
tiresolution analysis formed by spaces

- [ 1+1 .
‘/]C:{UEC (O,l)’U‘(ll;}g)GHr<@,?>,l:0,,2 —1}, (162)

2k’
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where 0 < m < r, II, (a, b) is the space of all polynomials on (a, b) of degree less than r,
and C™ (0, 1) is the space of m-times continuously differentiable functions on (0, 1). If
then multiscale bases ¥* on ) are constructed using an isotropic or anisotropic tensor
product of bases of the spaces Vj, then the spaces X}, = span ¥* satisfy

e SO (1.63)

inf |lu— vl
veEX
for any uw € H" () provided that 0 < s < r and X}, is contained in H*® (€2). Here,
we view H®(Q) for s = 0 as the space L? (). Similar results hold for spaces of
piecewise polynomial functions incorporating boundary conditions. Hence, r = 3 for
the Galerkin method with quadratic spline wavelets from [13, 19], and r = 4 for the
Galerkin method with cubic spline wavelets from [11, 14, 15, 17, 23].

From Theorem 6 and Theorem 7, the convergence rate depends on the chosen
discretization spaces and not directly on the chosen bases of these spaces. Since a
scaling basis ®; generates the same spaces as a multiscale basis ¥, it can be expected
that the error will be similar. However, the Galerkin method with a wavelet basis,
called the wavelet-Galerkin method, has several advantages. This method seems to be
superior to classical methods especially for operator equations with an integral term,
because the discretization matrices can be approximated by sparse matrices while
most other methods lead to full matrices, see [2, 23, 25]. The second advantage is
that a simple diagonal preconditioner is optimal in the sense that diagonally rescaled
discretization matrices have uniformly bounded condition numbers. This affects the
number of iterations needed to resolve the problem with a desired accuracy. Finally,
the solution has a sparse representation in a wavelet basis, which can be used for
adaptive versions of the wavelet-Galerkin method that are based on analysis of the
size of wavelet coefficients, see e.g. [72], or on a priori knowledge of singularity regions
as we did in [20].

We write the function uy as

up =Y b (1.64)

PrETF

Let the matrix A¥ and the vector f¥ have entries

A/]j,)\ = a(¢A7¢u)> f;lf = <f’ ¢u>v ¢>\7¢M S \Ilkv (1'65)

and ¢ be the column vector of coefficients c§. Substituting (1.64) into (1.55), we
obtain the system

AFck = f*, (1.66)

Preconditioning. We apply the standard Jacobi diagonal preconditioning to the
system (1.66). Let D* be a diagonal matrix with diagonal elements

DI;,)\ = \/Ali, =V a(%,wx). (1-67)

Then, we obtain the preconditioned system

Akek — £* (1.68)
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with
Ak — (Dk)*l AF (Dk)*l ’ fF — (Dk)*l £k &k — DFck. (1.69)

The resulting system can be large, and therefore it is usually solved by an appropriate
iterative method such as the method of generalized residuals or, in the case where the
system matrix is symmetric and positive definite, one can use the conjugate gradient
method.

Due to coercivity of the bilinear form a, the matrices A* have uniformly bounded
condition numbers (cond), i.e. there exists a constant C' such that cond A* < C for
all k > jo, see [28, 35, 52].

Sparsity of discretization matrices. If A is a differential operator, then it may
be convenient to compute the discretization matrix (A®;, ;) in a scaling basis first,
because this matrix is banded. However, the condition numbers of these matrices are
not uniformly bounded. Therefore, we use the fast wavelet transform on its rows and
columns to transform it to the matrix A¥ for a wavelet basis. Using this approach,
wavelets are not used directly in the computation, and the fast wavelet transform can
be viewed together with diagonal rescaling (1.69) as optimal preconditioning of the
system. For more details see e.g. [15, 72].

If A is an integral or integro-differential operator, then a discretization matrix in
a scaling basis is typically full, and in this case, it is more convenient to compute
entries of the matrix A* directly rather than to use FWT. For a large class of integral
operators this matrix can be approximated by a sparse or quasi-sparse matrix. Several
estimates for decay estimates of these matrices are known |2, 23] that make it possible
to compute only significant entries of these matrices.

We used the wavelet-Galerkin method in [15, 19, 23]. In [15, 19] we used a modi-
fication of the wavelet-Galerkin method called multilevel Galerkin method which first
computates the solutions of (1.68) on some coarse scale and then use this solution to
define an initial vector of the iterative method when solving the discrete problem on
some finer scale. In [23] we used the Crank-Nicolson scheme for time discretization
and the wavelet-Galerkin method for spatial discretization of the parabolic partial
integro-differential equation representing Kou’s model for option pricing. In [20], we
proposed an adaptive version of the wavelet-Galerkin method for the numerical solu-
tion of differential equation with the Dirac measure on the right-hand side.

1.7 Adaptive Wavelet Methods

We briefly review a class of adaptive methods that were originally designed by A.
Cohen, W. Dahmen, and R. DeVore in [29, 30] and later modified in many papers
[7, 12, 33, 34, 41, 43, 53, 67, 72]. The results presented in this section are known and
fuller details can be found in these papers.

While the classical adaptive methods use refining a mesh according to a posteriori
local error estimates, the wavelet approach is different and comprises the following
steps:
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e We start with a variational formulation but instead of its finite dimensional
approximation as in the case of the wavelet-Galerkin method, we expand the
solution in a wavelet basis and transform the continuous problem into an infinite-
dimensional [>-problem.

e We propose an iteration scheme for the infinite-dimensional problem.

e We replace all infinite-dimensional quantities by finitely supported ones, and we
design the routine for an approximate multiplication of an infinite matrix and
a finite vector.

As in the previous section, we consider the problem (1.52) and the corresponding
variational formulation (1.54). We focus on the case that the bilinear form a : Hx H —
R is symmetric, continuous, and coercive. Then, by the Lax-Milgram theorem, the
problem (1.54) has a unique solution.

Let ¥, when normalized with respect to the H-norm, be a wavelet basis in H. Let
D be a bi-infinite diagonal matrix with diagonal elements

Dy =va(nvy), el (1.70)

Then the original equation (1.52) can be reformulated as an equivalent bi-infinite
matrix equation

Ac=f, (1.71)

where A = D7! (AU, ¥) D! is a diagonally preconditioned discretization matrix,
v =c'D, and f = D' (f, ¥). Then u solves (1.52) if and only if ¢ solves the
matrix equation (1.71). Moreover, the condition number of the matrix A is finite.

The simplest convergent iteration for the {*>-problem (1.71) is a Richardson itera-
tion which has the following form

co=0, cppi=c,+w({f—Ac,), n=01,.... (1.72)

The method is convergent if 0 < w < 2/Ajax (A), where Ao (A) is the largest
eigenvalue of A. It is known that the optimal relaxation parameter w and the corre-
sponding estimate of the error reduction are given by

2 cond (A)—1
= =7 - 1.73
T N (A) + Aae (A) 7 cond (A) 1 (1.73)
where A\, (A) is the smallest eigenvalue of A. Then,
lent1 —cll < pllen —cfl. (1.74)

Hence, the small condition number of A, which depends on the chosen wavelet
basis, guaranties the small value of a reduction parameter p.

Structure of the discretization matrix. Since the matrices A¥ defined by
(1.69) arising from discretization using the wavelet-Galerkin method are submatrices
of biinfinite matrix A, the matrices A* and A have similar structure. For differential
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equations the discretization matrices typically have a so-called finger pattern, see
e.g. [17]. Therefore these matrices are quasi-sparse, i.e. they have O (N log N)
nonzero entries, where N x N is the size of the matrix. For equations containing
the integral term the discretization matrices can be approximated by sparse or quasi-
sparse matrices. In some papers, e.g. [17, 45|, a construction of a wavelet basis was
proposed which leads to discretization matrices that are truly sparse, i.e. they have
O (N) nonzero entries.

Coarsening of vectors. To control the number of degrees of freedom in the
algorithm, one needs a routine for approximation of a vector v by its N-term approx-
imation, i.e. vy is obtained by retaining the N largest components of v. It can be
done simply by sorting and thresholding as in the following algorithm.

COARSE[v, N] — vy

1. Sort |vy], A € J, in descending order and denote the resulting vector as v.
2. Denote the N-th element of v as P.

3. If |ux| > P then set (vn), = vy, else set (vy), = 0.

The sorting of all nonzero elements of v requires N, log N, arithmetic operations,
where N, = #supp v. However, it is possible to avoid sorting to obtain the algorithm
with linear complexity. Such algorithm uses so-called binning and can be found in
Stevenson [67].

Approximation of the right-hand side. We assume that it is possible to
compute the vector f = D! (f, ) of wavelet coefficients of the right-hand side f € H’
with a desired accuracy. More precisely, we require that for any € > 0, there exists a
finitely supported vector f. € I? (J), such that

IE—t] <e (1.75)

In the following, the computation of f. will be referred to as the routine RHS [f, ¢] —
f.. This can be realized by computing a highly accurate approximation to f as a pre-
processing step and then applying the routine COARSE to this finitely supported
array of coefficients.

Matrix vector multiplication. Solution of the equation (1.71) by some iterative
method requires a multiplication of the infinite-dimensional matrix A with a finitely
supported vector v = {vx},. - There are several routines available. Here, we present
the routine APPLY that we proposed in [12]. The idea is the following: We truncate
A in scale by zeroing its entries A, , whenever ||A| —|u|| > k, k € NU{0}, and denote
the resulting matrix by Aj. Let us denote Sa, = max{|A, .|, [|A\| — ||| = k}. Then
we multiply the matrix Ay with vector entries that are greater than given tolerance
¢, the matrix A; — Ay with vector entries that are greater than €/Sa;, ..., and the
matrix Ag — Ag_; with vector entries that are greater than €/Sa . In the case that
Sar = 0 for some k, we can formally define €¢/S4, = co and no multiplications with
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matrix A, — Aj_; are necessary. More precisely, let

K
€
€ . € € __ € € ~€ €
7 = {v/\.|w| > R }, z2, =0, v,=1z,—1z;,_,, W= g Ag_pvy. (1.76)
k
k=0

The parameter K is the smallest number such that vj is an empty set for all
k> K. In [12] we proposed two algorithms based on these ideas. We present one of
them below.

APPLY [A, v, €] — w,

For j € NU {0}, let e; be such that |A — A,|| <e;,.

1. Set Sa, :=max{|A, |, ||\ — |u| = k}.

2. Set G = 1.1 and 0 = |log €|, where |-| denotes the floor function. Compute
wi =W and wy := W% according to (1.76).

3. While ||wy — wa| > ¢

d:=0—-1
Compute wy := W and wy := w?% using (1.76).
end while.

4. w€:= wy.

Algorithm SOLVE. Since we consider here a class of adaptive methods, there
are many algorithms representing these methods. We present one example of such an
algorithm that we used in [19].

The method insists in solving the infinite preconditioned system (1.71) with Richard-
son iterations. We compute the relaxation parameter w and the error reduction factor
p by (1.73). Then we set § = 0.3 and K € N such that 2p% /0 < 0.6.

The resulting algorithm is of the form:

SOLVE [A, f, €] — c.

1. Set j:=0, up :=0, and € > ||c||,.

2. While ¢; > € do

z) = Cj,
Forl=1,...,K do
20 =21 +w (RHS[f 501 APPLY[A, 7y, 3% }),

? 2wK 2wK
end for,
j=i+1
_ 2pFei
6= "9 >
c; := COARSE|[zg, (1 —0) ¢},
end while,
Cc == Cj.

It is known that the coefficients of a function in the wavelet basis are small in
regions where the function is smooth and large in regions where the function has
some singularity or a large gradient. Since we work with a sparse representation of
the right-hand side and a sparse representation of the vector representing the solution,
the method is adaptive.
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For analysis of the method we refer to e.g. [30, 41, 72]. Roughly speaking, the
methods converge with the same rate as the wavelet-Galerkin method, but for a wider
class of functions, because the error estimates are derived in Besov spaces and not only
in Sobolev spaces. Other advantages are a small number of parameters representing
the solution with desired accuracy, asymptotical optimality in the sense that the
number of floating point operations depend linearly on the number of degrees of
freedom, optimality of diagonal preconditioner, a sparse structure of matrices also for
equations containing an integral term, and a higher-order convergence if higher-order
basis functions are used.

In this thesis, we used adaptive wavelet methods in [10, 11, 13, 14, 17, 19].
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Chapter 2

Constructions of Quadratic and
Cubic Spline-Wavelet Bases

Since this thesis is a collection of eight articles that are all concerned with construc-
tions of quadratic or cubic spline-wavelet bases on the interval, we review here existing
constructions of such types of bases, discuss their advantages and disadvantages, and
comment on the papers presented in this thesis. We also review applications of these
bases.

We focus on concrete quadratic and cubic spline wavelet bases for which the Riesz
basis property was proven. There also exist general methods for construction of
wavelet bases on the interval, e.g. [51], spline wavelets without adaptation to bound-
ary conditions and without the proof of the Riesz basis property, e.g. [59, 66], and
quadratic and cubic finite element wavelets [39].

2.1 Quadratic Spline-Wavelet Bases

In [38, 40], W. Dahmen, A. Kunoth and K. Urban proposed a construction of a
spline-wavelet biorthogonal wavelet basis on the interval. The inner wavelets were
the same as wavelets from [32], where wavelet bases were constructed on the whole
real line. The order of spline is any N > 1, and the number of vanishing moments
is L > N such that N + L is even. Both the primal and dual wavelets are local.
A disadvantage of these bases is their relatively large condition number. Therefore
many modifications of this construction were proposed, see e.g. [1, 3, 5, 70]. The
construction by M. Primbs [63] outperforms previous constructions for the linear and
quadratic spline-wavelet bases with respect to their conditioning. In [8, 10, 43| the
construction was significantly improved in the case of cubic spline wavelet basis, but
the condition numbers of quadratic spline-wavelet bases was comparable to those
constructed by M. Primbs. In the case of quadratic spline wavelet basis adapted to
homogeneous Dirichlet boundary conditions, these bases are even the same up to a
normalization, see also the comparison in [19]. In [46], a method for a construction
of the L?-orthogonal wavelet basis on the real line was proposed starting from a non-
orthogonal wavelet basis. In [64], the L*-orthogonal spline-wavelet bases on the unit

23
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interval were constructed using this method.

Quadratic spline wavelet bases with nonlocal duals have also been constructed and
adapted to some types of boundary conditions [26, 56]. The main advantages of these
types of bases in comparison to bases with local duals are usually the shorter support
of wavelets, the lower condition numbers of the bases and the corresponding stiffness
matrices, and also the simplicity of the construction.

In [13, 19], we also constructed quadratic spline-wavelet bases on the interval.
Here, we comment on these constructions.

[13] Cerna, D.; Finék, V.: Quadratic spline wavelets with short support
for fourth-order problems, Result. Math. 66(6), (2014), pp. 525-540.

In [13], we proposed two constructions of quadratic spline-wavelet bases for the
space HZ (0,1). The inner wavelets have one vanishing moment and boundary wave-
lets are of two types, wavelets with one vanishing moment and wavelet with shorter
support but without vanishing moments. Since we did not require local support of
dual wavelets, we were able to construct wavelets with a short support of length 2,
which is the shortest possible support for wavelets with one vanishing moment cor-
responding to the quadratic B-spline multiresolution analysis. We used the isotropic
tensor product to obtain a wavelet basis for the space HZ ((O, 1)2). We studied the
quantitative behaviour of the adaptive wavelet method for the numerical solution
of the fourth-order differential equation A?u = f on the unit square, A being the
Laplace operator. Due to the short support, the discretization matrices are sparser
than for other quadratic spline wavelets of the same type. The condition numbers of
discretization matrices are uniformly bounded and small, e.g. for the stiffness matrix
of the size 64516 x 64516 the condition number is 11.1.

[19] Cerna, D.; Finék, V.: Quadratic spline wavelets with short support
satisfying homogeneous boundary conditions, Electron. Trans. Numer.
Anal. 48, (2018), pp. 15-39.

In [19], we constructed wavelets of the similar type as in the previous paper, but
adapted to the first-order homogeneous Dirichlet boundary conditions, i.e. quadratic
spline wavelets on the interval and on a unit square with one vanishing moment and
the shortest possible support. The matrices arising from discretization of the second-
order elliptic problems using the constructed wavelet basis have uniformly bounded
condition numbers and the condition numbers are small, e.g. the condition num-
ber was 2.84 for a matrix of the size 1024 x 1024 corresponding to one-dimensional
Poisson’s equation, and it was 18.3 for the matrix of the size 1048576 x 1048576
corresponding to a two-dimensional Poisson’s equation. We also provided numerical
examples to show that the Galerkin method and the adaptive wavelet method using
our wavelet basis require a smaller number of iterations than methods with other
quadratic spline wavelet bases of the same type, i.e. bases from [3, 26, 43, 63]. More-
over, due to the short support of our wavelets, one iteration requires a smaller number
of floating-point operations than for these bases.

In [20], we propose post-processing for the Galerkin method with this basis, such
that the resulting method has a convergence rate the same as the rate of convergence
for the Galerkin method with cubic spline wavelets under the assumption that the
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solution is smooth enough. We show theoretically as well as numerically that the
presented method outperforms the Galerkin method with many other quadratic or
cubic spline wavelets with respect to the number of floating point operations needed
to compute a sufficiently accurate solution. Furthermore, we proposed local post-
processing for example with an equation with Dirac measure on the right-hand side.

In Table 2.1, we list parameters and properties for several constructions of quadratic
spline-wavelet bases such as the order of homogeneous Dirichlet boundary conditions
(bound. cond.), the number of vanishing moments (vanish. moments), the maximal
length of the support of generators of inner scaling functions (supp scal.), the max-
imal length of the support of generators of inner wavelets (supp wav.), locality of
duals (loc. duals), the number of generators of inner scaling functions (scal. gen.),
the number of generators of inner wavelets (wav. gen.), and special properties. The
property short. sup. means that a wavelet basis is such that wavelets have the short-
est possible support among all wavelets with the same number of vanishing moments
corresponding to the same scaling basis. The other very important parameters that
characterize wavelet bases are the condition number of the basis and the condition
numbers of discretization matrices. These numbers are problem dependent and can
be found in the attached papers.

Table 2.1: Parameters characterizing quadratic spline-wavelet bases.

wavelet  bound. vanish. supp supp loc. scal. wav. special
basis cond. moments scal. wav. duals gen. gen. property
DKU [38] 0 L>30dd 3 L+2 loc 1 1
D [43] >0 L>3o0dd 3 L+2 loc. 1 1
B [3] 0 L>30dd 3 L+2 loc 1 1
P [63] 0-1 L>30dd 3 L+2 loc. 1 1
CF [10] 0-1 L>30dd 3 L+2 loc. 1 1
R [64] 1 3 2 2 loc. 6 6 L?-orth.
CQ [26] 0 3 3 5 glob. 1 1 semiorth.
J [56] 2 1 3 3 glob. 1 1
J [56] 2 3 3 5 glob. 1 1
CF [13] 2 1 3 2 glob. 1 1 short. sup.
CF [19] 1 1 3 2 glob. 1 1 short. sup.

2.2 Cubic Spline-Wavelet Bases

As already mentioned in the previous section, biorthogonal cubic spline-wavelet bases
with local support of primal and dual wavelets were constructed in [38, 40], and
this construction was modified in several papers. In [10, 43] the construction was
significantly improved with regard to conditioning of the bases. Biorthogonal cubic
Hermite spline multiwavelet bases on the interval with local duals were designed in
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[40, 65]. The L*-orthogonal piecewise cubic basis was constructed in [64] using the
method from [46].

Several cubic spline wavelet and multiwavelet bases with nonlocal duals have been
constructed and adapted to various types of boundary conditions in [26, 45, 55, 56, 57].
Their properties are summarized in Table 2.2. Similarly to the case of quadratic
spline wavelets the main advantages of these types of bases in comparison with bases
with local duals are usually shorter supports of wavelets, lower condition numbers
of the bases and corresponding discretization matrices, and also simplicity of the
construction.

Below we comment on the constructions of cubic spline wavelets that are presented
in the papers [10, 11, 14, 15, 17, 23] collected in this thesis.

[10] Cernd, D.; Finék, V.: Construction of optimally conditioned cubic
spline wavelets on the interval, Adv. Comput. Math. 34(2), (2011), pp.
219-252.

In [10], we constructed biorthogonal spline-wavelet bases such that both primal
and dual wavelets are local and they have the desired number of vanishing wavelet
moments. Inner wavelets are translated and dilated versions of the well-known wave-
lets designed by A. Cohen, I. Daubechies, and J.-C. Feauveau in [32]. Our objective
was to construct interval spline-wavelet bases with condition numbers close to the
condition numbers of spline wavelet bases on the real line, especially in the case of cu-
bic spline wavelets. We showed that the constructed set of functions is indeed a Riesz
basis for the space L? (0,1) and for the Sobolev space H* (0,1) for a certain range of
s. Then we adapted the primal bases to the homogeneous Dirichlet boundary con-
ditions of the first order and the dual bases to complementary boundary conditions.
We compared the efficiency of an adaptive wavelet scheme for our wavelets and cu-
bic spline wavelets constructed in [63] by M. Primbs and we showed the superiority
of our construction. Numerical examples are presented for the one-dimensional and
two-dimensional Poisson’s equations where the solution has steep gradients.

[11] Cernd, D.; Finék, V.: Cubic spline wavelets with complementary
boundary conditions, Appl. Math. Comput. 219(4), (2012), pp. 1853—
1865.

In [11], we focused on a construction of a cubic spline-wavelet basis on the interval
with local duals satisfying complementary boundary conditions of the second order.
This means that a primal wavelet basis is adapted to homogeneous Dirichlet boundary
conditions of the second order, while the dual wavelet basis preserves the full degree
of polynomial exactness. We showed superiority of our construction in comparison
to spline wavelet bases of the same type, i.e. those from [63, 65], with respect to
conditioning of wavelet bases and the number of iterations in an adaptive wavelet
method for the numerical solution of the partial differential equation A%u = f in two
dimensions. For example, the discretization matrix for this problem in one dimension
when a basis with seven levels of wavelets is used has the condition number 66.7 for
our basis, 693.0 for the basis from [65], and 1117.0 for the basis from [63]. Hence, this
basis can be recommended for problems where local duals are needed and second-order
Dirichlet boundary condition are prescribed.
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[14] Cerna, D.; Finék, V.: Cubic spline wavelets with short support for
fourth-order problems, Appl. Math. Comput. 243, (2014), pp. 44-56.

In [14], we proposed a construction of new cubic spline-wavelet bases on the unit
cube satisfying homogeneous Dirichlet boundary conditions of the second order. Wa-
velets have short supports of the length 3 and two vanishing moments. In this paper,
we were inspired by the construction of cubic spline-wavelet basis satisfying similar
type of boundary conditions proposed by R.Q. Jia and W. Zhao in [57], where the
wavelets have no vanishing moments. They used their basis for solving fourth-order
problems, and they showed that the Galerkin method with this basis has superb con-
vergence and it outperforms the Galerkin method with cubic splines preconditioned
using BPX preconditioner or multigrid method. The discretization matrices for the
equation A?u = f on a unit square have very small and uniformly bounded condi-
tion numbers. In our paper [14], we designed wavelet bases with the same scaling
functions, but with different wavelets. We showed that our basis has an even smaller
condition number than the basis in [57] and additionally the wavelets have vanishing
moments. For example, the condition number of the discretization matrix of the size
65025 x 65025 was 18.6. Vanishing moments enable the use of this wavelet basis in
adaptive wavelet methods and wavelet-based methods for equations with an integral
term.

[15] Cerna, D.; Finék, V.: Wawvelet basis of cubic splines on the hy-
percube satisfying homogeneous boundary conditions, Int. J. Wavelets
Multiresolut. Inf. Process. 13(3), (2015), article No. 1550014.

In [15], we proposed a construction of new cubic spline wavelets on the hyper-
cube that have two vanishing moments and satisfy first-order homogeneous Dirichlet
boundary conditions. In comparison with [14] where the duals are not discussed, here
we defined dual spaces as linear spline spaces. We defined bases of dual scaling spaces
that have compact support and used them for the proof of the Riesz basis property.
The biorthogonal wavelet basis contains functions with global support. The matri-
ces arising from discretization of second-order elliptic problems using a constructed
wavelet basis have uniformly bounded condition numbers and these condition num-
bers are relatively small. We constructed wavelet bases on the hypercube using both
isotropic and anisotropic tensor product, studied condition numbers of discretization
matrices corresponding to the Helmholtz equation with various parameters, and we
provided a numerical example to show the efficiency of the multilevel-Galerkin method
using the constructed basis. This basis was studied by L. Calderén, M.T. Martin, and
V. Vampa in [6]. They used our basis in numerical experiments and showed that the
additional advantage is that the stiffness matrix corresponding to the one-dimensional
Poisson’s equation is banded. This also affects the structure of discretization matrices
for the Helmholtz equation in higher dimensions, because they are computed using
tensor products of the stiffness matrix and the mass matrix.
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[17] Cerna, D.; Finék, V.: Sparse wavelet representation of differential
operators with piecewise polynomial coefficients, Axioms 6, (2017), article
No. 4.

In [17], we proposed a construction of a Hermite cubic spline-wavelet basis on the
interval and hypercube. The basis is adapted to homogeneous Dirichlet boundary
conditions. We focused on the structure of discretization matrices rather than on
the length of the support and the condition number of the basis as in the previous
papers. Here, the wavelets are orthogonal to piecewise polynomials of degree at most
seven on a uniform grid. Therefore the wavelets have eight vanishing moments and
the matrices arising from discretization of differential equations with coefficients that
are piecewise polynomials of degree at most four on uniform grids are sparse and
not only quasi-sparse as for most wavelet bases. This greatly simplifies the routine
APPLY needed for computation of the multiplication of a biinfinite matrix with a
finitely supported vector in adaptive wavelet methods. Numerical examples showed
the efficiency of an adaptive wavelet method with the constructed wavelet basis for
solving a second-order elliptic equation and the Black—Scholes equation with two state
variables and quadratic volatility.

[23] Cernd, D.: Cubic spline wavelets with four vanishing moments on
the interval and their applications to option pricing under Kou model,
Int. J. Wavelets Multiresolut. Inf. Process. 17(1), (2019), article No.
1850061.

As in our paper [14], our aim was to construct cubic spline wavelets with the
shortest possible support corresponding to B-spline multiresolution analysis, but with
a larger number of vanishing moments, namely four vanishing moments. We con-
structed bases that satisfies no boundary conditions and bases that satisfy first-order
homogeneous Dirichlet boundary conditions. Inner wavelets are the same as inner
wavelets for a wavelet basis on the real line constructed in [24, 50]. To illustrate
the applicability of the constructed bases we used the wavelet-Galerkin method with
our bases to option pricing under the double exponential jump-diffusion model repre-
sented by a partial integro-differential equation. We used the Crank-Nicolson scheme
for time discretization and the wavelet-Galerkin method for spatial discretization. We
compared the results with B-spline bases and cubic spline wavelet bases from [10], be-
cause they are adapted to the same type of boundary conditions. Since the equation
contains an integral term, most classical methods lead to full matrices. Hence the
advantage of the proposed method is the quasi-sparse structure of the discretization
matrices. In comparison with methods from [49, 54, 58, 61, 71], the presented method
required significantly smaller number of degrees of freedom needed to compute the
solution with desired accuracy.

In Table 2.2, we list parameters and properties for cubic spline-wavelet bases. The
property sparse Lapl. means that matrices arising from discretization of Laplacian are
truly sparse and the property sparse diff. means that the discretization matrices are
sparse for some class of differential operators with piecewise polynomial coefficients.
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Table 2.2: Parameters characterizing cubic spline-wavelet bases.

wavelet  bound. vanish. supp supp loc. scal. wav. special
basis  cond. moments  scal. wav. duals gen. gen. property
DKU [38] 0 L>4even 4 L+3 loc. 1 1
D[43] m>0 L>4even 4 L+3 loc 1 1
B [3] 0 L>4even 4 L+3 loc 1 1
P[63] 01 L>4even 4 L+3 loc. 1 1
CF[10] 01 L>4even 4 L+3 loc. 1 1
CF[11] 2 6 4 9 loc. 1 1
S [65] 2 2 2 3 loc. 2 2
R [64] 1 4 2 2 loc. 6 6 L2-orth.
CQ [26] 0 4 4 7 glob. 1 1 semiorth.
J[56] 3 2 4 5 glob. 1 1
J [56] 3 4 4 7 glob. 1 1
JZ [57] 2 0 4 3 glob. 1 1
JL 5] 1 2 2 2  glob. 2 2
CF [14] 2 2 4 3 glob. 1 1 short. sup.
CF[15 1 2 4 5 glob. 1 1
CF [16] 1 4 2 4 glob. 2 4 sparse Lapl.
CF [17] 1 8 2 8 glob. 2 8 sparse diff.
CF [23] 0-1 4 4 4 glob. 1 1 short. sup.
D [45] 1 4 2 4 glob. 2 4 sparse Lapl.

2.3 Applications of Constructed Bases

Wavelet bases on the interval and product domains are useful in a wide range of
applications including signal and image analysis, data compression, and numerical
solution of various types of operator equations. In this section, we mention several
concrete examples where wavelets constructed in the enclosed papers were used. First,
we mention applications from these papers.

Second-order linear elliptic equations

These equations represent a wide range of applications, typically governing equi-
librium problems in physics such as displacement of a membrane, electric potential,
gravity fields, or pressure fields. We focused on the Poisson and Helmholtz equations,
which we solved by the wavelet-Galerkin method in [15, 17] and by the adaptive
wavelet method in [10].

Fourth-order linear elliptic problems

These equations arise for example in linear elasticity theory, mechanics of elastic
plates, or slow flows of viscous fluids. We solved these equations in [11, 13, 14]. As
already mentioned, we were motivated by the results in [57], where a cubic spline-
wavelet basis adapted to second-order boundary conditions was constructed. The
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wavelet-Galerkin method has superb convergence and outperformed BPX precondi-
tioner and multigrid methods, but wavelets did not have vanishing moments. We
improved their results in [14], where we constructed wavelets of similar type, but
even better conditioned and with vanishing moments. This enabled us to reduce the
number of iterations needed to find a sufficiently accurate solution and to apply these
wavelets in adaptive wavelet methods.

Option pricing under the Black-Scholes model

In [17], we solved the Black-Scholes equation with two state variables and quadratic
volatility by an adaptive wavelet method. The advantages of an adaptive wavelet
approach were not only the small number of degrees of freedom needed to find a
solution with desired accuracy, but also that the routine APPLY was greatly simplified
due to the fact that the discretization matrices have uniformly bounded number of
nonzero entries in each row. This is not the case for most other wavelet bases, which
have a so-called finger pattern.

Option pricing under a double exponential jump diffusion model

In [23], we studied option pricing under a double exponential jump diffusion model
proposed by Kou in [60]. Since this model is represented by partial integro-differential
equation, most classical methods suffer from the fact that discretization matrices are
full. We used the wavelet-Galerkin method combined with the Crank-Nicolson scheme
and showed that the discretization matrices can be approximated by quasi-sparse
matrices. Furthermore, we showed that our method enables a solution to the problem
with desired accuracy and smaller number of degrees of freedom than methods from
[49, 54, 58, 61, 71]. Hence, smaller matrices are involved in computation.

We also used the wavelets from this thesis in applications in our other works.
Several of them are mentioned below.

Option pricing under stochastic volatility models

Wavelet methods are a very promising tool for option pricing, for a survey see
[52, 64]. We used an adaptive wavelet method with bases constructed in this thesis for
option pricing under stochastic volatility models that are improvement of the famous
Black and Scholes model, where volatility is a constant or deterministic function. For
instance in [21], we used wavelets from [19] for option pricing under the Heston model.

Valuation of Asian options

In [18], we used the adaptive wavelet method with a linear spline-wavelet basis
from [10] for valuation of two-asset Asian options with a floating strike. We compared
this method with the wavelet-Galerkin method with the same basis, and we found that
the adaptive method required a significantly smaller number of degrees of freedom to
compute the solution with a desired accuracy. Moreover, the optimal convergence
rate with respect to the L2-norm was achieved for the adaptive wavelet method, while
this was not the case of the wavelet-Galerkin method.
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Sensitivity analysis of options

In the book [53], we were concerned with option pricing and the numerical com-
putation of the Greeks, i.e. derivatives of the option price with respect to underlying
parameters such as the underlying asset price, time to expiration, volatility, and inter-
est rates. The Greeks measure the sensitivity of the option price to these parameters
and their computation is important for hedging. Since Greeks are defined as deriva-
tives of option price with respect to these parameters, the convergence rate for the
methods for their computation is typically smaller than the convergence rate for the
methods for computation of the price of the option. Therefore, it is beneficial to use
a higher-order method such as the adaptive method with quadratic and cubic spline-
wavelet basis. In [53], comparison with other methods such as the finite difference
method, a discontinuous Galerkin method and a fuzzy method was provided. Our
method was superior in the sense that it enabled achieving a significantly smaller
error for the same number of degrees of freedom as these methods.

Differential equations with Dirac right-hand side

In [20], we proposed an adaptive method that uses wavelets constructed in [19]
for the numerical solution of the partial differential equation with the right-hand side
that contains the Dirac delta function.

Sparse representation of images and image compression

As already mentioned in Section 1.4, the wavelet bases on the interval lead to
the fast wavelet transforms that use special boundary filters. In [8, 9], we used the
FWT corresponding to spline wavelets from [10] to sparse representation of images
and image compression. We compared our method with methods based on the signal
extension such as zero padding, symmetrization, periodization, etc. and we showed
that the error near the boundary is significantly smaller for our method and that the
method enables to reduce boundary artefacts.

Singularly perturbed boundary value problems
We also used the adaptive wavelet method for the solution of singularly perturbed
boundary value problems in [4].

In summary, wavelets on the interval can be used directly in methods for the
numerical solution of operator equations and in signal and image processing for de-
composition, analysis, and compression. In addition, constructions of wavelets on the
interval can be used as the first step of constructions of wavelets on more general do-
mains and constructions of wavelets satisfying some special conditions. For example
as mentioned in [69], a construction of divergence-free wavelets starts with the pair
of two biorthogonal wavelet bases such as those from [11, 45, 63]. Divergence free
wavelets then can be used for the numerical solution of the Navier—-Stokes equations
representing the flow of viscous fluid. Moreover, wavelets on the interval can be used
in many engineering applications, e.g. the method from [13] was used as the part of
the algorithm for building venting system on complex surfaces of injection molds in
[73]. For other applications of wavelets on the interval we refer to [25, 28, 37, 41, 72].
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Conclusions and Further Research

The previous text summarizes the results presented in the attached papers. In these
papers, we constructed several quadratic and cubic spline wavelets on the interval and
product domains and compared them to existing constructions. All constructed bases
were well-conditioned. Bases from [13, 14, 23| have the shortest possible support,
therefore discretization matrices are sparse and one iteration of the method for the
solution of the resulting discrete system requires less floating point operations than for
other wavelets of the same type applied to the same equations. Bases from [17] lead to
truly sparse matrices for a class of differential operators with polynomial coefficients,
while other wavelet bases lead to only quasi-sparse matrices. For applications, where
global support of dual functions is needed we can recommend bases from [10, 11]. We
used the constructed basis for the numerical solution of many types of equations, and
we presented other possible applications of the bases.

In terms of further research, we would like to extend our previous results to
higher-dimensional problems (dimension d > 4), especially for solving partial integro-
differential equations representing pricing multi-asset options under jump diffusion
models. Furthermore, we recently constructed wavelet dictionaries for ECG signal
modelling in [22]. Here, the dictionaries were constructed from wavelets on the real
line simply by restriction. We would also like to focus on a construction of dictionaries
that are boundary adapted and compare them with dictionaries based on restriction
for ECG signal modelling and also use them in other applications.
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Construction of Optimally Conditioned Cubic Spline Wavelets on the
I nterval

Dana Cerna - Vaclav Fingk

Abstract The paper is concerned with a construction of new spline-wavelet bases on the interval.
The resulting bases generate multir esolution analy ses on the unit interval with the desired number
of vanishing wavelet moments for primal and dual wavelets. Both primal and dual wavelets have
compact support. Inner wavelets are translated and dilated versions of well-known wavelets de-
signed by Cohen, Daubechies, and Feauveau. Our objective is to construct interval spline-wavelet
bases with the condition number which is close to the condition number of the spline wavelet bases
on the real line, especially in the case of the cubic spline wavelets. We show that the constructed
set of functionsis indeed a Riesz basis for the space L2 ([0, 1]) and for the Sobolev space HS ([0, 1])
for a certain range of s. Then we adapt the primal bases to the homogeneous Dirichlet boundary
conditions of the first order and the dual bases to the complementary boundary conditions. Quan-
titative properties of the constructed bases are presented. Finally, we compare the efficiency of
an adaptive wavelet scheme for several spline-wavelet bases and we show a superiority of our
construction. Numerical examples are presented for the one-dimensional and two-dimensional
Poisson equations where the solution has steep gradients.

Keywords Biorthogona wavelets - Interval - Spline - Condition number
Mathematics Subject Classification (2000) 65T60 - 65N99

1 Introduction

Wavelets are by now a widely accepted tool in signal and image processing as well asin numer-
ical smulation. In the field of numerical analysis, methods based on wavelets are successfully
used especially for preconditioning of large systems arising from discretization of elliptic partial
differential equations, sparse representations of some types of operators and adaptive solving of
operator equations. The quantitative performance of such methods strongly depends on a choice
of awavelet basis, in particular on its condition number.

Wavelet bases on a bounded domain are usually constructed in the following way: Wavelets on
thereal line are adapted to the interval and then by atensor product technique to the n-dimensional
cube. Finally by splitting the domain into subdomains which are images of (0,1)" under appro-
priate parametric mgppings one can obtain wavelet bases on a fairly general doman. Thus, the
properties of the employed wavelet basis on the interval are crucial for the properties of the result-
ing bases on general adomain.

Biorthogonal spline-wavelet bases on the unit interval were constructed in [16]. The disad-
vantage of them is their bad condition which causes problems in practical applications. Some
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modifications which lead to better conditioned bases were proposed ir1}3],[24], and [33].
The recent construction by M. Primbs, see [12], [24], or [25], seenmitperform the previous
constructions with respect to the Riesz bounds as well as spectraljeee the corresponding
stiffness matrices in the case of linear and quadratic spline-wavelets. Ipajpées, we focus on
cubic spline wavelets and we construct interval spline-wavelet basegheittondition number
which is close to the condition number of the spline wavelet bases on the realtlia known
that the condition number of the wavelet basis on the real line is less thanartedhe condition
number of the interval wavelet basis, where the inner functions aréctesis of scaling functions
and wavelets on the real line.

First of all, we summarize the desired properties:

— Riesz basis propertfhe functions form a Riesz basis of the spaé¢[0, 1]).

— Locality. The basis functions are local. Then the corresponding decompositice@mustruc-
tion algorithms are simple and fast.

— Biorthogonality.The primal and dual wavelet bases form a biorthogonal pair.

— Polymial exactnesd.he primal MRA has polynomial exactness of ortieand the dual MRA
has polynomial exactness of ordérAs in [9], N+ N has to be even and > N.

— Smoothness he smoothness of primal and dual wavelet bases is another desipettprdt
ensures the validity of norm equivalences, for details see below.

— Closed formThe primal scaling functions and wavelets are known in the closed formalt is
desirable property for the fast computation of integrals involving primdirggéunctions and
wavelets.

— Well-conditioned base&ur objective is to construct wavelet bases with an improved condition
number, especially for larger valuesifandN.

From the viewpoint of numerical stability, ideal wavelet bases are ortelgeavelet bases.
However, they are usually avoided in the numerical treatment of partig@reiffial and integral
equations, because they are not accessible analytically, the complemsouadary conditions
can not be satisfied and it is not possible to increase the number of vanigretet moments in-
dependent from the order of accuracy. Moreover, sufficiently shnawhogonal wavelets typically
have a large support.

Biorthogonal wavelet bases on the unit interval derived from B-sphvere constructed also in
[8] and [19] and they were adapted to homogeneous Dirichlet bourdaditions in [20]. These
bases are well-conditioned, but have globally supported dual basisdnos. Another construction
of spline-wavelets was proposed in [4], but the corresponding dasgdare unknown so far. We
should also mention the construction of spline multiwavelets [15], [22], a8[] {Rough the dual
wavelets have a low Sobolev regularity.

The paper is organized as follows. Section 2 provides a short introductithe concept of
wavelet bases. Section 3 is concerned with the construction of primal moltites analysis on
the interval. The primal scaling functions are B-splines defined on theeBbleog sequence of
knots, which have been used also in [4], [8], and [24]. In Section 4amstruct dual multiresolu-
tion analysis. There are two types of boundary scaling functions. Tietifuns of the first type are
defined in order to preserve the full degree of polynomial exactness[dakand [10]. The con-
struction of the scaling functions of the second type is a delicate task, seettzeilow condition
number and nestedness of the multiresolution spaces have to be preSewtémh 5 is concerned
with the computation of refinement matrices. In Section 6 wavelets are caestiucthe method
of stable completion proposed in [18]. The construction of initial stable cdioplés along the
lines of [16]. In Section 7 we show that the constructed set of functionsleed a Riesz basis for
the spacé.? ([0, 1]) and for the Sobolev spa¢¢®(]0,1]) for a certain range a. In Section 8 we
adapt the primal bases to the homogeneous Dirichlet boundary conditithvesfimst order and the
dual bases to the complementary boundary conditions. Quantitative fiespefrthe constructed
bases are presented in Section 9. Finally, in Section 10, we compare teneffiof an adaptive
wavelet scheme for several spline-wavelet bases and we show r@osiip®f our construction.
Numerical examples are presented for one-dimensional and two-dimenBmeaon equations
where the solution has steep gradients.



2 Wavelet bases

This section provides a short introduction to the concept of wavelesbhseeus introduce some
notation. We usé&, Z, Q, andR to denote the set of positive integers, integers, rational numbers,
and real numbers, respectively. [}, denote the set of integers which are greater than or equal
to jo.

We consider a domai® C RY and the spac&?(Q) with the inner product-,-) and the
induced nornj|-||. Let _# be some index set and let each index ¢ takes the form\ = (j,k),
where|A| = j € Z is ascaleor alevel Let12(_¢) be a space of all sequendes: {b, }re g such

that

16lli,( ) == ( > \bﬂz> < . 1)

Ae f
Definition 1. A family ¥ := {{, € ¢} C L?(Q) is called awvavelet basi®f L2 (Q), if

i) ¥ is aRiesz basigor L?(Q), it means that the linear span @fis dense irL.?2 (Q) and there
exist constants,C € (0, ) such that

<C|blly, s forall b={by},c ,€I*(7). (2)

clbll, ) <|| > batn

=4

Constantgy, := sup{c: c satisfieg2) }, Cy := inf{C : C satisfieg2) } are calledRiesz bounds
andcond¥ = Cy/cy is called thecondition numbenf ¥.
i) The functions aréocal in the sense that

diam(Q,) <c2 M forall Ae g, (3)
whereQ), is the support of), , and at a given levglthe supports of only finitely many wavelets
overlap in any poink € Q.

By the Riesz representation theorem, there exists a unique ﬂimﬂ{ Oy, A € j} cL?(Q)
biorthogonal ta¥, i.e.

(G, §j)) =80, foral (ke 7, (j,1)e 7. (4)

Here,d ; denotes the Kronecker delta, id®; := 1,4 j:=0 foEi = J. This family is also a Riesz

basis forL? (Q). The basidV is called aprimal wavelet basisy is called adual wavelet basis.
In many cases, the wavelet systé#is constructed with the aid of a multiresolution analysis.

Definition 2. A sequenc&= {S; }jeNj of closed linear subspac& C L?(Q) is called amul-
0
tiresolutionor multiscale analysisf

Sp C Sjp11C - C§ TS C .. L2(Q) and (Ujen,§) =L2(Q). 5)

The nestedness and the closedness of the multiresolution analysis impliestbraxof the

complement spaces;\Wuch that
Sit1=S5 oW, (6)

where® denotes the direct sum.
We now assume th&; andW; are spanned by sets of basis functions

qu Z:{¢j7k,k€fj}, qjj::{wj,k7k€jj}7 (1)

where.7j, ¢; are finite or at most countable index sets. We refapjtpasscaling functionsand
Y x aswavelets The multiscale basis is given by

jots—1
Wos=®U (J ¥ (8)

i=lo
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and the overall wavelet basis bf (Q) is obtained by

v=0,Ul]¥ 9)
i>o
The single-scale and the multiscale bases are interrelated yatheget transfornT j 5112 (1j4.s) —
12(1+s),
LIJJ'.’S = T]S¢J+S (10)
The dual wavelet systet¥ generates a dual multiresolution analySiwith a dual scaling basis
@

' Polynomial exactnessf orderN e N for the primal scaling basis and of ordsre N for the
dual scaling basis is another desired property of wavelet bases. misrtiest

M-1(Q)CS;, My_(2)CS, j> o, (11)

wherell, (Q) is the space of all algebraic polynomials @nof a degree at mosh.

3 Primal Scaling Basis

The primal scaling bases will be the same as bases designed by Chui akdnQ8], because
they are known to be well-conditioned. A big advantage of this approaclatsttreadily adapts

to the bounded interval by introducing multiple knots at the endpointsLi the desired order
. N 2 +N-1
of the polynomial exactness of the primal scaling basis and Iet(tli) . be aSchoenberg

k=—N+
sequence of knotiefined by

th:=0, k=-N+1,...,0, (12)
. k .

). — ] _

=5 k=1..2-1,

=1 k=2, 24N-1
The corresponding-splines of order Nare defined by
B 00 = (o —t) [th ot (=01 xe(0,2), (13)

where(x) ;= max{0,x}. The symbollt,...tx,n] f is theN-th divided difference off which is
recursively defined as

[tir 2, stieen] =Tt otiern—a] f if t
= k 7 N,
[tka cee 7tk+N] f= { f(N)(tk) ek i (14)
NI if te=teen,

with [t] f = f (t). _
The set®; = {(pj,k, k=-N+1,...,2) — 1} of primal scaling functions is then simply defined
by
Px=2"By, k=-N+1..2 -1, j>o0 (15)

Thus there are!2- N + 1 inner scaling functions and — 1 functions at each boundary. Figure 1
shows the primal scaling functions filr= 4 andj = 3. The inner scaling functions are translations
and dilations of one functiop which corresponds to the primal scaling function constructed by
Cohen, Daubechies, and Feauveau in [9]. In the following, we congitftem [9] which is shifted
so that its support i), N].

We define the primal multiresolution spaces by

Sj = span®;. (16)
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Fig. 1 Primal scaling functions fo = 4 andj = 3 without boundary conditions.

Lemma 3. Under the above assumptions, the following holds:
i) For any jo € N the sequence” = {Sj }j>jo forms a multiresolution analysis of [0, 1]).

ii) The spaces Sare exact of order N, i.e.
The proof can be found in [8], [24], [29].

4 Dual Scaling Basis

The desired property of the dual scaling bagits the biorthogonality tap and the polynomial ex-
actness of ordeN. Let ¢ be the dual scaling function which was designed by Cohen, Daubechies,
and Feauveau in [9] and which is shifted so tfit@) =0, i.e. its supportis—N +1,N+N —1].

In this caseN > N andN + N has to be an even number. It is known that there exist sequences
{h}yez and{hi}kez such that the functiong and ¢ satisfy therefinement equations

P =3 MoK, o(x) = gzﬁké(ZX—k>, x€R. (18)
ke ke
The parameterss, andhy are callecscaling coefficientsBy biorthogonality ofp and @, we have
23 homidi=dom meZ. (19)
keZ

Note that only coefficienthy, . ..,hy andh_g, 1, .., Py, {_1 may be nonzero.
In the sequel, we assume that

j > jo:= [log, (N+2N —3)] (20)

so that the supports of the boundary functions are containgd, 1. We define inner scaling
functions as translations and dilationsgf

O x:=2%9(2). k), k=N-1,....,2l -N-N+1 (21)

There will be two types of basis functions at each boundary. In the folpvit will be convenient
to abbreviate the boundary and inner index sets by

St ={-N+1,...,-N+N}, (22)
I2={-N+N+1,....N-2}, (23)
ISP ={N-1,.. 20 -N-N+1}, (24)
S = {2 -N-N+2..21-N-1}, (25)

ISt ={2-N,... 2 -1}, (26)



and

ij:ijvluijZ:{—N+1,...,N—2}, (27)
ij:ij?Uijvl:{zj—N—N+2,...,Zj—l}, (28)
I =70 P u LU PU s = (N2 -1 (29)

Basis functions of the first type are defined to preserve polynomiateess by the same way
asin[1], [10]:

k=275 (pen-1,0(—1) @2 —N)]py, ke (30)
|=—N—N+2

where {po,...,Py_1} is a basis offTg_ ([0,1]). In Lemma 6 we show that the resulting dual
scaling functions do not depend on the choice of the polynomial basisurlease,px are the
Bernstein polynomials defined by

P (X) == b’(‘“(N;l)xk(b—x)Nl", k=0,...,.N—1, XcR. (31)

The Bernstein polynomials were used also in [16]. On the contrary toifi6lr case the choice
of polynomials does not affect the resulting dual scaling b#sidut it has only the effect of
stabilization of the computation, for details see Lemma 6 and the discussion below.

The definition of basis functions of the second type is a delicate task, $etiailow condition
number and the nestedness of the multiresolution spaces have to beguie$éis means that the

relation Bjx C Vj C Vj41, k € JjL’Z, should hold. Therefore we defirtg, k € ij,z’ as linear
combinations of functions which are alreadyx]ﬂl. To obtain well-conditioned bases, we define
functions 6}, k € .#{"%, which are close tapf} := 2/2¢ (2} - —k), becausep’y, k € .72, are

biorthogonal to the inner primal scaling functions and the conditio{i@‘fk, ke fj"’zu fjo} is

the same as the condition of the set of inner dual basis functions.
For this reason, we define the basis functions of the second type by

; NN Lo
Gix=22 5 he(2@*—2k-1)|oy, ke.F (32)
|=N—-1-2k

vyhereﬁi are the scaling coefficients corresponding to the scaling fundtjd'meneLk is close to
@il j0.1, because by (18) we have

. CNN-1
oy =22 5 @™ —2k-1)|oy, kes2 (33)
k=—N+1

Figure 2 shows the functior8 x and@f for N = 4,N = 6, andj = 4.
The boundary functions at the right boundary are defined to be symmatinithe left bound-
ary functions:

Bix=062 (1—:), keI (34)
It is easy to see that
Bi1k =220, (2), ke .ot (35)
for the left boundary functions and
011k (1—+) =220 (1-2), ke sf (36)

for the right boundary functions.
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Fig. 2 The functionsg, and@y for N = 4 andN = 6.

Since the se®; := {6,k € .7 } is not biorthogonal tap;, we derive a new set

@ = {@.ke 7} 37)
from ©; by biorthogonalization. Let
Qj = ({44 651))kjc.s, - (38)
Then viewing®; and©; as column vectors we define
®;:=Q; "o, (39)

assuming thaQ; is invertible, which is the case of all choices Nfand N considered in our
numerical examples below.
Then®; is biorthogonal to®;, because

(@1, 8)) = (,Q770;) = QQ = s, (40)

where the symbol # denotes the cardinality of the setlgriknotes the identity matrix of the size
mx m.

Lemma 4. i) Let @;, ©; be defined as above. Then the matrices

Qir = (@K 8i))esr N Qir= ((Bik:6i1))jcm (41)
are independent of j, i.e. there are matric@s, Qg such that
QjL=QL, Qjr=0Qr (42)
Moreover, the matriQg results from the matri, by reversing the ordering of rows and columns,
which means that
(QR)ki = (QU)ai N k2int» KleIR (43)
i) The following holds:
Q) =8, ke.gj, le s (44)

iif) The following holds:
Qi) =0, ke s lesfusf (45)
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Proof Due to (35) and by substitution we have fot € JjL

(@810 = (272 Poic(2710) 277611 (2770) ) = (@i B ) (46)

ThereforeQ; . = Qj,L = Qu, i.e. the matrixQ; . is independent of. Due to (36)Qj r is inde-
pendent ofj too. The property (43) is a direct consequence of the reflection imaig84).

The propertyii) follows from the biorthogonality of (- —k)},., and{¢(- — I)}IeZ' It also
implies (45) fork € .72, 1 € ﬂjL’lu JjR’l. It remains to prove (45) fok € 7P, | € JjL’ZUJJ-R’Z.
By the definition of the dual scaling functions of the second type (32) glieament relation (18)
for the dual scaling functiop, and (19), we have fdt € fjo, S ,ﬂjL’z,

N+N-1
(@1, 01) = ( (- —K),V2 ho2 -2 —m) |y (47)
m=N—1-2k
N N+N-1
=2 Z)hnqo(Z- —2k-n), Y  hn@(2--2-m)[gy (48)
n= m=N-1-2k
N N+N-1 B N+N-1 .
=2 Z} Z hnhm&2kn21+m = 2 z hol k- mhm (49)
n=0m=N—-1—2k m=N-1-2k
=25 ha_aimhm=0. (50)
2
By (34), the relation (45) holds also fare .70, 1 € 7%,
Thus, we can write
. Q s
D = Q;T@j = I#Jjo O = I#Jjo 9j, (51)
Qr Qr'

Since the matrixQ; is symmetric in the sense of (43), the properties (34), (35), and (36)ftiold
@  as well.

60 100 100 100

40
50
20

0 0
-20
-50
-40

% 05 1 0% 05 1 % 05 1

60

40
20 ban 40,
0 20
-20
-40

-60

0

-20

% 05 1 4% 05 1 4% 05 1 4% 05 1

Fig. 3 Boundary dual scaling functions fof = 4 andN = 6 without boundary conditions.

Remark 5. It is known that the scaling functiop has typically a low Sobolev regularity for
smaller values oN. Thus the function§; x have a low Sobolev regularity for smaller values of

N, too. Therefore, we do not obtain the sufficiently accurate entries ah#tgx Q; directly by
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classical quadratures. Fortunately, we are able to compute the m@jirprecisely up to the round
off errors. For ke Jj"’lu Jj"’z, S ij’l we have

N-2 N-1
<(pj,k> 9]|> = Z Cl.,n<(')n7(p('_m)> <(p('_k)aq)('_m)>|_2(<07l>)7 (52)
m=—N—N+2n=
with g , given by(64). Sinceg is a piecewise polynomial function anglis refinable, for ke

ij’lu ,ﬂj"’z, l e ij’l we can compute the entries@f by the method from [11]. By the refinement
relation we easily obtain the following relations for the computation of the remaieiriges of

Q-

N+N-1 [ ~ B L2
(@, j|>:{zmil(l—l—NZIhm<%,ka¢(‘_2k—m)>, k=-N+1,...,-1 e

Ly F : (53)
2 ML o o, k=0,...,N-21e 72

Since the submatriQr is obtained from a matrixQ_ by reversing the ordering of rows and
columns, the matri®Q; can be indeed computed precisely up to the round off errors.

Now we show that the resulting dual scaling baisloes not depend on a choice of a polyno-
mial basis of the spad@g ([0, 1]) in the formula (30).

Lemma 6. We suppose that'P= {pé, - pkm}’ P2 = {p%, - pﬁlfl} are two different bases
. S y2i-1
of the spacdTy ([0,1]) and for i= 1,2 we define the set3] = {BJ' k}k - by
") k=—N+
' N-2 L1
: 21/ zl——N—N+2<pk+N 9 > q’ (ZJ _I) ‘[071]’ ke ij A
_ i :
k= 9]21 N—K’ ke 7™, (54)
Furthermore, we define
~ =T . )
=(®,0)), & =(Q) o, i=12 (55)

and we assume tha;t' is nonsmgular Theml)1 cD2

Proof SinceP! andP? are both bases of the spadg ([0, 1]), there exists a regular matrg such
thatP? = B_PL. The consequence is that

0? = B0, (56)

BL
Bj= ly.r0 : (57)
Br

whereBg results from a matriB, by reversing the ordering of rows and columns, which means
that

with

(BR)ki = (BL)gi_n—k2i-n-1+ K€ ij’l- (58)
Therefore, we have

®2=(Q?) T @?=(Qh) ' B;'Bj0} = &L (59)

Although a choice of a polynomial basis does not influence the resultinigsdabing basis,
it has an influence on the stability of the computation and the precisenessrestiits, because
some choices of the polynomial bases lead to the critical values of the conaitiober of the
biorthogonalization matrix. We present the condition numbers of the ni@trifor the monomial

basis{ 1,%,%2, .. .xﬂ‘*l} and Bernstein polynomials (31) with the parameters4 andb = 10 in
Table 4. In our numerical experiments in Section 9 we ch@osel0.
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Remark 7. In the case of linear primal basis, i.e. N2, there are no boundary dual functions of
the second type. In [24] the primal scaling functions and the inner duallrsg functions are the
same as ours. The boundary dual functions before biorthogonalizatiosedined by (30) with the
same choice of polynomialgp.., pg_; as in [10]. Due to the Lemma 6, for N 2 the wavelet
basis in [24] is identical to the wavelet basis constructed in this section.

The main difference of the construction by M. Primbs [24] in comparisitimeur construction
is the definition of dual basis functions of the second qujé“ S k=-N+1,...,-2 Note that
they correspond to different indexes than ours. These functlons Aredas Imear combination
of functlonse'ﬁ'{“nbs, n > k, in order to be already biorthogonal to the primal scaling functions.
The reflnement coefficients for them are obtained by solving certaimsydténear algebraic
equations. In case ¥ 3, the functlonsejp”mbs k=—-N+1,...,—2, take much larger values than
primal scaling functions and than the inner dual scallng functlons Theresufnthe boundary
wavelets take much larger values than inner wavelets which probablyeséaed conditioning
of wavelet bases. Furthermore, the dual boundary functions of ttetfjpe which are defined to
preserve the polynomial exactness correspond to the first N scaliojdos in our case and they
correspond to the primal scaling functions indexed-Hy;...,N — 2 in case of the construction
from [24]. It leads to better matching of the supports and values of thegbrémd dual functions
in our construction. This better localization and 'almost biorthogonality’ @& ttual functions of
the second type to the primal scaling functions lead to optimally conditionedl@tdeses for
N <4 and to an improvement of the condition number also fot N, see Section 9.

The constructions of primal and dual boundary scaling functions in Hir@] [17] is based on
the relation (30) with various choices of polynomials. There are no baxngdenerators of the
second type. This construction also leads to some boundary functionis take larger values
than the inner functions and the condition number of wavelet bases is b&tl$o8, see figures
in [16], [17], and [35].

For the proof of Theorem 9 below and also for deriving of refinemeritiogs we will need
the following lemma.

Lemma 8. For the left boundary functions of the first type there exist refinemaiticents my,
ke st ne stus? #3 = {N-1,....3N+N -5} such that

—N+N 3N+N-5 L1
0= % MakBj+1n+ Z MkBjt1n, keI (60)
n=—N+1 n=N-1

Proof Let ©° = {ejfk, ke fﬁ} ando}+m" = {QJWLOQk e ijvl} be defined by

N—2
i ~ i L1
oren=212 5 (), 0(-1)e(2~1)|oy, ke.s (61)
|=—N-N+2
Then
leon T @!_,1,mon
o (MmnTgbt ) (62)
j+1

Table 1 Condition numbers of the matric€s
N N  mon. b=4 b=10 N N  mon. b=4 b=10

6.68e+00 9.94e+00 3.16e+01
4.66e+02 1.94e+01  9.48e+02
1.40e+05 1.00e+02 4.47e+03
1.03e+08 8.52e+03 5.81e+03
1.48e+11 1.67e+06 1.58e+03
2.18e+02 1.07e+02  1.00e+03
3.73e+04  1.88e+02 1.05e+04
1.64e+07 1.20e+04 2.26e+04
1.54e+10 2.90e+06 1.33e+04

2.46e+04 6.75e+02 1.33e+0
1.30e+07 2.94e+04  7.84e+0
1.24e+10 6.24e+06 9.42e+0
1.92e+13 2.26e+09 H24e+

5.34e+06 3.29e+04 136e+

5.62e+09 6.91e+06 3.33e+0
9.3%9e+12 257e+09 3.87e+0
1.20e+09 3.68e+06 6.81le+0
2.97e+12 1.92e+09 1.8le+0

WWWWNNNNDN
O~NTOTWERPR OO R~N
o
oo~ bhDb
@CD@\I(ﬂSCOO?h
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where the refinement matri Mo" = { 0”} is given b
K neij,lujjg,keij.l 9 y
\%2—", k=n,ne ﬂj"’l,
N—2
keN—1 & L1
on % > <(-) - a¢('_q)>hn72q7 ke s, ne.7?, (63)
qi[anENHW
0, otherwise

For deriving ofM™M°" see [16]. It is known that the coefficients of Bernstein polynomials in a
monomial basis are given by

cl,n:{(_1)I_H(Nn1)(?)b‘”7 if n>l, o0

0, otherwise

Hence, the matrixC = {C|7n}[r']\':+_NN+1 is an upper triangular matrix with nonzero entries on the
diagonal which implies that is invertible. We denoté)j"’1 = {Gj,k, ke ij,1} and we obtain

_L.,l,mon 1 L1
@}_,1 _ C@Jleon Mmon)T (g,oﬂ ) _ C(Mmon)T (CO (|)> <@6+1> (65)

j+1 J+l

Therefore, the refinement matfk = {Mnx},_ ;11 43, L1 iS given by
' ] ]

M = (COT ?) M™OrCT | (66)

We define the dual multiresolution spaces by
S; := spand;. (67)
Theorem 9. Under the above assumptions, the following holds

i) The sequence” = {S,} , forms a multiresolution analysis ofL]0,1]).
i) The space§J are exact of ordeN ie.

My (01D CS, > o (68)
Proof To provei) we have to show the nestedness of the spSgé=. S; C Sj;1. Note that
Sj = span®; = spano;. (69)

Therefore, it is sufficient to prove that any function fr@ncan be written as a linear combination
of the functions fron®;.1. For the left boundary functions of the first type it is a consequence of
Lemma 8. By definition (32) it holds also for the left boundary functions efdecond type. Since
the inner basis functions are just translated and dilated scaling fungtitrey obviously satisfy
the refinement relation. Finally, the right boundary scaling functions argetl by the reflection
from the left boundary scaling functions and therefore, they satisfyetfrgement relation, too. It
remains to prove that

U 1J§= (70)

i>~io

whereM denotes the closure of the 9¢étin L2 (]0,1]). It is known [26] that for the spaces gener-
ated by inner functions
S = {6ixke A} (7)

we have

S =1%([0,1). (72)

1=1

\%
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Hence, (70) holds independently of the choice of boundary functions.
To prove ii) we recall that the scaling functignis exact of ordeN, i.e.

21 +1/2)y — zzakJZj/qu(ij— k), xcRae,r=0,..,N-1, (73)
KE
where
ar = (), @(-=n). (74)
It implies that forr = 0,...,N—1,x € (0,1), the following holds
, N-2 o 2l -N-R+1 o
21(r+1/2)xr|<0’1> - Z ak7r21/2¢(21X_ k) !<o.,1> + z ak,rZJ/z(p(ZJX— k) |<o,1>
k=—N—N+2 k=N-1
2i4N-2 o
+ z ak7r2]/2(p(21X—k) ‘<0’1>.
k=2i —N—-N+2

By (30), (34), and (69), we immediately have

My_1([0,1]) cspan{(bj,k,ke ij,lujjonjR,l} 8. (75)

5 Refinement Matrices

Due to the length of the support of the primal scaling functions, the refinemeainix M; o corre-
sponding to® has the following structure:

ML

Mjo= Aj : (76)

Mg

whereM, Mg are blocks of the siz€N — 2) x (N—1) andAjis a(21*1 =N +2) x (2 =N +2)
matrix given by

(Aj)mvn:\%hm_m, 0<m-2n<N. (77)
Since the matriM | is given by
@ —N+1 @j+1,-N+1
(Pj,—.N+2 _ MI (pj+1,.—N+2 | (78)
(Pj,.fl §0j+1'7|\|71
it could be computed by solving the system
P1=M/P;, (79)
where
AR At PR Y
Pi=1| . ’ (80)
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and
?,-nN+1(0) ¢ —N+1(1) ... @ N1 (2N —3)

@, -N+2(0) @ -n+2(D) ... @ -N42(2N—23)

Py — (81)

fPl,N—.l(O) Gin-1(1) ... (QI_7N_1(-2N—3)

The solution of the system (79) exists and is unique if and only if the mBgrils nonsingular.
The proof of a nonsingularity d?, can be found in [36].

To compute the refinement matrix corresponding to the dual scaling functienseed to
identify first the structure of the refinement matrid&é%, corresponding t®.

MP
M= | 1 A , (82)

MR

whereM andM§ are blocks of the sizé2N + 3N —5) x (N+N —2) andA | is a matrix of the
size (211 —N—2N+3) x (2l — N —2N +3) given by
~ 1 - ~

The recipe for the computation of the refinement coefficients for the leftdhary functions of the
first type is the proof of Lemma 8. The refinement coefficients for the mihidary functions of
the second type are given by the definition (32). The matrfk can be computed by the similar
way.

Since we have

~ T T ~
& =Q;T0;=Q;T (M%) 01=Q;T (M$o) QL. (84)

the refinement matrix/ j,0 corresponding to the dual scaling baé]'pis given by

v 0 -1
Mj.0 = Qj+1M70Q;j ™ (85)

0 0

w0p 1 10

ol H ’ 207

30t B 4 30f
401 g 1 401
501 B 1 501

60 60

0 10 20 30 0 10 20 30
nz =181 nz = 584

Fig. 4 Nonzero pattern of the matricéss o andM 50forN =4 andN = 6, nzis the number of nonzero entries.
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6 Wavelets

Our next goal is to determine the corresponding wavelet bases. Thigeilgiconnected to the
task of determining an appropriate matriéég; andM 1. Thus, the problem has been transferred
from functional analysis to linear algebra. We follow a general princigleed astable completion
which was proposed in [6].

Definition 10. Any M 1 :12(J;) — I2(lj+1) is called astable completioof M | o, if

M.

]M;1H:0(1), j = o, (86)

whereMj ;= (Mjo,Mj1).

The idea is to determine first an initial stable completion and then to project it toetfieed
complement spadd/; determined b){Vj }j>j0. This is summarized in the following theorem [6].

Theorem 11. Let ®; and ®; be a primal and dual scaling basis, respectively. Mgt andM o be
the refinement matrices corresponding to these bases. Suppobgjthatsome stable completion
of MjoandG; =M;*. Then

Mj1:=(1—M;joM]o)Mj1 (87)

is also a stable completion ar@; = M j*1 has the form

YN
Gj= <M170> ) (88)
Gj1
Moreover, the collections
Yi=M] 01, @ =G0 (89)
form biorthogonal systems
(W @) =1, (@,%)=(¥ &)=0. (90)

We found the initial stable completion by the method from [16], [18] with some sthalhges.
The difference is only in the dimensions of the involved matrices and in thealefifthe matrix
Fj. Recall thatA | is the interior block in the matriM ; o of the form

hp O ... 0
hy O :
hs hg

1 . . .
Ai = — . 91
72 | bz I (1)

0 hn_q 0

0 hy ho

0 hy
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whereh, ..., hy are the scaling coefficients correspondingtd®y a suitable elimination we will
successively reduce the upper and lower bands fgrsuch that after steps we obtain

o
o
o
——
-
Nl—:
_

0 0
W o
h{ ! 0
[2]+2
. 2
A= , AP =A 92)
hi'

NI—
[

In [16], it was proved for B-spline scaling functions that

0 -

Therefore, the ellimination is always possible. The elimination matrices are &driine
Hj(Zifl) :=diag(li-1,Uz-1,...,Uz-1,In-1), (94)
H_(Zi) = diag(IN_i,in,...,LZi,Ii_l)’ (95)

J

ht) 1 0
1— 1i/2] M
Uji1:= h((li)/2]+1 , Liyii=1 thU/ZJ 1] (96)
0 1 hg\ll)—U/Zj—l

It is easy to see that indeed

where

o

N)

After N elimination steps we obtain the matéx "’ which looks as follows

00 0
N
SN }H
00
b0
N) Q0 N )
AN _HiA = | 0b . where Hj:=H®™ _H®, (98)
£ 0.
g
L]
0 0
with b # 0. We define
0..0b%0 0 O.. 0
1 [0..0 0 oblo... 0
B = (") " = ) (99)
b-10...0
~—— ~——
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and

00
= }(%Wl

00
10
00

Fj=|01 ' (100)

o
——
—
Nz
| E—
+
[EEY

Then, we have
BjF;=0. (201)

After these preparations we define extended versions of the maifjcés;, AEN), andBj by

. In_1 . IN-1

Hj;:< Hj ), AN = AN : (102)
IN-1 In—1

R IN—l R IN—l

A= A ,  Bl:= Bf . (103)
INfl |N,1

Note thatfij, Aj, A", andB; are all matrices of the sizg«.#},1) x (#.7}). Hence, the com-

pletion ongm has to be &#.7j.1) x 21, On the contrary to the construction in [16], we define an
expanded version d¥; as in [5], because it leads to a more natural formulation, when the entries
of both the refinement matrices belong@Q. The difference is in multiplication by/2,

O IN—1
e
Fi:=v2|~ | F : (104)
I
3]
o) IN—-1

The above findings can be summarized as follows.

Lemma 12. The following relations hold:

BIAN =14, %ﬁ}ﬁjzzlm (105)
and
BiFj=0, FIAV =0 (106)
The proof of this lemma is similar to the proof in [16]. Note the refinement matriy can be
factorized as
Mjo=PjA;=P;A AN (107)
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with

Pj = L1 on . (108)

Mg

Now we are able to define the initial stable completions of the refinement mattices
Lemma 13. Under the above assumptions, the matrices

Mj1:=PiH;'Fj, ) > o, (109)
are uniformly stable completions of the matridés,. Moreover, the inverse
v G
Gj= | x J’°> 110
’ (Gj,l (110)
of Mj = (Mjo,Mj1) is given by

L (111)

The proof of this lemma is straightforward and similar to the proof in [16]. Thging the

initial stable completiorM j,1 we are already able to contruct wavelets according to the Theorem
11.

0.5 1 3
Yao 05| [} Y4, 2
0 0
-0.5
-0.5 -1
-15
= 0.5 1 2% 0.5 1
2 2
1 Va3 15
1 7/14,4
0
05
-1
0
-2 -05
B 0.5 1 = 0.5 1

Fig. 5 Some primal wavelets fdd = 4 andN = 6 without boundary conditions.

7 Norm equivalences

In this section, we prove norm equivalences and we showWhand ¥ are Riesz bases for the
spacd_?([0,1]). Furthermore, we show thd2 Sy, ,A € 7} is a Riesz basis for Sobolev space
H3([0,1]) for somes specified below. The proofs are based on the theory developed imfti3]
[16].

Let us define

y:=sup{s: e HS(R)}, ¥:=sup{s:pcH(R)}. (112)
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Itis known thaty=N — % The Sobolev exponent of smoothngssn be computed by the method
from [21]. The functions in®; and%¥;, j > jo, have the Sobolev regularity at leastecause the
primal scaling functions are B-splines and the primal wavelets are finite lno@abinations of the
primal scaling functions. Similarly, the functionsdy and¥;, j > jo, have the Sobolev regularity
at leasty.

Theorem 14.1) The sets{ @; } := {®;},_, and{®;} := {®;} _, are uniformly stable, i.e.

<|.3 b

i) For all j > jo, the Jackson inequalities hold, i.e.

cllbll,( s,

< Clblly () forallb = {bc}yc,, €17(#), j > jo.  (113)

inf [v=Vvi[| £ 27 |Vllsox forallve H3([0,1]) and s< N, (114)
Vi €S ’
and _ .
inf |[v—vj|| S 27 |IVllys(oyy forallveH®([0,1]) and s< N. (115)
V€S ’
iii) For all j > jo, the Bernstein inequalities hold, i.e.
Villso.zy S 27 |lvil|  forallvj € Sjand s<y, (116)
and .
HVJHHS o) S 2°l||vj|| forallvj € §jand s< . (117)
Proof i) Due to Lemma 2.1 in [16], the collectiosp; } := { @}, and{®j}:={®}_, are
uniformly stable, if®; and ®; are biorthogonal,
ol st lon <1 kes, i= o, (118)
and®; and @; are locally finite, i.e.
#{k € 7 QuNQjx#0} <1, forallke .7, j > jo, (119)
and
#{k € .9 Q,k/mQ,k;«é(l)}<l forallke .7}, j > jo, (120)

whereQj x := suppe; andQ K= suppcp k- By (40) the setsp; and CDJ are biorthogonal. The
propertles (118), (119) and (120) follow from (15), (22), anﬁ)(3

i) By Lemma 2.1 in [16], the Jackson inequalities are the consequencesraf tha polyno-
mial exactness (17) and (68).

iii) The Bernstein inequalities follow from i) and the regularity of basis fundidor details
see [14].

The following fact follows from [13].
Corollary 1. We have the norm equivalences

2 2
Ml ~ 252 5 (% Bos) Box | + S| S v - (121)
ke 7], i=lo ke 7
where ve H3([0,1]) and se (—V, y).
The norm equivalence fa&= 0, Theorem 11, and Lemma 13, imply that
Y=0,UulJ¥ and P:=d,u (¥ (122)
i=lo =lo
are biorthogonal Riesz bases of the splacg0, 1]). Let us define
: A B
D= (D“)M o D= 5,;2%, AAe 7. (123)

The relation (121) implies thdD Y is a Riesz basis of the Sobolev spad&([0,1]) for s e
(=%.v).
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8 Adaptation to Complementary Boundary Conditions

In this section, we introduce a construction of well-conditioned spline-leabases on the inter-
val satisfying complementary boundary conditions of the first order. ifigians that the primal
wavelet basis is adapted to homogeneous Dirichlet boundary conditidims fafst order, whereas
the dual wavelet basis preserves the full degree of polynomial exsscthleis construction is based
on the spline-wavelet bases constructed above. As already mentionednarR7, in the linear
case, i.eN = 2, our bases are identical to the bases constructed in [24]. The adaphtiese
bases to complementary boundary conditions can be found in [24]. Weuspnsider only the
caseN > 3. _

Let &} = {@,k=—N+1,...,2) — 1} be defined as above. Note that the functignsn.1,
@, 2i_1 are the only two functions which do not vanish at zero. Thereforenideffi

o= {@ . k=-N+2,...,21 -2} (124)

we obtain the primal scaling bases satisfying complementary boundary cosdifithe first order.

1.5¢

0.5

0O 0.5 1

Fig. 6 Primal scaling functions foN = 4 andj = 3 satisfying complementary boundary conditions of the firdear

On the dual side, we also need to omit one scaling function at each bgubdeause the num-
ber of the primal scaling functions must be the same as the number of thecdliagggunctions.
Let ©j = {6,k € .7} be the dual scaling basis on the leydbefore biorthogonalization from
Section 4. There are the boundary functions of two types. Recall thétitlieons6; _n41, - . .,
8; _n+r are the left boundary functions of the first type which are defined teepve polynomial
exactness of the ordét. The functionsd; _nf1s -+ 612 are the left boundary functions of
the second type. The right boundary scallng functlons are then ddawthe reflection of the left
boundary functions. Since we want to preserve the full degree ohpoiljal exactness, we omit
one function of the second type at each boundary. Thus, we define

Oik-1, k=-N+2,...,—N+N+1,
= 0jk, k=-N+N+2...,2l-N-2 (125)
6 k41, kZZJ—N—l,...,Zj—Z.

ecomp

Since the se©;°"":= {Gcomp k=-N+2,...,2I - 2} is not biorthogonal tad;, we derive a

2i-2
new set®°""" from ©°"" by biorthogonalization. LeQ}*"" = <<(pj7 ’GJC?mp>)k| ey’ then
=" +

viewing ®;°"Pand©;°""as column vectors we define

T
Comp comp comp
& (Q ) o (126)
Our next goal is to determine the corresponding wavelets
comp comp j Tcomp, comp j
W {w k=0, 2—1}, @ .—{Lll]k k=0, 2—1}. (127)

It can be done by the method of a stable completion as in Section 6.
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9 Quantitative Properties of Constructed Bases

In this section the condition numbers of the scaling bases, the single-scatetdaases and the
multiscale wavelet bases are computed. As in [24] it can be improved y'thermalization on
the primal side. It will be shown that in the case of cubic spline waveletsslthseconstruction
presented in this paper yields optimatstability, which is not the case of constructions in [16]
and [24]. The condition numbers of the scaling bases and the waveks basfying the com-
plementary boundary conditions of the first order are presented ashelbther criteria for the
effectiveness of the wavelet bases is the condition number of the poneisng preconditioned
stiffness matrix. To improve it further we apply an orthogonal transformatiche scaling basis
on the coarsest level and then we use a diagonal matrix for precondifionin

Itis known that Riesz bounds (2) of the bagiscan be computed by

CZ\/)\min(Gj), C:@/)\max(Gj), (128)

whereG; is the Gram matrix, i.eGj = ((@k: @1.1))yc.r;» N Amin(Gj), Amax(G|) denote the

smallest and the largest eigenvalueGf, respectively. The Riesz bounds o, Y, andli/j are
computed in a similar way.

The condition numbers of the constructed bases are presented in Tablarthrove it further
we provide a diagonal rescaling in the following way:

M=% =G [ Bedr), ked, >, (129)
<‘Pj,ka§0j,k>
gl = Wik B = Do /Wi wi). ke £ i>do.  (130)

v Wik L.Uj,k>’

Then the new primal scaling and wavelet bases are normalized with réegletlL?-norm. As
already mentioned in Remark 7, the resulting based\fer 2 are the same as those designed
in [24] and [25]. For the quadratic spline-wavelet bases,N.es 3, the condition of our bases
is comparable to the condition of the bases from [24] and [25]. In [3]a whown that for any
spline wavelet basis of ordéron the real line, the condition is bounded below By 2 This result
readily carries over to the case of spline wavelet bases on the intervaltiNoconstructions from
[24], [25] yields the wavelet bases whose Riesz bounds are nedrtygaipi.e. condwj’\' ~ 2N-1

for N = 2 andN = 3. Unfortunately, the.2-stability gets considerably worse fbf > 4. As can

0 0.5 1

Fig. 7 Some primal wavelets fa¥ = 4 andN = 6 satisfying the complementary boundary conditions of thedirger.
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be seen in Table 2, the cqumHJjN”, the presented construction seems to yield the optiral

stability also forN = 4. Note that the casd$ = 4, N = 4 andN = 5, N < 9 are not included in
Table 2. It was shown in [9] that the corresponding scaling functiodsnavelets do not belong
to the spacé?.

Table 2 The condition of single-scale scaling and wavelet bases

i o N oN ¥ wN Y N

10 2.00 173 230 1.97 2.00 2.00 2.02 2.00
10 2.00 173 2.09 1.80 2.00 2.00 2.04 2.00
10 2.00 173 226 2.03 2.00 2.00 2.30 2.26
10 2.00 173 290 2.78 2.34 2.22 3.14 3.81
10 325 276 7.58 6.37 4.49 4.00 7.07 4.27
10 325 276 3.93 3.49 4.63 4.00 5.55 4.05
325 276 353 3.11 4.55 4.00 5.13 4.01
10 325 276 3.75 3.32 4.44 4.00 551 4.23
10 5.18 442 1088 9.07 14.02 8.00 24.36 9.23
10 518 442 6.69 5.88 13.96 8.00 16.98 8.20
10 5.18 442 583 5.16 13.82 8.00 15.27 8.00
10 8.32 7.13 2987 2523 67.74 27.44 169.76 68.90
10 832 7.13 1210 11.74 16.00 16.00 45.12 21.65
832 7.13 2849 4560 16.00 16.00 22.64 22.23

QOO BRBREDWOWWWWNNNDN prd
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In Table 3 the condition of the multiscale wavelet ba$gs = ®j, U U}"jjz*le is presented.

It is known that the condition number of the original basis on the real line i@ is less
than or equal to the condition number of the interval wavelet basis wheiarieefunctions are
identical to the basis functions from [9]. Therefore, we use the conditionber of the wavelet
bases from [9] as a benchmark. In Table 4, we compare the condition nofidag wavelet bases
and the wavelet bases from [9], [24].

In caseN = 5, the condition numbers of the scaling bases and the single-scale weasbst b
seem to be optimal, but the condition numbers of the multiscale wavelet bases atese to the
condition numbers of the corresponding wavelet bases on the real loveevdr, in comparison
with [24] the condition number is significantly improved fddr= 5 andN = 9. Therefore the
construction of well-conditioned high-order biorthogonal spline wavédestill an open problem.

Table 3 The condition of the multiscale wavelet bases

NN o Wi Y2 Wis Wa  Whs Wi W2 ¥os Wha  ¥hs

2 2 2 198 227 252 265 276 220 242 265 278 287
2 4 3 213 225 230 233 234 215 226 231 233 235
2 6 4 247 271 284 292 299 260 278  2.88 294  3.00
2 8 4 371 477 535 568 589 444 517 557 582 598
3 3 3 492 601 715 787 850 725 854 950 10.08  10.48
3 5 4 451 48 501 510 514 463 498 511 515  5.16
3 7 4 419 438 444 446 448 424 439 445 448 449
3 9 5 444 455 461 464 465 448 458 462 464 466
4 6 4 955 1090 11.88 1250 12.90 10.88 12.90 1335  13.48 8135
4 8 5 801 831 854 868 876 823 860 873 879 881
4 10 5 789 802 809 812 813 793 805 811 813  8.14
5 9 5 3022 6460 7517  81.03 8481 7234 8319 87.93  90.11 2791
5 11 5 8440 63161 300408>10* >10° 5408 40123 300408 >10° > 10

The condition of the single-scale bases adapted to complementary bowoddalition of the
first order are listed in Table 5. We improve the condition of the construciedsbby the 2-
normalization. FOIN = 4 the condition nhumber of the bases constructed in this paper is again
significantly better than the condition of the bases from [24].
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The other criteria for the effectiveness of a wavelet basis is the conditiorber of the corre-
sponding stiffness matrix. Here, let us consider the stiffness matrix fd?aisson equation:

(131)

Ajo,s - << (wcomp> <L'Ulcomp) >> wcompwcompel,ucomp

where 7P = @My U}":ﬁi*l#fj°°mp denotes the multiscale basis adapted to complementary
boundary conditions. It is well-known that the condition numbeAgfs increases quadratically
with the matrix size. To remedy this, we use the diagonal matrix for precondigonin

prec
AJo S

1/2
DJT)}sAjosDjB}Sv Dj,s=diag <(lﬂcomp> <‘Ifcomp> > (132)

comp, comp
ik qJ

To improve further the condition number &f rec we apply the orthogonal transformation to the

scaling basis on the coarsest level asin [7] and then we use the diagatnialfor preconditioning.
We denote the obtained matrix By The condition numbers of the resulting matrices are listed
in Table 6.

10 Adaptive wavelet methods

In recent years adaptive wavelet methods have been successadljousolving partial differen-
tial as well as integral equations, both linear and nonlinear. It has beswmshat these methods
converge and that they are asymptotically optimal in the sense that a stachg@amber of float-
ing point operations, needed to resolve the problem with desired agcteain proportional to
the problem size when the resolution of the discretization is refined. Thauspthputational com-
plexity for all steps of the algorithm is controlled.

The effectiveness of adaptive wavelet methods is strongly influenctgblzhoice of a wavelet

basis, in particular by the condition of the basis. In this section, our intentitmaempare the
guantitative behaviour of the adaptive wavelet method for the cubic splavelat bases con-
structed in this paper and the cubic spline wavelet bases from [24].

Table 4 The condition number of our multiscale wavelet balq%_bs andlifj';{5 and multiscale wavelet bases from [9] and [24]

N N jO s LIJ]%%F quPrlmbs qJJ'[\)IS (’UJ%%F w_PrlsmbS LIJJI(;I 5

3 3 3 5 6.68 6.25 8.50 8.52 8.17 10.48
3 5 4 5 436 5.31 5.14 4.37 5.36 5.16
3 7 4 5 4.04 8.57 4.48 4.04 8.63 4.49
3 9 5 5 4.00 25.40 4.65 4.00 25.76 4.66
4 6 4 5 9.89 141.95 1290 10.43 160.54 13.58
4 8 5 5 827 257.41 8.76 8.27 258.56 8.81
4 10 5 5 8.04 917.10 8.13 8.04 935.38 8.14
4 12 5 5 8.01 3971.65 8.44 8.01 3992.29 8.45
5 9 5 5 17.64 >10 84.81 18.01 >10* 91.27

Table 5 The condition of scaling bases and single-scale waveletdsetisfying complementary boundary conditions of the fidsio

N N o o @ N W wNo ®N

3 3 10 274 274 449 434 400 400 413  4.00

3 5 10 274 274 494 458 400 400 668  6.27

3 7 10 274 274 861 833 484 427 1211 16.05
3 9 10 274 274 1794 1778 816 625 2517  46.10
4 6 10 453 431 790 6.8 947 800 1646  8.00
4 8 10 453 431 1116 1004 846 803 2540 1532
4 10 10 453 431 1790 1697 839 842 3778 3593
5 9 10 758 689 1581 1385 3501 1602 80.84  33.60
5 11 10 758 6.89 2900 2639 16.00 16.00 132.90 74.70
5 13 10 758 6.89 289.13 44054 11819 89.12 720.32 5884.77
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Example 15. We consider the one-dimensional Poisson equation with homogeneousléirich
boundary conditions

—-u'=f, in Q=(0,1), u(0)=u(1)=0, (133)

whose solutioru is given by
e™ -1 e™ -1
UX) =457 <1— 1

The solution exhibits steep a gradient near the boundary, see Figue¢ &s define the diagonal

>+x(1—x), xe Q. (134)

x 10

4
! 3
08
2
06
1
0.4
02 0
0 -1
o 02 04 06 08 1 0 02 04 06 08 1

Fig. 8 The exact solution and the right hand side of (133).

matrix 2
D = di ! ! 135
a0 ¥i), (135)
and operators
A=D HW WD f=D1{f¥). (136)
Then the variational formulation of (133) is equivalent to
AU = f (137)

and the solutiom is given byu = UD~W. We solve the infinite dimensional problem (137) by the
inexact damped Richardson iterations. This algorithm was originally peojdmg Cohen, Dahmen
and DeVore in [10]. Here, we use a modified version from [30].

Figure 9 shows a convergence history for the spline-wavelet basggmed in this contribution
with N = 4 andN = 6 denoted by CF and the spline-wavelet bases with the same polynomial
exactness from [24]. We use also the algorithm with the stiffness maffixwhich has lower
condition number, see Table 6. Its convergence history is denoted hy. Glete that the relative
error in the energy norm for an adaptive scheme with our bases is sagnijismaller even though
the number of the involved basis functions is about half compared with tles lraf24].

Table 6 The condition number of the stiffness matridel;*, A% of the sizeM x M

M AP AL NN j s M APSE A%

N N j

"

33 48.98 15.25
259 51.61 16.15
2049 50.28 16.31
65 205.56 15.92

3 3 3 16 12.24 3.78 4 6 4 1

128 12.82 5.05 4

1024 1286 5.37 7

32 5297 4.20 4 8 5 1

256 55.09 8.41 4 513 208.88  26.80
2048 55.24 947 7 4097 209.31 27.69
32 7107 1074 5 7 5 1 66 183.57 159.08
256 7190 33.52 4 514 214.27 214.40
2048 7191 38.66 7 4098 22257 222.62
33 4702 1538 5 9 5 1 66 19119 17191
259 50.01 18.13 4 514 225.92  225.69
2049 50.28 1891 7 4098 233.24 233.24

w
~
IN

NA L ND L NA L ND
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Example 16. We consider the two-dimensional Poisson equation

—Au=f in Q=(0,1)2, u=0 on 9Q, (138)

with the solutionu given by

u(xy)=uxu(y), (xy) e€Q, (139)

whereu(x), u(y) are given by (134). We use the adaptive wavelet scheme with the cub&eta
basis adapted to homogeneous Dirichlet boundary conditions of therfilest @he convergence
history for our wavelet bases with and without orthogonalization and valases from [24] is
shown in Figure 10.
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Cubic spline wavelets with complementary boundary conditions
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Abstract

We propose a new construction of a stable cubic spline-wavelet basis on the interval
satisfying complementary boundary conditions of the second order. It means that
the primal wavelet basis is adapted to homogeneous Dirichlet boundary conditions of
the second order, while the dual wavelet basis preserves the full degree of polynomial
exactness. We present quantitative properties of the constructed bases and we show
superiority of our construction in comparison to some other known spline wavelet bases
in an adaptive wavelet method for the partial differential equation with the biharmonic
operator.

Keywords: wavelet, cubic spline, complementary boundary conditions, homogeneous
Dirichlet boundary conditions, condition number
2000 MSC: 46B15, 656N12, 65T60

1. Introduction

In recent years wavelets have been successfully used for solving partial differential
equations [2, 11, 12, 16, 27| as well as integral equations [22, 24, 25], both linear and
nonlinear. Wavelet bases are useful in the numerical treatment of operator equations,
because they are stable, enable high order-approximation, functions from Besov spaces
have sparse representation in wavelet bases, condition numbers of stiffness matrices are
uniformly bounded and matrices representing operators are typically sparse or quasi-
sparse. The quantitative properties of wavelet methods strongly depend on the choice
of a wavelet basis, in particular on its condition number. Therefore, a construction of
a wavelet basis is always an important issue.

Wavelet bases on a bounded domain are usually constructed in the following way:
Wavelets on the real line are adapted to the interval and then by tensor product tech-
nique to the n-dimensional cube. Finally by splitting the domain into overlapping or
non-overlapping subdomains which are images of a unit cube under appropriate para-
metric mappings one can obtain a wavelet basis or a wavelet frame on a fairly general
domain. Thus, the properties of the employed wavelet basis on the interval are crucial
for the properties of the resulting bases or frames on a general domain.

In this paper, we propose a construction of cubic spline wavelet basis on the interval
that is adapted to homogeneous Dirichlet boundary conditions of the second order on

Email addresses: dana.cerna@tul.cz (Dana Cernd), vaclav.finek@tul.cz (Vaclav Finék)



the primal side and preserves the full degree of polynomial exactness on the dual side.
Such boundary conditions are called complementary boundary conditions [18]. We
compare properties of wavelet bases such as the condition number of the basis and the
condition number of the corresponding stiffness matrix. Finally, quantitative behaviour
of adaptive wavelet method for several boundary-adapted cubic spline wavelet bases is
studied.

First of all, we summarize the desired properties of a constructed basis:

- Polymial exactness. Since the primal basis functions are cubic B-splines, the
primal multiresolution analysis has polynomial exactness of order four. The dual
multiresolution analysis has polynomial exactness of order six. As a consequence,
the primal wavelets have six vanishing moments.

- Riesz basis property. The functions form a Riesz basis of the space L? ([0, 1]) and
if scaled properly they form a Riesz basis of the space HZ ([0, 1]).

- Locality. The primal and dual basis functions are local, see definition of locality
below. Then the corresponding decomposition and reconstruction algorithms are
simple and fast.

- Biorthogonality. The primal and dual wavelet bases form a biorthogonal pair.

- Smoothness. The smoothness of primal and dual wavelet bases is another desired
property. It ensures the validity of norm equivalences.

- Closed form. The primal scaling functions and wavelets are known in the closed
form. It is a desirable property for the fast computation of integrals involving
primal scaling functions and wavelets.

- Complementary boundary conditions. Our wavelet basis satisfy complementary
boundary conditions of the second order.

- Well-conditioned bases. Our objective is to construct a well conditioned wavelet
basis.

Many constructions of cubic spline wavelet or multiwavelet bases on the interval
have been proposed in recent years. In [5, 17, 26] cubic spline wavelets on the interval
were constructed. In [14] cubic spline multiwavelet bases were designed and they were
adapted to complementary boundary conditions of the second order in [28]. In this case
dual functions are known and are local. Cubic spline wavelet bases were also constructed
in [1, 9, 20, 21]. A construction of cubic spline multiwavelet basis was proposed in [19]
and this basis was already used for solving differential equations in [8, 23|. However,
in these cases duals are not known or are not local. Locality of duals are important
in some methods and theory, let us mention construction of wavelet bases on general
domain [18], adaptive wavelet methods especially for nonlinear equations, data analysis,
signal and image processing. A general method of adaptation of biorthogonal wavelet
bases to complementary boundary conditions was presented in [18], but this method
often leads to very badly conditioned bases.

This paper is organized as follows: In Section 2 we briefly review the concept of
wavelet bases. In Section 3 we propose a construction of primal and dual scaling bases.
The refinement matrices are computed in Section 4 and in Section 5 primal and dual
wavelets are constructed. Quantitative properties of constructed bases and other known
cubic spline wavelet and multiwavelet bases are studied in Section 6. In Section 7 we
compare the number of basis functions and the number of iterations needed to resolve



the problem with desired accuracy for our bases and bases from [28]. A numerical
example is presented for an equation with the biharmonic operator in two dimensions.

2. Wavelet bases

This section provides a short introduction to the concept of wavelet bases in Sobolev
spaces. We consider the domain 2 C R? and the Sobolev space or its subspace H C
H*® () for nonnegative integer s with an inner product (-,-),, a norm |||, and a
seminorm |-|,;. In case s = 0 we consider the space L?(£2) and we denote by (-,-) and
||| the L?-inner product and the L*-norm, respectively. Let J be some index set and
let each index A € J take the form A = (j, k), where |A| := j € Z is a scale or a level.
Let

FU%-{NJ%RE]wF<m} (1)

reT
A family W := {¢\, A € J} is called a wavelet basis of H, if

i) W is a Riesz basis for H, i.e. the closure of the span of W is H and there exist
constants ¢, C' € (0, 00) such that

> by

reJ

c ||b||l2(J) < <C ||b||l2(j) , b= {b/\},\ej el’ (j) . (2)

H

Constants ¢, := sup {c: ¢ satisfies (2)}, Cy := inf{C : C satisfies (2)} are called
Riesz bounds and cond ¥ = Cy /¢y is called the condition number of W.

i1) The functions are local in the sense that diam (€2,) < C27 for all A € 7, where
(2, is the support of ¥, and at a given level j the supports of only finitely many
wavelets overlap at any point x € €).

By the Riesz representation theorem, there exists a unique family
\if:{@ZA,Aej}cH (3)
biorthogonal to ¥, i.e.
(Virtia) = Gigona, forall (i.k)ed, (1)ed. (4)

This family is also a Riesz basis for H. The basis ¥ is called a primal wavelet basis,
while U is called a dual wavelet basis.

In many cases, the wavelet system W is constructed with the aid of a multiresolution
analysis. A sequence V = {V;} >0 of closed linear subspaces V; C H is called a
multiresolution or multiscale analysis, if

ViCVinnC...CV;C Vi C ... H (5)
and U;>;,V; is complete in H.

The nestedness and the closedness of the multiresolution analysis implies the exis-
tence of the complement spaces W; such that V., = V; @ Wj.

3



We now assume that V; and W; are spanned by sets of basis functions
O ={djmk e}, Vi:={Ujr ke T}, (6)

where Z; and J; are finite or at most countable index sets. We refer to ¢; as scaling
functions and ;5 as wavelets. The multiscale basis is given by ¥, o = ®; U Uj(:;j_l v,
and the wavelet basis of H is obtained by ¥ = &, U > ¥j. The dual wavelet system
U generates a dual multiresolution analysis V with a dual scaling basis éjo.
Polynomial exactness of order N € N for the primal scaling basis and of order N € N
for the dual scaling basis is another desired property of wavelet bases. It means that

Py 1 (Q)CV;, Py, (DCVi > jo (7)

where P, (Q) is the space of all algebraic polynomials on 2 of degree less or equal to
m.

By Taylor theorem, the polynomial exactness of order N on the dual side is equiv-
alent to N vanishing wavelet moments on the primal side, i.e.

1}m@¢m@dxza PePy_,, vne lJ 9, (8)

J=jo
3. Construction of Scaling Functions

We propose a new cubic spline wavelet basis with six vanishing wavelet moments satis-
fying homogeneous Dirichlet boundary conditions of order two. Six vanishing wavelet
moments on the primal side is equivalent to the polynomial exactness of order six on
the dual side. We choose polynomial exactness of this order, because the dual scal-
ing function of order four does not belong to L? (R) and the polynomial exactness of
order greater than six leads to a larger support of primal wavelets which makes the
computation more expensive.

The first step is the construction of primal scaling functions on the unit interval.
Primal scaling basis is formed by cubic B-splines on the knots ¢, defined by

. . . 1 . k .

t‘7_2:t‘7_1 ::O’ t‘(j) ::F, t‘ljc ::57 ]{]:1,..,2‘7—17 (9)
) 2+l _q ) .
th; = T i1 = o = 1.

The corresponding cubic B-splines are defined by

Bl(z) = (y—t]) [th, ... tho], t—2)5, x€0,1],

where (), :=max {0, 2} and [t;,...tx], f is the N-th divided difference of f. The set
;= {¢jr k=—2,...,27 — 2} of primal scaling functions is simply given by

bin =2"7Bl  k=-2...2-2 j>0. (10)
J7 k

Thus there are 2/ — 5 inner scaling functions and 3 boundary functions at each edge.
The inner functions are translations and dilations of a function ¢ which corresponds to

4
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Figure 1: Primal scaling functions for the scale j = 4.

the primal scaling function constructed by Cohen, Daubechies, and Feauveau in [10].
Note that the primal scaling basis differs from the primal scaling basis constructed in
[4, 5, 17, 26], because there are additional knots 5+ and %ﬁ—iﬁ

The desired property of a dual scaling basis ® is the biorthogonality to ® and
the polynomial exactness of order six. Let ¢ be the dual scaling function which was
designed by Cohen, Daubechies, and Feauveau in [10] and which is shifted so that b
is orthogonal to ¢, i.e. its support is [—5,9]. Tt is known that there exist sequences

{hk}izo and {%}2:,5 such that the functions ¢ and ¢ satisfy the refinement equations

¢(@) =Y o (e —k), ¢x)=> hd(r—k), zeR (11)

k=—5

The parameters hy, and hy, are called scaling coefficients.
In the sequel, we assume that j > jo := 4. We define inner scaling functions as
translations and dilations of ¢:

0,0 =229 (27 —k), k=5,...,27 -9 (12)

There will be two types of basis functions at each boundary. In the following, it will
be convenient to abbreviate the boundary and inner index sets by

L1 L2 _ j
I = {-2,...,3}, I ={4}, I0={5....,20 -9}, (13)
I = {2 -8}, I ={2-7,... 2 -2},
and
IF = IP'UIF ={-2,....4}, (14)
If = TP uZ = {2 —8,...,2 -2},
TP UL U U UL = {2, 20 — 2}

Basis functions of the first type are defined to preserve polynomial exactness and
the nestedness of multiresolution spaces by the same way as in [17]:

4
O () =22 (ppa, 6 (=)o (P —1), keI, zel0,1], (15)
=-8



where {po,...,ps} is a monomial basis of P5 ([0,1]), i.e. p;(z) = 2%, x € [0,1], i =
0,...,5.

The definition of basis functions of the second type is a delicate task, because the
low condition number and the nestedness of the multiresolution spaces have to be
preserved. This means that the relation 6,4, € V; C V,4; should hpld. Therefore
we define 0;4 as linear combinations of functions that are already in Vi To obtain
well-conditioned basis, we define a function ;4 which is close to gb& = 212¢ (20 - —4),
because ¢§4 is biorthogonal to the inner primal scaling functions and the condition of

~§4, ke IjL 2 U 79 ¢ is close to the condition of the set of inner dual basis functions.

For this reason, we define the basis function of the second type by
9 ~ ~
Oa(x) =27 o (2w —-8-1), ze01], (16)
1=—3

where h; are the scaling coefficients corresponding to the scaling function ¢. Then 0.4
is close to ¢, restricted to the interval [0, 1], because by (11) we have

9
() =2 "o (22 —8-1), ze[0,1]. (17)
l==5

Figure 2 shows the functions 644 and &54.

40 40
30 30
20 oR, 20 014
10 10
0 0
-10 -10
-20 -20
30 0.2 04 0.6 0.8 1 3% 0.2 0.4 06 0.8 1

Figure 2: The functions q@f 4 and 04 4.

The boundary functions at the right boundary are defined to be symmetric with the
left boundary functions:

Oin (2) = 0504 (1—x), xz€l0,1], keIl (18)
It is easy to see that
Oji1 () = V20, (22), z€(0,1], keIf, (19)
for left boundary functions and
O (1—2) =20, (1—22), 2€0,1], keIl (20)

for right boundary functions.



Since the set ©; := {0;, k € Z;} is not biorthogonal to ®;, we derive a new set
b, = {gzj,k, ke zj} (21)
from ©; by biorthogonalization. Let
Q; = ((Dik: 05.) ez, - (22)

We verify numerically that Q; is invertible. Viewing <i>j and ©; as column vectors we
define 3
(I)j = QJ_T@] (2?))

Then CiDj is biorthogonal to ®;, because

<<I>j,§>j> =(9;,Q;79;) = Q,Q;" = Iy, (24)

where the symbol # denotes the cardinality of the set and I,, denotes the identity
matrix of the size m x m.

Remark 1. General approach of adapting wavelet bases to the unit interval was pro-
posed in [18]. The idea is to remove certain boundary scaling functions to achieve
homogeneous boundary conditions on the primal side. Then it is necessary to have the
same number of basis functions on the dual side. Therefore an appropriate number of
inner dual functions is used for the definition of boundary dual generators in formula
(15). Applying this approach to cubic spline basis constructed in [5] and basis con-
structed in [26] we obtain the same resulting basis, because these constructions differs
in the definition of some functions which are discarded during adaptation to comple-
mentary boundary conditions of the second order. Unfortunately, this basis has large
condition number, although the starting basis in [5] is well conditioned. Its quantitative
properties are presented in Section 6.

4. Refinement matrices

From the nestedness and the closedness of multiresolution spaces it follows that
there exist refinement matrices M, and M, ; such that

®; =M P01, By =M )40 (25)

Due to the length of support of primal scaling functions, the refinement matrix M,
has the following structure:

M,




where A; is a (2711 — 5) x (2/ — 5) matrix given by

hm —2n j
(A)), = 222 o —1,...,2 =5 0<m+1—2n<4, (27)

m,n \/5

= 0, otherwise,

where h,, are primal scaling coefficients (11), and My, Mp are given by

10 0
7 1
s 8 0
R
My=—=|0 2 2| Mz=M; (28)
\/5 0o = 2
20 40
00 3
0 0 %

The symbol M? denotes a matrix that results from a matrix M by reversing the ordering
of rows and columns. To compute the refinement matrix corresponding to the dual
scaling functions, we need to identify first the structure of refinement matrices 1\/_[;?0
corresponding to ©:

M7

M, = A (29)

M7

where M® and M9 are blocks 21x 7 and A is a matrix of the size (271! — 13) x (27 — 13)
given by

X hmf n— j

= 0, otherwise,

where h,, are dual scaling coefficients (11). The refinement coefficients for the left
boundary functions of the first type are computed according to the proof of Lemma
3.1 in [17]. The refinement coefficients for the left boundary functions of the second
type are given by definition (16). The matrix M$ can be computed by the similar way.
Since

P =Q; T@j =Q; ! (M?o) 0411 = Q; g (Mge,)o) JT+1(I)J‘+17 (31)
the refinement matrix l\N/Ij,O corresponding to the dual scaling basis éj is given by
Mo = Q;+1M5Q; . (32)



5. Construction of wavelets

Our next goal is to determine the corresponding single-scale wavelet bases W;. It is
directly connected to the task of determining an appropriate matrices M, ; such that

v = MjT,1q)j+1- (33)

We follow a general principle called stable completion which was proposed in [3]. This
approach was already used in [5, 17, 26]. In our case, however, the initial stable com-
pletion can not be found by the same way, because it leads to singular matrices.

Definition 1. Any M;; : [*(J;) — (* (Z;41) is called a stable completion of M, if

IV s 0. M|, —0(1), joroe,  (3)

Ziv1)=12(Zj+1) Zj41)—12(Zj41)

where M := (M, o, M, ).

The idea is to determine first an initial stable completion and then to project it to
the desired complement space W;. This is summarized in the following theorem [3].

Theorem 2. Let ®; and i)j be a primal and a dual scaling basis, respectively. Let M
and M be refinement matrices corresponding to these bases. Suppose that l\v/Ij,l 18
some stable completion of Mo and G; = Mj_l. Then

M]"1 = <I — Mij;{O) 1\7_[]'71 (35)

is also a stable completion and G; = 1\/Ij_1 has the form

M7
G» = ~ j70 . 36
J (G]ﬂ) ( )
Moreover, the collections
Vo= M@, Uy i= Gy, (37)

form biorthogonal systems

To find the initial stable completion we use a factorization M, = H;C;, where

Hp




025 0 0 0 0
0875 1 8 0 0
025 6 1 0 0
H, = 0 48 0 1 0 |, Hp:=H, (40)
0 1.2 0 1.8125 2
0 0 0 1256 1
0 0 0 03125 0
Matrix (Hf) has the size (2/*! —7) x (27! — 9). Its elements are given by:
(Hj)mn =1, 1<n<2¥™M -9 nodd,m=n+1 (41)
him,nﬁ, 1<n<2* -9 neven,—1<m—n<3,
= 0, otherwise,

C, 100
_ 1 I 10 % 0
2
Ch 00 2
00 0
00
b 0
0 0 7
Cr:=Cl, Cl=[0 b b= (43)
0
b
0
0 0

The factorization corresponding to inner and boundary blocks is not the same as the
factorization in [15]. Therefore by our approach we obtain new inner and boundary
wavelets. We define

B, |
1 00 0
B, =2 B/ ,Br:=|( 08 0 0 |,Bgr:= B%, (44)
000 3
| Br
000 0 0 0
; 00 0 0 bt o0 0
b1 0 0

10



and

Fr
F;:= F; , (46)
Fr
10
? 8 0 0 0
Fo=| o | Fa=|1]. Fl.=10 1 (47)
01 0 P 0
1
The above findings can be summarized as follows.
Lemma 3. The following relations hold:
B;C; =14, F/F;=1, B;F;=0 F/C;=0. (48)

Now we are able to define the initial stable completions of the refinement matrices
Mj70.

Lemma 4. Under the above assumptions, the matrices
Mj,l = H_]F]’ j > .jOa (49>

are uniformly stable completions of the matrices M; . Moreover, the inverse

«  (Gyo
6= (ar) o

Of Mj = (ijo, M]‘J) 18 giUGH by Gj,O = BjHj_l, Gj71 - ]??I‘I]_1

The proof of this lemma is straightforward and similar to the proof in [17]. Then us-
ing the initial stable completion M, ; we are already able to contruct wavelets according
to the Theorem 2. Left boundary wavelets are displayed at the Figure 5.

5.1. Decomposition of a scaling basis on a coarse scale

In the previous sections we assumed that the supports of the left and right bound-
ary functions do not overlap and therefore the coarsest level was four. It might be too
restrictive, especially in higher dimensions, because then there are many scaling func-
tions. Here we decompose scaling basis @, into two parts ®3 and W3. It also improves
the condition number of the basis. We construct wavelets on the level three to have four
vanishing moments. Note that wavelets on other levels have six vanishing moments, but
there the vanishing moments guaranties the smoothness of dual functions [10], and four
vanishing moments for wavelets are sufficient in the most of the applications. Scaling
functions in @3 are defined by (10) for j = 3. Functions in W3 are defined by

(B ()

@/)3,19 (ZE) = W,

k=1,...,8, z€[0,1], (51)

11
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Figure 3: Left boundary wavelets for the scale j = 4.

where Btsk is a B-spline of order eight on the sequence of knots ¢, and ) denotes the
fourth derivative. The sequences of knots ¢, are given by:

t, = [0,0,1/32,1/16,1/8,2/8,3/8,4/8,5/8]; (52)
ta = [0,1/32,1/16,1/8,3/16,2/8,3/8,4/8,5/8);
ty = [1/32,1/16,1/8,2/8,5/16,3/8,4/8,5/8,6/8):

[
[
[
t, = [1/16,1/8,2/8,3/8,7/16,4/8,5/8,6/8,7/8];
[
[
[

ts = [1/8,2/8,3/8,4/8,9/16,5/8,6/8,7/8,15/16];
te = [2/8,3/8,4/8,5/8,11/16,6/8,7/8,15/16,31/32);
t; = [3/8,4/8,5/8,6/8,13/16,7/8,15/16,31/32, 1];

ts = [3/8,4/8,5/8,6/8,7/8,15/16,31/32,1,1];

Lemma 5. Functions from the set ®3 U W3 generate the same space as functions from
the set @4, i.e. span ®3 U W3 = span ®4. Functions sy, k = 1,...,8, have four
vanishing wavelet moments.

Proof. Since ®4 is a basis of the space of all cubic splines on the knots
t* =10,0,1/32,1/16,2/16,...,15/16,31/32,1,1]. (53)

Functions in ®3 are cubic splines on the subsets of these knots. Functions in W3 are
also cubic splines, because they are fourth derivative of the spline of order eight, and
they are defined on the subsets of knots t*. Therefore ®3 U W3 C span @,.

Functions in ®3 are linearly independent. Function 3, cannot be written as linear
combination of functions from ®3U W3\ {¢3,}, because it is a cubic spline on sequence
of the knots ¢; containing an additional knot. Hence, W3 U @3 is a linearly independent
subset of span ®,, which proves the first assertion.

To prove that the functions 934, K = 1,...,8, have four vanishing moments, we use
the integration by parts. We obtain for n =0,...,3:

/0 195”(Bfk)(4) (z) dz = [x" (B3)® (@} - /0 ! (B (@)dz.  (54)

1

0

12



Since (Bfk)(n) is the spline of order 8 — n on the knots of multiplicity at most two in
points 0 and 1, we have

(BE)™(0) = (BL)™ (1) =0, n=0,...4, (55)
and thus .
/ (B (2)dx =0 (56)
and

1 1
/ $"(Bt8k)(4) (x)de = —/ na" (Bfk)(?’) (x)dz, n=1,...,3. (57)
0 0

Using (55) and the integration by parts three times, we obtain:

1
n n 4-n 4-n
/0 (B (w)de = (=1t |(B) T (1) = (BT )] =0, (59)
forn=1,...,3, which proves the assertion. O

Remark 2. In some constructions, the condition number of the wavelet basis is im-
proved by orthogonalization of boundary wavelets or by the orthogonalization of scaling
functions on the coarsest level. In our case, the improvement was insignificant.

5.2. Norm equivalences

It remains to prove that ¥ and W are Riesz bases for the space L?([0,1]) and that
properly normalized basis W is a Riesz basis for Sobolev space H* ([0, 1]) for some s
specified below. The proofs are based on the theory developed in [13] and [17].

For a function f defined on the real line a Sobolev exponent of smoothness is defined
as sup{s: f € H*(R)}. It is known that primal scaling functions extended to the real
line by zero have the Sobolev regularity at least v = g and that dual scaling functions
extended to the real line by zero have the Sobolev regularity at least ¥ = 0.344.

Theorem 6. i) The sets {®;} := {®;},.,; and {i)j} = {i)j} are uniformly stable,
- J=jo

1.€.

¢ Hb||12(zj) < Z bedjn|| < C ||b||zg(zj) Jor all b= {bk}kezj el (Z;) . J = Jo- (59)

k‘EIj

ii) For all j > jo, the Jackson inequalities hold, i.e.

ing v — ;|| S 27 vl geonyy  for allv € H*([0,1]) and s < N, (60)
€55 ’
and ‘ .
inf [lo—vl| 277 [|vll ooy Sfor allv e H*([0,1]) and s < N. (61)
UjESj ’

iii) For all j > jo, the Bernstein inequalities hold, i.e.

101l s oy S 27 lvsll - for all vy € Sj and s <, (62)

and

105l s 0.1y S 29 ||v;||  for all v; € S; and 5 < 7. (63)

13



Proof. i) Due to Lemma 2.1 in [17], the collections {®;} := {®;} ., and {@j} =

{&)j} are uniformly stable, if ®; and @j are biorthogonal,
Jj=Jjo

loanll S 1. |ésn| 1 ke 5> (64)

and ®; and (1:)]- are locally finite, i.e.
#{kK €Z; : QuNnNQp#0} <1, forallkeZ;, j> jo, (65)

and 3 .
#{K €T QunQu£0} S1, forall ke T, j > jo, (66)

where € := supp ¢;; and €, := supp ¢;x. By (24) the sets ®; and ®; are biorthog-
onal. The properties (64), (65), and (66) follow from (10), (12), and (19).

ii) By Lemma 2.1 in [17], the Jackson inequalities are the consequences of i) and
the polynomial exactness of primal and dual multiresolution analyses.

iii) The Bernstein inequalities follow from i) and the regularity of basis functions,
for details see [17].

O
The following fact follows from [13].
Corollary 1. We have the norm equivalences
2 2
[v] ?{5 ~ 270 Z <Uv (51'07k> Djok|| + Z 227 Z <U7 2[}J}k> ikl (67)
k€L, J=jo kET;
where v € H* ([0,1]) and s € (=7, 7).
The norm equivalence for s = 0, Theorem 2, and Lemma 4, imply that
V=0, U )T, and T:=0,uU( ], (68)
J=jo J=Jjo
are biorthogonal Riesz bases of the space L? ([0, 1]). Let us define
D=(Dys),i,: Du=aa2" Aded (69)

The relation (67) implies that D™*W is a Riesz basis of the Sobolev space H* ([0, 1]) for
s € (_’?a ’Y)

6. Quantitative properties of constructed bases

In this section, we compare quantitative properties of bases constructed in this
paper, cubic spline-wavelet basis from [26] and cubic spline multiwavelet basis recently
adapted to homogeneous boundary conditions in [28]. The condition of multi-scale
wavelet bases is shown in Table 1. Our wavelet basis is denoted by CF, a basis from

14



[28] is denoted by Schneider and a basis from [26] adapted to complementary boundary
conditions by method from [18] is denoted by Primbs. The last basis is the same as the
basis from [5] adapted to complementary boundary conditions by method from [18], see
Remark 1.

Other criteria for the effectiveness of wavelet bases is the condition number of a
corresponding stiffness matrix. Here, let us consider the stiffness matrix:

Ajos = (s ¥tn)) g, e, (70)

It is well-known that the condition number of Aj ¢ increases quadratically with the
matrix size. To remedy this, we use a diagonal matrix for preconditioning

rec —1 -1
A?o,s = Djo,SAjOvSDjO,S’ (71)
where s
D, .= dia ( " ) . 72
jo. g (Wi ¥ik) et (72)

In [7] the anisotropic wavelet basis were used for solving fourth-order problems. Here,
we use isotropic wavelet basis, i.e. we define multiscale wavelet basis on the unit square

by

w3l = e3P u | ur”, (73)
=3
where
O =Py 0Dy, V=0, 00, UT; 00, UT; 00, (74)
The symbol & denotes the tensor product. The preconditioned stiffness matrix *?A%"

for the biharmonic equation defined on the unit square is similar to the one dimensional
case. Condition numbers of the stiffness matrices are listed in Table 1 and Table 2.
The condition number of the stiffness matrix corresponding to wavelet basis by Primbs
exceeds 101 already for number of levels j = 3. Wavelet basis from [17] adapted to
complementary boundary conditions by method from [18] is very badly conditioned, its
quantitative properties can be found in [28].

7. Numerical example

Now, we compare the quantitative behaviour of the adaptive wavelet method with
our bases and bases from [28]. Both bases are formed by cubic splines and have local

Table 1: The condition numbers of wavelet bases and stiffness matrices, jo = 3 for CF and Schneider,
jo = 4 for Primbs.

Wjo.j Al
j | CF Schneider Primbs | CF Schneider Primbs
1| 83 1.9 14.9 | 64.8 472.0 1111.0
31 12.5 2.4 45.9 | 66.5 569.5 1116.9
51 15.3 2.6 69.8 | 66.6 640.8 1117.0
71 18.0 2.7 85.8 | 66.7 693.0 1117.0
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Quadratic spline wavelets with short support for fourth-order problems

Dana Cerna - Viaclav Findk

Abstract In the paper, we propose constructions of new quadratic spline-wavelet bases on
the interval and the unit square satisfying homogeneous Dirichlet boundary conditions of
the second order. The basis functions have small supports and wavelets have one vanishing
moment. We show that stiffness matrices arising from discretization of the biharmonic
problem using a constructed wavelet basis have uniformly bounded condition numbers
and these condition numbers are very small.
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Condition number - Biharmonic equation
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1 Introduction

In this paper, we propose a construction of quadratic spline wavelet bases on the interval
that are well-conditioned, adapted to homogeneous Dirichlet boundary conditions of the
second order, the wavelets have one vanishing moment and the shortest possible support.

The wavelet basis of the space Hg ((0, 1)2) is then obtained by an isotropic tensor product.

Wavelet bases are useful for solving the fourth-order problems. In [11], a construction
of cubic spline wavelet basis was proposed and it was shown that the Galerkin method
based on this wavelet basis is very efficient even in comparison with multigrid methods.
We show that our wavelet basis is even better conditioned than basis in [11]. Moreover,
since our wavelets have vanishing moments, they can be used in adaptive wavelet methods.

First of all, we summarize the desired properties of a constructed basis:

- Riesz basis property. We construct Riesz bases of the space HZ (0,1) and HE ((O, 1)2).

- Polynomial exactness. Since the primal basis functions are quadratic B-splines, the
primal multiresolution analysis has polynomial exactness of order three.

- Vanishing moments. The inner wavelets have one vanishing moment, the wavelets near
the boundary do not need to have vanishing moments.
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- Short support. The wavelets have the shortest possible support among quadratic spline
wavelets with one vanishing moment.

- Locality. The primal basis functions are local.

- Closed form. The primal scaling functions and wavelets are known in the closed form.

- Homogeneous Dirichlet boundary conditions. Our wavelet bases satisfy homogeneous
Dirichlet boundary conditions of second order.

- Well-conditioned bases. Our objective is to construct a well conditioned wavelet basis.

Moreover, in a comparison with constructions in [2], [8], [12], [13] that are quite long
and technical, the construction in this paper is very simple. Many constructions of spline
wavelet or multiwavelet bases on the interval have been proposed in recent years. In [1],
[2], [8], [12] cubic spline wavelets on the interval were constructed. In [7] cubic spline
multiwavelet bases were designed and they were adapted to complementary boundary
conditions of second order in [13]. In these cases dual functions are known and are local.
Spline wavelet or multiwavelet bases whose duals are not local were constructed in [4], [9],
[10], [11]. Some of these bases were already adapted to boundary conditions. The advantage
of our construction is the shortest possible support for a given number of required vanishing
moments. Vanishing moments are necessary in some applications such as adaptive wavelet
methods [5], [6]. Originally, these methods were designed for wavelet bases with local duals.
However, it was shown in [14] that wavelet bases without local dual basis can be used if
the solved equation is linear.

2 Wavelet bases

This section provides a short introduction to the concept of wavelet bases in Sobolev
spaces. In this paper, we consider the domain 2 = (0,1) or 2 = (0, 1)2. We consider
the Sobolev space or its subspace by H C H?®({2) for nonnegative integer s and the
corresponding inner product by (-,-);, a norm by |[|-||; and a seminorm by |-|,;. In case
s = 0 we consider the space L? (£2) and we denote by (-,-) and ||| the L?-inner product
and the L?-norm, respectively. Let J be some index set and let each index A € J take
the form \ = (j, k), where |[\| := j € Z is a scale or a level. Let

vz = I loal?, for v={ua}yes r €R, (1)
reJ

12 (j):{v:v:{v)\})\ej,v,\eR, ||v||2<oo}. (2)
A family ¥ := {¢\, A € J} is called a (primal) wavelet basis of H, if

i) ¥ is a Riesz basis for H, i.e. the closure of the span of ¥ is H and there exist constants
¢, C € (0,00) such that

and

clblly < <Clblly, b= {bahrey €7 (T). (3)

> batha

reJ

H
Constants ¢, := sup {c : ¢ satisfies (3)}, Cy :=inf{C : C satisfies (3)} are called Riesz
bounds and cond ¥ = Cy,/cy, is called the condition number of ¥.

ii) The functions are local in the sense that diam (€2)) < C2- for all A € 7, where 2,
is the support of ¥y, and at a given level j the supports of only finitely many wavelets
overlap at any point x € (2.

By the Riesz representation theorem, to any basis of the space H there exists a unique
family ¥ = {1;,\, A€ j} C H biorthogonal to ¥, i.e.

<77Z)i,k:71;j,l>H =0;j0ky, forall (i,k)eJ, (4,1)€J, (4)
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where 9; ; denotes the Kronecker delta, i.e. §; ; = 1 for ¢ = j and §; ; = 0 for 7 # j. This
family is a Riesz basis for H if and only if the primal basis is a Riesz basis for H. The

functions 1;; do not need to be local, therefore ¥ do not need to be a wavelet basis in the

sense of the above definition. The basis ¥ is called a dual basis.
Wavelets are usually constructed using a function v called a mother-wavelet by

Vg =2/ (2x —k+n),neN.

Also the inner wavelets in this paper are constructed by this way. This does not implicate
that the dual basis has a mother-wavelet.

In many cases, the wavelet system ¥ is constructed with the aid of a multiresolution
analysis. A sequence V = {V;} o’ of closed linear subspaces V; C H is called a multires-

olution or multiscale analysis, if
VieCVjps1 C...CV;CVpnC...H (5)

and Uj>;,V; is complete in H.

The nestedness and the closedness of the multiresolution analysis implies the existence
of the complement spaces W such that V; i1 = V; @ W;.

We now assume that V; and W; are spanned by sets of basis functions

45] = {¢],k7k € I]}? wj = {¢],k7k € ‘-7]}7 (6)

where Z; and J; are finite or at most countable index sets. We refer to ¢;; as scaling
functions and 1);;, as wavelets. The multiscale basis and the wavelet basis of H are given
by

Jo+s—1
Vs =2, | ¥, v=90,u]w. (7)
Jj=jo J=Jo
Let us denote
& ={dmke L}, ¥={bnkeT}, (8)
and

Vj =span®;, W; = spanV;. (9)

The spaces f/] are also nested:
Vi CVis1, § 2 o (10)

Most common way of construction of wavelet bases is using dual functions. In our paper,
we use a different approach and construct scaling functions ¢; as quadratic splines and
we derive wavelets 1, . directly as linear combinations of functions ¢;1 x, where the coef-
ficients of the linear combinations are chosen such that wavelets have vanishing moments.

Polynomial ezactness of order N € N for the primal scaling basis and of order N € N
for the dual scaling basis is another desired property of wavelet bases. It means that

]PN—l (Q) - ‘/j7 ]P)Nfl (Q) - ‘7]'7 ] Z jO? (11)

where IP,,, (£2) is the space of all algebraic polynomials on {2 of degree less or equal to m.

The polynomial exactness of order N on the dual side is equivalent to N vanishing
wavelet moments on the primal side, i.e.

/ P (z)yx(x)dr =0, forany PPy |, ¥y € U v;. (12)
9 L.
Jj=jo
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3 Primal scaling basis

A primal scaling basis is generated from function ¢. Let ¢ be a quadratic B-spline defined
on knots [0, 1,2, 3]. It can be written explicitly as:

z, x € [0,1],
2 3
22433 1,2
ola)={ 5 T pr el (13)
T —=3x+ 3, ve(2,3]
0, otherwise,

The function ¢ satisfies a scaling equation [8]:

¢(2m)+3¢(2x—1)+3¢(2x—2) ¢>(2x—3)‘

= 14
o) =% : 2 (14
For j > 2 and z € [0, 1] we set
dik () =220 Pr —k+1),k=1,...20 - 2. (15)
The graphs of the functions ¢;; on the coarsest level j = 2 are displayed in Figure 1.
15
$2.1 P22
1
0.5
% 05 1
Fig. 1 Primal scaling basis for j = 2.
We define a wavelet 1 as
1 1
Y(a) = — 5620 — 1)+ 56(2 ). (16)

Then supp ¥ = [0.5,2.5] and v has one vanishing wavelet moments, i.e.

/_00 Y(z)dz = 0. (17)

The graph of ¢ is shown in Figure 2.
We define a boundary wavelet iy, by:

p(7) = ad(2x) + b (22 — 1), (18)

where a and b are real parameters. Since we want to have wavelets with the shortest
possible support for a given number of vanishing moments, we will consider two choices
of the parameters:

a) a:_%ab:%a
b) a=1,b=0.

The properties of these wavelets are summarized in the following lemma.
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0.5
¥
0
-0.
35 1 15 2 25

Fig. 2 Wavelet 1.

Lemma 1 i) The function vy(z) defined by (18) with the choice of parameters a) satisfies
supp ¥y = [0,2] and

/_00 Yp(z)dxr = 0. (19)

i1) The function ¥y(x) defined by (18) with the choice of parameters b) satisfies supp v, =
[0.5]-

Proof The length of the support of the function v is derived from the lengths of the
supports of the functions ¢(2x) and ¢(2z — 1). By (13) we have

supp ¢(2x) = [0,1.5] and supp ¢(2x — 1) = [0.5,2]. (20)

Since the functions ¢(2x) and ¢(2x — 1) are given in the closed form, the formula (19) can
be verified easily.

Thus, we can choose boundary wavelet with one vanishing moment and larger sup-
port or boundary wavelets with shorter supports but without vanishing moments. If
f € H3(0,1) and f is constant at the interval [0,¢], 0 < € < 1, then f has to be zero at
[0, €]. The same holds for the interval [1 — ¢,1]. Hence f € HZ (0,1) can not be nonzero
constant near the boundary and therefore in some applications such as adaptive wavelet
methods the vanishing moment does not play the significant role for boundary wavelets.
The graphs of boundary wavelets 1, are displayed in Figure 3. All the following lemmas
and theorems are valid for both choices of parameters.

a) b)
0.5

() 1

08 by
0 0.6
0.4
0.2

_0'50 0.5 1 15 2 O0 0.5 1 15

Fig. 3 Boundary wavelet 1}, for a) and b), respectively.

For j > 2 and z € [0, 1] we define

Yin(x) =22 Pr —k+2),k=2,...,2 —1, (21)
V() = 229(2x), W00 (x) = 2724 (27 (1 — 2)).
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We denote
@5 = {031/ 103kl oy k=1, 2 =2}, (22)

0 = {win/ 15l k= 1o 2}

In Section 5 we show that the sets

1+s 00
=0, u|J¥ and ¥=a,U )Y (23)
j=2 j=2

are a multiscale wavelet basis and a wavelet basis of the space Hg (0,1), respectively.
We use u ® v to denote the tensor product of functions u and v, i.e. (u®v) (z1,x2) =
u (z1) v (z2). We set

F; = {¢j,l~c @ b1/ |djr ® ¢J}l|H§(Q) kil=1,...,2 — 2}

G?Z{%k®¢uﬂ¢m®¢ﬂHamv

Ge = {’(ijC ® ¢j,l / |1/Jj,k & wj:”HS(Q) Jk,(l=1,..., 2]}

k:L”q?lepuﬂ—Q}

where 2 = (0,1)%. We show that the sets defined by

1+s 0
- ol @uaue. w-no(@uaue e
=2 =2

are a wavelet basis and a multiscale wavelet basis of the space HJ (£2).

4 Refinement matrices

From the nestedness and the closedness of multiresolution spaces it follows that there exist
refinement matrices M; o and M, 1 such that

@j = MZngj‘Fl? Wj == ngldsj-kl- (25)
By (14), the entries of the refinement matrix M; o satisfy:

Amizoon o 20 —2 1< m+2-2n<4
(Mj0),,, =1V - ) ) 20)
: 0, otherwise,
where 1331
h=[hy, ho, b3, ha] = |, 2,2, 2
[17 2,513, 4] |:47474’4:| (7)

is a vector of coefficients from scaling equation (14). .
It follows from the equations (16) and (18) that the matrix M ; is of the size (277! — 2) x
27 and has the structure

ab0000...00\7%
0—3%000...00
11
_— 1 [000-330 00 .
SN :
0...0 000-320
0...0 0 00 ba
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There also exist refinement matrices l\N/Ij,o and 1\~/ij1 corresponding to dual spaces that
satisfy:

ij] = M}:oééj—}—l? @J = M}jléjﬁ-l- (29)
The structure of the matrix 1\~/Ij70 is derived in the proof of Lemma 2. We do not need to

know the structure of the matrix M, ;1 in this paper.

The Euclidean norm of a vector v is denoted by ||v||, and the spectral norm of the
matrix M is denoted as |[M]|,. The following lemma is crucial for the proof of a Riesz
basis property.

Lemma 2 The norm of the matriz M satisfies HMJ’OH2 <2P p= ig—g.

Proof We prove the lemma for the choice a) of parameters for the boundary wavelet,
for the choice b) the proof is similar. We denote the entries of the matrix l\N/Ij,o as MkJ,
k=1,...20t0 2 1 =1,...,29 —2.

Due to the biorthogonality of the sets ¥; U ®; and ¥; U ®; we have

MTM; =1 (30)

and R
MjTle,o =0;, (31)

where I; denotes the identity matrix and 0; denotes the zero matrix of the appropriate
size.
From (28) and (31) we have for [ = 1,...,2/ — 2:

My = My, My o) = Myjir_gy, (32)

and ~ R '
My = Myy1y, forkeven, k=2,...,27"" 4 (33)

We substitute these relations into (30) and we obtain a new system of equations A;B; =
I;, where
Rl

71
71 0. 0
131 :
12 1 :
1 ol 3 4 0
Aj=—o| *+2 ¢ 34
! V2 | (34)
1 31
0 191
17
0 0 7 1
and B, contains J\ka?l for k even, i.e. the entries By of the matrix B; satisfy:
By = My, kil=1,...27 -2 (35)
We factorize the matrix A; as A; = C;D;, where
342v2 1
A2 Lo g ... 0
1 3 1 :
1 2 1 :
1 0 7 5 i 0
C,=— 36
1 3 1
0 12 1
1 3422
0 ...0 0 & 322
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and - .
3+2\/§ 0 0 oo O 0 m
a 10 00 ——"——=
—3-2v2)" 7
a a _
—3—2v/2 01 00 (_3_2\/5)23—6
D, = Do ,
7(_3_2\/5)2]-76 00 10 WO
m 00 01 a
a 7—a
7(_3_2\/5)2]-74 00...00 YENG]
with
1-V2
a=—7.
6+ 4+/2
More precisely, the entries Dy, ; of the matrix D; are given by:
7T—a
Di1=Dyj 99 9= ——,
1,1 27 —2,29 —2 3_|_2\/§
a .
Dk,1:D2jflfk,2j72: (_3_2\/5)]6727 fork:27"'72]_27

Dpp=1, fork=2,...,29 -3,
Dy, =0, otherwise.

It is easy to verify that éj = Cj_1 has entries:

~ 1
Ck,l = k=1’
(-3-2v2)
and the matrix Dj_1 has the structure:
d 0...0 d,
do 1 0d,-1
-1 . . .
Dj ,
dp—1 0 1 do
d, 0...0 dy
with n = 27 — 2 and
(3 + 2\/5) Qap
dl=—
7T—a
aapy Qi B
d, = =3 — — k=2,...,n—1,
(7T—a) (-3 —2v2) (=3 —2v2)
4 — —a oy,

(7—a)® (-3-2v2)" "

where the constants «,, and 5, are given by

) -1
Qy = (1 — a4 3 _6>
(7—a)® (-3 -2v2)™"

(41)

(42)
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and

a2

= (7—a)? (-3 -2v2)" " .

Note that o, ~ 1 and 3,, = 0.
Since the matrices C; and D; are invertible, we can define B; = Aj_1 = Dj_lcj_l.

Substituting this into (31) we obtain the entries of the matrix M o:

My, = d 7+ n = (45)
(-2 (C3-209)
Ml,QJ’—l :M2,2J'—l = M3,2J'—l = M23‘+1—4,l = M2j+1—3,l = M2j+1—2,l:
and for k=1,...,27 =2, 1=1,...,2/ —2, we have
- 1 dy; dpt1—k
Mok =By = i eI ] (46)
(32" (3-2va) T (3-2v2)

The entries MQk,l’l are given by (33).
It is well-known that for any matrix M of the size m x n with entries My ;:

[Mly < /I [[M] (47)

. (48)

where

m n
M, = max > [My|, M|, = max > |My,
I=1,....n =1 k=1,....m P

In our case, from (45), (48), and a formula for a sum of a geometric sequence we obtain:

Hijoul <3v2 and ||IMy| <va (49)
Thus
HMOH < V=2 for p—nC (50)
PPl = In4

5 Riesz basis on Sobolev space

In this section, we show that ¥ and ¥2P are Riesz bases. We use Theorem 5.3. from [11].
It says that if P; is a linear projection from Vj;q onto V; and for 0 < p < ¢ there exists a
constant C' such that

| Pm Pt - - - Poq|| < C 2P (), (51)

then . ‘
{2790, k=12 U {2794, 5 > 2,k =1,...27} (52)

is a Riesz basis of H{ (0,1).

First we define suitable projections P; from Vj41 onto V; and show that these projec-
tions satisfies (51). Then we show that ¥ which differs from (52) only by scaling is also a
Riesz basis of H3 (0,1). We denote

Z;={12,...,22 =2} and J;=1{1,2,...,27} (53)
and for j > 2 we define
Iy =A{intper, U{iktpey, and Fj= (I} I}). (54)

Let a set
ﬁ——{é- } U{ ; } 55
J ik keZ; %’k keJ; ( )
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be given by X

Iy =F;'Iy. (56)
Since obviously

(1. 13) =1, (57)

functions from f’j are duals to functions from I’; in the space Vj;1. Since F;l is not a
sparse matrix, these duals are not local. We define a projection P; from Vi1 onto V; by

Pif=> <f, (f;j,k>¢j,k- (58)

/CEI]'
Lemma 3 Let f € V)1, ai = <f, qgj,k>, a; = {ai}k I.,j > 2, and S; :aj 1 — aj. Then
J
IS5, <27, p = 12§

-
Proof We have
Pif =" aldse= > (F.bix) 65 (59)

kEIj kGIj
_ Jj+1 2
=> > q <¢j+1,la¢j,k> Pj k-
keZjleTjp
Therefore
Jo_ Jj+1 2
a,= Y a <¢j+1,l,¢j,k>- (60)
l€Ij+1

Let us denote

= (dinsvivna). S5 = {8} 61
Lk ¢j,k ¢j+1,l J Lk 1€T, 41 keT; ( )
then we can write
aj = Sjaj1, (62)
and R o B B
Sj = (85,511 ) = (b5, M0®; + M1, ) = M. (63)
By Lemma 2 the assertion is proved.
Lemma 4 A projection P; satisfies
o In6
| PPt - P S C2207™), 0 p= (64)

for all2 < m < n and a constant C' independent on m and n.

Proof Let f, € V,, and f, = Py Ppy1 ... Poo1fn. We represent f; by f; = Zkezj aiqﬁj for

Jj =m,n and we set a; = {ai}k o It is known [1] that {¢;, k € Z;} is a Riesz basis of
E .

V; = span ®; and there exist constants C; and Cs independent of j such that:

Cillajlly < || D apdiu|| < Callayll, - (65)
kEIj
By Lemma 3 we have for p = {ﬁ—i:
[fmll < C2 llamlly < ColSmlly Smtrlly - - Sn-1lla anll, (66)

< 02 flagly < CTHC2P M || f
Thus (64) is proved.
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Theorem 1 The set

{2790, k=12 U {279 4,5 > 2,k =1,...27} (67)
is a Riesz basis of HY (0,1) for ﬁg <p < 2.5.
Proof By Lemma 4 and Theorem 5.3. from [11], the set

{2790k, k=12 U {279 4,5 > 2,k =1,...27} (68)
is a Riesz basis of the space HY (0,1) for Lﬁ—g < p < v, where v is the Sobolev exponent of

smoothness of the basis, i.e. v = 2.5.
Theorem 2 The set ¥ is a Riesz basis of H3 (0,1).

Proof From (21) there exist nonzero constants C; and Cy such that
012J<y¢jk\H2 <CY2%, forj>2, k=1,...,2, (69)

and
C12% < b2l 2 02) < Cr2*, fork=1,2. (70)

Let b = {aa.k, k‘EIg}U{ bik,j > 2, k:ej]} be such that

~ 112 N
bl =D al,t+ Y, bi<oo (71)
keTs kET;5>2
We define
244 225}
agp = ——F keTy b= Pk i>2 keg;, (72)

‘¢j7k|H§(O,1)
and b= {agy, k€ o} U{bjr,j >2, k€ J;}. Then

’¢2,k |H§ (0,1)

b
[bll, < TIQ < 00. (73)

Theorem 1 implies that there exist constants C'5 and Cy such that

Cslblly < || Y aar2 dor+ Y bjn2 Y < Cy|bll,- (74)
k€T, kET;,5>2 H2(0,1)
Therefore
C4 ~ —4 —279
o [Bll, = Calibly > | Yo a2 tonit D0 b2 (75)
kels k€g7j,]22 H§(071)

b
okt Y L

(s
ke 0(0.1) keJ; a>2‘ il o) Hg(0,1)
and similarly
Cs ||¢ b
e ol |2 gt &
2 keZ 2k‘ H2 01) k’e%,]ZQ .77k Hg(O,l) H2(0 1)
O b

Theorem 3 The set WP is a Riesz basis of H? ((O, 1)2).

Proof The theorem is a consequence of Lemma 1, (69), and Theorem 5.3. from [11].
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6 Quantitative properties of constructed bases

In this section, we present the condition numbers of the stiffness matrices for the bihar-
monic problem in two dimensions. We consider the biharmonic equation

ou

:8n

where A is the Laplace operator. The variational formulation is Au = f, where A =
<AW2D,AW2D>, u=ulw?P and f = <f, W2D>. It is known that then cond A < C' < oo.
Since A is symmetric and positive definite, we have also

where A = <ALPS2D, ASP?D> .

A2u=f on 2=(0,1)%, u =0 on 842, (77)

cond A; < C, (78)

The condition numbers of the stiffness matrices Ag are shown in Table 1. For the basis b)

the condition number is even smaller than for a wavelet basis in [11].

Table 1 The condition numbers of the stiffness matrices A of the size N X N corresponding to multiscale wavelet
bases with s levels of wavelets.

s N a) b)
1 36 37.3 6.1
2 196 62.1 7.8
3 900 80.1 8.7
4 3844 92.3 9.8
5 15876 100.4 10.5
6 64516 106.3 11.1

7 Numerical example

We present the quantitative behaviour of the adaptive wavelet method using the bases
constructed in this paper. We consider the equation (77) with a solution u given by

u(z,y)=v(@)o(y), vi@)=a (11— (79)
The solution exhibits a sharp gradient near the point [1,1]. We solve the problem by
the method designed in [6] with the approximate multiplication of the stiffness matrix
with a vector proposed in [3]. We use wavelets up to the scale |A| < 10. The convergence
history is shown in Figure 4. In our experiments, the convergence rate, i.e. the slope of the

10 T ; e
- % -a) *,

-e-h)

-+-a)
Moy ~5-h)

|
Q
107} *
S
2 X, *x @

10 °r \Qq *

*
o000 *

L”-norm of the error
2K
L”-norm of the error

\ *
*,
*,
GSSOOSOO%Q%BO\
HorBiok

S0oen |

100

1000

number of basis functions

-4|

0

100 200 300
number of iterations

400

Fig. 4 The convergence history for adaptive wavelet scheme with various wavelet bases.

curve, is similar for both bases. However, bases a) and b) significantly differ in the number
of iterations needed to resolve the problem with desired accuracy. The number of basis
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functions in both cases was about 10 for an error in L>-norm about 10~%4. The number
of all basis functions for full grid, i.e. basis functions of the level ten or less, is about 109,
therefore by using an adaptive method the significant compression was achieved. It can
seem that the number of iterations is quite large, but one could take into account that
at the beginning the iterations were done for a much smaller vector and the size of this
vector increases successively.
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Abstract

In the paper, we propose a construction of new cubic spline-wavelet bases on the unit
cube satisfying homogeneous Dirichlet boundary conditions of the second order. The
basis functions have small supports and wavelets have vanishing moments. We show
that stiffness matrices arising from discretization of the biharmonic problem using a
constructed wavelet basis have uniformly bounded condition numbers and these con-
dition numbers are very small. We present quantitative properties of the constructed
bases and we show a superiority of our construction in comparison to some other cubic
spline wavelet bases satisfying boundary conditions of the same type.

Keywords: wavelet, cubic spline, homogeneous Dirichlet boundary conditions,
condition number, biharmonic problem
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1. Introduction

In recent years wavelets have been successfully used for solving various types of
differential equations [8, 9] as well as integral equations [17, 19, 20]. The quantitative
properties of wavelet methods strongly depend on the choice of a wavelet basis, in
particular on its condition number. Therefore, a construction of a wavelet basis is an
important issue.

In this paper, we propose a construction of cubic spline wavelet bases on the interval
that are well-conditioned, adapted to homogeneous Dirichlet boundary conditions of the
second order, the wavelets have vanishing moments and the shortest possible support.
The wavelet basis of the space H? ((0, 1)2) is then obtained by an isotropic tensor
product. We compare the condition numbers of the corresponding stiffness matrices for
various constructions. Finally, a quantitative behaviour of an adaptive wavelet method
for several boundary-adapted cubic spline wavelet bases is studied.

First of all, we summarize the desired properties of a constructed basis:

- Riesz basis property. We construct Riesz bases of the space Hg (0, 1) and Hg ((0, 1)2).
- Polymial exactness. Since the primal basis functions are cubic B-splines, the
primal multiresolution analysis has polynomial exactness of order four.

Email addresses: dana.cerna@tul.cz (Dana Cernd), vaclav.finek@tul.cz (Viclav Finck)



- Vanishing moments. The inner wavelets have two vanishing moments, the wavelets
near the boundary can have less vanishing moments.

- Short support. The wavelets have the shortest possible support for a given number
of vanishing moments.

- Locality. The primal basis functions are local.

- Closed form. The primal scaling functions and wavelets are known in the closed
form.

- Homogeneous Dirichlet boundary conditions. Our wavelet bases satisfy homoge-
neous Dirichlet boundary conditions of the second order.

- Well-conditioned bases. Our objective is to construct a well conditioned wavelet
basis.

Moreover, in a comparison with constructions in [1, 4, 11, 21, 22] that are quite
long and technical, the construction in this paper is very simple. Many constructions of
cubic spline wavelet or multiwavelet bases on the interval have been proposed in recent
years. In [2, 4, 11, 21] cubic spline wavelets on the interval were constructed. In [10]
cubic spline multiwavelet bases were designed and they were adapted to complementary
boundary conditions of the second order in [22]. In these cases dual functions are known
and are local. Cubic spline wavelet or multiwavelet bases where duals are not local were
constructed in [7, 14, 15, 16]. Some of these bases were already adapted to boundary
conditions and used for solving differential equations [6, 18]. The advantage of our
construction is the shortest possible support for a given number of required vanishing
moments. Vanishing moments are necessary in some applications such as adaptive
wavelet methods [8, 9]. Originally, these methods were designed for wavelet bases with
local duals. However, it was shown in [12] that wavelet bases without local dual basis
can be used if the solved equation is linear.

This paper is organized as follows: In Section 2 we briefly review the concept of
wavelet bases. In Section 3 we propose a construction of primal and dual scaling bases.
The refinement matrices are computed in Section 4. In Section 5 the properties of
the projectors associated with constructed bases are derived and the proof that the
bases are indeed Riesz bases is given. Quantitative properties of constructed bases
and other known cubic spline wavelet and multiwavelet bases are studied in Section 6.
In Section 7 we compare the number of basis functions and the number of iterations
needed to resolve the problem with desired accuracy for bases constructed in this paper
and bases from [4, 22]. A numerical example is presented for an equation with the
biharmonic operator in two dimensions.

2. Wavelet bases

This section provides a short introduction to the concept of wavelet bases in Sobolev
spaces. In this paper, we consider the domain Q = (0,1) or Q = (0, 1)2. We denote
the Sobolev space or its subspace by H C H*(Q) for nonnegative integer s and the
corresponding inner product by (-, -);, a norm by |[-|| ; and a seminorm by |-|,;. In case
s = 0 we consider the space L? () and we denote by (-, -) and ||-|| the L*-inner product
and the L?-norm, respectively. Let J be some index set and let each index \ € J take



the form A = (j, k), where |\| := j € Z is a scale or a level. Let

2
Vil =, > ol forv = {ua},er o vr €R, (1)
AeJ

P(J) = {V:V:{UA}AGJ,UAER, [V l27) <oo}. (2)
A family U := {4y, A € J} is called a (primal) wavelet basis of H, if

and

i) U is a Riesz basis for H, i.e. the closure of the span of ¥ is H and there exist
constants ¢, C' € (0, 00) such that

> by

AeT

c ||b||l2(J) < <C ||b||l2(j) , b= {bA}AeJ el’ («7) . (3)

H

Constants ¢, := sup {c: ¢ satisfies (3)}, Cy := inf{C : C satisfies (3)} are called
Riesz bounds and cond ¥ = C,/cy, is called the condition number of W.

ii) The functions are local in the sense that diam (Qy) < C271M for all A € 7, where
(2, is the support of ¥, and at a given level j the supports of only finitely many
wavelets overlap at any point x € ().

By the Riesz representation theorem, there exists a unique family
\P:{&A,Aej}cH (4)
biorthogonal to WV, i.e.
(Vinthia) = digon, forall (ik)ed, ()€, (5)

where 9§, ; denotes the Kronecker delta, i.e. §; ; = 1 for ¢ = j and 0, ; = 0 for ¢ # j. This
family is also a Riesz basis for H, but the functions 1@71 need not be local. The basis U
is called a dual wavelet basis.

In many cases, the wavelet system W is constructed with the aid of a multiresolution
analysis. A sequence V = {Vj}jzjo’ of closed linear subspaces V; C H is called a
multiresolution or multiscale analysis, if

ViCVixiC...CV;C Vi C...H (6)

and U;>;,V; is complete in H.

The nestedness and the closedness of the multiresolution analysis implies the exis-
tence of the complement spaces W; such that Vi, = V; @ W;.

We now assume that V; and W; are spanned by sets of basis functions

;= {bjpkeLy, V= {pkeT}, (7)



where Z; and J; are finite or at most countable index sets. We refer to ¢;; as scaling
functions and v, as wavelets. The multiscale basis and the wavelet basis of H are
given by

Jo+s—1
V,.=,0 |J ¥, v=9,ul]w, (8)
J=Jjo Jj=jo

The dual wavelet system W generates a dual multiresolution analysis V with a dual
scaling basis <i>j0.

Polynomial exactness of order N € N for the primal scaling basis and of order N € N
for the dual scaling basis is another desired property of wavelet bases. It means that
Py 1(Q) C Vj and Py_, (Q) C Vj, j > jo, where P, (Q) is the space of all algebraic
polynomials on Q of degree less or equal to m. The polynomial exactness of order N
on the dual side is equivalent to N vanishing wavelet moments on the primal side, i.e.

/ P(x)y(z)de =0, forany PePgy_,, ¥y € U U, 9)
@ i>jo
3. Primal scaling basis

A primal scaling basis is the same as the basis constructed in [4, 16]. This basis
is generated from functions ¢ and ¢,. Let ¢ be a cubic B-spline defined on knots
[0,1,2,3,4]. It can be written explicitly as:

( 3

5 z € [0,1],
—2 4222 -2+ 2% zell,2,
¢(r) =4 L —42? + 100 — 2, 2 €[2,3] (10)

—2 4202 —8r+ 2, 1z € [3,4],
0, otherwise,

\

Then this function satisfies a scaling equation [16] :

6(20)  4(20-1) 36(20-2) ¢(@:-3) ¢(u-4)

= 11
¢(@) = =3 2 1 2 8 (11)
The function ¢y is a cubic B-spline defined on knots [0,0, 1,2, 3]. Tt is given by:
1:3 .132
LR el
= 2r _ 9 c
¢b(x) — 12333 1;2 2r 5 T y 4] (12)
— 4212 re(23,
0, otherwise.
The function ¢, satisfies a scaling equation [16]:
oo (2z) 11¢(2z) ¢z —1) ¢(2x—2)
= ) 1
W@ ==t gt T3 (13)
For j € N and z € [0, 1] we set
bin(x) = 220w —k), k=2,...20 —2, (14)

b1 (z) = 27¢(20x),  ¢a-1 () =274 (2(1 - 2)).
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Figure 1: Primal scaling basis for j = 2 (left) and the wavelet ¢ (right).

The graphs of the functions ¢;; on the coarsest level j = 2 are displayed in Figure 1.
We define a wavelet 1 as

1 1
Y(2) = —56(20) + 622 = 1) — 5¢(22 - 2). (15)
Then supp ¢ = [0, 3] and ) has two vanishing wavelet moments, i.e.
/ a*p(z)dr =0, k=0,1. (16)

The same wavelet was used in the construction of a wavelet basis for the space L? (R)
in [13]. The graph of 4 is shown in Figure 1.
We define a boundary wavelet 1, by:

p(x) = ¢p(22) + mo(2z) + no(2z — 1), (17)

where m and n are real parameters. In applications, the length of the support and
the number of vanishing wavelet moments play a role. We consider four choices of
parameters m and n:

a) m=0,n=0

b) m=—-0.75,n=0
c) m=—-045n=0
d) m=-135n=0.6

These choices are optimal in the following sense: a) defines a wavelet with the
shortest possible support, b) defines a wavelet with the shortest possible support among
the wavelets of the form (17) with the first vanishing moment, ¢) corresponds to the
wavelet with the shortest possible support among the wavelets of the form (17) with
the second vanishing wavelet moment. Wavelet corresponding to d) has two vanishing
moments. It is summarized in the following lemma.

Lemma 1. a) The function y(z) = ¢p(22) satisfies supp ¢, = [0, 1.5].
b) The function V¥y(x) = ¢p(22) — 0.75 ¢(2x) satisfies supp v, = [0, 2] and

/00 yp(x)dx = 0. (18)

bt



c) The function y(x) = ¢p(22) — 0.45 ¢(2x) satisfies supp vy, = [0,2] and

/_00 xy(z)dx = 0. (19)

o0

d) The function ¥y(x) = ¢p(22) — 1.359(22) + 0.6 (22 — 1) satisfies supp ¢, = [0, 2.5],

/_Z Yy(z)dr =0, and /Z xhy(z)dx = 0. (20)

Proof. The length of the support of the function v, is derived from the lengths of
the supports of functions ¢,(2x), ¢(2x), and ¢(2x — 1). By (10) and (12) we have
supp ¢p(2x) = [0, 1.5], supp ¢(22) = [0, 2], and supp ¢(2z — 1) = [0.5,2.5]. Since the
functions ¢,(2x), ¢(2x) and ¢(2x — 1) are given in the closed form, the formulas (18),
(19), and (20) can be verified easily. O

Thus, we can choose boundary wavelet with two vanishing moments and larger
support or boundary wavelets with shorter supports but only with one or zero vanishing
moments. If f € HZ (0,1) and f is constant or linear at the interval [0, €], then f have to
be zero at [0, €]. The same holds for the interval [1 — ¢, 1]. Hence f € HZ (0,1) can not
be nonzero constant or linear near the boundary and therefore in some applications such
as adaptive wavelet methods the vanishing moments does not play the significant role
for boundary wavelets. The graphs of boundary wavelets 1y, are displayed in Figure 2.
All the following lemmas and theorems are valid for the wavelet basis ¥ including the
boundary wavelet with parameters m and n given by a), b), c), or d).

a) b)
0.5/k 0.5 Py
0 0
05 ~05
0 0.5 1 15 0 0.5 1 15 2
c) d)
0.5! ) ] 05 "
0 0
05 ~05
0 0.5 1 15 2 0 05 1 15 2 25

Figure 2: Boundary wavelet v, for a), b), ¢), and d), respectively.



For j € N and z € [0, 1] we define

Yin(r) = 22X —k+2),k=2,..,20 -1, (21)
77Z)]}1(17) = 2j/2¢b(2j$>7 77[)]-,23' (l’> = 2j/277/1b(2j(1 — ZL’))

We denote
5 = {0in/ 10inlyon k=1, 2 — 1}, (22)
O = i/ [Winlgon K =12}

Then the sets
1+s

V=00 JU; and U=a,Ul Y, (23)
=2

=

are a multiscale wavelet basis and a wavelet basis of the space HZ (0,1), respectively.
We use u ® v to denote the tensor product of functions v and v, i.e. (u ®v) (21, 22) =
u(xy) v (za). We set

Fy = {¢j,k®¢j,z/\¢j,k®¢j,z|Hg(g)JfJ:1,---,2j—1}
_ {%k®¢j7l/|¢j7k®¢j7l|Hg(m,k:1,...,2j—1,zz1,...2f}
62 = {05k ® 031/ Wik ® ditl ey B =1, 21 =1,... 2 — 1}

ik @Uja [ ik @ il paay il =1, Qj}

where Q = (0,1)>. A wavelet basis and a multiscale wavelet basis of the space HZ (1)
are defined as

1+s 0
WgD:FzLJU(G}UQ?UQ?)’ \yzD:F2UU(G}UG§UG§?). (24)
i=2 =2

Remark 1. Wavelet basis of the space H? (£2) can be constructed in a similar way.
We add two boundary functions ¢y and ¢y that are B-splines on sequences of knots
[0,0,0,0,1] and [0, 0,0, 1, 2], respectively. Then scaling basis is generated from the func-
tions ¢p1, dp2, ¢p and ¢ as in (14), see also [2], and boundary wavelets are constructed
as appropriate linear combinations of ¢y, ¢y and ¢, in a similar way as above.

4. Refinement matrices

From the nestedness and the closedness of multiresolution spaces it follows that
there exist refinement matrices M;, and M;; such that

©j=M;o®j, ;=M. (25)

In these formulas we view the sets of functions ®; and V¥, as column vectors with
entries ¢jx, k=1,...,27 — 1, and 9,5, k = 1,...,27, respectively. Due to the length of
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the support of primal scaling functions, the refinement matrix M has the following
structure:

My
M;o = M]I',o : (26)

Mg

where M is a (2/*! — 3) x (27 — 3) matrix given by

hmt1-2n —1.....99-3. 0< 1—9n <4
(ML) =4 Ve e UsmalmEn s, (27)
Tomen 0, otherwise,
where L1311
h=1hy, hi,ho, by hyl = |=, =, -, =, = 2
[ 0,701,102, 13, 4] |:872a4a278:| (8)

is a vector of coefficients from scaling equation (11). We denote a vector of coefficients
from scaling equation (13) by

11111
hy, = [h, b, RS, By = |~ —, 5, < 2
b [ 0y 7015109, 3} 47 167278 ( 9)
Then M, = \/LihbT and the matrix My is obtained from a matrix My, by reversing the
ordering of rows.
It follows from the equations (15) and (17) that the matrix M;; is of the size
(271 — 1) x 27 and has the structure

1L m n 0 0 0 0\ "
0 -3 1 -2 0 0 0
o o -+ 1 -1 0
1 2 2

M, = — 30
n=sl . (30)

0O ... 00 =% 1 =30

O ... 0o 0 0 mn m 1

There also exist refinement matrices l\N/Ij,O and 1\~/I]-,1 corresponding to dual spaces
that satisty: R o ~ L
D, = M}:()q)j—f—l; U, = M?:1¢)j+17 (31)

where the sets <i)j and \i/j are viewed as column vectors.

The Euclidean norm of a vector v is denoted by ||v||, and the spectral norm of the
matrix M is denoted as ||[M]|,. The following lemma is crucial for the proof of a Riesz
basis property.

Lemma 2. The norm of the matriz M satisfies || M,

o In3
‘2§2p,p—1+12—4.



Proof. We prove the lemma for the choice ¢) of parameters for boundary wavelet, for
choices a), b), and d) the proof is similar. We denote the entries of the matrix M as
M) k=1, 27 -1, 1=1,...,2 - L

Due to biorthogonality of the sets ¥; U ®; and \Tfj U <1:>j we have

M M =1, (32)
and .
M} M;, = 0, (33)

where I; denotes the identity matrix and 0; denotes the zero matrix of the appropriate
size.

From (30) and (33) we have

M) =045 Mjy, Mgﬁbu =0.45 Mgﬁbw (34)
and 0 o
oy M+ M ,
NP = U ML forkodd, k=3,...,27t1 3 (35)

2

We substitute these relations into (32) and we obtain a new system of equations
Aij = Ij, where

21 3
%5 5 0 0
3 5 3 :
8 4 8 :
1o ¢ 2 3 0
A =— s 4 8 36
v (36)
3 5 3
0 I
3 21
0 0 £ 3
and B; contains M,ﬁ? for k even, i.e. the entries Bi,z of the matrix B; satisfy:
Bl =M, kil=1..2-1 (37)
We factorize the matrix A; as A; = C;D;, where
9 3
5 0 0 ...0
3 35 3 :
8 4 8 :
Lo 5§ % 0
C. = —— 38
SERRVEN Lot (38)
3 5 3
0 5 1 s
3 9
0O ... 0 0 £ ¢




and

A -

40 10(—3)P 4

— 0 1 00 ;Rjiztg
;ijigtg 0 0 10
Ziiiatz 00 01 =
;ijigtg 00 ...0°0 st

More precisely, the entries D{;J of the matrix D; are given by:

J _
D1,1 =

J _
Dy, =
J _
Dyy =

J _
Dk,l =

; 37
D%j—l,%—l ~ 40’
k
D! (=1) fork=2,...

24+1-k2 -1~ 4. k-2’
1, fork=2...,27 -2,

0, otherwise.

It is easy to verify that Cj = Cj_l has entries:

B 1\ I+
Cljc,l =2 (_5) ’

and the matrix Dj_1 has the structure:

¢ 0 ... 0 d
&1 0 &_,
-1 .
Dj - '2 2‘ 9
)y 0 1
a0 ...0 d
with n =27 — 1 and
oo_ o, (-1)"'40a,
! 37 7" 372.3n-2 7

&, = ()" S o
kT Ay 37 . Sk_Q Bn 3 — 4y ...

where constants «,, and (3, are given by

27 —1

1 -1
e (1 a W) ) Bn = 372 . 32n_3'

10
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Therefore B; = Aj_1 = D]._IC]-_1 and substituting it into (33) we obtain the entries
of the matrix 1\N/Ij70:

=i In—1] In—1]|
y 40V 20, [ —1 —1)"40v20, [—1
MY = Vaan (1 2y V2an (-1 , (45)
’ 37 3 372 . 372 3
0 )
M§J+1_2,z = M'zj 2 (46)
and for k € (2,271 — 2) even
- 2 20, (1)1 1 3k
M,ﬁ’?—% L V2ol 1_2 — (47)
: (_3>| | (_3)\ | 37-3k-2 " 3,
\/50./” (_1)”*]C 1 N gntl-Fk
(_3)‘n—l| 37,371—]6—1 ﬂn
The entries M ,g? for k£ odd are given by (34) and (35).
It is well-known that for any matrix M of the size m x n with entries M :
M, < /My M|, (48)
where .
1M}, = max 2 Myl Ml = max Z | Ml - (49)

In our case, from (45), (49), and a formula for a sum of a geometric sequence we
obtain:

HM]‘D ‘ S 3\/5 and HMj’O ‘ S 2\/5 (50)
1 0
Thus
- In3
HM]-,O ‘2 <2/3=2 for p=1+ . (51)

The consequence of the proof of Lemma 2 is that the matrix M; = (M;o, M;)
representing the discrete wavelet transform is invertible.

Lemma 3. The matriz M; = (M, o, M; 1) is invertible.

Proof. We prove the lemma for the choice c¢) of parameters for boundary wavelet, for
other choices the proof is similar. The matrix M; is invertible if and only if the matrix
M (Mjo,Mjl) satisfying MTM = I, exists and is unique. The existence and

uniqueness of the matrix M, is already shown in the proof of Lemma 2. The entries
M,zll of the matrix M ; satisfy for [ =1,. .. ,2j+1:

and )
uy Mp A+ M .
My = Gy + —— 2 fodd, k=3,...,27" — 3. (53)

2
Using these relations we obtain a system of equations with the matrix A, defined by
(36). From the proof of Lemma 2 follows that A is invertible. Therefore the matrix
M, ; exists and is unique. O

11



5. Riesz basis on Sobolev spaces

For j > 2 we define a column vector

ik k=1,2,...,20 —1,
(Fj>k = ’ __ o5 j+1 (54)
Yik—oi_1, k=27,...27" —1.

The symbol (-, -) denotes the standard L? (Q) inner product. If u and v are two vectors
of functions of the length n, then (u,v) denotes matrix with entries (ug,vi), k,1 =
1,...,n. Weset F; = (I';,I';), where I'; = F]-’le. We denote

Z;={1,2,....2 =1} and J;={1,2,...,2/} (55)

and the entries of f‘j as

ik = (fy)k kT = (1)) ke J;. (56)

k+2i-1’
Since obviously
<Fj, fj> = Ij, (57)

functions from fj are duals to functions from I'; in the space Vj;;. Since Fj’1 is not a
sparse matrix, these duals are not local. We define a projection P; from V; onto V;

by
Pif =3 {F.0i) b (58)
kGIj
Lemma 4. Let f € Vjy, a{% = <f, $j7k>, aj = {ai}kez_, J =2, and S; : aj;q — a;.

Then ||S;|l, <27, p=1+ %.

Proof. We have

Pif = Z al, b = Z <f, dsgk> Pjk (59)
kET; kET;
= Z Z @{H <¢j+1,la Qg]k> Pjk-
k€T, 1€T; 41
Therefore ' ' R
ap= Y a <¢j+1,l’ ¢j,k> - (60)
l€Ij+1
Let us denote A R .
Sik = <¢j,k, ¢j+1,l>7 S; = {S{,k}lezj%kg}. (61)
then we can write a; = S;a;;, and
By Lemma 2 the assertion is proved. [l
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Lemma 5. A projection P; satisfies

In3

||Pum+1-~Pn—1|| Szp(n—m)’ p:1+_7
In4

(63)

forall 2 < m < n.

Proof. Let fo € Vo, fm = PuPrst o Pacifus fi = Yper, 0105, a5 = {ag}kdj, j =
m,n. Since ®; is a Riesz basis of V; [2, 16], there exist constants C; and C5 independent
of 7 such that:

Crllally, < || > aies|| < Collayll,. (64)
kGIj
By Lemma 4 we have for p =1+ E—Z:

[fmll < Collamlly < Col[Smlly Smsally - - - [Sn-lly [[anll; (63)

C

< G2 lagly < =222 || £l

Cy

Thus (63) is proved. O

Theorem 6. The set ¥ is a Riesz basis of H3 (0,1).

Proof. By Lemma 5 and Theorem 5.3. from [16], the set

{27200, > 2,k=1,.. 2 b U{27 ¥, >2,k=1,...2} (66)

is a Riesz basis of the space HJ (0,1) for 1+ hfn\ég < p < 2.5.
Since obviously

27 < Wikl < C29, forj>2, k=1,...,2, (67)

the set W defined by (23) is a Riesz basis of the space Hg (0,1). O
Theorem 7. The set V2P is a Riesz basis of HZ ((0,1)%).

Proof. The theorem is a consequence of Lemma 6, (67), and Theorem 5.3. from [16]. [

6. Quantitative properties of constructed bases

In this section, we compare the condition numbers of the stiffness matrices for the
biharmonic problem in two dimensions for different wavelet bases. For € = (0, 1)2 we
consider the biharmonic equation

A*u=f on Q, uz%zOonaQ, (68)

where A is the Laplace operator and n is the outer unit normal vector. The variational
formulation is Au = f, where A = <A\I/2D,A\I/2D>, uw=ulU?’ and f = <f, \I/2D>.
It is known that then cond A < C' < oo. Since A, = (AU2P AY2P) is a part of
the matrix A that is symmetric and positive definite, we have also cond A; < C. The
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N a) b) ¢ d) JZII CF12  S09
19 146 136 85 507 340 128.1 4844
225 214 181 143 723 349 141.3 5834
961 23.7 202 175 844 351 2120 626.9
3960 245 214 182 91.3 353 257.6 653.5
16129 24.8 22.2 184 953 355 281.2 673.2
65025 252 22.6 18.6 980 358 297.2 689.4

STl W N R O»

Table 1: The condition numbers of the stiffness matrices A, of the size N x N corresponding to
multiscale wavelet bases with s levels of wavelets.

condition numbers of the stiffness matrices A, are shown in Table 1. A construction
by Jia and Zhao from [16] is denoted as JZ11, a construction from [4] is denoted as
CF12, a construction of multiwavelet basis from [22] is denoted as S09 and wavelet
bases constructed in this paper are denoted as a), b), ¢), and d) according to the choice
of parameters for the boundary wavelet. The size of the stifness matrix is N x N for
wavelet bases constructed in this paper, it differs for other bases. The condition number
for our wavelet bases is comparable to the wavelet basis from [16], but the difference is
that wavelets from [16] have not vanishing moments and therefore can not be used in
some applications such as adaptive wavelet methods. Wavelet bases from [4, 22] have
significantly larger condition number.

Remark 2. We can also treat the fourth-order problem subject to nonhomogeneous
Dirichlet boundary conditions:

A*u=f onQ, wu=gondf, Z—Z:honaQ. (69)

Let w € H*(Q) be a function such that

w = g on 01, g—::honﬁQ. (70)

Then the solution u of the problem (69) can be computed as u = w + @, where @ solves
the problem

A= f—AwonQ, u=0ondQ, g—u:00n89. (71)
n

If @ =(0,1), we can simply set w to be a Hermite cubic polynomial:
w(z) = Az® + Bx® + Cx + D (72)

with A = 2¢(0)—h (0)—2¢(1)+h (1), B= -3¢ (0)+2h(0)+3g(1)—h(1),C = —h(0),
D = ¢(0).

The case © = (0,1)* can be treated in a similar way. Since in formulation (69), the
values of normal derivative of u are not well defined at corners, we will consider more
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precise formulation:

ow 0
wo= gond Go(@0)=hi(e), Go(Ly) =), (1)
ow ow
a_y(x>1) - hg(l‘), %(O,y)—h4(y), $ay€[0a1]'
IfweC? (Q) then
ow 89
- = 4
mo) = 500.0=5200, (74)
dhl o 62w i 62 dh4
and similarly at other corners. Therefore, we assume that
_ 9y _ 9y _ 99
B 8g dh1 dhy dhy _ dhy
dhs ] dhs ] dhs dhy

T2y = d—y<>,a<> .

We first construct a function u' that satisfies boundary conditions at the part of the
boundary {[0,y],y € [0,1]} U{[1,y],y € [0, 1]}. We set

u' (z,y) = A(y) 2’ + B (y)2* + C (y) 2 + D (y) (76)

with A (y) = 29 (0,y)+ha (y)—29 (1, y)+hs2 (y) , B (y) = =39 (0, ) —2hy (y)+3g (1,y)—
hz( ), C(y) = ha(y), D(y) = g(0,y). We define g =g —u' on 9Q, hy (v) = h; (v) —

Sy (€,0) and hy(z) = hs(z) — %—“1 (x,1). We construct a function u? that satisfies

u? —gonaQand

S @0 =), T @) k@), G0 =G =0. (@)
We set . .

r) = AWY +BE@ + C@y D) 5
with 121(:6)~: 3
3 (. 1) -

that w = u! —|— u? Satls

:h\_/
—~

~J

w
~—

7. Numerical example

In this section, we compare the quantitative behaviour of the adaptive wavelet
method with a basis constructed in this paper and bases from [4, 22]. All these bases
are formed by cubic splines. We first briefly review an adaptive wavelet method. The
method was proposed by Cohen, Dahmen and DeVore in [8]. We use a slightly modified
version from [3] with an adaptive matrix-vector multiplication from [5].
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For Q = (0,1)* we consider the fourth-order problem (68). Let W?P be a wavelet
basis constructed in this paper. As mentioned above, the original equation (68) can
be reformulated as an equivalent biinfinite matrix equation Au = f, where A =
(AWP AV2P) = 0T WP and £ = (f, ?P). Thus the original problem is equiva-
lent to the well-posed problem in /2. While the classical adaptive methods uses refining
and derefining a given mesh according to a-posteriori local error estimates, the wavelet
approach is different. Instead of turning to a finite dimensional approximation, we try
to devise a convergent iteration for the [?>-problem. Then all infinite-dimensional quan-
tities have to be replaced by finitely supported ones and the routine for the application
of the biinfinite-dimensional matrix A approximately have to be designed.

The simplest convergent iteration for the [2-problem is a Richardson iteration which
has the following form:

u =0, u,:=u,+w(f—Au,), n=01,.... (79)
For the convergence, the relaxation parameter w has to satisfy
pim T wAl, <1, (30)

where |[|-||, is a spectral norm. Then the iteration (79) convergences with an error
reduction per step

i1 = ully, < pllu, —ulf,, (81)
where ||-]|, is the Euclidean norm. Condition (80) is satisfied if 0 < w < ﬁ, where

Amaz 18 the largest eigenvalue of A. It is known that the optimal relaxation parameter
w and the corresponding error reduction can be computed as

2 )\maa: - )\min o R (A) -1

©T >\mm +)\maz7 p(w> - /\maa: +)\mzn - H<A) + ]'

(82)

where \,.;, is the smallest eigenvalue of A. Hence the estimate of the number of
iterations needed to resolve the problem with desired accuracy depends on the condition
number of the matrix A that can be estimated by A; . where j,,, is the maximal
level used in the computations.

In the algorithm the sparse representation of the vector f is needed. It can be found
due to the relation:

<f7 wj,k> S CQ_jS Hf : Xsuppd)j,k HHs(Q) ) (83)

where f € H*® (supp ;) N L*(Q), 0 < s < d, d is the number of vanishing moments
of wavelet 1; 1, Xsuppw;, 15 an indicator function and C' is a constant independent of j.
It ensures that in the regions where f is smooth the corresponding coefficients of f are
very small and can be thresholded. For the proof see [23].
We provide a numerical example. We consider the equation (68) with a solution u
given by
u(z,y) =v(@)v(y), vr)=2? (1 - elom_lo)2 : (84)

The relation (83) is not guaranteed for boundary wavelets corresponding to a), b)
and c). However, since there is only a small number of boundary wavelets in comparison
to a number of all wavelets up to some maximal level j,,.., the sparse representation
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of f can be constructed. The vector f/m+= that includes the entries of f up to the level
Jmaz Was computed and its entries in absolute value were sorted. They are displayed in
Figure 3 for the cases a) and d). The graphs almost coincides. The graphs for choices b)
and d) lay between the graphs for a) and d). Since the structure of f/me= is similar for all
choices of parameters, the sparse representations that are obtained by thresholding the
coefficients smaller than some threshold € are similar for all choices of parameters and
the choice d) does not give significantly better results even though boundary wavelets
have two vanishing moments.

10

10

_ ,a)
10°
107"°
-20 ‘ ‘
10, 1 2 3
x10°

Figure 3: The sorted absolute values of entries of the vector f° for the choices of parameters a) and
d).

The solution exhibits a sharp gradient near the point [1,1]. We solve the problem
by the method designed in [9] with the approximate multiplication of the stiffness
matrix with a vector proposed in [5]. We use wavelets up to the scale |A| < 10. The
convergence history is shown in Figure 4. In our experiments, the convergence rate,
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Figure 4: The convergence history for adaptive wavelet scheme with various wavelet bases.

i.e. the slope of the curve, is similar for all bases. Since the initial threshold depends
on Riesz bounds of the wavelet basis ¥, the initial approximations are different and
the curves are not similar. Due to low condition number of the stiffness matrix, bases
a), b), and c) are significantly better in the number of iterations needed to resolve the
problem with desired accuracy. The number of basis functions in cases a), b), and c)
was about 1200 for an error in L>®-norm about 10~%. The number of all basis functions
for full grid, i.e. basis functions of the level ten or less, is about 10°, therefore by
using an adaptive method the significant compression was achieved. It can seem that

17



the number of iterations is quite large, but one could take into account that in the
beginning the iterations were done for much smaller vector and the size of the vector
increases successively.
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In the paper, we propose a construction of a new cubic spline-wavelet basis on the hypercube
satisfying homogeneous Dirichlet boundary conditions. Wavelets have two vanishing moments.
Stiffness matrices arising from discretization of elliptic problems using a constructed wavelet
basis have uniformly bounded condition numbers and we show that these condition numbers are
small. We present quantitative properties of the constructed basis and we provide a numerical
example to show the efficiency of the Galerkin method using the constructed basis.
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1. Introduction

In this paper, we propose a construction of a new cubic spline wavelet basis on the
hypercube that is well-conditioned, adapted to homogeneous Dirichlet boundary con-
ditions and the wavelets have two vanishing moments. The wavelet basis of the space
HL (), where = (0, 1)d and d € N, is then obtained by a tensor product and a proper
normalization.

First of all, we summarize the desired properties of a wavelet basis:

- Riesz basis property. We construct a Riesz basis of the space L2 (Q) that, when
normalized with respect to H!-seminorm, is also a Riesz basis of the space H] ().

- Polymial exactness. Since the primal basis functions are cubic B-splines, the primal
multiresolution analysis has polynomial exactness of order four in H} (£2). This means
that any p € H} (Q) that is a polynomial of degree less than or equal to four belongs
to the span of scaling functions at the given level.

- Vanishing moments. The wavelets have two vanishing moments.

- Locality. The primal basis functions are local in the sense of Definition 2.1 below.

- Smoothness. Primal basis functions belong to C? () and dual basis functions belong
to C' (2), where C () is the space of continuous functions on domain © and C" (£2)
is the space of functions on domain €2 that have continuous derivatives up to order
n € N.

*Corresponding author
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- Explicit expression. The primal scaling functions and wavelets have an explicit ex-
pression.

- Homogeneous Dirichlet boundary conditions. The wavelet basis satisfies homogeneous
Dirichlet boundary conditions.

- Well-conditioned bases. Our objective is to construct a wavelet basis that is well
conditioned with respect to the Lo-norm and is well conditioned with respect to the
H'-seminorm, when normalized appropriately.

Many constructions of spline wavelet or multiwavelet bases on the interval have been
proposed in recent years.®510:16:19-22 T Ref. 2. 3, 12, 18 cubic spline wavelets on the
interval were constructed. In these cases dual functions are known and are local. Spline
wavelet or multiwavelet bases where duals are not local are also known.% 13716 The ad-
vantage of our construction in comparison with biorthogonal cubic spline wavelets with
local duals® 31218 is that the support of the wavelets is shorter, condition numbers of
the corressponding stiffness matrices are smaller and also a simple construction.

In this paper, scaling functions are the same as scaling functions in Ref. 2 and 18.
The construction of wavelets in these papers and also in Ref. 3 and 12 is quite long
and technical. It is based on the concept of stable completions.! Using this approach
the Riesz basis property of the basis is a consequence of polynomial exactness of the
primal multiresolution analysis, local supports of primal and dual basis functions and
uniform stability of primal and dual multiresolution analysis. We use a different approach.
We construct wavelets directly such that they have vanishing moments. Therefore the
construction is very simple. Then we prove the Riesz basis property partly using the
theory developed in Ref. 9.

It was observed that an original construction in Ref. 12 leads to badly conditioned
stifness matrices. Therefore, the construction was optimized in Ref. 2, 3, 18. The wavelet
bases from Ref. 2, 18 are adapted to homogeneous boundary conditions of the first order,
i.e. they are of the same type as the basis in this paper. In Section 6 we compare the
condition numbers. The length of the support of cubic wavelets in Ref. 2, 3, 12, 18 is at
least seven, the length of the support of our wavelets is five.

2. Wavelet bases in Sobolev spaces

In this section, we recall the definition of a wavelet basis in a Hilbert space and the
concept of Sobolev spaces.

Let H be a Hilbert space with the inner product (:,-), and the norm ||-||,;. Let J
be some index set and let each index A € J take the form A = (j, k), where |A\| :=j € Z
is a scale. For p € N let

1/p
v, = (Z |v>\p> , for v={u},cs,vr €R, (2.1)

AeJ

and
1P () = {v v ={oahres> v ER V], < oo}. (2.2)
Our aim is to construct a wavelet basis in the sense of the following definition.

Definition 2.1. A family ¥ := {¢\,\ € T} is called a (primal) wavelet basis of H, if
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i) ¥ is a Riesz basis for H, i.e. the closure of the span of ¥ is H and there exist
constants ¢, C € (0,00) such that

> baha|| <Clblly,  forall bi={br},cs €’ (J). (2.3)

AeJ H
Constants cy = sup{c: c satisfies (2.3)}, Cy := inf{C : C satisfies (2.3)} are
called Riesz bounds and the number cond ¥ = Cy /cy is called the condition number
of V.

1) The functions are local in the sense that diam (supp ¥y) < C2= M forall X € T and
at a given level j the supports of only finitely many wavelets overlap at any point
x € Q.

clbll; <

Remark 2.1. A Riesz basis for H is actually a (Schauder) basis for H. The condition
that the closure of the span of W is H implies that for any f € H there exists {ax},cs €
I* (J) such that

=" ax. (2.4)
AeT
If {bx},es €1 (J) is such that
= Z axpx = Z bathx, (2.5)
AeJ AeJ
then due to I* (J) C 12 (J) and (2.3) we have

c Z lay — by|? < Z axyn — Z by

reJ reJ AET

= 0. (2.6)

Hence, a) = by and the expansion (2.4) is unique.

For the two countable sets of functions I, cH , the symbol <F, f> denotes the
H

matrix
<F, f>H = {<77&>H}761",ﬁ/ef\ . (2.7)

Remark 2.2. It is known that the constants ¢y and Cy from Definition 2.1 satisfy

cv = \/Amin (U, V) ), Co =1/ Amaz (¥, V) ), (2.8)

where Apin ((V, V) ;) and Apap ((W, U) ;) are the smallest and the largest eigenvalues
of the matrix (¥, ¥),,, respectively.

Let M be a Lebesgue measurable subset of R?. The space Ly (M ) is the space of all
Lebesgue measurable functions on M such that the norm
1/2

1= [ 1 s (29)
M
is finite. The space Lo (M) is a Hilbert space with the inner product

(f.9) = /M f(@)g@dz, f.g€ Ly (M). (2.10)
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The Sobolev space H* (Rd) for s > 0 is defined as the space of all functions f € Lo (Rd)
such that the seminorm

1
|f|Hs(]Rd) = <(2ﬂ_)d /]Rd

is finite. The symbol f denotes the Fourier transform of the function f defined by

) 1/2
f <£>( [ d&) (2.11)

o= [ f@eeei, (2.12)
RS
The space H? (Rd) is a Hilbert space with the inner product
1 A - s s
sy = o [, FOF (1+1¢*) g, f.g€ H* (RY), (2.13)
and the norm
||f||Hs(Rd) =/ (/5 f>Hs(]Rd)' (2.14)

For an open set M C R%, H* (M) is the set of restrictions of functions from H* (Rd)
to M equipped with the norm

||f||Hs(M) = inf{HgHHS(Rd) g € H* (M) and g|a = f} . (2.15)

The space H™* (M) is defined as the dual space to H® (M). Let C§° (M) be the space of
all continuous functions with the support in M such that they have continuous derivatives
of order r for any r € R. The space Hj (M) is defined as the closure of C§° (M) in
H* (R%). It is known that

||f||H1(M) = |f|H1(M)+||f||7 (2.16)

where

|f‘H1(M) =V(Vf,VS) (2.17)
is the seminorm in H' (M) and Vf denotes the gradient of f.

3. Construction of scaling functions

A primal scaling basis is the same as a scaling basis in Ref. 2, 18. It is generated from func-
tions ¢, ¢p1 and ¢pe as follows. Let ¢ be a cubic B-spline defined on knots {0,1,2,3,4}.
It can be written explicitly as

%3, x € 0,1],
2 42?2+ 2, x e 1,2,
2, 3]

o(z) = %—4x2+10x—%,x€ 2,3], (3.1)
z)’ z € [3,4],
0, otherwise.
Then ¢ satisfies the scaling equation® 18
o (2x o (2x—1 3¢ (22 — 2 o (2x—3 o2z —4
¢ (z) = 8)+ (2 )+ (4 )+ (2 )+ (8 ). (3.2)
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Let ¢p1 be a cubic B-spline defined on knots {0, 0,0, 1,2} and ¢ be a cubic B-spline
defined on knots {0,0, 1,2, 3}, i.e.,

7%——qtsyc xE[O 1],
du () = ooy €[1,2], (3:3)
0, otherwise,
and
llm _}_3; , l‘E[O,l],
T gg2 03 z € [1,2]
bra(z) = { 12 IRV )4l 3.4
b2( ) @ 63:)37 T < [273]7 ( )
0, otherwise.
Then ¢p; and ¢y satisfy the scaling equations? 18
G (22) | 3w (22) | 3¢ (2x)
C6(22)  116(22) | 6(20—1)  ¢(20-2)
bv2 (z) = r Tt 5 + 3 .
For j € N, 7> 3 and z € [0, 1] we set
djn(x) = 222X — k), k=3,...27 — 1, (3.6)
¢j,1 (-’E) = 2]/2%1(2] ), ¢j,2a‘+1 (x) = 2j/2¢b1(2j<1 - x))a
$i2 () = 2202 (27), b0 (x) =21 2hy2(27(1 — ).
Furthermore, we define
Q; = {¢j,k/ ikl k=1,... 20+ 1} and V; =span®,. (3.7)

It was proved in Ref. 2 that the sets ®; are uniform Riesz bases of the space V. This
means that the sets ®; are Riesz bases of the space V; with Riesz bounds independent
on j. The graphs of the functions ¢; ; on the coarsest level j = 3 are displayed in Figure
1.

15
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Fig. 1. Functions ¢35, k=1,...,9.
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4. Construction of wavelets

In some applications such as adaptive wavelet methods,”® vanishing moments of wavelets
are needed. In our case, we construct wavelets with two vanishing moments, i.e.

/ *p(x)de =0, k=0,1. (4.1)
supp ¢

For k > 3 we set f/j as the space of continuous piecewise linear function:

E k41
DAY

Vj:{UEC(O,l):U|(;€_m)€P1(

’ 27

) for k:O,...,Qj—l}, (4.2)

where P; (a,b) is the space of all algebraic polynomials on (a,b) of degree less than or
equal to 1. Clearly, with this choice the dimension of f/] is 27 + 1 that is the same as the
dimension of V;. We construct wavelets ¢, 5, k=1,..., 27 such that Yk € Vi1 N ‘7]-J-,
where f/ji- is the orthogonal complement of Vj with respect to the Lo-norm. Then

(¥5:6) =0 (4.3)

for all functions ¢ € V; and (4.1) is satisfied.
Since we want 1); , € Vjy1, we define a generator wavelet ¢ as

M
Y(x) = grp(2x — k). (4.4)
k=0
Then supp ¢ = [0, 2 + 2]. Let
_ M M
V = {U€C<0,2+2) Z’l}‘(k7k+1) 6P1(k,]€+1), kzO,,2+1} (45)
The dimension of V is % + 3 and 9 can be found as the solution of the system
M
(W fi) =0, i=1,...5 +3, (4.6)

M _
where {f; f:fg is a basis of V. For M < 5, the system (4.6) has only trivial solution.

Therefore, we choose M = 6 and compute
-1 7 =119 , —-119 7 -1

ToA’ A 104 2 104 P A 104 | (47)
1847 46" 184 184 "46° 184

[907"'796} -

Then for
Vi) =229 (20 —k+2)|jo1 k=3,...27 =2, jEN, j >3, (4.8)

the condition (4.3) is satisfied and the functions ¥ and 9 ;, have two vanishing moments.
The support of the wavelet 1 is [0, 5]. The graph of ¢ is shown in Figure 2.
We define boundary wavelets 1,1 and 1o by:

4
Y1 () = g0' b1 (27) + g P2 (2) + > b ¢ (22 — k +2), (4.9)
k=2

6
Yo2(w) = 6070 (27) + gV dra(22) + > gi*é(2x — k +2),
k=2
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0.4

0.2

Fig. 2. Wavelets v, 1,1 and ¥ps.

where

= ,—— . =4, 1], (4.10)

707 20 560
2770661 256057 —493633 20761777 —76369591
1828560 4571407 76992 ' 1828560 ° 7314240

Then supp ¥p1 = [0, 3], supp ¥p2 = [0, 4] and both boundary wavelets have two vanishing
moments.
For j € N, j >3 and z € [0, 1] we define

i) =221 (272), a0 (x) = 272 (27 (1 — 7)), (4.11)
1/Jj,2(-’ﬁ) = 2j/2¢b2(2jx), '(/Jj,zj_l(.%') = 2j/21/1b2(2j(1 — .1}))

[939 —-393 6233

b2

[9821"'796 ]: -3 .

and
U = {jn/ ikl k=1,...,27}, W; =span¥;. (4.12)
We denote
2+s o
V=030 Ju; and T=a30( U, (4.13)
j=3 j=3

In the following, we prove that ¥ is a Riesz basis of the space L (0,1). The set ¥*
is a finite dimensional subset of W.

Theorem 4.1. The sets V;, j > 3, are uniform Riesz bases of W.

Proof. We compute the matrix

F]’ = <\I/j, \I/]> (414)
using (4.4) and (4.9). For example, for j = 3 we obtain

1.000 0.128 0.103 0.003 0 0 0 0
0.128 1.000 0.432 —0.145 —0.014 0 0 0
0.103 0.432 1.000 —0.029 —0.077 0.001 0 0

F,— 0.003 —0.145 —0.029 1.000 —0.029 —0.077 —0.014 0 (4.15)

0 —0.014 —0.077 —0.029 1.000 —0.029 —0.145 0.003 |’ '

0 0 0.001 —0.077 —0.029 1.000 0.432 0.103
0 0 0 —0.014 —0.145 0.432 1.000 0.128

0 0 0 0 0.003 0.103 0.128 1.000
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where the numbers are rounded to three decimal digits. The matrix F; for j > 3 has a
similar structure. The first two rows and columns and the last two rows and columns
corresponds to boundary wavelets and for k,l = 3,...2/ — 2:

1, k=1,
—0.029, |k — 1| =1,
(Fj),, = { —0.077, [k —1| = 2, (4.16)

’ —0.001, |k — 1| =3,

0, otherwise.
It is easy to see that F; is banded and diagonally dominant. Estimates for the smallest
eigenvalue X! . and the largest eigenvalue A/, .. of the matrix F; can be computed using

the Gershgorin circle theorem:

/\fm-n > min (’Ffl‘ — Z
k=1

J
3,

) > 0.2, (4.17)

J
mazx Fu

N < max (

+3 ’Fﬂko <18, (4.18)
k=1
(4.19)

where ka are the entries of the matrix F;. With the help of Remark 2.2 the assertion is
proven. O

The proof that V¥ is a Riesz basis is based on the following theorem.? '3

Theorem 4.2. Let J € N and let V; and Vj, Jj > J, be subspaces of Lo (0,1) such that
V; CVis1, ViC Vi, dimV;=dimV; <oo, j>J. (4.20)
Let ®; be uniform Riesz bases of Vj, <i>j be uniform Riesz bases of ‘7}, W, be uniform

Riesz bases of ‘%J- N Vi1, where ‘7jJ- is the orthogonal complement of V; with respect to
the L?-inner product, and let

U={preTt=2a,U ]V, (4.21)
j=J
Furthermore, let the matrix
be invertible and the spectral norm of G;l is bounded independently on j. In addition,
for some positive constants C, v and d, v < d, let

inf [l = vyl] < C29 ol yagoy > © € H (0, 1), (4.23)
j J

v €
and for 0 < s <y let
19jll grago.1y < C27% Mlvsll s v; € V5, (4.24)

and let similar estimates (4.23) and (4.24) hold for 5 and d on the dual side. Then there
exist constants k and K, 0 < k < K < 0o, such that

> b2 Mgy

reJ

kbl < <K|bly, bi={ba}es €2(T) (4.25)

H=(0,1)
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holds for s € (—7,7).
Now we are ready to prove the Riesz basis property (2.3) for W.

Theorem 4.3. The set U is a wavelet basis of the space Ly (0,1).

Proof. For j > 3 we consider the set
;= {¢jp,k=1,...,27 +1} (4.26)
that is a Riesz basis of the space V;. Recall that V; is defined by (4.2). Let
x+1,x€[-1,0],
op(x) =< 1—=a,2€]0,1], (4.27)
0, otherwise,
and for z € [0, 1] we define
bjx(x) =220 (Pr—k+1),k=2,...,2, (4.28)
Gk (x) =202 (200 —k+1)  k=1,27 + 1. (4.29)
It was proved in Ref. 2 that

éj:{&m,kzl,...,zjﬂ} (4.30)

are uniform Riesz bases of V.
The matrix G; = <(T>j,<i>j> is

o s 00 00 0
o5 o w15 0 00 0
@ o2 ot 00 0
0% 5 2 o 120 0
G, = 0 0 - .ot . (4.31)

113 113 1
120 60 20 60 120

113 11 13 1

120 60 20 60 60

11 17 9 19

120 80 20 120

1117

80 40 40

It is easy to verify that the matrix G; is banded and strictly diagonally dominant.
Therefore, it is invertible and the spectral norm of Gj_l is bounded independently on j.
It is known® that when v is the Sobolev exponent of smoothness of the basis functions
and d is the polynomial exactness of V; than (4.23) and (4.24) are satisfied. In our case,
the Sobolev exponent of smoothness is v = 3.5 and the polynomial exactness of V; is
d = 4. On the dual side, ¥ = 1.5 and d = 2. Therefore, due to Theorem 4.2, relation
(4.25) is satisfied for s € (—1.5,3.5). Since we proved that (4.25) holds for s = 0, the set
V¥ is indeed a wavelet basis of the space L (0,1). O

It remains to prove that when the wavelet basis ¥ is normalized in the H'-seminorm,
then it is a wavelet basis of the space H} (0,1). We denote

Z;:=1{0,1,...,8} and J;:={1,...,27}. (4.32)
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Theorem 4.4. The set
{¢3,k/ |93kl 173 0,1 % € 13} U {wg‘,k/ skl g1 0,10 2 3,k € jj} (4.33)

is a wavelet basis of the space H} (0,1).

Proof. We follow the Proof of Theorem 2 in Ref. 4. From the proof of Theorem 4.3, we
know that relation (4.25) holds for s = 1. Therefore the set
{2723 1,k € T3} U {2770 4,5 > 3,k € J;} (4.34)

is a wavelet basis of the space H} (0,1). From (3.6), (4.8) and (4.11) there exist nonzero
constants C'; and Cy such that

127 < %kl 1 ) < Cy27, for j>3, keJ, (4.35)
and

123 < |63, g1 0y < Cy23, fork € Is. (4.36)

Let b = {as., k‘EZg}U{ binsj >3, kejj}besuchthat

=Y a+ Y b <o (4.37)

kE€Ts keJ;,i>3
We define
23A 2]8
asp = ¢; kels, bjr= k>3 ke Jjs (4.38)
‘¢3,k’H3(0,1) ijk|H01(o,1)
and b = {as, k€ I3} U{bjk,j >3, k € J;}. Then
b
bl < L2 < o (4.39)
Ch

Since the set in (4.34) is a Riesz basis of H} (0,1) there exist constants Cs and Cjy
such that

Cslblly < ||Y " asu2 s+ Y. bin2 T < Cylbll,. (4.40)
kGIS kejjijB Hé(o,l)
Therefore
Cy [~ B »
S IBll, = catbily > || 3 asn2oan+ D bu2 e (4.41)
1 keZs keJ;,j>3 H(0,1)
o\Y,

ZWB(LM Gskt D U VR — N

keZs k‘Hl(Ol keJ;,j>3 |’(/}]k|H1(0 1) H1(0,1)
o\Ys
and similarly
a b
S| et &g e
|p3, k|H1(o 1) kET;,i>3 %5, k|H3(0:1) t

HL(0,1)
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It is known? 17 that an orthogonalization of the scaling functions on the coarsest level
can lead to improved quantitative properties of the resulting wavelet basis. Therefore,
we define the set

o5 = {05, k € I3} (4.43)
by
Pt =K 103, K= (03,P3). (4.44)
Then the set of scaling functions ®$"* is orthonormal and
vt = a5 u | v (4.45)
j=3

is a wavelet basis of the space L? (0,1) and its appropriate rescaling is a wavelet basis of
the space Hg (0,1).

5. Multivariate wavelets

We present two well-known constructions of multivariate wavelet bases on the unit hy-
percube Q = (0, 1)d.23 They are both based on tensorizing univariate wavelet bases and
preserve Riesz basis property, locality of wavelets, vanishing moments and polynomial
exactness.

5.1. Anisotropic construction

For notational simplicity, we denote

bog =3k, k€ Joi=1s (5.1)
and
J ={0,k), j>2, ke J;}. (5.2)
Then we can write
VOt =gk, J 22, k€ T} ={ua, A€ T} (5.3)

Recall that for A = (j, k) we denote |A\| = j. We use u ® v to denote the tensor product
of functions v and v, i.e. (u®v) (x1,22) = u(x1)v(x2). We define multivariate basis
functions as:

Un=0L 0, A=(0,.. ) ed, J=J1=T%...0J. (5.4)

Since WOt is a Riesz basis of Ly (0,1) and ¥ normalized with respect to H!-seminorm
is a Riesz basis of H{ (0,1), the set

U= {ya, A € I} (5.5)
is a Riesz basis of L (2) and its normalization
{d’*, Ae J} (5.6)
|1/J>\|H1((o,1)d)
is a Riesz basis of Hg (€2). The set
o= {a, A= (A1, Aa) s A <2+ s} (5.7)

is a finite-dimensional approximation of W™,
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5.2. Isotropic construction

We define for j > 3 and k = (kq, . .. kg) multivariate scaling functions:

Pik = O Djiks (5.8)
and
10 = {pju, k= (k1,...kq), ki €T;, i=1,...,d}. (5.9)
For e € {0,1} we define
qu k) € = 0>
A , 1
Vik, {¢j,kv e 1 (5.10)
We denote the index set:
o Ij, e = O,
Tje = {Jj,e—l. (5.11)
For k = (k1,...kq) and e = (ey,...,eq) we define multivariate functions
bjke = OF1Wj ke (5.12)
and the set of wavelets on the level j as
Ui = {j e, ki € Tje,r €€ B}, where E = {0,1}"\ {0}. (5.13)
It is known that then the set
Uigo = B50U | Wl (5.14)
j=3

is a wavelet basis of Ly () and its normalization with respect to the H' (Q)-seminorm
is a Riesz basis of H} (2). The set

2+s
e =opeu | wie (5.15)
j=3

is a finite dimensional subset of W#s°,

6. Quantitative properties

In this section, we present the condition numbers of the stiffness matrices for the following
elliptic problem:

—eAu+au=f on Q, wu=0ondQ, (6.1)

where A is the Laplace operator, € and a are positive constants. The variational formu-
lation for an anisotropic wavelet basis is

Aaniuani —_ fani’ (62)
where
Aani — <V\I’,ani7 V\Ijani> +a <\I/ani’ \Ijani> , (63)

U= (uani)T \Ilcmi7 fani —_ <f> \Ijani> .
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An advantage of discretization of elliptic equation (6.1) using a wavelet basis is that the
system (6.2) can be simply preconditioned by a diagonal preconditioner.!! Let D be a
matrix of diagonal elements of the matrix A, i.e. Dy, = Ay ,0x,, where d) , denotes
Kronecker delta. Setting

—1/2 —1/2

Aani — (Danz') Aanz’ (Danz’) , (64)
ﬁani — (Dani)1/2 uani, f-ani — (Dani>71/2

fcmi

we obtain the preconditioned system Aanigani — fani Tt ig known!! that there exist

constants C,Cy, and C such that

0< 0y < i

<O (6.5)

and thus cond A% < C' < oco. Let
AL = e (VUL VUL 4 a (W W) (6.6)
ugt = (ug) e, = (f ).

and let D" be a matrix of diagonal elements of the matrix A" ie. (D), =

: A
(Agm)/\# Oz, - We set

A= (Demi) 12 Aomi (Deniy T2 (6.7)
qont = (]:)gm')l/2 ueni,  fani (ng)—lﬂ fani

and obtain preconditioned finite-dimensional system

Aanigent — fant, (6.8)

Since A% is a part of the matrix A" that is symmetric and positive definite, we have
also

cond A% < C. (6.9)
The preconditioned system for an isotropic wavelet basis

ASeulso = £15°. (6.10)
is derived in a similar way. The stiffness matrix A° also satisfies

o< <Az

<Oy, condA¥ <. (6.11)
2

The eigenvalues and condition numbers of the stiffness matrices for one-dimensional
problem are shown in Table 1. We denote the stiffness matrix for the bases ¥, and 9"t
preconditioned as in (6.7) by A, and Ag”, respectively. The consequence of Remark 2.2
is that the condition number with respect to the H'-seminorm of the multiscale wavelet
basis W, normalized with respect to the H'-seminorm is equal to the square root of the
condition number of the stiffness matrix A,. The eigenvalues and condition numbers of
the stiffness matrices for two-dimensional and three-dimensional problems are shown in
Table 2 and Table 3. Table 1, Table 2 and Table 3 correspond to the choice of parameters
€ =1 and a = 0, i.e. for the Poisson equation.

In Table 4 we compare the condition numbers of the stifness matrices for the Poisson
equation in one dimension for various constructions of cubic spline wavelet bases adapted
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Table 1. The maximal eigenvalues, the minimal eigenvalues and the condition numbers numbers of the
matrices A2"t and A of the size N X N corresponding to the one-dimensional problem.

N ot At condAYT Apas Amin  condAg

S max min

1 17 1.67e0 2.99e-1 59.57e0  1.67e0 2.15e-1 7.74e0
2 33 1.68¢0 2.99e-1 5.60e0 1.68e0 2.15e-1 7.79e0
3 65 1.68¢0 2.99e-1 5.61le0  1.68e0 2.15e-1 7.81e0
4 129 1.68e0 2.99e-1 5.62e0  1.68¢0 2.15e-1 7.81e0
5 257 1.68e0 2.99e-1 5.62e0 1.68e0 2.15e-1 7.82e0
6 513 1.68e0 2.99e-1 5.62e0  1.68e0 2.15e-1 7.82e0
7 1025 1.68e0 2.99e-1 5.62e0 1.68e0 2.15e-1 7.82e0

8§ 2049 1.68¢0 2.99e-1 5.62e0 1.68e0 2.15e-1 7.82e0

Table 2. The maximal eigenvalues, the minimal eigenvalues and the condition numbers of the stiffness
matrices A%™ and A¥%° of the size N x N corresponding to the two-dimensional problem.

N o e condA™ Nse Ao cond Al

280 2.46e0 1.5le-1 16.2¢0 3.21e0 6.22e-2  51.6e0
1089 2.67e0  1.39-1 19.2¢0 3.27e0  5.60e-2  58.4e0
4225 2.80e0 1.18e-1 23.8¢0 3.29¢0 5.60e-2  58.8¢0

s
1
2
3
4 16 641 2.88e0 9.75e-2 29.6e0 3.31e0  5.60e-2 59.0e0
5
6
7

66 049 2.92e0 8.25e-2 35.4e0  3.31e0  5.60e-2 59.2¢e0

263 169 2.94e0 7.15e-2 41.1e0  3.32e0  5.60e-2 59.2¢e0
1058 841 2.95e0 6.38e-2 46.3e0  3.32¢e0  5.60e-2 59.3e0

8 4231249 2.96e0 5.82e-2 50.9e0  3.32¢0  5.60e-2 59.3e0

Table 3. The maximal eigenvalues, the minimal eigenvalues and the condition numbers of the stiffness
matrices A2 and A%%° of the size N x N corresponding to the three-dimensional problem.

N )\%‘;x )\ﬁfiﬁL condAgm )\ﬁngw Aﬁflfn condAiso
4913 3.94e0 6.78e-2 58.2e0 6.34e0 7.65e-3 829.3e0
35937 4.47¢0 5.07e-2 88.0e0 6.47¢0 7.42¢-3 871.4e0

s
1
2
3 274 625 4.77e0  3.80e-2 125.4e0  6.52e0 7.41e-3 879.5e0
4
5

2 146 689 5.01e0 2.77e-2 181.2e0 6.56e0 7.41e-3 883.0e0
16 974 593 5.12e0  2.04e-2 250.7¢0  6.56e0 7.41le-3 885.0e0

to homogeneous boundary conditions of the first order. The construction from this paper
is denoted new. P(m,n) denotes construction from Ref. 18 and C (m,n) and C (m,n)"""
denote the constructions from Ref. 2 without and with orthogonalization of the scaling
functions on the coarsest level, respectively. Parameter (m,n) corresponds to standard
notation of biorthogonal wavelets, where m is a polynomial exactness of the primal
multiresolution analysis and n is a polynomial exactness of the dual multiresolution
analysis. Parameter s denotes the number of levels of wavelets.

In Table 5 and Table 6 a dependence of the condition number on the parameter € is

shown. It is computed for the two-dimensional problem and a = 1. It can be seen that
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Table 4. The condition numbers of the stifness matrices for various constructions.

s new P(4,4) P(4,6) CF(4,4) CF(4,6) CF(4,4)" CF(4,6)°
1 56  49.1 52.0 47.0 15.4 49.0 15.3
4 56 1998 1349 50.0 18.1 51.6 16.2
7 56 2168 1384 50.3 18.9 50.3 16.3

if € increases the condition number become close to the condtion number of the stiffness
matrix for the Poisson problem and if ¢ decreases than the condition number become

close to the condition number of Gramian matrix with respect to the L?-inner product,

i.e. the case ¢ = 0 and a = 1. The condition numbers are even significantly lower than

condition numbers for one-dimensional problem and periodized biorthogonal wavelets,
see tables in Ref. 23.

Table 5. Condition numbers of the stiffness matrices Ai° of the size N x N for various values of e
corresponding to the two-dimensional problem .

s N €=10° e=1 e=10"3 =107 €=0
1 289 51.6  51.6 145.3 393.1 393.1
2 1 089 58.4 584 146.7 447.8 447.8
3 4 225 58.8  58.8 146.8 471.3 4714
4 16 641 59.0  59.0 146.8 484.0 484.0
5 66 049 59.2  59.2 146.8 491.1 491.1
6 263 169 59.2  59.2 146.8 494.8 494.9
7 1058 841 59.3  59.3 146.8 496.8 496.9
8 4231 249 59.3  59.3 146.8 497.8 4979

Table 6. Condition numbers of the stiffness matrices A% of the size N x N for various values of e
corresponding to the two-dimensional problem .

s N €e=10° e=1 =103 =107 €=0
1 289 16.2 16.2 15.1 16.2 16.2
2 1 089 19.2 19.2 19.0 30.8  30.8
3 4 225 23.8  23.8 23.5 46.9  46.9
4 16 641 29.6  29.6 29.4 63.9  63.9
5 66 049 356 35.5 35.4 81.2 81.3
6 263 169 41.3 41.1 41.1 98.0 98.1
7 1058 841 46.4  46.3 46.3 113.6  113.9
8 4231 249 51.0 51.0 51.0 127.2  128.9

7. Numerical example

The constructed wavelet basis can be used for solving various types of problems. Let

us mention for example solving partial differential and integral equations by adaptive
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wavelet method.”® In this section we use the constructed wavelet basis in a wavelet-
Galerkin method. We consider the problem (6.1) with 2 = (0,1)*, e = 1 and a = 0. The
right-hand side f is such that the solution w is given by:

u(z,y)=v(@)v(y), v =z(1- 6595_5) . (7.1)

We discretize the equation using a Galerkin method and the isotropic wavelet basis
constructed in this paper and we obtain the discrete problem (6.10). We solve it by the
conjugate gradient method using a simple multilevel approach:

1. Compute A5° and £i5°, choose vq of the length 92.

2. For j =0,...,s find the solution u; of the system Aésoﬁj = f';so by the conjugate
gradient method with initial vector v; defined for j > 1 by

ﬁj_l,izl,...,kj,
N\ 2
(v) { 0, i=kj ... ki1, (7.2)

where kj = (2742 4+ 1),

The method for anisotropic wavelet basis is similar. A criterion ||r;|| < €;, where
rj = A?S"ﬁj — f'}so, is used for terminating iterations of the conjugate gradient (CG)
method at level j. It is possible to choose smaller €; on coarser levels,' but in our case we
choose €; constant for all levels, because other choices of ¢; did not lead to significantly
smaller number of iterations in our experiments. Namely, for the given number of levels s
we set €; = 10752735 j =0,..., s, for the isotropic case and € = 10742735, 5 =0,...,s,
for the anisotropic case.

We explain the choice of €;. Let u be the exact solution of (6.1) and

up = (D)™ @) w,, (7.3)
where @* is the exact solution of the discrete problem (6.10). It is known?? that
= uill gy < C2717™2, (7.4)
We have
ry == AP0, — fi%° = AP°u, — A°u’. (7.5)

where 115 is the approximate solution of (6.10) by the conjugate gradient method. The
relation (6.11) implies

1 N ok 1
& Il < . = &1, < - Il (7.6)
Due to Theorem 4.3 we have
Cs [[as —uglly < llts — @l g (o) < Callus —ugl, (7.7)
Hence, by (7.4), (7.6) and (7.7)
s = ull ooy = llus — ug +ul — ull g (q) (7.8)

N

< lus = ugll gy + llus — ullgrq)

IN

C
é [rs]ly + C273. (7.10)



Wawvelet basis of cubic splines on the hypercube satisfying homogeneous boundary conditions 17

Therefore, if we choose the criterion [|rg||, < C2735 we achieve for u, the same conver-
gence rate as for u}.

Since span Wi° = span @3, there exists a matrix T%° such that Wi*° = T®°®,, ..
This matrix represents the discrete wavelet transform and the multiplication of the ma-
trix T%° with a vector requires O (N) work, where N x N is the size of the matrix T%°.
For details see e.g. Ref. 17. Thus

AL = (D) P mieal, (1) (D) (7.11)
where A? ; is the stiffness matrix with respect to the basis ®3,. Since A?, ; is banded
and D% is diagonal, the multiplication of the matrix A%° with a vector requires O (N)
floating-point operations. We conclude that one CG iteration requires O (N) floating-
point operations. We denote the number of iterations on the level j as M;. The number
of operations needed to compute one CG iteration on the level j requires about one
quarter of operations needed to compute one CG iteration on the level j + 1. Thus M;
iterations at level j is equivalent to M, 47~% jterations at level s. Therefore, we define
the total number of equivalent iterations by

S Mj
M=>" =g (7.12)
j=0

The results are listed in Table 7 and Table 8. The residuum is denoted r, u is the exact
solution of the given problem and wu, is an approximate solution obtained by multilevel
Galerkin method with s levels of wavelets. It can be seen that the number of conjugate
gradient iterations is quite small and that

[[es = ull o [es — wll

lusir =l ™ Tussr — ul]

(7.13)

1
~ 16’

i.e. that order of convergence is 4. It confirms the theory.

Table 7. Number of iterations and error estimates for multilevel conjugate gradient method for isotropic
wavelet basis.

s N M sl Nus —ullyg  flus —ull fluf —ull  Jlui —ul
1 289 17.00  1.00e-6 1.02e-5 2.95e-6 1.02e-5 2.95e-6
2 1089 17.06  1.5le-7 6.95e-7 2.49e-7 6.96e-7 2.49e-7
3 4225 16.75  1.29e-8 4.83e-8 1.61e-8 4.82¢-8 1.61e-8
4 16 641 15.31 1.78e-9 2.87e-9  9.92e-10 2.86e-9  9.92e-10
5 66049 14.48 1.59e-10 1.79e-10  6.18e-11 1.77e-10  6.18e-11
6 263169 12.77 3.2le-11 1.12e-11  3.77e-12 1.10e-11  3.75e-12
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Table 8. Number of iterations and error estimates for multilevel conjugate gradient method for anisotropic
wavelet basis.

s N M rsll s —ulloe  flus —ull o —ully  [lug — ull
1 280  9.25 8.15e-6 1.03e-5  2.97e-6 1.02e-5  2.95e-6
2 1089 1113  1.16e-6 7.10e-7  2.49e-7 6.96e-7  2.49¢-7
3 4225 1142 1.33e7 491e8  1.62¢-8 4828  1.6le-8
4 16641 12.05  1.32-8 2.90e-9  9.93e-10 2.86e-9  9.92e-10
5 66049 1214  1.31e9  1.76e-10  6.20e-11  1.77e-10  6.18e-11
6 263169 11.95 1.32¢-10  1.14e-11  3.78e-12  1.10e-11  3.75e-12
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Abstract: We propose a construction of a Hermite cubic spline-wavelet basis on the interval and
hypercube. The basis is adapted to homogeneous Dirichlet boundary conditions. The wavelets
are orthogonal to piecewise polynomials of degree at most seven on a uniform grid. Therefore the
wavelets have eight vanishing moments and the matrices arising from discretization of differential
equations with coefficients that are piecewise polynomials of degree at most four on uniform grids
are sparse. Numerical examples demonstrate the efficiency of an adaptive wavelet method with the
constructed wavelet basis for solving one-dimensional elliptic equation and the two-dimensional
Black-Scholes equation with a quadratic volatility.

Keywords: Riesz basis; wavelet; spline; interval; differential equation; sparse matrix, Black-Scholes
equation

1. Introduction

Wavelets are a powerful and useful tool for analysing signals, detection of singularities, data
compression and numerical solution of partial differential and integral equations. One of the most
important properties of wavelets is that they have vanishing moments. Vanishing wavelet moments
ensure so called compression property of wavelets. It means that a function f that is smooth, except
at some isolated singularities, typically has a sparse representation in a wavelet basis, i.e. only a
small number of wavelet coefficients carry most of the information on f. Similarly as functions also
certain differential and integral operators have sparse or quasi-sparse representation in a wavelet
basis. This compression property of wavelets leads to design of many multiscale wavelet-based
methods for the solution of differential equations. First wavelet methods used orthogonal wavelets,
e.g. Daubechies wavelets or coiflets [1,34]. Their disadvantage is that the most orthogonal wavelets
are usually not known in a closed form and that their smoothness is typically dependent on the length
of the support. The orthogonal wavelets that are known in a closed form are Haar wavelets. They
were succesfully used for solving differential equations e.g. in [21,31,32]. Another useful tool is the
short Haar wavelet transform that was derived and used for solving differential equations in [3-5].
Since spline wavelets are known in a closed form and they are smoother and have more vanishing
moments than orthogonal wavelets of the same length of support, many wavelet methods using
spline wavelets were proposed [27,28,30]. For a review of wavelet methods for solving differential
equations see also [17,29].

It is known that spectral methods can be used to study singularity formation for PDE solution
[2,20,39]. Due to their compression property wavelets can also be used to study singularity formation
for PDE solutions. The wavelet approach simply insists in analyzing wavelet coefficients that are
large in regions where the singularity occurs and very small in regions where the function is smooth
and derivatives are relatively small. Many adaptive wavelet methods are based on this property
[13,14].

We focus on an adaptive wavelet method that was originally designed in [13,14] and later
modified in many papers [24,25,37], because it has the following advantages:

www.mdpi.com/journal/axioms
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o Optimality. For a large class of differential equations, both linear and nonlinear, it was shown
that this method converges and is asymptotically optimal in the sense that storage and number
of floating point operations, needed to resolve the problem with desired accuracy, depend
linearly on the number of parameters representing the solution and the number of these
parameters is small. Thus, the computational complexity for all steps of the algorithm is
controlled.

o High order-approximation. The method enables high order approximation. The order of
approximation depends on the order of the spline wavelet basis.

e Sparsity. The solution and the right-hand side of the equation have sparse representation
in a wavelet basis, i.e. they are represented by a small number of numerically significant
parameters. In the beginning iterations start for a small vector of parameters and the size of the
vector increases successively until the required tolerance is reached. The differential operator is
represented by a sparse or quasi-sparse matrix and a procedure for computing the product of
this matrix with a finite-length vector with linear complexity is known.

e Preconditioning. For a large class of problems the matrices arising from a discretization using
wavelet bases can be simply preconditioned by a diagonal preconditioner and the condition
numbers of these preconditioned matrices are uniformly bounded. It is important that the
preconditioner is simple such as the diagonal preconditioner, because in some implementations
only nonzero elements in columns of matrices corresponding to significant coefficients of
solutions are stored and used.

It should be noted that also other spline wavelet methods utilize some of these features, but up to our
knowledge there are not other wavelet methods than adaptive wavelet methods based on ideas from
[13,14] that have all these properties. For more details about adaptive wavelet methods see Section 6
and [13,14,19,24,25,37,38].

In this paper, we are concerned with the wavelet discretization of the partial differential equation

d d
d ou ou B B J B
_kllaj%(i?k,lax)-i-kz‘i%axk—%-pouf on 0 =(0,1)", u=0 onadQ. 1)

We assume that g (x) > Q > 0, the functions py, gk, po and f are sufficiently smooth and bounded
on (), and that py; satisfy the uniform ellipticity condition

d

d d
Z Z Pk, (x) xkx; > C Z xl%/ X = (xll- . .,Xd) ’ (2)

k=11=1 k=1

where C > 0 is independent on x. The discretization matrix for wavelet bases is typically not sparse,
but only quasi-sparse, i.e. the matrix of the size N x N has O (N x log N) nonzero entries. For
multiplication of this matrix with a vector a routine called APPLY have to be used [6,14,24]. However,
it was observed in several papers, e.g. in [23] that "quantitatively the application of the APPLY
routine is very demanding, where this routine is also not easy to implement". Therefore, in [23] a
wavelet basis was constructed with respect to which the discretization matrix is sparse, i.e. it has
O (N) nonzero entries, for equation (1) if the coefficients are constant. The construction from [23] was
modified in [10,11] with the aim to improve the condition number of the discretization matrices. Some
numerical experiments with these bases can be found in [9,15]. In this paper, our aim is to construct a
wavelet basis such that the discretization matrix corresponding to (1) is sparse if the coefficients py,
qr and py are piecewise polynomial functions of degree at most n on the uniform grid, where n = 6
for py;, n = 5 for g, and n = 4 for py. Our construction is based on Hermite cubic splines. Let us
mention that cubic Hermite wavelets were constructed also in [10,11,18,23,26,33,35,36,40].
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Example 1. We have recently implemented adaptive wavelet method for solving the Black-Scholes
equation
1%
T

d Ok,1 *V d A%

k,l; DR rk; Skgg, TV =0, ()
where (S1,...,54,t) € (0,57") x ... x (0,8%%) x (0,T). We used the f-scheme for time
discretization and tested the performance of the adaptive method with respect to the choice of a
wavelet basis for d = 1,2, 3. Some results can be found in [9]. In the case of cubic spline wavelets, the
smallest number of iteration was required for the wavelet basis from [8]. The discretization matrix for
most spline wavelet bases is not sparse, but only quasi-sparse and thus the above mentioned routine
APPLY have to be used. For wavelet bases from [10,11,23] the discretization matrix corresponding
to the Black-Scholes operator is sparse if volatilities ¢; are constant. However, in more realistic
models, volatilities are represented by non-constant functions, e.g. piecewise polynomial functions
[41]. For the basis that will be constructed in this paper the discretization matrix is sparse also for the
Black-Scholes equation with volatilities ¢; that are piecewise quadratic.

2. Wavelet bases

In this section, we briefly review the concept of a wavelet basis in Sobolev spaces and introduce
notations, for more details see e.g. [38]. Let H be a Hilbert space with the inner product (-, -) ;; and the
norm ||| ;; and let (-, -) denote the L?-inner product. Let J be an index set and let each index A € J
take the form A = (j, k), where [A| := j € Zis alevel. For v = {v,},. 7, vx» € R, we define

1/2
vl = (Z |U/\|2) , P(T) = A{v vy < oo} 4)

reg
Our aim is to construct a wavelet basis in the sense of the following definition.
Definition 1. A family ¥ := {¢y,A € J} is called a wavelet basis of H, if
i) Y isa Riesz basis for H, i.e. the closure of the span of ¥ is H and there exist constants ¢, C € (0, )

such that

c|bl, <

Y. bapa

reJ

<C|bll,, forall b:={b},c;€*(J). (5)
H

ii) The functions are local in the sense that diam (supp ¢,) < €2~ forall A € J and at a given
level j the supports of only finitely many wavelets overlap at any point x.

For the two countable sets of functions I, I' C H , the symbol (T, I') ;; denotes the matrix

(D) g = {7 Putyerer - (6)

The constants cy := sup {c : c satisfies (5)} and Cy := inf {C : C satisfies (5)} are called Riesz
bounds and the number cond ¥ = Cy /cy is called the condition number of ¥. It is known that

cy = )\min(<TfT>H>’ Cy = AmaX(<TfT>H)r 7)

where Ay, ((F,¥)y) and Ayax ((¥, ) ) are the smallest and the largest eigenvalues of the matrix
(¥,¥), respectively.
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Let M be a Lebesgue measurable subset of R?. The space L? (M) is the space of all Lebesgue
measurable functions on M such that the norm

1/2
I£1l = ( [if <x>|2dx) ®)
M

is finite. The space L? (M) is a Hilbert space with the inner product
(£,8) = | Fx)gdx g€ 2(M). ©)
The Sobolev space H® (Rd ) for s > 0 is defined as the space of all functions f € L? (]Rd) such that

the seminorm
1 o
e (o) = (w fe

is finite. The symbol f denotes the Fourier transform of the function f defined by

) 1/2
G dé) (10)

F(E) = x)e %y,
F@ = [ fet an

The space H* (Rd) is a Hilbert space with the inner product

Do) = s T OFD (L 1) e, g e (B), 1)

and the norm

1 ks () = \/ 7 ) pas (- (13)

For an open set M C RY, H® (M) is the set of restrictions of functions from H* (Rd) to M
equipped with the norm

I lszsany = 0t gl e (o) : & € HE (M) and glas = £} (14)

Let Ci° (M) be the space of all continuous functions with the support in M such that they have
continuous derivatives of order r for any r € R. The space Hj (M) is defined as the closure of C§* (M)

in H? (Rd>. It is known that
£ T aay = 1f T any + N (15)

where

[flmy = (V V) (16)
is the seminorm in H' (M) and V f denotes the gradient of f.

3. Construction of scaling functions

We start with the same scaling functions as in [10,11,18,23,26,33,35,36]. Let

(x+1)*(1-2x), xe[-1,0] (x+1)%x, xe[-1,0],
pr(x) =<5 1-x)21+2x), xe[0,1], ¢(x)=4 (1—x)>x, x€][0,1], (17)

0, otherwise, 0, otherwise.
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For j > 3 and x € [0,1] we define

brakrir (x) = 2% (Px—k) fork=1,...,20 -1, 1=12, (18)
1) = 27 (2x), g (x) =27 (2 (x - 1),

and
®; = {¢jxk=1,...,2%}, V= span ;. (19)

Then the spaces V; form a multiresolution analysis. We choose dual space V; as the set of all functions

25
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Figure 1. Scaling functions on the level j = 3.

v € L?(0,1) such that v restricted to the interval (’22_—_%, 2]—’;) is a polynomial of degree less than 8 for

any k = 1,...,272 je.

k-1 k ;
v {v €L (0,1).v|(2,;12,2j,12) € I (21—2 ,2]._2) fork=0,...,2 } (20)

where Ig (a,b) denotes the set of all polynomials on (g, b) of degree less than 8. Let
Wj = Vi OV, @)

where V]-l is the orthogonal complement of V; with respect to the L2-inner product. If a function g is
a piecewise polynomial of degree n we write deg g = n.

Lemma 2. Let the spaces W;, j > 3, are defined as above. Then all functions § € W;and h € Wi, i,j >3,
li —j| > 2, satisfy
(ag,h)y=0, (bg ,h)y=0, (cg h)=0, (22)

where a, b, ¢ are piecewise polynomial functions such that a,b,c € Vp, p < max(i,j), dega < 4,degb <5,
and degc < 6.

Proof of Lemma 2. Let us assume that j > i 4 2. We have g € W; C Vi34 C Vi, C Vj, degg < 3,
a € Vj, dega < 4, and thus ag € V. Since h € W; and W is orthogonal to V; we obtain (a g, ) = 0.
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Similarly, the relation (b ¢’,h) = 0 is the consequence of the fact that bg’ € V] and h € W;. Using
integration by parts we obtain

(cg W)y =—("g+cg" h). (23)
Since ¢’ ¢’ +cg” € Vyand h € W; we have (c ¢, i) = 0. The situation for j < i + 2 is similar. [

Therefore the discretization matrix for the equation (1) is sparse. Let ¥; be a basis of W;. The
proof that

Y={preT}=23U Y, (24)
j=3

is a Riesz basis of the space L? (0,1) and that ¥ is a Riesz basis of the space H} (0, 1) when normalized
with respect to the H!-norm is based on the following theorem [16,23].

Theorem 3. Let | € Nand let Vi and V,, j > ], be subspaces of 12 (0,1) such that
ViC Vi1, V;CViyy, dimVy=dimV;<e, j>]. (25)

Let ®; be bases of Vj, d~>j be bases of V]-, ¥ be bases of Vf— M Vi1, such that Riesz bounds with respect to the
L2-norm of ®;, ;, and ¥ are uniformly bounded, and let ¥ be given by (24). Furthermore, let the matrix

Gj = (P}, D)) (26)

be invertible and the spectral norm of G; ! is bounded independently on j. In addition, for some positive
constants C, v and d, such that v < d, let

. —id d
Jnf [lo =yl < C27H ollgsqoay. 0 € H (0,1), @)

and for 0 < s < 7 let

HU/HHd(o,l) < C2° ||y

, v €V, (28)

and let similar estimates (27) and (28) hold for 4 and d on the dual side. Then there exist constants k and K,
0 < k < K < oo, such that

klbll, < || Yo 0227y,

reJ

<K|bly, b:={br})cs € () (29)
H5(0,1)

holds for s € (—%,7).

We focus on the spaces V; and V] defined by (19) and (20), respectively, and we show that they
satisfy the assumptions of the Theorem 3.

Theorem 4. There exist uniform Riesz bases dA>]- of Vj and ®; of V; such that the matrix
Gj = (&), ®)) (30)
is invertible and the spectral norm of G;l is bounded independently on j.

Proof of Theorem 4. Let CDJ-, V] and ‘7] be defined as above. Fori = 0,...,7 we define

(31)
0, otherwise,

pi(x){ (x—1/2)), xe0,1],



Axioms 7 of 21

and
0 scrir1 = 2072/%p; (21*2x - k) , kez, i=0,...7. (32)

Then the set ©; = {Gj,k,k =1,.. .,27“} is a basis of V] and the matrix A; = <<I>]',@j>, j > 3, has the

structure:
E

A= ‘ ) (33)

AR

where A is the matrix of the size 10 x 8. Our aim is to apply several transforms on ®; and ©; such
that new bases <i>]- of V; and d~>]- of ‘7] are local and the matrix G; defined by (30) and its transpose G]-T
are both strictly diagonally dominant. First, we replace functions 6; by functions g;; in such a way
that the matrix of L?-inner products of ¢ and g;, is tridiagonal. Therefore we define

8
. . s
8jSktitl = Zc;rlej,gkﬂ, i=0,...,7, k=0,...,272—-1, (34)
=1
where the coefficients c;'-l are chosen such that

(Gip8ia) =0, |p—aql>1, {¢jpgipy=1 p=1..,2""-1. (35)

Form = 8 +i+1,i =0,...,7, k = 1,...,2/72 — 2, we substitute (34) into (35) and using
supp @jgk+i+1 N supp gjm = 0 for I # 0,...,9, we obtain systems of 8 linear algebraic equations
with 8 unknown coefficents:

. . . . .\ 8
Ald = e, fork=2,...,272 -2, (= (C;’l)lfll (36)

the system matrices A’ that are submatrices of A containing all rows of A except i-th and (i + 2)-th
rows, and e’ are unit vectors such that (ei)l = 6;;. The symbol J;; denotes the Kronecker delta. We
computed all of the system matrices precisely using symbolic computations and verified that they are
regular. Thus the coefficients c} ; exist and are unique.

The matrix B; defined by (Bf)k,l = <(])]«,k,gj,m>, k1 =1,..,2% is tridiagonal and has the
structure

, (37)
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where
13.199 0 0 0 0 0 0 0
1.000 0.098 0 0 0 0 0 0
—2.185 1.000 —24.781 0 0 0 0 0
0 —-0.138 1.000 0.104 0 0 0 0
B— 0 0 13.887 1.000 —6.026 0 0 0 (38)
o 0 0 0 —0.074 1.000 0.041 0 0 ’
0 0 0 0 34953 1.000 8.824 0
0 0 0 0 0 -0.018 1.000 0.023
0 0 0 0 0 0 —9.423 1.000
0 0 0 0 0 0 0 —-0.092
and
B =By, 10, BY=B_g10) 39)

The symbol Bjs denotes the submatrix of the matrix B containing rows from B with indices from M.
In (38) the numbers are rounded to three decimal digits.
We apply several transforms on ¢; x and denote the new functions by (,b;,k. In the following, let

_ . i i . F
Bixy = (B)),,, Bl = <‘Pj,l' g],k>, i=1,...4. (40)
We define
1 Bj,k,k-‘rl 1
Pik = Pik— mgbjrkﬂ forkeven, ¢, = ¢;x forkodd, (41)
ik+1,
Blk k
2 41 Jhk=1 1 2 .1
4>]-,k = 4’]',k o ¢j,k—1 for k even, ‘pj,k = gb]-,k for k odd,
ik—1k—1
B2 k k
3 - 2 jA4+8k,24+8k 1 . i—2 .3 _ .2 .
Parse = Piarsc— g2 Pjarsc fork=1..., 2775, ¢, = ¢, otherwise,
7,248k,24-8k
B36 8k,4+8k
4 _ .3 j6+8kA+8k 1 _ i—2 4 _ .3 .
Piorsk = Piorsk — 1337%'4*8]‘ fork=1,....277%, ¢}, = ¢;; otherwise,
jA+8k,4+48k
and

21¢}, 1=4+8k,
iy =109}, 1=2"1, (42)
47;%1 otherwise.
Furthermore, we set ¢~>]-12+8k = 1.3gjp48x fork = 0,.. .,27% and qu,l = gj1 for I # 2+ 8k. Let <i>]- =

{43]',1,1 = 1,...2f+1} and CT>]' = {43]',1,1 = 1,...2j+1}. The matrix G; defined by (30) has the same
structure as Aj and Bj, ie.

G;(8i+k8i+1)), B = G, i=2,..,22-2 (43)
j k=0,...,14,]=1,...8
(Gf (k’l))kzl,...,l4,l:1,.‘.,8 = Gh,
(Gf (ZjH —8+k 2 -8+ Z))k:o,...,&l:l,...,8 = GY
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where
0 —1.6863 0 0 0 0 0 0
1.0000 0.1278 0 0 0 0 0 0
0 —2.8555 0 2.5773 0 0 0 0
0 —0.1790 1.0000 0.1040 0 0 0 0
0 0 0 2.8443 0 0.5229 0 0
0 0 0 —0.0737 1.0000 0.0413 0 0
0 0 0 0 0 —0.7599 0 —0.2011
G = 0 0 0 0 0 —0.0179 1.0000 0.0228 (44)
0 0 0 0 0 —0.1689 0 2.4295
0 0 0 0 0 0 0 —0.0920
0 0 0 0 0 0 0 —0.2011
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 —0.3675
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0.3330
and
cl—¢c GR — Ga,..8 (45)
{215} 0 ... 0 —0920

Thus the matrices G; and GT are diagonally dominant and invertible and due to the Johnson's lower
bound for the smallest singular value [22], we have

1

< 8527, 46
Omin (Gj) (40

Oin (Gj) > 0117, HGJﬂH2 -

It remains to prove that dAJj are uniform Riesz bases of V; and ®; are uniform Riesz bases of V;. Since

;x are locally supported and there exists M independent of j and k such that H([A)j/k 201) < M, we
have /
2 1
P 2 5 2
HZcf,ksbf,k = LY ccia || e (1) b (x) dix < C ef3- (47)
k L2(0,1) k1
and similarly for ¢; ; we have
2
Y cikPik < Clle|f3- (48)
k L2(0,1)

By the same argument as in the Proof of Theorem 3.3. in [23], from (47), (48), invertibility of G; and
(46) we can conclude that CTDJ- and d~>]- are uniform Riesz bases of their spans.
O

4. Construction of wavelets

Now we construct a basis ‘I’j of the space W]- = le N Vj+1 such that cond ‘I’j < C, where Cis a
constant independent on j, and functions from ¥; are translations and dilations of some generators.
We propose one boundary generator ¢’ and functions ¢/, i = 1,...,8, generating inner wavelets such
that the sets

\Isz{qzj,k,kzl,...,zf“}, j>3, (49)
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contain functions ¢;; defined for x € [0,1] by
P (x) = 272 (2x), gy () =272 (2 (1-x)), (50)
Pisern () = 272y (2fx —4k) , 1=1,...8,1<8k+1+1<2*
We denote the scaling functions on the level j = 1 by
Prokir2 (x) =229, (2x —k) forkeZ, 1=1,2, xR (51)

Forl =1,...,6 let the functions l/Jl have the form
l 14
=) hgpik (52)
k=1

and be such that ¢!, ¢? and ¢° are antisymmetric and ¢, ° and ® are symmetric. Thus supp ¢/ =
[0,4] for] =1,...,6. Let p; be polynomials defined by (31). It is clear that if

(' @pi(3))=0 i=0...7, I=1..6 (53)

then <lpl (ij — k), pi (2f_2x — m)> = 0, for k,m € 47, and thus <1p]~,8i+1,g> = 0forany g € ‘7]',
i=0,...,272-1,andl =1,...,6. Substituting (52) into (53) we obtain the system of linear algebraic
equations with the solution h! = {hl,k}}:; of the form

h! = ajjug +4ajpup +a;zug, 1=1,2,3, (54)

and
h =b_31vi +b_3,v2+bj_33v3, | =456, (55)

where a; ; and b; ; are chosen real parameters and

29 120 5716 n. 17 177
9361 31787 31787 10500 2625 10500
0 0 1 0 0 -1
592 13477 56300 13293 1123
95361 95361 95361 875 T 2625 265
0 1 0 0 -1 0
13456 39892 49671 1 5 53
95361 95361 31787 W 21 84
1 0 0 -1 0 0
0 0 0 34 _6 386
175 25 525
u, uw, us| = V1,Vo, V3| = 56
[u1, w2, u3] 1708 26022 116428 |’ [vi,v2,v3] 0 0 0 (56)
4541 454 4541
13456 39892 49671 1 5 53
95361 95361 31787 W 21 81
1 0 0 1 0 0
592 13477 56300 13293 1123
95361 95361 95361 875 T 2625 2625
0 1 0 0 1 0
29 120 5716 n. 17 177
95361 31787 31787 10500 2625 10500

0 0 1 0 0 1
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For I € {7,8} let the functions ¢’ have the form

28
=Y hgrge (57)
k=1

These functions are uniquely determined by imposing that ¢’ is symmetric, ¢® is antisymmetric, both
1/;7 and 1/18 are Lz—orthogonal to the functions l/Jl ,1=1,...,6, they are normalized with respect to the
L?>-norm and

(' @)pi(3)) =0 fori=0,...7. (58)

It remains to construct boundary function ¢?. Let

14
PP =Y hy ikl ,0)- (59)
k=0
Substituting (59) into
<¢b(x) p«(f)>:o fori=0,...,7 (60)
7Pl 4 4 7 7ty

we obtain the system of 8 equations for 15 unknown coefficients. The solution h? = {hb,k}zl(io is the
linear combination of vectors w; given by

150 1429 4509 74 2839 1897 6741 53 T
= (= S - -1 1
"1 ( 83 71992” 664 '249” 166 " 1992 664~ 249’ /0,0,0,0,0, 0> ! (61)
0 0
w; = ’ l=2,3,4, W) = , 125,6,7,
u_1 Vi—4
(62)
i.e. ;
h =Y 4w, (63)
i—1

where d; are chosen real parameters.

Hence the set ¥; depends on the choice of g ;, by and d;. However, it is not true that cond ¥; < C
for all possible choices of these parameters. Moreover, for some choices the condtition numbers of ¥;
are uniformly bounded, but the condition number of the resulting basis ¥ is large, e.g. 10°.

Therefore, we optimize the construction to improve the condition number of ¥. We choose a; 1
and then we set ay, and a3 such that (¢!, /) = d;j fori,j = 1,2,3 and similarly we we choose by
and then set by, and by 3 such that <1pi, ¢j> = Jj for i,j = 4,5,6. Moreover, the functions 4)7 and
® are constructed such that they are orthogonal to ¢ fori = 1,...,6 and due to the symmetry and
antisymmetry we have (¢, /) = §;; fori = 1,2,3 and j = 4,5,6 and (37, $®) = 0. In summary ' is
orthogonal to i/ with respect to the L>-norm fori,j = 1,...6,i # j. To further improve the condition
number we orthogonalize scaling functions on the coarsest level j = 3, i.e. we determine the set

Y= K 1d;, K= (D3, d3), (64)

and we redefine @3 as @3 := Y.
Furthermore we wrote a program that computes the condition number of the wavelet basis
containing all wavelets up to the level 7 with respect to the both L>-norm and H'-norm for given
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parameters a;, by, and d; and performed extensive numerical experiments. In the following we
consider the parameters that lead to good results:

(4.62,4.43,0.67), (65)
(7.196227729728021, —4.658487033189625, —2.279869518963229) ,
(—0.775021413514386, 0.613425421561151, 0.151825757948663) ,
(0.24,-3.92,4.17),

(4.214132381596882, —2.612399654970785, —1.411579368326525) ,
bs1,b32,b33) = (—0.601286696663076, —0.778487053796787, —0.180033928710130) ,
di,...,d7) = (—0.075,—0.363, —0.616, —0.134,0.344, 0.580, 0.099) ,

a] a1,1,41,2,41,3

( ) =
a (a2,1,822,023) =
a3 = (431,432,833) =
by = (b1, b12,b13) =
by = ( )=
by = ( )=

(

d:

by1,b22,b23

and after computing ¢* and ¢/,i = 1,...,8, using these parameters, we normalize them with respect

to the L2-norm, i.e. we redefine ¢’ := ¢/ Hlpr and ¢ := ¢* .., P39 that
are dilations of ¢, ¢!, ..., ¥® are displayed in Figure 2.
4 4 4
— s — s
2
2 2
0
0 0
-2
-2 -2
-4
-6 -4 -4
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
4 4
— Y54 3 —W¥ss
2 2
1
0
0
-2 -1
-2
-4 -3
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
3
2 —Ysg
1
0
-1
-2
-3
% 02 04 06 08 1 o 02 04 06 08 1

Figure 2. Wavelets ¢31,...,139.

Theorem 5. The sets ¥; with the parameters given by (65) are uniform Riesz bases of W for j > 3.

Proof of Theorem 5. Since we constructed wavelets such that many of them are orthogonal, there
is only small number of nonzero entries in N;. Since wavelets are normalized with respect to the
L2-norm, we have

(Nf)k,k =1 (66)
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Direct computation yields that

(Nj)k:u:z,...g - (Nj)k:2f,l:2/_1’.._’2j_8 =z, (67)
(Nf)k:Z,...,9,l:1 (Ni)kzzf—l,...,zf—s,zzzj =z,
where
z = (0.0022, —0.0927, —0.0166, —0.0339, —0.0075, 0.0045, —0.2652,0.2439) , (68)
and fori=1,...,2/72 — 2 we have
(Nj)—gigit1msirssizo = N (69)

(Nf ) k=8i+8,8i-+9,/=8i,8i+1

where

—0.2048 0.1885
N = : (70)
—0.1885 0.1734

The numbers in (68) and (70) are rounded to four decimal digits. All other entries of N; are zero. The
structure of the Gram matrix N; = (¥;,'¥;) is displayed in Figure 3. Using Gershgorin theorem the

40

Figure 3. The structure of the matrix N;.

smallest eigenvalue A, (Nj) > 0.21 and the largest eigenvalue Ayax (N;) < 1.79. Therefore ¥ are
uniform Riesz bases of their spans. [

Theorem 6. The set ¥ is a Riesz basis of L? (0,1) and when normalized with respect to the H'-norm it is a
Riesz basis of H} (0,1).

Proof of Theorem 6. Due to the Theorem 3, Theorem 4 and Theorem 5, the relation (29) holds both
fors = 0 and s = 1. Hence, ¥ is a Riesz basis of L2 (0,1) and

{2‘3¢3,k,k = 1,...,16} U {z—fwj,k,j >3,k = 1,--.,2”1} (71)
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is a Riesz basis of H} (0,1). To show that also

{%,k—l,...,lé}u Hw,jzs,k—l,...,zf“ (72)
i,

|| P3k || H(0,1)

k0,1

is a Riesz basis of H% (0,1), we follow the Proof of Theorem 2 in [7]. From (18) and (50) there exist
nonzero constants C; and C; such that

C2 < H”"f'kHHl(n) < G2, for j>3, k=1,..,2", (73)
0

and
C12° < [|¢sill o) < C2°, fork=1,...,16. (74)

Letb = {a3p, k=1,...,16} U { ik j >3 k=1, ]+1} be such that

. 16 o 2F1
k=1 =3k=1
We define
205, Vb j+1
a3y = L k=1,...,16, ,i>3,k=1,...,21, (76)
0(01) Hlp}k‘ H}(0,1)

andb = {az;, k=1,...,16} U {bj,k,j >3 k= 1,...,2]‘“}. Then

A~

b
2

G

[bl, < < co. (77)

Since the set (71) is a Riesz basis of H} (0, 1) there exist constants C3 and Cy such that

2}+1
Gs bl < ]kz Tk < Ca|bll,. (78)
j=3 k= H}(01)
Therefore
C 00 2/+1
e > Cylbf, 2 Zaakz ast L L by (79)
1 j=3k= 3(0’1)
16 oo 211 j,
Z YR IS Vik
=1 H‘P3kHHl (0,1) j=3 k=1 Hlp]/ .
Hp(0.1) HL(0,1)
and similarly
Cs [le 16 o0 2/t1
c, Z T3kt Y ) Vik . (80)
2 Lo1) j=3k=1 Hl,b], HI(01)
H(0,1)
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The condition number of the resulting wavelet basis with wavelets up to the level 10 with
respect to the L?-norm is 17.2 and the condition number of this basis normalized with respect to
the H!-norm is 6.0. The sparsity patterns of the matrix arising from a discretization using a wavelet
basis constructed in this paper and a wavelet basis from [23] for the one-dimensional Black-Scholes
equation with quadratic volatilities from Example 1 is displayed in Figure 4.

0 0
100 100
200 200
300 300
400 400
500 500
600 600
700 700
800 800
900 900

1000 , , , , h 1000
0 200 400 600 800 1000 0 200 400 600 800 1000

Figure 4. The sparsity pattern of the matrices arising from a discretization using a wavelet basis
constructed in this paper (left) and a wavelet basis from [23] (right) for the Black-Scholes equation
with quadratic volatilities.

5. Wavelets on the hypercube

We present a well-known construction of a multivariate wavelet basis on the unit hypercube
Q= (0, 1)d, for more details see e.g. [38]. It is based on tensorizing univariate wavelet bases and
preserves Riesz basis property, locality of wavelets, vanishing moments and polynomial exactness.
This approach is known as an anisotropic approach.

For notational simplicity, we denote J; = {1,..., 2/1} for j > 3, and

ok =¢3p, ke ln:=T, JT:={(k),j>2 €J}. (81)
Then we can write
¥ = {px =2 ke T} ={gr AcT}. (82)
We use 1 ® v to denote the tensor product of functions u and v, i.e. (4 ®v) (x1,x2) = u (x1) v (x2).
We define multivariate basis functions as:

pa=@ pr, A=A, A€, T=T"=0®...0J. (83)

Since ¥ is a Riesz basis of L? (0,1) and ¥ normalized with respect to H'-norm is a Riesz basis of
H} (0,1), the set

= {yy, A €]} (84)
is a Riesz basis of L? (Q2) and its normalization with respect to the H!-norm is a Riesz basis of H} (Q).
Using the same argument as in the Proof of Lemma 2 we conclude that for this basis the discretization

matrix is sparse for the equation (1) with piecewise polynomial coefficients on uniform meshes such
that deg py; < 6, deg gy < 5, and degap < 4.

6. Numerical examples

In this section, we solve the elliptic equation (1) and the equation with the Black-Scholes operator
from Example 1 by an adaptive wavelet method with the basis constructed in this paper. We briefly
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describe the algorithm. While the classical adaptive methods typically uses refining a mesh according
to a-posteriori local error estimates, the wavelet approach is different and it comprises the following
steps [13,14,17]:

1. One starts with a variational formulation for a suitable wavelet basis but instead of turning
to a finite dimensional approximation, the continuous problem is transformed into an
infinite-dimensional />-problem.

2. Then one proposes a convergent iteration for the /?-problem.

3. Finally, one derives an implementable version of this idealized iteration, where all
infinite-dimensional quantities are replaced by finitely supported ones.

To the left-hand side of the equation (1) we associate the following bilinear form

Jv Jw d v
/ klZ:1 pklax ax lqua—ka + povwdx. (85)

The weak formulation of (1) reads as folows: Find u € H& (Q) such that
a(u,v) = (f,v) forallv € H} (Q). (86)

Instead of turning to a finite dimensional approximation, the equation (86) is reformulated as an
equivalent biinfinite matrix equation Au = £, where

(A =a(au), )y = (1), (87)

for 5,y € ¥, and ¥ is a wavelet basis of H} (Q2).

We use the standard Jacobi diagonal preconditioner D for preconditioning this equation, i.e.
D). = Dy 6, - If the coefficients are constant one can also use an efficient diagonal preconditioner
from [12]. The algorithm for solving the lz—problem is the following:

1. Compute sparse representation f; of the right-hand side f such that ||f — ;|| is smaller than
a given tolerance €.
smallest coefficients and working only with the largest ones. We denote the routine as f; :=
RHSf, ¢/].

2. Compute K steps of GMRES for solving the system Av = f; with the initial vector v;. Each
iteration of GMRES requires multiplication of the infinite- d1men31onal matrix with a f1n1te1y
supported vector. Since for the wavelet basis constructed in this paper, the matrix is sparse, it
can be computed exactly. Otherwise, it is computed approximately with the given tolerance 6]2
by the method from [6]. We denote the routine z = GMRES|A, f;, v}, ]

3. Compute sparse representation v;, 1 of z with the error smaller than e . We denote the routine

vj;1:= COARSE[z,€; ] It insists in thresholding the coefficients.

The computation of a sparse representation insists in thresholding the

We repeat the steps 1., 2., and 3. until the norm of the residual r; = £ - Av; Hz is not smaller
than the required tolerance €. Since we work with the sparse representation of the right-hand side
and the sparse representation of the vector representing the solution, the method is adaptive. It is
known that the coefficients in the wavelet basis are small in regions where the function is smooth and
large in regions where the function has some singularity. Therefore, by this method the singularities
are automatically detected.
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We use the following algorithm that is modified version of the original algorithm from [13,14]:

Algorithm 7. u: =SOLVE[ A, f, é]
1. Choose ko, k1,kp € (0,1), K € N.
2.Setj:=0,vp:=0and e := ||f|],.

3. Whilee > &
ji=j+1,
€ := kge,
6]1 = kqe,
€2 := kye,

]
fj := RHS[f,¢}],
z .= GMRES[A, f], V]'_1,K]

v; := COARSE[z, 6]2],

Estimate rj = f — Av; and set € := Herz'
end while,
4. u:=vj

5. Compute approximate solution # =}, cy Ur¥a-

For an appropriate choice of parameters kg, k1, k» and K and more details about the routines RHS
and COARSE we refer to [13,14,38].

Example 2. We solve the equation
—et" +x%u' +u=f on(0,1), u(0)=u(1)=0, (88)
where € = 0.001 and the right-hand side f is corresponding to the solution
u(x)=x (l - e50"*50> forx € [0,1]. (89)

We solve this equation using the adaptive wavelet method described above with the wavelet basis
constructed in this paper. The approximate solution and the derivative of the approximate solution
that were computed using only 79 coefficients are displayed in Figure 5. The significant coefficients
were located near the point 1, because the solution has a large derivative near this point.

0.8
-10
0.6
-20
0.4
-30

02 -40

Figure 5. The approximate solution (left) and the derivative of the approximate solution (right) for

Example 1.

The sparsity patterns of the matrices arising from discretization of equation (88) using wavelets
constructed in this paper and wavelets from [23] are the same as the sparsity patterns of matrices for
Example 1 that are displayed in Figure 4. Convergence history is displayed in Figure 6. The number
of iterations equals the parameter j from Algorithm 7, the number of basis functions determining the
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approximate solution in j-th iteration is the same as the number of nonzero entries of the vector v;
and the L*-norm of the error is given by

||lu —ii]| . = max |u(x) —ii(x)]. (90)
x€[0,1]

10° 10° 10°
1) - -
s 5107 5107
2 I 510 S
£ - 5 », 5 »,
3 . o ® .
@ £ e s LY
Kl = . N o ah
810° el 5107 . 5 10 N
5 -* £ * 13 *

- 5 N S N
s . 2 2 .
& . [ . s 10° *
£ A 8,10 . :, 10
5 . »
= « - »
_ -8
1010 4 6 8 10 8o 2 4 6 8 10 10" ? 10°
number of iterations number of iterations number of basis functions

Figure 6. Convergence history for Example 1. The number of basis functions and the L*-norm of the
error are in logarithmic scaling.

Example 3. We consider the equation

oV & pr 2V 2 9V
T kl; > aka,sks,m — rk; ska—sk +1V =, (91)

for (51,5;) € O := (0,1)> and t € (0,1). We choose parameters of the Black-Scholes operator as
P11 = 022 = 1,012 = p21 = 0.88, 07 (x) = 0.1x2 — 0.1x + 0.66, 05 (x) = 0.1x> — 0.1x + 0.97, r = 0.02,
and we set the right-hand side f, the initial and boundary conditions such that the solution V is given
by

V (S1,80,t) = e 1815, (1 - e2051—20) (1 - e2052—2°) (92)

for (S1,52,¢) € O x (0,1). We use the Crank-Nicolson scheme for the semidiscretization of the
equation (91) in time. Let M € N, 7 = M, t =1It,1 = 0,...,M, and denote V, (51,S2) =
V (S1,S2, 1) and f; (S1,S2) = f (51, S2, t;). The Crank-Nicolson scheme has the form:

Vi -V & P PV +V) r & dMVim+V)  rVima+ V) _ fia+h
T _k,lzzl g OOSSIT s as T Tk s, v 2 g ™
In this scheme, the function V; is known from the equation on the previous time level and the function
V141 is an unknown solution. Thus, for the given time level ¢; the equation (93) is of the form (1) and
we can use the adaptive wavelet method for solving it. The approximate solution V; for T = 1/365
that was computed using 731 coefficients is displayed in Figure 7.

It can be seen that the gradient of the solution V; has largest values near the point [1, 1]. Therefore
the largest wavelet coefficients correspond to wavelets with supports in regions near this point and
wavelet coefficients are small for wavelets that are not located in these regions. Thus many wavelet
coefficients are ommited and the representation of the solution is sparse. Convergence history is
shown in Figure 8.

7. Conclusions

In this paper, we constructed a new cubic spline multiwavelet basis on the unit interval and unit
cube. The basis is adapted to homogeneous Dirichlet boundary conditions and wavelets have eight
vanishing moments. The main advantage of this basis is that the matrices arising from a discretization
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Figure 7. Contour plot (left) and 3D plot (right) of the approximate solution V; for Example 2.
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Figure 8. Convergence history for Example 2. The number of basis functions and the L*°-norm of the

error are in logarithmic scaling.

of a differential equation (1) with piecewise polynomial coefficients on uniform meshes such that
degpr; < 6, deggy < 5, and degag < 4, are sparse and not only quasi-sparse. We proved that the
constructed basis is indeed a wavelet basis, i.e. Riesz basis property (5) is satisfied. We performed
extensive numerical experiments and present the construction that leads to the wavelet basis that is
well-conditioned with respect to the L2-norm as well as the H'-norm.
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QUADRATIC SPLINE WAVELETSWITH SHORT SUPPORT SATISFYING HOMO GENEOUS
BOUNDARY CONDITIONS*
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Abstract. In the paper, we construct a new quadratic spline-wavelet basis on the interval and on a unit square satisfying homogeneous
Dirichlet boundary conditions of the first order. The wavelets have one vanishing moment and the shortest support among quadratic spline
wavelets with at least one vanishing moments adapted to the same type of boundary conditions. The stiffness matrices arising from a
discretization of the second-order elliptic problemsusing the constructed wavel et basis have uniformly bounded condition numbers and the
condition numbers are smal. We present some quantitative properties of the constructed basis. We provide numerical examples to show
that the Galerkin method and the adaptive wavelet method using our wavelet basis require smaler number of iterations than these methods
with other quadratic spline wavelet bases. Moreover, due to the short support of the wavelets, one iteration requires smadler number of
floating point operations.
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1. Introduction. Wavelets are a powerful tool in signal analysis, image processing, and engineering ap-
plications. They are also used for the numerical solution of various types of equations. Wavelet methods are
used especially for preconditioning of systems of linear algebraic equations arising from the discretization of
elliptic problems[9], adaptive solving of operator equations[6, 7], solving of certain type of partial differential
equations with a dimension independent convergence rate [12], and a sparse representation of operators[2].

The quantitative properties of any wavelet method strongly depend on the used wavelet basis, namely on
its condition number, the length of the support of wavelets, the number of vanishing wavelet moments and the
smoothness of basis functions. Therefore, a construction of appropriate wavelet bases is an important issue.

In this paper, we construct a quadratic spline wavelet basis on the interval and on the unit square that is
well-conditioned and adapted to homogeneous Dirichlet boundary conditions of the first order. The wavelets
have one vanishing moment and we show that the support is the shortest among all quadratic spline wavelets
with one vanishing moment. The condition numbers of the stiffness matrices arising from the discretization of
elliptic problems using the constructed basis are uniformly bounded and small. Let Q; = (0, 1)d, d=1,2.The
wavelet basis of the space H} (£2,) is then obtained by an isotropic tensor product. More precisely, our aim is
to propose awavelet basis on Q)4 that satisfies the following properties:

- Riesz basis property. We construct Riesz bases of the space H} (24).
- Locality. The primal basis functions are local in the sense of Definition 2.1.
- Vanishing moments. The wavelets have one vanishing moment.
- Polynomial exactness. Since the scaling basis functions are quadratic B-splines, the primal multireso-
[ution analysis has polynomial exactness of order three.
- Short support. The wavelets have the shortest possible support among quadratic spline wavel ets with
one vanishing moment.
- Closed form. The primal scaling functions and wavelets have an explicit expression.
- Homogeneous Dirichlet boundary conditions. The wavelet basis satisfies homogeneous Dirichlet
boundary conditions of thefirst order.
W&l I-conditioned bases. The wavelet basis is well-conditioned with respect to the H* (£2,)-seminorm.

In [8, 10], a construction of a spline-wavelet biorthogonal wavelet basis on the interval was proposed.
Both the primal and dual wavelets are local. A disadvantage of these bases was their relatively large condition
number. Therefore many modifications of this construction were proposed [1, 3, 4, 15]. The construction in
[20] outperforms the previous constructions for the linear and quadratic spline-wavelet bases with respect to
conditioning of the wavelet bases. In [22, 23, 11] the construction was significantly improved also for cubic
spline wavelet basis.
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Spline wavelet bases with nonlocal duals were also corstllend adapted to various types of boundary
conditions P6, 25, 27, 5, 13, 18, 17, 19]. The main advantage of these types of bases in comparisoasts
with local duals are usually the shorter support of waveldts lower condition number of the basis and the
corresponding stiffness matrices and the simplicity of ¢bastruction. The cubic spline multiwavelet basis
from [13] has an additional advantage that the discretization o¢vend order elliptic equations with constant
coefficients leads to truly sparse matrices, i.e., the numbal nonzero entries in any row is bounded by some
constantc independent on the matrix size, whereas the discretizatiatiices for other wavelet bases have
typically O (N log N) nonzero entries, wher®& x N is the matrix size. It enables to simplify and improve
an adaptive wavelet method, because a routine called AP&L\é multiplication of the discretization matrix
with a vector can be avoided.

The constructed basis can be used in many applicationstleegvavelet Galerkin method and an adaptive
wavelet method for solving second order elliptic equatiguasabolic equations and partial integro-differential
equations on tensor product domains and domains that ageswd tensor product domains under continuous
mapping. These problems arise for example in financial magties for valuation of options under the Black-
Scholes model, stochastic volatility models and Lévy mosle [L6]. Wavelet methods seem to be superior
to classical methods especially for solution of partiabgrb-differential equations, because they enable to
represent the integral term by sparse or almost sparsecemtrinile the classical methods typically lead to the
full matrices. Due to the short support and a small conditiomber the constructed basis can lead to improved
efficiency of these methods.

Wavelet bases of the same type as the basis in this paperdragks fromZ42, 11, 20]. The constructions
in [22, 11, 20] are based on the constructions of boundary dual scalingtifurs that are linear combinations
of restrictions of dual functions on the real line[o 1] such that the boundary dual scaling functions preserve
the polynomial exactness. Then boundary wavelets arercmtest by the method of stable completion. In this
paper the construction is much simpler, because we cohdtoumdary wavelets directly without using dual
scaling functions. The constructions fro22] and [20] lead to the same basis in the case of quadratic spline
wavelet bases adapted to homogeneous Dirichlet boundaditmms of the first order. Therefore in Section 5
we compare our basis with bases frofrl,[20]. Furthermore, we adapt bases frof) §] to homogeneous
boundary conditions and compare the resulting bases withamis.

2. Construction of quadratic-spline wavelets. In this section we propose a construction of a new quadratic
spline wavelet basis on the unit interval and on the unit sgjLiBhe proposed wavelets have one vanishing mo-
ment and we show that their support is the smallest posdfiist, we briefly review a definition of a wavelet
basis, for more details about wavelet bases 8&f [et H be a real Hilbert space with the inner prodyct) .,
and the norni|-|| ;. Let (-,-) and||-|| denote theL?-inner product and thé2-norm, respectively. Let/ be
some index set and let each index J take the form\ = (4, k), where|\| := j € Z is ascale We define

IVlly == [0}, for v={ulyes n€R,
reg

P(J)={v:v= {oahyes v R, [Iv]ly < oo} .

and

Our aim is to construct a wavelet basisifin the sense of the following definition.
DEFINITION 2.1. A family ¥ := {¢x, A € J} is called a wavelet basis df, if
i) U is a Riesz basis faf, i.e., the closure of the span @fis H and there exist constantsC' € (0, co)
such that

(2.1) c[bll; <

> batia

reJ

S C Hb||2 9
H

forall b := {bx},c, € *(J).
ii) The functions are local in the sense that disumpp ¢, < C2~ 1 forall A € 7, and at a given level
the supports of only finitely many wavelets overlap at anytpai
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For the two countable sets of functiofis® C H , the symbokT', ©) ,, denotes the matrix

(0.0) == {105} crpco
REMARK 2.2. The constants

cy :=sup{c: csatisfies2.1)} and Cy :=inf{C : C satisfies2.1)}

are calledRiesz boundand the numbetond ¥ = Cy /cy is called thecondition numbenf ¥. Itis known that
the constantsy andC'y satisfy:

cv = \/ Amin (<\I/, \IJ>H)7 Cy = \/ Amaa (<\Ijv \II>H)5

where,,;, ((¥, ¥) ) andA,.q.. ((¥, ¥),,) are the smallest and the largest eigenvalues of the matri¥) ,,,
respectively.

We define a scaling basis as a basis of quadratic B-splingeisame way as ir2p, 5, 20]. Let ¢ be a
quadratic B-spline defined on kndts 1, 2, 3]. It can be written explicitly as:

L;’ S [0’ 1]7
—z?+3z -3, ze[l,2],
£ _3r+3, wxe2,3],

0, otherwise.

(2.2) o(z) =

The functiong satisfies a scaling equatio®] [

(2.3) ¢(x):‘/5(5%)+3¢(2z—1)+3¢<22—2>+¢(2z_3).

Let ¢, be a multiple of the quadratic B-spline defined on kri6t$, 1, 2] such that|¢,|| ;. = ||| ., i.€.

9>
% +3z, ze[0,1],
(2.4) op(2) = % —3x+3, z€l,2],
0, otherwise

The functiong, satisfies a scaling equatios] [

(2.5) by (z) = ) (2296) L gx) L 30 (2§ -1

The graphs of the functiong, and¢ are displayed in Figur@. L

0 05 1 15 2 25 3 0 05 1 15 2 25
FiG. 2.1. The scaling functiong and ¢, and the waveletg and1;,.

Forj > 2 andx € [0, 1] we set
(2.6) bjn(x) =222z —k+2), k=2,.,2 -1,
$ia(z) = 27765(22), @0 (x) = 20p(27 (1 — x)).
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We define a wavelet and a boundary wavelgt, as

(2.7) Y(x) = —%qb(Qx -1+ %(Z)(Qx —2) and y(z) = —¢b2(2x) N (b(;x).

Due to the normalization af,, the coefficients in these two equations are the same whilttsiwiplify the
proofs in the next section. Thenpp ) = [0.5, 2.5], supp ¥, = [0, 1.5], and both wavelets have one vanishing
moment, i.e.

(2.8) /jo Y(x)de =0 and /jo Pp(z)dx = 0.

The graphs of the wavelet and the boundary wavelet, are displayed in Figurg.1 In the following lemma
we show that the support of the waveleis the shortest among all quadratic spline wavelets withvaméshing
moment.

LEMMA 1. Let¢ be defined by2.2). If ¢» € span {¢ (2 - —k) , k € Z} andy satisfieq2.8), then the length
of the support of) is at least2.

Proof. Sincey € span{¢(2- —k),k € Z} we have

Y() =Y a2z —k),

kEZ

for some coefficients;, € R. Let us suppose that the length of the supportjofs at most2. Then
suppy C [j/2,(j +4)/2] for somej € Z. Sincewy (z) = 0 for all x € [k/2,(k+1)/2], wherek €
Z\{j,j + 1,5+ 2,7+ 3}, the coefficientsz;, = 0 for all £ € Z\{j,j+1}. Due to @.8) we havea; +
a;j+1 = 0. Thus up to a multiplication by a constant and shiftingl)2, & € Z, there is only one wavelet that
has the length of support at masand this wavelet is a wavelet defined [&y4). a

Using the similar argument as in the proof of Lemini is easy to see that also the boundary wavelet
has the shortest possible support among all boundary wiawslth one vanishing moment corresponding to
scaling functions defined by (6).

Forj > 2 andz € [0, 1] we define

(2.9) Vip(x) =22 e —k+2),k=2,..,27 — 1,
Pia(@) =220, (203), ;0 (x) = =272 (27 (1 — 2)).

We denote the index sets by

Tj={ke€Z:1<k<2}.

We define
Q; ={ojn.k €L}, V;j={¢jrkel;},
and
o) Jot+s—1
(2.10) v=0,uJu;, v=0,u (J ¥, go=2
j=2 J=jo

In Section4 we prove thatl, when normalized with respect to tiig'—seminorm, forms a wavelet basis of the
Sobolev spacéf} (0, 1).

A basis onQ2,; = (0, l)d is built from the univariate wavelet basis by a tensor prodaa]. Let j > 2,
k= (ki,....,kq), k € IJ‘? =17; x ... xI;,andx = (z1,...,2q) € Q4. We define the multivariate scaling
functions by

d
Oy (x) = H Gjk (1),
=1
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and for anye = (e1,. .., eq) € B := {0,1}%\ (0,...,0), we define the multivariate wavelet

jek H¢J€1kl xl

where

, ) ik, e =1,
¢],El,k¢l - { %‘,k“ e = 0.
The basis on the unit cul§e, is then given by
= {9, keT U {yd ec B keI j>2).

This approach is called an isotropic approach. It presahesegularity and polynomial exactness. Another
approach is an anisotropic approach. The anisotropic badise unit square i¥ © V.

3. Refinement matrices.In this section we present refinement matridds, andM; ; corresponding to
primal scaling functions and wavelets. We show that theimatt; = (M, o, M 1) is invertible and thus there

exist matricedM ; o andM, ; of the same sizes a@d; , andM, 1, respectively, such that
(3.1) (Mm, 1\71],1) — M,

We derive an explicit form of the matriI; , and an estimate for the norm of the prodMf, (MZ ,, ... M2,
because this estimate is crucial for the proof of the Riesish@operty that will be presented in Section 4.
By (2.3), (2.9, (2.6), (2.7) and @.9), there existefinement matriceBI; , andM; ; such that

(3.2) ;=M ®jy1, V;=M] Oy

In these formulas we view the sebsg and¥; as column vectors with entries » and); ., k € Z;, respectively.
By the Riesz representation theorem there exist dual fomsdi; ,, and); ;. such that

<¢j,k7¢~5j,m> = Ok,m, <¢j,kﬂzl,m> =0, <wl,ma§£j,k> =0, <wj,k77;l,m> = 0,10k, m,

forall j,0 > 2,1 > j,k € Z;, m € 7;. Let us denote
P = {(Ej,k,k te}, U = {@j,k,k EIj}

and view these sets as column vectors. Ten¥; C span ®;; and the matriced/I; o andM; ; defined by
(3.1) are the refinement matrices for the dual system, i.e.,
&)]‘ = Mj’()(ij#»lv ‘ijj = Mj’léjqu.

Due to Remark.2, the Riesz bounds for the multiscale systems are relatdubtspgectral norms of refinement
matrices and products of these matrices.
Due to €.3) and @.5), the refinement matrid; o has the following structure:

M,
Mj,O = MJI',O

Mg
whereM! ;, is a2/*! x 27 matrix given by

Pmiz—on =120 1< m+2—2n <4,

oLy, ={ o

0, otherwise,
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where

1 331
hz[hl,hz,hs,hzﬂ:{ }

4444
is a vector of coefficients from the scaling equati@r8f. The matrixM , is given by

L
V2
is a vector of coefficients from the scaling equati@rb). The matrixM g is obtained from a matridM ;, by

reversing the ordering of rows.
It follows from (2.7) that the matrixM; ; is of the size2/*! x 27 and has the structure

My,

1
hi, where h, = [}, hS K| = [ ) 3]

383

(-2 2 0 0 0 0 0 .. 0 o0]"
1 1
0 0 -3 35 0 0 0 ... 0 0
1 0o 0 0 0 -3 %
33 M, =— _
©9 TR . :
0 0 ... 00 0 -3 2 0 0
0 0 ... 0 0 0 0 -3 3

The following lemmas are crucial for the proof of a Riesz basbperty. ~
LEMMA 2. Letj > 2 and the entriegwg:?, k€ Z;11,1 € I;, of the matrixM; o be given by:

y _
0 — o — 4 dy,
2,0 LU= g g
; _
NP0 o _ 4 4
2711, P T T T
wheren = 27, a = —3 — 21/2,
. . _ 2—n
(3.2) & 6a, i 36bay, a

= 9 dnfiv
V3402 11+ 6v2
3662 g4—2n\ 13— 92
Qp = l—-— ) bzia
11 + 62 6

andfork =2,...,n —1andl € Z; let

y p 1 & &’
73,0 _ 27r3,0 _ k nt+l—~k
M2k,z—M2k—1,l T oglk=l T gl aln—=11"’
where
;  —6bay, a?> % 36ba,, akt3—2n
(3.5) dy = —
3+V2 114 6v/2
Then
(36) M;:OMJ}O = Ij, and M}j]Mj,O = Oj,

wherel; denotes the identity matrix ar@} denotes the zero matrix of the appropriate size.
Proof. By similar approach as ir2p, 25] we derive the explicit form of the entrie?\zf,i:?, kel el
of the matrixl\?Ij,o such that 8.6) is satisfied. From3.3) we obtain

(37) Mgkfl’l = Mgk’l, for k = 1,..., 2j.
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We substitute3.7) into (3.6) and we obtain a new syste&;B; = I, where

r 13 3 B - 13 1 B
B3 g 0 Bl o9 0
103 1 103 1 :
4 2 4 4 2 4 )
1 3 1 1 3 1
A |V 12 i O 1_H | 0 5 3 0
V2o : V2 : ’
: 1- 3 1 1. 3 1
0 12 1 0 i 2 1
3 13 1 13
) 0o 2 1| L0 0o 1 1B

where
5 (kD) =(11), (kD)= (2,2)
(Hy),, =41 k=0Lk#1k#2,
0, otherwise

andB; is the2’ x 27 matrix with entriesB] , = M3;",, k.1 € Z;. We factorize the matrid ; asA; = H;C,D;,
where

S

[ 2£2 10 0 0
1 3 1 :
4 2 4 .
O I T T 0
V2 : ’
0 I
0 0 0 L 22
and
3+6\/§ 0 0 0 avflz
b 0 2
20
D, = D : S :
L. 00 1o °?
L5 0 0 0 b
L, 00 ... 0 0 32

More precisely, the entrie@{;’l of the matrixD ; are given by:

: . 3+V2
D{J:D%,n: 6 ’
4 , b
D']Z:’l = D£L+17k’n = akj, fork' = 2,...,71,

Dj,=1 fork=2,....,n—1,

Dj,=0, otherwise

Itis easy to verify thaC; = C; ' has entrie€/ ; = a~/*~!l, and the matriXD; " has the structure:

& 0 ... 0 d

& 1 0 d_,
Dl =| 2

d_y 0 1 4

&0 ... 0 &
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with di given by @.4) and @.5). Since the matrice€;, D; andH; are invertible, we can define
_ -1 _ —1~—1gy—1
(3.8) B;=A;"=D; C, " H, .

Substituting 8.8) into (3.7) the lemma is proved. a
LEMMA 3. There exist unique matricéd; ;, j > 2, such that

(39) M?:OMj,l = 0]‘, and M}:lM]‘J = Ij.
Proof. Forl € Z;,, andk € Z; the entries){; of the matrixM;, satisfy
M3y = 2001211 + M3y,

Using these relations we obtain a system of equations wéhnrihtrix A ; defined in the proof of Lemma.
Since the matrix ; is invertible, the matriXM; ; exists and is unique. a
LEMMA 4. We have(ij = Mj,OcDj + M]‘J\I/j for all 7> 2.

Proof. Due to 3.2) we have
@j] M7, ,
= | D1, > 2.
{\I’j [Mng s

Multiplying this equation by the matri{lf/lm,l\N/Ij,l} from the left-hand side and using.6) and @.9) the

lemma is proved. a
For any matrixM of the sizem x n we set

My
||M||2 = sup 2
vER™ , v#£0 ||V||2

and

M =
Ml = ma

FRRE) )

m n
X g [Miil, M|, = max E | M1 -
Ln k=1,....m

k=1 =1

It is well-known that

(3.10) IMly < /1M Ml -

LEMMA 5. The matrice§\71]-_yo,j > 2, have uniformly bounded norms, i.e., there exists R independent
of j such thatHl\N/Ij,oH2 < Cforall j > 2.

Proof. Since the matriceB?Ij,o are known in the explicit form, they have a regular structurd the values
in each column and row are exponentially decreasing, we atemypper bounds for thenorm andoo-norm
such that we compute several largest values in each row dotheand estimate the sum of the remaining
entries. We obtain

HMJ-,OHI < 1.42, HMJUH <291,
and due t0%.10 we haveHl\N/IjVOH2 < 2.04. 0
For comparison we computed the norms of the matﬂ}agj@ numerically and we found th;Hﬂ\N/IjVOH2 <2

forj—3,...,12, andHMu,oH — 1.9999997.
-2 -
LEMMA 6. LetS; = M M7, , ;, j > 3, andS; be the matrix given by

<Sj)kl = (Sj)zkfl,l + (Sj)zkﬁl , k€l 4l €Ty
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Then there exists a constafitindependent of such thatng H < C<2V2.
Proof. LetK; be a2/ x 277! matrix with entries

(3.11) (Koo = K)oy =a " kle;, a=-3-2V2

and letL; = 1\7[20 — K;. We know the explicit expression of the matiix, because the explicit expressions
of bothM; , andK ; are known. We have

Sj =M M7} 10 = K;jKj1 + KiLjn + LK + LiLj.
Let us denote
N; =K;K;11,0; = K;Lj1, Py = LK, Qj = LjLj 1,

andN;, O;, P;, andQ; be derived fronN;, O, P; andQ; by similar way asS; from S;. ThenS; = N, +
O, +P; +Q;. From (3.11) we have fork € Z;,1 € Z; 4

(NG o1 = (Nj)p o = v,

where
111 11,11 117"
up = ak._laak_laak_Qv"'aavaa ) aaaga"wWaW )
11 11 11"
vV, = Faﬁv"‘vav aga"'vagn_l )
n = 27. Due to the structure of the vectay, we can write
a+1 1.
(Nj)kl = u v,
’ a
where
B 1 1 1.1 117
ug = ak_laak_27 aa717aa"'7a/n_k 9
1 1 1 1 1
C - [al—27 al—4 - 7?71567a73 ’ a2n—l—l} ) l even
e e AL ] ! odd
al—27 al—47 Y ad T a2 gl bl a2n—l—1 bl
Fork > £,1 € Z;;1,1even, we have
a+1 % k n
N — a3m,—k—l al+1—k—m al+k+1—3m
(N = | 2 + > p>
m=1 m:%+1 m=k+1
L l
1 5 1 k)** 1 'ﬂ*k}
_a+l L—kl_((TS)Q L—kl_(z) ’ 1—2—%1_(?3)
=— | " —— 1 tae " ——— 7 —ta a1
a 1-% 1-1 1-4
a a a
Similarly for k > 51,1 € 7,4, 1 odd, we obtain
a+1 % k n
N — a3m7k7l 4 al+17k7m al+k+173m
Nk == | 2 > + D
m=1 m:H'Tl m=k+1
1—1 1—1
1\ 3 1 \k—5 1 \n—k
_atl aéfkfgl_(aj) +a#7k1_(a73) +al7272k1_(73)

a 1-4 1-1 1- 2%
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If k < L,1€TZ;.1,1even, thenwe have

n

l
2
(Nj)k o] = LH g adm kel E g™t gl HRH1=3m
’ a E
m

=1 k+1 m=%+1
1 k 1 L—k 1 n—L
_ a+1 o2k 1- (ai) _|_akfé 1- (5)12 _‘_ak—éle - ((73)1 :
a 1-— o3 1-— a 11— =

If k < 51,1 € Z;,4,10dd, then we have

k n
a+1 Qg _ -
(Nj)k = Zasm k I+Zam+k+2 l+ Z al+k+1 3m
’ a

T

To compute an upper bound for the norm of the ma@jx we compute bounds for the sums of the absolute
values of the entries in rows and columns for matridgs O;, P;, andQ;. Since the values in the columns of

the matrixN ; are exponentially decreasing, we can compute severabfavgkies in each column and estimate
the sum of absolute values of the remaining entries. We denot

"zj+2 = {17 2,3,4, 2j+2 -3, 2j+2 -2, 2j+2 -1, 2j+2} ) :z.j+2 = Ij+2\:zj+2
and we set

(Nj)kl =0, fork¢Z; ;.

Vs

For! such that mod 8 € {0,1,6,7} andl fj+2 we obtain

2/ -1
kz::l (Nj)lc,l = ’(Nj)L§J1,l +|(Nj>téj,z +‘(Nj) | & +1.
L5]-2 3 271 )
SR CHMESDIRCON
=1 k=|§]+2

< 0.018 4+ 0.727 + 0.239 + 0.007 + 0.001 < 1.
Forl such that mod 8 € {2,3,4,5} andl € Z;,» we obtain

kz::l (Nj)k,l = ’(Nj>|_éj—1,l +’(Nj)téy +‘(Nj)L§J+1,z
L5]-2 3 271 )
ORI S CON

{42
< 0.101 + 0.566 + 0.037 + 0.002 + 0.004 < 1.
Forl € Z;> we have
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We use the similar approach for computing the sums of absghlties of the entries in rows. We obtain

971 — 2J+2 .

- . leZ; - . k=121
Z (NJ> < 0.73, S Vg+2, Z (N]) < 5.95, , . s
part k.l 1.00, le€Zjre, 1= k.l 6.80, otherwise

Similarly, we obtain

i—1 _ j+2 .
—~ YTkl T 0.04, €T, — 7Jki) = 10.02, otherwise
27 —1 — 27+2 1
(p ) < 0.15, le Ij.t,_Q, Z (15 ) < 0.68, k=1,27"",
Nkt 7005, 1e€Zin, 2|V k| T |0.04,  otherwise
2i—1 — 2J+2 1
(Q‘) _ 003, 1T, (Q) _Jo06, k=121,
N | 71001, 1€y, 2|\ k| T (001, otherwise

Therefore using3.10 we have

|5, s viTT<2v2 0

For comparison we computed the norms of matrégmumerically and we found th%x.téj H < 2.27 for
2

j=1,...,12, HSHH ~ 2.2623 and it seems that this value does not further increase witle@sing;.
2
LEMMA 7. Letm,n > 2, m < n, then there exists a constafit< 2 such that

HMZ@,OM£+1,0 . ~-MZ,0MZ+1,0H2 <C "MZ@,OM£+1,O . ~-M£—1,0H2-
Proof. Form andn fixed such thatn, n > 2, m < n, we use the notation:
R = M%,OMZ;L-&-LO s MZ—l,Ov S = MZ,OMZ+1,O'
Due to the structure of the matric®4; o given in Lemmab we have

Rra=Rra-1, k€lnlel, 1.

Therefore, we can writRS = RS, where theNmatrbf{ is 2™ x 2"~ matrix containing the even columns of
the matrixR, i.e. R;; = Ry, 2;, and the matrixS is given by

Skt =Sok 11 +Soks, k€T, 1,1€ T, 0.

We have
1/2

2
. > S Riux
HRxH2 k€L, \IE€L,_1

HRH = sup = sup
2 xeR,x#0 Htz xER,x#0 HXHz

Letx be a vector of the lengtihh= 2" such thatty;_; = &2; = «; and let

X:{iERq:i‘gjfl :‘%2%5{7&0}.
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Then||x||, = v/2|x||, and we have

o\ 1/2
Z (Z 21Rk,lil>
H ~ k€L, \IET,
RH = sup —
2 gex 2712 1%,
o\ 1/2
27 X | X Rux
keZ,, \IeZ, HR||2
< sup —~ = .
RERT. %40 2712 |1x]|, V2

Using Lemma6 we obtain

st = 5], < ], 3], <1,

with C' < 2. O
LEMMA 8. There exist constants € R andp < 0.5 such that for allm,n > 2, m < n, we have
(3.12) HMg JMT o MT OH < ¢ opn—m),
’ ’ 2
Proof. The assertion of the lemma is a direct consequence of Lebrana Lemmay. 0

4. Riesz basis on Sobolev spacén this section, we prove that is a Riesz basis of} (Q,) and¥?? is
a Riesz basis off} (Q2). The proof is based on the lemmas from Sec8i@nd on the theory developed ihd]
that is summarized in the following theorem.

THEOREM 9. Let H be a Hilbert space and I€t;, j > J, be the closed subspacesiof (2) such that
Vi C Vg1 andUsZ ;Vjis dense infl. Let H,, for fixedg > 0 be a linear subspace df that is itself a normed
linear space and assume that there exist positive constangnd A, such that

a) If f € H, has decompositiofi = ZPJ fi, f; € Vj then

(4.2) IF1%, < A 27 |If11%

i>J

b) For eachf € H, there exists a decompositigh=>_ - ; f;, f; € V;, such that

4.2) > 29 || £113 < A2 |I£117,

jzdJ

Furthermore, suppose thd®; is a linear projection fromV/;; ontoV}, W; is the kernel space af;, ®; =
{¢j.r, k € Z;} are Riesz bases df; with respect to the.,—norm with uniformly bounded condition numbers
and¥; = {¢;,k €Z;} are Riesz bases d¥; with uniformly bounded condition numbers. If there exist
constants” andp such that) < p < ¢ and

43) ||Pum+1 . Pn,1|| < (C2P ("*m)’
then
(4.4) {2_Jq¢J,k)kEIJ}U{Q_jqijWj > J,/CEIj}

is a Riesz basis off ;.

Now we define suitable projection3; from V;; onto V; and show that these projections satisfy3|.
Then we show tha¥ which differs from @.4) only by scaling is also a Riesz basisf@f (0,1). For;j > 2 we
define

Uy ={bjktper, W{Viktiez, and Fj=(T515).
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Let a set
(4.5) fj = {dgj,k} U {%k}
keT; keT;
be given by
(4.6) I, =F;'T;.

Since obviously
<ij fj> =1,

functions froml"; are duals to functions frofi; in the spacé/;. ;. SinceFj‘1 is not a sparse matrix, these
duals are not local. We define a projectiBpfrom V., ontoV; by

ij = Z <f7 ng,k’> (bj,k'-
keT;
LEMMA 10. There exisp < 0.5 such that a projectiorP; satisfies
(47) HPum+1 Pn—l” S 6'210(77,—771)7

forall 2 < m < n and a constan€ independent om andn.
Proof. Let f € V1, al = <f, ¢]k> a; = {ai} . ,J >2,andS; : a; 1 — a;. Then

ke
Pif =Y aldjn=> <f7 ¢j,k> Pk
ke =
- .
=> > d <¢j+1,la¢j,k> Pk
KET; €T, 11

Therefore

. - .
a,= Y af <¢j+17la¢j,k>-

1€Tj 41

Let us denote
Sik = <€Z)j,ka¢j+1,l>7 S; = {Sik

then we can writen; = S;a;; and due to Lemmé we have

}l61j+1,kEIj

S; = <&)j7<1>j+1> - <(i)j’Mj’0q)j +Mj’1\pj> =M.

Now, let us considelf,, € V,, and f,, = P, Ppii1... Pa_1fn. Thenf; can be represented by =
S wer alo; for j = m,n and we set; = {ai}k | - Since®; is a Riesz basis o, see P2, there exist
J cT;

J

constantg”; andCs independent of such that

Cullajll, < || aloik| < Callayll, -
keZ;

Due to LemmaB we have

[fmll < Collamlly < C2[[Sm Smar - Sn-ally an]l,

— 17" 17" \ 11
= Cy | ML oM M

) Han”2

< Co 270 lay||, < C7t Co 22 | £
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Thus @.7) is proved. 0

THEOREM 11. The setsV; are Riesz bases of the spadés = span ¥;, j > 2, with the condition
numbers bounded independently omamelycond ¥; < 2.

Proof. The matrixU; = (¥, ¥;) is tridiagonal with entries

27
(Uj)1,1 = (Uj)zjgj = 320’

47
(Uj)Q,l = (U47’)1,2 = (Uj)2j_1,2j = (Uj)2j72j_1 = 1920°
1 .
(Uj)k,k = 12’ k=2,...,20 -1,

(Uj)k,k-.i,_l :(Uj)k+1,k:_ﬁ’ k:27723_27
(Uj),, =0, otherwise.

~
~

Thus,U; is strictly diagonally dominant and using Gershgorin @rttleorem we obtain,..;,, (U;) >
0.0333, Aao (U;) < & ~ 0.1333, andcond ¥; < 2. a

We also computed the eigenvalues of the médifixnumerically and the numerical valugs,;,, ~ 0.0333
and A\, ~ 0.1333 correspond to the values computed using Gershgorin theofi@ms the inequality in
Theoremll seems to be sharp.

THEOREM12. The set

L1
30

{27%pop, k € L} U{2770j 4,5 > 2,k € I;}

is a Riesz basis df/} (0, 1).

Proof. Using the same argument as 8] we conclude that4.1) and @.2) follows from the polynomial
exactness of the scaling basis and the smoothness of bastiofis and are satisfied féf = L2 (0,1) and
H, = H{(0,1),0 < ¢ < 1.5. Due to Lemmal0 the condition 4.3) is fulfilled. Therefore by Theorer the
assertion of Theorerh2 is proved. 0

THEOREM 13. The set

{(bz,k/ |62kl 113 0,1) K € Iz} U {m/ ikl g0y 00 = 2,k € Ij} ;

where| ;1 1) denotes théZ} (0, 1)—seminorm, is a Riesz basis@f (0, 1).
Proof. We follow the proof of Lemma 2 inZ5]. From (2.9) there exist constants; andCs> such that

(4.8) 12 < Wjnlgy o) < Co2’, forj>2, keI
and
(4.9) C12° < |p2lyy o) < C22°, fork € Io.

Theoreml2implies that there exist constarit§ andC, such that

(4.10) Calblly <[> a2 dor+ Y. bia2 T4 < Cy4|bll,,
kETs keZ; j>2 H10,1)

foranyb = {ask, k € To} U{bjx,j > 2, k € J;}. Using @.9), (4.9), and .10 we obtain

bl < 22| aaa 2t Y b

X : 5.kl
reTs HY(Q) ke, >2 PEHE [ 1 0,1)

and

C
Hb||22511 > s P2k oo 7%’“ . 0

Q b Q
keTs o) keg;,ji>2 0(£2) H1(0,1)
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REMARK 4.1. By Theoren® and the proof of Lemmao if p satisfies 8.12 then the norm equivalence
(2.1 for ¥ from Section 2 normalized with respect to tHé-norm is satisfied fod = H*, wheres € (p, 1.5).
Since we proved in Section 3 that there exigtsatisfying 8.12 such thatp < 0.5 we proved the norm
equivalenceZ.1) for H* with s € (0.5,1.5). We computed the norms i8.(12 also numerically and we found
that this theoretical estimate pfis not sharp. It seems th&.(2 holds also for any > 0.

THEOREM 14. The set??? normalized with respect to thid'—seminorm is a Riesz basisif ((0, 1)2).

Proof. Recall thatp; ;. are defined by4.5) and @.6). Fork = (k1, k) let us defines?, = ;, @ ;1.
Then fork = (k1, k2) andl = (i1, 12) we have

2 12
<¢j,k, ¢j71> = Ok 1 Ok 1

and P?" defined by
PEPf= 3 (£.80) O
kEIj ><Ij

is a projection fromV?% , onto V2, whereV? = V; ® V; for j > 2. We denoteS?? = M7, @ M7 Itis
well-known that for any matrilB we have||B @ B, = ||B\|§. Using this relation and the same arguments as
in the proof of Lemma.0we obtain forf,, € V,? andf,, = P2P P2l ... P2P, f, the estimate:

£l < C1llamlly < C2 (877 8701 - 8224 |, llanll,
=Cs H (Mﬁ,o e MZ—LO) ® (M%,o . MZ—I,O) H2 llanlly
< 322707 la |, < Cy 220 |
with 2p < 1. Hence by Theorerf the assertion of the theorem is proved. a

5. Quantitative properties of constructed bases.n this section, we present the condition numbers of
the stiffness matrices for the Helmholtz equation

(5.2) —cAu+au=f on Qq, wu=00nady,

whereA is the Laplace operator,anda are positive constants. We also study the easel anda = 0, i.e.,
the Poisson equation, and the case 0 anda = 1.
The variational formulation is

(5.2) Au=f,
where
A=e(VU,VU) +a(W,0), u=(u) ¥, f=(f0).

An advantage of discretizing the elliptic equatidnlj using a wavelet basis is that the system?) can be
simply preconditioned by a diagonal preconditiordr Let D be a matrix of diagonal elements of the matrix
A,ie., Dy, = A, .0, ., Whered, , denotes Kronecker delta. Setting

A=D)"?AMD) T, a=(D)u, f=D) ",
we obtain the preconditioned system
(5.3) Au=f.

It is known [9] that there exist a constaft such that cond < C' < oc.
Let U¢ be defined by4.10 for d = 1 and similarly ford > 1. We define

A, = e (VU V) +a (02 0%, u, = (u,) ©°, £, = (f,0°).
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Let D, be a matrix of diagonal elements of the matdi, i.e., (D), = (As), M Ox, - We set

A, =D "PA(D)?, d,= (D) Pu,, f.=(D,) V8

S

and we obtain the preconditioned finite-dimensional system

(5.4) A, = f.

SinceA, is a part of the matriA that is symmetric and positive definite, we have also
condA, < C.

The condition numbers of the stiffness matridkes for e = 1, « = 0, andd = 1,2, are shown in Tablé&.1
By Remark2.2 these numbers correspond to the squares of the conditiobersnofW¥* with respect to the
H'-seminorm. We computed also the condition numberg ofvith respect to théZ'-norm. The values were
very close to the values presented in Tahle(the difference was less thafi).

For comparison, we computed also the condition numberstfaravavelet bases and displayed them in
Figure5.1and Figures.2. The baseg§’ F, andC' F; refer to the wavelet bases from this paper with the coarsest
level 2 and3, respectively.D,, andP;, refer to the quadratic spline wavelet basis witianishing moments
and the coarsest levg) from [11] and [20], respectively. We modified the construction froB} fo homoge-
neous boundary conditions. The resulting quadratic splimeelet basis with three vanishing wavelet moments
with the coarsest levgl, is denoted a$3;,. We found that base®;,, P;,, andB;, lead to the same results and
we realized that they contain the same wavelets up to a riicdtipn with a constant factor. Semiorthogonal
guadratic spline wavelets with three vanishing momentserirtterval were constructed iB][ In AppendixA
we show that the semiorthogonal quadratic spline wavelgislmrresponding to scaling functions that are B-
splines on the Schoenberg sequence of knots such that wakialee three vanishing moments and the basis is
adapted to homogeneous boundary conditions do not existeldre, we adapt this basis such that semiorthog-
onality is preserved an2l — 2 wavelets on the level have three vanishing moments adavavelets on the
level j are without vanishing moments. We denote the resultingshesi’Q). We also tested wavelet bases
from [11, 20] with 5 vanishing moments, but the condition numbers were largar tbr bases witl3 vanishing
moments. All wavelets used in numerical experiments arsgoted in Appendid.

Although it was not proved in this paper that using apprdpri@nsorising of 1D wavelet basis we obtain the
wavelet basis in 3D, we listed the condition numbers of tiftness matricesA ; for 3D case in Tabl&.2 The

condition numbers for several constructions of quadratiime wavelet bases and various values of parameters
e anda are compared in Tabke.3.

TABLE 5.1
The condition numbers of the stiffness matrides of the sizeN x N corresponding to multiscale wavelet bases wdttevels of
wavelets for the one-dimensional and the two-dimensiooisisBn equation.

1D 2D

s N Amin Amaw condA, N Amin Amae condA,

1 8 050 1.38 2.7 64 025 1.88 75
2 16 050 1.41 2.8 256 0.19 2.08 11.1
3| 32 050 142 2.8 1024 016 217 13.7
4| 64 050 1.42 2.8 409 0.14 2.20 15.4
5| 128 050 1.42 2.8 16384 0.13 2.22 16.6
6| 256 050 1.42 2.8 65536 0.13 2.23 17.4
7| 512 050 1.42 2.84 262144 012 2.23 17.9
8 | 1024 050 1.42 2.84 1048576 0.12 2.23 18.3

We computed also the condition numbers for the discretimatiatricesA , corresponding te = 0, a = 1,
andd = 1. By Remark 2 these condition numbers represent the squéites 62 condition numbers ofi*
normalized with respect to the2-norm. The results are displayed in Figiie. In this paper, we proved
that the constructed basis is a Riesz basi#jn(0, 1). The condition numbers of matrice’s, corresponding
toe = 0 anda = 1 for the new basis seems to be unbounded and thus it seem&¢ha¢w basis is not a
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TABLE 5.2

The condition numbers of the stiffness matrides of the sizeN x N corresponding to multiscale wavelet bases witlevels of
wavelets for the three-dimensional Poisson equation.

N Mmin Amaw  condAg
512 0.15 3.23 47.4
4096 0.04 3.69 85.0

32768 0.03 3.83 113.8
262144 0.03 3.87 132.9
2097152 0.03 3.89 145.3

G WNR®

TABLE 5.3

The condition numbers of the stiffness matridesof the size55536 x 65536 for several choices afanda for our bases and bases
from [11, 20].

€ a CF2 OFg CFQOM CF;” CQ D2 Dg
1000 1| 174 16.3 17.1 164 620 116.3 98.4
1 0| 174 167 17.1 16.4 620 116.3 98.4
1 1| 174 16.7 17.1 164 62.0 116.6 98.5
1072 1| 721 359 35.6 225 611 3281 139.2
107 1| 746.0 577.0 4257 287.6 46.3 1878.0 11154
0 1|8726 6874 511.0 3515 464 20346 12514

Riesz basis il.? (0, 1), see also Remark 1 Since the condition numbers of matric&s for ¢ = 1 anda = 0
corresponding to the anisotropic bagis U with respect to théf ! -seminorm depend on the condition numbers
of ¥* both with respect to th&2-norm and thel/ ! -seminorm, they are also increasing, see FiguPe Thus
in our case an isotropic wavelet basis from Section 2 hasdrniand significantly smaller condition number
than an anisotropic basis. We performed numerical expeatisngith both types of bases, but since the isotropic

system lead to significantly better results we present iti&@e6 only the experiments with the isotropic wavelet
bases.

1D, =1, a=0

140

120 |t

100

cond As

60

40+

FiG. 5.1.The condition numbers of the matricds;, s = J — jo + 1, for the one-dimensional proble(®.1) with parameters = 1,
a =0, ande = 0, a = 1. The parameter denotes the finest level ang denotes the coarsest level.

6. Numerical examples. In this section we use the constructed wavelet basis in theletaGalerkin
method and the adaptive wavelet method.

6.1. Multilevel Galerkin method. We consider the problenb (1) with 25, ¢ = 1 anda = 0. The right-
hand sidef is such that the solution is given by:

u(z,y) =v(@)v(y), v(z)=z(l-—e"").
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FiG. 5.2. The condition numbers of the matricds,, s = J — jo + 1, fore = 1, a = 0 and two-dimensional wavelet bases
constructed using an isotropic approach and an anisotragpiproach. The parametef denotes the finest level arigldenotes the coarsest
level.

We discretize the equation using the Galerkin method witheled basis constructed in this paper and we obtain
discrete problemA ;u, = f,. We solve it by conjugate gradient method using a simpleiteudl approach
similarly as in 7, 19:

1. ComputeA , andf,, choosev, of the length42.

2. Forj =0, ..., s find the solutioni; of the system&jﬁj = fj by conjugate gradient method with initial
vectorv; defined forj > 1 by

Wy, i=1,..., k),
V)= .
( ]) { 0, Z:kj,...,k:j+1,

wherek; = 220+,
Let v be the exact solution 05(1) and

up = ()" (D)0,

S S

wheret is the exact solution of the discrete problesr. Itis known [21] that due to the polynomial exactness
of the spacespan V* there exists a constaatindependent of such that

(6.1) lu—ugll < C27%, Jlu = uillg q,) < C272,

foru € H?(Q,). Letus be an approximate solution obtained by multilevel Galerkigthod withs levels of
wavelets. It was shown ir2[] that if we use the criterion for terminating iteratiofis,||, < C2~2¢, where
r. := A.u, — f,, then we achieve fou, the same convergence rate asdor In our example, for the given
number of levelss we use the criteriorir;||, < 107*272%, j = 0,..., s, for terminating iterations in each
level.

We denote the number of iterations on the leyels M;. It is known [21] that employing the discrete
wavelet transform one CG iteration can be performed withglerity of the order® (IV), whereN x N is
the size of the matrix. Therefore the number of operatiorsied to compute one CG iteration on the leyvel
requires about one quarter of operations needed to compatE®G iteration on the levgl+ 1, we compute the
total number of equivalent iterations by

S M
M=>" 4Sjj.
j=0

The results are listed in Tab&l It can be seen that the number of conjugate gradient ibermis quite small
and that

l|us *u”oo |us — ul|

[ustr —ulle  Nustr —uf

~
~

1
8’
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i.e., that the order of convergence3isit corresponds tod.1). The parameters, andr., in Table6.1 are the
experimental rates of convergence, i.e.

log ([lus—1 —ull /[lus — ul]) log (Jlus—1 — ulloo / llus — ulloo)
(T2)s = ’ (TOO)S = N
log 2 log 2

We presented also the wall clock time in Tablé&. It includes the computation of the right-hand side, theesys

matrix, iterations and evaluation of the solution on the gvith the step siz& —7°—*, wherej, is the coarsest
level.

TABLE 6.1
Number of iterations and error estimates for multilevel jogate gradient method.
CFy
s N M us —ull, T |us —ull ro  time[s]
1 64 18.50 3.19%e-1 4.54e-2 0.04
2 256 21.63 1.32e-1 1.27 1.26e-3 5.17 0.05
3 1024 23.66 2.60e-2 2.34 2.02e-3 2.64 0.06
4 4096 23.00 2.91e-3 3.16 2.45e-4 3.04 0.09
5 16 384 20.89 4.06e-4 2.84 2.89e-5 3.08 0.16
6 65536 18.37 5.35e-5 2.92 3.41le-6 3.08 0.30
7 262 144 15.68 6.82e-6 2.97 4.23e-7 3.01 0.99
8 1048576 13.02 8.63e-7 2.98 5.28e-8 3.00 3.89
9 4194304 10.35 1.08e-7 3.00 6.59e-9 3.00 14.87
10 16777216 8.85 1.41e-8 294 8.25e-10 3.00 58.12
-D2a P27 BQ
s N M us—ull, 7o |Jus —ul ro  time [s]
1 64 27.50 3.19e-1 4.54e-2 0.04
2 256 48.88 1.32e-1 1.27 1.26e-3 5.17 0.07
3 1024 59.22 2.60e-2 2.34 2.02e-3 2.64 0.11
4 4096 59.38 2.91e-3 3.16 2.45e-4 3.04 0.19
5 16384 50.76 4.06e-4 2.84 2.8%e-5 3.08 0.33
6 65536 39.44 5.35e-5 2.92 3.41le-6 3.08 0.68
7 262 144 29.92 6.84e-6 2.97 4.23e-7 3.01 2.20
8 1048576 21.50 8.64e-7 2.98 5.29e-8 3.00 9.53
9 4194304 17.66 1.09e-7 2.99 6.73e-9 2.97 47.39
10 16777216 15.79 1.38e-8 2.98 9.43e-10 2.84 24841
cQ
s N M us —ull . e |Jus —ull ro  time [s]
0 64 13.00 3.19%e-1 4.54e-2 0.03
1 256 30.25 1.32e-1  1.27 1.26e-3 5.17 0.05
3 1024 35.06 2.60e-2 2.34 2.02e-3 2.64 0.07
4 4096 33.82 2.91e-3 3.16 2.45e-4 3.04 0.14
5 16384 30.30 4.06e-4 2.84 2.8%e-5 3.08 0.21
6 65536 25.32 5.35e-5 2.92 3.41e-6 3.08 0.41
7 262 144 20.74 6.84e-6 2.97 4.23e-7 3.01 1.39
8 1048576 17.87 8.64e-7 2.98 5.29e-8 3.00 5.55
9 4194304 14.82 1.08e-7 3.00 6.73e-9 2.97 21.62
10 16777216 12.36 1.36e-8 299 8.56e-10 2.97 83.54

6.2. Adaptive wavelet method.We compare the quantitative behavior of the adaptive wave&thod
with our wavelet basis, the wavelet basis froti][ and the wavelet basis that is a modification of the basisfro
[5], see AppendipA. We consider the equatiob.() with d = 1, ¢ = 1, a = 0, and the solution

u(z) = i3l _ % +sin3mz, z€0,1].
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Note thatu is the sum of the infinitely differentiable function and thuaétion

g(@)=e i3l

which has not derivative in the poifit5. Let g be the Fourier transform af, i.e.

06 = / g () e d.

R

Since

P la 64 ¢
!m e /16524-1

is finite for . < 3/2 and it is not finite foru > 3/2, the solutionu belongs to the Sobolev spage= H* (0, 1)
only for s < 3/2. Therefore it is not guarantied tha.() holds and that the Galerkin method converges
with the optimal rate. Since is continuous and piecewise smooth, it can be showndhaglongs to the
Besov space3; . (0,1) for anys > 0 andr = (s + 1/2)"". Itis therefore convenient to solve this problem
with the adaptive wavelet method proposed6nT], because it is proved that this method converges with the
optimal rate for functions from such spaces. More precjdety:; be the approximate solution in thiéh step
and letp; denote the error in the energy norm which is in this exampéesdime as thé/'-seminorm, i.e.,

pj = |u—u;| .. Letu; be the vector of coefficients correspondingioand letV; be the number of nonzero
entries ofu;. It follows from the theory developed i that if the used basis is a quadratic spline wavelet basis
then there exists a constatitindependent orj such that

(6.2) pj <CN;" foranyr <2.

The method insists in solving the infinite preconditionestsyn §.3) with Richardson iterations. The algorithm
contains the routin€ OARSE that is based on thresholding the coefficients and the re&®HS that approx-
imate the vector of the right-hand side that is infinite by &dinector with a prescribed accuracy. For details
about these two routines we refer @.[It is possible to modify the algorithm such that the roat®tOARSE

is avoided, seell]. Furthermore, it is necessary to have a routine that esdbleompute a multiplication of
the biinfinite matrixA with a finitely supported vector. This routine callé®PLY was proposed in7] and
modified in 24, 12]. We use the version fron2f]. We use the similar version of the method and notations that
is presented a€DD02SOLVE in [14]. We compute the relaxation parameteand the error reduction factor

p by
2 _ condA —1
Amaz (A) + Az (A) 77 CcondA + 1’

w =

and we setl = 0.3 andK € N such thakp® /¢ < 0.6.
We use the following version of the method:

ALGORITHM 15. SOLVE [A, f, €] — u.
1. Setj := 0, up := 0, andeg > ||all,.
2. Whilee; > e do
zp = uy,
Fori=1,...,Kdo
Z = 2_1+w (RHS[f7 267

p' A eip’
]~ APPLY[A, 7,1, 515]),

end for,
j=7 + 1
e 2P €7 1
€j 1= ——p—
u; = COARSE[zK, (1—10)¢,],
end while,
U, = ujy.

We use the following parameters in the numerical experigient
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FIG. 6.1. The convergence history for adaptive wavelet scheme witbusawavelet bases.

- CFy:w=1.04,p=048, K =4,
- Dy:w=0.89p=070,K =1,
- CQ3:w=0.95p=0387 K =18.

The convergence history is shown in Figrd. Since the entries of the matrik, the estimates of eigen-
values ofA and the parameters, p and K were precomputed for every basis, the wall clock time ine&ithe
computation of the right-hand side and the computationeshtions. The experimental convergence rate, i.e.,
the parameter from (6.2) estimated for the observed valug$;, p,) by the least square method, for baéds,,

Do, andC'Q wasr =~ 1.87, r =~ 1.95, andr =~ 1.77, respectively. It can be seen that the number of iterations
and the computational time needed to resolve the problemdeisired accuracy is significantly smaller for the
new wavelet basis. Moreover, due to the shorter supporteofvtivelets, the stiffness matrix is sparser and thus
one iteration requires smaller number of operations.

Appendix A. Quadratic spline wavelet bases.

In this section we present inner and boundary scaling fanstand wavelets that were used in numerical
experiments in Sectiof. The wavelet bases is generated from these function byrhiasiway as in 2.6) and
(2.9). Let ¢ be given by 2.2) and¢, = 2¢°/3, whereg, is given by @.4). Since diagonal preconditioning
(5.4) is similar to the normalization of the basis with respedhtenergy norm, the multiplication @}, with a
constant has no effect on resulting condition numbers pteden Sectiorb and numerical results in Sectién
The wavelets are given by

7 5
U() =Y grd e —k), ¢ =g"¢"22)+> gio (2w k),
k=0

k=0
for i = 1,2. The values of the parameteys andg;, are presented for several constructions below.

A.1l. Primbs wavelet basis.The parameters for the construction frok@]are given by

(90, .-, 97] = [—3,—9,7,45, —45,—7,9,3] /64,
65 9 31 11 15 5

Lo =102 L o 202

[gfla 796] |: 07 6, 147 7a 21714a14 / 9

10 565 25 13 31

2 2

98 T TS Ty T 5y T at e 64.

(921, c] {3 66 3 922}/

More precisely, in 20] the parameters are multiplications of these parametetsad we already mentioned
different normalization does not play a role, because waligggnal preconditionings(4) in our experiments.

A.2. Dijkema wavelet basis. There are several constructions il]. We used the parameters that are
listed in the file mats.zip attached tb1], but we found that in the case of quadratic spline wavelétis three
vanishing moments and homogeneous boundary conditiose fherameters are multiples of the parameters
from [20] and thus they lead to the same results.

A.3. Modification of Chui-Quak wavelet basis. In [5] the semiorthogonal quadratic spline wavelets with
three vanishing moments were adapted to the interval. Wptalase wavelets to homogeneous boundary
conditions. Since wavelets on the leyeare linear combinations of scaling functions on the level 1, they
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are given by2/t! parameters. We want to preserve semiorthogonality, tbexefie have2’ conditions on
orthogonality to scaling functions on the level Furthermore, we want to preserve three vanishing moments.
We obtain homogeneous system wth+ 2 independent equations withi ™! variables that has onlg/ — 2
independent solutions. Therefore there exists @ily- 2 wavelets with three vanishing moments that are
semiorthogonal. We add two wavelets on each level that andosnogonal but without vanishing moments.
We obtain wavelets with parameters:

[90,-..,97] = [-1,29, —147,303, —303, 147, —29, 1] /480,
[g81,...,95] = [450, 332,148, —29, 1,0, 0] /480,
780 1949 3481 3362 1618

2 21 _ | /oY _ B
[9717...796} - 117 11 ) 11 9 11 ) 11 9 29,1 /480

A.4. Modification of Bittner wavelet basis. In [3] spline wavelet bases on the interval were constructed.
We use the similar approach as 8}, [but for quadratic spline wavelets with three vanishingmeats satisfying
homogeneous boundary conditions. The inner wavelet ishing tlerivative of the sixth-order B-spline on
knots|0, 1,2,5/2, 3,4, 5]. The boundary wavelets are the third derivatives of thénsixtler B-splines on knots
[0,0,1/2,1,2,3,4] and[0,0,1,3/2,2, 3, 4], respectively. We found that by this approach we again olite
same wavelets up to a constant factor aslih P0].
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The paper is concerned with the construction of a cubic spline wavelet basis on the unit
interval and an adaptation of this basis to the first-order homogeneous Dirichlet boundary
conditions. The wavelets have four vanishing moments and they have the shortest possible
support among all cubic spline wavelets with four vanishing moments corresponding to B-
spline scaling functions. We provide a rigorous proof of the stability of the basis in the space
L?(0,1) or its subspace incorporating boundary conditions. To illustrate the applicability of
the constructed bases we apply the wavelet-Galerkin method to option pricing under the double
exponential jump-diffusion model and we compare the results with other cubic spline wavelet
bases and with other methods.
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1. Introduction

Wavelets have already found applications in numerous fields, including signal analysis,
image processing, approximation theory, engineering applications, and numerical simula-
tions. They have been used for the numerical solution of various types of partial differen-
tial and integral equations. Wavelet methods are suitable for preconditioning of systems
of linear algebraic equations arising from the discretization of elliptic problems,'? adap-
tive solution of operator equations,'® the numerical solution of certain types of partial
differential equations with a dimension independent convergence rate.?? Wavelet meth-
ods seem to be superior to classical methods especially for the solution of integral and
partial integro-differential equations, because they enable to represent the integral term
by sparse or almost sparse matrices while the classical methods suffer from the fact that
the matrices arising from discretization are full.® 12

The quantitative properties of any wavelet method strongly depend on the used
wavelet basis, namely on the length of the support of basis functions, the number of
vanishing wavelet moments, the smoothness of basis functions and the condition number
of the basis. Hence, a construction of appropriate wavelet bases is an important issue.

In this paper, we construct a cubic spline wavelet basis on the interval and we adapt
this basis to homogeneous Dirichlet boundary conditions of the first order. The bases
are well-conditioned, the wavelets have four vanishing moments and we show that the
support is the shortest among all cubic spline wavelets with four vanishing moment
corresponding to B-spline scaling functions. The wavelet basis is composed of scaling



2  Dana Cernd

functions and inner and boundary wavelets. The inner wavelets are the same as wavelets
constructed in Ref. 11, 28. We provide a rigorous proof of the Riesz basis property. While
such proofs are usually based on semiorthogonality of the wavelets,'® 34 the local supports
of the biorthogonal wavelets,'® 2% the estimates of the norms of certain projections” 36
or spectral properties of the matrices of the inner products of primal and dual scaling
functions,® %24 we use a different approach that is based on analyzing the sets of inner
and boundary wavelets separately and verifying the minimal angle condition between
spaces generated by inner and boundary wavelets.

To illustrate the applicability of the bases we apply the Crank-Nicolson scheme com-
bined with the Galerkin method with the constructed basis for option pricing under
the double exponential jump-diffusion model that was proposed by Kou in Ref. 39. This
model is represented by a nonstationary partial integro-differential equation. We show the
decay of elements of the matrices arising from discretization of the integral term. Due to
this decay the discretization matrices can be truncated and represented by quasi-sparse
matrices while the most standard methods suffer from the fact that the discretization
matrices are full. Since the basis functions are piecewise cubic we obtain a high order
convergence and the problem can be resolved with the small number of degrees of free-
dom. We present numerical examples for European options and we compare the results
with other cubic spline wavelet bases and with other methods. For more details about
wavelet-Galerkin method and using this method for the numerical solution of various
option pricing problems we refer the reader to Ref. 25, 31, 32, 44.

First, let us briefly recall constructions of cubic spline wavelet and multiwavelet bases
on the interval. Several constructions of biorthogonal B-spline wavelet bases on the in-
terval were proposed in Ref. 20. In these cases both the primal and dual wavelets are
local, but the disadvantage of these bases is their relatively large condition number.
Modifications of these constructions that lead to better conditioned bases can be found
in Ref. 4, 5, 6, 22, 42. Biorthogonal cubic Hermite spline multiwavelet bases on the in-
terval with local duals were designed in Ref. 18, 45. Several cubic spline wavelet and
multiwavelet bases with nonlocal duals have been constructed and adapted to various
types of boundary conditions in Ref. 7, 8, 9, 10, 15, 24, 30, 34, 35, 36, 38, 41, 43. The
main advantages of these types of bases in comparison with bases with local duals are
usually the shorter support of wavelets, the lower condition number of the basis and the
corresponding stiffness matrices, and the simplicity of the construction.

We recall the concept of a wavelet basis and introduce the notation. Let (a,b) be a
bounded interval. Let L? (a,b) be a Hilbert space of all Lebesgue measurable real-valued
functions defined on (a,b) such that their L?-norm

b 1/2
1]l = /ﬁ@ﬂm (11)

is finite. This space is equipped with the inner product
b
()= [ 1@ g (@) o (12)

Let H' (a,b) be the Sobolev space, i.e. the space of all functions from L? (a,b) for which
their first-order weak derivatives also belong to L? (a,b).
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We consider four spaces, the space V¥ (a,b) = L? (a,b) and the subspaces of L? (a, b)
incorporating homogeneous boundary conditions in one or both endpoints, namely the
spaces

VP (a,b) —{veHl(a,b)'v(a =v(b) =0}, (1.3)
Vi (a,b) ={veH" (a,b): :0}
VE(a,b) = {ve H" (a,b):v(b) =0},

equipped with inner product (1.2). We use the shorthand notation V" = V" (0,1), r =
N, D, L, N. We construct wavelet bases for these spaces and prove their L2-stability.
Let J be a finite or countably infinite index set and let

IVIl= [ v} for v={uml},cs,vr€R, (1.6)
AET

and
1? (j):{V:v:{w})\ej,wER,HvH <oo}. (1.7)
For the operator M : 12 (J) — 12 (J) we define its spectral norm as
M
M= sup I (1)

0£vEl2(T) v
Schur’s Theorem implies that if M is symmetric and its 1-norm defined as
M, = sup Y [M, | (1.9)
i€Tieg
is finite, then M is a bounded operator on ? () and |[M]| < [[M]|,. Let \;, i € 7, be

eigenvalues of M and let us denote

Amaz (M) =sup |Ai|,  Amin (M) = inf |N;]. (1.10)
€T eJ

Let H C L?(a,b) be a real Hilbert space equipped with the inner product (-, )5 and
the norm ||-|| ;. Our aim is to construct a wavelet basis for H in the sense of the following
definition.

Definition 1.1. Let J be at most countable index set where each index A € J takes the
form X = (j,k) and let denote |\| =35 € Z. A family ¥ = {ipx, A € T} is called a wavelet
basis of H, if

i) W is a Riesz basis for H, i.e. the span of V is dense in H and there exist constants

¢,C € (0,00) such that

clbll<|[> baa| <Clbl, (1.11)
reJ H
for allb = {bx} ., € *(J).
1) The functions are local in the sense that
diam supp ¥, < C2~N N e 7, (1.12)

where the constant C does not depend on X\, and at a given level j the supports
of only finitely many wavelets overlap at any point x.
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1i1) The family U has the hierarchical structure
K
v=2o,u ]y, (1.13)
J=jo
for some K € NU {o0}.
iv) There exists L > 1 such that all functions ¥y € VU, jo < j < K, have L
vanishing moments, i.e.
b

/ka(x):o, k=0,...,L—1. (1.14)

a

The definition of a wavelet basis is not unified in the mathematical literature and the
conditions ¢) —iv) from Definition 1.1 can be generalized. The functions from the set @,
are called scaling functions and the functions from the set ¥;, j > jo, are called wavelets
on the level j. Wavelets in the inner part of the interval are typically translations and
dilations of one function ¢ or several functions 1,...,%, also called wavelets and the
functions near the boundary are derived from functions called boundary wavelets.

The Riesz basis property (1.11) is crucial for stability and accuracy of the computation
and for many types of operator equations it guaranties that the diagonally preconditioned
system matrix is well conditioned.'” 19
For the two countable sets of functions I, © C L? (2) the symbol (I', ©) denotes the

matrix
(T,0) ={(7,0},croco - (1.15)
Remark 1.1. The constants
cy =sup{c: csatisfies (1.11)} and Cy =inf{C : C satisfies (1.11)} (1.16)

are called (optimal) Riesz bounds and the number cond ¥ = Cy /cy is called the condition
number of ¥. In some papers the squares of norms are used in (1.11) and Riesz bounds
are defined as ¢, and C%. The Gram matrix (¥, ¥) can be finite or biinfinite and it
is known that it represents a linear operator which is continuous, positive definite, and
self-adjoint, and that the constants ¢y and Cy satisfy

v = VAmin (T, ), Cy =/ Amaz (T, T)). (1.17)

Remark 1.2. The set of functions is called a Riesz sequence in H if there exist positive
constants ¢ and C' that satisfy (1.11) but the closure of this set is not necessarily H.

2. Construction of a cubic spline wavelet basis on the unit interval

We define a scaling basis as a basis of cubic B-splines in the same way as in Ref. 5, 15,
42. Let ¢ be a cubic B-spline defined on knots [0, 1,2, 3,4]. It can be written explicitly

as
3

%’ [07 ]’
—f+2:U —2x+7, r € [1,2],

plr) =9 & —4a? + 100 — £, 2 € 2,3], (2.1)
%7 T e [374]’

0, otherwise.
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Then ¢ satisfies a scaling equation

¢(x):¢(§w)+¢(22_1)+3¢(2z_2)+¢(2a;_3)+¢(22_4). (2.2)

We define three boundary scaling functions. Let ¢pg be a cubic B-spline defined on knots
[0,0,0,0,1], i.e.

3
dol) = { 1-2)"ze 01, (2.3)

0, otherwise.

Furthermore, let ¢y be a cubic B-spline defined on knots [0, 0,0, 1, 2] and ¢ be a cubic
B-spline defined on knots [0, 0, 1,2, 3]. The explicit forms of ¢p; and ¢po are

Lxs—%—i-?m,xe[o,l],

1 2
Py () = C=a® g e, 2], (2.4)
0, otherwise,
and
~Uz s e 1),
72® 2, 9z _ 3
L2 — 342 -2,z el,2],
bra(z) = { 12 T2 T2 2.5
7 G, wel2s) )
0, otherwise.
Then the functions ¢yg, ¢p1, and ¢pa satisfy scaling equations
2z
0 (x) = o (2) + 2112, (2:6)
_ ¢p1 (27) | 3de2 (27) | 3¢ (27)
Pv1 () = 5 T4 T 15 (2.7)
Op2 (22 11¢ (22 ¢(2x —1 ¢ (2x — 2
Po2 (¢) = bQi )} 1(6 )4 (2 ) 4 (8 ). (2.8)

The graphs of the functions ¢pg, dp1, ¢p2, and ¢ are displayed in Figure 1.

A o
0.8 ‘|‘ - 06
%
. 0.4
* 0.2
: o
2 3 0 1 2 3 4

Fig. 1. The boundary scaling functions ¢pg, ¢p1, and ¢po (left) and the scaling function ¢ (right).
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For j > 3 and z € [0, 1] we set

_ 22¢(2x —k+3)

) — k=3, ...
Pi(7) Tl
23/2 9J
¢j,o(9€) = W, ¢j,2]‘+3($)
27 /2 27
di1(z) = W7 }j.2it2(x)
2i/2 27
dj2(x) = W, ¢j2i41(7)

, 27, (2.9)
_ 202¢40(27(1 — )
a vl
29244, (29(1 — 2))
B [ poal ’
_ 22¢5(27(1 — )
a [ pv2l

Hence, the basis functions ¢, are normalized with respect to the L?-norm. Since there
are four types of spaces, we define four types of scaling bases

oY = {¢jn,k=0,...,27 +3}, (2.10)
oY = {¢;p.k=1,...,27 +2}, (2.11)
oF = {¢jr,k=1,...,27 +3}, (2.12)
OF = {p k=0,...,2 +2}, (2.13)
for 7 > 3. We define a wavelet ¢ as
Y(x) = @21 — 1) — 4¢(2x — 2) + 6¢(22 — 3) — 4p(2x — 4) + ¢(22 — 5). (2.14)
Then supp ¢ = [0.5,4.5] and ¢ has four vanishing moments, i.e.
4.5
/x%(x)dx =0, k=0,1,2,3. (2.15)
0.5

It can be verified easily using substitution of (2.1) and (2.14) into (2.15).
In the following lemma we show that the wavelet ¢ has the shortest possible support
among all wavelets with four vanishing moments that are generated from cubic B-splines.

Lemma 2.1. Let the function ¢ be given by (2.1). If
Y espan{¢p(2-—k), keZ}

and Y has four vanishing moments, then the length of the support of ¢ is at least four.

(2.16)

Proof. Since ¢ € span{¢ (2-—k),k € Z} we have
U(z)=> o (20 —k), z€R,
kEZ

for some coefficients hx € R. Let us suppose that the length of the support of v is at
most four. Then

J Jj+8
L 2.1
supp?/}C[Q, 5 ] (2.17)
for some j € Z. Since
kE k+1
Y (z)=0 for xe[Q,;], keZ\{j,7+1,....5+7}, (2.18)
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and
k k+4
supp (2- —k) = |2, "2 2] (2.19)
27 2
the coefficients satisfy
hi =0, keZ\{j,j+1,7+2,j+3,j+4}. (2:20)

Due to the four vanishing moments of the function 1 we obtain a homogeneous system of
four linearly independent algebraic equations for the five parameters h;, ..., hjy4. Thus
up to a multiplication by a constant and shifting by k/2, k € Z, there is only one wavelet
that has the length of the support at most four and this wavelet is a wavelet defined
by (2.14). 0O

The boundary wavelets 1,1 and s are defined by

25 385 1489 369 2
= — 2r) — — 2 —_— 2r) — — (2 —¢p(2x — 1 2.21
Vur(2) = 2 duo(22) — 5 001 (20) T (22) — S0 o(22) 4 2p(20— 1), (221)
and
o7 919 116
Ypa () = 6¢p1(2x) — €¢b2(2x) + m<;s(2a:) - 2—5¢(2x - 1) +9¢2r—2). (2.22)
Then supp iy = [0,2.5], supp ¥pe = [0, 3], and both wavelets have four vanishing mo-
ments, i.e.
2.5 3
/kabl(ac)da: =0 and /kabg(a:)dx =0, (2.23)
0 0
for k=0,1,2,3.

Using the similar argument as in the proof of Lemma 2.1 it is easy to see that also the
boundary wavelets 1,1 and 12 have the shortest possible supports among all boundary
wavelets with four vanishing moments corresponding to scaling functions defined by (2.9)
and that other such boundary wavelets with the supports in [0, 3] are linear combinations

of y1 and .
Then the wavelet basis on the level j > 3 is defined as

U = {jpk=1,...,27}, (2.24)
where
oo |
P p(x) = 27 w(2|ﬂ|zH k+ 2)’ k=3,..9 2 (2.25)
bia(x) = M, .20 () = 22 (27(1 — ) (2.26)
[l || ’ |2 |
/2 ' /2 (1 _
bjo(r) = Pie(a) b5 (z) = 2@ = D)) (2.27)
b2 ’ w2l

Hence, the basis functions 1) are also normalized with respect to the L*-norm. To
adapt the set \II§V to homogeneous Dirichlet boundary conditions we have to replace the
function 1y, which is not equal to zero in the point 0 with another function. We denote
this function as 3 and we define it as

Yus(r) = 20u20) — S 6(20) + TE6(w 1)~ Zp(ar —2) + p(2r —3).  (2.28)
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Then the wavelet 13 has also four vanishing moments and its support is [0, 3.5]. We
define the boundary functions on the level j > 3 that are adapted to homogeneous
Dirichlet boundary conditions as

22 (2a) D 2 29(20(1 — )

D
D (r) = , D (x) = 2.29
= g Ve ®) [Woal (2:29)
. 2/ 2pa(Pz) () 20/243(27 (1 — x))
. xTr) = s o €Tr) =
72 [[9n3 | p2 l[4nal
We set
UP ={yP k=122 -1,2 U {¢jp.k=3,...,27 =2}, (2.30)
U ={yl k=12 U{vjrk=3,...,27}, (2.31)
U ={pjpk=1,...,2 =2} U {9 k=27 —1,27}. (2.32)
The graphs of wavelets ¥y, ¥p2, Y3, and ¥ are displayed in Figure 2.
3
-5
0 1 2 3
Fig. 2. The boundary wavelets ¥p1, ¥p2, ¥p3, and the wavelet .
Our aim is to show that for r = N, D, L, R, the set
o ]
v =ao5u |9, (2.33)
j=3

is a Riesz basis of the space V". We denote the finite-dimensional subset of ¥" with s
levels of wavelets as

2+s
v =asu (Wl (2.34)
j=3

First we define auxiliary bases ¥ and ‘1137, r = N, D, L, R, that contain the same
inner wavelets and generate the same spaces, i.e. span ¥} = span V7, but boundary
wavelets are different. The reason is that some constants characterizing the bases that
are used in the proof of the Riesz basis property are too large for the bases ¥". Hence,

let us define

&bl (x) = ¢bl (a:) — O.3¢b2 (QT), 1[}(,2 (I) = 0.31#(,1 (:l?) + 0.41#1,2 (CC), (235)



Cubic spline wavelets with four vanishing moments 9

and
5 93/240 1 (29 o y 29/ 24)p1 (29 (1 — &
Jyafa) = T2y = O D), (2.36)
. 29/ 24)y0 (27 . 29/24)5(27 (1 —
%‘,2(1‘) = %7 1/13',2.7'—1(5”) = wa(v ( ) (2.37)
[0s | |
and the wavelet basis on the level j > 3 is defined as
UY = {jr k=122 = 1,27} U{¢pjp, k=3,...,27 —2}. (2.38)
We define
Pps(x) = 0.9¢p2(x) + 1.630p3(2),  Yhpa(x) = 0.69%p2(x) — 0.44h43(x), (2.39)
and
5 93/240 o (29 ¢ y 29/ 243 (29 (1 —
D@y = 220s@) - p ) 2 (01— 0) (2.40)
. 29/24)4 (20 . 29/ 24), (27 (1 —
wfz(x) = #7 ]l',)zj—1<$ = 4(v ( ) (2.41)
and we set
\i,.?:{v]l) & ,(LQJ 15¢]23}U{¢j,k)k:37"‘32j_2}’ (242)
DL = {2 2, j0i 1,00 U {0k =3,...,20 =2}, (2.43)
\il]R: {V 1&],27&]2] 1a¢]23}u{¢j,k7k:37"‘72j_2}’ (244)
and for r = N, D, L, R, we set
o) 24s
Ur=osu Uy, Ur=05ul ¥, seN. (2.45)

Now we formulate sufficient conditions under which the sum of Riesz sequences is a
Riesz sequence. We employ frame theory from Ref. 13, 14, 27. Let us recall that {fx}, 7
is a frame sequence, if there exist constants ¢y, C'y > 0 such that

AP < DU AP < Crllfl (2.46)

kel

hold for all functions f € span ({fx}cz) - Supremum of {¢y : & satisfies (2.46)} is called
a lower frame bound.

For the spaces F' and G which are subspaces of the space L?(0,1), we define two
notions of cosine:

cos (F,G) = sup M, (2.47)

ozfrer0+gea || fI gl

cos (F,G) = sup £, 9)]

0£fEF,0#£9€C 1 £1 9]l

where F' = FN(F N G)J‘, G =GN(FN G)L, and M~ denotes the orthogonal complement

of M. Clearly 0 < cos(F,G) < @os(F,G) < 1. The following theorem was derived in
Ref. 27.

Theorem 2.1. LetZ and J be countable index sets and let { fi} ez and {gi},c 5 e frame
sequences in L? (0,1) with lower frame bounds ¢¢ and ¢,, respectively. If cos (F,G) < 1
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for F = span ({ fu}rez) and G = span ({gi},cz), then {fi}rer U{gi}ics is a frame
sequence with a lower frame bound

¢fg=(1—cos(F,G)) min (¢¢,¢,) . (2.48)
The consequence of this theorem is the following theorem about the Riesz sequences.

Theorem 2.2. Let T and J be countable index sets, { fr},cr be a Riesz sequence with
a Riesz lower bound cy and {gi},c; be a Riesz sequence with a Riesz lower bound cg,

F = span ({fk}kez) and G = span ({gl}lej). Ifcos (F,G) < 1, then {fx} e U {gl}lej
s a Riesz sequence and its Riesz lower bound c satisfies

c¢>+/1—cos(F,G) -min(cy,cg) . (2.49)

Proof. It is known that if {fr},.; is a Riesz sequence, then {fi},.; is a frame se-
quence.'* From Theorem 2.1 and the fact that cos (F,G) < cos(F,G) < 1 it follows
that {fi}cz U{gi}cs is a frame sequence. Furthermore, ¢os (F,G) < 1 implies that
F NG = {0} and thus the set {fx},c7 U{91},cs is w-independent, i.e.

> =0 (2.50)
AeJ
implies that cy = 0 for all A € J. Indeed, if f € {fx}; ez U{gi};c s is nonzero function,
then

(FG) = s w0l S IBAL (2.51)

ouecFo2vea el ol = IFINIA

which is the contradiction. Since a frame sequence of w-independent functions with a
frame lower bound b is a Riesz sequence with a Riesz lower bound v/b,'* the Theorem 2.2
is proved. O

In the following theorem we derive the upper bound for cos (F, G).

Theorem 2.3. Let T and J be countable index sets, { fi}, o7 be a Riesz sequence with
a Riesz lower bound cy and {gi},c; be a Riesz sequence with a Riesz lower bound cg.
Then

G
cos (F,G) < u (2.52)
CfCq
where the entries of the matriz G are defined by Gy = (fr,q), k€L, 1€ J.
Proof. For u =), ;(cu), fr and v =), ; (cy); g1 we have
ol o UGenedl _ IGed _ IGHled _ 1G]
ozvea V]| 0#c,€12(J)  Cg [eol Cg Cg CrCqg
Hence, we have
G
cos (F,G) = sup [, v)l < ” H (2.54)
0£ueF,04veq |[ul| ||v]] CrCq

This completes the proof. O
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Now we focus on the inner wavelets that are translations and dilations of ¥. We show
that the set of all these wavelets is a Riesz sequence and estimate its Riesz lower bound.

Theorem 2.4. The set V; = {%‘,k’k =3,...,20 -2,5> 3} 1s a Riesz sequence with a
Riesz lower bound ¢y > 0.783.

Proof. It was shown in Ref. 11 and Ref. 28 that
{W% (P — k), 4,k € Z} (2.55)

is a Riesz basis of the space L? (R). Since Wy is its subset, it is a Riesz sequence. We
estimate its Riesz lower bound. Let ¢ be a Riesz lower bound of the Riesz sequence
UK = {@Z)j,k,k: =3,...,20 -2,3<;5< K} which is clearly a subset of ¥;. We estimate
the Riesz lower bounds ¢& using Remark 1.1. Due to the structure of the set WX the
Gram matrix G = (U, UF) has the block structure

G373 G374 G37K

G473 G474 G47K

GEK = , (2.56)

GK73 GK’4 GK,K

where G; ; = <\I!ZI, \IJ]I> for \I/]I = {wj,kv k=3,...,2 — 2}. The matrix G¥ is symmetric
and due to the normalization of basis functions it has ones on the diagonal. Let F¥ be
a matrix that contains the diagonal blocks and the blocks next to the diagonal blocks of

the matrix GX | but without the diagonal entries, i.e.

G3’3 G374 0 . . 0
G433 Gy Gys ;
FK = : -1 (2.57)
0 G54 Gss g 0 ) :
; ; . Grg_1,K
0 ... 0 Ggr-1 Grrx

where I is an identity matrix and O are zero matrices of appropriate sizes. Let FX =
Gf — FK — 1. Let x be a normalized eigenvector corresponding to Apin (G? ) Then

Amin (Gf{) = xTGFx = x"TTx + x"Fi'x + x"F&x (2.58)
>1- |XTF{(X‘ — ‘XTFg(x’ .

For k£ > 3 direct computation yields

1, 1=y,
— s, i — jl =1,
(Gk,k)@j = _%’ ’7' _]’ = 4, (2.59)

7 . .
26527 |Z - j’ )
0, otherwise.

\

The nonzero entries of the matrix Gy are given by

(Gri1k); ;= hi-2j1, (2.60)
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for i,7 € Nsuch that 1 <4< 2F1 1< j<2F and -3<i—2j+1<8, and

4.5
hy, = /\/iz/z (z) 1 (22 — k) d. (2.61)
0.5

Since 1) is a piecewise polynomial function, it is easy to compute the exact values of hy.
We obtain

1 169 1187 679 16643 1189

h_z,...,ha] = — - 2.62
[hs; .. ho] = a [161280’ 23040° 230407 4608° 80640 11520 (262)
with

105v/2

a=—r5 and hy =hs_p, E=3,...,8. (2.63)
Due to the symmetry of the matrix GX we have G 41 = G{_H’k.
The matrix F¥ is symmetric and thus }XTF{(X‘ < Amaz (Ff) and
mlll/m
Anaa (FY) = [ = || (FE)" (2:64)

for all m € N. Since the matrix F¥ is known in the explicit form, the number of nonzero
entries of F in any row and column is bounded by a constant C independent of K, and
the matrix Ff has repeated structure, we are able to compute || (F{)™||,. For m = 16
we obtain

ml11/m
) H < 0.375. (2.65)

Anas (FF) = || (FF)"| 7 < || (FF

ml11/m
",
Since Fé{ is also symmetric, we have ‘XTFé(X‘ < Mnax (Ff) and

Amaz (F5) = |[FX]| < ||[F5||, < 0.011. (2.66)
In summary, we have A (GF) > 1 —0.375 — 0.011 = 0.614 and ¢ > /0.614 for all
K > 3 and thus ¢; > v0.614 > 0.783. O

Now we estimate Riesz lower bounds for the sets of boundary wavelets.

Theorem 2.5. a) The set \i/g = {1@71,1[)]',2,]’ > 3} is a Riesz sequence with a Riesz
lower bound ¢ > 0.490.

b) The set \iff = {@fl,%%,j > 3} is a Riesz sequence with a Riesz lower bound ¢P >
0.380.

Proof. a) According to Remark 1.1 the set \ifg is a Riesz sequence if and only if the
extremal eigenvalues of the (biinfinite) matrix GY = <\iff , \Pg > satisfy
0 < Amin (GY) < Amaz (GY) < 00 (2.67)
We denote
WP = {a0ia 3 < S K}, G = (B0 (2.68)

Due to the length of the supports of the functions %71 and éj,g, and four vanishing
moments of the wavelets, we have

(vaK), =0, ifli—j|>5. (2.69)

)
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Hence, the matrix Gg’K is banded. Moreover it is symmetric, it has repeated structure
and it is known in an explicit form. Therefore, it is easy to compute an estimate of its
1-norm. We have

Amar (G7) < HGfKHl < 1.763. (2.70)
Let HE = Gg’K — I, where I is the identity matrix of the appropriate size. We have
m 1/m
Anin (G17) = 1= B[ = 1 ||(85)"]| 7 = 0201 (2.71)

for m = 4. Since the estimates in (2.70) and (2.71) do not depend on the maximal level
K, the condition (2.67) is satisfied and therefore the set U¥ is a Riesz sequence and its
Riesz lower bound satisfies ¢ > 1/0.241 > 0.490.

b) The proof follows the lines of the proof of the part a) with m = 8. O

Corollary 2.1. Since
Uy = {%‘,2]‘—1,%,21’,]' > 3} (2.72)

has similar structure as ‘i/L , the set \i/g 1s a Riesz sequence with a Riesz lower bound
cg = ¢, Due to the non-overlapping supports of % k, k=1,2, and % 5, 1=27 —1,27,

the set U = N UUN is also a Riesz sequence with a Riesz lower bound &Y = ¢ = éN.
Similarly, we define
\I’g {w 27_17¢] 2i1J 2 3} ) (2.73)
and
PP — P U, WE =P WY, BR— BY U §l, (2.74)
We denote their Riesz lower bounds by ¢P, ¢&, and ¢, respectively. We have &P = &P,

¢f = ¢ft = min (e, ¢P).

For r = N, D, L, R we denote the set of all wavelets as \if; = U, U¥;. In the following
theorem we prove that \iffn is a Riesz sequence.

Theorem 2.6. The sets ‘iﬂ”m, r=N,D,L,R, are Riesz sequences in the space V.

Proof. From Theorem 2.4 and Corollary 2.1 we already know that ¥; and \Ifg for
= N,D,L, R, are Riesz sequences. Thus, due to Theorem 2.2 and Theorem 2.3 to
prove that \i"’m is a Riesz sequence it remains to show that the matrix H" = <‘ilg7 v 1>
satisfies
T
L
CbC]

O i B (2 N K

for m = 8 we obtain HHDH < 0.293 and HHNH < 0.278 and we may conclude that (2.75)
is satisfied and that \IJD and \If are Riesz sequences. Hence, also \IID Uwy, \I’ Uy,
U, Ul ryand UrU N2 I, are Riesz sequences and due to the non-overlapping supports of
the functions from W% and \iﬂé, the sets WL and WX are also Riesz sequences. ]

(2.75)

Using the relation
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Theorem 2.7. Forr = N,D, L, R, the set V" is a Riesz basis of the space V.

Proof. First we show that the set
Ur =0 U T (2.77)

is a Riesz basis of the space V". We already know that \il:n is a Riesz sequence. Since ®%
is a finite set of functions, it is a Riesz sequence too. Therefore, the spaces

F =span¥?, and G = spand$ (2.78)

are closed and since G is finite-dimensional, the set F' 4 G is also closed. The closedness
of F + G and the fact that F NG = {0} implies cos (F, G) < 1.2! Since it is known that
the spline spaces V" = span ®7 = span @;_3 are nested and their union is dense in V",
see e.g. Ref. 5, 42, the set U is dense in V". Due to this fact and Theorem 2.2, the set
" is a Riesz basis of V.

Since U = MW", where M is a biinfinite block diagonal matrix such that the first
diagonal block of M is an identity matrix and other diagonal blocks are of the form

alagO...OO 0

az a4 0 0
0 01 0
: . I (2.79)
0 100
0 0 b1 by

0 00...0b3 0y

where a; and b;, i = 1,...,4, are determined by the relations (2.35) and (2.39). Since

|IM]|| and HM_lH are bounded and
(U, Ty = M (B By (M) T (2.80)

the Remark 1.1 implies that ¥" is a Riesz basis of V. O

Remark 2.1. A wavelet basis on a general domain can be constructed in the following
way: First, the wavelet basis for the space V" (a,b) is derived from ¥" using a simple
linear transformation y = (z —a) /(b — a). Then a wavelet basis on the hyperrectangle
can be constructed using an isotropic, anisotropic, or sparse tensor product. Finally,
by splitting the domain into subdomains which are images of the hyperrectangle under
appropriate parametric mappings one can obtain a wavelet basis on a fairly general
domain.

3. Numerical results

In this section we use the Galerkin method with the constructed wavelets for valuation
of options under a double exponential jump-diffusion model proposed by Kou in Ref. 39
and we compare the results with other approaches and other cubic spline wavelet bases.

Let S be the price of the underlying asset, ¢ represent time to maturity, r be a risk-
free rate and U (S, t) be the market price of the option. Then the general jump-diffusion
models are represented by the equation

8@?_D(U)—I(U)zo,S>o,te(o,T), (3.1)
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where the operators D and Z are given by

D(U):”ZS‘;;JF(T—A )sgg—( + AU (3.2)
and
U):)\/U(Segg,t)g(m)dw. (3.3)

The parameter A is the intensity of the price jumps, i.e. the average number of jumps
per unit time. The function g represents the probability density function which in the
model of Kou is given by

g(x)=pme M*H (z) +qnee™ H (—x), xR, (3.4)

where H denotes the Heaviside function, p € (0,1) represents the probability of the
upward jump, ¢ = 1 — p represents the probability of the downward jump, n; > 1, and
1o > 0. The parameter « in this model is given by

pPmMm qmn2
K = + — 1. 3.5
m—1 mn2+1 (3:5)

The initial and boundary conditions depend on the type of the option. We present
the approach for a European put option. The value of a European call option can be
computed using the put-call parity.! The initial condition for a European vanilla put
option is given by

U (S,0) = max (K — S,0), (3.6)
where K is the strike price, and the boundary conditions have the form
—rt 8U
U(0,t)=Ke ", 55 (S,t) = 0 for S — oo. (3.7)

We choose the maximal value S™** large enough and approximate the unbounded
domain (0,00) by a domain 2 = (0, 5™*). We replace the boundary conditions with

ou

U,t)=Ke "™, — (Smaz,t) =0. 3.8
0.6)= Ke™™, 52 (Snaest) 39
Furthermore we have
T g(1
=\ / U(Se*,t)g dx—)\/ (y,t) OgS)dy (3.9)
Since
log ¥
U (y,t) g(OygS) ~ 0 for y — oo, (3.10)
we define
Smaac
. log ¥
T(U)=A / U (y, 1) g(oygS)dy (3.11)
0

and we approximate Z (U) =~ Z (U).

~—



16 Dana Cernd

Let U = U — W, where U is the solution of the equation (3.1) satisfying the initial
and boundary conditions defined above and W is defined by W (S,¢) = Ke " for S €
[0, 8™ and t € [0,T]. Then U € V¥ (0,S8™) and U is the solution of the equation

o2 (0)-2(0) = son @12
with
f(W) = —8;5+D(W)+i(W) (3.13)

satisfying the initial condition

U(S,O) :U(S,O)—K, SG [Oasmaa:]a (314)
and boundary conditions

. ou

U (0,t) =0, %(Smam,t) =0, te€][0,T]. (3.15)
We use the Crank-Nicolson scheme for temporal discretization. Let
T
MEN,T:M, ty=1Ir, 1=0,...,M, (3.16)
and let us denote
U(S)=U(S,t), fi(S)=Ff(W(St)). (3.17)

The Crank-Nicolson scheme has the form

Ua-0, P (Ul+1) z (Ul+1) P (Ul) 1 (Ul> i+ fir

T 2 2 T2 T2 T
forl=0,...,M —1.

Let UL be a smooth enough wavelet basis for the space VE (0,5™), Wl be its

finite-dimensional subset with s levels of wavelets, and V. = span L. We define
a(u,v) = (D (u),v) + <i () ,v> , (3.19)

for all u,v € V', s > 1. The Galerkin method consists in finding U, 51 € VI such that

<[7l§;1,v> @ (f]f;l,v) _ <Ul:v> . a (U;S,v) N <fl +2fz+1 ,v> (3.20)

(3.18)

for all v € VE. If we set v = ¢, € UL and we expand ﬁfﬂ in a basis UL i.e.
U1 = Z uzx, (3.21)
PYreTWL
then the vector of coefficients u® = {u3} is the solution of the system of linear algebraic
equations Au® = f*, where

s o Wb\ﬂ/&) _ a(dj)\vd]u)

A T T 2

(3.22)

and

. <Uls,7wu> K (Ul;, ") (ifer ) 52
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It is clear that f* and u® depend on the time level ¢;, but for simplicity we omit the
index .
For preconditioning we use the Jacobi diagonal preconditioner D?, where the diagonal

elements of D* satisfy
I = /Al (3.24)

We obtain the preconditioned system
Asa® = f° (3.25)
with

A= (D) TAS(D), = (D)5, u’ =Du’. (3.26)

It is well-known that due to the compact support of the wavelets and a hierarchical
structure of the wavelet basis the matrices arising from discretization of the differential
operator D have so-called finger-band pattern.** Hence, we focus on the properties of
the matrix C® with entries

A = <f (¥2) 7%>, U, € VY. (3.27)

For the standard Galerkin method with the standard spline basis such matrix is full.
However, it is known that for integral equations with some types of kernels and for
wavelet bases with vanishing moments many entries of discretization matrices are small
and can be thresholded and the matrices arising from discretization of the integral term
can be approximated with a matrix that is sparse or quasi-sparse.>'? The following
theorem provides the decay estimates for the entries of the matrix C* corresponding to
a general wavelets with L vanishing moments.

Theorem 3.1. Let 91 and v¢;; be wavelets with L vanishing moments, i.e. the condi-
tions i) — i) from Definition 1.1 are satisfied, and let us denote

Qie =supp Vi, Qi =supp Vi, Qijrs = Qik X Q. (3.28)
Let € be some small parameter such that 0 < e < S™* and let us denote
Q ={(S,9) : S # .5y €[0,5™ P\ [0,". (3:29)
If
interior (2 jk.1) C e, (3.30)
then
‘<i (¥x) ,%>‘ < ¢~ (L43)6+), (3.31)

where C' is a constant independent on i, j,k, 1.
Proof. Let the centers of the supports of 1; and 1;; be denoted by 5;; and y;,,
respectively. Let us define

1 Y
K(S7 y):)‘ g(C;gS)7 S,y € (07 Smax] s (3-32>

and K(S,y) = 0if y = 0 or S = 0. If the condition (3.30) is satisfied, then K &
C* (4,5 x Q). By Taylor Theorem there exists a function P that is a polynomial of
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degree at most L — 1 with respect to S and there exists a function @) that is a polynomial
of degree at most L — 1 with respect to y such that

1 9*K(£(S,y))
(2L)! 9SLayL

K (S,y) =P (S,y)+Q(S,y) + (S—Siw)" (y—yi)",  (3.33)

where
§(S,y) = (Siks ys0) + @ ((S,y) — (Sik,Y50)) (3.34)
for some a € [0,1]. Due to the L vanishing moments of the wavelets 1, , and 1;; we
obtain
J] P vn®) 6 wdsdy =0 (3.35)
Qi gk,
and
[ @ vnsvuwasay o (3.36)
Qi 5.kl

Due to the property ii) from Definition 1.1 there exists a constant C; independent on
1,7, k,l such that

1S — SiplF <027y =yt < o2l (3.37)
From (2.25) and (2.29) there exists a constant C independent on i, j, k, [ such that
[wwlds <car [ uawldy < ez (3.35)
Qi Qj1
Hence, we have
(T @) s = | [[ K S0)0x (80 w) as dy (3.39)
Qi 5kt
<0 [[ 15~ Sunl" v = w3l 1348 b0 )] dSdy
Qi 5kl
< ¢ o Li-Li=i/2=j/2,
with
C.C oLorK (S
C=_1=2 L(Ly)’ (3.40)
(2L) (S,y)eQ o8 8y
This proves the theorem. O
Let
C*=(D°)'Cc* (D)} (3.41)

with D* defined in the previous section. Then the discretization matrix A is the sum
of the matrix C* and the matrix arising from discretization of the differential operator.
Due to Theorem 3.1 and the local support of wavelets, many entries of the matrix As
are small and they can be thresholded. The structure of the truncated matrix A is
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presented in Figure 3. This matrix contains only entries larger than 10710 and it was
computed for the option with parameters from Example 3.1 and the wavelet basis from

Section 2 with six levels of wavelets, but the structure is similar for options with other
parameters and for other wavelet bases.

0 —

wor L B
s eetstatangtat.ime t v 6 0 8 o 8

T e

PER

300

400

500

0 100 200 300 400 500
nz =21183

Fig. 3. The structure of the truncated discretization matrix AS.

Example 3.1. We use the proposed scheme for computing values of European vanilla
options. We use the same parameters as in Ref. 26, 33, 37, 40, 46, i.e. option maturity
T = 0.25 year, interest rate r = 0.05, volatility ¢ = 0.15, intensity A = 0.1, n; = 3.0465,
1o = 3.0775, probability of the upward jump p = 0.3445, and the strike price K = 100.
We choose S™% = 400 and the threshold 107!° for matrix compression. The resulting
functions representing the values of the options are displayed in Figure 4.

put call
50 50 £
XL
%
2 BRI
= SRR 55
i 00,
o <> XY
e K LAY
7 = = = = = = =
e @ 4 O s
WO 3 SRR
e RERRREIERIRIXKEELAL K
2 0.2 SRR
S : 0.2 SRR
(G RREEEESSIIKEK
e e s IR X
0 100 > o1 0l 300
s . . R
200 == NS 100 200

Fig. 4. Functions representing the values of a European put and call option for the Kou model.

The resulting values of the options for the asset prices S = 90, S = 100, and S = 110
are listed in Table 1. According to Ref. 40 the reference value is 9.430457 for S = 90,
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2.731259 for S = 100, and 0.552363 for S = 110 for a put option. Reference values for
call options are computed by put-call parity. In Table 1 we also present the pointwise
errors, i.e. the differences between the computed values and the reference values, and the
experimental rates of convergence computed as

log error (&2, 2 — Jog error (N, M)

rate = 2 410g2 : (3.42)

The optimal order for the Crank-Nicolson scheme is O (72) and optimal order for cubic
spline approximation is O (h4), where h = 1/ (N — 2) represents the spatial step. It
seems that the errors presented in Table 1 correspond to the optimal order O (h4 + 7'2).

Table 1. Values of a European vanilla put and call options, errors and rates of convergence.

S N M put call error rate
90 18 11 9.558719  0.800939 1.28e-1
34 4| 9.465419  0.707639 3.50e-2 1.87
66 16 | 9.429905  0.672125 5.52e-4 5.99
130 64 | 9.430436  0.672656 2.21e-5 4.64
258 256 | 9.430464  0.672684 6.88e-6 1.68
100 18 1] 2949505  4.191725 2.18e-1
34 4 | 2.707230 3.949449 2.40e-2 3.18
66 16 | 2.729640  3.971860 1.62e-3 3.89
130 64 | 2.731205  3.973425 5.3le-5 4.93
258 256 | 2.731261  3.973481 1.58e-6 5.07
110 18 1] 0.264414 11.506634 2.88e-1
34 4 | 0.550486 11.792706 1.88e-3 7.26
66 16 | 0.551193 11.793413 1.17e-3 0.68
130 64 | 0.552399 11.794619 3.53e-5 5.05
258 256 | 0.552369 11.794588 5.78e-6 2.61

For the convenience of the reader we present in Table 2 the errors for values of
European option with the same parameters as in this example, the Kou model and
methods from Ref. 26, 37, 40. Other numerical results can be found in Ref. 33, 46. In
comparison with methods from Ref. 26, 33, 37, 40, 46, the parameter N representing the
number of basis functions needed to compute the solution with a desired accuracy is for
our method significantly smaller. Thus significantly smaller matrices are involved in the
computation.

The proposed scheme can be used also with other wavelet bases than those con-
structed in this paper. We compare the results with the results for wavelet bases of
similar type, i.e. the wavelet basis that satisfies the following conditions:

i) It was proved that the basis is a Riesz basis of the space VL (0, S™a%).
ii) All inner and boundary wavelets should have at least one vanishing moment.
iii) To achieve the similar rate of convergence, the basis functions should be piecewise
cubic.
iv) The basis should be well-conditioned.
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Table 2. Errors for values of European vanilla options for various methods.

Kwon, Lee*’ d’Halluin et al.?6 Kadalbajoo et al.3”
S N M error N M error N M error
90 128 25  3.63e-3 128 34  1.36e-3 128 12 8.42e-4
256 50 8.78e-4 | 255 65 4.67e-4 | 256 24 3.06e-4
512 100 2.24e-4 | 509 132 1.42e-4 | 512 48 8.48e-5
1024 200 5.60e-5 | 1017 266 4.70e-5 | 1024 96 2.24e-5
2048 400 1.40e-5 | 2033 533 7.00e-6 | 2048 192 5.79e-6
100 128 25 3.47e-2 128 34 3.51e-3 128 12 1.96e-3
256 50 8.72e-3 255 65 1.00e-3 256 24 3.98e-4
512 100 2.17e-3 509 132 3.72e-4 | 512 48 8.96e-5
1024 200 5.42e-4 | 1017 266 1.57e-4 | 1024 96 2.15e-5
2048 400 1.36e-4 | 2033 533 7.20e-5 | 2048 192 5.60e-6
110 128 25 8.15e-3 128 34 5.31e-3 128 12 1.85e-3
256 50  2.10e-3 255 65 2.10e-3 256 24 4.99e-4
512 100 5.28e-4 | 509 132 9.13e-4 | 512 48 1.28e-4
1024 200 1.32e-4 | 1017 266 4.23e-4 | 1024 96 3.28e-5
2048 400 3.30e-5 | 2033 533 1.03e-4 | 2048 192 8.51e-6

The bases that satisfy i) — iii) were constructed e.g. in Ref. 4, 5, 22, 42. However, the
cubic spline wavelet basis from Ref. 42 is not well-conditioned. Since the bases from Ref.
4, 5, 22 have the same inner wavelets and they differ only in the definition of boundary
wavelets, we compare the results for the basis constructed in this paper with the results
for the cubic spline wavelet basis from Ref. 5. Quite surprisingly for us most constructions
of cubic spline wavelet or multiwavelet bases do not satisfy all conditions i) —iv). Indeed,
wavelets from Ref. 15 are not adapted to boundary conditions, the wavelet bases from
Ref. 8, 10, 24, 34 satisfy only the first order Dirichlet boundary conditions, and bases
from Ref. 6, 7, 45 satisfy only the second order Dirichlet boundary conditions. Thus,
these bases satisfy ii) — iv), but do not satisfy 7). Constructions of cubic spline wavelets
without adaptation to boundary conditions and without the proof of the Riesz basis
property can be found in Ref. 38, 43. The recently constructed cubic Hermite spline
wavelets from Ref. 29 also have not yet been adapted to be the basis for V' (0, S™®).
Boundary wavelets from Ref. 30 and Ref. 41 do not have vanishing moments.

In Table 3 we present the number of nonzero elements (nnz) of the matrix truncated
using the threshold 107!° and the condition numbers (cond) of diagonally precondi-
tioned discretization matrices for the Galerkin method with wavelet basis from Section 2
(short4), biorthogonal wavelet basis with 6 vanishing moments from Ref. 5 (bior4.6) and
for the Galerkin method with B-splines (B-splines). Furthermore, we list the number of
outer and the number of inner iterations needed to resolve the resulting system of equa-
tions by the generalized minimal residual method (GMRES) with the following input
parameters: restart after ten iterations, maximum number of outer iterations is 100 and
the iterations stop if the relative residual is less than 10712, As expected the discretiza-
tion matrix corresponding to B-splines is well-conditioned but full. The truncated matrix
corresponding to biorthogonal wavelets from Ref. 5 is quasi-sparse. For some problems,
see e.g. Ref. 5, the discretization matrix is well-conditioned. However, it is known, that
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the boundary biorthogonal wavelets are typically highly oscillatory and have relatively
large support and that this can lead to badly conditioned matrices. As can be seen in
Table 3 this situation occurs in our case. We also computed the results for bior4.4 and
bior4.8 wavelets from Ref. 5, but the condition numbers were even higher than for bior4.6
wavelets.

Table 3. The number of nonzero entries (nnz) and the condition number (cond) of the truncated dis-
cretization matrices, and the number of GMRES iterations (it).

basis N M nnz cond it
shortd 34 4 891 36 7(6
66 16 2105 38 7(8
130 64 4716 40 7(10
258 256 10042 40 7(9
514 1024 21183 41 7(6
biord.6 34 4 1061  2.0e3 8

)
)
)
)
)
3(5)
66 16 2895 1.4e5 100(10)
130 64 7474 6.6e6  100(10)
258 256 19024 3.2e8 100(10)
B-spline 34 4 1156 17 5(5)
)

)

)

)

(
66 16 4333 18 5(
130 64 16616 18 5(7
258 256 64111 18 5(
514 1024 244518 18 5(

4. Conclusion

We constructed the cubic spline wavelet basis on the interval with four vanishing wavelet
moments and with short support and we adapted this basis to Dirichlet boundary con-
ditions. We proved the Riesz basis property with respect to the L?-norm. Using the ten-
sor product and appropriate parametric mappings this basis can be adapted to higher-
dimensional bounded domains. We used the Crank-Nicolson scheme and the Galerkin
method with the constructed basis for the numerical solution of the partial integro-
differential equations that represents the Kou’s option pricing model. The advantage of
the proposed method is the quasi-sparse structure of the discretization matrices and in
comparison with methods from Ref. 26, 33, 37, 40, and 46, the presented method requires
significantly smaller number of degrees of freedom needed to compute the solution with
desired accuracy. We showed that our basis is more appropriate for the proposed scheme
than biorthogonal cubic spline wavelet bases from Ref. 5 and than the basis of cubic
B-splines and we discussed also other choices of cubic spline wavelet bases.
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