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Abstract

This habilitation thesis is concerned with constructions of new spline-wavelet bases
on the interval and product domains, their adaptations to boundary conditions, and
their applications. This thesis is a collection of eight previously published papers
[10, 11, 13, 14, 15, 17, 19, 23]. First, we introduce the concept of a wavelet basis
on a bounded interval and on tensor product domains. Then, we review the wavelet-
Galerkin method and adaptive wavelet methods for the numerical solution of operator
equations. Finally, we discuss constructions of quadratic and cubic spline wavelets
and we comment on the collected papers. Papers [10, 11, 15] are focused on the con-
struction of well-conditioned biorthogonal spline-wavelet bases on the interval where
both primal and dual wavelets have compact support. In [13, 14, 19, 23], a local
support of dual wavelets is not required which enables the construction of wavelets
that have smaller supports and significantly smaller condition numbers than wave-
lets of the same type but with local duals. Another advantage is the simplicity of
the construction. In [17], we constructed wavelets where the corresponding matrices,
arising from discretization of second-order differential equations with coefficients that
are piecewise polynomials of degree at most four on uniform grids, are sparse and not
only quasi-sparse as for most wavelet bases. We used the constructed bases for solving
various types of operator equations, e.g. Poisson’s equation, the Helmholtz equation,
a fourth-order boundary value problem, and the Black-Scholes equation with two state
variables. We also applied the constructed bases for option pricing under Kou’s dou-
ble exponential jump-diffusion option pricing model which is represented by a partial
integro-differential equation.
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Introduction

Wavelet bases and the fast wavelet transform are a powerful and useful tool for sig-
nal and image analysis, detection of singularities, data compression, and also for the
numerical solution of partial differential equations, integral equations, and integro-
differential equations. One of the most important properties of wavelets is that they
have vanishing moments. Vanishing wavelet moments ensure the so-called compres-
sion property of wavelets. This means that integrals of a product of a function and a
wavelet decay exponentially, dependent on the level of the wavelet if the function is
smooth enough in the support of the wavelet. This enables the obtainment of sparse
representations of functions as well as sparse representations of some operators, see
e.g. [2, 28, 72].

There are two main classes of wavelet based methods for the numerical solution
of operator equations. The first method is the wavelet-Galerkin method. Due to
vanishing moments, the wavelet-Galerkin method leads to sparse matrices not only
for differential equations but also for integral and integro-differential equations while
the Galerkin method with the standard B-spline basis leads to full matrices if the
equation contains an integral term. Another important property of wavelet bases is
that they form Riesz bases in certain spaces, such as Lebesgue, Sobolev or Besov
spaces. Due to this property, the diagonally preconditioned matrices arising from
discretization using the Galerkin method with wavelet bases have uniformly bounded
condition numbers for many types of operator equations.

The second class of methods are adaptive wavelet methods. We focus on adaptive
wavelet methods that were originally designed in [29, 30] and later modified in many
papers [43, 52, 67]. For a large class of operator equations, both linear and nonlin-
ear, it was shown that these methods converge and are asymptotically optimal in the
sense that the storage and the number of floating point operations, needed to resolve
the problem with desired accuracy, depend linearly on the number of parameters rep-
resenting the solution. Moreover, the method enables higher-order approximation if
higher-order spline-wavelet bases are used. The solution and the right-hand side of
the equation have sparse representations in a wavelet basis, i.e. they can be repre-
sented by a small number of numerically significant parameters. Similarly as in the
case of the wavelet-Galerkin method, the differential and integral operators can be
represented by sparse or quasi-sparse matrices. For a large class of problems, the ma-
trices arising from a discretization using wavelet bases can be simply preconditioned
by a diagonal preconditioner, and the condition numbers of these preconditioned ma-
trices are uniformly bounded. For more details about adaptive wavelet methods, see
[7, 29, 30, 43, 52, 67, 72].
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2 Introduction

The first wavelet methods used orthogonal wavelets, e.g. Daubechies wavelets or
coiflets. Their disadvantages are that the most orthogonal wavelets are usually not
known in an explicit form and their smoothness is typically dependent on the length
of the support. In contrast, spline wavelets are known in a closed form, are smoother,
and have shorter support than orthogonal wavelets with the same polynomial exact-
ness and the same number of vanishing moments. Therefore, they are preferable in
numerical methods for operator equations.

This habilitation thesis is concerned with constructions of new spline-wavelet bases
on the interval and product domains, their adaptations to boundary conditions, and
their applications. The thesis is conceived as a collection of the following eight previ-
ously published articles supplemented by commentary.

[10] Černá, D.; Finěk, V.: Construction of optimally conditioned cubic spline wave-
lets on the interval, Adv. Comput. Math. 34(2), (2011), pp. 219-252. My
contribution to this paper was 60%.

[11] Černá, D.; Finěk, V.: Cubic spline wavelets with complementary boundary con-
ditions, Appl. Math. Comput. 219(4), (2012), pp. 1853-1865. My contribution
to this paper was 60%.

[13] Černá, D.; Finěk, V.: Quadratic spline wavelets with short support for fourth-
order problems, Result. Math. 66(6), (2014), pp. 525-540. My contribution to
this paper was 60%.

[14] Černá, D.; Finěk, V.: Cubic spline wavelets with short support for fourth-order
problems, Appl. Math. Comput. 243, (2014), pp. 44-56. My contribution to
this paper was 60%.

[15] Černá, D.; Finěk, V.: Wavelet basis of cubic splines on the hypercube satisfying
homogeneous boundary conditions, Int. J. Wavelets Multiresolut. Inf. Process.
13(3), (2015), article No. 1550014. My contribution to this paper was 60%.

[17] Černá, D.; Finěk, V.: Sparse wavelet representation of differential operators
with piecewise polynomial coefficients, Axioms 6, (2017), article No. 4. My
contribution to this paper was 60%.

[19] Černá, D.; Finěk, V.: Quadratic spline wavelets with short support satisfying
homogeneous boundary conditions, Electron. Trans. Numer. Anal. 48, (2018),
pp. 15-39. My contribution to this paper was 90%.

[23] Černá, D.: Cubic spline wavelets with four vanishing moments on the interval
and their applications to option pricing under Kou model, Int. J. Wavelets
Multiresolut. Inf. Process. 17(1), (2019), article No. 1850061.

Papers [10, 11, 15] are focused on constructions of well-conditioned biorthogonal
spline wavelet bases on the interval where both primal and dual wavelets have com-
pact support. In [13, 14, 19, 23] we do not require local support of dual wavelets,



Introduction 3

which enables us to construct wavelet bases that have smaller support and have sig-
nificantly smaller condition number than wavelet bases with local duals. Moreover,
their construction is significantly simpler than constructions of wavelets with local
duals, which are typically quite long and technical. In [18], we constructed wavelets
that are orthogonal to piecewise polynomials of degree at most seven on a uniform
grid. Due to this property, matrices arising from discretization of second-order differ-
ential equations with coefficients that are piecewise polynomials of degree at most four
on uniform grids are sparse. We use the constructed bases for solving various types
of operator equations, e.g. Poisson’s equation, the Helmholtz equation, fourth-order
differential equations, and the Black-Scholes equation with two state variables. We
also applied the constructed bases for option pricing under Kou’s double exponential
jump-diffusion option pricing model. Other applications are presented in Chapter 2.

This thesis is organized as follows. In Chapter 1 we briefly review a concept
of a wavelet basis on a bounded interval, the fast wavelet transform on a bounded
domain, and two constructions of wavelet bases on product domains that are based on
tensorizing univariate wavelet bases. We also describe basic principles of the wavelet-
Galerkin method and adaptive wavelet methods. Since all the papers collected in this
thesis are concerned with constructions of quadratic or cubic spline wavelets on the
interval, in Chapter 2 we present existing constructions of such types of wavelets and
their applications.

Most of the papers presented in this thesis comes from a collaboration with my
colleague Václav Finěk. I would like to thank him for this friendly and very helpful
collaboration. Most of the presented work was done at Technical University of Liberec.
I want to express my gratitude to all of my colleagues there for all the inspiration and
help. In particular, I am grateful to Jirka Hozman and Prof. Jan Picek, who allowed
me to collaborate with them on interesting projects.
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Chapter 1

Wavelet Basis

In this chapter, we introduce the concept of a wavelet basis on the interval and prod-
uct domains, the fast wavelet transform, the wavelet-Galerkin method, and adaptive
wavelet methods.

Wavelet bases were originally constructed as orthonormal bases for the space
L2 (R) and later as Riesz bases for this space. One of the possibilities of how to
use these bases and the fast wavelet transform on a bounded domain is the extension
of a function or a signal near the boundary using for example zero padding, periodiza-
tion, or symmetrization, see e.g. [7, 8]. However, this approach can lead to boundary
effects, and it is not suitable for the numerical solution of operator equations in which
a basis has to be adapted to boundary conditions. We present another approach,
one where the wavelet bases on the real line are adapted to the interval with special
boundary functions that have to be constructed, such that the resulting basis is a
Riesz basis for a chosen space and the locality of the support, smoothness of basis
functions, the number of vanishing wavelet moments, and polynomial exactness are
preserved.

1.1 Wavelet Bases on Bounded Interval

In this section, we briefly recall the concept of a wavelet basis on a bounded interval
I ⊂ R; for more details refer to [7, 28, 31, 37, 41, 72]. Let J be at most countable
index set such that each index λ ∈ J takes the form λ = (j, k), where |λ| = j ∈ Z
denotes a level. We define

‖v‖ =

√∑

λ∈J
v2
λ, for v = {vλ}λ∈J , vλ ∈ R, (1.1)

and
l2 (J ) =

{
v : v = {vλ}λ∈J , vλ ∈ R, ‖v‖ <∞

}
. (1.2)

We use the standard notation L2 (I) for the space of all square-integrable functions
defined on I, ‖·‖ for the L2-norm, and 〈·, ·〉 for the L2-inner product. Let H ⊂ L2 (I)
be a real separable Hilbert space equipped with the inner product 〈·, ·〉H and the norm
‖·‖H . For example, H can be the Sobolev space H1

0 (I) of functions whose first weak

5



6 CHAPTER 1. WAVELET BASIS

derivatives are in L2 (I) and that vanish at boundary points. First, a wavelet basis
Ψ = {ψλ, λ ∈ J } has to be a Riesz basis for H.

Definition 1. A family Ψ = {ψλ, λ ∈ J } is called a Riesz basis of H, if the span of
Ψ is dense in H and there exist constants c, C ∈ (0,∞) such that

c ‖b‖ ≤
∥∥∥∥∥
∑

λ∈J
bλψλ

∥∥∥∥∥
H

≤ C ‖b‖ , ∀ b = {bλ}λ∈J ∈ l2 (J ) . (1.3)

We refer to the constants

cΨ = sup {c : c satisfies (1.3)} and CΨ = inf {C : C satisfies (1.3)} (1.4)

as lower and upper Riesz bounds (with respect to the H-norm), respectively, and to
the number cond Ψ = CΨ/cΨ as the condition number of Ψ. In some papers, the
squares of the norms are used in (1.3) and the Riesz bounds are defined as c2

Ψ and
C2

Ψ. Riesz basis property is crucial for a uniform boundedness of condition numbers
of the discretization matrices. The set of functions is called a Riesz sequence in H if
there exist positive constants c and C that satisfy (1.3) but the closure of this set is
not necessarily H.

We view countable sets of functions Γ,Θ ⊂ L2 (Ω) also as the column vectors and
we use the symbol 〈Γ,Θ〉H to denote the matrix

〈Γ,Θ〉H = {〈γ, θ〉H}γ∈Γ,θ∈Θ . (1.5)

It is known that the constants cΨ and CΨ satisfy

cΨ =
√
λmin (〈Ψ,Ψ〉), CΨ =

√
λmax (〈Ψ,Ψ〉), (1.6)

where λmin (〈Ψ,Ψ〉) and λmax (〈Ψ,Ψ〉) are the smallest and the largest eigenvalues of
the matrix 〈Ψ,Ψ〉, respectively. Furthermore, the functions ψλ have to be local in the
sense that

diam supp ψλ ≤ C2−|λ|, λ ∈ J , (1.7)

where the constant C does not depend on λ, and at a given level j the supports of
only finitely many wavelets overlap at any point x ∈ I.

Another desired property of a wavelet basis Ψ is its hierarchical structure, i.e. Ψ
is of the form

Ψ = Φj0 ∪
∞⋃

j=j0

Ψj, (1.8)

j0 being the coarsest level. The functions from the set Φj0 are called scaling functions,
and the functions from the set Ψj, j ≥ j0, are called wavelets on the level j. Wavelets
in the inner part of the interval called inner wavelets are typically translations and
dilations of one function ψ or several functions ψ1, . . . , ψp also called wavelets (or
mother wavelet, wavelet generator), i.e.

ψj,k (x) = 2j/2ψl
(
2jx−m

)
, (1.9)



1.2. CONSTRUCTION OF WAVELET BASES 7

for some l ∈ {1, . . . , p} and some k,m ∈ Z, k dependent on m and l. Similarly the
wavelets near the boundary are derived from functions called boundary wavelets.

Another desired property is a polynomial exactness of order M ≥ 1. This means
that the multiscale basis

ΨJ = Φj0 ∪
J⋃

j=j0

Ψj, (1.10)

j0 ≤ J , is such that spanΨJ contains all polynomials of degree at most M − 1.
Polynomial exactness determines the convergence rate of methods for the numerical
solution of operator equations.

Finally, we require that there exists L ≥ 1, such that all functions ψλ ∈ Ψj, j0 ≤ j,
have L vanishing moments, i.e.

∫

I

xk ψλ (x) dx = 0, k = 0, . . . , L− 1. (1.11)

Vanishing wavelet moments are important for sparse representation of functions
and operators.

The concept of a wavelet basis is not unified in the mathematical literature and
some of the above conditions can be omitted or generalized.

1.2 Construction of Wavelet Bases

The wavelet basis Ψ is typically constructed using a multiresolution analysis.

Definition 2. A sequence {Vj}∞j=j0 of closed linear subspaces Vj ⊂ H is called a
multiresolution analysis, if these subspaces are nested and their union is dense in H,
i.e.,

Vj0 ⊂ Vj0+1 ⊂ . . . ⊂ Vj ⊂ Vj+1 ⊂ . . . ⊂ H,
∞⋃

j=j0

Vj = H.

Let the set
Φj = {φj,k, k ∈ Ij}

be a basis for Vj that is local and uniformly stable, i.e. the condition number of Φj is
bounded and the bound is independent on j. The set Φj is called a scaling basis and
similarly as functions from Φj0 , the functions φj,k ∈ Φj are called scaling functions.

In the papers presented in this thesis the scaling functions are quadratic B-splines
[10, 13, 19], cubic B-splines [10, 11, 14, 15, 23], or Hermite cubic splines [17].

Let Wj be complement spaces such that Vj ⊕ Wj = Vj+1, where ⊕ denotes a
direct sum, and let the sets Ψj be uniformly stable bases of Wj. Then, wavelets are
constructed as the elements of a basis Ψj such that they have vanishing moments.

Now, using Φj and Ψj we define Ψ by (1.8). However, the fact that the spaces
Vj form a multiresolution analysis, the scaling bases Φj are uniformly stable, and the
one-level wavelet bases Ψj are uniformly stable, does not imply that Ψ is a Riesz
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basis for H. In the next section, we discuss several approaches to prove the Riesz
basis property (1.3).

If Ψ is a Riesz basis of H, then there exists a unique Riesz basis Ψ̃ that is biorthog-
onal to Ψ, i.e. 〈

Ψ, Ψ̃
〉
H

= I, (1.12)

where I is the (infinite) identity matrix. The basis Ψ̃ is called the dual basis to Ψ.
The dual basis generates a dual multiresolution spaces Ṽj, j ≥ j0.

In [10, 11], we constructed dual bases that are local. However, in some applications
such as solving linear PDEs, the dual basis is not directly used. Therefore, in [13,
14, 15, 17, 19, 23] we were concerned with constructions of wavelet bases without
requiring locality of duals, but with a shorter support or some special properties.

1.3 Proofs of Riesz Basis Property

While one can employ the Fourier transform to prove the Riesz basis property (1.3)
for the space L2 (R), the proof of the Riesz basis property for the space H ⊂ L2 (I) is
usually more complicated. We present here several possible approaches that we used
in papers collected in this thesis.

In [10, 11, 15, 17], the proof of the Riesz basis property (1.3) for Ψ is based on the
following theorem [28, 36, 45].

Theorem 3. Let j0 ∈ N and for j ≥ j0 let Vj and Ṽj be subspaces of the space
H ⊂ L2 (I) such that Vj ⊂ Vj+1, Ṽj ⊂ Ṽj+1, and dim Vj = dim Ṽj < ∞. Let Φj be
bases of Vj, Φ̃j be bases of Ṽj, and Ψj be bases of Ṽ ⊥j ∩ Vj+1, where Ṽ ⊥j denotes the

L2-orthogonal complement of Ṽj in H. Moreover, let the Riesz bounds with respect to
the L2-norm of Φj, Φ̃j, and Ψj, be uniformly bounded. Let Ψ be composed of Φj0 and
Ψj, j ≥ j0, as in (1.8). Furthermore, we assume that

Γj =
〈

Φj, Φ̃j

〉
(1.13)

is invertible and that the spectral norm of Γ−1
j is bounded independently on j. In

addition, for some positive constants C, γ and d, such that γ < d, let

inf
vj∈Vj

‖v − vj‖L2(I) ≤ C2−jt ‖v‖Ht(I) , v ∈ H t (I) ∩H, 0 ≤ t ≤ d, (1.14)

and

‖vj‖Hs(I) ≤ C2js ‖vj‖L2(I) , vj ∈ Vj, 0 ≤ s < γ, (1.15)

and similarly let (1.14) and (1.15) hold for γ̃ and d̃ on the dual side. Then

{
ψλ/ ‖ψλ‖Hs(I) , ψλ ∈ Ψ

}
(1.16)

is a Riesz sequence in Hs (I) for s ∈ (−γ̃, γ).
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Estimates of type (1.14) indicating the approximation properties of Vj are called
direct or Jackson estimates. Estimates like (1.15) describe smoothness properties of
Vj, and they are often referred to as inverse or Bernstein estimates. The parameters in
these estimates depend on the polynomial exactness, the number of vanishing wavelet
moments, and the smoothness of basis functions. For more details, refer to [28, 36, 41].

In [10, 11], we constructed several biorthogonal bases for the spaces L2 (I), H1
0 (I)

and H2
0 (I), such that functions from these bases are local. These constructions were

quite technical and complicated, but due to biorthogonality and locality of the bases,
the proof was relatively simple using Theorem 3, because the biorthogonality property
implies that Γj is the identity matrix.

In [15, 17], we constructed spline-wavelet bases using dual multiresolution spaces
Ṽj, but we did not construct corresponding biorthogonal bases because these do not
have local supports. In these cases, the main part of the proof is finding appropriate
bases Φ̃j of the spaces Ṽj and proving that the matrices Γj have desired properties.

In [13, 14, 19], we constructed wavelet bases without using dual spaces. Thus
Theorem 3 can not be used for the proof of the Riesz basis property. In these papers,
we employed the theory developed in [57], summarized in the following theorem.

Theorem 4. Let Ω be a bounded domain and let the spaces Vj, j ≥ j0, form a
multiresolution analysis for the space L2 (Ω). Let Hq for fixed q > 0 be a linear
subspace of L2 (Ω) that is itself a normed linear space and assume that there exist
positive constants A1 and A2 such that

a) If f ∈ Hq has decomposition f =
∑

j≥j0 fj, fj ∈ Vj then

‖f‖2
Hq
≤ A1

∑

j≥j0
2qj ‖fj‖2 ; (1.17)

b) For each f ∈ Hq there exists a decomposition f =
∑

j≥j0 fj, fj ∈ Vj, such that

∑

j≥j0
2qj ‖fj‖2 ≤ A2 ‖f‖2

Hq
. (1.18)

Furthermore, suppose that Pj is a linear projection from Vj+1 onto Vj, Wj is the kernel
space of Pj, Φj = {φj,k, k ∈ Ij} are Riesz bases of Vj with respect to the L2–norm with
uniformly bounded condition numbers, and Ψj = {ψj,k, k ∈ Ij} are Riesz bases of Wj

with uniformly bounded condition numbers. If there exist constants C and p such that
0 < p < q and

‖PmPm+1 . . . Pn−1‖ ≤ C 2p (n−m), (1.19)

‖·‖ being the spectral norm, then

{
2−j0qφj0,k, k ∈ Ij0

}
∪
{

2−jqψj,k, j ≥ j0, k ∈ Ij
}

(1.20)

is a Riesz basis of Hq.

To employ Theorem 4, one has to find appropriate projectors Pj and prove the
inequality (1.19). The advantage of this approach is that it enables proving the Riesz
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basis property in the Sobolev spaces Hs for values of s in some range (s1, s2), where s1

can be positive. Therefore, it is possible to use this theorem to prove the Riesz basis
property in Hs even if the Riesz basis property does not hold in L2. For example in
[19], we used this theorem to prove that the constructed set is a Riesz basis in the
spaces H1

0 (I) and H1
0 (I2) for I = (0, 1), but numerical experiments show that the

L2-condition numbers increase with the level and they seem to be unbounded. This
suggests that the basis on I is not a Riesz basis in the space L2 (I).

In [23], we used a completely different approach and derived a condition under
which a union of Riesz sequences is also a Riesz sequence.

Theorem 5. Let I and J be at most countable index sets, {fk}k∈I be a Riesz sequence
with a Riesz lower bound cf , and {gl}l∈J be a Riesz sequence with a Riesz lower bound
cg. Furthermore, let the matrix G with entries Gk,l = 〈fk, gl〉, k ∈ I, l ∈ J , satisfy

‖G‖ / (cfcg) < 1. (1.21)

Then {fk}k∈I ∪ {gl}l∈J is a Riesz sequence with a Riesz lower bound c, and

c ≥
√

1− ‖G‖
cfcg

·min (cf , cg) . (1.22)

In [23], we proved the Riesz basis property separately for inner wavelets and for
boundary wavelets, and then we verified the condition (1.21) to show that their union
is also a Riesz basis.

1.4 Fast Wavelet Transform

As we have already mentioned, we view the sets of functions such as Φj and Ψj also as
columns vectors. The nestedness of the spaces Vj implies the existence of a refinement
matrix Mj,0 such that

Φj = MT
j,0Φj+1. (1.23)

Since Wj ⊂ Vj+1, there exists a matrix Mj,1 such that

Ψj = MT
j,1Φj+1. (1.24)

Applying (1.23) and (1.24) several times we find out that the multiscale basis ΨJ

defined by (1.10) and the scaling basis ΦJ are interrelated by the transform TJ such
that

ΨJ =




Φj0

Ψj0

Ψj0+1
...

ΨJ−1




= TT
JΦJ , (1.25)

and the transform TJ can be expressed by

TJ = TJ,J−1 . . .TJ,j0 , where TJ,j =

(
Mj 0
0 I

)
, Mj = (Mj,0,Mj,1) , (1.26)
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where 0 and I are zero and identity matrices, respectively, of appropriate sizes. This
transform is often called the fast wavelet transform (FWT).

Since VJ = span ΦJ = span ΨJ , any function f ∈ VJ has a single-scale representa-
tion

f = cTJΦj =
∑

k∈IJ
cJ,kφJ,k, cJ = {cJ,k}k∈IJ , (1.27)

and also a multiscale representation

f = cTj0Φj0 + dTj0Ψj0 + . . .+ dTJ−1ΨJ−1 =
∑

k∈Ij0

cj0,kφj0,k +
J−1∑

j=j0

∑

k∈Jj
dj,kψj,k, (1.28)

where cj0 = {cj0,k}k∈Ij0 and dj = {dj,k}k∈Jj . Then, the vectors cJ and

dJ =
(
cTj0 ,d

T
j0
, . . .dTJ−1

)T
(1.29)

are also interrelated by the fast wavelet transform TJ , i.e.

cJ = TJd
J , (1.30)

because from (1.23) and (1.24) we obtain

cTj Φj + dTj Ψj = (Mj,0cj + Mj,1dj)
T Φj+1 = cTj+1Φj+1. (1.31)

Schematically TJ applied on dJ can be visualized as a pyramid scheme,

Mj0,0
Mj0+1,0 Mj0+2,0 MJ−1,0

cj0 −→ cj0+1 −→ cj0+2 −→ . . . cJ−1 −→ cJ .
Mj0,1↗ Mj0+1,1↗ Mj0+2,1↗ MJ−1,1↗

dj0 dj0+1 dj0+2 . . . dJ−1

Due to the local support of basis functions, the matrices Mj are sparse and they
can be applied in O (Nj) operations, where Nj = dim Vj. Thus, the fast wavelet
transform can be applied in O (NJ) operations when using a pyramid scheme.

Since the matrix Mj represents a basis transformation, its inverse exists. Let us
define

Gj =
(
Gj,0,Gj,1

)
= M−1

j , (1.32)

where the matrix Gj,0 is of the size #Ij+1 × #Ij and the matrix Gj,1 is of the size
#Ij+1 ×#Jj. Then

cj = GT
j,0cj+1, dj = GT

j,1cj+1. (1.33)

Thus, the inverse fast wavelet transform (IFWT) T−1
J has the form

T−1
J = T−1

J,j0
. . .T−1

J,J−1, where T−1
J,j =

(
Gj 0
0 I

)
. (1.34)

The corresponding pyramid scheme is then
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GJ−1,0 GJ−2,0 GJ−3,0 Gj0,0cJ −→ cJ−1 −→ cJ−2 −→ . . . cj0+1 −→ cj0 .
↘GJ−1,1 ↘GJ−2,1 ↘GJ−3,1 ↘Gj0,1

dJ−1 dJ−2 dJ−3 . . . dj0

Clearly, different wavelet bases lead to different fast wavelet transforms. As men-
tioned above, FWT can be used to transform a scaling basis to a multiscale wavelet
basis and vectors of multi-scale coefficients to vectors of single-scale coefficients. Fur-
thermore, if A is a differential or an integral operator, then FWT can be used to
transform the discretization matrix in a scaling basis 〈AΦJ ,ΦJ〉 to a discretization
matrix with respect to a multiscale basis 〈AΨJ ,ΨJ〉 by

〈AΨJ ,ΨJ〉 = TT
J 〈AΦJ ,ΦJ〉TJ .

In signal processing FWTs and IFWTs are widely used for signal analysis, signal
compression and decompression. FWTs corresponding to a wavelet basis adapted to
a bounded interval have an advantage that the boundary wavelets also have vanishing
moments and thus the boundary effects that can occur when using the standard
approach based on symmetrization of the signal are reduced. We studied this issue in
[8, 9], where we used the fast wavelet transforms corresponding to wavelet bases that
we constructed in [10] for image compression.

1.5 Wavelet Bases on Product Domains

There are several approaches for constructing a multi-dimensional wavelet basis on
a tensor product domain, for example an isotropic approach [57, 72], an anisotropic
approach [35, 45] or a sparse tensor product [44]. In this section, we recall an isotropic
and an anisotropic approach. Both constructions are based on tensorizing univariate
wavelet bases and they preserve their important properties.

We consider a product domain � = (a1, b1)×(a2, b2)×. . .×(ad, bd), where ai, bi ∈ R,
ai < bi, i = 1, . . . , d, d ∈ N. The construction usually starts with a Riesz basis

Ψ = {φj0,k, k ∈ Ij0} ∪ {ψj,k, k ∈ Jj, j ≥ j0} (1.35)

for the space H ⊂ Hs (0, 1) for s in some interval (s1, s2). First, we use a simple
linear transformation to obtain a wavelet basis for the space Hs (ai, bi). Let us define

φij,k (x) = φj,k

(
x− ai
bi − ai

)
, ψij,k (x) = ψj,k

(
x− ai
bi − ai

)
, x ∈ (ai, bi) , (1.36)

then
Ψ(i) =

{
φij0,k, k ∈ Ij0

}
∪
{
ψij,k, k ∈ Jj, j ≥ j0

}
(1.37)

forms a Riesz basis in Hs (ai, bi).

Isotropic wavelet bases. We define the multivariate scaling functions by

φj,k (x) = Πd
l=1φ

l
j,kl

(xl) , x = (x1, . . . , xd) ∈ �, (1.38)
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with k = (k1, . . . , kd) now being a multi-index, k ∈ I�j = Ij × . . .× Ij. We introduce
the abbreviation

Jj,e =

{
Jj, e = 1,
Ij e = 0,

(1.39)

i.e. the parameter e allows distinguishing between scaling functions and wavelets.
Furthermore, we denote

E = {e = (e1, . . . , ed) , ei ∈ {0, 1} , e 6= (0, 0, . . . , 0)} , (1.40)

and
J �
j,e = Jj,e1 × . . .× Jj,ed , J �

j =
⋃

e∈E
Jj,e. (1.41)

For any e = (e1, . . . , ed) ∈ E, j ≥ j0, and k = (k1, . . . , kd) ∈ J �
j , we define the

multivariate wavelet

ψλ (x) = Πd
l=1ψ

l
j,el,kl

(xl) , x = (x1, . . . , xd) ∈ �, λ = (j, e, k) , (1.42)

where

ψlj,el,kl =

{
φlj,kl , el = 1,
ψlj,kl , el = 0.

(1.43)

The wavelet basis on the hyperrectangle � is then given by

Ψ =
{
ψj,e,k, e ∈ E, k ∈ J �

j , j ≥ j0

}
∪
{
φj0,k, k ∈ I�j

}
. (1.44)

We denote the multiscale basis containing wavelets up to level J as

ΨJ =
{
ψj,e,k, e ∈ E, k ∈ J �

j , j0 ≤ j ≤ J
}
∪
{
φj0,k, k ∈ I�j

}
. (1.45)

If we start with a Riesz basis in the space L2 (0, 1), then the resulting basis is a
Riesz basis in the space L2 (Ω). The Riesz basis property in the space Hs (Ω) can be
verified using e.g. Theorem 4. Furthermore, this approach preserves the regularity of
basis functions, the full degree of polynomial exactness, vanishing wavelet moments,
as well as locality of bases functions. For more details see e.g. [57, 72]. In this thesis,
we constructed isotropic wavelet bases and used them for the numerical solution of
differential equations in [10, 11, 13, 14, 15, 19].

Anisotropic wavelet basis. Let Ψ(i) be a wavelet basis on the interval (ai, bi)
defined by (1.36) and (1.37). For notational simplicity, we denote Jj0−1 = Ij0 and

ψij0−1,k = φij0,k, k ∈ Jj0−1, J = {(j, k) , j ≥ j0 − 1, k ∈ Jj} . (1.46)

Then Ψ(i) can also be expressed as

Ψ(i) =
{
ψij,k, j ≥ j0 − 1, k ∈ Jj

}
=
{
ψiλ, λ ∈ J

}
. (1.47)

Recall that for the index λ = (j, k) we denote |λ| = j. We use u ⊗ v to denote the
tensor product of functions u and v, i.e. (u⊗ v) (x1, x2) = u (x1) v (x2). For d ≥ 1 we
generalize the definition of the index set J :

J = {λ = (λ1, . . . , λd) : λi = (ji, ki) , ji ≥ j0 − 1, ki ∈ Jji} . (1.48)
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We define multivariate basis functions as

ψλ = ⊗di=1ψ
i
λi
, λ = (λ1, . . . , λd) ∈ J . (1.49)

Then |λ| = maxi=1,...,d |λi| represents a level. We also denote [λ] = mini=1,...,d |λi|.
Due to locality of the one-dimensional basis functions, i.e. diam suppψiλi ≤ Ci2

−|λi|,
we have

diam suppψλ ≤

√√√√
d∑

i=1

C2
i 2−2|λi| ≤ C

√
d2−[λ], C = max

i=1,...,d
Ci. (1.50)

In this case, basis functions are not local in the sense that diam suppψλ ≤ C2−|λ|, but
only in the sense that (1.50) holds. We define the set Ψ = {ψλ, λ ∈ J }, and the set

ΨJ = {ψλ : λ = (λ1, . . . , λd) , |λi| ≤ J} . (1.51)

If we start with a univariate Riesz basis in the space L2 (0, 1), then the set Ψ is
a Riesz basis of the space L2 (Ω), see e.g. [48]. This approach also preserves the
properties of the univariate basis, such as polynomial exactness, smoothness of basis
functions, and vanishing moments, but as already mentioned the resulting functions
are local only in the sense of (1.50). For more details see [35, 45, 48]. In this thesis,
we used anisotropic wavelet bases in [15, 17, 19].

1.6 Wavelet-Galerkin Method

In this section, we recall the wavelet-Galerkin method for solving operator equations.
Let Ω be a bounded domain, and let H ⊂ L2 (Ω) be a separable Hilbert space with
the norm ‖·‖H . We denote a dual space to H as H ′ and by 〈·, ·〉 we denote a duality
product. For an operator A : H → H ′ and given f ∈ H ′ we consider an operator
equation

Au = f. (1.52)

We define a corresponding bilinear form a : H ×H → R by

a (u, v) = 〈Au, v〉 ∀u, v ∈ H. (1.53)

The variational problem becomes: Given f ∈ H ′, find u ∈ H such that

a (u, v) = 〈f, v〉 ∀ v ∈ H. (1.54)

Let Ψ be a family of functions such that Ψ normalized in the H-norm is a wavelet
basis of H. Let Ψk ⊂ Ψ be a multiscale basis of the form (1.10) that contains scaling
functions at a coarsest level j0 and wavelets up to level k. Let us assume that the
spaces Xk = span Ψk form a multiresolution analysis in H.

The Galerkin formulation of (1.54) reads as: Find uk ∈ Xk such that

a (uk, v) = 〈f, v〉 ∀v ∈ Xk. (1.55)
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We focus on the case where the bilinear form a is continuous and coercive. Recall
that a bilinear form a : H ×H → R is called continuous if there exists a constant C
such that

|a (u, v)| ≤ C ‖u‖H ‖v‖H ∀u, v ∈ H, (1.56)

and a is called coercive if there exists a constant α > 0 such that

a (u, u) ≥ α ‖u‖2
H ∀u ∈ H. (1.57)

Under these assumptions, the existence and uniqueness of the solutions of equa-
tions (1.54) and (1.55) are a consequence of the Lax–Milgram theorem, see [27, 62].

Theorem 6. Lax–Milgram
Let H be a Hilbert space, let the bilinear form a : H × H → R be continuous and
coercive with constants C and α as in (1.56) and (1.57), respectively, and let f ∈ H ′.
Then the solution u of the equation

a (u, v) = 〈f, v〉 ∀ v ∈ H (1.58)

exists and is unique, and the stability estimate

‖u‖H ≤
C

α
‖f‖H′ (1.59)

holds.

The Lax–Milgramn theorem guaranties existence and uniqueness for solution u of
the variational problem (1.54) as well as the existence and uniqueness of the approx-
imate solution uk by the Galerkin method.

Now, we study the convergence rate of the Galerkin method.

Theorem 7. Céa’s lemma
If the bilinear form a : H ×H → R is continuous and coercive with constants C and
α as in (1.56) and (1.57), then

‖u− uk‖H ≤
C

α
inf
v∈Xk
‖u− v‖H . (1.60)

Hence, Céa’s lemma shows that the convergence rate of the Galerkin method
depends on the approximation power of the spaces Xk. The term

Ek (u) = inf
v∈Xk
‖u− v‖H (1.61)

is known as the error of the best approximation in H. The study of this error is a
subject of approximation theory. Nowadays, approximation order is known for several
kinds of spaces Xk.

For instance, one starts with a univariate wavelet basis corresponding to a mul-
tiresolution analysis formed by spaces

Vk =

{
v ∈ Cm (0, 1) : v|( l

2k
, l+1

2k
) ∈ Πr

(
l

2k
,
l + 1

2k

)
, l = 0, . . . , 2k − 1

}
, (1.62)
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where 0 < m < r, Πr (a, b) is the space of all polynomials on (a, b) of degree less than r,
and Cm (0, 1) is the space of m-times continuously differentiable functions on (0, 1). If
then multiscale bases Ψk on Ω are constructed using an isotropic or anisotropic tensor
product of bases of the spaces Vk, then the spaces Xk = span Ψk satisfy

inf
v∈Xk
‖u− v‖Hs ≤ C2−(r−s)k |u|Hr , (1.63)

for any u ∈ Hr (Ω) provided that 0 ≤ s < r and Xk is contained in Hs (Ω). Here,
we view Hs (Ω) for s = 0 as the space L2 (Ω). Similar results hold for spaces of
piecewise polynomial functions incorporating boundary conditions. Hence, r = 3 for
the Galerkin method with quadratic spline wavelets from [13, 19], and r = 4 for the
Galerkin method with cubic spline wavelets from [11, 14, 15, 17, 23].

From Theorem 6 and Theorem 7, the convergence rate depends on the chosen
discretization spaces and not directly on the chosen bases of these spaces. Since a
scaling basis Φk generates the same spaces as a multiscale basis Ψk, it can be expected
that the error will be similar. However, the Galerkin method with a wavelet basis,
called the wavelet-Galerkin method, has several advantages. This method seems to be
superior to classical methods especially for operator equations with an integral term,
because the discretization matrices can be approximated by sparse matrices while
most other methods lead to full matrices, see [2, 23, 25]. The second advantage is
that a simple diagonal preconditioner is optimal in the sense that diagonally rescaled
discretization matrices have uniformly bounded condition numbers. This affects the
number of iterations needed to resolve the problem with a desired accuracy. Finally,
the solution has a sparse representation in a wavelet basis, which can be used for
adaptive versions of the wavelet-Galerkin method that are based on analysis of the
size of wavelet coefficients, see e.g. [72], or on a priori knowledge of singularity regions
as we did in [20].

We write the function uk as

uk =
∑

ψλ∈Ψk

ckλψλ. (1.64)

Let the matrix Ak and the vector fk have entries

Ak
µ,λ = a (ψλ, ψµ) , fkµ = 〈f, ψµ〉 , ψλ, ψµ ∈ Ψk, (1.65)

and ck be the column vector of coefficients ckλ. Substituting (1.64) into (1.55), we
obtain the system

Akck = fk. (1.66)

Preconditioning. We apply the standard Jacobi diagonal preconditioning to the
system (1.66). Let Dk be a diagonal matrix with diagonal elements

Dk
λ,λ =

√
Ak
λ,λ =

√
a (ψλ, ψλ). (1.67)

Then, we obtain the preconditioned system

Ãkc̃k = f̃k (1.68)
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with

Ãk =
(
Dk
)−1

Ak
(
Dk
)−1

, f̃k =
(
Dk
)−1

fk, c̃k = Dkck. (1.69)

The resulting system can be large, and therefore it is usually solved by an appropriate
iterative method such as the method of generalized residuals or, in the case where the
system matrix is symmetric and positive definite, one can use the conjugate gradient
method.

Due to coercivity of the bilinear form a, the matrices Ãk have uniformly bounded
condition numbers (cond), i.e. there exists a constant C such that cond Ãk ≤ C for
all k ≥ j0, see [28, 35, 52].

Sparsity of discretization matrices. If A is a differential operator, then it may
be convenient to compute the discretization matrix 〈AΦJ ,ΦJ〉 in a scaling basis first,
because this matrix is banded. However, the condition numbers of these matrices are
not uniformly bounded. Therefore, we use the fast wavelet transform on its rows and
columns to transform it to the matrix Ak for a wavelet basis. Using this approach,
wavelets are not used directly in the computation, and the fast wavelet transform can
be viewed together with diagonal rescaling (1.69) as optimal preconditioning of the
system. For more details see e.g. [15, 72].

If A is an integral or integro-differential operator, then a discretization matrix in
a scaling basis is typically full, and in this case, it is more convenient to compute
entries of the matrix Ak directly rather than to use FWT. For a large class of integral
operators this matrix can be approximated by a sparse or quasi-sparse matrix. Several
estimates for decay estimates of these matrices are known [2, 23] that make it possible
to compute only significant entries of these matrices.

We used the wavelet-Galerkin method in [15, 19, 23]. In [15, 19] we used a modi-
fication of the wavelet-Galerkin method called multilevel Galerkin method which first
computates the solutions of (1.68) on some coarse scale and then use this solution to
define an initial vector of the iterative method when solving the discrete problem on
some finer scale. In [23] we used the Crank-Nicolson scheme for time discretization
and the wavelet-Galerkin method for spatial discretization of the parabolic partial
integro-differential equation representing Kou’s model for option pricing. In [20], we
proposed an adaptive version of the wavelet-Galerkin method for the numerical solu-
tion of differential equation with the Dirac measure on the right-hand side.

1.7 Adaptive Wavelet Methods

We briefly review a class of adaptive methods that were originally designed by A.
Cohen, W. Dahmen, and R. DeVore in [29, 30] and later modified in many papers
[7, 12, 33, 34, 41, 43, 53, 67, 72]. The results presented in this section are known and
fuller details can be found in these papers.

While the classical adaptive methods use refining a mesh according to a posteriori
local error estimates, the wavelet approach is different and comprises the following
steps:
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• We start with a variational formulation but instead of its finite dimensional
approximation as in the case of the wavelet-Galerkin method, we expand the
solution in a wavelet basis and transform the continuous problem into an infinite-
dimensional l2–problem.

• We propose an iteration scheme for the infinite-dimensional problem.

• We replace all infinite-dimensional quantities by finitely supported ones, and we
design the routine for an approximate multiplication of an infinite matrix and
a finite vector.

As in the previous section, we consider the problem (1.52) and the corresponding
variational formulation (1.54). We focus on the case that the bilinear form a : H×H →
R is symmetric, continuous, and coercive. Then, by the Lax-Milgram theorem, the
problem (1.54) has a unique solution.

Let Ψ, when normalized with respect to the H-norm, be a wavelet basis in H. Let
D be a bi-infinite diagonal matrix with diagonal elements

Dλ,λ =
√
a (ψλ, ψλ), ψλ ∈ Ψ. (1.70)

Then the original equation (1.52) can be reformulated as an equivalent bi-infinite
matrix equation

Ac = f , (1.71)

where A = D−1 〈AΨ,Ψ〉D−1 is a diagonally preconditioned discretization matrix,
u = cTD−1Ψ, and f = D−1 〈f,Ψ〉. Then u solves (1.52) if and only if c solves the
matrix equation (1.71). Moreover, the condition number of the matrix A is finite.

The simplest convergent iteration for the l2-problem (1.71) is a Richardson itera-
tion which has the following form

c0 = 0, cn+1 = cn + ω (f −Acn) , n = 0, 1, . . . . (1.72)

The method is convergent if 0 < ω < 2/λmax (A), where λmax (A) is the largest
eigenvalue of A. It is known that the optimal relaxation parameter ω and the corre-
sponding estimate of the error reduction are given by

ω =
2

λmin (A) + λmax (A)
, ρ =

cond (A)− 1

cond (A) + 1
, (1.73)

where λmin (A) is the smallest eigenvalue of A. Then,

‖cn+1 − c‖ ≤ ρ ‖cn − c‖ . (1.74)

Hence, the small condition number of A, which depends on the chosen wavelet
basis, guaranties the small value of a reduction parameter ρ.

Structure of the discretization matrix. Since the matrices Ãk defined by
(1.69) arising from discretization using the wavelet-Galerkin method are submatrices
of biinfinite matrix A, the matrices Ãk and A have similar structure. For differential
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equations the discretization matrices typically have a so-called finger pattern, see
e.g. [17]. Therefore these matrices are quasi-sparse, i.e. they have O (N logN)
nonzero entries, where N × N is the size of the matrix. For equations containing
the integral term the discretization matrices can be approximated by sparse or quasi-
sparse matrices. In some papers, e.g. [17, 45], a construction of a wavelet basis was
proposed which leads to discretization matrices that are truly sparse, i.e. they have
O (N) nonzero entries.

Coarsening of vectors. To control the number of degrees of freedom in the
algorithm, one needs a routine for approximation of a vector v by its N -term approx-
imation, i.e. vN is obtained by retaining the N largest components of v. It can be
done simply by sorting and thresholding as in the following algorithm.

COARSE[v, N ] → vN
1. Sort |vλ|, λ ∈ J , in descending order and denote the resulting vector as ṽ.

2. Denote the N -th element of ṽ as P.

3. If |vλ| ≥ P then set (vN)λ = vλ, else set (vN)λ = 0.

The sorting of all nonzero elements of v requires Nv logNv arithmetic operations,
where Nv = #supp v. However, it is possible to avoid sorting to obtain the algorithm
with linear complexity. Such algorithm uses so-called binning and can be found in
Stevenson [67].

Approximation of the right-hand side. We assume that it is possible to
compute the vector f = D−1 〈f,Ψ〉 of wavelet coefficients of the right-hand side f ∈ H ′
with a desired accuracy. More precisely, we require that for any ε > 0, there exists a
finitely supported vector fε ∈ l2 (J ), such that

‖f − fε‖ ≤ ε. (1.75)

In the following, the computation of fε will be referred to as the routine RHS [f , ε]→
fε. This can be realized by computing a highly accurate approximation to f as a pre-
processing step and then applying the routine COARSE to this finitely supported
array of coefficients.

Matrix vector multiplication. Solution of the equation (1.71) by some iterative
method requires a multiplication of the infinite-dimensional matrix A with a finitely
supported vector v = {vλ}λ∈J . There are several routines available. Here, we present
the routine APPLY that we proposed in [12]. The idea is the following: We truncate
A in scale by zeroing its entries Aλ,µ whenever ||λ|−|µ|| > k, k ∈ N∪{0}, and denote
the resulting matrix by Ak. Let us denote SAk = max{|Aλ,µ|, ||λ| − |µ|| = k}. Then
we multiply the matrix A0 with vector entries that are greater than given tolerance
ε, the matrix A1 −A0 with vector entries that are greater than ε/SA1, . . . , and the
matrix AK −AK−1 with vector entries that are greater than ε/SAK. In the case that
SAk = 0 for some k, we can formally define ε/SAk = ∞ and no multiplications with
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matrix Ak −Ak−1 are necessary. More precisely, let

zεk =

{
vλ : |vλ| >

ε

SAk

}
, zε−1 = 0, vεk = zεk − zεk−1, w̃ε =

K∑

k=0

AK−kv
ε
k. (1.76)

The parameter K is the smallest number such that vεk is an empty set for all
k > K. In [12] we proposed two algorithms based on these ideas. We present one of
them below.

APPLY [A, v, ε] → wε

For j ∈ N ∪ {0}, let ej be such that ‖A−Aj‖ ≤ ej.
1. Set SAk := max{|Aλ,µ|, ||λ| − |µ|| = k}.
2. Set G = 1.1 and δ = blogG εc, where b·c denotes the floor function. Compute

w1 := w̃Gδ and w2 := w̃2Gδ according to (1.76).
3. While ‖w1 −w2‖ > ε

δ := δ − 1
Compute w1 := w̃Gδ and w2 := w̃2Gδ using (1.76).

end while.
4. wε := w1.

Algorithm SOLVE. Since we consider here a class of adaptive methods, there
are many algorithms representing these methods. We present one example of such an
algorithm that we used in [19].

The method insists in solving the infinite preconditioned system (1.71) with Richard-
son iterations. We compute the relaxation parameter ω and the error reduction factor
ρ by (1.73). Then we set θ = 0.3 and K ∈ N such that 2ρK/θ < 0.6.

The resulting algorithm is of the form:

SOLVE [A, f, ε] → cε
1. Set j := 0, u0 := 0, and ε0 ≥ ‖c‖2.
2. While εj > ε do

z0 := cj,
For l = 1, . . . , K do

zl := zl−1 + ω
(
RHS[f ,

εjρ
l

2ωK
]−APPLY[A, zl−1,

εjρ
l

2ωK
]
)

,

end for,
j := j + 1

εj :=
2ρKεj−1

θ
,

cj := COARSE[zK , (1− θ) εj],
end while,
cε := cj.

It is known that the coefficients of a function in the wavelet basis are small in
regions where the function is smooth and large in regions where the function has
some singularity or a large gradient. Since we work with a sparse representation of
the right-hand side and a sparse representation of the vector representing the solution,
the method is adaptive.
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For analysis of the method we refer to e.g. [30, 41, 72]. Roughly speaking, the
methods converge with the same rate as the wavelet-Galerkin method, but for a wider
class of functions, because the error estimates are derived in Besov spaces and not only
in Sobolev spaces. Other advantages are a small number of parameters representing
the solution with desired accuracy, asymptotical optimality in the sense that the
number of floating point operations depend linearly on the number of degrees of
freedom, optimality of diagonal preconditioner, a sparse structure of matrices also for
equations containing an integral term, and a higher-order convergence if higher-order
basis functions are used.

In this thesis, we used adaptive wavelet methods in [10, 11, 13, 14, 17, 19].
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Chapter 2

Constructions of Quadratic and
Cubic Spline-Wavelet Bases

Since this thesis is a collection of eight articles that are all concerned with construc-
tions of quadratic or cubic spline-wavelet bases on the interval, we review here existing
constructions of such types of bases, discuss their advantages and disadvantages, and
comment on the papers presented in this thesis. We also review applications of these
bases.

We focus on concrete quadratic and cubic spline wavelet bases for which the Riesz
basis property was proven. There also exist general methods for construction of
wavelet bases on the interval, e.g. [51], spline wavelets without adaptation to bound-
ary conditions and without the proof of the Riesz basis property, e.g. [59, 66], and
quadratic and cubic finite element wavelets [39].

2.1 Quadratic Spline-Wavelet Bases

In [38, 40], W. Dahmen, A. Kunoth and K. Urban proposed a construction of a
spline-wavelet biorthogonal wavelet basis on the interval. The inner wavelets were
the same as wavelets from [32], where wavelet bases were constructed on the whole
real line. The order of spline is any N ≥ 1, and the number of vanishing moments
is L ≥ N such that N + L is even. Both the primal and dual wavelets are local.
A disadvantage of these bases is their relatively large condition number. Therefore
many modifications of this construction were proposed, see e.g. [1, 3, 5, 70]. The
construction by M. Primbs [63] outperforms previous constructions for the linear and
quadratic spline-wavelet bases with respect to their conditioning. In [8, 10, 43] the
construction was significantly improved in the case of cubic spline wavelet basis, but
the condition numbers of quadratic spline-wavelet bases was comparable to those
constructed by M. Primbs. In the case of quadratic spline wavelet basis adapted to
homogeneous Dirichlet boundary conditions, these bases are even the same up to a
normalization, see also the comparison in [19]. In [46], a method for a construction
of the L2-orthogonal wavelet basis on the real line was proposed starting from a non-
orthogonal wavelet basis. In [64], the L2-orthogonal spline-wavelet bases on the unit

23
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interval were constructed using this method.
Quadratic spline wavelet bases with nonlocal duals have also been constructed and

adapted to some types of boundary conditions [26, 56]. The main advantages of these
types of bases in comparison to bases with local duals are usually the shorter support
of wavelets, the lower condition numbers of the bases and the corresponding stiffness
matrices, and also the simplicity of the construction.

In [13, 19], we also constructed quadratic spline-wavelet bases on the interval.
Here, we comment on these constructions.

[13] Černá, D.; Finěk, V.: Quadratic spline wavelets with short support
for fourth-order problems, Result. Math. 66(6), (2014), pp. 525–540.

In [13], we proposed two constructions of quadratic spline-wavelet bases for the
space H2

0 (0, 1). The inner wavelets have one vanishing moment and boundary wave-
lets are of two types, wavelets with one vanishing moment and wavelet with shorter
support but without vanishing moments. Since we did not require local support of
dual wavelets, we were able to construct wavelets with a short support of length 2,
which is the shortest possible support for wavelets with one vanishing moment cor-
responding to the quadratic B-spline multiresolution analysis. We used the isotropic
tensor product to obtain a wavelet basis for the space H2

0

(
(0, 1)2). We studied the

quantitative behaviour of the adaptive wavelet method for the numerical solution
of the fourth-order differential equation ∆2u = f on the unit square, ∆ being the
Laplace operator. Due to the short support, the discretization matrices are sparser
than for other quadratic spline wavelets of the same type. The condition numbers of
discretization matrices are uniformly bounded and small, e.g. for the stiffness matrix
of the size 64516× 64516 the condition number is 11.1.

[19] Černá, D.; Finěk, V.: Quadratic spline wavelets with short support
satisfying homogeneous boundary conditions, Electron. Trans. Numer.
Anal. 48, (2018), pp. 15–39.

In [19], we constructed wavelets of the similar type as in the previous paper, but
adapted to the first-order homogeneous Dirichlet boundary conditions, i.e. quadratic
spline wavelets on the interval and on a unit square with one vanishing moment and
the shortest possible support. The matrices arising from discretization of the second-
order elliptic problems using the constructed wavelet basis have uniformly bounded
condition numbers and the condition numbers are small, e.g. the condition num-
ber was 2.84 for a matrix of the size 1024 × 1024 corresponding to one-dimensional
Poisson’s equation, and it was 18.3 for the matrix of the size 1048576 × 1048576
corresponding to a two-dimensional Poisson’s equation. We also provided numerical
examples to show that the Galerkin method and the adaptive wavelet method using
our wavelet basis require a smaller number of iterations than methods with other
quadratic spline wavelet bases of the same type, i.e. bases from [3, 26, 43, 63]. More-
over, due to the short support of our wavelets, one iteration requires a smaller number
of floating-point operations than for these bases.

In [20], we propose post-processing for the Galerkin method with this basis, such
that the resulting method has a convergence rate the same as the rate of convergence
for the Galerkin method with cubic spline wavelets under the assumption that the
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solution is smooth enough. We show theoretically as well as numerically that the
presented method outperforms the Galerkin method with many other quadratic or
cubic spline wavelets with respect to the number of floating point operations needed
to compute a sufficiently accurate solution. Furthermore, we proposed local post-
processing for example with an equation with Dirac measure on the right-hand side.

In Table 2.1, we list parameters and properties for several constructions of quadratic
spline-wavelet bases such as the order of homogeneous Dirichlet boundary conditions
(bound. cond.), the number of vanishing moments (vanish. moments), the maximal
length of the support of generators of inner scaling functions (supp scal.), the max-
imal length of the support of generators of inner wavelets (supp wav.), locality of
duals (loc. duals), the number of generators of inner scaling functions (scal. gen.),
the number of generators of inner wavelets (wav. gen.), and special properties. The
property short. sup. means that a wavelet basis is such that wavelets have the short-
est possible support among all wavelets with the same number of vanishing moments
corresponding to the same scaling basis. The other very important parameters that
characterize wavelet bases are the condition number of the basis and the condition
numbers of discretization matrices. These numbers are problem dependent and can
be found in the attached papers.

Table 2.1: Parameters characterizing quadratic spline-wavelet bases.

wavelet bound. vanish. supp supp loc. scal. wav. special
basis cond. moments scal. wav. duals gen. gen. property

DKU [38] 0 L ≥ 3 odd 3 L+ 2 loc. 1 1
D [43] ≥ 0 L ≥ 3 odd 3 L+ 2 loc. 1 1
B [3] 0 L ≥ 3 odd 3 L+ 2 loc. 1 1

P [63] 0-1 L ≥ 3 odd 3 L+ 2 loc. 1 1
CF [10] 0-1 L ≥ 3 odd 3 L+ 2 loc. 1 1

R [64] 1 3 2 2 loc. 6 6 L2-orth.
CQ [26] 0 3 3 5 glob. 1 1 semiorth.

J [56] 2 1 3 3 glob. 1 1
J [56] 2 3 3 5 glob. 1 1

CF [13] 2 1 3 2 glob. 1 1 short. sup.
CF [19] 1 1 3 2 glob. 1 1 short. sup.

2.2 Cubic Spline-Wavelet Bases

As already mentioned in the previous section, biorthogonal cubic spline-wavelet bases
with local support of primal and dual wavelets were constructed in [38, 40], and
this construction was modified in several papers. In [10, 43] the construction was
significantly improved with regard to conditioning of the bases. Biorthogonal cubic
Hermite spline multiwavelet bases on the interval with local duals were designed in
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[40, 65]. The L2-orthogonal piecewise cubic basis was constructed in [64] using the
method from [46].

Several cubic spline wavelet and multiwavelet bases with nonlocal duals have been
constructed and adapted to various types of boundary conditions in [26, 45, 55, 56, 57].
Their properties are summarized in Table 2.2. Similarly to the case of quadratic
spline wavelets the main advantages of these types of bases in comparison with bases
with local duals are usually shorter supports of wavelets, lower condition numbers
of the bases and corresponding discretization matrices, and also simplicity of the
construction.

Below we comment on the constructions of cubic spline wavelets that are presented
in the papers [10, 11, 14, 15, 17, 23] collected in this thesis.

[10] Černá, D.; Finěk, V.: Construction of optimally conditioned cubic
spline wavelets on the interval, Adv. Comput. Math. 34(2), (2011), pp.
219–252.

In [10], we constructed biorthogonal spline-wavelet bases such that both primal
and dual wavelets are local and they have the desired number of vanishing wavelet
moments. Inner wavelets are translated and dilated versions of the well-known wave-
lets designed by A. Cohen, I. Daubechies, and J.-C. Feauveau in [32]. Our objective
was to construct interval spline-wavelet bases with condition numbers close to the
condition numbers of spline wavelet bases on the real line, especially in the case of cu-
bic spline wavelets. We showed that the constructed set of functions is indeed a Riesz
basis for the space L2 (0, 1) and for the Sobolev space Hs (0, 1) for a certain range of
s. Then we adapted the primal bases to the homogeneous Dirichlet boundary con-
ditions of the first order and the dual bases to complementary boundary conditions.
We compared the efficiency of an adaptive wavelet scheme for our wavelets and cu-
bic spline wavelets constructed in [63] by M. Primbs and we showed the superiority
of our construction. Numerical examples are presented for the one-dimensional and
two-dimensional Poisson’s equations where the solution has steep gradients.

[11] Černá, D.; Finěk, V.: Cubic spline wavelets with complementary
boundary conditions, Appl. Math. Comput. 219(4), (2012), pp. 1853–
1865.

In [11], we focused on a construction of a cubic spline-wavelet basis on the interval
with local duals satisfying complementary boundary conditions of the second order.
This means that a primal wavelet basis is adapted to homogeneous Dirichlet boundary
conditions of the second order, while the dual wavelet basis preserves the full degree
of polynomial exactness. We showed superiority of our construction in comparison
to spline wavelet bases of the same type, i.e. those from [63, 65], with respect to
conditioning of wavelet bases and the number of iterations in an adaptive wavelet
method for the numerical solution of the partial differential equation ∆2u = f in two
dimensions. For example, the discretization matrix for this problem in one dimension
when a basis with seven levels of wavelets is used has the condition number 66.7 for
our basis, 693.0 for the basis from [65], and 1117.0 for the basis from [63]. Hence, this
basis can be recommended for problems where local duals are needed and second-order
Dirichlet boundary condition are prescribed.
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[14] Černá, D.; Finěk, V.: Cubic spline wavelets with short support for
fourth-order problems, Appl. Math. Comput. 243, (2014), pp. 44–56.

In [14], we proposed a construction of new cubic spline-wavelet bases on the unit
cube satisfying homogeneous Dirichlet boundary conditions of the second order. Wa-
velets have short supports of the length 3 and two vanishing moments. In this paper,
we were inspired by the construction of cubic spline-wavelet basis satisfying similar
type of boundary conditions proposed by R.Q. Jia and W. Zhao in [57], where the
wavelets have no vanishing moments. They used their basis for solving fourth-order
problems, and they showed that the Galerkin method with this basis has superb con-
vergence and it outperforms the Galerkin method with cubic splines preconditioned
using BPX preconditioner or multigrid method. The discretization matrices for the
equation ∆2u = f on a unit square have very small and uniformly bounded condi-
tion numbers. In our paper [14], we designed wavelet bases with the same scaling
functions, but with different wavelets. We showed that our basis has an even smaller
condition number than the basis in [57] and additionally the wavelets have vanishing
moments. For example, the condition number of the discretization matrix of the size
65025 × 65025 was 18.6. Vanishing moments enable the use of this wavelet basis in
adaptive wavelet methods and wavelet-based methods for equations with an integral
term.

[15] Černá, D.; Finěk, V.: Wavelet basis of cubic splines on the hy-
percube satisfying homogeneous boundary conditions, Int. J. Wavelets
Multiresolut. Inf. Process. 13(3), (2015), article No. 1550014.

In [15], we proposed a construction of new cubic spline wavelets on the hyper-
cube that have two vanishing moments and satisfy first-order homogeneous Dirichlet
boundary conditions. In comparison with [14] where the duals are not discussed, here
we defined dual spaces as linear spline spaces. We defined bases of dual scaling spaces
that have compact support and used them for the proof of the Riesz basis property.
The biorthogonal wavelet basis contains functions with global support. The matri-
ces arising from discretization of second-order elliptic problems using a constructed
wavelet basis have uniformly bounded condition numbers and these condition num-
bers are relatively small. We constructed wavelet bases on the hypercube using both
isotropic and anisotropic tensor product, studied condition numbers of discretization
matrices corresponding to the Helmholtz equation with various parameters, and we
provided a numerical example to show the efficiency of the multilevel-Galerkin method
using the constructed basis. This basis was studied by L. Calderón, M.T. Mart́ın, and
V. Vampa in [6]. They used our basis in numerical experiments and showed that the
additional advantage is that the stiffness matrix corresponding to the one-dimensional
Poisson’s equation is banded. This also affects the structure of discretization matrices
for the Helmholtz equation in higher dimensions, because they are computed using
tensor products of the stiffness matrix and the mass matrix.
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[17] Černá, D.; Finěk, V.: Sparse wavelet representation of differential
operators with piecewise polynomial coefficients, Axioms 6, (2017), article
No. 4.

In [17], we proposed a construction of a Hermite cubic spline-wavelet basis on the
interval and hypercube. The basis is adapted to homogeneous Dirichlet boundary
conditions. We focused on the structure of discretization matrices rather than on
the length of the support and the condition number of the basis as in the previous
papers. Here, the wavelets are orthogonal to piecewise polynomials of degree at most
seven on a uniform grid. Therefore the wavelets have eight vanishing moments and
the matrices arising from discretization of differential equations with coefficients that
are piecewise polynomials of degree at most four on uniform grids are sparse and
not only quasi-sparse as for most wavelet bases. This greatly simplifies the routine
APPLY needed for computation of the multiplication of a biinfinite matrix with a
finitely supported vector in adaptive wavelet methods. Numerical examples showed
the efficiency of an adaptive wavelet method with the constructed wavelet basis for
solving a second-order elliptic equation and the Black–Scholes equation with two state
variables and quadratic volatility.

[23] Černá, D.: Cubic spline wavelets with four vanishing moments on
the interval and their applications to option pricing under Kou model,
Int. J. Wavelets Multiresolut. Inf. Process. 17(1), (2019), article No.
1850061.

As in our paper [14], our aim was to construct cubic spline wavelets with the
shortest possible support corresponding to B-spline multiresolution analysis, but with
a larger number of vanishing moments, namely four vanishing moments. We con-
structed bases that satisfies no boundary conditions and bases that satisfy first-order
homogeneous Dirichlet boundary conditions. Inner wavelets are the same as inner
wavelets for a wavelet basis on the real line constructed in [24, 50]. To illustrate
the applicability of the constructed bases we used the wavelet-Galerkin method with
our bases to option pricing under the double exponential jump-diffusion model repre-
sented by a partial integro-differential equation. We used the Crank-Nicolson scheme
for time discretization and the wavelet-Galerkin method for spatial discretization. We
compared the results with B-spline bases and cubic spline wavelet bases from [10], be-
cause they are adapted to the same type of boundary conditions. Since the equation
contains an integral term, most classical methods lead to full matrices. Hence the
advantage of the proposed method is the quasi-sparse structure of the discretization
matrices. In comparison with methods from [49, 54, 58, 61, 71], the presented method
required significantly smaller number of degrees of freedom needed to compute the
solution with desired accuracy.

In Table 2.2, we list parameters and properties for cubic spline-wavelet bases. The
property sparse Lapl. means that matrices arising from discretization of Laplacian are
truly sparse and the property sparse diff. means that the discretization matrices are
sparse for some class of differential operators with piecewise polynomial coefficients.
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Table 2.2: Parameters characterizing cubic spline-wavelet bases.

wavelet bound. vanish. supp supp loc. scal. wav. special
basis cond. moments scal. wav. duals gen. gen. property

DKU [38] 0 L ≥ 4 even 4 L+ 3 loc. 1 1
D [43] m ≥ 0 L ≥ 4 even 4 L+ 3 loc. 1 1
B [3] 0 L ≥ 4 even 4 L+ 3 loc. 1 1

P [63] 0-1 L ≥ 4 even 4 L+ 3 loc. 1 1
CF [10] 0-1 L ≥ 4 even 4 L+ 3 loc. 1 1
CF [11] 2 6 4 9 loc. 1 1

S [65] 2 2 2 3 loc. 2 2
R [64] 1 4 2 2 loc. 6 6 L2-orth.

CQ [26] 0 4 4 7 glob. 1 1 semiorth.
J [56] 3 2 4 5 glob. 1 1
J [56] 3 4 4 7 glob. 1 1

JZ [57] 2 0 4 3 glob. 1 1
JL [55] 1 2 2 2 glob. 2 2
CF [14] 2 2 4 3 glob. 1 1 short. sup.
CF [15] 1 2 4 5 glob. 1 1
CF [16] 1 4 2 4 glob. 2 4 sparse Lapl.
CF [17] 1 8 2 8 glob. 2 8 sparse diff.
CF [23] 0-1 4 4 4 glob. 1 1 short. sup.

D [45] 1 4 2 4 glob. 2 4 sparse Lapl.

2.3 Applications of Constructed Bases

Wavelet bases on the interval and product domains are useful in a wide range of
applications including signal and image analysis, data compression, and numerical
solution of various types of operator equations. In this section, we mention several
concrete examples where wavelets constructed in the enclosed papers were used. First,
we mention applications from these papers.

Second-order linear elliptic equations

These equations represent a wide range of applications, typically governing equi-
librium problems in physics such as displacement of a membrane, electric potential,
gravity fields, or pressure fields. We focused on the Poisson and Helmholtz equations,
which we solved by the wavelet-Galerkin method in [15, 17] and by the adaptive
wavelet method in [10].

Fourth-order linear elliptic problems

These equations arise for example in linear elasticity theory, mechanics of elastic
plates, or slow flows of viscous fluids. We solved these equations in [11, 13, 14]. As
already mentioned, we were motivated by the results in [57], where a cubic spline-
wavelet basis adapted to second-order boundary conditions was constructed. The
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wavelet-Galerkin method has superb convergence and outperformed BPX precondi-
tioner and multigrid methods, but wavelets did not have vanishing moments. We
improved their results in [14], where we constructed wavelets of similar type, but
even better conditioned and with vanishing moments. This enabled us to reduce the
number of iterations needed to find a sufficiently accurate solution and to apply these
wavelets in adaptive wavelet methods.

Option pricing under the Black-Scholes model

In [17], we solved the Black-Scholes equation with two state variables and quadratic
volatility by an adaptive wavelet method. The advantages of an adaptive wavelet
approach were not only the small number of degrees of freedom needed to find a
solution with desired accuracy, but also that the routine APPLY was greatly simplified
due to the fact that the discretization matrices have uniformly bounded number of
nonzero entries in each row. This is not the case for most other wavelet bases, which
have a so-called finger pattern.

Option pricing under a double exponential jump diffusion model

In [23], we studied option pricing under a double exponential jump diffusion model
proposed by Kou in [60]. Since this model is represented by partial integro-differential
equation, most classical methods suffer from the fact that discretization matrices are
full. We used the wavelet-Galerkin method combined with the Crank-Nicolson scheme
and showed that the discretization matrices can be approximated by quasi-sparse
matrices. Furthermore, we showed that our method enables a solution to the problem
with desired accuracy and smaller number of degrees of freedom than methods from
[49, 54, 58, 61, 71]. Hence, smaller matrices are involved in computation.

We also used the wavelets from this thesis in applications in our other works.
Several of them are mentioned below.

Option pricing under stochastic volatility models

Wavelet methods are a very promising tool for option pricing, for a survey see
[52, 64]. We used an adaptive wavelet method with bases constructed in this thesis for
option pricing under stochastic volatility models that are improvement of the famous
Black and Scholes model, where volatility is a constant or deterministic function. For
instance in [21], we used wavelets from [19] for option pricing under the Heston model.

Valuation of Asian options

In [18], we used the adaptive wavelet method with a linear spline-wavelet basis
from [10] for valuation of two-asset Asian options with a floating strike. We compared
this method with the wavelet-Galerkin method with the same basis, and we found that
the adaptive method required a significantly smaller number of degrees of freedom to
compute the solution with a desired accuracy. Moreover, the optimal convergence
rate with respect to the L2-norm was achieved for the adaptive wavelet method, while
this was not the case of the wavelet-Galerkin method.
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Sensitivity analysis of options
In the book [53], we were concerned with option pricing and the numerical com-

putation of the Greeks, i.e. derivatives of the option price with respect to underlying
parameters such as the underlying asset price, time to expiration, volatility, and inter-
est rates. The Greeks measure the sensitivity of the option price to these parameters
and their computation is important for hedging. Since Greeks are defined as deriva-
tives of option price with respect to these parameters, the convergence rate for the
methods for their computation is typically smaller than the convergence rate for the
methods for computation of the price of the option. Therefore, it is beneficial to use
a higher-order method such as the adaptive method with quadratic and cubic spline-
wavelet basis. In [53], comparison with other methods such as the finite difference
method, a discontinuous Galerkin method and a fuzzy method was provided. Our
method was superior in the sense that it enabled achieving a significantly smaller
error for the same number of degrees of freedom as these methods.

Differential equations with Dirac right-hand side
In [20], we proposed an adaptive method that uses wavelets constructed in [19]

for the numerical solution of the partial differential equation with the right-hand side
that contains the Dirac delta function.

Sparse representation of images and image compression
As already mentioned in Section 1.4, the wavelet bases on the interval lead to

the fast wavelet transforms that use special boundary filters. In [8, 9], we used the
FWT corresponding to spline wavelets from [10] to sparse representation of images
and image compression. We compared our method with methods based on the signal
extension such as zero padding, symmetrization, periodization, etc. and we showed
that the error near the boundary is significantly smaller for our method and that the
method enables to reduce boundary artefacts.

Singularly perturbed boundary value problems
We also used the adaptive wavelet method for the solution of singularly perturbed

boundary value problems in [4].

In summary, wavelets on the interval can be used directly in methods for the
numerical solution of operator equations and in signal and image processing for de-
composition, analysis, and compression. In addition, constructions of wavelets on the
interval can be used as the first step of constructions of wavelets on more general do-
mains and constructions of wavelets satisfying some special conditions. For example
as mentioned in [69], a construction of divergence-free wavelets starts with the pair
of two biorthogonal wavelet bases such as those from [11, 45, 63]. Divergence free
wavelets then can be used for the numerical solution of the Navier–Stokes equations
representing the flow of viscous fluid. Moreover, wavelets on the interval can be used
in many engineering applications, e.g. the method from [13] was used as the part of
the algorithm for building venting system on complex surfaces of injection molds in
[73]. For other applications of wavelets on the interval we refer to [25, 28, 37, 41, 72].
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Conclusions and Further Research

The previous text summarizes the results presented in the attached papers. In these
papers, we constructed several quadratic and cubic spline wavelets on the interval and
product domains and compared them to existing constructions. All constructed bases
were well-conditioned. Bases from [13, 14, 23] have the shortest possible support,
therefore discretization matrices are sparse and one iteration of the method for the
solution of the resulting discrete system requires less floating point operations than for
other wavelets of the same type applied to the same equations. Bases from [17] lead to
truly sparse matrices for a class of differential operators with polynomial coefficients,
while other wavelet bases lead to only quasi-sparse matrices. For applications, where
global support of dual functions is needed we can recommend bases from [10, 11]. We
used the constructed basis for the numerical solution of many types of equations, and
we presented other possible applications of the bases.

In terms of further research, we would like to extend our previous results to
higher-dimensional problems (dimension d ≥ 4), especially for solving partial integro-
differential equations representing pricing multi-asset options under jump diffusion
models. Furthermore, we recently constructed wavelet dictionaries for ECG signal
modelling in [22]. Here, the dictionaries were constructed from wavelets on the real
line simply by restriction. We would also like to focus on a construction of dictionaries
that are boundary adapted and compare them with dictionaries based on restriction
for ECG signal modelling and also use them in other applications.
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[16] Černá, D.; Finěk, V.: On a sparse representation of an n-dimensional Laplacian
in wavelet coordinates, Result. Math. 69, 2016, pp. 225–243.
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Construction of Optimally Conditioned Cubic Spline Wavelets on the
Interval

Dana Černá · Václav Finěk

Abstract Thepaper is concerned with aconstruction of new spline-wavelet baseson the interval.
Theresulting basesgeneratemultiresolution analyseson theunit interval with thedesired number
of vanishing wavelet moments for primal and dual wavelets. Both primal and dual wavelets have
compact support. Inner wavelets are translated and dilated versions of well-known wavelets de-
signed by Cohen, Daubechies, and Feauveau. Our objective is to construct interval spline-wavelet
baseswith thecondition number which is closeto thecondition number of thesplinewavelet bases
on the real line, especially in the case of the cubic spline wavelets. We show that the constructed
set of functionsis indeed aRiesz basis for thespaceL2([0,1]) and for theSobolev spaceHs([0,1])
for a certain range of s. Then we adapt the primal bases to the homogeneous Dirichlet boundary
conditions of the first order and the dual bases to the complementary boundary conditions. Quan-
titative properties of the constructed bases are presented. Finally, we compare the efficiency of
an adaptive wavelet scheme for several spline-wavelet bases and we show a superiority of our
construction. Numerical examples are presented for the one-dimensional and two-dimensional
Poisson equations where thesolution has steep gradients.

Keywords Biorthogonal wavelets · Interval · Spline · Condition number

MathematicsSubject Classification (2000) 65T60 · 65N99

1 Introduction

Wavelets are by now a widely accepted tool in signal and image processing as well as in numer-
ical simulation. In the field of numerical analysis, methods based on wavelets are successfully
used especially for preconditioning of large systemsarising from discretization of ellip tic partial
differential equations, sparse representations of some types of operators and adaptive solving of
operator equations. The quantitative performance of such methods strongly depends on a choice
of awavelet basis, in particular on its condition number.

Wavelet baseson abounded domain areusually constructed in thefollowing way: Waveletson
thereal lineareadapted to theinterval and then by atensor product techniqueto then-dimensional
cube. Finally by splitting the domain into subdomains which are images of (0,1)n under appro-
priate parametric mappings one can obtain wavelet bases on a fairly general domain. Thus, the
propertiesof theemployed wavelet basis on the interval arecrucial for thepropertiesof theresult-
ing baseson general adomain.

Biorthogonal spline-wavelet bases on the unit interval were constructed in [16]. The disad-
vantage of them is their bad condition which causes problems in practical applications. Some
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modifications which lead to better conditioned bases were proposed in [2], [17], [24], and [33].
The recent construction by M. Primbs, see [12], [24], or [25], seemsto outperform the previous
constructions with respect to the Riesz bounds as well as spectral properties of the corresponding
stiffness matrices in the case of linear and quadratic spline-wavelets. In thispaper, we focus on
cubic spline wavelets and we construct interval spline-wavelet bases withthe condition number
which is close to the condition number of the spline wavelet bases on the real line. It is known
that the condition number of the wavelet basis on the real line is less than or equal to the condition
number of the interval wavelet basis, where the inner functions are restrictions of scaling functions
and wavelets on the real line.

First of all, we summarize the desired properties:

– Riesz basis property.The functions form a Riesz basis of the spaceL2([0,1]).
– Locality.The basis functions are local. Then the corresponding decomposition andreconstruc-

tion algorithms are simple and fast.
– Biorthogonality.The primal and dual wavelet bases form a biorthogonal pair.
– Polymial exactness.The primal MRA has polynomial exactness of orderN and the dual MRA

has polynomial exactness of orderÑ. As in [9], N+ Ñ has to be even and̃N ≥ N.
– Smoothness.The smoothness of primal and dual wavelet bases is another desired property. It

ensures the validity of norm equivalences, for details see below.
– Closed form.The primal scaling functions and wavelets are known in the closed form. It isa

desirable property for the fast computation of integrals involving primal scaling functions and
wavelets.

– Well-conditioned bases.Our objective is to construct wavelet bases with an improved condition
number, especially for larger values ofN andÑ.

From the viewpoint of numerical stability, ideal wavelet bases are orthogonal wavelet bases.
However, they are usually avoided in the numerical treatment of partial differential and integral
equations, because they are not accessible analytically, the complementaryboundary conditions
can not be satisfied and it is not possible to increase the number of vanishingwavelet moments in-
dependent from the order of accuracy. Moreover, sufficiently smooth orthogonal wavelets typically
have a large support.

Biorthogonal wavelet bases on the unit interval derived from B-splines were constructed also in
[8] and [19] and they were adapted to homogeneous Dirichlet boundaryconditions in [20]. These
bases are well-conditioned, but have globally supported dual basis functions. Another construction
of spline-wavelets was proposed in [4], but the corresponding dual bases are unknown so far. We
should also mention the construction of spline multiwavelets [15], [22], and [28], though the dual
wavelets have a low Sobolev regularity.

The paper is organized as follows. Section 2 provides a short introduction to the concept of
wavelet bases. Section 3 is concerned with the construction of primal multiresolution analysis on
the interval. The primal scaling functions are B-splines defined on the Schoenberg sequence of
knots, which have been used also in [4], [8], and [24]. In Section 4 weconstruct dual multiresolu-
tion analysis. There are two types of boundary scaling functions. The functions of the first type are
defined in order to preserve the full degree of polynomial exactness asin [1] and [10]. The con-
struction of the scaling functions of the second type is a delicate task, because the low condition
number and nestedness of the multiresolution spaces have to be preserved. Section 5 is concerned
with the computation of refinement matrices. In Section 6 wavelets are constructed by the method
of stable completion proposed in [18]. The construction of initial stable completion is along the
lines of [16]. In Section 7 we show that the constructed set of functions isindeed a Riesz basis for
the spaceL2([0,1]) and for the Sobolev spaceHs([0,1]) for a certain range ofs. In Section 8 we
adapt the primal bases to the homogeneous Dirichlet boundary conditions of the first order and the
dual bases to the complementary boundary conditions. Quantitative properties of the constructed
bases are presented in Section 9. Finally, in Section 10, we compare the efficiency of an adaptive
wavelet scheme for several spline-wavelet bases and we show a superiority of our construction.
Numerical examples are presented for one-dimensional and two-dimensional Poisson equations
where the solution has steep gradients.
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2 Wavelet bases

This section provides a short introduction to the concept of wavelet bases. Let us introduce some
notation. We useN, Z, Q, andR to denote the set of positive integers, integers, rational numbers,
and real numbers, respectively. LetN j0 denote the set of integers which are greater than or equal
to j0.

We consider a domainΩ ⊂ Rd and the spaceL2(Ω) with the inner product〈·, ·〉 and the
induced norm‖·‖. Let J be some index set and let each indexλ ∈ J takes the formλ = ( j,k),
where|λ |= j ∈ Z is ascaleor a level. Let l2(J ) be a space of all sequencesb= {bλ}λ∈J such
that

‖b‖l2(J ) :=

(
∑

λ∈J

|bλ |2
) 1

2

< ∞. (1)

Definition 1. A family Ψ := {ψλ ∈ J } ⊂ L2(Ω) is called awavelet basisof L2(Ω), if

i) Ψ is aRiesz basisfor L2(Ω), it means that the linear span ofΨ is dense inL2(Ω) and there
exist constantsc,C∈ (0,∞) such that

c‖b‖l2(J ) ≤
∥∥∥∥∥ ∑

λ∈J

bλ ψλ

∥∥∥∥∥≤C‖b‖l2(J ) for all b= {bλ}λ∈J ∈ l2(J ) . (2)

Constantscψ := sup{c : c satisfies(2)}, Cψ := inf {C : C satisfies(2)} are calledRiesz bounds
andcondΨ =Cψ/cψ is called thecondition numberof Ψ .

ii) The functions arelocal in the sense that

diam(Ωλ )≤ C2−|λ | for all λ ∈ J , (3)

whereΩλ is the support ofψλ , and at a given levelj the supports of only finitely many wavelets
overlap in any pointx∈ Ω .

By the Riesz representation theorem, there exists a unique familyΨ̃ =
{

ψ̃λ ,λ ∈ J̃
}
⊂ L2(Ω)

biorthogonal toΨ , i.e.
〈
ψi,k, ψ̃ j,l

〉
= δi, jδk,l , for all (i,k) ∈ J , ( j, l) ∈ J̃ . (4)

Here,δi, j denotes the Kronecker delta, i.e.δi,i := 1, δi, j := 0 for i 6= j. This family is also a Riesz
basis forL2(Ω). The basisΨ is called aprimal wavelet basis,̃Ψ is called adualwavelet basis.

In many cases, the wavelet systemΨ is constructed with the aid of a multiresolution analysis.

Definition 2. A sequenceS=
{

Sj
}

j∈N j0
of closed linear subspacesSj ⊂ L2(Ω) is called amul-

tiresolutionor multiscale analysis, if

Sj0 ⊂ Sj0+1 ⊂ . . .⊂ Sj ⊂ Sj+1 ⊂ . . .L2(Ω) and
(
∪ j∈N j0

Sj

)
= L2(Ω) . (5)

The nestedness and the closedness of the multiresolution analysis implies the existence of the
complement spaces Wj such that

Sj+1 = Sj ⊕Wj , (6)

where⊕ denotes the direct sum.
We now assume thatSj andWj are spanned by sets of basis functions

Φ j :=
{

φ j,k,k∈ I j
}
, Ψj :=

{
ψ j,k,k∈ J j

}
, (7)

whereI j , J j are finite or at most countable index sets. We refer toφ j,k asscaling functionsand
ψ j,k aswavelets. The multiscale basis is given by

Ψj0,s = Φ j0 ∪
j0+s−1⋃

j= j0

Ψj (8)
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and the overall wavelet basis ofL2(Ω) is obtained by

Ψ = Φ j0 ∪
⋃

j≥ j0

Ψj . (9)

The single-scale and the multiscale bases are interrelated by thewavelet transformT j,s : l2(I j+s)→
l2(I j+s),

Ψj,s = T j,sΦ j+s. (10)

The dual wavelet system̃Ψ generates a dual multiresolution analysisS̃with a dual scaling basis
Φ̃ .

Polynomial exactnessof orderN ∈ N for the primal scaling basis and of orderÑ ∈ N for the
dual scaling basis is another desired property of wavelet bases. It means that

ΠN−1(Ω)⊂ Sj , ΠÑ−1(Ω)⊂ S̃j , j ≥ j0, (11)

whereΠm(Ω) is the space of all algebraic polynomials onΩ of a degree at mostm.

3 Primal Scaling Basis

The primal scaling bases will be the same as bases designed by Chui and Quak in [8], because
they are known to be well-conditioned. A big advantage of this approach is that it readily adapts
to the bounded interval by introducing multiple knots at the endpoints. LetN be the desired order

of the polynomial exactness of the primal scaling basis and lett j =
(

t j
k

)2 j+N−1

k=−N+1
be aSchoenberg

sequence of knotsdefined by

t j
k := 0, k=−N+1, . . . ,0, (12)

t j
k :=

k
2 j , k= 1, . . . ,2 j −1,

t j
k := 1, k= 2 j , . . . ,2 j +N−1.

The correspondingB-splines of order Nare defined by

B j
k,N (x) :=

(
t j
k+N − t j

k

)[
t j
k, . . . , t

j
k+N

]
(t −x)N−1

+ , x∈ 〈0,1〉 , (13)

where(x)+ := max{0,x}. The symbol[tk, . . .tk+N] f is theN-th divided difference off which is
recursively defined as

[tk, . . . , tk+N] f =

{
[tk+1,...,tk+N] f−[tk,...,tk+N−1] f

tk+N−tk
if tk 6= tk+N,

f (N)(tk)
N! if tk = tk+N,

(14)

with [tk] f = f (tk).
The setΦ j =

{
φ j,k,k=−N+1, . . . ,2 j −1

}
of primal scaling functions is then simply defined

by
φ j,k = 2 j/2B j

k,N, k=−N+1, . . . ,2 j −1, j ≥ 0. (15)

Thus there are 2j −N+1 inner scaling functions andN−1 functions at each boundary. Figure 1
shows the primal scaling functions forN= 4 and j = 3. The inner scaling functions are translations
and dilations of one functionφ which corresponds to the primal scaling function constructed by
Cohen, Daubechies, and Feauveau in [9]. In the following, we consider φ from [9] which is shifted
so that its support is[0,N].

We define the primal multiresolution spaces by

Sj := spanΦ j . (16)
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Fig. 1 Primal scaling functions forN = 4 and j = 3 without boundary conditions.

Lemma 3. Under the above assumptions, the following holds:
i) For any j0 ∈ N the sequenceS =

{
Sj
}

j≥ j0
forms a multiresolution analysis of L2([0,1]).

ii) The spaces Sj are exact of order N, i.e.

ΠN−1([0,1])⊂ Sj , j ≥ 1. (17)

The proof can be found in [8], [24], [29].

4 Dual Scaling Basis

The desired property of the dual scaling basisΦ̃ is the biorthogonality toΦ and the polynomial ex-
actness of order̃N. Let φ̃ be the dual scaling function which was designed by Cohen, Daubechies,
and Feauveau in [9] and which is shifted so that

〈
φ , φ̃

〉
= 0, i.e. its support is

[
−Ñ+1,N+ Ñ−1

]
.

In this caseÑ ≥ N andÑ+N has to be an even number. It is known that there exist sequences
{hk}k∈Z and{h̃k}k∈Z such that the functionsφ andφ̃ satisfy therefinement equations

φ (x) = ∑
k∈Z

hkφ (2x−k) , φ̃ (x) = ∑
k∈Z

h̃kφ̃ (2x−k) , x∈ R. (18)

The parametershk andh̃k are calledscaling coefficients. By biorthogonality ofφ andφ̃ , we have

2 ∑
k∈Z

h2m+kh̃k = δ0,m, m∈ Z. (19)

Note that only coefficientsh0, . . . ,hN andh̃−Ñ+1, . . . , h̃N+Ñ−1 may be nonzero.
In the sequel, we assume that

j ≥ j0 :=
⌈
log2

(
N+2Ñ−3

)⌉
(20)

so that the supports of the boundary functions are contained in[0,1]. We define inner scaling
functions as translations and dilations ofφ̃ :

θ j,k := 2 j/2φ̃
(
2 j ·−k

)
, k= Ñ−1, . . . ,2 j −N− Ñ+1. (21)

There will be two types of basis functions at each boundary. In the following, it will be convenient
to abbreviate the boundary and inner index sets by

I L,1
j =

{
−N+1, . . . ,−N+ Ñ

}
, (22)

I L,2
j =

{
−N+ Ñ+1, . . . , Ñ−2

}
, (23)

I 0
j =

{
Ñ−1, . . . ,2 j −N− Ñ+1

}
, (24)

I R,2
j =

{
2 j −N− Ñ+2, . . .2 j − Ñ−1

}
, (25)

I R,1
j =

{
2 j − Ñ, . . . ,2 j −1

}
, (26)
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and

I L
j = I L,1

j ∪I L,2
j =

{
−N+1, . . . , Ñ−2

}
, (27)

I R
j = I R,2

j ∪I R,1
j =

{
2 j −N− Ñ+2, . . . ,2 j −1

}
, (28)

I j = I L,1
j ∪I L,2

j ∪I 0
j ∪I R,2

j ∪I R,1
j =

{
−N+1, . . . ,2 j −1

}
. (29)

Basis functions of the first type are defined to preserve polynomial exactness by the same way
as in [1], [10]:

θ j,k = 2 j/2
Ñ−2

∑
l=−N−Ñ+2

〈pk+N−1,φ (·− l)〉 φ̃
(
2 j ·−l

)
|[0,1], k∈ I L,1

j , (30)

where
{

p0, . . . , pÑ−1

}
is a basis ofΠÑ−1([0,1]). In Lemma 6 we show that the resulting dual

scaling functions do not depend on the choice of the polynomial basis. In our case,pk are the
Bernstein polynomials defined by

pk (x) := b−Ñ+1
(

Ñ−1
k

)
xk (b−x)Ñ−1−k , k= 0, . . . , Ñ−1, x∈ R. (31)

The Bernstein polynomials were used also in [16]. On the contrary to [16],in our case the choice
of polynomials does not affect the resulting dual scaling basisΨ̃ , but it has only the effect of
stabilization of the computation, for details see Lemma 6 and the discussion below.

The definition of basis functions of the second type is a delicate task, because the low condition
number and the nestedness of the multiresolution spaces have to be preserved. This means that the
relationθ j,k ⊂ Ṽj ⊂ Ṽj+1, k ∈ I L,2

j , should hold. Therefore we defineθ j,k, k ∈ I L,2
j , as linear

combinations of functions which are already inṼj+1. To obtain well-conditioned bases, we define
functionsθ j,k, k ∈ I L,2

j , which are close tõφR
j,k := 2 j/2φ̃

(
2 j ·−k

)
, becauseφ̃R

j,k, k ∈ I L,2
j , are

biorthogonal to the inner primal scaling functions and the condition of
{

φ̃R
j,k,k∈ I L,2

j ∪I 0
j

}
is

the same as the condition of the set of inner dual basis functions.
For this reason, we define the basis functions of the second type by

θ j,k = 2
j
2

N+Ñ−1

∑
l=Ñ−1−2k

h̃l φ̃
(
2 j+1 ·−2k− l

)
|[0,1], k∈ I L,2

j , (32)

whereh̃i are the scaling coefficients corresponding to the scaling functionφ̃ . Thenθ j,k is close to
φ̃R

j,k|[0,1], because by (18) we have

φ̃R
j,k|[0,1] = 2

j
2

N+Ñ−1

∑
k=−Ñ+1

h̃l φ̃
(
2 j+1 ·−2k− l

)
|[0,1], k∈ I L,2

j . (33)

Figure 2 shows the functionsθ j,k andφ̃R
j,k for N = 4, Ñ = 6, and j = 4.

The boundary functions at the right boundary are defined to be symmetricwith the left bound-
ary functions:

θ j,k = θ j,2 j−k (1−·) , k∈ I R
j . (34)

It is easy to see that
θ j+1,k = 21/2θ j,k (2·) , k∈ I L

j (35)

for the left boundary functions and

θ j+1,k (1−·) = 21/2θ j,k (1−2·) , k∈ I R
j (36)

for the right boundary functions.
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Fig. 2 The functionsφ̃R
4,k andθ4,k for N = 4 andÑ = 6.

Since the setΘ j :=
{

θ j,k,k∈ I j
}

is not biorthogonal toΦ j , we derive a new set

Φ̃ j :=
{

φ̃ j,k,k∈ I j
}

(37)

from Θ j by biorthogonalization. Let

Q j =
(〈

φ j,k,θ j,l
〉)

k,l∈I j
. (38)

Then viewingΦ̃ j andΘ j as column vectors we define

Φ̃ j := Q−T
j Θ j , (39)

assuming thatQ j is invertible, which is the case of all choices ofN and Ñ considered in our
numerical examples below.

ThenΦ̃ j is biorthogonal toΦ j , because
〈
Φ j ,Φ̃ j

〉
=
〈

Φ j ,Q−T
j Θ j

〉
= Q jQ−1

j = I#I j , (40)

where the symbol # denotes the cardinality of the set andIm denotes the identity matrix of the size
m×m.

Lemma 4. i) Let Φ j , Θ j be defined as above. Then the matrices

Q j,L =
(〈

φ j,k,θ j,l
〉)

k,l∈I L
j

and Q j,R =
(〈

φ j,k,θ j,l
〉)

k,l∈I R
j

(41)

are independent of j, i.e. there are matricesQL, QR such that

Q j,L = QL, Q j,R = QR. (42)

Moreover, the matrixQR results from the matrixQL by reversing the ordering of rows and columns,
which means that

(QR)k,l = (QL)2 j−N−k,2 j−N−l , k, l ∈ I R
j . (43)

ii) The following holds:
(Q j)k,l = δk,l , k∈ I j , l ∈ I 0

j . (44)

iii) The following holds:
(Q j)k,l = 0, k∈ I 0

j , l ∈ I L
j ∪I R

j . (45)
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Proof Due to (35) and by substitution we have fork, l ∈ I L
j

〈
φ j,k,θ j,l

〉
=
〈

2
j− j0

2 φ j0,k
(
2 j− j0·

)
,2

j− j0
2 θ j0,l

(
2 j− j0·

)〉
=
〈
φ j0,k,θ j0,l

〉
. (46)

Therefore,Q j,L = Q j0,L = QL, i.e. the matrixQ j,L is independent ofj. Due to (36)Q j,R is inde-
pendent ofj too. The property (43) is a direct consequence of the reflection invariance (34).

The propertyii) follows from the biorthogonality of{φ (·−k)}k∈Z and
{

φ̃ (·− l)
}

l∈Z. It also

implies (45) fork ∈ I 0
j , l ∈ I L,1

j ∪I R,1
j . It remains to prove (45) fork ∈ I 0

j , l ∈ I L,2
j ∪I R,2

j .
By the definition of the dual scaling functions of the second type (32), the refinement relation (18)
for the dual scaling functioñφ , and (19), we have fork∈ I 0

j , l ∈ I L,2
j ,

〈
φ j,k,θ j,l

〉
=

〈
φ (·−k) ,

√
2

N+Ñ−1

∑
m=Ñ−1−2k

h̃l φ̃ (2·−2l −m) |[0,1]
〉

(47)

= 2

〈
N

∑
n=0

hnφ (2·−2k−n) ,
N+Ñ−1

∑
m=Ñ−1−2k

h̃mφ̃ (2·−2l −m) |[0,1]
〉

(48)

= 2
N

∑
n=0

N+Ñ−1

∑
m=Ñ−1−2k

hnh̃mδ2k+n,2l+m = 2
N+Ñ−1

∑
m=Ñ−1−2k

h2l−2k+mh̃m (49)

= 2 ∑
m∈Z

h2l−2k+mh̃m = 0. (50)

By (34), the relation (45) holds also fork∈ I 0
j , l ∈ I R,2

j .

Thus, we can write

Φ̃ j := Q−T
j Θ j =




QL
I#I 0

j

QR




−T

Θ j =




Q−T
L

I#I 0
j

Q−T
R


Θ j , (51)

Since the matrixQ j is symmetric in the sense of (43), the properties (34), (35), and (36) holdfor
φ̃ j,k as well.
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Fig. 3 Boundary dual scaling functions forN = 4 andÑ = 6 without boundary conditions.

Remark 5. It is known that the scaling functioñφ has typically a low Sobolev regularity for
smaller values of̃N. Thus the functionsθ j,k have a low Sobolev regularity for smaller values of
Ñ, too. Therefore, we do not obtain the sufficiently accurate entries of thematrix Q j directly by
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classical quadratures. Fortunately, we are able to compute the matrixQ j precisely up to the round
off errors. For k∈ I L,1

j ∪I L,2
j , l ∈ I L,1

j we have

〈
φ j,k,θ j,l

〉
=

Ñ−2

∑
m=−N−Ñ+2

Ñ−1

∑
n=0

cl ,n〈(·)n ,φ (·−m)〉
〈
φ (·−k) , φ̃ (·−m)

〉
L2(〈0,1〉) , (52)

with cl ,n given by(64). Sinceφ is a piecewise polynomial function and̃φ is refinable, for k∈
I L,1

j ∪I L,2
j , l ∈I L,1

j we can compute the entries ofQ j by the method from [11]. By the refinement
relation we easily obtain the following relations for the computation of the remainingentries of
QL:

〈
φ j,k,θ j,l

〉
=

{
∑N+Ñ−1

m=Ñ−1−2l
h̃m
〈
φ0,k, φ̃ (·−2k−m)

〉
, k=−N+1, . . . ,−1, l ∈ I L,2

j ,

2−1 ∑N+Ñ−1
m=Ñ−1−2l

h2k−2l+mh̃m, k= 0, . . . , Ñ−2, l ∈ I L,2
j .

(53)

Since the submatrixQR is obtained from a matrixQL by reversing the ordering of rows and
columns, the matrixQ j can be indeed computed precisely up to the round off errors.

Now we show that the resulting dual scaling basisΦ̃ does not depend on a choice of a polyno-
mial basis of the spaceΠÑ ([0,1]) in the formula (30).

Lemma 6. We suppose that P1 =
{

p1
0, . . . , p

1
Ñ−1

}
, P2 =

{
p2

0, . . . , p
2
Ñ−1

}
are two different bases

of the spaceΠÑ ([0,1]) and for i= 1,2 we define the setsΘ i
j =
{

θ i
j,k

}2 j−1

k=−N+1
by

θ i
j,k =





2 j/2 ∑Ñ−2
l=−N−Ñ+2

〈
pi

k+N−1,φ (·− l)
〉

φ̃
(
2 j ·−l

)
|[0,1], k∈ I L,1

j ,

θ i
j,2 j−N−k, k∈ I R,1

j ,

θ j,k, k∈ I L,2
j ∪I 0

j ∪I R,2
j .

(54)

Furthermore, we define

Qi
j =
〈
Φ j ,Θ i

j

〉
, Φ̃ i

j =
(
Qi

j

)−T Θ i
j , i = 1,2, (55)

and we assume thatQi
j is nonsingular. TheñΦ1

j = Φ̃2
j .

Proof SinceP1 andP2 are both bases of the spaceΠÑ ([0,1]), there exists a regular matrixBL such
thatP2 = BLP1. The consequence is that

Θ 2 = B jΘ 1, (56)

with

B j =




BL
I#I 0

j

BR


 , (57)

whereBR results from a matrixBL by reversing the ordering of rows and columns, which means
that

(BR)k,l = (BL)2 j−N−k,2 j−N−l , k, l ∈ I L,1
j . (58)

Therefore, we have
Φ̃2

j =
(
Q2

j

)−T Θ 2
j =

(
Q1

j

)−T
B−1

j B jΘ 1
j = Φ̃1

j . (59)

Although a choice of a polynomial basis does not influence the resulting dual scaling basis,
it has an influence on the stability of the computation and the preciseness of theresults, because
some choices of the polynomial bases lead to the critical values of the conditionnumber of the
biorthogonalization matrix. We present the condition numbers of the matrixQL for the monomial

basis
{

1,x,x2, . . .xÑ−1
}

and Bernstein polynomials (31) with the parametersb= 4 andb= 10 in

Table 4. In our numerical experiments in Section 9 we chooseb= 10.
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Remark 7. In the case of linear primal basis, i.e. N= 2, there are no boundary dual functions of
the second type. In [24] the primal scaling functions and the inner dual scaling functions are the
same as ours. The boundary dual functions before biorthogonalization are defined by (30) with the
same choice of polynomials p0, . . . , pÑ−1 as in [10]. Due to the Lemma 6, for N= 2 the wavelet
basis in [24] is identical to the wavelet basis constructed in this section.

The main difference of the construction by M. Primbs [24] in comparison with our construction
is the definition of dual basis functions of the second typeθ Primbs

j,k , k= −N+1, . . . ,−2. Note that
they correspond to different indexes than ours. These functions are defined as linear combination
of functionsθ Primbs

j+1,n , n> k, in order to be already biorthogonal to the primal scaling functions.
The refinement coefficients for them are obtained by solving certain system of linear algebraic
equations. In case N> 3, the functionsθ Primbs

j,k , k=−N+1, . . . ,−2, take much larger values than
primal scaling functions and than the inner dual scaling functions. Then some of the boundary
wavelets take much larger values than inner wavelets which probably causes bad conditioning
of wavelet bases. Furthermore, the dual boundary functions of the first type which are defined to
preserve the polynomial exactness correspond to the first N scaling functions in our case and they
correspond to the primal scaling functions indexed by−1, . . . , Ñ−2 in case of the construction
from [24]. It leads to better matching of the supports and values of the primal and dual functions
in our construction. This better localization and ’almost biorthogonality’ of the dual functions of
the second type to the primal scaling functions lead to optimally conditioned wavelet bases for
N ≤ 4 and to an improvement of the condition number also for N= 5, see Section 9.

The constructions of primal and dual boundary scaling functions in [16]and [17] is based on
the relation (30) with various choices of polynomials. There are no boundary generators of the
second type. This construction also leads to some boundary functions which take larger values
than the inner functions and the condition number of wavelet bases is bad forN > 3, see figures
in [16], [17], and [35].

For the proof of Theorem 9 below and also for deriving of refinement matrices we will need
the following lemma.

Lemma 8. For the left boundary functions of the first type there exist refinement coefficients mn,k,
k∈ I L,1

j , n∈ I L,1
j ∪I 3

j , I 3
j :=

{
Ñ−1, . . . ,3Ñ+N−5

}
such that

θ j,k =
−N+Ñ

∑
n=−N+1

mn,kθ j+1,n+
3Ñ+N−5

∑
n=Ñ−1

mn,kθ j+1,n, k∈ I L,1
j . (60)

Proof Let Θ 0
j =

{
θ j,k,k∈ I 3

j

}
andΘ L,1,mon

j =
{

θ mon
j,k ,k∈ I L,1

j

}
be defined by

θ mon
j,k = 2 j/2

Ñ−2

∑
l=−N−Ñ+2

〈
(·)i ,φ (·− l)

〉
φ̃
(
2 j ·−l

)
|[0,1], k∈ I L,1

j . (61)

Then

Θ L,1,mon
j = (Mmon)T

(
Θ L,1,mon

j+1
Θ 0

j+1

)
, (62)

Table 1 Condition numbers of the matricesQL

N Ñ mon. b= 4 b= 10 N Ñ mon. b= 4 b= 10

2 2 6.68e+00 9.94e+00 3.16e+01 4 4 2.46e+04 6.75e+02 1.33e+04
2 4 4.66e+02 1.94e+01 9.48e+02 4 6 1.30e+07 2.94e+04 7.34e+04
2 6 1.40e+05 1.00e+02 4.47e+03 4 8 1.24e+10 6.24e+06 9.42e+04
2 8 1.03e+08 8.52e+03 5.81e+03 4 10 1.92e+13 2.26e+09 5.24e+04
2 10 1.48e+11 1.67e+06 1.58e+03 5 5 5.34e+06 3.29e+04 1.26e+05
3 3 2.18e+02 1.07e+02 1.00e+03 5 7 5.62e+09 6.91e+06 3.73e+05
3 5 3.73e+04 1.88e+02 1.05e+04 5 9 9.39e+12 2.57e+09 3.47e+05
3 7 1.64e+07 1.20e+04 2.26e+04 6 6 1.20e+09 3.68e+06 6.81e+05
3 9 1.54e+10 2.90e+06 1.33e+04 6 8 2.97e+12 1.92e+09 1.81e+06
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where the refinement matrixMmon=
{

mmon
n,k

}
n∈I L,1

j ∪I 3
j ,k∈I L,1

j

is given by

mmon
n,k =





1√
2
2−k, k= n, n∈ I L,1

j ,

1√
2

Ñ−2
∑

q=
⌈

n−N−Ñ+1
2

⌉

〈
(·)k+N−1 ,φ (·−q)

〉
h̃n−2q, k∈ I L,1

j , n∈ I 3
j ,

0, otherwise.

(63)

For deriving ofMmon see [16]. It is known that the coefficients of Bernstein polynomials in a
monomial basis are given by

cl ,n =

{
(−1)l−n(Ñ−1

n

)(n
l

)
b−n, if n≥ l ,

0, otherwise.
(64)

Hence, the matrixC = {cl ,n}−N+Ñ
l ,n=−N+1 is an upper triangular matrix with nonzero entries on the

diagonal which implies thatC is invertible. We denoteΘ L,1
j =

{
θ j,k,k∈ I L,1

j

}
and we obtain

Θ L,1
j = CΘ L,1,mon

j = C(Mmon)T

(
Θ L,1,mon

j+1
Θ 0

j+1

)
= C(Mmon)T

(
C−1 0

0 I

)(
Θ L,1

j+1
Θ 0

j+1

)
. (65)

Therefore, the refinement matrixM = {mn,k}n∈I L,1
j ∪I 3

j ,k∈I L,1
j

is given by

M =

(
C−T 0

0 I

)
MmonCT . (66)

We define the dual multiresolution spaces by

S̃j := spanΦ̃ j . (67)

Theorem 9. Under the above assumptions, the following holds
i) The sequenceS̃ =

{
S̃j
}

j≥ j0
forms a multiresolution analysis of L2([0,1]).

ii) The spaces̃Sj are exact of order̃N, i.e.

ΠÑ−1([0,1])⊂ S̃j , j > j0. (68)

Proof To provei) we have to show the nestedness of the spacesS̃j , i.e. S̃j ⊂ S̃j+1. Note that

S̃j = spanΦ̃ j = spanΘ j . (69)

Therefore, it is sufficient to prove that any function fromΘ j can be written as a linear combination
of the functions fromΘ j+1. For the left boundary functions of the first type it is a consequence of
Lemma 8. By definition (32) it holds also for the left boundary functions of the second type. Since
the inner basis functions are just translated and dilated scaling functionφ̃ , they obviously satisfy
the refinement relation. Finally, the right boundary scaling functions are derived by the reflection
from the left boundary scaling functions and therefore, they satisfy therefinement relation, too. It
remains to prove that ⋃

j≥ j0

S̃j = L2([0,1]) , (70)

whereM denotes the closure of the setM in L2([0,1]). It is known [26] that for the spaces gener-
ated by inner functions

S̃0
j :=

{
θ j,k,k∈ I 0

j

}
(71)

we have ⋃

j≥ j0

S̃0
j = L2([0,1]) . (72)
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Hence, (70) holds independently of the choice of boundary functions.
To prove ii) we recall that the scaling functioñφ is exact of order̃N, i.e.

2 j(r+1/2)xr = ∑
k∈Z

αk,r2
j/2φ̃

(
2 jx−k

)
, x∈ R a.e., r = 0, . . . , Ñ−1, (73)

where

αk,r =
〈
(·)k ,φ (·− r)

〉
. (74)

It implies that forr = 0, . . . , Ñ−1, x∈ 〈0,1〉, the following holds

2 j(r+1/2)xr |〈0,1〉 =
Ñ−2

∑
k=−N−Ñ+2

αk,r2
j/2φ̃

(
2 jx−k

)
|〈0,1〉+

2 j−N−Ñ+1

∑
k=Ñ−1

αk,r2
j/2φ̃

(
2 jx−k

)
|〈0,1〉

+
2 j+Ñ−2

∑
k=2 j−N−Ñ+2

αk,r2
j/2φ̃

(
2 jx−k

)
|〈0,1〉.

By (30), (34), and (69), we immediately have

ΠÑ−1([0,1])⊂ span
{

φ̃ j,k,k∈ I L,1
j ∪I 0

j ∪I R,1
j

}
⊂ S̃j . (75)

5 Refinement Matrices

Due to the length of the support of the primal scaling functions, the refinement matrix M j,0 corre-
sponding toΦ has the following structure:

M j,0 =




ML

A j

MR



. (76)

whereML, MR are blocks of the size(2N−2)×(N−1) andA j is a
(
2 j+1−N+2

)
×
(
2 j −N+2

)
matrix given by

(A j)m,n =
1√
2

hm−2n, 0≤ m−2n≤ N. (77)

Since the matrixML is given by




φ j,−N+1
φ j,−N+2

...
φ j,−1


= MT

L




φ j+1,−N+1
φ j+1,−N+2

...
φ j+1,N−1


 , (78)

it could be computed by solving the system

P1 = MT
L P2, (79)

where

P1 =




φ0,−N+1(0) φ0,−N+1(1) . . . φ0,−N+1(2N−3)
φ0,−N+2(0) φ0,−N+2(1) . . . φ0,−N+2(2N−3)

...
...

φ0,−1(0) φ0,−1(1) . . . φ0,−1(2N−3)


 (80)
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and

P2 =




φ1,−N+1(0) φ1,−N+1(1) . . . φ1,−N+1(2N−3)
φ1,−N+2(0) φ1,−N+2(1) . . . φ1,−N+2(2N−3)

...
...

φ1,N−1(0) φ1,N−1(1) . . . φ1,N−1(2N−3)


 . (81)

The solution of the system (79) exists and is unique if and only if the matrixP2 is nonsingular.
The proof of a nonsingularity ofP2 can be found in [36].

To compute the refinement matrix corresponding to the dual scaling functions, we need to
identify first the structure of the refinement matricesMΘ

j,0 corresponding toΘ .

MΘ
j,0 =




MΘ
L

Ã j

MΘ
R



, (82)

whereMΘ
L andMΘ

R are blocks of the size
(
2N+3Ñ−5

)
×
(
N+ Ñ−2

)
andÃ j is a matrix of the

size
(
2 j+1−N−2Ñ+3

)
×
(
2 j −N−2Ñ+3

)
given by

(
Ã j
)

m,n =
1√
2

h̃m−2n, 0≤ m−2n≤ N+ Ñ−2. (83)

The recipe for the computation of the refinement coefficients for the left boundary functions of the
first type is the proof of Lemma 8. The refinement coefficients for the left boundary functions of
the second type are given by the definition (32). The matrixMΘ

R can be computed by the similar
way.

Since we have

Φ̃ j = Q−T
j Θ j = Q−T

j

(
MΘ

j,0

)T
Θ j+1 = Q−T

j

(
MΘ

j,0

)T
QT

j+1Φ̃ j+1, (84)

the refinement matrix̃M j,0 corresponding to the dual scaling basisΦ̃ j is given by

M̃ j,0 = Q j+1MΘ
j,0Q−1

j . (85)
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Fig. 4 Nonzero pattern of the matricesM5,0 andM̃5,0 for N = 4 andÑ = 6, nz is the number of nonzero entries.
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6 Wavelets

Our next goal is to determine the corresponding wavelet bases. This is directly connected to the
task of determining an appropriate matricesM j,1 andM̃ j,1. Thus, the problem has been transferred
from functional analysis to linear algebra. We follow a general principle called astable completion
which was proposed in [6].

Definition 10. Any M j,1 : l2(Jj)→ l2(I j+1) is called astable completionof M j,0, if

∥∥M j
∥∥ ,
∥∥∥M−1

j

∥∥∥= O(1) , j → ∞, (86)

whereM j := (M j,0,M j,1).

The idea is to determine first an initial stable completion and then to project it to the desired
complement spaceWj determined by

{
Ṽj
}

j≥ j0
. This is summarized in the following theorem [6].

Theorem 11.LetΦ j andΦ̃ j be a primal and dual scaling basis, respectively. LetM j,0 andM̃ j,0 be
the refinement matrices corresponding to these bases. Suppose thatM̌ j,1 is some stable completion
of M j,0 andǦ j = M̌−1

j . Then

M j,1 :=
(
I −M j,0M̃T

j,0

)
M̌ j,1 (87)

is also a stable completion andG j = M−1
j has the form

G j =

(
M̃T

j,0

Ǧ j,1

)
. (88)

Moreover, the collections

Ψj := MT
j,1Φ j+1, Ψ̃j := ǦT

j,1Φ̃ j+1 (89)

form biorthogonal systems

〈
Ψj ,Ψ̃j

〉
= I ,

〈
Φ j ,Ψ̃j

〉
=
〈
Ψj ,Φ̃ j

〉
= 0. (90)

We found the initial stable completion by the method from [16], [18] with some smallchanges.
The difference is only in the dimensions of the involved matrices and in the definion of the matrix
F j . Recall thatA j is the interior block in the matrixM j,0 of the form

A j =
1√
2




h0 0 . . . 0

h1 0
...

h3 h0
...

...
...

hN hN−2
...

0 hN−1 0
0 hN h0
...

...
0 hN




, (91)
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whereh0, . . . ,hN are the scaling coefficients corresponding toφ . By a suitable elimination we will
successively reduce the upper and lower bands fromA j such that afteri steps we obtain

A(i)
j =




0 0 0
...

...
...

0 0
h(i)d i

2e 0

h(i)d i
2e+1

0

... h(i)d i
2e

...
...

h(i)
N−b i

2c
0
...

h(i)
N−b i

2c
0
...

0 0




}
⌈

i
2

⌉

}
⌊

i
2

⌋

, A(0)
j := A j . (92)

In [16], it was proved for B-spline scaling functions that

h(i)di/2e, . . . ,hN−bi/2c 6= 0, i = 1, . . . ,N. (93)

Therefore, the ellimination is always possible. The elimination matrices are of theform

H(2i−1)
j := diag(I i−1,U2i−1, . . . ,U2i−1, IN−1) , (94)

H(2i)
j := diag(IN−i ,L2i , . . . ,L2i , I i−1) , (95)

where

Ui+1 :=


1 − h(i)di/2e

h(i)di/2e+1

0 1


 , L i+1 :=




1 0

− h(i)N−bi/2c
h(i)N−bi/2c−1

1


 . (96)

It is easy to see that indeed
A(i)

j = H(i)
j A(i−1)

j . (97)

After N elimination steps we obtain the matrixA(N)
j which looks as follows

A(N)
j = H jA j =




0 0 0
...

...
...

0 0
b 0
0 0
0 b
... 0

...
b
0

...
...

0 0




}⌈
N
2

⌉

}⌊
N
2

⌋

, where H j := H(N)
j . . .H(1)

j , (98)

with b 6= 0. We define

B j :=
(

A(N)
j

)−1
=




0 . . . 0 b−1 0 0 0 . . . 0
0 . . . 0 0 0b−1 0 . . . 0

...
b−1 0 . . . 0


 (99)

︸ ︷︷ ︸
dN

2 e
︸ ︷︷ ︸
bN

2 c
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and

F j :=




0 0
...

...
0 0
1 0
0 0
0 1
... 0

...
1
0
...
0







⌈

N
2

⌉
−1

.




⌊

N
2

⌋
+1

(100)

Then, we have

B jF j = 0. (101)

After these preparations we define extended versions of the matricesH j , A j , A(N)
j , andB j by

Ĥ j :=

(
IN−1

H j
IN−1

)
, Â(N)

j :=




IN−1

A(N)
j

IN−1


 , (102)

Â j :=

(
IN−1

A j
IN−1

)
, B̂T

j :=




IN−1
BT

j
IN−1


 . (103)

Note thatĤ j , Â j , Â(N)
j , andB̂ j are all matrices of the size(#I j+1)× (#I j). Hence, the com-

pletion ofÂ(N)
j has to be a(#I j+1)×2 j . On the contrary to the construction in [16], we define an

expanded version ofF j as in [5], because it leads to a more natural formulation, when the entries
of both the refinement matrices belong to

√
2Q. The difference is in multiplication by

√
2,

F̂ j :=
√

2




O
IdN

2 e−1

F j
IbN

2 c

O




}N−1

.

}N−1

(104)

The above findings can be summarized as follows.

Lemma 12. The following relations hold:

B̂ j Â
(N)
j = I#I j ,

1
2

F̂T
j F̂ j = I2 j (105)

and

B̂ j F̂ j = 0, F̂T
j Â(N)

j = 0. (106)

The proof of this lemma is similar to the proof in [16]. Note the refinement matrixM j,0 can be
factorized as

M j,0 = P j Â j = P jĤ−1
j Â(N)

j (107)
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with

P j :=




ML

I#I j+1−2N

MR



. (108)

Now we are able to define the initial stable completions of the refinement matricesM j,0.

Lemma 13. Under the above assumptions, the matrices

M̌ j,1 := P jĤ−1
j F̂ j , j ≥ j0, (109)

are uniformly stable completions of the matricesM j,0. Moreover, the inverse

Ǧ j =

(
Ǧ j,0

Ǧ j,1

)
(110)

of M̌ j =
(
M j,0,M̌ j,1

)
is given by

Ǧ j,0 = B̂ jĤ jP−1
j , Ǧ j,1 =

1
2

F̂T
j Ĥ jP−1

j . (111)

The proof of this lemma is straightforward and similar to the proof in [16]. Thenusing the
initial stable completionM̌ j,1 we are already able to contruct wavelets according to the Theorem
11.
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Fig. 5 Some primal wavelets forN = 4 andÑ = 6 without boundary conditions.

7 Norm equivalences

In this section, we prove norm equivalences and we show thatΨ andΨ̃ are Riesz bases for the
spaceL2([0,1]). Furthermore, we show that

{
2−s|λ |ψλ ,λ ∈ J

}
is a Riesz basis for Sobolev space

Hs([0,1]) for somes specified below. The proofs are based on the theory developed in [13]and
[16].

Let us define

γ := sup{s : φ ∈ Hs(R)} , γ̃ := sup
{

s : φ̃ ∈ Hs(R)
}
. (112)
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It is known thatγ =N− 1
2. The Sobolev exponent of smoothnessγ̃ can be computed by the method

from [21]. The functions inΦ j andΨj , j ≥ j0, have the Sobolev regularity at leastγ, because the
primal scaling functions are B-splines and the primal wavelets are finite linearcombinations of the
primal scaling functions. Similarly, the functions iñΦ j andΨ̃j , j ≥ j0, have the Sobolev regularity
at leastγ̃.
Theorem 14. i) The sets

{
Φ j
}

:=
{

Φ j
}

j≥ j0
and

{
Φ̃ j
}

:=
{

Φ̃ j
}

j≥ j0
are uniformly stable, i.e.

c‖b‖l2(I j) ≤
∥∥∥∥∥ ∑

k∈I j

bkφ j,k

∥∥∥∥∥≤C‖b‖l2(I j) for all b = {bk}k∈I j
∈ l2(I j) , j ≥ j0. (113)

ii) For all j ≥ j0, the Jackson inequalities hold, i.e.

inf
v j∈Sj

∥∥v−v j
∥∥. 2−s j‖v‖Hs([0,1]) for all v ∈ Hs([0,1]) and s< N, (114)

and
inf

v j∈S̃j

∥∥v−v j
∥∥. 2−s j‖v‖Hs([0,1]) for all v ∈ Hs([0,1]) and s< Ñ. (115)

iii) For all j ≥ j0, the Bernstein inequalities hold, i.e.∥∥v j
∥∥

Hs([0,1]) . 2s j
∥∥v j
∥∥ for all v j ∈ Sj and s< γ , (116)

and ∥∥v j
∥∥

Hs([0,1]) . 2s j
∥∥v j
∥∥ for all v j ∈ S̃j and s< γ̃. (117)

Proof i) Due to Lemma 2.1 in [16], the collections
{

Φ j
}

:=
{

Φ j
}

j≥ j0
and

{
Φ̃ j
}

:=
{

Φ̃ j
}

j≥ j0
are

uniformly stable, ifΦ j andΦ̃ j are biorthogonal,
∥∥φ j,k

∥∥. 1,
∥∥φ̃ j,k

∥∥. 1, k∈ I j , j ≥ j0, (118)

andΦ j andΦ̃ j are locally finite, i.e.

#
{

k′ ∈ I j : Ω j,k′ ∩Ω j,k 6= /0
}
. 1, for all k∈ I j , j ≥ j0, (119)

and
#
{

k′ ∈ I j : Ω̃ j,k′ ∩ Ω̃ j,k 6= /0
}
. 1, for all k∈ I j , j ≥ j0, (120)

whereΩ j,k := suppφ j,k andΩ̃ j,k := suppφ̃ j,k. By (40) the setsΦ j andΦ̃ j are biorthogonal. The
properties (118), (119), and (120) follow from (15), (21), and (35).

ii) By Lemma 2.1 in [16], the Jackson inequalities are the consequences of i) and the polyno-
mial exactness (17) and (68).

iii) The Bernstein inequalities follow from i) and the regularity of basis functions, for details
see [14].

The following fact follows from [13].
Corollary 1. We have the norm equivalences

‖v‖2
Hs ∼ 22s j0

∥∥∥∥∥∥ ∑
k∈I j0

〈
v, φ̃ j0,k

〉
φ j0,k

∥∥∥∥∥∥

2

+
∞

∑
j= j0

22s j

∥∥∥∥∥ ∑
k∈J j

〈
v, ψ̃ j,k

〉
ψ j,k

∥∥∥∥∥

2

, (121)

where v∈ Hs([0,1]) and s∈ (−γ̃,γ).
The norm equivalence fors= 0, Theorem 11, and Lemma 13, imply that

Ψ := Φ j0 ∪
∞⋃

j= j0

Ψj and Ψ̃ := Φ̃ j0 ∪
∞⋃

j= j0

Ψ̃j (122)

are biorthogonal Riesz bases of the spaceL2([0,1]). Let us define

D =
(

Dλ ,λ̃

)
λ ,λ̃∈J

, Dλ ,λ̃ := δλ ,λ̃ 2|λ |, λ , λ̃ ∈ J . (123)

The relation (121) implies thatD−sΨ is a Riesz basis of the Sobolev spaceHs([0,1]) for s∈
(−γ̃,γ).
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8 Adaptation to Complementary Boundary Conditions

In this section, we introduce a construction of well-conditioned spline-wavelet bases on the inter-
val satisfying complementary boundary conditions of the first order. Thismeans that the primal
wavelet basis is adapted to homogeneous Dirichlet boundary conditions ofthe first order, whereas
the dual wavelet basis preserves the full degree of polynomial exactness. This construction is based
on the spline-wavelet bases constructed above. As already mentioned in Remark 7, in the linear
case, i.e.N = 2, our bases are identical to the bases constructed in [24]. The adaptation of these
bases to complementary boundary conditions can be found in [24]. Thus,we consider only the
caseN ≥ 3.

Let Φ j =
{

φ j,k,k=−N+1, . . . ,2 j −1
}

be defined as above. Note that the functionsφ j,−N+1,
φ j,2 j−1 are the only two functions which do not vanish at zero. Therefore, defining

Φcomp
j =

{
φ j,k,k=−N+2, . . . ,2 j −2

}
(124)

we obtain the primal scaling bases satisfying complementary boundary conditions of the first order.
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2

Fig. 6 Primal scaling functions forN = 4 and j = 3 satisfying complementary boundary conditions of the first order.

On the dual side, we also need to omit one scaling function at each boundary, because the num-
ber of the primal scaling functions must be the same as the number of the dual scaling functions.
Let Θ j =

{
θ j,k,k∈ I j

}
be the dual scaling basis on the levelj before biorthogonalization from

Section 4. There are the boundary functions of two types. Recall that thefunctionsθ j,−N+1, . . .,
θ j,−N+Ñ are the left boundary functions of the first type which are defined to preserve polynomial
exactness of the order̃N. The functionsθ j,−N+Ñ+1, . . ., θ j,Ñ−2 are the left boundary functions of
the second type. The right boundary scaling functions are then derived by the reflection of the left
boundary functions. Since we want to preserve the full degree of polynomial exactness, we omit
one function of the second type at each boundary. Thus, we define

θ comp
j,k =





θ j,k−1, k=−N+2, . . . ,−N+ Ñ+1,
θ j,k, k=−N+ Ñ+2, . . . ,2 j − Ñ−2,
θ j,k+1, k= 2 j − Ñ−1, . . . ,2 j −2.

(125)

Since the setΘ comp
j :=

{
θ comp

j,k : k=−N+2, . . . ,2 j −2
}

is not biorthogonal toΦ j , we derive a

new setΦ̃comp
j from Θ comp

j by biorthogonalization. LetQcomp
j =

(〈
φ j,k,θ comp

j,l

〉)2 j−2

k,l=−N+2
, then

viewing Φ̃comp
j andΘ comp

j as column vectors we define

Φ̃comp
j :=

(
Qcomp

j

)−T
Θ comp

j . (126)

Our next goal is to determine the corresponding wavelets

Ψ comp
j :=

{
ψcomp

j,k ,k= 0, . . . ,2 j −1
}
, Ψ̃ comp

j :=
{

ψ̃comp
j,k ,k= 0, . . . ,2 j −1

}
. (127)

It can be done by the method of a stable completion as in Section 6.
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9 Quantitative Properties of Constructed Bases

In this section the condition numbers of the scaling bases, the single-scale wavelet bases and the
multiscale wavelet bases are computed. As in [24] it can be improved by theL2-normalization on
the primal side. It will be shown that in the case of cubic spline wavelets bases the construction
presented in this paper yields optimalL2-stability, which is not the case of constructions in [16]
and [24]. The condition numbers of the scaling bases and the wavelet bases satisfying the com-
plementary boundary conditions of the first order are presented as well.The other criteria for the
effectiveness of the wavelet bases is the condition number of the corresponding preconditioned
stiffness matrix. To improve it further we apply an orthogonal transformation to the scaling basis
on the coarsest level and then we use a diagonal matrix for preconditioning.

It is known that Riesz bounds (2) of the basisΦ j can be computed by

c=
√

λmin(G j), C=
√

λmax(G j), (128)

whereG j is the Gram matrix, i.e.G j =
(〈

φ j,k,φ j,l
〉)

k,l∈I j
, andλmin(G j), λmax(G j) denote the

smallest and the largest eigenvalue ofG j , respectively. The Riesz bounds ofΦ̃ j , Ψj andΨ̃j are
computed in a similar way.

The condition numbers of the constructed bases are presented in Table 2.To improve it further
we provide a diagonal rescaling in the following way:

φN
j,k =

φ j,k√〈
φ j,k,φ j,k

〉 , φ̃N
j,k = φ̃ j,k ∗

√〈
φ j,k,φ j,k

〉
, k∈ I j , j ≥ j0, (129)

ψN
j,k =

ψ j,k√〈
ψ j,k,ψ j,k

〉 , ψ̃N
j,k = ψ̃ j,k ∗

√〈
ψ j,k,ψ j,k

〉
, k∈ J j , j ≥ j0. (130)

Then the new primal scaling and wavelet bases are normalized with respectto theL2-norm. As
already mentioned in Remark 7, the resulting bases forN = 2 are the same as those designed
in [24] and [25]. For the quadratic spline-wavelet bases, i.e.N = 3, the condition of our bases
is comparable to the condition of the bases from [24] and [25]. In [3], it was shown that for any
spline wavelet basis of orderN on the real line, the condition is bounded below by 2N−1. This result
readily carries over to the case of spline wavelet bases on the interval. Now, the constructions from
[24], [25] yields the wavelet bases whose Riesz bounds are nearly optimal, i.e. condΨ N

j ≈ 2N−1

for N = 2 andN = 3. Unfortunately, theL2-stability gets considerably worse forN ≥ 4. As can
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Fig. 7 Some primal wavelets forN = 4 andÑ = 6 satisfying the complementary boundary conditions of the first order.



21

be seen in Table 2, the column ”Ψ N
j ”, the presented construction seems to yield the optimalL2-

stability also forN = 4. Note that the casesN = 4, Ñ = 4 andN = 5, Ñ < 9 are not included in
Table 2. It was shown in [9] that the corresponding scaling functions and wavelets do not belong
to the spaceL2.

Table 2 The condition of single-scale scaling and wavelet bases

N Ñ j Φ j ΦN
j Φ̃ j Φ̃N

j Ψj ΨN
j Ψ̃j Ψ̃N

j

2 2 10 2.00 1.73 2.30 1.97 2.00 2.00 2.02 2.00
2 4 10 2.00 1.73 2.09 1.80 2.00 2.00 2.04 2.00
2 6 10 2.00 1.73 2.26 2.03 2.00 2.00 2.30 2.26
2 8 10 2.00 1.73 2.90 2.78 2.34 2.22 3.14 3.81
3 3 10 3.25 2.76 7.58 6.37 4.49 4.00 7.07 4.27
3 5 10 3.25 2.76 3.93 3.49 4.63 4.00 5.55 4.05
3 7 10 3.25 2.76 3.53 3.11 4.55 4.00 5.13 4.01
3 9 10 3.25 2.76 3.75 3.32 4.44 4.00 5.51 4.23
4 6 10 5.18 4.42 10.88 9.07 14.02 8.00 24.36 9.23
4 8 10 5.18 4.42 6.69 5.88 13.96 8.00 16.98 8.20
4 10 10 5.18 4.42 5.83 5.16 13.82 8.00 15.27 8.00
5 9 10 8.32 7.13 29.87 25.23 67.74 27.44 169.76 68.90
5 11 10 8.32 7.13 12.10 11.74 16.00 16.00 45.12 21.65
5 13 10 8.32 7.13 28.49 45.60 16.00 16.00 22.64 22.23

In Table 3 the condition of the multiscale wavelet basesΨj0,s = Φ j0 ∪
⋃ j0+s−1

j= j0
Ψj is presented.

It is known that the condition number of the original basis on the real line from [9] is less
than or equal to the condition number of the interval wavelet basis where theinner functions are
identical to the basis functions from [9]. Therefore, we use the conditionnumber of the wavelet
bases from [9] as a benchmark. In Table 4, we compare the condition number of our wavelet bases
and the wavelet bases from [9], [24].

In caseN = 5, the condition numbers of the scaling bases and the single-scale wavelet bases
seem to be optimal, but the condition numbers of the multiscale wavelet bases arenot close to the
condition numbers of the corresponding wavelet bases on the real line. However, in comparison
with [24] the condition number is significantly improved forN = 5 andÑ = 9. Therefore the
construction of well-conditioned high-order biorthogonal spline waveletsis still an open problem.

Table 3 The condition of the multiscale wavelet bases

N Ñ j0 ΨN
j0,1

ΨN
j0,2

ΨN
j0,3

ΨN
j0,4

ΨN
j0,5

Ψ̃N
j0,1

Ψ̃N
j0,2

Ψ̃N
j0,3

Ψ̃N
j0,4

Ψ̃N
j0,5

2 2 2 1.98 2.27 2.52 2.65 2.76 2.20 2.42 2.65 2.78 2.87
2 4 3 2.13 2.25 2.30 2.33 2.34 2.15 2.26 2.31 2.33 2.35
2 6 4 2.47 2.71 2.84 2.92 2.99 2.60 2.78 2.88 2.94 3.00
2 8 4 3.71 4.77 5.35 5.68 5.89 4.44 5.17 5.57 5.82 5.98
3 3 3 4.92 6.01 7.15 7.87 8.50 7.25 8.54 9.50 10.08 10.48
3 5 4 4.51 4.82 5.01 5.10 5.14 4.63 4.98 5.11 5.15 5.16
3 7 4 4.19 4.38 4.44 4.46 4.48 4.24 4.39 4.45 4.48 4.49
3 9 5 4.44 4.55 4.61 4.64 4.65 4.48 4.58 4.62 4.64 4.66
4 6 4 9.55 10.90 11.88 12.50 12.90 10.88 12.90 13.35 13.48 13.58
4 8 5 8.01 8.31 8.54 8.68 8.76 8.23 8.60 8.73 8.79 8.81
4 10 5 7.89 8.02 8.09 8.12 8.13 7.93 8.05 8.11 8.13 8.14
5 9 5 30.22 64.60 75.17 81.03 84.81 72.34 83.19 87.93 90.11 91.27
5 11 5 84.40 631.61 3004.08 > 104 > 104 54.08 401.23 3004.08 > 104 > 104

The condition of the single-scale bases adapted to complementary boundarycondition of the
first order are listed in Table 5. We improve the condition of the constructed bases by theL2-
normalization. ForN = 4 the condition number of the bases constructed in this paper is again
significantly better than the condition of the bases from [24].



22

The other criteria for the effectiveness of a wavelet basis is the conditionnumber of the corre-
sponding stiffness matrix. Here, let us consider the stiffness matrix for thePoisson equation:

A j0,s =

(〈(
ψcomp

j,k

)′
,
(

ψcomp
l ,m

)′〉)

ψcomp
j,k ,ψcomp

l ,m ∈Ψ comp
j0,s

, (131)

whereΨ comp
j0,s

= Φcomp
j0

∪⋃ j0+s−1
j= j0

Ψ comp
j denotes the multiscale basis adapted to complementary

boundary conditions. It is well-known that the condition number ofA j0,s increases quadratically
with the matrix size. To remedy this, we use the diagonal matrix for preconditioning

Aprec
j0,s

= D−1
j0,sA j0,sD

−1
j0,s, D j0,s = diag

(〈(
ψcomp

j,k

)′
,
(

ψcomp
j,k

)′〉1/2
)

ψcomp
j,k ∈Ψ comp

j0,s

. (132)

To improve further the condition number ofAprec
j0,s

we apply the orthogonal transformation to the
scaling basis on the coarsest level as in [7] and then we use the diagonalmatrix for preconditioning.
We denote the obtained matrix byAort

j0,s. The condition numbers of the resulting matrices are listed
in Table 6.

10 Adaptive wavelet methods

In recent years adaptive wavelet methods have been successfully used for solving partial differen-
tial as well as integral equations, both linear and nonlinear. It has been shown that these methods
converge and that they are asymptotically optimal in the sense that a storage and a number of float-
ing point operations, needed to resolve the problem with desired accuracy, remain proportional to
the problem size when the resolution of the discretization is refined. Thus, the computational com-
plexity for all steps of the algorithm is controlled.

The effectiveness of adaptive wavelet methods is strongly influenced by the choice of a wavelet
basis, in particular by the condition of the basis. In this section, our intention isto compare the
quantitative behaviour of the adaptive wavelet method for the cubic spline wavelet bases con-
structed in this paper and the cubic spline wavelet bases from [24].

Table 4 The condition number of our multiscale wavelet basesΨN
j0,5

andΨ̃N
j0,5

and multiscale wavelet bases from [9] and [24]

N Ñ j0 s ΨCDF
j0,5

ΨPrimbs
j0,5

ΨN
j0,5

Ψ̃CDF
j0,5

Ψ̃Primbs
j0,5

Ψ̃N
j0,5

3 3 3 5 6.68 6.25 8.50 8.52 8.17 10.48
3 5 4 5 4.36 5.31 5.14 4.37 5.36 5.16
3 7 4 5 4.04 8.57 4.48 4.04 8.63 4.49
3 9 5 5 4.00 25.40 4.65 4.00 25.76 4.66
4 6 4 5 9.89 141.95 12.90 10.43 160.54 13.58
4 8 5 5 8.27 257.41 8.76 8.27 258.56 8.81
4 10 5 5 8.04 917.10 8.13 8.04 935.38 8.14
4 12 5 5 8.01 3971.65 8.44 8.01 3992.29 8.45
5 9 5 5 17.64 > 104 84.81 18.01 > 104 91.27

Table 5 The condition of scaling bases and single-scale wavelet bases satisfying complementary boundary conditions of the first order

N Ñ j Φ j ΦN
j Φ̃ j Φ̃N

j Ψj ΨN
j Ψ̃j Ψ̃N

j

3 3 10 2.74 2.74 4.49 4.34 4.00 4.00 4.13 4.00
3 5 10 2.74 2.74 4.94 4.58 4.00 4.00 6.68 6.27
3 7 10 2.74 2.74 8.61 8.33 4.84 4.27 12.11 16.05
3 9 10 2.74 2.74 17.94 17.78 8.16 6.25 25.17 46.10
4 6 10 4.53 4.31 7.90 6.83 9.47 8.00 16.46 8.00
4 8 10 4.53 4.31 11.16 10.04 8.46 8.03 25.40 15.32
4 10 10 4.53 4.31 17.90 16.97 8.39 8.42 37.78 35.93
5 9 10 7.58 6.89 15.81 13.85 35.01 16.02 80.84 33.60
5 11 10 7.58 6.89 29.00 26.39 16.00 16.00 132.90 74.70
5 13 10 7.58 6.89 289.13 440.54 118.19 89.12 720.32 5884.77
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Example 15. We consider the one-dimensional Poisson equation with homogeneous Dirichlet
boundary conditions

−u′′ = f , in Ω = (0,1) , u(0) = u(1) = 0, (133)

whose solutionu is given by

u(x) = 4
e50x−1
e50−1

(
1− e50x−1

e50−1

)
+x(1−x) , x∈ Ω . (134)

The solution exhibits steep a gradient near the boundary, see Figure 8. Let us define the diagonal
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Fig. 8 The exact solution and the right hand side of (133).

matrix
D = diag

(〈
ψ ′

j,k,ψ
′
j,k

〉1/2
)

ψ j,k∈Ψ
(135)

and operators
A = D−1〈Ψ ′,Ψ ′〉D−1, f = D−1〈 f ,Ψ〉 . (136)

Then the variational formulation of (133) is equivalent to

AU = f (137)

and the solutionu is given byu=UD−1Ψ . We solve the infinite dimensional problem (137) by the
inexact damped Richardson iterations. This algorithm was originally proposed by Cohen, Dahmen
and DeVore in [10]. Here, we use a modified version from [30].

Figure 9 shows a convergence history for the spline-wavelet bases designed in this contribution
with N = 4 andÑ = 6 denoted by CF and the spline-wavelet bases with the same polynomial
exactness from [24]. We use also the algorithm with the stiffness matrixAort which has lower
condition number, see Table 6. Its convergence history is denoted by CFort. Note that the relative
error in the energy norm for an adaptive scheme with our bases is significantly smaller even though
the number of the involved basis functions is about half compared with the bases in [24].

Table 6 The condition number of the stiffness matricesAprec
j,s , Aort

j,s of the sizeM×M

N Ñ j s M Aprec
j,s Aort

j,s N Ñ j s M Aprec
j,s Aort

j,s

3 3 3 1 16 12.24 3.78 4 6 4 1 33 48.98 15.25
4 128 12.82 5.05 4 259 51.61 16.15
7 1024 12.86 5.37 7 2049 50.28 16.31

3 5 4 1 32 52.97 4.20 4 8 5 1 65 205.56 15.92
4 256 55.09 8.41 4 513 208.88 26.80
7 2048 55.24 9.47 7 4097 209.31 27.69

3 7 4 1 32 71.07 10.74 5 7 5 1 66 183.57 159.08
4 256 71.90 33.52 4 514 214.27 214.40
7 2048 71.91 38.66 7 4098 222.57 222.62

4 4 4 1 33 47.02 15.38 5 9 5 1 66 191.19 171.91
4 259 50.01 18.13 4 514 225.92 225.69
7 2049 50.28 18.91 7 4098 233.24 233.24



24

Example 16. We consider the two-dimensional Poisson equation

−∆u= f in Ω = (0,1)2 , u= 0 on ∂Ω , (138)

with the solutionu given by

u(x,y) = u(x)u(y) , (x,y) ∈ Ω , (139)

whereu(x), u(y) are given by (134). We use the adaptive wavelet scheme with the cubic wavelet
basis adapted to homogeneous Dirichlet boundary conditions of the first order. The convergence
history for our wavelet bases with and without orthogonalization and wavelet bases from [24] is
shown in Figure 10.
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 Cubic spline wavelets with complementary boundary conditions
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Abstract

We propose a new construction of a stable cubic spline-wavelet basis on the interval
satisfying complementary boundary conditions of the second order. It means that
the primal wavelet basis is adapted to homogeneous Dirichlet boundary conditions of
the second order, while the dual wavelet basis preserves the full degree of polynomial
exactness. We present quantitative properties of the constructed bases and we show
superiority of our construction in comparison to some other known spline wavelet bases
in an adaptive wavelet method for the partial differential equation with the biharmonic
operator.

Keywords: wavelet, cubic spline, complementary boundary conditions, homogeneous
Dirichlet boundary conditions, condition number
2000 MSC: 46B15, 65N12, 65T60

1. Introduction

In recent years wavelets have been successfully used for solving partial differential
equations [2, 11, 12, 16, 27] as well as integral equations [22, 24, 25], both linear and
nonlinear. Wavelet bases are useful in the numerical treatment of operator equations,
because they are stable, enable high order-approximation, functions from Besov spaces
have sparse representation in wavelet bases, condition numbers of stiffness matrices are
uniformly bounded and matrices representing operators are typically sparse or quasi-
sparse. The quantitative properties of wavelet methods strongly depend on the choice
of a wavelet basis, in particular on its condition number. Therefore, a construction of
a wavelet basis is always an important issue.

Wavelet bases on a bounded domain are usually constructed in the following way:
Wavelets on the real line are adapted to the interval and then by tensor product tech-
nique to the n-dimensional cube. Finally by splitting the domain into overlapping or
non-overlapping subdomains which are images of a unit cube under appropriate para-
metric mappings one can obtain a wavelet basis or a wavelet frame on a fairly general
domain. Thus, the properties of the employed wavelet basis on the interval are crucial
for the properties of the resulting bases or frames on a general domain.

In this paper, we propose a construction of cubic spline wavelet basis on the interval
that is adapted to homogeneous Dirichlet boundary conditions of the second order on

Email addresses: dana.cerna@tul.cz (Dana Černá), vaclav.finek@tul.cz (Václav Finěk)
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the primal side and preserves the full degree of polynomial exactness on the dual side.
Such boundary conditions are called complementary boundary conditions [18]. We
compare properties of wavelet bases such as the condition number of the basis and the
condition number of the corresponding stiffness matrix. Finally, quantitative behaviour
of adaptive wavelet method for several boundary-adapted cubic spline wavelet bases is
studied.

First of all, we summarize the desired properties of a constructed basis:

- Polymial exactness. Since the primal basis functions are cubic B-splines, the
primal multiresolution analysis has polynomial exactness of order four. The dual
multiresolution analysis has polynomial exactness of order six. As a consequence,
the primal wavelets have six vanishing moments.

- Riesz basis property. The functions form a Riesz basis of the space L2 ([0, 1]) and
if scaled properly they form a Riesz basis of the space H2

0 ([0, 1]).

- Locality. The primal and dual basis functions are local, see definition of locality
below. Then the corresponding decomposition and reconstruction algorithms are
simple and fast.

- Biorthogonality. The primal and dual wavelet bases form a biorthogonal pair.

- Smoothness. The smoothness of primal and dual wavelet bases is another desired
property. It ensures the validity of norm equivalences.

- Closed form. The primal scaling functions and wavelets are known in the closed
form. It is a desirable property for the fast computation of integrals involving
primal scaling functions and wavelets.

- Complementary boundary conditions. Our wavelet basis satisfy complementary
boundary conditions of the second order.

- Well-conditioned bases. Our objective is to construct a well conditioned wavelet
basis.

Many constructions of cubic spline wavelet or multiwavelet bases on the interval
have been proposed in recent years. In [5, 17, 26] cubic spline wavelets on the interval
were constructed. In [14] cubic spline multiwavelet bases were designed and they were
adapted to complementary boundary conditions of the second order in [28]. In this case
dual functions are known and are local. Cubic spline wavelet bases were also constructed
in [1, 9, 20, 21]. A construction of cubic spline multiwavelet basis was proposed in [19]
and this basis was already used for solving differential equations in [8, 23]. However,
in these cases duals are not known or are not local. Locality of duals are important
in some methods and theory, let us mention construction of wavelet bases on general
domain [18], adaptive wavelet methods especially for nonlinear equations, data analysis,
signal and image processing. A general method of adaptation of biorthogonal wavelet
bases to complementary boundary conditions was presented in [18], but this method
often leads to very badly conditioned bases.

This paper is organized as follows: In Section 2 we briefly review the concept of
wavelet bases. In Section 3 we propose a construction of primal and dual scaling bases.
The refinement matrices are computed in Section 4 and in Section 5 primal and dual
wavelets are constructed. Quantitative properties of constructed bases and other known
cubic spline wavelet and multiwavelet bases are studied in Section 6. In Section 7 we
compare the number of basis functions and the number of iterations needed to resolve
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the problem with desired accuracy for our bases and bases from [28]. A numerical
example is presented for an equation with the biharmonic operator in two dimensions.

2. Wavelet bases

This section provides a short introduction to the concept of wavelet bases in Sobolev
spaces. We consider the domain Ω ⊂ Rd and the Sobolev space or its subspace H ⊂
Hs (Ω) for nonnegative integer s with an inner product 〈·, ·〉H , a norm ‖·‖H and a
seminorm |·|H . In case s = 0 we consider the space L2 (Ω) and we denote by 〈·, ·〉 and
‖·‖ the L2-inner product and the L2-norm, respectively. Let J be some index set and
let each index λ ∈ J take the form λ = (j, k), where |λ| := j ∈ Z is a scale or a level.
Let

l2 (J ) :=

{
v : J → R,

∑

λ∈J
|vλ|2 <∞

}
. (1)

A family Ψ := {ψλ, λ ∈ J } is called a wavelet basis of H, if

i) Ψ is a Riesz basis for H, i.e. the closure of the span of Ψ is H and there exist
constants c, C ∈ (0,∞) such that

c ‖b‖l2(J ) ≤
∥∥∥∥∥
∑

λ∈J
bλψλ

∥∥∥∥∥
H

≤ C ‖b‖l2(J ) , b := {bλ}λ∈J ∈ l2 (J ) . (2)

Constants cψ := sup {c : c satisfies (2)}, Cψ := inf {C : C satisfies (2)} are called
Riesz bounds and cond Ψ = Cψ/cψ is called the condition number of Ψ.

ii) The functions are local in the sense that diam (Ωλ) ≤ C2−|λ| for all λ ∈ J , where
Ωλ is the support of ψλ, and at a given level j the supports of only finitely many
wavelets overlap at any point x ∈ Ω.

By the Riesz representation theorem, there exists a unique family

Ψ̃ =
{
ψ̃λ, λ ∈ J̃

}
⊂ H (3)

biorthogonal to Ψ, i.e.
〈
ψi,k, ψ̃j,l

〉
H
= δi,jδk,l, for all (i, k) ∈ J , (j, l) ∈ J̃ . (4)

This family is also a Riesz basis for H. The basis Ψ is called a primal wavelet basis,
while Ψ̃ is called a dual wavelet basis.

In many cases, the wavelet system Ψ is constructed with the aid of a multiresolution
analysis. A sequence V = {Vj}j≥j0 , of closed linear subspaces Vj ⊂ H is called a
multiresolution or multiscale analysis, if

Vj0 ⊂ Vj0+1 ⊂ . . . ⊂ Vj ⊂ Vj+1 ⊂ . . . H (5)

and ∪j≥j0Vj is complete in H.
The nestedness and the closedness of the multiresolution analysis implies the exis-

tence of the complement spaces Wj such that Vj+1 = Vj ⊕Wj.
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We now assume that Vj and Wj are spanned by sets of basis functions

Φj := {φj,k, k ∈ Ij} , Ψj := {ψj,k, k ∈ Jj} , (6)

where Ij and Jj are finite or at most countable index sets. We refer to φj,k as scaling
functions and ψj,k as wavelets. The multiscale basis is given by Ψj0,s = Φj0 ∪

⋃j0+s−1
j=j0

Ψj

and the wavelet basis of H is obtained by Ψ = Φj0 ∪
⋃
j≥j0 Ψj. The dual wavelet system

Ψ̃ generates a dual multiresolution analysis Ṽ with a dual scaling basis Φ̃j0 .
Polynomial exactness of order N ∈ N for the primal scaling basis and of order Ñ ∈ N

for the dual scaling basis is another desired property of wavelet bases. It means that

PN−1 (Ω) ⊂ Vj, PÑ−1 (Ω) ⊂ Ṽj, j ≥ j0, (7)

where Pm (Ω) is the space of all algebraic polynomials on Ω of degree less or equal to
m.

By Taylor theorem, the polynomial exactness of order Ñ on the dual side is equiv-
alent to Ñ vanishing wavelet moments on the primal side, i.e.

∫

Ω

P (x)ψλ (x) dx = 0, P ∈ PÑ−1, ψλ ∈
⋃

j≥j0
Ψj. (8)

3. Construction of Scaling Functions

We propose a new cubic spline wavelet basis with six vanishing wavelet moments satis-
fying homogeneous Dirichlet boundary conditions of order two. Six vanishing wavelet
moments on the primal side is equivalent to the polynomial exactness of order six on
the dual side. We choose polynomial exactness of this order, because the dual scal-
ing function of order four does not belong to L2 (R) and the polynomial exactness of
order greater than six leads to a larger support of primal wavelets which makes the
computation more expensive.

The first step is the construction of primal scaling functions on the unit interval.
Primal scaling basis is formed by cubic B-splines on the knots tjk defined by

tj−2 = tj−1 := 0, tj0 :=
1

2j+1
, tjk :=

k

2j
, k = 1, . . . 2j − 1, (9)

tj
2j

:=
2j+1 − 1

2j+1
, tj

2j+1
= tj

2j+2
:= 1.

The corresponding cubic B-splines are defined by

Bj
k (x) :=

(
tjk+4 − tjk

) [
tjk, . . . , t

j
k+4

]
t
(t− x)3+ , x ∈ [0, 1] ,

where (x)+ := max {0, x} and [t1, . . . tN ]t f is the N -th divided difference of f . The set
Φj := {φj,k, k = −2, . . . , 2j − 2} of primal scaling functions is simply given by

φj,k := 2j/2Bj
k, k = −2, . . . , 2j − 2, j ≥ 0. (10)

Thus there are 2j−5 inner scaling functions and 3 boundary functions at each edge.
The inner functions are translations and dilations of a function φ which corresponds to

4
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Figure 1: Primal scaling functions for the scale j = 4.

the primal scaling function constructed by Cohen, Daubechies, and Feauveau in [10].
Note that the primal scaling basis differs from the primal scaling basis constructed in
[4, 5, 17, 26], because there are additional knots 1

2j+1 and 2j+1−1
2j+1 .

The desired property of a dual scaling basis Φ̃ is the biorthogonality to Φ and
the polynomial exactness of order six. Let φ̃ be the dual scaling function which was
designed by Cohen, Daubechies, and Feauveau in [10] and which is shifted so that φ̃
is orthogonal to φ, i.e. its support is [−5, 9]. It is known that there exist sequences
{hk}4k=0 and {h̃k}9k=−5 such that the functions φ and φ̃ satisfy the refinement equations

φ (x) =
4∑

k=0

hkφ (2x− k) , φ̃ (x) =
9∑

k=−5

h̃kφ̃ (2x− k) , x ∈ R. (11)

The parameters hk and h̃k are called scaling coefficients.
In the sequel, we assume that j ≥ j0 := 4. We define inner scaling functions as

translations and dilations of φ̃:

θj,k = 2j/2φ̃
(
2j · −k

)
, k = 5, . . . , 2j − 9. (12)

There will be two types of basis functions at each boundary. In the following, it will
be convenient to abbreviate the boundary and inner index sets by

IL,1j = {−2, . . . , 3} , IL,2j = {4} , I0
j =

{
5, . . . , 2j − 9

}
, (13)

IR,2j =
{
2j − 8

}
, IR,1j =

{
2j − 7, . . . , 2j − 2

}
,

and

ILj = IL,1j ∪ IL,2j = {−2, . . . , 4} , (14)

IRj = IR,2j ∪ IR,1j =
{
2j − 8, . . . , 2j − 2

}
,

Ij = IL,1j ∪ IL,2j ∪ I0
j ∪ IR,2j ∪ IR,1j =

{
−2, . . . , 2j − 2

}
.

Basis functions of the first type are defined to preserve polynomial exactness and
the nestedness of multiresolution spaces by the same way as in [17]:

θj,k (x) = 2j/2
4∑

l=−8

〈pk+2, φ (· − l)〉 φ̃
(
2jx− l

)
, k ∈ IL,1j , x ∈ [0, 1] , (15)

5



where {p0, . . . , p5} is a monomial basis of P5 ([0, 1]), i.e. pi (x) = xi, x ∈ [0, 1], i =
0, . . . , 5.

The definition of basis functions of the second type is a delicate task, because the
low condition number and the nestedness of the multiresolution spaces have to be
preserved. This means that the relation θj,4 ∈ Ṽj ⊂ Ṽj+1 should hold. Therefore
we define θj,4 as linear combinations of functions that are already in Ṽj+1. To obtain
well-conditioned basis, we define a function θj,4 which is close to φ̃R

j,4 := 2j/2φ̃ (2j · −4),

because φ̃R
j,4 is biorthogonal to the inner primal scaling functions and the condition of{

φ̃R
j,4, k ∈ IL,2j ∪ I0

j

}
is close to the condition of the set of inner dual basis functions.

For this reason, we define the basis function of the second type by

θj,4 (x) = 2j/2
9∑

l=−3

h̃lφ̃
(
2j+1x− 8− l

)
, x ∈ [0, 1] , (16)

where h̃i are the scaling coefficients corresponding to the scaling function φ̃. Then θj,4
is close to φ̃R

j,4 restricted to the interval [0, 1], because by (11) we have

φ̃R
j,4 (x) = 2j/2

9∑

l=−5

h̃lφ̃
(
2j+1x− 8− l

)
, x ∈ [0, 1] . (17)

Figure 2 shows the functions θ4,4 and φ̃R
4,4.
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Figure 2: The functions φ̃R
4,4 and θ4,4.

The boundary functions at the right boundary are defined to be symmetric with the
left boundary functions:

θj,k (x) = θj,2j−4−k (1− x) , x ∈ [0, 1] , k ∈ IRj . (18)

It is easy to see that

θj+1,k (x) =
√
2 θj,k (2x) , x ∈ [0, 1] , k ∈ ILj , (19)

for left boundary functions and

θj+1,k (1− x) =
√
2 θj,k (1− 2x) , x ∈ [0, 1] , k ∈ IRj , (20)

for right boundary functions.
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Since the set Θj := {θj,k, k ∈ Ij} is not biorthogonal to Φj, we derive a new set

Φ̃j :=
{
φ̃j,k, k ∈ Ij

}
(21)

from Θj by biorthogonalization. Let

Qj = (〈φj,k, θj,l〉)k,l∈Ij . (22)

We verify numerically that Qj is invertible. Viewing Φ̃j and Θj as column vectors we
define

Φ̃j := Q−T
j Θj. (23)

Then Φ̃j is biorthogonal to Φj, because

〈
Φj, Φ̃j

〉
=

〈
Φj,Q

−T
j Θj

〉
= QjQ

−1
j = I#Ij , (24)

where the symbol # denotes the cardinality of the set and Im denotes the identity
matrix of the size m×m.

Remark 1. General approach of adapting wavelet bases to the unit interval was pro-
posed in [18]. The idea is to remove certain boundary scaling functions to achieve
homogeneous boundary conditions on the primal side. Then it is necessary to have the
same number of basis functions on the dual side. Therefore an appropriate number of
inner dual functions is used for the definition of boundary dual generators in formula
(15). Applying this approach to cubic spline basis constructed in [5] and basis con-
structed in [26] we obtain the same resulting basis, because these constructions differs
in the definition of some functions which are discarded during adaptation to comple-
mentary boundary conditions of the second order. Unfortunately, this basis has large
condition number, although the starting basis in [5] is well conditioned. Its quantitative
properties are presented in Section 6.

4. Refinement matrices

From the nestedness and the closedness of multiresolution spaces it follows that
there exist refinement matrices Mj,0 and Mj,1 such that

Φj = MT
j,0Φj+1, Φ̃j = MT

j,1Φ̃j+1. (25)

Due to the length of support of primal scaling functions, the refinement matrix Mj,0

has the following structure:

Mj,0 =




ML

Aj

MR



. (26)

7



where Aj is a (2j+1 − 5)× (2j − 5) matrix given by

(Aj)m,n =
hm+1−2n√

2
, n = 1, . . . , 2j − 5, 0 ≤ m+ 1− 2n ≤ 4, (27)

= 0, otherwise,

where hm are primal scaling coefficients (11), and ML, MR are given by

ML =
1√
2




1
4

0 0
7
8

1
8

0
1
4

3
4

0

0 3
5

2
5

0 3
20

29
40

0 0 1
2

0 0 1
8




, MR = M
l
L. (28)

The symbolMl denotes a matrix that results from a matrixM by reversing the ordering
of rows and columns. To compute the refinement matrix corresponding to the dual
scaling functions, we need to identify first the structure of refinement matrices MΘ

j,0

corresponding to Θ:

MΘ
j,0 =




MΘ
L

Ãj

MΘ
R



, (29)

whereMΘ
L andMΘ

R are blocks 21×7 and Ãj is a matrix of the size (2j+1 − 13)×(2j − 13)
given by

(
Ãj

)
m,n

=
h̃m−2n−4√

2
, n = 1, . . . 2j − 13, −1 ≤ m− 2n ≤ 13, (30)

= 0, otherwise,

where h̃m are dual scaling coefficients (11). The refinement coefficients for the left
boundary functions of the first type are computed according to the proof of Lemma
3.1 in [17]. The refinement coefficients for the left boundary functions of the second
type are given by definition (16). The matrix MΘ

R can be computed by the similar way.
Since

Φ̃j = Q−T
j Θj = Q−T

j

(
MΘ

j,0

)T
Θj+1 = Q−T

j

(
MΘ

j,0

)T
QT
j+1Φ̃j+1, (31)

the refinement matrix M̃j,0 corresponding to the dual scaling basis Φ̃j is given by

M̃j,0 = Qj+1M
Θ
j,0Q

−1
j . (32)
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5. Construction of wavelets

Our next goal is to determine the corresponding single-scale wavelet bases Ψj. It is
directly connected to the task of determining an appropriate matrices Mj,1 such that

Ψj = MT
j,1Φj+1. (33)

We follow a general principle called stable completion which was proposed in [3]. This
approach was already used in [5, 17, 26]. In our case, however, the initial stable com-
pletion can not be found by the same way, because it leads to singular matrices.

Definition 1. Any Mj,1 : l
2 (Jj) → l2 (Ij+1) is called a stable completion of Mj,0, if

‖Mj‖l2(Ij+1)→l2(Ij+1)
= O (1) ,

∥∥M−1
j

∥∥
l2(Ij+1)→l2(Ij+1)

= O (1) , j → ∞, (34)

where Mj := (Mj,0,Mj,1).

The idea is to determine first an initial stable completion and then to project it to
the desired complement space Wj. This is summarized in the following theorem [3].

Theorem 2. Let Φj and Φ̃j be a primal and a dual scaling basis, respectively. Let Mj,0

and M̃j,0 be refinement matrices corresponding to these bases. Suppose that M̌j,1 is
some stable completion of Mj,0 and Ǧj = M̌−1

j . Then

Mj,1 :=
(
I−Mj,0M̃

T
j,0

)
M̌j,1 (35)

is also a stable completion and Gj = M−1
j has the form

Gj =

(
M̃T

j,0

Ǧj,1

)
. (36)

Moreover, the collections

Ψj := MT
j,1Φj+1, Ψ̃j := Ǧj,1Φ̃j+1, (37)

form biorthogonal systems

〈
Ψj, Ψ̃j

〉
= I,

〈
Φj , Ψ̃j

〉
=

〈
Ψj, Φ̃j

〉
= 0. (38)

To find the initial stable completion we use a factorization Mj,0 = HjCj, where

Hj :=




HL

HI
j

HR



, (39)
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HL :=




0.25 0 0 0 0
0.875 1 8 0 0
0.25 6 1 0 0
0 4.8 0 1 0
0 1.2 0 1.8125 2
0 0 0 1.25 1
0 0 0 0.3125 0




, HR := H
l
L, (40)

Matrix
(
HI
j

)
has the size (2j+1 − 7)× (2j+1 − 9). Its elements are given by:

(
HI
j

)
mn

:= 1, 1 ≤ n ≤ 2j+1 − 9, n odd,m = n+ 1 (41)

:= hI2,m−n+2, 1 ≤ n ≤ 2j+1 − 9, n even,−1 ≤ m− n ≤ 3,

:= 0, otherwise,

where hI11 = hI15 = 0.25, hI12 = hI14 = 1, hI13 = 1.5, and

Cj :=
1√
2




CL

CI
j

CR



, CL :=




1 0 0
0 1

8
0

0 0 0
0 0 2

5


 , (42)

CR := C
l
L, CI

j :=




0 0 0
0 0
b 0
0 0
0 b
... 0

. . .
b
0

0 0




, b :=
7

8
. (43)

The factorization corresponding to inner and boundary blocks is not the same as the
factorization in [15]. Therefore by our approach we obtain new inner and boundary
wavelets. We define

Bj :=
√
2




BL

BI
j

BR



,BL :=




1 0 0 0
0 8 0 0
0 0 0 5

2


 ,BR := B

l
L, (44)

BI
j :=




0 0 b−1 0 0 0 . . . 0
0 0 0 0 b−1 0 . . . 0

. . .

b−1 0 0


 , (45)
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and

Fj :=




FL

FI
j

FR



, (46)

FL :=




0 0
1 0
0 0
0 1


 , FR :=




0
1
0


 , FI

j :=




1 0
0 0
0 1
... 0

. . .

1



. (47)

The above findings can be summarized as follows.

Lemma 3. The following relations hold:

BjCj = I#Ij , FT
j Fj = I2j , BjFj = 0, FT

j Cj = 0. (48)

Now we are able to define the initial stable completions of the refinement matrices
Mj,0.

Lemma 4. Under the above assumptions, the matrices

M̌j,1 := HjFj, j ≥ j0, (49)

are uniformly stable completions of the matrices Mj,0. Moreover, the inverse

Ǧj =

(
Ǧj,0

Ǧj,1

)
(50)

of M̌j =
(
Mj,0, M̌j,1

)
is given by Ǧj,0 = BjH

−1
j , Ǧj,1 = FT

j H
−1
j .

The proof of this lemma is straightforward and similar to the proof in [17]. Then us-
ing the initial stable completion M̌j,1 we are already able to contruct wavelets according
to the Theorem 2. Left boundary wavelets are displayed at the Figure 5.

5.1. Decomposition of a scaling basis on a coarse scale

In the previous sections we assumed that the supports of the left and right bound-
ary functions do not overlap and therefore the coarsest level was four. It might be too
restrictive, especially in higher dimensions, because then there are many scaling func-
tions. Here we decompose scaling basis Φ4 into two parts Φ3 and Ψ3. It also improves
the condition number of the basis. We construct wavelets on the level three to have four
vanishing moments. Note that wavelets on other levels have six vanishing moments, but
there the vanishing moments guaranties the smoothness of dual functions [10], and four
vanishing moments for wavelets are sufficient in the most of the applications. Scaling
functions in Φ3 are defined by (10) for j = 3. Functions in Ψ3 are defined by

ψ3,k (x) :=
(B8

tk
)(4) (x)∥∥(B8
tk
)(4)

∥∥ , k = 1, . . . , 8, x ∈ [0, 1] , (51)
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Figure 3: Left boundary wavelets for the scale j = 4.

where B8
tk

is a B-spline of order eight on the sequence of knots tk and (4) denotes the
fourth derivative. The sequences of knots tk are given by:

t1 = [0, 0, 1/32, 1/16, 1/8, 2/8, 3/8, 4/8, 5/8]; (52)

t2 = [0, 1/32, 1/16, 1/8, 3/16, 2/8, 3/8, 4/8, 5/8];

t3 = [1/32, 1/16, 1/8, 2/8, 5/16, 3/8, 4/8, 5/8, 6/8];

t4 = [1/16, 1/8, 2/8, 3/8, 7/16, 4/8, 5/8, 6/8, 7/8];

t5 = [1/8, 2/8, 3/8, 4/8, 9/16, 5/8, 6/8, 7/8, 15/16];

t6 = [2/8, 3/8, 4/8, 5/8, 11/16, 6/8, 7/8, 15/16, 31/32];

t7 = [3/8, 4/8, 5/8, 6/8, 13/16, 7/8, 15/16, 31/32, 1];

t8 = [3/8, 4/8, 5/8, 6/8, 7/8, 15/16, 31/32, 1, 1];

Lemma 5. Functions from the set Φ3 ∪Ψ3 generate the same space as functions from
the set Φ4, i.e. span Φ3 ∪ Ψ3 = span Φ4. Functions ψ3,k, k = 1, . . . , 8, have four
vanishing wavelet moments.

Proof. Since Φ4 is a basis of the space of all cubic splines on the knots

t4 = [0, 0, 1/32, 1/16, 2/16, . . . , 15/16, 31/32, 1, 1]. (53)

Functions in Φ3 are cubic splines on the subsets of these knots. Functions in Ψ3 are
also cubic splines, because they are fourth derivative of the spline of order eight, and
they are defined on the subsets of knots t4. Therefore Φ3 ∪Ψ3 ⊂ span Φ4.

Functions in Φ3 are linearly independent. Function ψ3,i cannot be written as linear
combination of functions from Φ3 ∪Ψ3\ {ψ3,i}, because it is a cubic spline on sequence
of the knots ti containing an additional knot. Hence, Ψ3 ∪Φ3 is a linearly independent
subset of span Φ4, which proves the first assertion.

To prove that the functions ψ3,k, k = 1, . . . , 8, have four vanishing moments, we use
the integration by parts. We obtain for n = 0, . . . , 3:

∫ 1

0

xn(B8
tk
)(4) (x) dx =

[
xn

(
B8
tk

)(3)
(x)

]1
0
−
∫ 1

0

nxn−1
(
B8
tk

)(3)
(x) dx. (54)
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Since
(
B8
tk

)(n)
is the spline of order 8 − n on the knots of multiplicity at most two in

points 0 and 1, we have
(
B8
tk

)(n)
(0) =

(
B8
tk

)(n)
(1) = 0, n = 0, . . . 4, (55)

and thus ∫ 1

0

(B8
tk
)(4) (x) dx = 0 (56)

and ∫ 1

0

xn(B8
tk
)(4) (x) dx = −

∫ 1

0

nxn−1
(
B8
tk

)(3)
(x) dx, n = 1, . . . , 3. (57)

Using (55) and the integration by parts three times, we obtain:
∫ 1

0

xn(B8
tk
)(4) (x) dx = (−1)n n!

[(
B8
tk

)(4−n)
(1)−

(
B8
tk

)(4−n)
(0)

]
= 0, (58)

for n = 1, . . . , 3, which proves the assertion.

Remark 2. In some constructions, the condition number of the wavelet basis is im-
proved by orthogonalization of boundary wavelets or by the orthogonalization of scaling
functions on the coarsest level. In our case, the improvement was insignificant.

5.2. Norm equivalences

It remains to prove that Ψ and Ψ̃ are Riesz bases for the space L2 ([0, 1]) and that
properly normalized basis Ψ is a Riesz basis for Sobolev space Hs ([0, 1]) for some s
specified below. The proofs are based on the theory developed in [13] and [17].

For a function f defined on the real line a Sobolev exponent of smoothness is defined
as sup {s : f ∈ Hs (R)}. It is known that primal scaling functions extended to the real
line by zero have the Sobolev regularity at least γ = 5

2
and that dual scaling functions

extended to the real line by zero have the Sobolev regularity at least γ̃ = 0.344.

Theorem 6. i) The sets {Φj} := {Φj}j≥j0 and
{
Φ̃j

}
:=

{
Φ̃j

}
j≥j0

are uniformly stable,

i.e.

c ‖b‖l2(Ij) ≤

∥∥∥∥∥∥
∑

k∈Ij
bkφj,k

∥∥∥∥∥∥
≤ C ‖b‖l2(Ij) for all b = {bk}k∈Ij ∈ l2 (Ij) , j ≥ j0. (59)

ii) For all j ≥ j0, the Jackson inequalities hold, i.e.

inf
vj∈Sj

‖v − vj‖ . 2−sj ‖v‖Hs([0,1]) for all v ∈ Hs ([0, 1]) and s < N, (60)

and
inf
vj∈S̃j

‖v − vj‖ . 2−sj ‖v‖Hs([0,1]) for all v ∈ Hs ([0, 1]) and s < Ñ. (61)

iii) For all j ≥ j0, the Bernstein inequalities hold, i.e.

‖vj‖Hs([0,1]) . 2sj ‖vj‖ for all vj ∈ Sj and s < γ, (62)

and
‖vj‖Hs([0,1]) . 2sj ‖vj‖ for all vj ∈ S̃j and s < γ̃. (63)
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Proof. i) Due to Lemma 2.1 in [17], the collections {Φj} := {Φj}j≥j0 and
{
Φ̃j

}
:=

{
Φ̃j

}
j≥j0

are uniformly stable, if Φj and Φ̃j are biorthogonal,

‖φj,k‖ . 1,
∥∥∥φ̃j,k

∥∥∥ . 1, k ∈ Ij, j ≥ j0, (64)

and Φj and Φ̃j are locally finite, i.e.

# {k′ ∈ Ij : Ωj,k′ ∩ Ωj,k 6= ∅} . 1, for all k ∈ Ij, j ≥ j0, (65)

and
#
{
k′ ∈ Ij : Ω̃j,k′ ∩ Ω̃j,k 6= ∅

}
. 1, for all k ∈ Ij, j ≥ j0, (66)

where Ωj,k := supp φj,k and Ω̃j,k := supp φ̃j,k. By (24) the sets Φj and Φ̃j are biorthog-
onal. The properties (64), (65), and (66) follow from (10), (12), and (19).

ii) By Lemma 2.1 in [17], the Jackson inequalities are the consequences of i) and
the polynomial exactness of primal and dual multiresolution analyses.

iii) The Bernstein inequalities follow from i) and the regularity of basis functions,
for details see [17].

The following fact follows from [13].

Corollary 1. We have the norm equivalences

‖v‖2Hs ∼ 22sj0

∥∥∥∥∥∥
∑

k∈Ij0

〈
v, φ̃j0,k

〉
φj0,k

∥∥∥∥∥∥

2

+
∞∑

j=j0

22sj

∥∥∥∥∥∥
∑

k∈Jj

〈
v, ψ̃j,k

〉
ψj,k

∥∥∥∥∥∥

2

, (67)

where v ∈ Hs ([0, 1]) and s ∈ (−γ̃, γ).

The norm equivalence for s = 0, Theorem 2, and Lemma 4, imply that

Ψ := Φj0 ∪
∞⋃

j=j0

Ψj and Ψ̃ := Φ̃j0 ∪
∞⋃

j=j0

Ψ̃j (68)

are biorthogonal Riesz bases of the space L2 ([0, 1]). Let us define

D =
(
Dλ,λ̃

)
λ,λ̃∈J , Dλ,λ̃ := δλ,λ̃2

|λ|, λ, λ̃ ∈ J . (69)

The relation (67) implies that D−sΨ is a Riesz basis of the Sobolev space Hs ([0, 1]) for
s ∈ (−γ̃, γ).

6. Quantitative properties of constructed bases

In this section, we compare quantitative properties of bases constructed in this
paper, cubic spline-wavelet basis from [26] and cubic spline multiwavelet basis recently
adapted to homogeneous boundary conditions in [28]. The condition of multi-scale
wavelet bases is shown in Table 1. Our wavelet basis is denoted by CF, a basis from
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[28] is denoted by Schneider and a basis from [26] adapted to complementary boundary
conditions by method from [18] is denoted by Primbs. The last basis is the same as the
basis from [5] adapted to complementary boundary conditions by method from [18], see
Remark 1.

Other criteria for the effectiveness of wavelet bases is the condition number of a
corresponding stiffness matrix. Here, let us consider the stiffness matrix:

Aj0,s =
(〈
ψ′′
j,k, ψ

′′
l,m

〉)
ψj,k,ψl,m∈Ψj0,s

. (70)

It is well-known that the condition number of Aj0,s increases quadratically with the
matrix size. To remedy this, we use a diagonal matrix for preconditioning

Aprec
j0,s

= D−1
j0,s

Aj0,sD
−1
j0,s
, (71)

where
Dj0,s = diag

(〈
ψ′′
j,k, ψ

′′
j,k

〉1/2)
ψj,k∈Ψj0,s

. (72)

In [7] the anisotropic wavelet basis were used for solving fourth-order problems. Here,
we use isotropic wavelet basis, i.e. we define multiscale wavelet basis on the unit square
by

Ψ2D
3,s = Φ2D

3 ∪
s⋃

j=3

Ψ2D
j , (73)

where
Φ2D

3 = Φ3 ⊗ Φ3, Ψ2D
j = Φj ⊗Ψj ∪Ψj ⊗ Φj ∪Ψj ⊗Ψj. (74)

The symbol ⊗ denotes the tensor product. The preconditioned stiffness matrix 2DAprec
j0,s

for the biharmonic equation defined on the unit square is similar to the one dimensional
case. Condition numbers of the stiffness matrices are listed in Table 1 and Table 2.
The condition number of the stiffness matrix corresponding to wavelet basis by Primbs
exceeds 104 already for number of levels j = 3. Wavelet basis from [17] adapted to
complementary boundary conditions by method from [18] is very badly conditioned, its
quantitative properties can be found in [28].

7. Numerical example

Now, we compare the quantitative behaviour of the adaptive wavelet method with
our bases and bases from [28]. Both bases are formed by cubic splines and have local

Table 1: The condition numbers of wavelet bases and stiffness matrices, j0 = 3 for CF and Schneider,
j0 = 4 for Primbs.

Ψj0,j Aprec
j0,j

j CF Schneider Primbs CF Schneider Primbs
1 8.3 1.9 14.9 64.8 472.0 1111.0
3 12.5 2.4 45.9 66.5 569.5 1116.9
5 15.3 2.6 69.8 66.6 640.8 1117.0
7 18.0 2.7 85.8 66.7 693.0 1117.0
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Quadratic spline wavelets with short support for fourth-order problems

Dana Černá · Václav Finěk

Abstract In the paper, we propose constructions of new quadratic spline-wavelet bases on
the interval and the unit square satisfying homogeneous Dirichlet boundary conditions of
the second order. The basis functions have small supports and wavelets have one vanishing
moment. We show that stiffness matrices arising from discretization of the biharmonic
problem using a constructed wavelet basis have uniformly bounded condition numbers
and these condition numbers are very small.

Keywords Wavelet · Quadratic spline · Homogeneous Dirichlet boundary conditions ·
Condition number · Biharmonic equation
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1 Introduction

In this paper, we propose a construction of quadratic spline wavelet bases on the interval
that are well-conditioned, adapted to homogeneous Dirichlet boundary conditions of the
second order, the wavelets have one vanishing moment and the shortest possible support.

The wavelet basis of the spaceH2
0

(
(0, 1)2

)
is then obtained by an isotropic tensor product.

Wavelet bases are useful for solving the fourth-order problems. In [11], a construction
of cubic spline wavelet basis was proposed and it was shown that the Galerkin method
based on this wavelet basis is very efficient even in comparison with multigrid methods.
We show that our wavelet basis is even better conditioned than basis in [11]. Moreover,
since our wavelets have vanishing moments, they can be used in adaptive wavelet methods.

First of all, we summarize the desired properties of a constructed basis:

- Riesz basis property. We construct Riesz bases of the space H2
0 (0, 1) and H

2
0

(
(0, 1)2

)
.

- Polynomial exactness. Since the primal basis functions are quadratic B-splines, the
primal multiresolution analysis has polynomial exactness of order three.

- Vanishing moments. The inner wavelets have one vanishing moment, the wavelets near
the boundary do not need to have vanishing moments.
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- Short support. The wavelets have the shortest possible support among quadratic spline
wavelets with one vanishing moment.

- Locality. The primal basis functions are local.
- Closed form. The primal scaling functions and wavelets are known in the closed form.
- Homogeneous Dirichlet boundary conditions. Our wavelet bases satisfy homogeneous
Dirichlet boundary conditions of second order.

- Well-conditioned bases. Our objective is to construct a well conditioned wavelet basis.

Moreover, in a comparison with constructions in [2], [8], [12], [13] that are quite long
and technical, the construction in this paper is very simple. Many constructions of spline
wavelet or multiwavelet bases on the interval have been proposed in recent years. In [1],
[2], [8], [12] cubic spline wavelets on the interval were constructed. In [7] cubic spline
multiwavelet bases were designed and they were adapted to complementary boundary
conditions of second order in [13]. In these cases dual functions are known and are local.
Spline wavelet or multiwavelet bases whose duals are not local were constructed in [4], [9],
[10], [11]. Some of these bases were already adapted to boundary conditions. The advantage
of our construction is the shortest possible support for a given number of required vanishing
moments. Vanishing moments are necessary in some applications such as adaptive wavelet
methods [5], [6]. Originally, these methods were designed for wavelet bases with local duals.
However, it was shown in [14] that wavelet bases without local dual basis can be used if
the solved equation is linear.

2 Wavelet bases

This section provides a short introduction to the concept of wavelet bases in Sobolev
spaces. In this paper, we consider the domain Ω = (0, 1) or Ω = (0, 1)2. We consider
the Sobolev space or its subspace by H ⊂ Hs (Ω) for nonnegative integer s and the
corresponding inner product by 〈·, ·〉H , a norm by ‖·‖H and a seminorm by |·|H . In case
s = 0 we consider the space L2 (Ω) and we denote by 〈·, ·〉 and ‖·‖ the L2-inner product
and the L2-norm, respectively. Let J be some index set and let each index λ ∈ J take
the form λ = (j, k), where |λ| := j ∈ Z is a scale or a level. Let

‖v‖2 =
√∑

λ∈J
|vλ|2, for v = {vλ}λ∈J , vλ ∈ R, (1)

and
l2 (J ) =

{
v : v = {vλ}λ∈J , vλ ∈ R, ‖v‖2 <∞

}
. (2)

A family Ψ := {ψλ, λ ∈ J } is called a (primal) wavelet basis of H, if

i) Ψ is a Riesz basis for H, i.e. the closure of the span of Ψ is H and there exist constants
c, C ∈ (0,∞) such that

c ‖b‖2 ≤
∥∥∥∥∥
∑

λ∈J
bλψλ

∥∥∥∥∥
H

≤ C ‖b‖2 , b := {bλ}λ∈J ∈ l2 (J ) . (3)

Constants cψ := sup {c : c satisfies (3)}, Cψ := inf {C : C satisfies (3)} are called Riesz
bounds and cond Ψ = Cψ/cψ is called the condition number of Ψ .

ii) The functions are local in the sense that diam (Ωλ) ≤ C2−|λ| for all λ ∈ J , where Ωλ
is the support of ψλ, and at a given level j the supports of only finitely many wavelets
overlap at any point x ∈ Ω.

By the Riesz representation theorem, to any basis of the space H there exists a unique

family Ψ̃ =
{
ψ̃λ, λ ∈ J̃

}
⊂ H biorthogonal to Ψ , i.e.

〈
ψi,k, ψ̃j,l

〉
H

= δi,jδk,l, for all (i, k) ∈ J , (j, l) ∈ J̃ , (4)
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where δi,j denotes the Kronecker delta, i.e. δi,j = 1 for i = j and δi,j = 0 for i 6= j. This
family is a Riesz basis for H if and only if the primal basis is a Riesz basis for H. The
functions ψ̃j,l do not need to be local, therefore Ψ̃ do not need to be a wavelet basis in the

sense of the above definition. The basis Ψ̃ is called a dual basis.
Wavelets are usually constructed using a function ψ called a mother-wavelet by

ψj,k = 2j/2ψ
(
2jx− k + n

)
, n ∈ N.

Also the inner wavelets in this paper are constructed by this way. This does not implicate
that the dual basis has a mother-wavelet.

In many cases, the wavelet system Ψ is constructed with the aid of a multiresolution
analysis. A sequence V = {Vj}j≥j0 , of closed linear subspaces Vj ⊂ H is called a multires-

olution or multiscale analysis, if

Vj0 ⊂ Vj0+1 ⊂ . . . ⊂ Vj ⊂ Vj+1 ⊂ . . . H (5)

and ∪j≥j0Vj is complete in H.
The nestedness and the closedness of the multiresolution analysis implies the existence

of the complement spaces Wj such that Vj+1 = Vj ⊕Wj .
We now assume that Vj and Wj are spanned by sets of basis functions

Φj = {φj,k, k ∈ Ij} , Ψj = {ψj,k, k ∈ Jj} , (6)

where Ij and Jj are finite or at most countable index sets. We refer to φj,k as scaling
functions and ψj,k as wavelets. The multiscale basis and the wavelet basis of H are given
by

Ψj0,s = Φj0 ∪
j0+s−1⋃

j=j0

Ψj , Ψ = Φj0 ∪
⋃

j≥j0
Ψj . (7)

Let us denote

Φ̃j =
{
φ̃j,k, k ∈ Ij

}
, Ψ̃j =

{
ψ̃j,k, k ∈ Jj

}
, (8)

and

Ṽj = span Φ̃j , W̃j = span Ψ̃j. (9)

The spaces Ṽj are also nested:

Ṽj ⊂ Ṽj+1, j ≥ j0. (10)

Most common way of construction of wavelet bases is using dual functions. In our paper,
we use a different approach and construct scaling functions φj,k as quadratic splines and
we derive wavelets ψj,k directly as linear combinations of functions φj+1,k, where the coef-
ficients of the linear combinations are chosen such that wavelets have vanishing moments.

Polynomial exactness of order N ∈ N for the primal scaling basis and of order Ñ ∈ N
for the dual scaling basis is another desired property of wavelet bases. It means that

PN−1 (Ω) ⊂ Vj , PÑ−1 (Ω) ⊂ Ṽj , j ≥ j0, (11)

where Pm (Ω) is the space of all algebraic polynomials on Ω of degree less or equal to m.

The polynomial exactness of order Ñ on the dual side is equivalent to Ñ vanishing
wavelet moments on the primal side, i.e.

∫

Ω
P (x)ψλ (x) dx = 0, for any P ∈ PÑ−1, ψλ ∈

⋃

j≥j0
Ψj . (12)
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3 Primal scaling basis

A primal scaling basis is generated from function φ. Let φ be a quadratic B-spline defined
on knots [0, 1, 2, 3]. It can be written explicitly as:

φ(x) =





x2

2 , x ∈ [0, 1],
−x2 + 3x− 3

2 , x ∈ [1, 2],
x2

2 − 3x+ 9
2 , x ∈ [2, 3],

0, otherwise,

(13)

The function φ satisfies a scaling equation [8]:

φ (x) =
φ (2x)

4
+

3φ (2x− 1)

4
+

3φ (2x− 2)

4
+
φ (2x− 3)

4
. (14)

For j ≥ 2 and x ∈ [0, 1] we set

φj,k (x) = 2j/2φ(2jx− k + 1), k = 1, . . . 2j − 2. (15)

The graphs of the functions φj,k on the coarsest level j = 2 are displayed in Figure 1.

0 0.5 1
0

0.5

1

1.5

φ2,1 φ2,2

Fig. 1 Primal scaling basis for j = 2.

We define a wavelet ψ as

ψ(x) = −1

2
φ(2x− 1) +

1

2
φ(2x− 2). (16)

Then suppψ = [0.5, 2.5] and ψ has one vanishing wavelet moments, i.e.

∫ ∞

−∞
ψ(x)dx = 0. (17)

The graph of ψ is shown in Figure 2.
We define a boundary wavelet ψb by:

ψb(x) = aφ(2x) + b φ(2x− 1), (18)

where a and b are real parameters. Since we want to have wavelets with the shortest
possible support for a given number of vanishing moments, we will consider two choices
of the parameters:

a) a = −1
2 , b =

1
2 ,

b) a = 1, b = 0.

The properties of these wavelets are summarized in the following lemma.
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0.5 1 1.5 2 2.5
−0.5

0

0.5

ψ

Fig. 2 Wavelet ψ.

Lemma 1 i) The function ψb(x) defined by (18) with the choice of parameters a) satisfies
suppψb = [0, 2] and ∫ ∞

−∞
ψb(x)dx = 0. (19)

ii) The function ψb(x) defined by (18) with the choice of parameters b) satisfies suppψb =[
0, 32
]
.

Proof The length of the support of the function ψb is derived from the lengths of the
supports of the functions φ(2x) and φ(2x− 1). By (13) we have

suppφ(2x) = [0, 1.5] and suppφ(2x− 1) = [0.5, 2] . (20)

Since the functions φ(2x) and φ(2x− 1) are given in the closed form, the formula (19) can
be verified easily.

Thus, we can choose boundary wavelet with one vanishing moment and larger sup-
port or boundary wavelets with shorter supports but without vanishing moments. If
f ∈ H2

0 (0, 1) and f is constant at the interval [0, ε], 0 < ε < 1, then f has to be zero at
[0, ε]. The same holds for the interval [1− ε, 1]. Hence f ∈ H2

0 (0, 1) can not be nonzero
constant near the boundary and therefore in some applications such as adaptive wavelet
methods the vanishing moment does not play the significant role for boundary wavelets.
The graphs of boundary wavelets ψb are displayed in Figure 3. All the following lemmas
and theorems are valid for both choices of parameters.

0 0.5 1 1.5 2
−0.5

0

0.5
a)

ψb

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

b)

ψb

Fig. 3 Boundary wavelet ψb for a) and b), respectively.

For j ≥ 2 and x ∈ [0, 1] we define

ψj,k(x) = 2j/2ψ(2jx− k + 2), k = 2, ..., 2j − 1, (21)

ψj,1(x) = 2j/2ψb(2
jx), ψj,2j (x) = 2j/2ψb(2

j(1− x)).
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We denote

Φj =
{
φj,k/ |φj,k|H2

0 (0,1)
, k = 1, . . . , 2j − 2

}
, (22)

Ψj =
{
ψj,k/ |ψj,k|H2

0 (0,1)
, k = 1, . . . , 2j

}
.

In Section 5 we show that the sets

Ψ s = Φ2 ∪
1+s⋃

j=2

Ψj and Ψ = Φ2 ∪
∞⋃

j=2

Ψj (23)

are a multiscale wavelet basis and a wavelet basis of the space H2
0 (0, 1), respectively.

We use u ⊗ v to denote the tensor product of functions u and v, i.e. (u⊗ v) (x1, x2) =
u (x1) v (x2). We set

Fj =
{
φj,k ⊗ φj,l / |φj,k ⊗ φj,l|H2

0 (Ω) , k, l = 1, . . . , 2j − 2
}

G1
j =

{
φj,k ⊗ ψj,l / |φj,k ⊗ ψj,l|H2

0 (Ω) , k = 1, . . . , 2j − 2, l = 1, . . . 2j
}

G2
j =

{
ψj,k ⊗ φj,l / |ψj,k ⊗ φj,l|H2

0 (Ω) , k = 1, . . . , 2j , l = 1, . . . 2j − 2
}

G3
j =

{
ψj,k ⊗ ψj,l / |ψj,k ⊗ ψj,l|H2

0 (Ω) , k, l = 1, . . . , 2j
}

where Ω = (0, 1)2. We show that the sets defined by

Ψ2D
s = F2 ∪

1+s⋃

j=2

(
G1
j ∪G2

j ∪G3
j

)
, Ψ2D = F2 ∪

∞⋃

j=2

(
G1
j ∪G2

j ∪G3
j

)
(24)

are a wavelet basis and a multiscale wavelet basis of the space H2
0 (Ω).

4 Refinement matrices

From the nestedness and the closedness of multiresolution spaces it follows that there exist
refinement matrices Mj,0 and Mj,1 such that

Φj = MT
j,0Φj+1, Ψj = MT

j,1Φj+1. (25)

By (14), the entries of the refinement matrix Mj,0 satisfy:

(Mj,0)m,n =

{
hm+2−2n√

2
, n = 1, . . . , 2j − 2, 1 ≤ m+ 2− 2n ≤ 4,

0, otherwise,
(26)

where

h = [h1, h2, h3, h4] =

[
1

4
,
3

4
,
3

4
,
1

4

]
(27)

is a vector of coefficients from scaling equation (14).
It follows from the equations (16) and (18) that the matrixMj,1 is of the size

(
2j+1 − 2

)
×

2j and has the structure

Mj,1 =
1√
2




a b 0 0 0 0 . . . 0 0
0 −1

2
1
2 0 0 0 . . . 0 0

0 0 0 −1
2

1
2 0 0 0

...
...

...

0 . . . 0 0 0 0 −1
2

1
2 0

0 . . . 0 0 0 0 0 b a




T

(28)
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There also exist refinement matrices M̃j,0 and M̃j,1 corresponding to dual spaces that
satisfy:

Φ̃j = M̃T
j,0Φ̃j+1, Ψ̃j = M̃T

j,1Φ̃j+1. (29)

The structure of the matrix M̃j,0 is derived in the proof of Lemma 2. We do not need to

know the structure of the matrix M̃j,1 in this paper.
The Euclidean norm of a vector v is denoted by ‖v‖2 and the spectral norm of the

matrix M is denoted as ‖M‖2. The following lemma is crucial for the proof of a Riesz
basis property.

Lemma 2 The norm of the matrix M̃j,0 satisfies
∥∥∥M̃j,0

∥∥∥
2
≤ 2p, p = ln 6

ln 4 .

Proof We prove the lemma for the choice a) of parameters for the boundary wavelet,

for the choice b) the proof is similar. We denote the entries of the matrix M̃j,0 as M̃k,l,
k = 1, . . . 2j+1 − 2, l = 1, . . . , 2j − 2.

Due to the biorthogonality of the sets Ψj ∪ Φj and Ψ̃j ∪ Φ̃j we have

MT
j,0M̃j,0 = Ij (30)

and
MT

j,1M̃j,0 = 0j , (31)

where Ij denotes the identity matrix and 0j denotes the zero matrix of the appropriate
size.

From (28) and (31) we have for l = 1, . . . , 2j − 2:

M̃1,l = M̃2,l, M̃2j+1−2,l = M̃2j+1−3,l, (32)

and
M̃k,l = M̃k+1,l, for k even, k = 2, . . . , 2j+1 − 4. (33)

We substitute these relations into (30) and we obtain a new system of equationsAjBj =
Ij , where

Aj =
1√
2




7
4

1
4 0 . . . 0

1
4

3
2

1
4

...

0 1
4

3
2

1
4 0

...
. . .

. . .
. . .

0 1
4

3
2

1
4

0 . . . 0 1
4

7
4




(34)

and Bj contains M̃k,l for k even, i.e. the entries Bk,l of the matrix Bj satisfy:

Bk,l = M̃2k,l, k, l = 1, . . . 2j − 2. (35)

We factorize the matrix Aj as Aj = CjDj , where

Cj =
1√
2




3+2
√
2

4
1
4 0 0 . . . 0

1
4

3
2

1
4

...

0 1
4

3
2

1
4 0

...
. . .

. . .
. . .

0 1
4

3
2

1
4

0 . . . 0 0 1
4

3+2
√
2

4




(36)
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and

Dj =




7−a
3+2

√
2

0 0 . . . 0 0 a

(−3−2
√
2)

2j−4

a 1 0 0 0 a

(−3−2
√
2)

2j−5

a
−3−2

√
2

0 1 0 0 a

(−3−2
√
2)

2j−6

...
...

. . .
...

...
a

(−3−2
√
2)

2j−6
0 0 1 0 a

−3−2
√
2

a

(−3−2
√
2)

2j−5
0 0 0 1 a

a

(−3−2
√
2)

2j−4
0 0 . . . 0 0 7−a

3+2
√
2




, (37)

with

a =
1−

√
2

6 + 4
√
2
. (38)

More precisely, the entries Dk,l of the matrix Dj are given by:

D1,1 = D2j−2,2j−2 =
7− a

3 + 2
√
2
, (39)

Dk,1 = D2j−1−k,2j−2 =
a

(
−3− 2

√
2
)k−2

, for k = 2, . . . , 2j − 2,

Dk,k = 1, for k = 2, . . . , 2j − 3,

Dk,l = 0, otherwise.

It is easy to verify that C̃j = C−1
j has entries:

C̃k,l =
1

(
−3− 2

√
2
)|k−l| , (40)

and the matrix D−1
j has the structure:

D−1
j =




d1 0 . . . 0 dn
d2 1 0 dn−1
...

. . .
...

dn−1 0 1 d2
dn 0 . . . 0 d1



, (41)

with n = 2j − 2 and

d1 =

(
3 + 2

√
2
)
αn

7− a
(42)

dk =
aαn

(7− a)
(
−3− 2

√
2
)k−3

− αn βn(
−3− 2

√
2
)n−k , k = 2, . . . , n− 1,

dn =
−aαn

(7− a)2
(
−3− 2

√
2
)2j−6

,

where the constants αn and βn are given by

αn =

(
1− a2

(7− a)2
(
−3− 2

√
2
)2n−6

)−1

(43)
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and

βn =
a2

(7− a)2
(
−3− 2

√
2
)n−5 . (44)

Note that αn ≈ 1 and βn ≈ 0.
Since the matrices Cj and Dj are invertible, we can define Bj = A−1

j = D−1
j C−1

j .

Substituting this into (31) we obtain the entries of the matrix M̃j,0:

M̃1,l =
d1

(
−3− 2

√
2
)|1−l| +

dn
(
−3− 2

√
2
)|n−l| , (45)

M̃1,2j−l =M̃2,2j−l = M̃3,2j−l = M̃2j+1−4,l = M̃2j+1−3,l = M̃2j+1−2,l,

and for k = 1, . . . , 2j − 2, l = 1, . . . , 2j − 2, we have

M̃2k,l=Bk,l =
1

(
−3− 2

√
2
)|k−l|+

dk(
−3− 2

√
2
)|1−l| +

dn+1−k(
−3− 2

√
2
)|n−l| (46)

The entries M̃2k−1,l are given by (33).
It is well-known that for any matrix M of the size m× n with entries Mk,l:

‖M‖2 ≤
√
‖M‖1 ‖M‖∞, (47)

where

‖M‖1 = max
l=1,...,n

m∑

k=1

|Mk,l| , ‖M‖∞ = max
k=1,...,m

n∑

l=1

|Mk,l| . (48)

In our case, from (45), (48), and a formula for a sum of a geometric sequence we obtain:
∥∥∥M̃j,0

∥∥∥
1
≤ 3

√
2 and

∥∥∥M̃j,0

∥∥∥
∞

≤
√
2. (49)

Thus ∥∥∥M̃j,0

∥∥∥
2
≤

√
6 = 2p for p =

ln 6

ln 4
. (50)

5 Riesz basis on Sobolev space

In this section, we show that Ψ and Ψ2D are Riesz bases. We use Theorem 5.3. from [11].
It says that if Pj is a linear projection from Vj+1 onto Vj and for 0 < p < q there exists a
constant C such that

‖PmPm+1 . . . Pn−1‖ ≤ C 2p (n−m), (51)

then {
2−4φ2,k, k = 1, 2

}
∪
{
2−2jψj,k, j ≥ 2, k = 1, . . . 2j

}
(52)

is a Riesz basis of Hq
0 (0, 1).

First we define suitable projections Pj from Vj+1 onto Vj and show that these projec-
tions satisfies (51). Then we show that Ψ which differs from (52) only by scaling is also a
Riesz basis of H2

0 (0, 1). We denote

Ij =
{
1, 2, . . . , 2j − 2

}
and Jj =

{
1, 2, . . . , 2j

}
(53)

and for j ≥ 2 we define

Γj = {φj,k}k∈Ij ∪ {ψj,k}k∈Jj
and Fj = 〈Γj , Γj〉 . (54)

Let a set
Γ̂j =

{
φ̂j,k

}
k∈Ij

∪
{
ψ̂j,k

}
k∈Jj

(55)
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be given by
Γ̂j = F−1

j Γj . (56)

Since obviously 〈
Γj , Γ̂j

〉
= Ij , (57)

functions from Γ̂j are duals to functions from Γj in the space Vj+1. Since F−1
j is not a

sparse matrix, these duals are not local. We define a projection Pj from Vj+1 onto Vj by

Pjf =
∑

k∈Ij

〈
f, φ̂j,k

〉
φj,k. (58)

Lemma 3 Let f ∈ Vj+1, a
j
k =

〈
f, φ̂j,k

〉
, aj =

{
ajk

}
k∈Ij

, j ≥ 2, and Sj : aj+1 7→ aj. Then

‖Sj‖2 ≤ 2p, p = ln 6
ln 4 .

Proof We have

Pjf =
∑

k∈Ij
ajkφj,k =

∑

k∈Ij

〈
f, φ̂j,k

〉
φj,k (59)

=
∑

k∈Ij

∑

l∈Ij+1

aj+1
l

〈
φj+1,l, φ̂j,k

〉
φj,k.

Therefore
ajk =

∑

l∈Ij+1

aj+1
l

〈
φj+1,l, φ̂j,k

〉
. (60)

Let us denote
Sjl,k =

〈
φ̂j,k, φj+1,l

〉
, Sj =

{
Sjl,k

}
l∈Ij+1,k∈Ij

(61)

then we can write
aj = Sjaj+1, (62)

and
Sj =

〈
Φ̂j , Φj+1

〉
=
〈
Φ̂j , M̃j,0Φj + M̃j,1Ψj

〉
= M̃j,0. (63)

By Lemma 2 the assertion is proved.

Lemma 4 A projection Pj satisfies

‖PmPm+1 . . . Pn−1‖ ≤ C 2p (n−m), p =
ln 6

ln 4
, (64)

for all 2 ≤ m < n and a constant C independent on m and n.

Proof Let fn ∈ Vn and fm = PmPm+1 . . . Pn−1fn. We represent fj by fj =
∑

k∈Ij a
j
kφj for

j = m,n and we set aj =
{
ajk

}
k∈Ij

. It is known [1] that {φj,k, k ∈ Ij} is a Riesz basis of

Vj = spanΦj and there exist constants C1 and C2 independent of j such that:

C1 ‖aj‖2 ≤

∥∥∥∥∥∥
∑

k∈Ij
ajkφj,k

∥∥∥∥∥∥
≤ C2 ‖aj‖2 . (65)

By Lemma 3 we have for p = ln 6
ln 4 :

‖fm‖ ≤ C2 ‖am‖2 ≤ C2 ‖Sm‖2 ‖Sm+1‖2 . . . ‖Sn−1‖2 ‖an‖2 (66)

≤ C22
p(n−m) ‖an‖2 ≤ C−1

1 C22
p(n−m) ‖fn‖ .

Thus (64) is proved.
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Theorem 1 The set
{
2−4φ2,k, k = 1, 2

}
∪
{
2−2jψj,k, j ≥ 2, k = 1, . . . 2j

}
(67)

is a Riesz basis of Hµ
0 (0, 1) for ln 6

ln 4 < µ < 2.5.

Proof By Lemma 4 and Theorem 5.3. from [11], the set
{
2−4φ2,k, k = 1, 2

}
∪
{
2−2jψj,k, j ≥ 2, k = 1, . . . 2j

}
(68)

is a Riesz basis of the space Hµ
0 (0, 1) for ln 6

ln 4 < µ < ν, where ν is the Sobolev exponent of
smoothness of the basis, i.e. ν = 2.5.

Theorem 2 The set Ψ is a Riesz basis of H2
0 (0, 1).

Proof From (21) there exist nonzero constants C1 and C2 such that

C12
2j ≤ |ψj,k|H2

0 (Ω) ≤ C22
2j , for j ≥ 2, k = 1, . . . , 2j , (69)

and
C12

4 ≤ |φ2,k|H2
0 (Ω) ≤ C22

4, for k = 1, 2. (70)

Let b̂ = {â2,k, k ∈ I2} ∪
{
b̂j,k, j ≥ 2, k ∈ Jj

}
be such that

∥∥∥b̂
∥∥∥
2

2
=
∑

k∈I2
â22,k +

∑

k∈Jj ,j≥2

b̂2j,k <∞. (71)

We define

a2,k =
24â2,k

|φ2,k|H2
0 (0,1)

, k ∈ I2, bj,k =
22j b̂j,k

|ψj,k|H2
0 (0,1)

, j ≥ 2, k ∈ Jj , (72)

and b = {a2,k, k ∈ I2} ∪ {bj,k, j ≥ 2, k ∈ Jj}. Then

‖b‖2 ≤

∥∥∥b̂
∥∥∥
2

C1
<∞. (73)

Theorem 1 implies that there exist constants C3 and C4 such that

C3 ‖b‖2 ≤

∥∥∥∥∥∥
∑

k∈I2
a2,k2

−4φ2,k +
∑

k∈Jj ,j≥2

bj,k2
−2jψj,k

∥∥∥∥∥∥
H2

0 (0,1)

≤ C4 ‖b‖2 . (74)

Therefore

C4

C1

∥∥∥b̂
∥∥∥
2
≥ C4 ‖b‖2 ≥

∥∥∥∥∥∥
∑

k∈I2
a2,k2

−4φ2,k +
∑

k∈Jj ,j≥2

bj,k2
−2jψj,k

∥∥∥∥∥∥
H2

0 (0,1)

(75)

=

∥∥∥∥∥∥
∑

k∈I2

â2,k
|φ2,k|H2

0 (0,1)

φ2,k +
∑

k∈Jj ,j≥2

b̂2,k
|ψj,k|H2

0 (0,1)

ψj,k

∥∥∥∥∥∥
H2

0 (0,1)

and similarly

C3

C2

∥∥∥b̂
∥∥∥
2
≤

∥∥∥∥∥∥
∑

k∈I2

â2,k
|φ2,k|H2

0 (0,1)

φ2,k +
∑

k∈Jj ,j≥2

b̂2,k
|ψj,k|H2

0 (0,1)

ψj,k

∥∥∥∥∥∥
H2

0 (0,1)

. (76)

Theorem 3 The set Ψ2D is a Riesz basis of H2
0

(
(0, 1)2

)
.

Proof The theorem is a consequence of Lemma 1, (69), and Theorem 5.3. from [11].
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6 Quantitative properties of constructed bases

In this section, we present the condition numbers of the stiffness matrices for the bihar-
monic problem in two dimensions. We consider the biharmonic equation

∆2u = f on Ω = (0, 1)2 , u =
∂u

∂n
= 0 on ∂Ω, (77)

where ∆ is the Laplace operator. The variational formulation is Au = f , where A =〈
∆Ψ2D, ∆Ψ2D

〉
, u = uTΨ2D, and f =

〈
f, Ψ2D

〉
. It is known that then condA ≤ C < ∞.

Since A is symmetric and positive definite, we have also

condAs ≤ C, where As =
〈
∆Ψ2D

s , ∆Ψ2D
s

〉
. (78)

The condition numbers of the stiffness matrices As are shown in Table 1. For the basis b)
the condition number is even smaller than for a wavelet basis in [11].

Table 1 The condition numbers of the stiffness matrices As of the size N ×N corresponding to multiscale wavelet
bases with s levels of wavelets.

s N a) b)
1 36 37.3 6.1
2 196 62.1 7.8
3 900 80.1 8.7
4 3844 92.3 9.8
5 15876 100.4 10.5
6 64516 106.3 11.1

7 Numerical example

We present the quantitative behaviour of the adaptive wavelet method using the bases
constructed in this paper. We consider the equation (77) with a solution u given by

u (x, y) = v (x) v (y) , v (x) = x2
(
1− e10x−10

)2
. (79)

The solution exhibits a sharp gradient near the point [1, 1]. We solve the problem by
the method designed in [6] with the approximate multiplication of the stiffness matrix
with a vector proposed in [3]. We use wavelets up to the scale |λ| ≤ 10. The convergence
history is shown in Figure 4. In our experiments, the convergence rate, i.e. the slope of the
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Fig. 4 The convergence history for adaptive wavelet scheme with various wavelet bases.

curve, is similar for both bases. However, bases a) and b) significantly differ in the number
of iterations needed to resolve the problem with desired accuracy. The number of basis
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functions in both cases was about 103 for an error in L∞-norm about 10−4. The number
of all basis functions for full grid, i.e. basis functions of the level ten or less, is about 106,
therefore by using an adaptive method the significant compression was achieved. It can
seem that the number of iterations is quite large, but one could take into account that
at the beginning the iterations were done for a much smaller vector and the size of this
vector increases successively.
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Studentská 2, 461 17 Liberec, Czech Republic

Abstract

In the paper, we propose a construction of new cubic spline-wavelet bases on the unit
cube satisfying homogeneous Dirichlet boundary conditions of the second order. The
basis functions have small supports and wavelets have vanishing moments. We show
that stiffness matrices arising from discretization of the biharmonic problem using a
constructed wavelet basis have uniformly bounded condition numbers and these con-
dition numbers are very small. We present quantitative properties of the constructed
bases and we show a superiority of our construction in comparison to some other cubic
spline wavelet bases satisfying boundary conditions of the same type.

Keywords: wavelet, cubic spline, homogeneous Dirichlet boundary conditions,
condition number, biharmonic problem
2000 MSC: 46B15, 65N12, 65T60

1. Introduction

In recent years wavelets have been successfully used for solving various types of
differential equations [8, 9] as well as integral equations [17, 19, 20]. The quantitative
properties of wavelet methods strongly depend on the choice of a wavelet basis, in
particular on its condition number. Therefore, a construction of a wavelet basis is an
important issue.

In this paper, we propose a construction of cubic spline wavelet bases on the interval
that are well-conditioned, adapted to homogeneous Dirichlet boundary conditions of the
second order, the wavelets have vanishing moments and the shortest possible support.
The wavelet basis of the space H2

0

(
(0, 1)2

)
is then obtained by an isotropic tensor

product. We compare the condition numbers of the corresponding stiffness matrices for
various constructions. Finally, a quantitative behaviour of an adaptive wavelet method
for several boundary-adapted cubic spline wavelet bases is studied.

First of all, we summarize the desired properties of a constructed basis:

- Riesz basis property. We construct Riesz bases of the spaceH2
0 (0, 1) andH

2
0

(
(0, 1)2

)
.

- Polymial exactness. Since the primal basis functions are cubic B-splines, the
primal multiresolution analysis has polynomial exactness of order four.
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- Vanishing moments. The inner wavelets have two vanishing moments, the wavelets
near the boundary can have less vanishing moments.

- Short support. The wavelets have the shortest possible support for a given number
of vanishing moments.

- Locality. The primal basis functions are local.

- Closed form. The primal scaling functions and wavelets are known in the closed
form.

- Homogeneous Dirichlet boundary conditions. Our wavelet bases satisfy homoge-
neous Dirichlet boundary conditions of the second order.

- Well-conditioned bases. Our objective is to construct a well conditioned wavelet
basis.

Moreover, in a comparison with constructions in [1, 4, 11, 21, 22] that are quite
long and technical, the construction in this paper is very simple. Many constructions of
cubic spline wavelet or multiwavelet bases on the interval have been proposed in recent
years. In [2, 4, 11, 21] cubic spline wavelets on the interval were constructed. In [10]
cubic spline multiwavelet bases were designed and they were adapted to complementary
boundary conditions of the second order in [22]. In these cases dual functions are known
and are local. Cubic spline wavelet or multiwavelet bases where duals are not local were
constructed in [7, 14, 15, 16]. Some of these bases were already adapted to boundary
conditions and used for solving differential equations [6, 18]. The advantage of our
construction is the shortest possible support for a given number of required vanishing
moments. Vanishing moments are necessary in some applications such as adaptive
wavelet methods [8, 9]. Originally, these methods were designed for wavelet bases with
local duals. However, it was shown in [12] that wavelet bases without local dual basis
can be used if the solved equation is linear.

This paper is organized as follows: In Section 2 we briefly review the concept of
wavelet bases. In Section 3 we propose a construction of primal and dual scaling bases.
The refinement matrices are computed in Section 4. In Section 5 the properties of
the projectors associated with constructed bases are derived and the proof that the
bases are indeed Riesz bases is given. Quantitative properties of constructed bases
and other known cubic spline wavelet and multiwavelet bases are studied in Section 6.
In Section 7 we compare the number of basis functions and the number of iterations
needed to resolve the problem with desired accuracy for bases constructed in this paper
and bases from [4, 22]. A numerical example is presented for an equation with the
biharmonic operator in two dimensions.

2. Wavelet bases

This section provides a short introduction to the concept of wavelet bases in Sobolev
spaces. In this paper, we consider the domain Ω = (0, 1) or Ω = (0, 1)2. We denote
the Sobolev space or its subspace by H ⊂ Hs (Ω) for nonnegative integer s and the
corresponding inner product by 〈·, ·〉H , a norm by ‖·‖H and a seminorm by |·|H . In case
s = 0 we consider the space L2 (Ω) and we denote by 〈·, ·〉 and ‖·‖ the L2-inner product
and the L2-norm, respectively. Let J be some index set and let each index λ ∈ J take

2



the form λ = (j, k), where |λ| := j ∈ Z is a scale or a level. Let

‖v‖l2(J ) :=

√∑

λ∈J
|vλ|2, forv = {vλ}λ∈J , vλ ∈ R, (1)

and
l2 (J ) :=

{
v : v = {vλ}λ∈J , vλ ∈ R, ‖v‖l2(J ) <∞

}
. (2)

A family Ψ := {ψλ, λ ∈ J } is called a (primal) wavelet basis of H, if

i) Ψ is a Riesz basis for H, i.e. the closure of the span of Ψ is H and there exist
constants c, C ∈ (0,∞) such that

c ‖b‖l2(J ) ≤
∥∥∥∥∥
∑

λ∈J
bλψλ

∥∥∥∥∥
H

≤ C ‖b‖l2(J ) , b := {bλ}λ∈J ∈ l2 (J ) . (3)

Constants cψ := sup {c : c satisfies (3)}, Cψ := inf {C : C satisfies (3)} are called
Riesz bounds and cond Ψ = Cψ/cψ is called the condition number of Ψ.

ii) The functions are local in the sense that diam (Ωλ) ≤ C2−|λ| for all λ ∈ J , where
Ωλ is the support of ψλ, and at a given level j the supports of only finitely many
wavelets overlap at any point x ∈ Ω.

By the Riesz representation theorem, there exists a unique family

Ψ̃ =
{
ψ̃λ, λ ∈ J̃

}
⊂ H (4)

biorthogonal to Ψ, i.e.

〈
ψi,k, ψ̃j,l

〉
H
= δi,jδk,l, for all (i, k) ∈ J , (j, l) ∈ J̃ , (5)

where δi,j denotes the Kronecker delta, i.e. δi,j = 1 for i = j and δi,j = 0 for i 6= j. This
family is also a Riesz basis for H, but the functions ψ̃j,l need not be local. The basis Ψ̃
is called a dual wavelet basis.

In many cases, the wavelet system Ψ is constructed with the aid of a multiresolution
analysis. A sequence V = {Vj}j≥j0 , of closed linear subspaces Vj ⊂ H is called a
multiresolution or multiscale analysis, if

Vj0 ⊂ Vj0+1 ⊂ . . . ⊂ Vj ⊂ Vj+1 ⊂ . . . H (6)

and ∪j≥j0Vj is complete in H.
The nestedness and the closedness of the multiresolution analysis implies the exis-

tence of the complement spaces Wj such that Vj+1 = Vj ⊕Wj.
We now assume that Vj and Wj are spanned by sets of basis functions

Φj := {φj,k, k ∈ Ij} , Ψj := {ψj,k, k ∈ Jj} , (7)
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where Ij and Jj are finite or at most countable index sets. We refer to φj,k as scaling
functions and ψj,k as wavelets. The multiscale basis and the wavelet basis of H are
given by

Ψj0,s = Φj0 ∪
j0+s−1⋃

j=j0

Ψj, Ψ = Φj0 ∪
⋃

j≥j0
Ψj. (8)

The dual wavelet system Ψ̃ generates a dual multiresolution analysis Ṽ with a dual
scaling basis Φ̃j0 .

Polynomial exactness of order N ∈ N for the primal scaling basis and of order Ñ ∈ N
for the dual scaling basis is another desired property of wavelet bases. It means that
PN−1 (Ω) ⊂ Vj and PÑ−1 (Ω) ⊂ Ṽj, j ≥ j0, where Pm (Ω) is the space of all algebraic

polynomials on Ω of degree less or equal to m. The polynomial exactness of order Ñ
on the dual side is equivalent to Ñ vanishing wavelet moments on the primal side, i.e.

∫

Ω

P (x)ψλ (x) dx = 0, for any P ∈ PÑ−1, ψλ ∈
⋃

j≥j0
Ψj. (9)

3. Primal scaling basis

A primal scaling basis is the same as the basis constructed in [4, 16]. This basis
is generated from functions φ and φb. Let φ be a cubic B-spline defined on knots
[0, 1, 2, 3, 4]. It can be written explicitly as:

φ(x) =





x3

6
, x ∈ [0, 1],

−x3

2
+ 2x2 − 2x+ 2

3
, x ∈ [1, 2],

x3

2
− 4x2 + 10x− 22

3
, x ∈ [2, 3],

−x3

6
+ 2x2 − 8x+ 32

3
, x ∈ [3, 4],

0, otherwise,

(10)

Then this function satisfies a scaling equation [16] :

φ (x) =
φ (2x)

8
+
φ (2x− 1)

2
+

3φ (2x− 2)

4
+
φ (2x− 3)

2
+
φ (2x− 4)

8
. (11)

The function φb is a cubic B-spline defined on knots [0, 0, 1, 2, 3]. It is given by:

φb(x) =





−11x3

12
+ 3x2

2
, x ∈ [0, 1],

7x3

12
− 3x2 + 9x

2
− 3

2
, x ∈ [1, 2],

−x3

6
+ 3x2

2
− 9x

2
+ 9

2
, x ∈ [2, 3],

0, otherwise.

(12)

The function φb satisfies a scaling equation [16]:

φb (x) =
φb (2x)

4
+

11φ (2x)

16
+
φ (2x− 1)

2
+
φ (2x− 2)

8
. (13)

For j ∈ N and x ∈ [0, 1] we set

φj,k (x) = 2j/2φ(2jx− k), k = 2, . . . 2j − 2, (14)

φj,1 (x) = 2j/2φb(2
jx), φj,2j−1 (x) = 2j/2φb(2

j(1− x)).
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Figure 1: Primal scaling basis for j = 2 (left) and the wavelet ψ (right).

The graphs of the functions φj,k on the coarsest level j = 2 are displayed in Figure 1.
We define a wavelet ψ as

ψ(x) = −1

2
φ(2x) + φ(2x− 1)− 1

2
φ(2x− 2). (15)

Then suppψ = [0, 3] and ψ has two vanishing wavelet moments, i.e.

∫ ∞

−∞
xkψ(x)dx = 0, k = 0, 1. (16)

The same wavelet was used in the construction of a wavelet basis for the space L2 (R)
in [13]. The graph of ψ is shown in Figure 1.

We define a boundary wavelet ψb by:

ψb(x) = φb(2x) +mφ(2x) + nφ(2x− 1), (17)

where m and n are real parameters. In applications, the length of the support and
the number of vanishing wavelet moments play a role. We consider four choices of
parameters m and n:

a) m = 0, n = 0

b) m = −0.75, n = 0

c) m = −0.45, n = 0

d) m = −1.35, n = 0.6

These choices are optimal in the following sense: a) defines a wavelet with the
shortest possible support, b) defines a wavelet with the shortest possible support among
the wavelets of the form (17) with the first vanishing moment, c) corresponds to the
wavelet with the shortest possible support among the wavelets of the form (17) with
the second vanishing wavelet moment. Wavelet corresponding to d) has two vanishing
moments. It is summarized in the following lemma.

Lemma 1. a) The function ψb(x) = φb(2x) satisfies suppψb = [0, 1.5].
b) The function ψb(x) = φb(2x)− 0.75φ(2x) satisfies suppψb = [0, 2] and

∫ ∞

−∞
ψb(x)dx = 0. (18)
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c) The function ψb(x) = φb(2x)− 0.45φ(2x) satisfies suppψb = [0, 2] and

∫ ∞

−∞
xψb(x)dx = 0. (19)

d) The function ψb(x) = φb(2x)− 1.35φ(2x) + 0.6φ(2x− 1) satisfies suppψb = [0, 2.5],

∫ ∞

−∞
ψb(x)dx = 0, and

∫ ∞

−∞
xψb(x)dx = 0. (20)

Proof. The length of the support of the function ψb is derived from the lengths of
the supports of functions φb(2x), φ(2x), and φ(2x − 1). By (10) and (12) we have
suppφb(2x) = [0, 1.5], suppφ(2x) = [0, 2], and suppφ(2x − 1) = [0.5, 2.5]. Since the
functions φb(2x), φ(2x) and φ(2x− 1) are given in the closed form, the formulas (18),
(19), and (20) can be verified easily.

Thus, we can choose boundary wavelet with two vanishing moments and larger
support or boundary wavelets with shorter supports but only with one or zero vanishing
moments. If f ∈ H2

0 (0, 1) and f is constant or linear at the interval [0, ǫ], then f have to
be zero at [0, ǫ]. The same holds for the interval [1− ǫ, 1]. Hence f ∈ H2

0 (0, 1) can not
be nonzero constant or linear near the boundary and therefore in some applications such
as adaptive wavelet methods the vanishing moments does not play the significant role
for boundary wavelets. The graphs of boundary wavelets ψb are displayed in Figure 2.
All the following lemmas and theorems are valid for the wavelet basis Ψ including the
boundary wavelet with parameters m and n given by a), b), c), or d).

0 0.5 1 1.5

−0.5

0

0.5

a)

ψb

0 0.5 1 1.5 2

−0.5

0

0.5

b)

ψb

0 0.5 1 1.5 2

−0.5

0

0.5

c)

ψb

0 0.5 1 1.5 2 2.5

−0.5

0

0.5 ψb

d)

Figure 2: Boundary wavelet ψb for a), b), c), and d), respectively.
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For j ∈ N and x ∈ [0, 1] we define

ψj,k(x) = 2j/2ψ(2jx− k + 2), k = 2, ..., 2j − 1, (21)

ψj,1(x) = 2j/2ψb(2
jx), ψj,2j(x) = 2j/2ψb(2

j(1− x)).

We denote

Φj =
{
φj,k/ |φj,k|H2

0 (0,1)
, k = 1, . . . , 2j − 1

}
, (22)

Ψj =
{
ψj,k/ |ψj,k|H2

0 (0,1)
, k = 1, . . . , 2j

}
.

Then the sets

Ψs = Φ2 ∪
1+s⋃

j=2

Ψj and Ψ = Φ2 ∪
∞⋃

j=2

Ψj (23)

are a multiscale wavelet basis and a wavelet basis of the space H2
0 (0, 1), respectively.

We use u⊗ v to denote the tensor product of functions u and v, i.e. (u⊗ v) (x1, x2) =
u (x1) v (x2). We set

Fj =
{
φj,k ⊗ φj,l / |φj,k ⊗ φj,l|H2

0 (Ω) , k, l = 1, . . . , 2j − 1
}

G1
j =

{
φj,k ⊗ ψj,l / |φj,k ⊗ ψj,l|H2

0 (Ω) , k = 1, . . . , 2j − 1, l = 1, . . . 2j
}

G2
j =

{
ψj,k ⊗ φj,l / |ψj,k ⊗ φj,l|H2

0 (Ω) , k = 1, . . . , 2j , l = 1, . . . 2j − 1
}

G3
j =

{
ψj,k ⊗ ψj,l / |ψj,k ⊗ ψj,l|H2

0 (Ω) , k, l = 1, . . . , 2j
}

where Ω = (0, 1)2. A wavelet basis and a multiscale wavelet basis of the space H2
0 (Ω)

are defined as

Ψ2D
s = F2 ∪

1+s⋃

j=2

(
G1
j ∪G2

j ∪G3
j

)
, Ψ2D = F2 ∪

∞⋃

j=2

(
G1
j ∪G2

j ∪G3
j

)
. (24)

Remark 1. Wavelet basis of the space H2 (Ω) can be constructed in a similar way.
We add two boundary functions φb1 and φb2 that are B-splines on sequences of knots
[0, 0, 0, 0, 1] and [0, 0, 0, 1, 2], respectively. Then scaling basis is generated from the func-
tions φb1, φb2, φb and φ as in (14), see also [2], and boundary wavelets are constructed
as appropriate linear combinations of φb1, φb2 and φb in a similar way as above.

4. Refinement matrices

From the nestedness and the closedness of multiresolution spaces it follows that
there exist refinement matrices Mj,0 and Mj,1 such that

Φj = MT
j,0Φj+1, Ψj = MT

j,1Φj+1. (25)

In these formulas we view the sets of functions Φj and Ψj as column vectors with
entries φj,k, k = 1, . . . , 2j − 1, and ψj,k, k = 1, . . . , 2j , respectively. Due to the length of
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the support of primal scaling functions, the refinement matrix Mj,0 has the following
structure:

Mj,0 =




ML

MI
j,0

MR



. (26)

where MI
j,0 is a (2j+1 − 3)× (2j − 3) matrix given by

(
MI

j,0

)
m,n

=

{
hm+1−2n√

2
, n = 1, . . . , 2j − 3, 0 ≤ m+ 1− 2n ≤ 4,

0, otherwise,
(27)

where

h = [h0, h1, h2, h3, h4] =

[
1

8
,
1

2
,
3

4
,
1

2
,
1

8

]
(28)

is a vector of coefficients from scaling equation (11). We denote a vector of coefficients
from scaling equation (13) by

hb =
[
hb0, h

b
1, h

b
2, h

b
3

]
=

[
1

4
,
11

16
,
1

2
,
1

8

]
(29)

Then ML = 1√
2
hTb and the matrix MR is obtained from a matrix ML by reversing the

ordering of rows.
It follows from the equations (15) and (17) that the matrix Mj,1 is of the size

(2j+1 − 1)× 2j and has the structure

Mj,1 =
1√
2




1 m n 0 0 0 . . . 0
0 −1

2
1 −1

2
0 0 . . . 0

0 0 0 −1
2

1 −1
2

0
...

...
...

0 . . . 0 0 −1
2

1 −1
2

0
0 . . . 0 0 0 n m 1




T

(30)

There also exist refinement matrices M̃j,0 and M̃j,1 corresponding to dual spaces
that satisfy:

Φ̃j = M̃T
j,0Φ̃j+1, Ψ̃j = M̃T

j,1Φ̃j+1, (31)

where the sets Φ̃j and Ψ̃j are viewed as column vectors.
The Euclidean norm of a vector v is denoted by ‖v‖2 and the spectral norm of the

matrix M is denoted as ‖M‖2. The following lemma is crucial for the proof of a Riesz
basis property.

Lemma 2. The norm of the matrix M̃j,0 satisfies
∥∥∥M̃j,0

∥∥∥
2
≤ 2p, p = 1 + ln 3

ln 4
.
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Proof. We prove the lemma for the choice c) of parameters for boundary wavelet, for
choices a), b), and d) the proof is similar. We denote the entries of the matrix M̃j,0 as
M̃ j,0

k,l , k = 1, . . . 2j+1 − 1, l = 1, . . . , 2j − 1.

Due to biorthogonality of the sets Ψj ∪ Φj and Ψ̃j ∪ Φ̃j we have

MT
j,0M̃j,0 = Ij (32)

and
MT

j,1M̃j,0 = 0j, (33)

where Ij denotes the identity matrix and 0j denotes the zero matrix of the appropriate
size.

From (30) and (33) we have

M̃ j,0
1,l = 0.45 M̃ j,0

2,l , M̃ j,0
2j+1−1,l

= 0.45 M̃ j,0
2j+1−2,l

, (34)

and

M̃ j,0
k,l =

M̃ j,0
k−1,l + M̃ j,0

k+1,l

2
, for k odd, k = 3, . . . , 2j+1 − 3. (35)

We substitute these relations into (32) and we obtain a new system of equations
AjBj = Ij, where

Aj =
1√
2




21
20

3
8

0 . . . 0
3
8

5
4

3
8

...

0 3
8

5
4

3
8

0
...

. . . . . . . . .

0 3
8

5
4

3
8

0 . . . 0 3
8

21
20




(36)

and Bj contains M̃
j,0
k,l for k even, i.e. the entries Bj

k,l of the matrix Bj satisfy:

Bj
k,l = M̃ j,0

2k,l, k, l = 1, . . . 2j − 1. (37)

We factorize the matrix Aj as Aj = CjDj, where

Cj =
1√
2




9
8

3
8

0 0 . . . 0
3
8

5
4

3
8

...

0 3
8

5
4

3
8

0
...

. . . . . . . . .

0 3
8

5
4

3
8

0 . . . 0 0 3
8

9
8




(38)
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and

Dj =




37
40

0 0 . . . 0 0 1

40(−3)2
j−3

1
40

1 0 0 0 1

40(−3)2
j−4

−1
40·3 0 1 0 0 1

40(−3)2
j−5

...
...

. . .
...

...
1

40(−3)2
j−5

0 0 1 0 −1
40·3

1

40(−3)2
j−4

0 0 0 1 1
40

1

40(−3)2
j−3

0 0 . . . 0 0 37
40




. (39)

More precisely, the entries Dj
k,l of the matrix Dj are given by:

Dj
1,1 = Dj

2j−1,2j−1
=

37

40
, (40)

Dj
k,1 = Dj

2j+1−k,2j−1
=

(−1)k

40 · 3k−2
, for k = 2, . . . , 2j − 1,

Dj
k,k = 1, for k = 2, . . . , 2j − 2,

Dj
k,l = 0, otherwise.

It is easy to verify that C̃j = C−1
j has entries:

C̃j
k,l =

√
2

(
−1

3

)|k−l|
, (41)

and the matrix D−1
j has the structure:

D−1
j =




dj1 0 . . . 0 djn
dj2 1 0 djn−1
...

. . .
...

djn−1 0 1 dj2
djn 0 . . . 0 dj1



, (42)

with n = 2j − 1 and

dj1 =
40αn
37

, djn =
(−1)n−1 40αn
372 · 3n−2

, (43)

djk = (−1)k−1 αn

(
1

37 · 3k−2
+

3k

βn

)
, k = 2, . . . , n− 1.

where constants αn and βn are given by

αn =

(
1− 1

372 · 32n−4

)−1

, βn = 372 · 32n−3. (44)
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Therefore Bj = A−1
j = D−1

j C−1
j and substituting it into (33) we obtain the entries

of the matrix M̃j,0:

M̃ j,0
2,l =

40
√
2αn

37

(−1

3

)|1−l|
+

(−1)|n−1| 40
√
2αn

372 · 3n−2

(−1

3

)|n−l|
, (45)

M̃ j,0
2j+1−2,l

= M̃ j,0
2,2j−l, (46)

and for k ∈ (2, 2j+1 − 2) even:

M̃ j,0
k,l =

√
2

(−3)|k−l|
+

√
2αn (−1)k−1

(−3)|1−l|

(
1

37·3k−2
+
3k

βn

)
(47)

+

√
2αn (−1)n−k

(−3)|n−l|

(
1

37·3n−k−1
+

3n+1−k

βn

)

The entries M̃ j,0
k,l for k odd are given by (34) and (35).

It is well-known that for any matrix M of the size m× n with entries Mk,l:

‖M‖2 ≤
√
‖M‖1 ‖M‖∞, (48)

where

‖M‖1 = max
l=1,...,n

m∑

k=1

|Mk,l| , ‖M‖∞ = max
k=1,...,m

n∑

l=1

|Mk,l| . (49)

In our case, from (45), (49), and a formula for a sum of a geometric sequence we
obtain: ∥∥∥M̃j,0

∥∥∥
1
≤ 3

√
2 and

∥∥∥M̃j,0

∥∥∥
∞

≤ 2
√
2. (50)

Thus ∥∥∥M̃j,0

∥∥∥
2
≤ 2

√
3 = 2p for p = 1 +

ln 3

ln 4
. (51)

The consequence of the proof of Lemma 2 is that the matrix Mj = (Mj,0,Mj,1)
representing the discrete wavelet transform is invertible.

Lemma 3. The matrix Mj = (Mj,0,Mj,1) is invertible.

Proof. We prove the lemma for the choice c) of parameters for boundary wavelet, for
other choices the proof is similar. The matrix Mj is invertible if and only if the matrix
M̃j = (M̃j,0, M̃j,1) satisfying MT

j M̃j = Ij exists and is unique. The existence and

uniqueness of the matrix M̃j,0 is already shown in the proof of Lemma 2. The entries
M̃ j,1

k,l of the matrix M̃j,1 satisfy for l = 1, . . . , 2j+1:

M̃ j,1
1,l = δl,1 − 0.45 M̃ j,1

2,l , M̃ j,1
2j+1−1,l

= δl,1 − 0.45 M̃ j,1
2j+1−2,l

, (52)

and

M̃ j,1
k,l = δk,2l−1 +

M̃ j,1
k−1,l + M̃ j,1

k+1,l

2
, k odd, k = 3, . . . , 2j+1 − 3. (53)

Using these relations we obtain a system of equations with the matrix Aj defined by
(36). From the proof of Lemma 2 follows that Aj is invertible. Therefore the matrix
M̃j,1 exists and is unique.
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5. Riesz basis on Sobolev spaces

For j ≥ 2 we define a column vector

(Γj)k =

{
φj,k, k = 1, 2, . . . , 2j − 1,

ψj,k−2j−1, k = 2j, . . . 2j+1 − 1.
(54)

The symbol 〈·, ·〉 denotes the standard L2 (Ω) inner product. If u and v are two vectors
of functions of the length n, then 〈u,v〉 denotes matrix with entries 〈uk,vl〉, k, l =
1, . . . , n. We set Fj = 〈Γj,Γj〉, where Γ̂j = F−1

j Γj. We denote

Ij =
{
1, 2, . . . , 2j − 1

}
and Jj =

{
1, 2, . . . , 2j

}
(55)

and the entries of Γ̂j as

φ̂j,k =
(
Γ̂j

)
k
, k ∈ Ij, ψ̂j,k =

(
Γ̂j

)
k+2j−1

, k ∈ Jj. (56)

Since obviously 〈
Γj, Γ̂j

〉
= Ij, (57)

functions from Γ̂j are duals to functions from Γj in the space Vj+1. Since F−1
j is not a

sparse matrix, these duals are not local. We define a projection Pj from Vj+1 onto Vj
by

Pjf =
∑

k∈Ij

〈
f, φ̂j,k

〉
φj,k. (58)

Lemma 4. Let f ∈ Vj+1, a
j
k =

〈
f, φ̂j,k

〉
, aj =

{
ajk
}
k∈Ij , j ≥ 2, and Sj : aj+1 7→ aj.

Then ‖Sj‖2 ≤ 2p, p = 1 + ln 3
ln 4

.

Proof. We have

Pjf =
∑

k∈Ij
ajkφj,k =

∑

k∈Ij

〈
f, φ̂j,k

〉
φj,k (59)

=
∑

k∈Ij

∑

l∈Ij+1

aj+1
l

〈
φj+1,l, φ̂j,k

〉
φj,k.

Therefore
ajk =

∑

l∈Ij+1

aj+1
l

〈
φj+1,l, φ̂j,k

〉
. (60)

Let us denote
Sjl,k =

〈
φ̂j,k, φj+1,l

〉
, Sj =

{
Sjl,k

}
l∈Ij+1,k∈Ij

(61)

then we can write aj = Sjaj+1, and

Sj =
〈
Φ̂j,Φj+1

〉
=

〈
Φ̂j , M̃j,0Φj + M̃j,1Ψj

〉
= M̃j,0. (62)

By Lemma 2 the assertion is proved.
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Lemma 5. A projection Pj satisfies

‖PmPm+1 . . . Pn−1‖ ≤ 2p (n−m), p = 1 +
ln 3

ln 4
, (63)

for all 2 ≤ m < n.

Proof. Let fn ∈ Vn, fm = PmPm+1 . . . Pn−1fn, fj =
∑

k∈Ij a
j
kφj, aj =

{
ajk
}
k∈Ij , j =

m,n. Since Φj is a Riesz basis of Vj [2, 16], there exist constants C1 and C2 independent
of j such that:

C1 ‖aj‖2 ≤

∥∥∥∥∥∥
∑

k∈Ij
ajkφj

∥∥∥∥∥∥
≤ C2 ‖aj‖2 . (64)

By Lemma 4 we have for p = 1 + ln 3
ln 4

:

‖fm‖ ≤ C2 ‖am‖2 ≤ C2 ‖Sm‖2 ‖Sm+1‖2 . . . ‖Sn−1‖2 ‖an‖2 (65)

≤ C22
p(n−m) ‖an‖2 ≤

C2

C1

2p(n−m) ‖fn‖ .

Thus (63) is proved.

Theorem 6. The set Ψ is a Riesz basis of H2
0 (0, 1).

Proof. By Lemma 5 and Theorem 5.3. from [16], the set

{
2−2φj,k, j ≥ 2, k = 1, . . . 2j

}
∪
{
2−2jψj,k, j ≥ 2, k = 1, . . . 2j

}
(66)

is a Riesz basis of the space Hµ
0 (0, 1) for 1 + ln

√
3

ln 2
< µ < 2.5.

Since obviously

c22j ≤ |ψj,k|H2
0 (Ω) ≤ C22j, for j ≥ 2, k = 1, . . . , 2j , (67)

the set Ψ defined by (23) is a Riesz basis of the space H2
0 (0, 1).

Theorem 7. The set Ψ2D is a Riesz basis of H2
0

(
(0, 1)2

)
.

Proof. The theorem is a consequence of Lemma 6, (67), and Theorem 5.3. from [16].

6. Quantitative properties of constructed bases

In this section, we compare the condition numbers of the stiffness matrices for the
biharmonic problem in two dimensions for different wavelet bases. For Ω = (0, 1)2 we
consider the biharmonic equation

∆2u = f on Ω, u =
∂u

∂n
= 0 on ∂Ω, (68)

where ∆ is the Laplace operator and n is the outer unit normal vector. The variational
formulation is Au = f , where A =

〈
∆Ψ2D,∆Ψ2D

〉
, u = uTΨ2D, and f =

〈
f,Ψ2D

〉
.

It is known that then condA ≤ C < ∞. Since As =
〈
∆Ψ2D

s ,∆Ψ2D
s

〉
is a part of

the matrix A that is symmetric and positive definite, we have also condAs ≤ C. The
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s N a) b) c) d) JZ11 CF12 S09
1 49 14.6 13.6 8.5 50.7 34.0 128.1 484.4
2 225 21.4 18.1 14.3 72.3 34.9 141.3 583.4
3 961 23.7 20.2 17.5 84.4 35.1 212.0 626.9
4 3969 24.5 21.4 18.2 91.3 35.3 257.6 653.5
5 16129 24.8 22.2 18.4 95.3 35.5 281.2 673.2
6 65025 25.2 22.6 18.6 98.0 35.8 297.2 689.4

Table 1: The condition numbers of the stiffness matrices As of the size N × N corresponding to
multiscale wavelet bases with s levels of wavelets.

condition numbers of the stiffness matrices As are shown in Table 1. A construction
by Jia and Zhao from [16] is denoted as JZ11, a construction from [4] is denoted as
CF12, a construction of multiwavelet basis from [22] is denoted as S09 and wavelet
bases constructed in this paper are denoted as a), b), c), and d) according to the choice
of parameters for the boundary wavelet. The size of the stifness matrix is N × N for
wavelet bases constructed in this paper, it differs for other bases. The condition number
for our wavelet bases is comparable to the wavelet basis from [16], but the difference is
that wavelets from [16] have not vanishing moments and therefore can not be used in
some applications such as adaptive wavelet methods. Wavelet bases from [4, 22] have
significantly larger condition number.

Remark 2. We can also treat the fourth-order problem subject to nonhomogeneous
Dirichlet boundary conditions:

∆2u = f on Ω, u = g on ∂Ω,
∂u

∂n
= h on ∂Ω. (69)

Let w ∈ H2 (Ω) be a function such that

w = g on ∂Ω,
∂w

∂n
= h on ∂Ω. (70)

Then the solution u of the problem (69) can be computed as u = w+ ũ, where ũ solves
the problem

∆2ũ = f −∆2w on Ω, ũ = 0 on ∂Ω,
∂ũ

∂n
= 0 on ∂Ω. (71)

If Ω = (0, 1), we can simply set w to be a Hermite cubic polynomial:

w (x) = Ax3 + Bx2 + Cx+D (72)

with A = 2g (0)−h (0)−2g (1)+h (1) , B = −3g (0)+2h (0)+3g (1)−h (1) , C = −h (0),
D = g (0).

The case Ω = (0, 1)2 can be treated in a similar way. Since in formulation (69), the
values of normal derivative of u are not well defined at corners, we will consider more

14



precise formulation:

w = g on ∂Ω,
∂w

∂y
(x, 0) = h1 (x) ,

∂w

∂x
(1, y) = h2 (y) , (73)

∂w

∂y
(x, 1) = h3 (x) ,

∂w

∂x
(0, y) = h4 (y) , x, y ∈ [0, 1] .

If w ∈ C2
(
Ω̄
)
then

h1 (0) =
∂w

∂y
(0, 0) =

∂g

∂y
(0, 0) , (74)

dh1
dx

(0) =
∂2w

∂x∂y
(0, 0) =

∂2w

∂y∂x
(0, 0) =

dh4
dy

(0) ,

and similarly at other corners. Therefore, we assume that

h1 (0) =
∂g

∂y
(0, 0) , h1 (1) =

∂g

∂y
(1, 0) , h3 (0) =

∂g

∂y
(0, 1) , (75)

h3 (1) =
∂g

∂y
(1, 1) ,

dh1
dx

(0) =
dh4
dy

(0) ,
dh1
dx

(1) =
dh2
dy

(0) ,

dh3
dx

(1) =
dh2
dy

(1) ,
dh3
dx

(0) =
dh4
dy

(1) .

We first construct a function u1 that satisfies boundary conditions at the part of the
boundary {[0, y] , y ∈ [0, 1]} ∪ {[1, y] , y ∈ [0, 1]}. We set

u1 (x, y) = A (y) x3 + B (y) x2 + C (y) x+D (y) (76)

with A (y) = 2g (0, y)+h4 (y)−2g (1, y)+h2 (y) , B (y) = −3g (0, y)−2h4 (y)+3g (1, y)−
h2 (y) , C (y) = h4 (y), D (y) = g (0, y). We define g̃ = g − u1 on ∂Ω, h̃1 (x) = hi (x) −
∂u1

∂y
(x, 0) and h̃3 (x) = h3 (x) − ∂u1

∂y
(x, 1). We construct a function u2 that satisfies

u2 = g̃ on ∂Ω and

∂u2

∂y
(x, 0) = h̃1 (x) ,

∂u2

∂y
(x, 1) = h̃3 (x) ,

∂u2

∂x
(0, y) =

∂u2

∂x
(1, y) = 0. (77)

We set
u2 (x, y) = Ã (x) y3 + B̃ (x) y2 + C̃ (x) y + D̃ (x) (78)

with Ã (x) = 2g̃ (x, 0) + h̃1 (x) − 2g̃ (x, 1) + h̃3 (x) , B̃ (x) = −3g̃ (x, 0) − 2h̃1 (x) +
3g̃ (x, 1)− h̃3 (x) , C̃ (x) = h̃1 (x), D̃ (x) = g̃ (x, 0). Due to (75) it can be simply verified
that w = u1 + u2 satisfies (73).

7. Numerical example

In this section, we compare the quantitative behaviour of the adaptive wavelet
method with a basis constructed in this paper and bases from [4, 22]. All these bases
are formed by cubic splines. We first briefly review an adaptive wavelet method. The
method was proposed by Cohen, Dahmen and DeVore in [8]. We use a slightly modified
version from [3] with an adaptive matrix-vector multiplication from [5].
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For Ω = (0, 1)2 we consider the fourth-order problem (68). Let Ψ2D be a wavelet
basis constructed in this paper. As mentioned above, the original equation (68) can
be reformulated as an equivalent biinfinite matrix equation Au = f , where A =〈
∆Ψ2D,∆Ψ2D

〉
, u = uTΨ2D, and f =

〈
f,Ψ2D

〉
. Thus the original problem is equiva-

lent to the well-posed problem in l2. While the classical adaptive methods uses refining
and derefining a given mesh according to a-posteriori local error estimates, the wavelet
approach is different. Instead of turning to a finite dimensional approximation, we try
to devise a convergent iteration for the l2-problem. Then all infinite-dimensional quan-
tities have to be replaced by finitely supported ones and the routine for the application
of the biinfinite-dimensional matrix A approximately have to be designed.

The simplest convergent iteration for the l2-problem is a Richardson iteration which
has the following form:

u0 := 0, un+1 := un + ω (f −Aun) , n = 0, 1, . . . . (79)

For the convergence, the relaxation parameter ω has to satisfy

ρ := ‖I− ωA‖2 < 1, (80)

where ‖·‖2 is a spectral norm. Then the iteration (79) convergences with an error
reduction per step

‖un+1 − u‖2 ≤ ρ ‖un − u‖2 , (81)

where ‖·‖2 is the Euclidean norm. Condition (80) is satisfied if 0 < ω < 2
λmax

, where
λmax is the largest eigenvalue of A. It is known that the optimal relaxation parameter
ω̂ and the corresponding error reduction can be computed as

ω̂ =
2

λmin + λmax
, ρ (ω̂) =

λmax − λmin
λmax + λmin

=
κ (A)− 1

κ (A) + 1
. (82)

where λmin is the smallest eigenvalue of A. Hence the estimate of the number of
iterations needed to resolve the problem with desired accuracy depends on the condition
number of the matrix A that can be estimated by Ajmax , where jmax is the maximal
level used in the computations.

In the algorithm the sparse representation of the vector f is needed. It can be found
due to the relation:

〈f, ψj,k〉 ≤ C2−js
∥∥f · χsuppψj,k

∥∥
Hs(Ω)

, (83)

where f ∈ Hs (suppψj,k) ∩ L2 (Ω), 0 ≤ s < d, d is the number of vanishing moments
of wavelet ψj,k, χsuppψj,k

is an indicator function and C is a constant independent of j.
It ensures that in the regions where f is smooth the corresponding coefficients of f are
very small and can be thresholded. For the proof see [23].

We provide a numerical example. We consider the equation (68) with a solution u
given by

u (x, y) = v (x) v (y) , v (x) = x2
(
1− e10x−10

)2
. (84)

The relation (83) is not guaranteed for boundary wavelets corresponding to a), b)
and c). However, since there is only a small number of boundary wavelets in comparison
to a number of all wavelets up to some maximal level jmax, the sparse representation

16



of f can be constructed. The vector f̃ jmax that includes the entries of f up to the level
jmax was computed and its entries in absolute value were sorted. They are displayed in
Figure 3 for the cases a) and d). The graphs almost coincides. The graphs for choices b)
and d) lay between the graphs for a) and d). Since the structure of f̃ jmax is similar for all
choices of parameters, the sparse representations that are obtained by thresholding the
coefficients smaller than some threshold ǫ are similar for all choices of parameters and
the choice d) does not give significantly better results even though boundary wavelets
have two vanishing moments.
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a)

d)

Figure 3: The sorted absolute values of entries of the vector f̃9 for the choices of parameters a) and
d).

The solution exhibits a sharp gradient near the point [1, 1]. We solve the problem
by the method designed in [9] with the approximate multiplication of the stiffness
matrix with a vector proposed in [5]. We use wavelets up to the scale |λ| ≤ 10. The
convergence history is shown in Figure 4. In our experiments, the convergence rate,
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Figure 4: The convergence history for adaptive wavelet scheme with various wavelet bases.

i.e. the slope of the curve, is similar for all bases. Since the initial threshold depends
on Riesz bounds of the wavelet basis Ψ, the initial approximations are different and
the curves are not similar. Due to low condition number of the stiffness matrix, bases
a), b), and c) are significantly better in the number of iterations needed to resolve the
problem with desired accuracy. The number of basis functions in cases a), b), and c)
was about 1200 for an error in L∞-norm about 10−6. The number of all basis functions
for full grid, i.e. basis functions of the level ten or less, is about 106, therefore by
using an adaptive method the significant compression was achieved. It can seem that
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the number of iterations is quite large, but one could take into account that in the
beginning the iterations were done for much smaller vector and the size of the vector
increases successively.
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In the paper, we propose a construction of a new cubic spline-wavelet basis on the hypercube

satisfying homogeneous Dirichlet boundary conditions. Wavelets have two vanishing moments.

Stiffness matrices arising from discretization of elliptic problems using a constructed wavelet

basis have uniformly bounded condition numbers and we show that these condition numbers are

small. We present quantitative properties of the constructed basis and we provide a numerical

example to show the efficiency of the Galerkin method using the constructed basis.
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1. Introduction

In this paper, we propose a construction of a new cubic spline wavelet basis on the

hypercube that is well-conditioned, adapted to homogeneous Dirichlet boundary con-

ditions and the wavelets have two vanishing moments. The wavelet basis of the space

H1
0 (Ω), where Ω = (0, 1)

d
and d ∈ N, is then obtained by a tensor product and a proper

normalization.

First of all, we summarize the desired properties of a wavelet basis:

- Riesz basis property. We construct a Riesz basis of the space L2 (Ω) that, when

normalized with respect to H1-seminorm, is also a Riesz basis of the space H1
0 (Ω).

- Polymial exactness. Since the primal basis functions are cubic B-splines, the primal

multiresolution analysis has polynomial exactness of order four inH1
0 (Ω). This means

that any p ∈ H1
0 (Ω) that is a polynomial of degree less than or equal to four belongs

to the span of scaling functions at the given level.

- Vanishing moments. The wavelets have two vanishing moments.

- Locality. The primal basis functions are local in the sense of Definition 2.1 below.

- Smoothness. Primal basis functions belong to C2 (Ω) and dual basis functions belong

to C (Ω), where C (Ω) is the space of continuous functions on domain Ω and Cn (Ω)

is the space of functions on domain Ω that have continuous derivatives up to order

n ∈ N.
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- Explicit expression. The primal scaling functions and wavelets have an explicit ex-

pression.

- Homogeneous Dirichlet boundary conditions. The wavelet basis satisfies homogeneous

Dirichlet boundary conditions.

- Well-conditioned bases. Our objective is to construct a wavelet basis that is well

conditioned with respect to the L2-norm and is well conditioned with respect to the

H1-seminorm, when normalized appropriately.

Many constructions of spline wavelet or multiwavelet bases on the interval have been

proposed in recent years.4,5, 10,16,19–22 In Ref. 2, 3, 12, 18 cubic spline wavelets on the

interval were constructed. In these cases dual functions are known and are local. Spline

wavelet or multiwavelet bases where duals are not local are also known.6,13–16 The ad-

vantage of our construction in comparison with biorthogonal cubic spline wavelets with

local duals2,3, 12,18 is that the support of the wavelets is shorter, condition numbers of

the corressponding stiffness matrices are smaller and also a simple construction.

In this paper, scaling functions are the same as scaling functions in Ref. 2 and 18.

The construction of wavelets in these papers and also in Ref. 3 and 12 is quite long

and technical. It is based on the concept of stable completions.1 Using this approach

the Riesz basis property of the basis is a consequence of polynomial exactness of the

primal multiresolution analysis, local supports of primal and dual basis functions and

uniform stability of primal and dual multiresolution analysis. We use a different approach.

We construct wavelets directly such that they have vanishing moments. Therefore the

construction is very simple. Then we prove the Riesz basis property partly using the

theory developed in Ref. 9.

It was observed that an original construction in Ref. 12 leads to badly conditioned

stifness matrices. Therefore, the construction was optimized in Ref. 2, 3, 18. The wavelet

bases from Ref. 2, 18 are adapted to homogeneous boundary conditions of the first order,

i.e. they are of the same type as the basis in this paper. In Section 6 we compare the

condition numbers. The length of the support of cubic wavelets in Ref. 2, 3, 12, 18 is at

least seven, the length of the support of our wavelets is five.

2. Wavelet bases in Sobolev spaces

In this section, we recall the definition of a wavelet basis in a Hilbert space and the

concept of Sobolev spaces.

Let H be a Hilbert space with the inner product 〈·, ·〉H and the norm ‖·‖H . Let J
be some index set and let each index λ ∈ J take the form λ = (j, k), where |λ| := j ∈ Z
is a scale. For p ∈ N let

‖v‖p :=
(∑

λ∈J
|vλ|p

)1/p

, for v = {vλ}λ∈J , vλ ∈ R, (2.1)

and

lp (J ) :=
{
v : v = {vλ}λ∈J , vλ ∈ R, ‖v‖p <∞

}
. (2.2)

Our aim is to construct a wavelet basis in the sense of the following definition.

Definition 2.1. A family Ψ := {ψλ, λ ∈ J } is called a (primal) wavelet basis of H, if
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i) Ψ is a Riesz basis for H, i.e. the closure of the span of Ψ is H and there exist

constants c, C ∈ (0,∞) such that

c ‖b‖2 ≤
∥∥∥∥∥
∑

λ∈J
bλψλ

∥∥∥∥∥
H

≤ C ‖b‖2 , for all b := {bλ}λ∈J ∈ l2 (J ) . (2.3)

Constants cΨ := sup {c : c satisfies (2.3)}, CΨ := inf {C : C satisfies (2.3)} are

called Riesz bounds and the number cond Ψ = CΨ/cΨ is called the condition number

of Ψ.

ii) The functions are local in the sense that diam (suppψλ) ≤ C̃ 2−|λ| for all λ ∈ J and

at a given level j the supports of only finitely many wavelets overlap at any point

x ∈ Ω.

Remark 2.1. A Riesz basis for H is actually a (Schauder) basis for H. The condition

that the closure of the span of Ψ is H implies that for any f ∈ H there exists {aλ}λ∈J ∈
l1 (J ) such that

f =
∑

λ∈J
aλψλ. (2.4)

If {bλ}λ∈J ∈ l1 (J ) is such that

f =
∑

λ∈J
aλψλ =

∑

λ∈J
bλψλ, (2.5)

then due to l1 (J ) ⊂ l2 (J ) and (2.3) we have

c
∑

λ∈J
|aλ − bλ|2 ≤

∥∥∥∥∥
∑

λ∈J
aλψλ −

∑

λ∈J
bλψλ

∥∥∥∥∥

2

H

= 0. (2.6)

Hence, aλ = bλ and the expansion (2.4) is unique.

For the two countable sets of functions Γ, Γ̃ ⊂ H , the symbol
〈
Γ, Γ̃

〉
H

denotes the

matrix
〈
Γ, Γ̃

〉
H

:= {〈γ, γ̃〉H}
γ∈Γ,γ̃∈Γ̃

. (2.7)

Remark 2.2. It is known that the constants cΨ and CΨ from Definition 2.1 satisfy

cΨ =
√
λmin (〈Ψ,Ψ〉H), CΨ =

√
λmax (〈Ψ,Ψ〉H), (2.8)

where λmin (〈Ψ,Ψ〉H) and λmax (〈Ψ,Ψ〉H) are the smallest and the largest eigenvalues

of the matrix 〈Ψ,Ψ〉H , respectively.

Let M be a Lebesgue measurable subset of Rd. The space L2 (M) is the space of all

Lebesgue measurable functions on M such that the norm

‖f‖ =



∫

M

|f (x)|2 dx




1/2

(2.9)

is finite. The space L2 (M) is a Hilbert space with the inner product

〈f, g〉 =
∫

M

f (x) g (x)dx, f, g ∈ L2 (M) . (2.10)
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The Sobolev space Hs
(
Rd
)
for s ≥ 0 is defined as the space of all functions f ∈ L2

(
Rd
)

such that the seminorm

|f |Hs(Rd) =

(
1

(2π)
d

∫

Rd

∣∣∣f̂ (ξ)
∣∣∣
2

|ξ|2s dξ
)1/2

(2.11)

is finite. The symbol f̂ denotes the Fourier transform of the function f defined by

f̂ (ξ) =

∫

Rs

f (x) e−iξ·xdx. (2.12)

The space Hs
(
Rd
)
is a Hilbert space with the inner product

〈f, g〉Hs(Rd) =
1

(2π)
d

∫

Rd

f̂ (ξ) ĝ (ξ)
(
1 + |ξ|2s

)
dξ, f, g ∈ Hs

(
Rd
)
, (2.13)

and the norm

‖f‖Hs(Rd) =
√

〈f, f〉Hs(Rd). (2.14)

For an open set M ⊂ Rd, Hs (M) is the set of restrictions of functions from Hs
(
Rd
)

to M equipped with the norm

‖f‖Hs(M) = inf
{
‖g‖Hs(Rd) : g ∈ Hs (M) and g|M = f

}
. (2.15)

The space H−s (M) is defined as the dual space to Hs (M). Let C∞
0 (M) be the space of

all continuous functions with the support inM such that they have continuous derivatives

of order r for any r ∈ R. The space Hs
0 (M) is defined as the closure of C∞

0 (M) in

Hs
(
Rd
)
. It is known that

‖f‖H1(M) = |f |H1(M) + ‖f‖ , (2.16)

where

|f |H1(M) =
√
〈∇f,∇f〉 (2.17)

is the seminorm in H1 (M) and ∇f denotes the gradient of f .

3. Construction of scaling functions

A primal scaling basis is the same as a scaling basis in Ref. 2, 18. It is generated from func-

tions φ, φb1 and φb2 as follows. Let φ be a cubic B-spline defined on knots {0, 1, 2, 3, 4}.
It can be written explicitly as

φ(x) =





x3

6 , x ∈ [0, 1],

−x3

2 + 2x2 − 2x+ 2
3 , x ∈ [1, 2],

x3

2 − 4x2 + 10x− 22
3 , x ∈ [2, 3],

(4−x)3
6 , x ∈ [3, 4],

0, otherwise.

(3.1)

Then φ satisfies the scaling equation2,18

φ (x) =
φ (2x)

8
+
φ (2x− 1)

2
+

3φ (2x− 2)

4
+
φ (2x− 3)

2
+
φ (2x− 4)

8
. (3.2)
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Let φb1 be a cubic B-spline defined on knots {0, 0, 0, 1, 2} and φb2 be a cubic B-spline

defined on knots {0, 0, 1, 2, 3}, i.e.,

φb1(x) =





7x3

4 − 9x2

2 + 3x, x ∈ [0, 1],
(2−x)3

4 , x ∈ [1, 2],

0, otherwise,

(3.3)

and

φb2(x) =





− 11x3

12 + 3x2

2 , x ∈ [0, 1],
7x3

12 − 3x2 + 9x
2 − 3

2 , x ∈ [1, 2],
(3−x)3

6 , x ∈ [2, 3],

0, otherwise.

(3.4)

Then φb1 and φb2 satisfy the scaling equations2,18

φb1 (x) =
φb1 (2x)

2
+

3φb2 (2x)

4
+

3φ (2x)

16
, (3.5)

φb2 (x) =
φb2 (2x)

4
+

11φ (2x)

16
+
φ (2x− 1)

2
+
φ (2x− 2)

8
.

For j ∈ N, j ≥ 3 and x ∈ [0, 1] we set

φj,k (x) = 2j/2φ(2jx− k), k = 3, . . . 2j − 1, (3.6)

φj,1 (x) = 2j/2φb1(2
jx), φj,2j+1 (x) = 2j/2φb1(2

j(1− x)),

φj,2 (x) = 2j/2φb2(2
jx), φj,2j (x) = 2j/2φb2(2

j(1− x)).

Furthermore, we define

Φj =
{
φj,k/ ‖φj,k‖ , k = 1, . . . , 2j + 1

}
and Vj = spanΦj . (3.7)

It was proved in Ref. 2 that the sets Φj are uniform Riesz bases of the space Vj . This

means that the sets Φj are Riesz bases of the space Vj with Riesz bounds independent

on j. The graphs of the functions φj,k on the coarsest level j = 3 are displayed in Figure

1.

0 0.5 1
0

0.5

1

1.5

2

Fig. 1. Functions φ3,k, k = 1, . . . , 9.
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4. Construction of wavelets

In some applications such as adaptive wavelet methods,7,8 vanishing moments of wavelets

are needed. In our case, we construct wavelets with two vanishing moments, i.e.
∫

suppψ

xkψ(x)dx = 0, k = 0, 1. (4.1)

For k ≥ 3 we set Ṽj as the space of continuous piecewise linear function:

Ṽj =

{
v ∈ C (0, 1) : v|( k

2j
, k+1

2j
) ∈ P1

(
k

2j
,
k + 1

2j

)
for k = 0, . . . , 2j − 1

}
, (4.2)

where P1 (a, b) is the space of all algebraic polynomials on (a, b) of degree less than or

equal to 1. Clearly, with this choice the dimension of Ṽj is 2
j +1 that is the same as the

dimension of Vj . We construct wavelets ψj,k, k = 1, . . . , 2j , such that ψj,k ∈ Vj+1 ∩ Ṽ ⊥
j ,

where Ṽ ⊥
j is the orthogonal complement of Ṽj with respect to the L2-norm. Then

〈
ψj,k, φ̃

〉
= 0 (4.3)

for all functions φ̃ ∈ Ṽj and (4.1) is satisfied.

Since we want ψj,k ∈ Vj+1, we define a generator wavelet ψ as

ψ(x) =
M∑

k=0

gkφ(2x− k). (4.4)

Then suppψ =
[
0, M2 + 2

]
. Let

V̄ =

{
v ∈ C

(
0,
M

2
+ 2

)
: v|(k,k+1) ∈ P1 (k, k + 1) , k = 0, . . . ,

M

2
+ 1

}
. (4.5)

The dimension of V̄ is M
2 + 3 and ψ can be found as the solution of the system

〈ψ, fi〉 = 0, i = 1, . . .
M

2
+ 3, (4.6)

where {fi}
M
2 +3
i=1 is a basis of V̄ . For M ≤ 5, the system (4.6) has only trivial solution.

Therefore, we choose M = 6 and compute

[g0, . . . , g6] =

[−1

184
,
7

46
,
−119

184
, 1,

−119

184
,
7

46
,
−1

184

]
. (4.7)

Then for

ψj,k(x) = 2j/2ψ(2jx− k + 2)|[0,1], k = 3, ..., 2j − 2, j ∈ N, j ≥ 3, (4.8)

the condition (4.3) is satisfied and the functions ψ and ψj,k have two vanishing moments.

The support of the wavelet ψ is [0, 5]. The graph of ψ is shown in Figure 2.

We define boundary wavelets ψb1 and ψb2 by:

ψb1(x) = gb10 φb1(2x) + gb11 φb2(2x) +
4∑

k=2

gb1k φ(2x− k + 2), (4.9)

ψb2(x) = gb20 φb1(2x) + gb21 φb2(2x) +

6∑

k=2

gb2k φ(2x− k + 2),
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0 1 2 3 4 5

−0.2

0

0.2

0.4

 

 

ψ

0 1 2 3 4

−6

−4

−2

0

2

4

 

 

ψ
b1

ψ
b2

Fig. 2. Wavelets ψ, ψb1 and ψb2.

where
[
gb10 , . . . , g

b1
4

]
=

[
939

70
,
−393

20
,
6233

560
,−4, 1

]
, (4.10)

[
gb20 , . . . , g

b2
6

]
=

[
2770661

1828560
,
256057

457140
,
−493633

76992
,
20761777

1828560
,
−76369591

7314240
, 7,−3

]
.

Then suppψb1 = [0, 3], suppψb2 = [0, 4] and both boundary wavelets have two vanishing

moments.

For j ∈ N, j ≥ 3 and x ∈ [0, 1] we define

ψj,1(x) = 2j/2ψb1(2
jx), ψj,2j (x) = 2j/2ψb1(2

j(1− x)), (4.11)

ψj,2(x) = 2j/2ψb2(2
jx), ψj,2j−1(x) = 2j/2ψb2(2

j(1− x)).

and

Ψj =
{
ψj,k/ ‖ψj,k‖ , k = 1, . . . , 2j

}
, Wj = spanΨj . (4.12)

We denote

Ψs = Φ3 ∪
2+s⋃

j=3

Ψj and Ψ = Φ3 ∪
∞⋃

j=3

Ψj . (4.13)

In the following, we prove that Ψ is a Riesz basis of the space L2 (0, 1). The set Ψs

is a finite dimensional subset of Ψ.

Theorem 4.1. The sets Ψj, j ≥ 3, are uniform Riesz bases of Wj.

Proof. We compute the matrix

Fj := 〈Ψj , Ψj〉 (4.14)

using (4.4) and (4.9). For example, for j = 3 we obtain

F3 =




1.000 0.128 0.103 0.003 0 0 0 0

0.128 1.000 0.432 −0.145 −0.014 0 0 0

0.103 0.432 1.000 −0.029 −0.077 0.001 0 0

0.003 −0.145 −0.029 1.000 −0.029 −0.077 −0.014 0

0 −0.014 −0.077 −0.029 1.000 −0.029 −0.145 0.003

0 0 0.001 −0.077 −0.029 1.000 0.432 0.103

0 0 0 −0.014 −0.145 0.432 1.000 0.128

0 0 0 0 0.003 0.103 0.128 1.000




, (4.15)
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where the numbers are rounded to three decimal digits. The matrix Fj for j ≥ 3 has a

similar structure. The first two rows and columns and the last two rows and columns

corresponds to boundary wavelets and for k, l = 3, . . . 2j − 2:

(Fj)k,l =





1, k = l,

−0.029, |k − l| = 1,

−0.077, |k − l| = 2,

−0.001, |k − l| = 3,

0, otherwise.

(4.16)

It is easy to see that Fj is banded and diagonally dominant. Estimates for the smallest

eigenvalue λjmin and the largest eigenvalue λjmax of the matrix Fj can be computed using

the Gershgorin circle theorem:

λjmin ≥ min

(∣∣∣F jii
∣∣∣−

n∑

k=1

∣∣∣F jik
∣∣∣
)
> 0.2, (4.17)

λjmax ≤ max

(∣∣∣F jii
∣∣∣+

n∑

k=1

∣∣∣F jik
∣∣∣
)
< 1.8, (4.18)

(4.19)

where F jik are the entries of the matrix Fj . With the help of Remark 2.2 the assertion is

proven.

The proof that Ψ is a Riesz basis is based on the following theorem.9,13

Theorem 4.2. Let J ∈ N and let Vj and Ṽj, j ≥ J , be subspaces of L2 (0, 1) such that

Vj ⊂ Vj+1, Ṽj ⊂ Ṽj+1, dimVj = dimṼj <∞, j ≥ J. (4.20)

Let Φj be uniform Riesz bases of Vj, Φ̃j be uniform Riesz bases of Ṽj, Ψj be uniform

Riesz bases of Ṽ ⊥
j ∩ Vj+1, where Ṽ

⊥
j is the orthogonal complement of Ṽj with respect to

the L2-inner product, and let

Ψ = {ψλ, λ ∈ J } = ΦJ ∪
∞⋃

j=J

Ψj . (4.21)

Furthermore, let the matrix

Gj :=
〈
Φj , Φ̃j

〉
(4.22)

be invertible and the spectral norm of G−1
j is bounded independently on j. In addition,

for some positive constants C, γ and d, γ < d, let

inf
vj∈Vj

‖v − vj‖ ≤ C2−jd ‖v‖Hd(0,1) , v ∈ Hd
0 (0, 1) , (4.23)

and for 0 ≤ s < γ let

‖vj‖Hd(0,1) ≤ C2js ‖vj‖ , vj ∈ Vj , (4.24)

and let similar estimates (4.23) and (4.24) hold for γ̃ and d̃ on the dual side. Then there

exist constants k and K, 0 < k ≤ K <∞, such that

k ‖b‖2 ≤
∥∥∥∥∥
∑

λ∈J
bλ2

−|λ|sψλ

∥∥∥∥∥
Hs(0,1)

≤ K ‖b‖2 , b := {bλ}λ∈J ∈ l2 (J ) (4.25)
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holds for s ∈ (−γ̃, γ).
Now we are ready to prove the Riesz basis property (2.3) for Ψ.

Theorem 4.3. The set Ψ is a wavelet basis of the space L2 (0, 1).

Proof. For j ≥ 3 we consider the set

Φ̄j =
{
φj,k, k = 1, . . . , 2j + 1

}
(4.26)

that is a Riesz basis of the space Vj . Recall that Ṽj is defined by (4.2). Let

φ̃(x) =





x+ 1, x ∈ [−1, 0],

1− x, x ∈ [0, 1],

0, otherwise,

(4.27)

and for x ∈ [0, 1] we define

φ̃j,k (x) = 2j/2φ̃
(
2jx− k + 1

)
, k = 2, . . . , 2j , (4.28)

φ̃j,k (x) = 2(j+1)/2φ̃
(
2jx− k + 1

)
, k = 1, 2j + 1. (4.29)

It was proved in Ref. 2 that

Φ̃j =
{
φ̃j,k, k = 1, . . . , 2j + 1

}
(4.30)

are uniform Riesz bases of Ṽj .

The matrix Gj =
〈
Φ̄j , Φ̃j

〉
is

Gj =




17
40

11
40

11
80 0 0 0 0 0

19
120

9
20

17
80

11
120 0 0 0 0

1
60

13
60

11
20

13
60

1
120 0 0 0

0 1
120

13
60

11
20

13
60

1
120 0

0 0
. . .

. . .
. . .

. . .
. . .

...
... 1

120
13
60

11
20

13
60

1
120 0

0 1
120

13
60

11
20

13
60

1
60

0 11
120

17
80

9
20

19
120

0 11
80

11
40

17
40




. (4.31)

It is easy to verify that the matrix Gj is banded and strictly diagonally dominant.

Therefore, it is invertible and the spectral norm of G−1
j is bounded independently on j.

It is known9 that when γ is the Sobolev exponent of smoothness of the basis functions

and d is the polynomial exactness of Vj than (4.23) and (4.24) are satisfied. In our case,

the Sobolev exponent of smoothness is γ = 3.5 and the polynomial exactness of Vj is

d = 4. On the dual side, γ̃ = 1.5 and d̃ = 2. Therefore, due to Theorem 4.2, relation

(4.25) is satisfied for s ∈ (−1.5, 3.5). Since we proved that (4.25) holds for s = 0, the set

Ψ is indeed a wavelet basis of the space L2 (0, 1).

It remains to prove that when the wavelet basis Ψ is normalized in the H1-seminorm,

then it is a wavelet basis of the space H1
0 (0, 1). We denote

I3 := {0, 1, . . . , 8} and Jj :=
{
1, . . . , 2j

}
. (4.32)
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Theorem 4.4. The set
{
φ3,k/ |φ3,k|H1

0 (0,1)
, k ∈ I3

}
∪
{
ψj,k/ |ψj,k|H1

0 (0,1)
, j ≥ 3, k ∈ Jj

}
(4.33)

is a wavelet basis of the space H1
0 (0, 1).

Proof. We follow the Proof of Theorem 2 in Ref. 4. From the proof of Theorem 4.3, we

know that relation (4.25) holds for s = 1. Therefore the set
{
2−3φ3,k, k ∈ I3

}
∪
{
2−jψj,k, j ≥ 3, k ∈ Jj

}
(4.34)

is a wavelet basis of the space H1
0 (0, 1). From (3.6), (4.8) and (4.11) there exist nonzero

constants C1 and C2 such that

C12
j ≤ |ψj,k|H1

0 (Ω) ≤ C22
j , for j ≥ 3, k ∈ Jj , (4.35)

and

C12
3 ≤ |φ3,k|H1

0 (Ω) ≤ C22
3, for k ∈ I3. (4.36)

Let b̂ = {â3,k, k ∈ I3} ∪
{
b̂j,k, j ≥ 3, k ∈ Jj

}
be such that

∥∥∥b̂
∥∥∥
2

2
=
∑

k∈I3

â23,k +
∑

k∈Jj ,j≥3

b̂2j,k <∞. (4.37)

We define

a3,k =
23â3,k

|φ3,k|H1
0 (0,1)

, k ∈ I3, bj,k =
2j b̂j,k

|ψj,k|H1
0 (0,1)

, j ≥ 3, k ∈ Jj , (4.38)

and b = {a3,k, k ∈ I3} ∪ {bj,k, j ≥ 3, k ∈ Jj}. Then

‖b‖2 ≤

∥∥∥b̂
∥∥∥
2

C1
<∞. (4.39)

Since the set in (4.34) is a Riesz basis of H1
0 (0, 1) there exist constants C3 and C4

such that

C3 ‖b‖2 ≤

∥∥∥∥∥∥
∑

k∈I3

a3,k2
−3φ3,k +

∑

k∈Jj ,j≥3

bj,k2
−jψj,k

∥∥∥∥∥∥
H1

0 (0,1)

≤ C4 ‖b‖2 . (4.40)

Therefore

C4

C1

∥∥∥b̂
∥∥∥
2
≥ C4 ‖b‖2 ≥

∥∥∥∥∥∥
∑

k∈I3

a3,k2
−3φ3,k +

∑

k∈Jj ,j≥3

bj,k2
−jψj,k

∥∥∥∥∥∥
H1

0 (0,1)

(4.41)

=

∥∥∥∥∥∥
∑

k∈I3

â3,k
|φ3,k|H1

0 (0,1)

φ3,k +
∑

k∈Jj ,j≥3

b̂3,k
|ψj,k|H1

0 (0,1)

ψj,k

∥∥∥∥∥∥
H1

0 (0,1)

and similarly

C3

C2

∥∥∥b̂
∥∥∥
2
≤

∥∥∥∥∥∥
∑

k∈I3

â3,k
|φ3,k|H1

0 (0,1)

φ3,k +
∑

k∈Jj ,j≥3

b̂3,k
|ψj,k|H1

0 (0,1)

ψj,k

∥∥∥∥∥∥
H1

0 (0,1)

. (4.42)
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It is known2,17 that an orthogonalization of the scaling functions on the coarsest level

can lead to improved quantitative properties of the resulting wavelet basis. Therefore,

we define the set

Φort3 =
{
φort3,k, k ∈ I3

}
(4.43)

by

Φort3 := K−1Φ3, K = 〈Φ3,Φ3〉 . (4.44)

Then the set of scaling functions Φort3 is orthonormal and

Ψort := Φort3 ∪
∞⋃

j=3

Ψj (4.45)

is a wavelet basis of the space L2 (0, 1) and its appropriate rescaling is a wavelet basis of

the space H1
0 (0, 1).

5. Multivariate wavelets

We present two well-known constructions of multivariate wavelet bases on the unit hy-

percube Ω = (0, 1)
d
.23 They are both based on tensorizing univariate wavelet bases and

preserve Riesz basis property, locality of wavelets, vanishing moments and polynomial

exactness.

5.1. Anisotropic construction

For notational simplicity, we denote

ψ2,k := φort3,k, k ∈ J2 := I3 (5.1)

and

J := {(j, k) , j ≥ 2, k ∈ Jj} . (5.2)

Then we can write

Ψort = {ψj,k, j ≥ 2, k ∈ Jj} = {ψλ, λ ∈ J } . (5.3)

Recall that for λ = (j, k) we denote |λ| = j. We use u⊗ v to denote the tensor product

of functions u and v, i.e. (u⊗ v) (x1, x2) = u (x1) v (x2). We define multivariate basis

functions as:

ψλ = ⊗di=1ψλi
, λ = (λ1, . . . , λd) ∈ J, J = J d = J ⊗ . . .⊗ J . (5.4)

Since Ψort is a Riesz basis of L2 (0, 1) and Ψort normalized with respect to H1-seminorm

is a Riesz basis of H1
0 (0, 1), the set

Ψani := {ψλ,λ ∈ J} (5.5)

is a Riesz basis of L2 (Ω) and its normalization
{

ψλ

|ψλ|H1((0,1)d)
,λ ∈ J

}
(5.6)

is a Riesz basis of H1
0 (Ω). The set

Ψanis := {ψλ,λ = (λ1, . . . , λd) , |λi| < 2 + s} (5.7)

is a finite-dimensional approximation of Ψani.
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5.2. Isotropic construction

We define for j ≥ 3 and k = (k1, . . . kd) multivariate scaling functions:

φj,k := ⊗di=1φj,ki , (5.8)

and

Φisoj := {φj,k, k = (k1, . . . kd) , ki ∈ Ij , i = 1, . . . , d} . (5.9)

For e ∈ {0, 1} we define

ψj,k,e =

{
φj,k, e = 0,

ψj,k, e = 1.
(5.10)

We denote the index set:

Jj,e =
{ Ij , e = 0,

Jj , e = 1.
(5.11)

For k = (k1, . . . kd) and e = (e1, . . . , ed) we define multivariate functions

ψj,k,e = ⊗di=1ψj,ki,ei (5.12)

and the set of wavelets on the level j as

Ψisoj = {ψj,k,e, ki ∈ Jj,ei , e ∈ E} , where E = {0, 1}d \ {0} . (5.13)

It is known that then the set

Ψiso = Φiso3 ∪
∞⋃

j=3

Ψisoj (5.14)

is a wavelet basis of L2 (Ω) and its normalization with respect to the H1 (Ω)-seminorm

is a Riesz basis of H1
0 (Ω). The set

Ψisos = Φiso3 ∪
2+s⋃

j=3

Ψisoj (5.15)

is a finite dimensional subset of Ψiso.

6. Quantitative properties

In this section, we present the condition numbers of the stiffness matrices for the following

elliptic problem:

−ε∆u+ au = f on Ω, u = 0 on ∂Ω, (6.1)

where ∆ is the Laplace operator, ε and a are positive constants. The variational formu-

lation for an anisotropic wavelet basis is

Aaniuani = fani, (6.2)

where

Aani := ε
〈
∇Ψani,∇Ψani

〉
+ a

〈
Ψani,Ψani

〉
, (6.3)

u :=
(
uani

)T
Ψani, fani =

〈
f,Ψani

〉
.
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An advantage of discretization of elliptic equation (6.1) using a wavelet basis is that the

system (6.2) can be simply preconditioned by a diagonal preconditioner.11 Let D be a

matrix of diagonal elements of the matrix A, i.e. Dλ,µ = Aλ,µδλ,µ, where δλ,µ denotes

Kronecker delta. Setting

Ãani :=
(
Dani

)−1/2
Aani

(
Dani

)−1/2
, (6.4)

ũani :=
(
Dani

)1/2
uani, f̃ani :=

(
Dani

)−1/2
fani

we obtain the preconditioned system Ãaniũani = f̃ani. It is known11 that there exist

constants C1, C2, and C such that

0 < C1 ≤
∥∥∥Ãani

∥∥∥
2
≤ C2 (6.5)

and thus cond Ãani ≤ C <∞. Let

Aani
s = ε

〈
∇Ψanis ,∇Ψanis

〉
+ a

〈
Ψanis ,Ψanis

〉
, (6.6)

uanis =
(
uanis

)T
Ψanis , fanis =

〈
f,Ψanis

〉
.

and let Dani
s be a matrix of diagonal elements of the matrix Aani

s , i.e.
(
Dani
s

)
λ,µ

=(
Aani
s

)
λ,µ

δλ,µ. We set

Ãani
s :=

(
Dani
s

)−1/2
Aani
s

(
Dani
s

)−1/2
, (6.7)

ũanis :=
(
Dani
s

)1/2
uanis , f̃anis :=

(
Dani
s

)−1/2
fanis

and obtain preconditioned finite-dimensional system

Ãani
s ũanis = f̃anis . (6.8)

Since Ãani
s is a part of the matrix Ãani that is symmetric and positive definite, we have

also

cond Ãani
s ≤ C. (6.9)

The preconditioned system for an isotropic wavelet basis

Ãiso
s ũisos = f̃ isos . (6.10)

is derived in a similar way. The stiffness matrix Ãiso
s also satisfies

0 < C1 ≤
∥∥∥Ãiso

s

∥∥∥
2
≤ C2, cond Ãiso

s ≤ C. (6.11)

The eigenvalues and condition numbers of the stiffness matrices for one-dimensional

problem are shown in Table 1. We denote the stiffness matrix for the bases Ψs and Ψorts
preconditioned as in (6.7) by Ãs and Ãort

s , respectively. The consequence of Remark 2.2

is that the condition number with respect to the H1-seminorm of the multiscale wavelet

basis Ψs normalized with respect to the H1-seminorm is equal to the square root of the

condition number of the stiffness matrix Ãs. The eigenvalues and condition numbers of

the stiffness matrices for two-dimensional and three-dimensional problems are shown in

Table 2 and Table 3. Table 1, Table 2 and Table 3 correspond to the choice of parameters

ε = 1 and a = 0, i.e. for the Poisson equation.

In Table 4 we compare the condition numbers of the stifness matrices for the Poisson

equation in one dimension for various constructions of cubic spline wavelet bases adapted
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Table 1. The maximal eigenvalues, the minimal eigenvalues and the condition numbers numbers of the

matrices Ãort
s and Ãs of the size N ×N corresponding to the one-dimensional problem.

s N λortmax λortmin condÃort
s λmax λmin condÃs

1 17 1.67e0 2.99e-1 5.57e0 1.67e0 2.15e-1 7.74e0

2 33 1.68e0 2.99e-1 5.60e0 1.68e0 2.15e-1 7.79e0

3 65 1.68e0 2.99e-1 5.61e0 1.68e0 2.15e-1 7.81e0

4 129 1.68e0 2.99e-1 5.62e0 1.68e0 2.15e-1 7.81e0

5 257 1.68e0 2.99e-1 5.62e0 1.68e0 2.15e-1 7.82e0

6 513 1.68e0 2.99e-1 5.62e0 1.68e0 2.15e-1 7.82e0

7 1 025 1.68e0 2.99e-1 5.62e0 1.68e0 2.15e-1 7.82e0

8 2 049 1.68e0 2.99e-1 5.62e0 1.68e0 2.15e-1 7.82e0

Table 2. The maximal eigenvalues, the minimal eigenvalues and the condition numbers of the stiffness

matrices Ãani
s and Ãiso

s of the size N ×N corresponding to the two-dimensional problem.

s N λanimax λanimin condÃani
s λisomax λisomin condÃiso

s

1 289 2.46e0 1.51e-1 16.2e0 3.21e0 6.22e-2 51.6e0

2 1 089 2.67e0 1.39e-1 19.2e0 3.27e0 5.60e-2 58.4e0

3 4 225 2.80e0 1.18e-1 23.8e0 3.29e0 5.60e-2 58.8e0

4 16 641 2.88e0 9.75e-2 29.6e0 3.31e0 5.60e-2 59.0e0

5 66 049 2.92e0 8.25e-2 35.4e0 3.31e0 5.60e-2 59.2e0

6 263 169 2.94e0 7.15e-2 41.1e0 3.32e0 5.60e-2 59.2e0

7 1 058 841 2.95e0 6.38e-2 46.3e0 3.32e0 5.60e-2 59.3e0

8 4 231 249 2.96e0 5.82e-2 50.9e0 3.32e0 5.60e-2 59.3e0

Table 3. The maximal eigenvalues, the minimal eigenvalues and the condition numbers of the stiffness

matrices Ãani
s and Ãiso

s of the size N ×N corresponding to the three-dimensional problem.

s N λanimax λanimin condÃani
s λisomax λisomin condÃiso

s

1 4 913 3.94e0 6.78e-2 58.2e0 6.34e0 7.65e-3 829.3e0

2 35 937 4.47e0 5.07e-2 88.0e0 6.47e0 7.42e-3 871.4e0

3 274 625 4.77e0 3.80e-2 125.4e0 6.52e0 7.41e-3 879.5e0

4 2 146 689 5.01e0 2.77e-2 181.2e0 6.56e0 7.41e-3 883.0e0

5 16 974 593 5.12e0 2.04e-2 250.7e0 6.56e0 7.41e-3 885.0e0

to homogeneous boundary conditions of the first order. The construction from this paper

is denoted new. P (m,n) denotes construction from Ref. 18 and C (m,n) and C (m,n)
ort

denote the constructions from Ref. 2 without and with orthogonalization of the scaling

functions on the coarsest level, respectively. Parameter (m,n) corresponds to standard

notation of biorthogonal wavelets, where m is a polynomial exactness of the primal

multiresolution analysis and n is a polynomial exactness of the dual multiresolution

analysis. Parameter s denotes the number of levels of wavelets.

In Table 5 and Table 6 a dependence of the condition number on the parameter ε is

shown. It is computed for the two-dimensional problem and a = 1. It can be seen that
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Table 4. The condition numbers of the stifness matrices for various constructions.

s new P (4, 4) P (4, 6) CF (4, 4) CF (4, 6) CF (4, 4)ort CF (4, 6)ort

1 5.6 49.1 52.0 47.0 15.4 49.0 15.3

4 5.6 199.8 134.9 50.0 18.1 51.6 16.2

7 5.6 216.8 138.4 50.3 18.9 50.3 16.3

if ε increases the condition number become close to the condtion number of the stiffness

matrix for the Poisson problem and if ε decreases than the condition number become

close to the condition number of Gramian matrix with respect to the L2-inner product,

i.e. the case ε = 0 and a = 1. The condition numbers are even significantly lower than

condition numbers for one-dimensional problem and periodized biorthogonal wavelets,

see tables in Ref. 23.

Table 5. Condition numbers of the stiffness matrices Ãiso
s of the size N × N for various values of ε

corresponding to the two-dimensional problem .

s N ε = 103 ε = 1 ε = 10−3 ε = 10−9 ε = 0

1 289 51.6 51.6 145.3 393.1 393.1

2 1 089 58.4 58.4 146.7 447.8 447.8

3 4 225 58.8 58.8 146.8 471.3 471.4

4 16 641 59.0 59.0 146.8 484.0 484.0

5 66 049 59.2 59.2 146.8 491.1 491.1

6 263 169 59.2 59.2 146.8 494.8 494.9

7 1 058 841 59.3 59.3 146.8 496.8 496.9

8 4 231 249 59.3 59.3 146.8 497.8 497.9

Table 6. Condition numbers of the stiffness matrices Ãani
s of the size N × N for various values of ε

corresponding to the two-dimensional problem .

s N ε = 103 ε = 1 ε = 10−3 ε = 10−9 ε = 0

1 289 16.2 16.2 15.1 16.2 16.2

2 1 089 19.2 19.2 19.0 30.8 30.8

3 4 225 23.8 23.8 23.5 46.9 46.9

4 16 641 29.6 29.6 29.4 63.9 63.9

5 66 049 35.6 35.5 35.4 81.2 81.3

6 263 169 41.3 41.1 41.1 98.0 98.1

7 1 058 841 46.4 46.3 46.3 113.6 113.9

8 4 231 249 51.0 51.0 51.0 127.2 128.9

7. Numerical example

The constructed wavelet basis can be used for solving various types of problems. Let

us mention for example solving partial differential and integral equations by adaptive
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wavelet method.7,8 In this section we use the constructed wavelet basis in a wavelet-

Galerkin method. We consider the problem (6.1) with Ω = (0, 1)
2
, ε = 1 and a = 0. The

right-hand side f is such that the solution u is given by:

u (x, y) = v (x) v (y) , v (x) = x
(
1− e5x−5

)
. (7.1)

We discretize the equation using a Galerkin method and the isotropic wavelet basis

constructed in this paper and we obtain the discrete problem (6.10). We solve it by the

conjugate gradient method using a simple multilevel approach:

1. Compute Ãiso
s and f̃ isos , choose v0 of the length 92.

2. For j = 0, . . . , s find the solution ũj of the system Ãiso
j ũj = f̃ isoj by the conjugate

gradient method with initial vector vj defined for j ≥ 1 by

(vj) =

{
ũj−1, i = 1, . . . , kj ,

0, i = kj , . . . , kj+1,
(7.2)

where kj =
(
2j+2 + 1

)2
.

The method for anisotropic wavelet basis is similar. A criterion ‖rj‖ < εj , where

rj := Ãiso
j ũj − f̃ isoj , is used for terminating iterations of the conjugate gradient (CG)

method at level j. It is possible to choose smaller εj on coarser levels,14 but in our case we

choose εj constant for all levels, because other choices of εj did not lead to significantly

smaller number of iterations in our experiments. Namely, for the given number of levels s

we set εj = 10−52−3s, j = 0, . . . , s, for the isotropic case and εj = 10−42−3s, j = 0, . . . , s,

for the anisotropic case.

We explain the choice of εj . Let u be the exact solution of (6.1) and

u∗s =
(
Diso
s

)−1/2
(ũ∗
s)
T
Ψs, (7.3)

where ũ∗
s is the exact solution of the discrete problem (6.10). It is known23 that

‖u− u∗s‖Hm(Ω) ≤ C2−(4−m)s. (7.4)

We have

rs := Ãiso
s ũs − f̃ isos = Ãiso

s ũs − Ãiso
s ũ∗

s. (7.5)

where ũs is the approximate solution of (6.10) by the conjugate gradient method. The

relation (6.11) implies

1

C2
‖rs‖2 ≤ ‖ũs − ũ∗

s‖2 ≤ 1

C1
‖rs‖2 (7.6)

Due to Theorem 4.3 we have

C3 ‖ũs − ũ∗
s‖2 ≤ ‖ũs − ũ∗s‖H1(Ω) ≤ C4 ‖ũs − ũ∗

s‖2 . (7.7)

Hence, by (7.4), (7.6) and (7.7)

‖us − u‖H1(Ω) = ‖us − u∗s + u∗s − u‖H1(Ω) (7.8)

≤ ‖us − u∗s‖H1(Ω) + ‖u∗s − u‖H1(Ω) (7.9)

≤ C4

C1
‖rs‖2 + C2−3s. (7.10)
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Therefore, if we choose the criterion ‖rs‖2 ≤ C̃2−3s, we achieve for us the same conver-

gence rate as for u∗s.
Since span Ψisos = span Φ3+s there exists a matrix Tiso

s such that Ψisos = Tiso
s Φ3+s.

This matrix represents the discrete wavelet transform and the multiplication of the ma-

trix Tiso
s with a vector requires O (N) work, where N ×N is the size of the matrix Tiso

s .

For details see e.g. Ref. 17. Thus

Aiso
s =

(
Diso
s

)−1/2
Tiso
s AΦ

s+3

(
Tiso
s

)T (
Diso
s

)−1/2
, (7.11)

where AΦ
s+3 is the stiffness matrix with respect to the basis Φ3+s. Since AΦ

s+3 is banded

and Diso
s is diagonal, the multiplication of the matrix Aiso

s with a vector requires O (N)

floating-point operations. We conclude that one CG iteration requires O (N) floating-

point operations. We denote the number of iterations on the level j as Mj . The number

of operations needed to compute one CG iteration on the level j requires about one

quarter of operations needed to compute one CG iteration on the level j + 1. Thus Mj

iterations at level j is equivalent to Mj 4
j−s iterations at level s. Therefore, we define

the total number of equivalent iterations by

M =

s∑

j=0

Mj

4s−j
. (7.12)

The results are listed in Table 7 and Table 8. The residuum is denoted rs, u is the exact

solution of the given problem and us is an approximate solution obtained by multilevel

Galerkin method with s levels of wavelets. It can be seen that the number of conjugate

gradient iterations is quite small and that

‖us − u‖∞
‖us+1 − u‖∞

≈ ‖us − u‖
‖us+1 − u‖ ≈ 1

16
, (7.13)

i.e. that order of convergence is 4. It confirms the theory.

Table 7. Number of iterations and error estimates for multilevel conjugate gradient method for isotropic

wavelet basis.

s N M ‖rs‖ ‖us − u‖∞ ‖us − u‖ ‖u∗s − u‖∞ ‖u∗s − u‖
1 289 17.00 1.00e-6 1.02e-5 2.95e-6 1.02e-5 2.95e-6

2 1 089 17.06 1.51e-7 6.95e-7 2.49e-7 6.96e-7 2.49e-7

3 4 225 16.75 1.29e-8 4.83e-8 1.61e-8 4.82e-8 1.61e-8

4 16 641 15.31 1.78e-9 2.87e-9 9.92e-10 2.86e-9 9.92e-10

5 66 049 14.48 1.59e-10 1.79e-10 6.18e-11 1.77e-10 6.18e-11

6 263 169 12.77 3.21e-11 1.12e-11 3.77e-12 1.10e-11 3.75e-12
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Table 8. Number of iterations and error estimates for multilevel conjugate gradient method for anisotropic

wavelet basis.

s N M ‖rs‖ ‖us − u‖∞ ‖us − u‖ ‖u∗s − u‖∞ ‖u∗s − u‖
1 289 9.25 8.15e-6 1.03e-5 2.97e-6 1.02e-5 2.95e-6

2 1 089 11.13 1.16e-6 7.10e-7 2.49e-7 6.96e-7 2.49e-7

3 4 225 11.42 1.33e-7 4.91e-8 1.62e-8 4.82e-8 1.61e-8

4 16 641 12.05 1.32e-8 2.90e-9 9.93e-10 2.86e-9 9.92e-10

5 66 049 12.14 1.31e-9 1.76e-10 6.20e-11 1.77e-10 6.18e-11

6 263 169 11.95 1.32e-10 1.14e-11 3.78e-12 1.10e-11 3.75e-12
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Abstract: We propose a construction of a Hermite cubic spline-wavelet basis on the interval and
hypercube. The basis is adapted to homogeneous Dirichlet boundary conditions. The wavelets
are orthogonal to piecewise polynomials of degree at most seven on a uniform grid. Therefore the
wavelets have eight vanishing moments and the matrices arising from discretization of differential
equations with coefficients that are piecewise polynomials of degree at most four on uniform grids
are sparse. Numerical examples demonstrate the efficiency of an adaptive wavelet method with the
constructed wavelet basis for solving one-dimensional elliptic equation and the two-dimensional
Black-Scholes equation with a quadratic volatility.

Keywords: Riesz basis; wavelet; spline; interval; differential equation; sparse matrix, Black-Scholes
equation

1. Introduction

Wavelets are a powerful and useful tool for analysing signals, detection of singularities, data
compression and numerical solution of partial differential and integral equations. One of the most
important properties of wavelets is that they have vanishing moments. Vanishing wavelet moments
ensure so called compression property of wavelets. It means that a function f that is smooth, except
at some isolated singularities, typically has a sparse representation in a wavelet basis, i.e. only a
small number of wavelet coefficients carry most of the information on f . Similarly as functions also
certain differential and integral operators have sparse or quasi-sparse representation in a wavelet
basis. This compression property of wavelets leads to design of many multiscale wavelet-based
methods for the solution of differential equations. First wavelet methods used orthogonal wavelets,
e.g. Daubechies wavelets or coiflets [1,34]. Their disadvantage is that the most orthogonal wavelets
are usually not known in a closed form and that their smoothness is typically dependent on the length
of the support. The orthogonal wavelets that are known in a closed form are Haar wavelets. They
were succesfully used for solving differential equations e.g. in [21,31,32]. Another useful tool is the
short Haar wavelet transform that was derived and used for solving differential equations in [3–5].
Since spline wavelets are known in a closed form and they are smoother and have more vanishing
moments than orthogonal wavelets of the same length of support, many wavelet methods using
spline wavelets were proposed [27,28,30]. For a review of wavelet methods for solving differential
equations see also [17,29].

It is known that spectral methods can be used to study singularity formation for PDE solution
[2,20,39]. Due to their compression property wavelets can also be used to study singularity formation
for PDE solutions. The wavelet approach simply insists in analyzing wavelet coefficients that are
large in regions where the singularity occurs and very small in regions where the function is smooth
and derivatives are relatively small. Many adaptive wavelet methods are based on this property
[13,14].

We focus on an adaptive wavelet method that was originally designed in [13,14] and later
modified in many papers [24,25,37], because it has the following advantages:

www.mdpi.com/journal/axioms
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• Optimality. For a large class of differential equations, both linear and nonlinear, it was shown
that this method converges and is asymptotically optimal in the sense that storage and number
of floating point operations, needed to resolve the problem with desired accuracy, depend
linearly on the number of parameters representing the solution and the number of these
parameters is small. Thus, the computational complexity for all steps of the algorithm is
controlled.
• High order-approximation. The method enables high order approximation. The order of

approximation depends on the order of the spline wavelet basis.
• Sparsity. The solution and the right-hand side of the equation have sparse representation

in a wavelet basis, i.e. they are represented by a small number of numerically significant
parameters. In the beginning iterations start for a small vector of parameters and the size of the
vector increases successively until the required tolerance is reached. The differential operator is
represented by a sparse or quasi-sparse matrix and a procedure for computing the product of
this matrix with a finite-length vector with linear complexity is known.
• Preconditioning. For a large class of problems the matrices arising from a discretization using

wavelet bases can be simply preconditioned by a diagonal preconditioner and the condition
numbers of these preconditioned matrices are uniformly bounded. It is important that the
preconditioner is simple such as the diagonal preconditioner, because in some implementations
only nonzero elements in columns of matrices corresponding to significant coefficients of
solutions are stored and used.

It should be noted that also other spline wavelet methods utilize some of these features, but up to our
knowledge there are not other wavelet methods than adaptive wavelet methods based on ideas from
[13,14] that have all these properties. For more details about adaptive wavelet methods see Section 6
and [13,14,19,24,25,37,38].

In this paper, we are concerned with the wavelet discretization of the partial differential equation

−
d

∑
k,l=1

∂

∂xk

(
pk,l

∂u
∂xl

)
+

d

∑
k=1

qk
∂u
∂xk

+ p0u = f on Ω = (0, 1)d , u = 0 on ∂Ω. (1)

We assume that qk (x) ≥ Q > 0, the functions pk,l , qk, p0 and f are sufficiently smooth and bounded
on Ω, and that pk,l satisfy the uniform ellipticity condition

d

∑
k=1

d

∑
l=1

pk,l (x) xkxl ≥ C
d

∑
k=1

x2
k , x = (x1, . . . , xd) , (2)

where C > 0 is independent on x. The discretization matrix for wavelet bases is typically not sparse,
but only quasi-sparse, i.e. the matrix of the size N × N has O (N × log N) nonzero entries. For
multiplication of this matrix with a vector a routine called APPLY have to be used [6,14,24]. However,
it was observed in several papers, e.g. in [23] that "quantitatively the application of the APPLY
routine is very demanding, where this routine is also not easy to implement". Therefore, in [23] a
wavelet basis was constructed with respect to which the discretization matrix is sparse, i.e. it has
O (N) nonzero entries, for equation (1) if the coefficients are constant. The construction from [23] was
modified in [10,11] with the aim to improve the condition number of the discretization matrices. Some
numerical experiments with these bases can be found in [9,15]. In this paper, our aim is to construct a
wavelet basis such that the discretization matrix corresponding to (1) is sparse if the coefficients pk,l ,
qk and p0 are piecewise polynomial functions of degree at most n on the uniform grid, where n = 6
for pk,l , n = 5 for qk and n = 4 for p0. Our construction is based on Hermite cubic splines. Let us
mention that cubic Hermite wavelets were constructed also in [10,11,18,23,26,33,35,36,40].
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Example 1. We have recently implemented adaptive wavelet method for solving the Black-Scholes
equation

∂V
∂t
−

d

∑
k,l=1

ρk,l

2
σkσlSkSl

∂2V
∂Sk∂Sl

− r
d

∑
k=1

Sk
∂V
∂Sk

+ rV = 0, (3)

where (S1, . . . , Sd, t) ∈
(
0, Smax

1
)
× . . . ×

(
0, Smax

d
)
× (0, T). We used the θ-scheme for time

discretization and tested the performance of the adaptive method with respect to the choice of a
wavelet basis for d = 1, 2, 3. Some results can be found in [9]. In the case of cubic spline wavelets, the
smallest number of iteration was required for the wavelet basis from [8]. The discretization matrix for
most spline wavelet bases is not sparse, but only quasi-sparse and thus the above mentioned routine
APPLY have to be used. For wavelet bases from [10,11,23] the discretization matrix corresponding
to the Black-Scholes operator is sparse if volatilities σi are constant. However, in more realistic
models, volatilities are represented by non-constant functions, e.g. piecewise polynomial functions
[41]. For the basis that will be constructed in this paper the discretization matrix is sparse also for the
Black-Scholes equation with volatilities σi that are piecewise quadratic.

2. Wavelet bases

In this section, we briefly review the concept of a wavelet basis in Sobolev spaces and introduce
notations, for more details see e.g. [38]. Let H be a Hilbert space with the inner product 〈·, ·〉H and the
norm ‖·‖H and let 〈·, ·〉 denote the L2-inner product. Let J be an index set and let each index λ ∈ J
take the form λ = (j, k), where |λ| := j ∈ Z is a level. For v = {vλ}λ∈J , vλ ∈ R , we define

‖v‖2 :=

(
∑

λ∈J
|vλ|2

)1/2

, l2 (J ) := {v : ‖v‖2 < ∞} . (4)

Our aim is to construct a wavelet basis in the sense of the following definition.

Definition 1. A family Ψ := {ψλ, λ ∈ J } is called a wavelet basis of H, if

i) Ψ is a Riesz basis for H, i.e. the closure of the span of Ψ is H and there exist constants c, C ∈ (0, ∞)

such that

c ‖b‖2 ≤
∥∥∥∥∥ ∑

λ∈J
bλψλ

∥∥∥∥∥
H

≤ C ‖b‖2 , for all b := {bλ}λ∈J ∈ l2 (J ) . (5)

ii) The functions are local in the sense that diam (supp ψλ) ≤ C̃ 2−|λ| for all λ ∈ J and at a given
level j the supports of only finitely many wavelets overlap at any point x.

For the two countable sets of functions Γ, Γ̃ ⊂ H , the symbol
〈
Γ, Γ̃
〉

H denotes the matrix

〈
Γ, Γ̃
〉

H := {〈γ, γ̃〉H}γ∈Γ,γ̃∈Γ̃ . (6)

The constants cΨ := sup {c : c satisfies (5)} and CΨ := inf {C : C satisfies (5)} are called Riesz
bounds and the number cond Ψ = CΨ/cΨ is called the condition number of Ψ. It is known that

cΨ =
√

λmin (〈Ψ, Ψ〉H), CΨ =
√

λmax (〈Ψ, Ψ〉H), (7)

where λmin (〈Ψ, Ψ〉H) and λmax (〈Ψ, Ψ〉H) are the smallest and the largest eigenvalues of the matrix
〈Ψ, Ψ〉H , respectively.
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Let M be a Lebesgue measurable subset of Rd. The space L2 (M) is the space of all Lebesgue
measurable functions on M such that the norm

‖ f ‖ =


∫

M

| f (x)|2 dx




1/2

(8)

is finite. The space L2 (M) is a Hilbert space with the inner product

〈 f , g〉 =
∫

M
f (x) g (x)dx, f , g ∈ L2 (M) . (9)

The Sobolev space Hs
(
Rd
)

for s ≥ 0 is defined as the space of all functions f ∈ L2
(
Rd
)

such that
the seminorm

| f |Hs(Rd) =

(
1

(2π)d

∫

Rd

∣∣∣ f̂ (ξ)
∣∣∣
2
|ξ|2s dξ

)1/2

(10)

is finite. The symbol f̂ denotes the Fourier transform of the function f defined by

f̂ (ξ) =
∫

Rs
f (x) e−iξ·xdx. (11)

The space Hs
(
Rd
)

is a Hilbert space with the inner product

〈 f , g〉Hs(Rd) =
1

(2π)d

∫

Rd
f̂ (ξ) ĝ (ξ)

(
1 + |ξ|2s

)
dξ, f , g ∈ Hs

(
Rd
)

, (12)

and the norm
‖ f ‖Hs(Rd) =

√
〈 f , f 〉Hs(Rd). (13)

For an open set M ⊂ Rd, Hs (M) is the set of restrictions of functions from Hs
(
Rd
)

to M
equipped with the norm

‖ f ‖Hs(M) = inf
{
‖g‖Hs(Rd) : g ∈ Hs (M) and g|M = f

}
. (14)

Let C∞
0 (M) be the space of all continuous functions with the support in M such that they have

continuous derivatives of order r for any r ∈ R. The space Hs
0 (M) is defined as the closure of C∞

0 (M)

in Hs
(
Rd
)

. It is known that
‖ f ‖H1(M) = | f |H1(M) + ‖ f ‖ , (15)

where
| f |H1(M) =

√
〈∇ f ,∇ f 〉 (16)

is the seminorm in H1 (M) and ∇ f denotes the gradient of f .

3. Construction of scaling functions

We start with the same scaling functions as in [10,11,18,23,26,33,35,36]. Let

φ1(x) =





(x + 1)2 (1− 2x) , x ∈ [−1, 0],

(1− x)2 (1 + 2x) , x ∈ [0, 1],

0, otherwise,

φ2(x) =





(x + 1)2 x, x ∈ [−1, 0],

(1− x)2 x, x ∈ [0, 1],

0, otherwise.

(17)
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For j ≥ 3 and x ∈ [0, 1] we define

φj,2k+l−1 (x) = 2j/2φl

(
2jx− k

)
for k = 1, . . . , 2j − 1, l = 1, 2, (18)

φj,1 (x) = 2j/2φ2

(
2jx
)

, φj,2j+1 (x) = 2j/2φ2

(
2j (x− 1)

)
,

and
Φj =

{
φj,k, k = 1, . . . , 2j+1

}
, Vj = span Φj. (19)

Then the spaces Vj form a multiresolution analysis. We choose dual space Ṽj as the set of all functions

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

2

2.5

3

Figure 1. Scaling functions on the level j = 3.

v ∈ L2 (0, 1) such that v restricted to the interval
(

k−1
2j−2 , k

2j−2

)
is a polynomial of degree less than 8 for

any k = 1, . . . , 2j−2, i.e.

Ṽj =

{
v ∈ L2 (0, 1) : v|( k−1

2j−2 , k
2j−2

) ∈ Π8

(
k− 1
2j−2 ,

k
2j−2

)
for k = 0, . . . , 2j−2

}
, (20)

where Π8 (a, b) denotes the set of all polynomials on (a, b) of degree less than 8. Let

Wj = Ṽ⊥j ∩Vj+1, (21)

where Ṽ⊥j is the orthogonal complement of Ṽj with respect to the L2-inner product. If a function g is
a piecewise polynomial of degree n we write deg g = n.

Lemma 2. Let the spaces Wj, j ≥ 3, are defined as above. Then all functions g ∈ Wi and h ∈ Wj, i, j ≥ 3,
|i− j| > 2, satisfy

〈a g, h〉 = 0,
〈
b g′, h

〉
= 0,

〈
c g′, h′

〉
= 0, (22)

where a, b, c are piecewise polynomial functions such that a, b, c ∈ Ṽp, p ≤ max (i, j), deg a ≤ 4, deg b ≤ 5,
and deg c ≤ 6.

Proof of Lemma 2. Let us assume that j > i + 2. We have g ∈ Wi ⊂ Vi+1 ⊂ Vj−2 ⊂ Ṽj, deg g ≤ 3,
a ∈ Ṽj, deg a ≤ 4, and thus ag ∈ Ṽj. Since h ∈ Wj and Wj is orthogonal to Ṽj we obtain 〈a g, h〉 = 0.
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Similarly, the relation 〈b g′, h〉 = 0 is the consequence of the fact that bg′ ∈ Ṽj and h ∈ Wj. Using
integration by parts we obtain 〈

c g′, h′
〉
= −

〈
c′ g′ + c g′′, h

〉
. (23)

Since c′ g′ + c g′′ ∈ Ṽj and h ∈Wj we have 〈c g′, h′〉 = 0. The situation for j < i + 2 is similar.

Therefore the discretization matrix for the equation (1) is sparse. Let Ψj be a basis of Wj. The
proof that

Ψ = {ψλ, λ ∈ J } = Φ3 ∪
∞⋃

j=3

Ψj. (24)

is a Riesz basis of the space L2 (0, 1) and that Ψ is a Riesz basis of the space H1
0 (0, 1) when normalized

with respect to the H1-norm is based on the following theorem [16,23].

Theorem 3. Let J ∈ N and let Vj and Ṽj, j ≥ J, be subspaces of L2 (0, 1) such that

Vj ⊂ Vj+1, Ṽj ⊂ Ṽj+1, dim Vj = dim Ṽj < ∞, j ≥ J. (25)

Let Φj be bases of Vj, Φ̃j be bases of Ṽj, Ψj be bases of Ṽ⊥j ∩ Vj+1, such that Riesz bounds with respect to the
L2-norm of Φj, Φ̃j, and Ψj are uniformly bounded, and let Ψ be given by (24). Furthermore, let the matrix

Gj :=
〈
Φj, Φ̃j

〉
(26)

be invertible and the spectral norm of G−1
j is bounded independently on j. In addition, for some positive

constants C, γ and d, such that γ < d, let

inf
vj∈Vj

∥∥v− vj
∥∥ ≤ C2−jd ‖v‖Hd(0,1) , v ∈ Hd

0 (0, 1) , (27)

and for 0 ≤ s < γ let ∥∥vj
∥∥

Hd(0,1) ≤ C2js ∥∥vj
∥∥ , vj ∈ Vj, (28)

and let similar estimates (27) and (28) hold for γ̃ and d̃ on the dual side. Then there exist constants k and K,
0 < k ≤ K < ∞, such that

k ‖b‖2 ≤
∥∥∥∥∥ ∑

λ∈J
bλ2−|λ|sψλ

∥∥∥∥∥
Hs(0,1)

≤ K ‖b‖2 , b := {bλ}λ∈J ∈ l2 (J ) (29)

holds for s ∈ (−γ̃, γ).

We focus on the spaces Vj and Ṽj defined by (19) and (20), respectively, and we show that they
satisfy the assumptions of the Theorem 3.

Theorem 4. There exist uniform Riesz bases Φ̂j of Vj and Φ̃j of Ṽj such that the matrix

Gj =
〈
Φ̂j, Φ̃j

〉
(30)

is invertible and the spectral norm of G−1
j is bounded independently on j.

Proof of Theorem 4. Let Φj, Vj and Ṽj be defined as above. For i = 0, . . . , 7 we define

pi (x)





(x− 1/2)i , x ∈ [0, 1] ,

0, otherwise,
(31)
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and
θj,8k+i+1 = 2(j−2)/2 pi

(
2j−2x− k

)
, k ∈ Z, i = 0, . . . , 7. (32)

Then the set Θj =
{

θj,k, k = 1, . . . , 2j+1
}

is a basis of Ṽj and the matrix Aj =
〈
Φj, Θj

〉
, j ≥ 3, has the

structure:

Aj =




AL

A

A

. . .

A

AR




, (33)

where A is the matrix of the size 10× 8. Our aim is to apply several transforms on Φj and Θj such
that new bases Φ̂j of Vj and Φ̃j of Ṽj are local and the matrix Gj defined by (30) and its transpose GT

j
are both strictly diagonally dominant. First, we replace functions θj,k by functions gj,k in such a way
that the matrix of L2-inner products of φj,k and gj,l is tridiagonal. Therefore we define

gj,8k+i+1 =
8

∑
l=1

ci
j,lθj,8k+l , i = 0, . . . , 7, k = 0, . . . , 2j−2 − 1, (34)

where the coefficients ci
j,l are chosen such that

〈
φj,p, gj,q

〉
= 0, |p− q| > 1,

〈
φj,p, gj,p

〉
= 1, p = 1, . . . , 2j+1 − 1. (35)

For m = 8k + i + 1, i = 0, . . . , 7, k = 1, . . . , 2j−2 − 2, we substitute (34) into (35) and using
supp φj,8k+l+1 ∩ supp gj,m = 0 for l 6= 0, . . . , 9, we obtain systems of 8 linear algebraic equations
with 8 unknown coefficents:

Aici = ei, for k = 2, . . . , 2j−2 − 2, ci =
(

ci
j,l

)8

l=1
, (36)

the system matrices Ai that are submatrices of A containing all rows of A except i-th and (i + 2)-th
rows, and ei are unit vectors such that

(
ei)

l = δi,l . The symbol δi,l denotes the Kronecker delta. We
computed all of the system matrices precisely using symbolic computations and verified that they are
regular. Thus the coefficients ci

j,l exist and are unique.

The matrix Bj defined by
(
Bj
)

k,l =
〈

φj,k, gj,m

〉
, k, l = 1, . . . , 2j+1, is tridiagonal and has the

structure

Bj =




BL

B

B

. . .

B

BR




, (37)
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where

B =




13.199 0 0 0 0 0 0 0
1.000 0.098 0 0 0 0 0 0
−2.185 1.000 −24.781 0 0 0 0 0

0 −0.138 1.000 0.104 0 0 0 0
0 0 13.887 1.000 −6.026 0 0 0
0 0 0 −0.074 1.000 0.041 0 0
0 0 0 0 34.953 1.000 8.824 0
0 0 0 0 0 −0.018 1.000 0.023
0 0 0 0 0 0 −9.423 1.000
0 0 0 0 0 0 0 −0.092




, (38)

and
BL = B{2,...,10}, BR = B{1,...,8,10}. (39)

The symbol BM denotes the submatrix of the matrix B containing rows from B with indices from M.
In (38) the numbers are rounded to three decimal digits.

We apply several transforms on φj,k and denote the new functions by φi
j,k. In the following, let

Bj,k,l =
(
Bj
)

k,l , Bi
j,k,l =

〈
φi

j,l , gj,k

〉
, i = 1, . . . , 4. (40)

We define

φ1
j,k = φj,k −

Bj,k,k+1

Bj,k+1,k+1
φj,k+1 for k even, φ1

j,k = φj,k for k odd, (41)

φ2
j,k = φ1

j,k −
B1

j,k,k−1

B1
j,k−1,k−1

φ1
j,k−1 for k even, φ2

j,k = φ1
j,k for k odd,

φ3
j,4+8k = φ2

j,4+8k −
B2

j,4+8k,2+8k

B2
j,2+8k,2+8k

φ1
j,2+8k for k = 1, . . . , 2j−2, φ3

j,l = φ2
j,l otherwise,

φ4
j,6+8k = φ3

j,6+8k −
B3

j,6+8k,4+8k

B3
j,4+8k,4+8k

φ1
j,4+8k for k = 1, . . . , 2j−2, φ4

j,l = φ3
j,l otherwise,

and

φ̂j,l =





2.1 φ4
j,l l = 4 + 8k,

10 φ4
j,l l = 2j+1,

φ4
j,l otherwise.

(42)

Furthermore, we set φ̃j,2+8k = 1.3gj,2+8k for k = 0, . . . , 2j−2 and φ̃j,l = gj,l for l 6= 2 + 8k. Let Φ̂j ={
φ̂j,l , l = 1, . . . 2j+1

}
and Φ̃j =

{
φ̃j,l , l = 1, . . . 2j+1

}
. The matrix Gj defined by (30) has the same

structure as Aj and Bj, i.e.

(
Gj (8i + k, 8i + l)

)
k=0,...,14,l=1,...,8 = G, i = 2, . . . , 2j−2 − 2 (43)

(
Gj (k, l)

)
k=1,...,14,l=1,...,8 = GL,

(
Gj

(
2j+1 − 8 + k, 2j+1 − 8 + l

))
k=0,...,8,l=1,...,8

= GR,
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where

G =




0 −1.6863 0 0 0 0 0 0
1.0000 0.1278 0 0 0 0 0 0

0 −2.8555 0 2.5773 0 0 0 0
0 −0.1790 1.0000 0.1040 0 0 0 0
0 0 0 2.8443 0 0.5229 0 0
0 0 0 −0.0737 1.0000 0.0413 0 0
0 0 0 0 0 −0.7599 0 −0.2011
0 0 0 0 0 −0.0179 1.0000 0.0228
0 0 0 0 0 −0.1689 0 2.4295
0 0 0 0 0 0 0 −0.0920
0 0 0 0 0 0 0 −0.2011
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −0.3675
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0.3330




(44)

and

GL = G{2,...,15}, GR =

(
G{1,...,8}

0 . . . 0 −0.920

)
(45)

Thus the matrices Gj and GT
j are diagonally dominant and invertible and due to the Johnson’s lower

bound for the smallest singular value [22], we have

σmin
(
Gj
)
≥ 0.117,

∥∥∥G−1
j

∥∥∥
2
=

1
σmin

(
Gj
) ≤ 8.527. (46)

It remains to prove that Φ̂j are uniform Riesz bases of Vj and Φ̃j are uniform Riesz bases of Ṽj. Since

φ̂j,k are locally supported and there exists M independent of j and k such that
∥∥∥φ̂j,k

∥∥∥
L2(0,1)

≤ M, we

have ∥∥∥∥∥∑k
cj,kφ̂j,k

∥∥∥∥∥

2

L2(0,1)

= ∑
k

∑
l

cj,kcj,l

∫ 1

0
φ̂j,k (x) φ̂j,l (x) dx ≤ C ‖c‖2

2 . (47)

and similarly for φ̃j,k we have ∥∥∥∥∥∑k
cj,kφ̃j,k

∥∥∥∥∥

2

L2(0,1)

≤ C ‖c‖2
2 . (48)

By the same argument as in the Proof of Theorem 3.3. in [23], from (47), (48), invertibility of Gj and
(46) we can conclude that Φ̂j and Φ̃j are uniform Riesz bases of their spans.

4. Construction of wavelets

Now we construct a basis Ψj of the space Wj = Ṽ⊥j ∩ Vj+1 such that cond Ψj ≤ C, where C is a
constant independent on j, and functions from Ψj are translations and dilations of some generators.
We propose one boundary generator ψb and functions ψi, i = 1, . . . , 8, generating inner wavelets such
that the sets

Ψj =
{

ψj,k, k = 1, . . . , 2j+1
}

, j ≥ 3, (49)
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contain functions ψj,k defined for x ∈ [0, 1] by

ψj,1 (x) = 2j/2ψb
(

2jx
)

, ψj,2j+1 (x) = 2j/2ψb
(

2j (1− x)
)

, (50)

ψj,8k+l+1 (x) = 2j/2ψl
(

2jx− 4k
)

, l = 1, . . . 8, 1 < 8k + l + 1 < 2j+1.

We denote the scaling functions on the level j = 1 by

φ1,2k+l−2 (x) = 21/2φl (2x− k) for k ∈ Z, l = 1, 2, x ∈ R. (51)

For l = 1, . . . , 6 let the functions ψl have the form

ψl =
14

∑
k=1

hl,kφ1,k (52)

and be such that ψ1, ψ2 and ψ3 are antisymmetric and ψ4, ψ5 and ψ6 are symmetric. Thus supp ψl =

[0, 4] for l = 1, . . . , 6. Let pi be polynomials defined by (31). It is clear that if

〈
ψl (x) , pi

( x
4

)〉
= 0, i = 0, . . . , 7, l = 1, . . . 6, (53)

then
〈

ψl (2jx− k
)

, pi
(
2j−2x−m

)〉
= 0, for k, m ∈ 4Z, and thus

〈
ψj,8i+l , g

〉
= 0 for any g ∈ Ṽj,

i = 0, . . . , 2j−2− 1, and l = 1, . . . , 6. Substituting (52) into (53) we obtain the system of linear algebraic
equations with the solution hl =

{
hl,k
}14

k=1 of the form

hl = al,1u1 + al,2u2 + al,3u3, l = 1, 2, 3, (54)

and
hl = bl−3,1v1 + bl−3,2v2 + bl−3,3v3, l = 4, 5, 6, (55)

where al,k and bl,k are chosen real parameters and

[u1, u2, u3] =




− 29
95361

120
31787

5716
31787

0 0 1
592

95361
13477
95361 − 56300

95361

0 1 0
13456
95361 − 39892

95361
49671
31787

1 0 0

0 0 0
11708
4541 − 26022

4541
116428

4541

− 13456
95361

39892
95361 − 49671

31787

1 0 0

− 592
95361 − 13477

95361
56300
95361

0 1 0
29

95361 − 120
31787 − 5716

31787

0 0 1




, [v1, v2, v3] =




11
10500 − 17

2625 − 1727
10500

0 0 −1

− 13
875 − 293

2625
1123
2625

0 −1 0

− 1
12

5
21 − 53

84

−1 0 0
34

175 − 6
25

386
525

0 0 0

− 1
12

5
21 − 53

84

1 0 0

− 13
875 − 293

2625
1123
2625

0 1 0
11

10500 − 17
2625 − 1727

10500

0 0 1




. (56)
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For l ∈ {7, 8} let the functions ψl have the form

ψl =
28

∑
k=1

hl,kφ1,k. (57)

These functions are uniquely determined by imposing that ψ7 is symmetric, ψ8 is antisymmetric, both
ψ7 and ψ8 are L2–orthogonal to the functions ψl , l = 1, . . . , 6, they are normalized with respect to the
L2–norm and 〈

ψl (x) , pi

( x
4

)〉
= 0, for i = 0, . . . , 7. (58)

It remains to construct boundary function ψb. Let

ψb =
14

∑
k=0

hb,kφ1,k|[0,∞). (59)

Substituting (59) into 〈
ψb (x) , pi

( x
4

)〉
= 0, for i = 0, . . . , 7, (60)

we obtain the system of 8 equations for 15 unknown coefficients. The solution hb =
{

hb,k
}14

k=0 is the
linear combination of vectors wi given by

w1 =

(
150
83

,
1429
1992

,
4509
664

,
74

249
,

2839
166

,−1897
1992

,
6741
664

,− 53
249

, 1, 0, 0, 0, 0, 0, 0
)T

, (61)

wl =


 0

ul−1


 , l = 2, 3, 4, wl =


 0

vl−4


 , l = 5, 6, 7,

(62)

i.e.

hb =
7

∑
i=1

diWi, (63)

where di are chosen real parameters.
Hence the set Ψj depends on the choice of ak,l , bk,l and di. However, it is not true that cond Ψj ≤ C

for all possible choices of these parameters. Moreover, for some choices the condtition numbers of Ψj
are uniformly bounded, but the condition number of the resulting basis Ψ is large, e.g. 106.

Therefore, we optimize the construction to improve the condition number of Ψ. We choose ak,1
and then we set ak,2 and ak,3 such that

〈
ψi, ψj〉 = δi,j for i, j = 1, 2, 3 and similarly we we choose bk,1

and then set bk,2 and bk,3 such that
〈
ψi, ψj〉 = δi,j for i, j = 4, 5, 6. Moreover, the functions ψ7 and

ψ8 are constructed such that they are orthogonal to ψi for i = 1, . . . , 6 and due to the symmetry and
antisymmetry we have

〈
ψi, ψj〉 = δi,j for i = 1, 2, 3 and j = 4, 5, 6 and

〈
ψ7, ψ8〉 = 0. In summary ψi is

orthogonal to ψj with respect to the L2–norm for i, j = 1, . . . 6, i 6= j. To further improve the condition
number we orthogonalize scaling functions on the coarsest level j = 3, i.e. we determine the set

Φort
3 := K−1Φ3, K = 〈Φ3, Φ3〉 , (64)

and we redefine Φ3 as Φ3 := Φort
3 .

Furthermore we wrote a program that computes the condition number of the wavelet basis
containing all wavelets up to the level 7 with respect to the both L2–norm and H1–norm for given
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parameters ak,l , bk,l and di and performed extensive numerical experiments. In the following we
consider the parameters that lead to good results:

a1 = (a1,1, a1,2, a1,3) = (4.62, 4.43, 0.67) , (65)

a2 = (a2,1, a2,2, a2,3) = (7.196227729728021,−4.658487033189625,−2.279869518963229) ,

a3 = (a3,1, a3,2, a3,3) = (−0.775021413514386, 0.613425421561151, 0.151825757948663) ,

b1 = (b1,1, b1,2, b1,3) = (0.24,−3.92, 4.17) ,

b2 = (b2,1, b2,2, b2,3) = (4.214132381596882,−2.612399654970785,−1.411579368326525) ,

b3 = (b3,1, b3,2, b3,3) = (−0.601286696663076,−0.778487053796787,−0.180033928710130) ,

d = (d1, . . . , d7) = (−0.075,−0.363,−0.616,−0.134, 0.344, 0.580, 0.099) ,

and after computing ψb and ψi, i = 1, . . . , 8, using these parameters, we normalize them with respect
to the L2-norm, i.e. we redefine ψb := ψb/

∥∥∥ψb
∥∥∥ and ψi := ψi/

∥∥ψi
∥∥. The wavelets ψ3,1, . . . , ψ3,9 that

are dilations of ψb, ψ1, . . . , ψ8 are displayed in Figure 2.
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Figure 2. Wavelets ψ3,1, . . . , ψ3,9.

Theorem 5. The sets Ψj with the parameters given by (65) are uniform Riesz bases of Wj for j ≥ 3.

Proof of Theorem 5. Since we constructed wavelets such that many of them are orthogonal, there
is only small number of nonzero entries in Nj. Since wavelets are normalized with respect to the
L2-norm, we have (

Nj
)

k,k = 1. (66)
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Direct computation yields that

(
Nj
)

k=1,l=2,...,9 =
(
Nj
)

k=2j ,l=2j−1,...,2j−8 = z, (67)
(
Nj
)

k=2,...,9,l=1 =
(
Nj
)

k=2j−1,...,2j−8,l=2j = zT ,

where
z = (0.0022,−0.0927,−0.0166,−0.0339,−0.0075, 0.0045,−0.2652, 0.2439) , (68)

and for i = 1, . . . , 2j−2 − 2 we have

(
Nj
)

k=8i,8i+1,l=8i+8,8i+9 = N (69)
(
Nj
)

k=8i+8,8i+9,l=8i,8i+1 = NT ,

where

N =


−0.2048 0.1885

−0.1885 0.1734


 . (70)

The numbers in (68) and (70) are rounded to four decimal digits. All other entries of Nj are zero. The
structure of the Gram matrix Nj =

〈
Ψj, Ψj

〉
is displayed in Figure 3. Using Gershgorin theorem the

0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 144

Figure 3. The structure of the matrix Nj.

smallest eigenvalue λmin
(
Nj
)
≥ 0.21 and the largest eigenvalue λmax

(
Nj
)
≤ 1.79. Therefore Ψj are

uniform Riesz bases of their spans.

Theorem 6. The set Ψ is a Riesz basis of L2 (0, 1) and when normalized with respect to the H1-norm it is a
Riesz basis of H1

0 (0, 1).

Proof of Theorem 6. Due to the Theorem 3, Theorem 4 and Theorem 5, the relation (29) holds both
for s = 0 and s = 1. Hence, Ψ is a Riesz basis of L2 (0, 1) and

{
2−3φ3,k, k = 1, . . . , 16

}
∪
{

2−jψj,k, j ≥ 3, k = 1, . . . , 2j+1
}

(71)
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is a Riesz basis of H1
0 (0, 1). To show that also

{
φ3,k∥∥φ3,k
∥∥

H1(0,1)
, k = 1, . . . , 16

}
∪





ψj,k∥∥∥ψj,k

∥∥∥
H1(0,1)

, j ≥ 3, k = 1, . . . , 2j+1





(72)

is a Riesz basis of H1
0 (0, 1), we follow the Proof of Theorem 2 in [7]. From (18) and (50) there exist

nonzero constants C1 and C2 such that

C12j ≤
∥∥∥ψj,k

∥∥∥
H1

0 (Ω)
≤ C22j, for j ≥ 3, k = 1, . . . , 2j+1, (73)

and
C123 ≤

∥∥φ3,k
∥∥

H1
0 (Ω)
≤ C223, for k = 1, . . . , 16. (74)

Let b̂ =
{

â3,k, k = 1, . . . , 16
}
∪
{

b̂j,k, j ≥ 3, k = 1, . . . , 2j+1
}

be such that

∥∥∥b̂
∥∥∥

2

2
=

16

∑
k=1

â2
3,k +

∞

∑
j=3

2j+1

∑
k=1

b̂2
j,k < ∞. (75)

We define

a3,k =
23 â3,k∥∥φ3,k
∥∥

H1
0 (0,1)

, k = 1, . . . , 16, bj,k =
2j b̂j,k∥∥∥ψj,k

∥∥∥
H1

0 (0,1)

, j ≥ 3, k = 1, . . . , 2j+1, (76)

and b =
{

a3,k, k = 1, . . . , 16
}
∪
{

bj,k, j ≥ 3, k = 1, . . . , 2j+1
}

. Then

‖b‖2 ≤

∥∥∥b̂
∥∥∥

2
C1

< ∞. (77)

Since the set (71) is a Riesz basis of H1
0 (0, 1) there exist constants C3 and C4 such that

C3 ‖b‖2 ≤
∥∥∥∥∥

16

∑
k=1

a3,k2−3φ3,k +
∞

∑
j=3

2j+1

∑
k=1

bj,k2−jψj,k

∥∥∥∥∥
H1

0 (0,1)

≤ C4 ‖b‖2 . (78)

Therefore

C4

C1

∥∥∥b̂
∥∥∥

2
≥ C4 ‖b‖2 ≥

∥∥∥∥∥
16

∑
k=1

a3,k2−3φ3,k +
∞

∑
j=3

2j+1

∑
k=1

bj,k2−jψj,k

∥∥∥∥∥
H1

0 (0,1)

(79)

=

∥∥∥∥∥∥∥

16

∑
k=1

â3,k∥∥φ3,k
∥∥

H1
0 (0,1)

φ3,k +
∞

∑
j=3

2j+1

∑
k=1

b̂j,k∥∥∥ψj,k

∥∥∥
H1

0 (0,1)

ψj,k

∥∥∥∥∥∥∥
H1

0 (0,1)

and similarly

C3

C2

∥∥∥b̂
∥∥∥

2
≤

∥∥∥∥∥∥∥

16

∑
k=1

â3,k∥∥φ3,k
∥∥

H1
0 (0,1)

φ3,k +
∞

∑
j=3

2j+1

∑
k=1

b̂j,k∥∥∥ψj,k

∥∥∥
H1

0 (0,1)

ψj,k

∥∥∥∥∥∥∥
H1

0 (0,1)

. (80)
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The condition number of the resulting wavelet basis with wavelets up to the level 10 with
respect to the L2-norm is 17.2 and the condition number of this basis normalized with respect to
the H1-norm is 6.0. The sparsity patterns of the matrix arising from a discretization using a wavelet
basis constructed in this paper and a wavelet basis from [23] for the one-dimensional Black-Scholes
equation with quadratic volatilities from Example 1 is displayed in Figure 4.
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Figure 4. The sparsity pattern of the matrices arising from a discretization using a wavelet basis
constructed in this paper (left) and a wavelet basis from [23] (right) for the Black-Scholes equation
with quadratic volatilities.

5. Wavelets on the hypercube

We present a well-known construction of a multivariate wavelet basis on the unit hypercube
Ω = (0, 1)d, for more details see e.g. [38]. It is based on tensorizing univariate wavelet bases and
preserves Riesz basis property, locality of wavelets, vanishing moments and polynomial exactness.
This approach is known as an anisotropic approach.

For notational simplicity, we denote Jj =
{

1, . . . , 2j+1} for j ≥ 3, and

ψ2,k := φ3,k, k ∈ J2 := J3, J :=
{
(j, k) , j ≥ 2, ∈ Jj

}
. (81)

Then we can write
Ψ =

{
ψj,k, j ≥ 2, k ∈ Jj

}
= {ψλ, λ ∈ J } . (82)

We use u⊗ v to denote the tensor product of functions u and v, i.e. (u⊗ v) (x1, x2) = u (x1) v (x2).
We define multivariate basis functions as:

ψλ = ⊗d
i=1ψλi , λ = (λ1, . . . , λd) ∈ J, J = J d = J ⊗ . . .⊗J . (83)

Since Ψ is a Riesz basis of L2 (0, 1) and Ψ normalized with respect to H1-norm is a Riesz basis of
H1

0 (0, 1), the set
Ψani := {ψλ, λ ∈ J} (84)

is a Riesz basis of L2 (Ω) and its normalization with respect to the H1-norm is a Riesz basis of H1
0 (Ω).

Using the same argument as in the Proof of Lemma 2 we conclude that for this basis the discretization
matrix is sparse for the equation (1) with piecewise polynomial coefficients on uniform meshes such
that deg pk,l ≤ 6, deg qk ≤ 5, and deg a0 ≤ 4.

6. Numerical examples

In this section, we solve the elliptic equation (1) and the equation with the Black-Scholes operator
from Example 1 by an adaptive wavelet method with the basis constructed in this paper. We briefly
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describe the algorithm. While the classical adaptive methods typically uses refining a mesh according
to a-posteriori local error estimates, the wavelet approach is different and it comprises the following
steps [13,14,17]:

1. One starts with a variational formulation for a suitable wavelet basis but instead of turning
to a finite dimensional approximation, the continuous problem is transformed into an
infinite-dimensional l2-problem.

2. Then one proposes a convergent iteration for the l2-problem.
3. Finally, one derives an implementable version of this idealized iteration, where all

infinite-dimensional quantities are replaced by finitely supported ones.

To the left-hand side of the equation (1) we associate the following bilinear form

a (v, w) :=
∫

Ω

d

∑
k,l=1

pk,l
∂v
∂xk

∂w
∂xl

+
d

∑
k=1

qk
∂v
∂xk

w + p0 v w dx. (85)

The weak formulation of (1) reads as folows: Find u ∈ H1
0 (Ω) such that

a (u, v) = 〈 f , v〉 for all v ∈ H1
0 (Ω) . (86)

Instead of turning to a finite dimensional approximation, the equation (86) is reformulated as an
equivalent biinfinite matrix equation Au = f, where

(A)λ,µ = a
(
ψλ, ψµ

)
, (f)λ = 〈 f , ψλ〉 , (87)

for ψλ, ψµ ∈ Ψ, and Ψ is a wavelet basis of H1
0 (Ω).

We use the standard Jacobi diagonal preconditioner D for preconditioning this equation, i.e.
Dλ,µ = Dλ,µδλ,µ. If the coefficients are constant one can also use an efficient diagonal preconditioner
from [12]. The algorithm for solving the l2-problem is the following:

1. Compute sparse representation fj of the right-hand side f such that
∥∥f− fj

∥∥
2 is smaller than

a given tolerance ε1
j . The computation of a sparse representation insists in thresholding the

smallest coefficients and working only with the largest ones. We denote the routine as fj :=
RHS[f, ε1

j ].
2. Compute K steps of GMRES for solving the system Av = fj with the initial vector vj. Each

iteration of GMRES requires multiplication of the infinite-dimensional matrix with a finitely
supported vector. Since for the wavelet basis constructed in this paper, the matrix is sparse, it
can be computed exactly. Otherwise, it is computed approximately with the given tolerance ε2

j
by the method from [6]. We denote the routine z = GMRES[A, fj, vj, K].

3. Compute sparse representation vj+1 of z with the error smaller than ε2
j . We denote the routine

vj+1 := COARSE[z, ε2
j ]. It insists in thresholding the coefficients.

We repeat the steps 1., 2., and 3. until the norm of the residual rj =
∥∥f−Avj

∥∥
2 is not smaller

than the required tolerance ε̃. Since we work with the sparse representation of the right-hand side
and the sparse representation of the vector representing the solution, the method is adaptive. It is
known that the coefficients in the wavelet basis are small in regions where the function is smooth and
large in regions where the function has some singularity. Therefore, by this method the singularities
are automatically detected.
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We use the following algorithm that is modified version of the original algorithm from [13,14]:

Algorithm 7. u: =SOLVE [ A, f, ε̃ ]
1. Choose k0, k1, k2 ∈ (0, 1), K ∈ N.
2. Set j := 0, v0 := 0 and ε := ‖f‖2.
3. While ε > ε̃

j := j + 1,
ε := k0ε,
ε1

j := k1ε,

ε2
j := k2ε,

fj := RHS[f, ε1
j ],

z := GMRES[A, fj, vj−1, K]
vj := COARSE[z, ε2

j ],
Estimate rj = f−Avj and set ε :=

∥∥rj
∥∥

2.
end while,
4. u := vj,
5. Compute approximate solution ũ = ∑uλ∈u uλψλ.

For an appropriate choice of parameters k0, k1, k2 and K and more details about the routines RHS
and COARSE we refer to [13,14,38].

Example 2. We solve the equation

− εu′′ + x2u′ + u = f on (0, 1) , u (0) = u (1) = 0, (88)

where ε = 0.001 and the right-hand side f is corresponding to the solution

u (x) = x
(

1− e50x−50
)

for x ∈ [0, 1] . (89)

We solve this equation using the adaptive wavelet method described above with the wavelet basis
constructed in this paper. The approximate solution and the derivative of the approximate solution
that were computed using only 79 coefficients are displayed in Figure 5. The significant coefficients
were located near the point 1, because the solution has a large derivative near this point.
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Figure 5. The approximate solution (left) and the derivative of the approximate solution (right) for
Example 1.

The sparsity patterns of the matrices arising from discretization of equation (88) using wavelets
constructed in this paper and wavelets from [23] are the same as the sparsity patterns of matrices for
Example 1 that are displayed in Figure 4. Convergence history is displayed in Figure 6. The number
of iterations equals the parameter j from Algorithm 7, the number of basis functions determining the
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approximate solution in j-th iteration is the same as the number of nonzero entries of the vector vj
and the L∞-norm of the error is given by

‖u− ũ‖∞ = max
x∈[0,1]

|u (x)− ũ (x)| . (90)
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Figure 6. Convergence history for Example 1. The number of basis functions and the L∞-norm of the
error are in logarithmic scaling.

Example 3. We consider the equation

∂V
∂t
−

2

∑
k,l=1

ρk,l

2
σkσlSkSl

∂2V
∂Sk∂Sl

− r
2

∑
k=1

Sk
∂V
∂Sk

+ rV = f , (91)

for (S1, S2) ∈ Ω := (0, 1)2 and t ∈ (0, 1). We choose parameters of the Black-Scholes operator as
ρ1,1 = ρ2,2 = 1, ρ1,2 = ρ2,1 = 0.88, σ1 (x) = 0.1x2 − 0.1x + 0.66, σ2 (x) = 0.1x2 − 0.1x + 0.97, r = 0.02,
and we set the right-hand side f , the initial and boundary conditions such that the solution V is given
by

V (S1, S2, t) = e−rtS1S2

(
1− e20S1−20

) (
1− e20S2−20

)
(92)

for (S1, S2, t) ∈ Ω × (0, 1). We use the Crank-Nicolson scheme for the semidiscretization of the
equation (91) in time. Let M ∈ N, τ = M−1, tl = lτ, l = 0, . . . , M, and denote Vl (S1, S2) =

V (S1, S2, tl) and fl (S1, S2) = f (S1, S2, tl). The Crank-Nicolson scheme has the form:

Vl+1 −Vl
τ

−
2

∑
k,l=1

ρk,l

4
σkσlSkSl

∂2 (Vl+1 + Vl)

∂Sk∂Sl
− r

2

2

∑
k=1

Sk
∂ (Vl+1 + Vl)

∂Sk
+

r (Vl+1 + Vl)

2
=

fl+1 + fl
2

. (93)

In this scheme, the function Vl is known from the equation on the previous time level and the function
Vl+1 is an unknown solution. Thus, for the given time level tl the equation (93) is of the form (1) and
we can use the adaptive wavelet method for solving it. The approximate solution V1 for τ = 1/365
that was computed using 731 coefficients is displayed in Figure 7.

It can be seen that the gradient of the solution V1 has largest values near the point [1, 1]. Therefore
the largest wavelet coefficients correspond to wavelets with supports in regions near this point and
wavelet coefficients are small for wavelets that are not located in these regions. Thus many wavelet
coefficients are ommited and the representation of the solution is sparse. Convergence history is
shown in Figure 8.

7. Conclusions

In this paper, we constructed a new cubic spline multiwavelet basis on the unit interval and unit
cube. The basis is adapted to homogeneous Dirichlet boundary conditions and wavelets have eight
vanishing moments. The main advantage of this basis is that the matrices arising from a discretization
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Figure 7. Contour plot (left) and 3D plot (right) of the approximate solution V1 for Example 2.
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Figure 8. Convergence history for Example 2. The number of basis functions and the L∞-norm of the
error are in logarithmic scaling.

of a differential equation (1) with piecewise polynomial coefficients on uniform meshes such that
deg pk,l ≤ 6, deg qk ≤ 5, and deg a0 ≤ 4, are sparse and not only quasi-sparse. We proved that the
constructed basis is indeed a wavelet basis, i.e. Riesz basis property (5) is satisfied. We performed
extensive numerical experiments and present the construction that leads to the wavelet basis that is
well-conditioned with respect to the L2-norm as well as the H1-norm.
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6. Černá, D.; Finěk, V. Approximate multiplication in adaptive wavelet methods. Cent. Eur. J. Math. 2013, 11,
972-983.
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QUADRATIC SPLINE WAVELETS WI TH SHORT SUPPORT SATISFYING HOMOGENEOUS
BOUNDARY CONDITIONS ∗

DANA ČERNÁ † AND VÁCLAV FINĚK ‡

Abstract. In thepaper, weconstruct anew quadratic spline-wavelet basison the interval and on aunit squaresatisfying homogeneous
Dirichlet boundary conditions of the first order. The wavelets have one vanishing moment and the shortest support among quadratic spline
wavelets with at least one vanishing moments adapted to the same type of boundary conditions. The stiffness matrices arising from a
discretization of thesecond-order elliptic problemsusing theconstructed wavelet basishaveuniformly bounded condition numbersand the
condition numbers are small. We present somequantitative properties of the constructed basis. We provide numerical examples to show
that the Galerkin method and the adaptive wavelet method using our wavelet basis require smaller number of iterations than these methods
with other quadratic spline wavelet bases. Moreover, due to the short support of the wavelets, one iteration requires smaller number of
floating point operations.

Key words. wavelet, quadratic spline, homogeneousDirichlet boundary conditions, condition number, elliptic problem

AMS subject classifications. 46B15, 65N12, 65T60

1. Introduction. Wavelets are a powerful tool in signal analysis, image processing, and engineering ap-
plications. They are also used for the numerical solution of various types of equations. Wavelet methods are
used especially for preconditioning of systems of linear algebraic equations arising from the discretization of
elliptic problems [9], adaptivesolving of operator equations [6, 7], solving of certain typeof partial differential
equations with adimension independent convergence rate [12], and asparse representation of operators [2].

The quantitative properties of any wavelet method strongly depend on the used wavelet basis, namely on
its condition number, the length of the support of wavelets, the number of vanishing wavelet moments and the
smoothness of basis functions. Therefore, aconstruction of appropriate wavelet bases is an important issue.

In this paper, we construct a quadratic spline wavelet basis on the interval and on the unit square that is
well-conditioned and adapted to homogeneous Dirichlet boundary conditions of the first order. The wavelets
have one vanishing moment and we show that the support is the shortest among all quadratic spline wavelets
with one vanishing moment. The condition numbers of the stiffness matrices arising from the discretization of
elliptic problemsusing theconstructed basisareuniformly bounded and small. Let Ωd = (0, 1)

d, d = 1, 2. The
wavelet basis of the spaceH1

0 (Ω2) is then obtained by an isotropic tensor product. More precisely, our aim is
to proposeawavelet basis onΩd that satisfies the following properties:

- Rieszbasis property. Weconstruct Riesz bases of thespaceH1
0 (Ωd).

- Locality. Theprimal basis functions are local in thesenseof Definition 2.1.
- Vanishing moments. Thewavelets have onevanishing moment.
- Polynomial exactness. Since the scaling basis functions are quadratic B-splines, the primal multireso-

lution analysis has polynomial exactness of order three.
- Short support. The wavelets have the shortest possible support among quadratic spline wavelets with

onevanishing moment.
- Closed form. Theprimal scaling functions and wavelets have an explicit expression.
- Homogeneous Dirichlet boundary conditions. The wavelet basis satisfies homogeneous Dirichlet

boundary conditions of thefirst order.
- Well-conditioned bases. Thewavelet basis iswell-conditioned with respect to theH1 (Ωd)-seminorm.

In [8, 10], a construction of a spline-wavelet biorthogonal wavelet basis on the interval was proposed.
Both the primal and dual wavelets are local. A disadvantage of these bases was their relatively large condition
number. Therefore many modifications of this construction were proposed [1, 3, 4, 15]. The construction in
[20] outperforms the previous constructions for the linear and quadratic spline-wavelet bases with respect to
conditioning of the wavelet bases. In [22, 23, 11] the construction was significantly improved also for cubic
splinewavelet basis.
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Spline wavelet bases with nonlocal duals were also constructed and adapted to various types of boundary
conditions [26, 25, 27, 5, 13, 18, 17, 19]. The main advantage of these types of bases in comparison tobases
with local duals are usually the shorter support of wavelets, the lower condition number of the basis and the
corresponding stiffness matrices and the simplicity of theconstruction. The cubic spline multiwavelet basis
from [13] has an additional advantage that the discretization of thesecond order elliptic equations with constant
coefficients leads to truly sparse matrices, i.e., the number of all nonzero entries in any row is bounded by some
constantc independent on the matrix size, whereas the discretizationmatrices for other wavelet bases have
typically O (N logN) nonzero entries, whereN × N is the matrix size. It enables to simplify and improve
an adaptive wavelet method, because a routine called APPLY for the multiplication of the discretization matrix
with a vector can be avoided.

The constructed basis can be used in many applications, e.g., the wavelet Galerkin method and an adaptive
wavelet method for solving second order elliptic equations, parabolic equations and partial integro-differential
equations on tensor product domains and domains that are images of tensor product domains under continuous
mapping. These problems arise for example in financial mathematics for valuation of options under the Black-
Scholes model, stochastic volatility models and Lévy model, see [16]. Wavelet methods seem to be superior
to classical methods especially for solution of partial integro-differential equations, because they enable to
represent the integral term by sparse or almost sparse matrices while the classical methods typically lead to the
full matrices. Due to the short support and a small conditionnumber the constructed basis can lead to improved
efficiency of these methods.

Wavelet bases of the same type as the basis in this paper are the bases from [22, 11, 20]. The constructions
in [22, 11, 20] are based on the constructions of boundary dual scaling functions that are linear combinations
of restrictions of dual functions on the real line to[0, 1] such that the boundary dual scaling functions preserve
the polynomial exactness. Then boundary wavelets are constructed by the method of stable completion. In this
paper the construction is much simpler, because we construct boundary wavelets directly without using dual
scaling functions. The constructions from [22] and [20] lead to the same basis in the case of quadratic spline
wavelet bases adapted to homogeneous Dirichlet boundary conditions of the first order. Therefore in Section 5
we compare our basis with bases from [11, 20]. Furthermore, we adapt bases from [3, 5] to homogeneous
boundary conditions and compare the resulting bases with our basis.

2. Construction of quadratic-spline wavelets.In this section we propose a construction of a new quadratic
spline wavelet basis on the unit interval and on the unit square. The proposed wavelets have one vanishing mo-
ment and we show that their support is the smallest possible.First, we briefly review a definition of a wavelet
basis, for more details about wavelet bases see [21]. LetH be a real Hilbert space with the inner product〈·, ·〉H
and the norm‖·‖H . Let 〈·, ·〉 and‖·‖ denote theL2-inner product and theL2-norm, respectively. LetJ be
some index set and let each indexλ ∈ J take the formλ = (j, k), where|λ| := j ∈ Z is ascale. We define

‖v‖2 :=

√∑

λ∈J
v2λ, for v = {vλ}λ∈J , vλ ∈ R,

and

l2 (J ) :=
{
v : v = {vλ}λ∈J , vλ ∈ R, ‖v‖2 <∞

}
.

Our aim is to construct a wavelet basis ofH in the sense of the following definition.
DEFINITION 2.1. A familyΨ := {ψλ, λ ∈ J } is called a wavelet basis ofH, if
i) Ψ is a Riesz basis forH, i.e., the closure of the span ofΨ isH and there exist constantsc, C ∈ (0,∞)

such that

(2.1) c ‖b‖2 ≤
∥∥∥∥∥
∑

λ∈J
bλψλ

∥∥∥∥∥
H

≤ C ‖b‖2 ,

for all b := {bλ}λ∈J ∈ l2 (J ).
ii) The functions are local in the sense that diamsupp ψλ ≤ C2−|λ| for all λ ∈ J , and at a given levelj

the supports of only finitely many wavelets overlap at any point x.
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For the two countable sets of functionsΓ,Θ ⊂ H , the symbol〈Γ,Θ〉H denotes the matrix

〈Γ,Θ〉H := {〈γ, θ〉H}γ∈Γ,θ∈Θ .

REMARK 2.2. The constants

cΨ := sup{c : c satisfies (2.1)} and CΨ := inf {C : C satisfies (2.1)}

are calledRiesz boundsand the numbercondΨ = CΨ/cΨ is called thecondition numberof Ψ. It is known that
the constantscΨ andCΨ satisfy:

cΨ =
√
λmin (〈Ψ,Ψ〉H), CΨ =

√
λmax (〈Ψ,Ψ〉H),

whereλmin (〈Ψ,Ψ〉H) andλmax (〈Ψ,Ψ〉H) are the smallest and the largest eigenvalues of the matrix〈Ψ,Ψ〉H ,
respectively.

We define a scaling basis as a basis of quadratic B-splines in the same way as in [22, 5, 20]. Let φ be a
quadratic B-spline defined on knots[0, 1, 2, 3]. It can be written explicitly as:

(2.2) φ(x) =





x2

2 , x ∈ [0, 1],
−x2 + 3x− 3

2 , x ∈ [1, 2],
x2

2 − 3x+ 9
2 , x ∈ [2, 3],

0, otherwise.

The functionφ satisfies a scaling equation [5]

(2.3) φ (x) =
φ (2x)

4
+

3φ (2x− 1)

4
+

3φ (2x− 2)

4
+
φ (2x− 3)

4
.

Let φb be a multiple of the quadratic B-spline defined on knots[0, 0, 1, 2] such that‖φb‖L1 = ‖φ‖L1 , i.e.

(2.4) φb(x) =





− 9x2

4 + 3x, x ∈ [0, 1],
3x2

4 − 3x+ 3, x ∈ [1, 2],
0, otherwise.

The functionφb satisfies a scaling equation [5]

(2.5) φb (x) =
φb (2x)

2
+

9φ (2x)

8
+

3φ (2x− 1)

8
.

The graphs of the functionsφb andφ are displayed in Figure2.1.

0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8

1

1.2

 

 

φ
b

φ

0 0.5 1 1.5 2 2.5

−0.4

−0.2

0

0.2

0.4

 

 

ψ
b

ψ

FIG. 2.1.The scaling functionsφ andφb and the waveletsψ andψb.

For j ≥ 2 andx ∈ [0, 1] we set

φj,k(x) = 2j/2φ(2jx− k + 2), k = 2, ..., 2j − 1,(2.6)

φj,1(x) = 2j/2φb(2
jx), φj,2j (x) = 2j/2φb(2

j(1− x)).
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We define a waveletψ and a boundary waveletψb as

(2.7) ψ(x) = −1

2
φ(2x− 1) +

1

2
φ(2x− 2) and ψb(x) =

−φb(2x)
2

+
φ(2x)

2
.

Due to the normalization ofφb, the coefficients in these two equations are the same which will simplify the
proofs in the next section. Thensuppψ = [0.5, 2.5], suppψb = [0, 1.5], and both wavelets have one vanishing
moment, i.e.

(2.8)
∫ ∞

−∞
ψ(x)dx = 0 and

∫ ∞

−∞
ψb(x)dx = 0.

The graphs of the waveletψ and the boundary waveletψb are displayed in Figure2.1. In the following lemma
we show that the support of the waveletψ is the shortest among all quadratic spline wavelets with onevanishing
moment.

LEMMA 1. Letφ be defined by(2.2). If ψ ∈ span {φ (2 · −k) , k ∈ Z} andψ satisfies(2.8), then the length
of the support ofψ is at least2.

Proof. Sinceψ ∈ span {φ (2 · −k) , k ∈ Z} we have

ψ (x) =
∑

k∈Z
akφ (2x− k) ,

for some coefficientsak ∈ R. Let us suppose that the length of the support ofψ is at most2. Then
suppψ ⊂ [j/2, (j + 4)/2] for somej ∈ Z. Sinceψ (x) = 0 for all x ∈ [k/2, (k + 1)/2], wherek ∈
Z\ {j, j + 1, j + 2, j + 3}, the coefficientsak = 0 for all k ∈ Z\ {j, j + 1}. Due to (2.8) we haveaj +
aj+1 = 0. Thus up to a multiplication by a constant and shifting byk/2, k ∈ Z, there is only one wavelet that
has the length of support at most2 and this wavelet is a wavelet defined by (2.7).

Using the similar argument as in the proof of Lemma1 it is easy to see that also the boundary waveletψb

has the shortest possible support among all boundary wavelets with one vanishing moment corresponding to
scaling functions defined by (2.6).

For j ≥ 2 andx ∈ [0, 1] we define

ψj,k(x) = 2j/2ψ(2jx− k + 2), k = 2, ..., 2j − 1,(2.9)

ψj,1(x) = 2j/2ψb(2
jx), ψj,2j (x) = −2j/2ψb(2

j(1− x)).

We denote the index sets by

Ij =
{
k ∈ Z : 1 ≤ k ≤ 2j

}
.

We define

Φj = {φj,k, k ∈ Ij} , Ψj = {ψj,k, k ∈ Ij} ,

and

(2.10) Ψ = Φ2 ∪
∞⋃

j=2

Ψj , Ψs = Φj0 ∪
j0+s−1⋃

j=j0

Ψj , j0 = 2.

In Section4 we prove thatΨ, when normalized with respect to theH1–seminorm, forms a wavelet basis of the
Sobolev spaceH1

0 (0, 1).
A basis onΩd = (0, 1)

d is built from the univariate wavelet basis by a tensor product [21]. Let j ≥ 2,
k = (k1, . . . , kd), k ∈ Id

j := Ij × . . . × Ij , andx = (x1, . . . , xd) ∈ Ωd. We define the multivariate scaling
functions by

φdj,k (x) =

d∏

l=1

φj,kl
(xl) ,
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and for anye = (e1, . . . , ed) ∈ Ed := {0, 1}d \ (0, . . . , 0), we define the multivariate wavelet

ψd
j,e,k (x) =

d∏

l=1

ψj,el,kl
(xl) ,

where

ψj,el,kl
=

{
φj,kl

, el = 1,
ψj,kl

, el = 0.

The basis on the unit cubeΩd is then given by

ΨdD =
{
φd2,k, k ∈ Id

j

}
∪
{
ψd
j,e,k, e ∈ Ed,k ∈ Id

j , j ≥ 2
}
.

This approach is called an isotropic approach. It preservesthe regularity and polynomial exactness. Another
approach is an anisotropic approach. The anisotropic basison the unit square isΨ⊗Ψ.

3. Refinement matrices.In this section we present refinement matricesMj,0 andMj,1 corresponding to
primal scaling functions and wavelets. We show that the matrix Mj = (Mj,0,Mj,1) is invertible and thus there
exist matricesM̃j,0 andM̃j,1 of the same sizes asMj,0 andMj,1, respectively, such that

(3.1)
(
M̃j,0, M̃j,1

)
= M−1

j .

We derive an explicit form of the matrix̃Mj,0 and an estimate for the norm of the productM̃T
m,0M̃

T
m+1,0 . . . M̃

T
n,0,

because this estimate is crucial for the proof of the Riesz basis property that will be presented in Section 4.
By (2.3), (2.5), (2.6), (2.7) and (2.9), there existrefinement matricesMj,0 andMj,1 such that

(3.2) Φj = MT
j,0Φj+1, Ψj = MT

j,1Φj+1.

In these formulas we view the setsΦj andΨj as column vectors with entriesφj,k andψj,k, k ∈ Ij , respectively.
By the Riesz representation theorem there exist dual functionsφ̃j,k andψ̃j,k such that

〈
φj,k, φ̃j,m

〉
= δk,m,

〈
φj,k, ψ̃l,m

〉
= 0,

〈
ψl,m, φ̃j,k

〉
= 0,

〈
ψj,k, ψ̃l,m

〉
= δj,kδk,m,

for all j, l ≥ 2, l ≥ j, k ∈ Ij ,m ∈ Il. Let us denote

Φ̃j =
{
φ̃j,k, k ∈ Ij

}
, Ψ̃j =

{
ψ̃j,k, k ∈ Ij

}

and view these sets as column vectors. ThenΦ̃j , Ψ̃j ⊂ span Φ̃j+1 and the matrices̃Mj,0 andM̃j,1 defined by
(3.1) are the refinement matrices for the dual system, i.e.,

Φ̃j = M̃j,0Φ̃j+1, Ψ̃j = M̃j,1Φ̃j+1.

Due to Remark2.2, the Riesz bounds for the multiscale systems are related to the spectral norms of refinement
matrices and products of these matrices.

Due to (2.3) and (2.5), the refinement matrixMj,0 has the following structure:

Mj,0 =




ML

MI
j,0

MR



.

whereMI
j,0 is a2j+1 × 2j matrix given by

(
MI

j,0

)
m,n

=

{
hm+2−2n√

2
, n = 1, . . . , 2j , 1 ≤ m+ 2− 2n ≤ 4,

0, otherwise,
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where

h = [h1, h2, h3, h4] =

[
1

4
,
3

4
,
3

4
,
1

4

]

is a vector of coefficients from the scaling equation (2.3). The matrixML is given by

ML =
1√
2
hT
b , where hb =

[
hb1, h

b
2, h

b
3

]
=

[
1

2
,
9

8
,
3

8

]

is a vector of coefficients from the scaling equation (2.5). The matrixMR is obtained from a matrixML by
reversing the ordering of rows.

It follows from (2.7) that the matrixMj,1 is of the size2j+1 × 2j and has the structure

(3.3) Mj,1 =
1√
2




− 1
2

1
2 0 0 0 0 0 . . . 0 0

0 0 − 1
2

1
2 0 0 0 . . . 0 0

0 0 0 0 − 1
2

1
2 0 0

...
...

...

0 0 . . . 0 0 0 − 1
2

1
2 0 0

0 0 . . . 0 0 0 0 0 − 1
2

1
2




T

.

The following lemmas are crucial for the proof of a Riesz basis property.
LEMMA 2. Let j ≥ 2 and the entriesM̃ j,0

k,l , k ∈ Ij+1, l ∈ Ij , of the matrixM̃j,0 be given by:

M̃ j,0
2,l = M̃ j,0

1,l =
dj1

a|1−l| +
djn

a|n−l| ,

M̃ j,0
2j+1,l = M̃ j,0

2j+1−1,l =
dj1

a|n−l| +
djn
a|1−l| ,

wheren = 2j , a = −3− 2
√
2,

dj1 =
6αn

3 +
√
2
, djn =

−36b αn a
2−n

11 + 6
√
2

,(3.4)

αn =

(
1− 36 b2 a4−2n

11 + 6
√
2

)−1

, b =
13− 9

√
2

6
,

and fork = 2, . . . , n− 1 andl ∈ Ij let

M̃ j,0
2k,l=M̃

j,0
2k−1,l =

1

a|k−l| +
djk

a|1−l| +
djn+1−k

a|n−l| ,

where

(3.5) djk =
−6b αn a

2−k

3 +
√
2

− 36b αn a
k+3−2n

11 + 6
√
2

.

Then

(3.6) MT
j,0M̃j,0 = Ij , and MT

j,1M̃j,0 = 0j ,

whereIj denotes the identity matrix and0j denotes the zero matrix of the appropriate size.
Proof. By similar approach as in [26, 25] we derive the explicit form of the entries̃M j,0

k,l , k ∈ Ij+1, l ∈ Ij ,
of the matrixM̃j,0 such that (3.6) is satisfied. From (3.3) we obtain

(3.7) M̃2k−1,l = M̃2k,l, for k = 1, . . . , 2j .
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We substitute (3.7) into (3.6) and we obtain a new systemAjBj = Ij , where

Aj =
1√
2




13
8

3
8 0 . . . 0

1
4

3
2

1
4

...

0 1
4

3
2

1
4 0

...
.. .

. ..
. . .

0 1
4

3
2

1
4

0 . . . 0 3
8

13
8




=
Hj√
2




13
12

1
4 0 . . . 0

1
4

3
2

1
4

...

0 1
4

3
2

1
4 0

...
.. .

. . .
. . .

0 1
4

3
2

1
4

0 . . . 0 1
4

13
12




,

where

(Hj)k,l =





3
2 , (k, l) = (1, 1) , (k, l) =

(
2j , 2j

)

1, k = l, k 6= 1, k 6= 2j ,

0, otherwise,

andBj is the2j×2j matrix with entriesBj
k,l = M̃ j,0

2k,l, k, l ∈ Ij . We factorize the matrixAj asAj = HjCjDj ,
where

Cj =
1√
2




3+2
√
2

4
1
4 0 0 . . . 0

1
4

3
2

1
4

...

0 1
4

3
2

1
4 0

...
. ..

. ..
. . .

0 1
4

3
2

1
4

0 . . . 0 0 1
4

3+2
√
2

4




,

and

Dj =




3+
√
2

6 0 0 . . . 0 0 b
an−2

b 1 0 0 0 b
an−3

b
a 0 1 0 0 b

an−4

...
...

. . .
...

...
b

an−4 0 0 1 0 b
a

b
an−3 0 0 0 1 b

b
an−2 0 0 . . . 0 0 3+

√
2

6




,

More precisely, the entriesDj
k,l of the matrixDj are given by:

Dj
1,1 = Dj

n,n =
3 +

√
2

6
,

Dj
k,1 = Dj

n+1−k,n =
b

ak−2
, for k = 2, . . . , n,

Dj
k,k = 1, for k = 2, . . . , n− 1,

Dj
k,l = 0, otherwise.

It is easy to verify that̃Cj = C−1
j has entries̃Cj

k,l = a−|k−l|, and the matrixD−1
j has the structure:

D−1
j =




dj1 0 . . . 0 djn
dj2 1 0 djn−1
...

. . .
...

djn−1 0 1 dj2
djn 0 . . . 0 dj1



,



ETNA
Kent State University and

Johann Radon Institute (RICAM)
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with djk given by (3.4) and (3.5). Since the matricesCj , Dj andHj are invertible, we can define

(3.8) Bj = A−1
j = D−1

j C−1
j H−1

j .

Substituting (3.8) into (3.7) the lemma is proved.
LEMMA 3. There exist unique matrices̃Mj,1, j ≥ 2, such that

(3.9) MT
j,0M̃j,1 = 0j , and MT

j,1M̃j,1 = Ij .

Proof. For l ∈ Ij+1 andk ∈ Ij the entriesM̃ j,1
k,l of the matrixM̃j,1 satisfy

M̃ j,1
2k−1,l = 2δ2k−1,2l−1 + M̃ j,1

2k,l.

Using these relations we obtain a system of equations with the matrixAj defined in the proof of Lemma5.
Since the matrixAj is invertible, the matrixM̃j,1 exists and is unique.

LEMMA 4. We haveΦj+1 = M̃j,0Φj + M̃j,1Ψj for all j ≥ 2.
Proof. Due to (3.2) we have

[
Φj

Ψj

]
=

[
MT

j,0

MT
j,1

]
Φj+1, j ≥ 2.

Multiplying this equation by the matrix
[
M̃j,0, M̃j,1

]
from the left-hand side and using (3.6) and (3.9) the

lemma is proved.
For any matrixM of the sizem× n we set

‖M‖2 = sup
v∈Rn,v 6=0

‖Mv‖2
‖v‖2

and

‖M‖1 = max
l=1,...,n

m∑

k=1

|Mk,l| , ‖M‖∞ = max
k=1,...,m

n∑

l=1

|Mk,l| .

It is well-known that

(3.10) ‖M‖2 ≤
√
‖M‖1 ‖M‖∞.

LEMMA 5. The matricesM̃j,0, j ≥ 2, have uniformly bounded norms, i.e., there existsC ∈ R independent

of j such that
∥∥∥M̃j,0

∥∥∥
2
≤ C for all j ≥ 2.

Proof. Since the matrices̃Mj,0 are known in the explicit form, they have a regular structureand the values
in each column and row are exponentially decreasing, we compute upper bounds for the1-norm and∞-norm
such that we compute several largest values in each row and column and estimate the sum of the remaining
entries. We obtain

∥∥∥M̃j,0

∥∥∥
1
≤ 1.42,

∥∥∥M̃j,0

∥∥∥
∞

≤ 2.91,

and due to (3.10) we have
∥∥∥M̃j,0

∥∥∥
2
≤ 2.04.

For comparison we computed the norms of the matricesM̃j,0 numerically and we found that
∥∥∥M̃j,0

∥∥∥
2
≤ 2

for j = 3, . . . , 12, and
∥∥∥M̃12,0

∥∥∥
2
= 1.9999997.

LEMMA 6. LetSj = M̃T
j,0M̃

T
j+1,0, j ≥ 3, andS̃j be the matrix given by

(
S̃j

)
k,l

= (Sj)2k−1,l + (Sj)2k,l , k ∈ Ij−1, l ∈ Ij+2.
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Then there exists a constantC independent ofj such that
∥∥∥S̃j

∥∥∥
2
< C < 2

√
2.

Proof. LetKj be a2j × 2j+1 matrix with entries

(3.11) (Kj)k,2l−1 = (Kj)k,2l = a−|k−l|, k, l ∈ Ij , a = −3− 2
√
2,

and letLj = M̃T
j,0 −Kj . We know the explicit expression of the matrixLj , because the explicit expressions

of bothM̃j,0 andKj are known. We have

Sj = M̃T
j,0M̃

T
j+1,0 = KjKj+1 +KjLj+1 + LjKj+1 + LjLj+1.

Let us denote

Nj = KjKj+1,Oj = KjLj+1,Pj = LjKj+1,Qj = LjLj+1,

andÑj , Õj , P̃j , andQ̃j be derived fromNj , Oj , Pj andQj by similar way as̃Sj from Sj . ThenS̃j = Ñj +

Õj + P̃j + Q̃j . From (3.11) we have fork ∈ Ij , l ∈ Ij+1

(Nj)k,2l−1 = (Nj)k,2l = uT
k vl,

where

uk =

[
1

ak−1
,

1

ak−1
,

1

ak−2
, . . . ,

1

a
,
1

a
, 1, 1,

1

a
,
1

a
, . . . ,

1

an−k
,

1

an−k

]T
,

vl =

[
1

al−1
,

1

al−2
, . . . ,

1

a
, 1,

1

a
, . . . ,

1

a2n−l

]T
,

n = 2j . Due to the structure of the vectoruk we can write

(Nj)k,l =
a+ 1

a
ũT
k ṽl,

where

ũk =

[
1

ak−1
,

1

ak−2
, . . . ,

1

a
, 1,

1

a
, . . . ,

1

an−k

]T
,

ṽl =

{[
1

al−2 ,
1

al−4 , . . . ,
1
a2 , 1,

1
a ,

1
a3 . . . ,

1
a2n−l−1

]T
, l even,[

1
al−2 ,

1
al−4 , . . . ,

1
a , 1,

1
a2 ,

1
a4 . . . ,

1
a2n−l−1

]T
, l odd.

Fork > l
2 , l ∈ Ij+1, l even, we have

(Nj)k,2l =
a+ 1

a




l
2∑

m=1

a3m−k−l +
k∑

m= l
2+1

al+1−k−m +
n∑

m=k+1

al+k+1−3m




=
a+ 1

a


a l

2−k 1−
(

1
a3

) l
2

1− 1
a3

+ a
l
2−k 1−

(
1
a

)k− l
2

1− 1
a

+ al−2−2k 1−
(

1
a3

)n−k

1− 1
a3


 .

Similarly for k > l−1
2 , l ∈ Ij+1, l odd, we obtain

(Nj)k,2l=
a+1

a




l−1
2∑

m=1

a3m−k−l +
k∑

m= l+1
2

al+1−k−m +
n∑

m=k+1

al+k+1−3m




=
a+1

a


a l

2−k− 3
2
1−
(

1
a3

) l−1
2

1− 1
a3

+ a
l+1
2 −k 1−

(
1
a3

)k− l−1
2

1− 1
a

+ al−2−2k 1−
(

1
a3

)n−k

1− 1
a3


.
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If k ≤ l
2 , l ∈ Ij+1, l even, then we have

(Nj)k,2l =
a+ 1

a




k∑

m=1

a3m−k−l +

l
2∑

k+1

am+k−l +

n∑

m= l
2+1

al+k+1−3m




=
a+ 1

a


a2k−l 1−

(
1
a3

)k

1− 1
a3

+ ak−
l
2
1−

(
1
a

) l
2−k

1− 1
a

+ ak−
l
2−2 1−

(
1
a3

)n− l
2

1− 1
a3


 .

If k ≤ l−1
2 , l ∈ Ij+1, l odd, then we have

(Nj)k,2l=
a+1

a




k∑

m=1

a3m−k−l +

l−1
2∑

k+1

am+k+2−l +

n∑

m= l+1
2 +1

al+k+1−3m




=
a+1

a


a2k−l 1−

(
1
a3

)k

1− 1
a3

+ ak−
l
2− 1

2
1−

(
1
a

) l−1
2 −k

1− 1
a

+ ak−
l
2− 1

2
1−

(
1
a3

)n− l−1
2

1− 1
a3


 .

To compute an upper bound for the norm of the matrixS̃j , we compute bounds for the sums of the absolute
values of the entries in rows and columns for matricesÑj , Õj , P̃j , andQ̃j . Since the values in the columns of
the matrixÑj are exponentially decreasing, we can compute several largest values in each column and estimate
the sum of absolute values of the remaining entries. We denote

Īj+2 =
{
1, 2, 3, 4, 2j+2 − 3, 2j+2 − 2, 2j+2 − 1, 2j+2

}
, Ǐj+2 = Ij+2\Īj+2

and we set
(
Ñj

)
k,l

= 0, for k /∈ Ij−1.

For l such thatl mod 8 ∈ {0, 1, 6, 7} andl ∈ Ǐj+2 we obtain

2j−1∑

k=1

∣∣∣∣
(
Ñj

)
k,l

∣∣∣∣ ≤
∣∣∣∣
(
Ñj

)
b l

8c−1,l

∣∣∣∣+
∣∣∣∣
(
Ñj

)
b l

8c,l

∣∣∣∣+
∣∣∣∣
(
Ñj

)
b l

8c+1,l

∣∣∣∣

+

b l
8c−2∑

k=1

∣∣∣∣
(
Ñj

)
k,l

∣∣∣∣+
2j−1∑

k=b l
8c+2

∣∣∣∣
(
Ñj

)
k,l

∣∣∣∣

≤ 0.018 + 0.727 + 0.239 + 0.007 + 0.001 ≤ 1.

For l such thatl mod 8 ∈ {2, 3, 4, 5} andl ∈ Ǐj+2 we obtain

2j−1∑

k=1

∣∣∣∣
(
Ñj

)
k,l

∣∣∣∣ ≤
∣∣∣∣
(
Ñj

)
b l

8c−1,l

∣∣∣∣+
∣∣∣∣
(
Ñj

)
b l

8c,l

∣∣∣∣+
∣∣∣∣
(
Ñj

)
b l

8c+1,l

∣∣∣∣

+

b l
8c−2∑

k=1

∣∣∣∣
(
Ñj

)
k,l

∣∣∣∣+
2j−1∑

k=b l
8c+2

∣∣∣∣
(
Ñj

)
k,l

∣∣∣∣

≤ 0.101 + 0.566 + 0.037 + 0.002 + 0.004 ≤ 1.

For l ∈ Īj+2 we have

2j−1∑

k=1

∣∣∣∣
(
Ñj

)
k,l

∣∣∣∣ ≤ 0.5.
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We use the similar approach for computing the sums of absolute values of the entries in rows. We obtain

2j−1∑

k=1

∣∣∣∣
(
Ñj

)
k,l

∣∣∣∣ ≤
{
0.73, l ∈ Īj+2,

1.00, l ∈ Ǐj+2,

2j+2∑

l=1

∣∣∣∣
(
Ñj

)
k,l

∣∣∣∣ ≤
{
5.95, k = 1, 2j−1,

6.80, otherwise.

Similarly, we obtain

2j−1∑

k=1

∣∣∣∣
(
Õj

)
k,l

∣∣∣∣ ≤
{
0.13, l ∈ Īj+2,

0.04, l ∈ Ǐj+2,

2j+2∑

l=1

∣∣∣∣
(
Õj

)
k,l

∣∣∣∣ ≤
{
0.30, k = 1, 2j−1,

0.02, otherwise,

2j−1∑

k=1

∣∣∣∣
(
P̃j

)
k,l

∣∣∣∣ ≤
{
0.15, l ∈ Īj+2,

0.05, l ∈ Ǐj+2,

2j+2∑

l=1

∣∣∣∣
(
P̃j

)
k,l

∣∣∣∣ ≤
{
0.68, k = 1, 2j−1,

0.04, otherwise,

2j−1∑

k=1

∣∣∣∣
(
Q̃j

)
k,l

∣∣∣∣ ≤
{
0.03, l ∈ Īj+2,

0.01, l ∈ Ǐj+2,

2j+2∑

l=1

∣∣∣∣
(
Q̃j

)
k,l

∣∣∣∣ ≤
{
0.06, k = 1, 2j−1,

0.01, otherwise.

Therefore using (3.10) we have

∥∥∥S̃j

∥∥∥
2
≤

√
1.1 · 7 < 2

√
2.

For comparison we computed the norms of matricesS̃j numerically and we found that
∥∥∥S̃j

∥∥∥
2
≤ 2.27 for

j = 1, . . . , 12,
∥∥∥S̃12

∥∥∥
2
≈ 2.2623 and it seems that this value does not further increase with increasingj.

LEMMA 7. Letm,n ≥ 2,m < n, then there exists a constantC < 2 such that

∥∥∥M̃T
m,0M̃

T
m+1,0 . . . M̃

T
n,0M̃

T
n+1,0

∥∥∥
2
≤ C

∥∥∥M̃T
m,0M̃

T
m+1,0 . . . M̃

T
n−1,0

∥∥∥
2
.

Proof. Form andn fixed such thatm,n ≥ 2,m < n, we use the notation:

R = M̃T
m,0M̃

T
m+1,0 . . . M̃

T
n−1,0, S = M̃T

n,0M̃
T
n+1,0.

Due to the structure of the matrices̃Mj,0 given in Lemma5 we have

Rk,2l = Rk,2l−1, k ∈ Im, l ∈ In−1.

Therefore, we can writeRS = R̃S̃, where the matrix̃R is 2m × 2n−1 matrix containing the even columns of
the matrixR, i.e. R̃k,l = Rk,2l, and the matrix̃S is given by

S̃k,l = S2k−1,l + S2k,l, k ∈ In−1, l ∈ In+2.

We have

∥∥∥R̃
∥∥∥
2
= sup

x∈R,x 6=0

∥∥∥R̃x
∥∥∥
2

‖x‖2
= sup

x∈R,x 6=0


 ∑

k∈Im

(
∑

l∈In−1

R̃k,lxl

)2



1/2

‖x‖2
.

Let x̃ be a vector of the lengthq = 2n such that̃x2j−1 = x̃2j = xj and let

X̃ = {x̃ ∈ Rq : x̃2j−1 = x̃2j , x̃ 6= 0} .
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Then‖x̃‖2 =
√
2 ‖x‖2 and we have

∥∥∥R̃
∥∥∥
2
= sup

x̃∈X̃


 ∑

k∈Im

(
∑
l∈In

2−1Rk,lx̃l

)2



1/2

2−1/2 ‖x̃‖2

≤ sup
x̃∈Rq,x̃ 6=0

2−1


 ∑

k∈Im

(
∑
l∈In

Rk,lx̃l

)2



1/2

2−1/2 ‖x̃‖2
=

‖R‖2√
2
.

Using Lemma6 we obtain

‖RS‖2 =
∥∥∥R̃S̃

∥∥∥
2
≤
∥∥∥R̃
∥∥∥
2

∥∥∥S̃
∥∥∥
2
≤ C ‖R‖2

with C < 2.
LEMMA 8. There exist constantsC ∈ R andp < 0.5 such that for allm,n ≥ 2,m < n, we have

(3.12)
∥∥∥M̃T

m,0M̃
T
m+1,0 . . . M̃

T
n−1,0

∥∥∥
2
≤ C 2p(n−m).

Proof. The assertion of the lemma is a direct consequence of Lemma5 and Lemma7.

4. Riesz basis on Sobolev space.In this section, we prove thatΨ is a Riesz basis ofH1
0 (Ω1) andΨ2D is

a Riesz basis ofH1
0 (Ω2). The proof is based on the lemmas from Section3 and on the theory developed in [19]

that is summarized in the following theorem.
THEOREM 9. LetH be a Hilbert space and letVj , j ≥ J , be the closed subspaces ofL2 (Ω) such that

Vj ⊂ Vj+1 and∪∞
j=JVj is dense inH. LetHq for fixedq > 0 be a linear subspace ofH that is itself a normed

linear space and assume that there exist positive constantsA1 andA2 such that
a) If f ∈ Hq has decompositionf =

∑
j≥J fj , fj ∈ Vj then

(4.1) ‖f‖2Hq
≤ A1

∑

j≥J

2qj ‖fj‖2H .

b) For eachf ∈ Hq there exists a decompositionf =
∑

j≥J fj , fj ∈ Vj , such that

(4.2)
∑

j≥J

2qj ‖fj‖2H ≤ A2 ‖f‖2Hq
.

Furthermore, suppose thatPj is a linear projection fromVj+1 ontoVj , Wj is the kernel space ofPj , Φj =
{φj,k, k ∈ Ij} are Riesz bases ofVj with respect to theL2–norm with uniformly bounded condition numbers
andΨj = {ψj,k, k ∈ Ij} are Riesz bases ofWj with uniformly bounded condition numbers. If there exist
constantsC andp such that0 < p < q and

(4.3) ‖PmPm+1 . . . Pn−1‖ ≤ C 2p (n−m),

then

(4.4)
{
2−JqφJ,k, k ∈ IJ

}
∪
{
2−jqψj,k, j ≥ J, k ∈ Ij

}

is a Riesz basis ofHq.
Now we define suitable projectionsPj from Vj+1 onto Vj and show that these projections satisfy (4.3).

Then we show thatΨ which differs from (4.4) only by scaling is also a Riesz basis ofH1
0 (0, 1). For j ≥ 2 we

define

Γj = {φj,k}k∈Ij
∪ {ψj,k}k∈Ij

and Fj = 〈Γj ,Γj〉 .
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Let a set

(4.5) Γ̂j =
{
φ̂j,k

}
k∈Ij

∪
{
ψ̂j,k

}
k∈Jj

be given by

(4.6) Γ̂j = F−1
j Γj .

Since obviously
〈
Γj , Γ̂j

〉
= Ij ,

functions fromΓ̂j are duals to functions fromΓj in the spaceVj+1. SinceF−1
j is not a sparse matrix, these

duals are not local. We define a projectionPj from Vj+1 ontoVj by

Pjf =
∑

k∈Ij

〈
f, φ̂j,k

〉
φj,k.

LEMMA 10. There existp < 0.5 such that a projectionPj satisfies

(4.7) ‖PmPm+1 . . . Pn−1‖ ≤ C 2p (n−m),

for all 2 ≤ m < n and a constantC independent onm andn.

Proof. Let f ∈ Vj+1, ajk =
〈
f, φ̂j,k

〉
, aj =

{
ajk

}
k∈Ij

, j ≥ 2, andSj : aj+1 7→ aj . Then

Pjf =
∑

k∈Ij

ajkφj,k =
∑

k∈Ij

〈
f, φ̂j,k

〉
φj,k

=
∑

k∈Ij

∑

l∈Ij+1

aj+1
l

〈
φj+1,l, φ̂j,k

〉
φj,k.

Therefore

ajk =
∑

l∈Ij+1

aj+1
l

〈
φj+1,l, φ̂j,k

〉
.

Let us denote

Sj
l,k =

〈
φ̂j,k, φj+1,l

〉
, Sj =

{
Sj
l,k

}
l∈Ij+1,k∈Ij

then we can writeaj = Sjaj+1 and due to Lemma4 we have

Sj =
〈
Φ̂j ,Φj+1

〉
=
〈
Φ̂j , M̃j,0Φj + M̃j,1Ψj

〉
= M̃j,0.

Now, let us considerfn ∈ Vn andfm = PmPm+1 . . . Pn−1fn. Thenfj can be represented byfj =
∑

k∈Ij
ajkφj for j = m,n and we setaj =

{
ajk

}
k∈Ij

. SinceΦj is a Riesz basis ofVj , see [22], there exist

constantsC1 andC2 independent ofj such that

C1 ‖aj‖2 ≤

∥∥∥∥∥∥
∑

k∈Ij

ajkφj,k

∥∥∥∥∥∥
≤ C2 ‖aj‖2 .

Due to Lemma8 we have

‖fm‖ ≤ C2 ‖am‖2 ≤ C2 ‖Sm Sm+1 . . .Sn−1‖2 ‖an‖2
= C2

∥∥∥M̃T
m,0 M̃

T
m+1,0 . . . M̃

T
n−1,0

∥∥∥
2
‖an‖2

≤ C2 2
p(n−m) ‖an‖2 ≤ C−1

1 C2 2
p(n−m) ‖fn‖ .
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Thus (4.7) is proved.
THEOREM 11. The setsΨj are Riesz bases of the spacesWj = span Ψj , j ≥ 2, with the condition

numbers bounded independently onj, namelycondΨj ≤ 2.
Proof. The matrixUj = 〈Ψj ,Ψj〉 is tridiagonal with entries

(Uj)1,1 = (Uj)2j ,2j =
27

320
,

(Uj)2,1 = (Uj)1,2 = (Uj)2j−1,2j = (Uj)2j ,2j−1 =
47

1920
,

(Uj)k,k =
1

12
, k = 2, . . . , 2j − 1,

(Uj)k,k+1 = (Uj)k+1,k = − 1

40
, k = 2, . . . , 2j − 2,

(Uj)k,l = 0, otherwise.

Thus,Uj is strictly diagonally dominant and using Gershgorin circle theorem we obtainλmin (Uj) ≥ 1
30 ≈

0.0333, λmax (Uj) ≤ 2
15 ≈ 0.1333, andcondΨj ≤ 2.

We also computed the eigenvalues of the matrixUj numerically and the numerical valuesλmin ≈ 0.0333
andλmax ≈ 0.1333 correspond to the values computed using Gershgorin theorem. Thus the inequality in
Theorem11seems to be sharp.

THEOREM 12. The set
{
2−2φ2,k, k ∈ I2

}
∪
{
2−jψj,k, j ≥ 2, k ∈ Ij

}

is a Riesz basis ofH1
0 (0, 1).

Proof. Using the same argument as in [19] we conclude that (4.1) and (4.2) follows from the polynomial
exactness of the scaling basis and the smoothness of basis functions and are satisfied forH = L2 (0, 1) and
Hq = Hq

0 (0, 1), 0 < q < 1.5. Due to Lemma10 the condition (4.3) is fulfilled. Therefore by Theorem9 the
assertion of Theorem12 is proved.

THEOREM 13. The set
{
φ2,k/ |φ2,k|H1

0 (0,1)
, k ∈ I2

}
∪
{
ψj,k/ |ψj,k|H1

0 (0,1)
, j ≥ 2, k ∈ Ij

}
,

where|·|H1
0 (0,1)

denotes theH1
0 (0, 1)–seminorm, is a Riesz basis ofH1

0 (0, 1).
Proof. We follow the proof of Lemma 2 in [25]. From (2.9) there exist constantsC1 andC2 such that

(4.8) C12
j ≤ |ψj,k|H1

0 (Ω) ≤ C22
j , for j ≥ 2, k ∈ Ij ,

and

(4.9) C12
2 ≤ |φ2,k|H1

0 (Ω) ≤ C22
2, for k ∈ I2.

Theorem12 implies that there exist constantsC3 andC4 such that

(4.10) C3 ‖b‖2 ≤

∥∥∥∥∥∥
∑

k∈I2

a2,k2
−2φ2,k +

∑

k∈Ij ,j≥2

bj,k2
−jψj,k

∥∥∥∥∥∥
H1

0 (0,1)

≤ C4 ‖b‖2 ,

for anyb = {a2,k, k ∈ I2} ∪ {bj,k, j ≥ 2, k ∈ Jj}. Using (4.8), (4.9), and (4.10) we obtain

‖b‖2 ≤ C2

C3

∥∥∥∥∥∥
∑

k∈I2

a2,k
φ2,k

|φ2,k|H1
0 (Ω)

+
∑

k∈Jj ,j≥2

bj,k
ψj,k

|ψj,k|H1
0 (Ω)

∥∥∥∥∥∥
H1

0 (0,1)

and

‖b‖2 ≥ C1

C4

∥∥∥∥∥∥
∑

k∈I2

a2,k
φ2,k

|φ2,k|H1
0 (Ω)

+
∑

k∈Jj ,j≥2

bj,k
ψj,k

|ψj,k|H1
0 (Ω)

∥∥∥∥∥∥
H1

0 (0,1)

.
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REMARK 4.1. By Theorem9 and the proof of Lemma10 if p satisfies (3.12) then the norm equivalence
(2.1) for Ψ from Section 2 normalized with respect to theHs-norm is satisfied forH = Hs, wheres ∈ (p, 1.5).
Since we proved in Section 3 that there existsp satisfying (3.12) such thatp < 0.5 we proved the norm
equivalence (2.1) for Hs with s ∈ (0.5, 1.5). We computed the norms in (3.12) also numerically and we found
that this theoretical estimate ofp is not sharp. It seems that (3.12) holds also for anyp > 0.

THEOREM 14. The setΨ2D normalized with respect to theH1–seminorm is a Riesz basis ofH1
0

(
(0, 1)

2
)

.

Proof. Recall thatφ̂j,k are defined by (4.5) and (4.6). Fork = (k1, k2) let us definêφ2j,k = φ̂j,k1
⊗ φ̂j,k2

.
Then fork = (k1, k2) andl = (l1, l2) we have

〈
φ2j,k, φ̂

2
j,l

〉
= δk1,l1δk2,l2 ,

andP 2D
j defined by

P 2D
j f =

∑

k∈Ij×Ij

〈
f, φ̂2j,k

〉
φ2j,k

is a projection fromV 2
j+1 ontoV 2

j , whereV 2
j = Vj ⊗ Vj for j ≥ 2. We denoteS2D

j = M̃T
j,0 ⊗ M̃T

j,0. It is

well-known that for any matrixB we have‖B⊗B‖2 = ‖B‖22. Using this relation and the same arguments as
in the proof of Lemma10we obtain forfn ∈ V 2

n andfm = P 2D
m P 2D

m+1 . . . P
2D
n−1fn the estimate:

‖fm‖ ≤ C1 ‖am‖2 ≤ C2

∥∥S2D
m S2D

m+1 . . .S
2D
n−1

∥∥
2
‖an‖2

= C2

∥∥∥
(
M̃T

m,0 . . . M̃
T
n−1,0

)
⊗
(
M̃T

m,0 . . . M̃
T
n−1,0

)∥∥∥
2
‖an‖2

≤ C3 2
2p(n−m) ‖an‖2 ≤ C4 2

2p(n−m) ‖fn‖

with 2p < 1. Hence by Theorem9 the assertion of the theorem is proved.

5. Quantitative properties of constructed bases.In this section, we present the condition numbers of
the stiffness matrices for the Helmholtz equation

(5.1) −ε∆u+ au = f on Ωd, u = 0 on ∂Ωd,

where∆ is the Laplace operator,ε anda are positive constants. We also study the caseε = 1 anda = 0, i.e.,
the Poisson equation, and the caseε = 0 anda = 1.

The variational formulation is

(5.2) Au = f ,

where

A = ε 〈∇Ψ,∇Ψ〉+ a 〈Ψ,Ψ〉 , u = (u)
T
Ψ, f = 〈f,Ψ〉 .

An advantage of discretizing the elliptic equation (5.1) using a wavelet basis is that the system (5.2) can be
simply preconditioned by a diagonal preconditioner [9]. Let D be a matrix of diagonal elements of the matrix
A, i.e.,Dλ,µ = Aλ,µδλ,µ, whereδλ,µ denotes Kronecker delta. Setting

Ã = (D)
−1/2

A (D)
−1/2

, ũ = (D)
1/2

u, f̃ = (D)
−1/2

f ,

we obtain the preconditioned system

(5.3) Ãũ = f̃ .

It is known [9] that there exist a constantC such that cond̃A ≤ C <∞.
LetΨs be defined by (2.10) for d = 1 and similarly ford > 1. We define

As = ε 〈∇Ψs,∇Ψs〉+ a 〈Ψs,Ψs〉 , us = (us)
T
Ψs, fs = 〈f,Ψs〉 .
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LetDs be a matrix of diagonal elements of the matrixAs, i.e.,(Ds)λ,µ = (As)λ,µ δλ,µ. We set

Ãs = (Ds)
−1/2

As (Ds)
−1/2

, ũs = (Ds)
1/2

us, f̃s = (Ds)
−1/2

fs

and we obtain the preconditioned finite-dimensional system

(5.4) Ãsũs = f̃s.

SinceÃs is a part of the matrix̃A that is symmetric and positive definite, we have also

condÃs ≤ C.

The condition numbers of the stiffness matricesÃs for ε = 1, a = 0, andd = 1, 2, are shown in Table5.1.
By Remark2.2 these numbers correspond to the squares of the condition numbers ofΨs with respect to the
H1-seminorm. We computed also the condition numbers ofΨs with respect to theH1-norm. The values were
very close to the values presented in Table5.1(the difference was less than1%).

For comparison, we computed also the condition numbers for other wavelet bases and displayed them in
Figure5.1and Figure5.2. The basesCF2 andCF3 refer to the wavelet bases from this paper with the coarsest
level 2 and3, respectively.Dj0 andPj0 refer to the quadratic spline wavelet basis with3 vanishing moments
and the coarsest levelj0 from [11] and [20], respectively. We modified the construction from [3] to homoge-
neous boundary conditions. The resulting quadratic splinewavelet basis with three vanishing wavelet moments
with the coarsest levelj0 is denoted asBj0 . We found that basesDj0 , Pj0 , andBj0 lead to the same results and
we realized that they contain the same wavelets up to a multiplication with a constant factor. Semiorthogonal
quadratic spline wavelets with three vanishing moments on the interval were constructed in [5]. In AppendixA
we show that the semiorthogonal quadratic spline wavelet basis corresponding to scaling functions that are B-
splines on the Schoenberg sequence of knots such that wavelets have three vanishing moments and the basis is
adapted to homogeneous boundary conditions do not exist. Therefore, we adapt this basis such that semiorthog-
onality is preserved and2j − 2 wavelets on the levelj have three vanishing moments and2 wavelets on the
level j are without vanishing moments. We denote the resulting basis asCQ. We also tested wavelet bases
from [11, 20] with 5 vanishing moments, but the condition numbers were larger than for bases with3 vanishing
moments. All wavelets used in numerical experiments are presented in AppendixA.

Although it was not proved in this paper that using appropriate tensorising of 1D wavelet basis we obtain the
wavelet basis in 3D, we listed the condition numbers of the stiffness matrices̃As for 3D case in Table5.2. The
condition numbers for several constructions of quadratic spline wavelet bases and various values of parameters
ε anda are compared in Table5.3.

TABLE 5.1
The condition numbers of the stiffness matricesÃs of the sizeN × N corresponding to multiscale wavelet bases withs levels of

wavelets for the one-dimensional and the two-dimensional Poisson equation.

1D 2D
s N λmin λmax condÃs N λmin λmax condÃs

1 8 0.50 1.38 2.77 64 0.25 1.88 7.5
2 16 0.50 1.41 2.83 256 0.19 2.08 11.1
3 32 0.50 1.42 2.83 1 024 0.16 2.17 13.7
4 64 0.50 1.42 2.84 4 096 0.14 2.20 15.4
5 128 0.50 1.42 2.84 16 384 0.13 2.22 16.6
6 256 0.50 1.42 2.84 65 536 0.13 2.23 17.4
7 512 0.50 1.42 2.84 262 144 0.12 2.23 17.9
8 1024 0.50 1.42 2.84 1 048 576 0.12 2.23 18.3

We computed also the condition numbers for the discretization matrices̃As corresponding toε = 0, a = 1,
andd = 1. By Remark 2 these condition numbers represent the squares of the L2 condition numbers ofΨs

normalized with respect to theL2-norm. The results are displayed in Figure5.1. In this paper, we proved
that the constructed basis is a Riesz basis inH1

0 (0, 1). The condition numbers of matrices̃As corresponding
to ε = 0 anda = 1 for the new basis seems to be unbounded and thus it seems that the new basis is not a
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TABLE 5.2
The condition numbers of the stiffness matricesÃs of the sizeN × N corresponding to multiscale wavelet bases withs levels of

wavelets for the three-dimensional Poisson equation.

s N λmin λmax condÃs

1 512 0.15 3.23 47.4
2 4096 0.04 3.69 85.0
3 32768 0.03 3.83 113.8
4 262144 0.03 3.87 132.9
5 2097152 0.03 3.89 145.3

TABLE 5.3
The condition numbers of the stiffness matricesÃs of the size65536× 65536 for several choices ofε anda for our bases and bases

from [11, 20].

ε a CF2 CF3 CF ort
2 CF ort

3 CQ D2 D3

1000 1 17.4 16.3 17.1 16.4 62.0 116.3 98.4
1 0 17.4 16.7 17.1 16.4 62.0 116.3 98.4
1 1 17.4 16.7 17.1 16.4 62.0 116.6 98.5

10−3 1 72.1 35.9 35.6 22.5 61.1 328.1 139.2
10−6 1 746.0 577.0 425.7 287.6 46.3 1878.0 1115.4

0 1 872.6 687.4 511.0 351.5 46.4 2034.6 1251.4

Riesz basis inL2 (0, 1), see also Remark4.1. Since the condition numbers of matricesÃs for ε = 1 anda = 0
corresponding to the anisotropic basisΨ⊗Ψ with respect to theH1-seminorm depend on the condition numbers
of Ψs both with respect to theL2-norm and theH1-seminorm, they are also increasing, see Figure5.2. Thus
in our case an isotropic wavelet basis from Section 2 has bounded and significantly smaller condition number
than an anisotropic basis. We performed numerical experiments with both types of bases, but since the isotropic
system lead to significantly better results we present in Section 6 only the experiments with the isotropic wavelet
bases.
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FIG. 5.1.The condition numbers of the matricesÃs, s = J − j0 +1, for the one-dimensional problem(5.1) with parametersε = 1,
a = 0, andε = 0, a = 1. The parameterJ denotes the finest level andj0 denotes the coarsest level.

6. Numerical examples. In this section we use the constructed wavelet basis in the wavelet-Galerkin
method and the adaptive wavelet method.

6.1. Multilevel Galerkin method. We consider the problem (5.1) with Ω2, ε = 1 anda = 0. The right-
hand sidef is such that the solutionu is given by:

u (x, y) = v (x) v (y) , v (x) = x
(
1− e50x−50

)
.
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FIG. 5.2. The condition numbers of the matrices̃As, s = J − j0 + 1, for ε = 1, a = 0 and two-dimensional wavelet bases
constructed using an isotropic approach and an anisotropicapproach. The parameterJ denotes the finest level andj0 denotes the coarsest
level.

We discretize the equation using the Galerkin method with wavelet basis constructed in this paper and we obtain
discrete problem̃Asũs = f̃s. We solve it by conjugate gradient method using a simple multilevel approach
similarly as in [27, 19]:

1. ComputeÃs andf̃s, choosev0 of the length42.

2. Forj = 0, . . . , s find the solutioñuj of the system̃Ajũj = f̃j by conjugate gradient method with initial
vectorvj defined forj ≥ 1 by

(vj) =

{
ũj−1, i = 1, . . . , kj ,
0, i = kj , . . . , kj+1,

wherekj = 22(j+1).

Let u be the exact solution of (5.1) and

u∗s = (ũ∗
s)

T
(Ds)

−1/2
Ψs,

whereũ∗
s is the exact solution of the discrete problem (5.4). It is known [21] that due to the polynomial exactness

of the spacesspanΨs there exists a constantC independent ofs such that

(6.1) ‖u− u∗s‖ ≤ C2−3s, ‖u− u∗s‖H1(Ωd)
≤ C2−2s,

for u ∈ H3 (Ωd). Let us be an approximate solution obtained by multilevel Galerkinmethod withs levels of
wavelets. It was shown in [27] that if we use the criterion for terminating iterations‖rs‖2 ≤ C2−2s, where
rs := Ãsũs − f̃s, then we achieve forus the same convergence rate as foru∗s. In our example, for the given
number of levelss we use the criterion‖rj‖2 ≤ 10−42−2s, j = 0, . . . , s, for terminating iterations in each
level.

We denote the number of iterations on the levelj asMj . It is known [21] that employing the discrete
wavelet transform one CG iteration can be performed with complexity of the orderO (N), whereN × N is
the size of the matrix. Therefore the number of operations needed to compute one CG iteration on the levelj
requires about one quarter of operations needed to compute one CG iteration on the levelj+1, we compute the
total number of equivalent iterations by

M =

s∑

j=0

Mj

4s−j
.

The results are listed in Table6.1. It can be seen that the number of conjugate gradient iterations is quite small
and that

‖us − u‖∞
‖us+1 − u‖∞

≈ ‖us − u‖
‖us+1 − u‖ ≈ 1

8
,
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i.e., that the order of convergence is3. It corresponds to (6.1). The parametersr2 andr∞ in Table6.1 are the
experimental rates of convergence, i.e.

(r2)s =
log (‖us−1 − u‖ / ‖us − u‖)

log 2
, (r∞)s =

log (‖us−1 − u‖∞ / ‖us − u‖∞)

log 2
.

We presented also the wall clock time in Table6.1. It includes the computation of the right-hand side, the system
matrix, iterations and evaluation of the solution on the grid with the step size2−j0−s, wherej0 is the coarsest
level.

TABLE 6.1
Number of iterations and error estimates for multilevel conjugate gradient method.

CF2

s N M ‖us − u‖∞ r∞ ‖us − u‖ r2 time [s]
1 64 18.50 3.19e-1 4.54e-2 0.04
2 256 21.63 1.32e-1 1.27 1.26e-3 5.17 0.05
3 1 024 23.66 2.60e-2 2.34 2.02e-3 2.64 0.06
4 4 096 23.00 2.91e-3 3.16 2.45e-4 3.04 0.09
5 16 384 20.89 4.06e-4 2.84 2.89e-5 3.08 0.16
6 65 536 18.37 5.35e-5 2.92 3.41e-6 3.08 0.30
7 262 144 15.68 6.82e-6 2.97 4.23e-7 3.01 0.99
8 1 048 576 13.02 8.63e-7 2.98 5.28e-8 3.00 3.89
9 4 194 304 10.35 1.08e-7 3.00 6.59e-9 3.00 14.87

10 16 777 216 8.85 1.41e-8 2.94 8.25e-10 3.00 58.12
D2, P2, B2

s N M ‖us − u‖∞ r∞ ‖us − u‖ r2 time [s]
1 64 27.50 3.19e-1 4.54e-2 0.04
2 256 48.88 1.32e-1 1.27 1.26e-3 5.17 0.07
3 1 024 59.22 2.60e-2 2.34 2.02e-3 2.64 0.11
4 4 096 59.38 2.91e-3 3.16 2.45e-4 3.04 0.19
5 16 384 50.76 4.06e-4 2.84 2.89e-5 3.08 0.33
6 65 536 39.44 5.35e-5 2.92 3.41e-6 3.08 0.68
7 262 144 29.92 6.84e-6 2.97 4.23e-7 3.01 2.20
8 1 048 576 21.50 8.64e-7 2.98 5.29e-8 3.00 9.53
9 4 194 304 17.66 1.09e-7 2.99 6.73e-9 2.97 47.39

10 16 777 216 15.79 1.38e-8 2.98 9.43e-10 2.84 248.41
CQ

s N M ‖us − u‖∞ r∞ ‖us − u‖ r2 time [s]
0 64 13.00 3.19e-1 4.54e-2 0.03
1 256 30.25 1.32e-1 1.27 1.26e-3 5.17 0.05
3 1 024 35.06 2.60e-2 2.34 2.02e-3 2.64 0.07
4 4 096 33.82 2.91e-3 3.16 2.45e-4 3.04 0.14
5 16 384 30.30 4.06e-4 2.84 2.89e-5 3.08 0.21
6 65 536 25.32 5.35e-5 2.92 3.41e-6 3.08 0.41
7 262 144 20.74 6.84e-6 2.97 4.23e-7 3.01 1.39
8 1 048 576 17.87 8.64e-7 2.98 5.29e-8 3.00 5.55
9 4 194 304 14.82 1.08e-7 3.00 6.73e-9 2.97 21.62

10 16 777 216 12.36 1.36e-8 2.99 8.56e-10 2.97 83.54

6.2. Adaptive wavelet method.We compare the quantitative behavior of the adaptive wavelet method
with our wavelet basis, the wavelet basis from [11], and the wavelet basis that is a modification of the basis from
[5], see AppendixA. We consider the equation (5.1) with d = 1, ε = 1, a = 0, and the solution

u (x) = e−| x4− 1
8 | − e−

1
8 + sin 3πx, x ∈ [0, 1] .
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Note thatu is the sum of the infinitely differentiable function and the function

g (x) = e−| x4− 1
8 |

which has not derivative in the point0.5. Let ĝ be the Fourier transform ofg, i.e.

ĝ (ξ) =

∫

R

g (x) e−ixξdx.

Since
∫

R

|ξ|2µ |ĝ (ξ)|2 dξ =
∫

R

64 |ξ|2µ

(16ξ2 + 1)
2 dξ

is finite forµ < 3/2 and it is not finite forµ ≥ 3/2, the solutionu belongs to the Sobolev spaceu ∈ Hs (0, 1)
only for s < 3/2. Therefore it is not guarantied that (6.1) holds and that the Galerkin method converges
with the optimal rate. Sinceu is continuous and piecewise smooth, it can be shown thatu belongs to the
Besov spaceBs

τ,τ (0, 1) for anys > 0 andτ = (s+ 1/2)
−1. It is therefore convenient to solve this problem

with the adaptive wavelet method proposed in [6, 7], because it is proved that this method converges with the
optimal rate for functions from such spaces. More precisely, let uj be the approximate solution in thejth step
and letρj denote the error in the energy norm which is in this example the same as theH1-seminorm, i.e.,
ρj = |u− uj |H1 . Letuj be the vector of coefficients corresponding touj and letNj be the number of nonzero
entries ofuj . It follows from the theory developed in [7] that if the used basis is a quadratic spline wavelet basis
then there exists a constantC independent onj such that

(6.2) ρj ≤ CN−r
j for any r < 2.

The method insists in solving the infinite preconditioned system (5.3) with Richardson iterations. The algorithm
contains the routineCOARSE that is based on thresholding the coefficients and the routine RHS that approx-
imate the vector of the right-hand side that is infinite by a finite vector with a prescribed accuracy. For details
about these two routines we refer to [7]. It is possible to modify the algorithm such that the routine COARSE
is avoided, see [14]. Furthermore, it is necessary to have a routine that enables to compute a multiplication of
the biinfinite matrixÃ with a finitely supported vector. This routine calledAPPLY was proposed in [7] and
modified in [24, 12]. We use the version from [24]. We use the similar version of the method and notations that
is presented asCDD02SOLVE in [14]. We compute the relaxation parameterω and the error reduction factor
ρ by

ω =
2

λmax

(
Ã
)
+ λmix

(
Ã
) , ρ =

condÃ− 1

condÃ+ 1
,

and we setθ = 0.3 andK ∈ N such that2ρK/θ < 0.6.
We use the following version of the method:

ALGORITHM 15. SOLVE [Ã, f , ε] → uε

1. Setj := 0, u0 := 0, andε0 ≥ ‖ũ‖2.
2. Whileεj > ε do

z0 := uj ,
For l = 1, . . . ,K do

zl := zl−1 + ω
(

RHS[f , εjρ
l

2ωK ]− APPLY [Ã, zl−1,
εjρ

l

2ωK ]
)

,

end for,
j := j + 1

εj :=
2ρKεj−1

θ ,
uj := COARSE[zK , (1− θ) εj ],

end while,
uε := uj .

We use the following parameters in the numerical experiments:
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FIG. 6.1.The convergence history for adaptive wavelet scheme with various wavelet bases.

- CF2: ω = 1.04, ρ = 0.48,K = 4,
- D2: ω = 0.89, ρ = 0.70,K = 7,
- CQ3: ω = 0.95, ρ = 0.87,K = 18.

The convergence history is shown in Figure6.1. Since the entries of the matrix̃A, the estimates of eigen-
values ofÃ and the parametersω, ρ andK were precomputed for every basis, the wall clock time includes the
computation of the right-hand side and the computation of iterations. The experimental convergence rate, i.e.,
the parameterr from (6.2) estimated for the observed values(Nj , ρj) by the least square method, for basesCF2,
D2, andCQ wasr ≈ 1.87, r ≈ 1.95, andr ≈ 1.77, respectively. It can be seen that the number of iterations
and the computational time needed to resolve the problem with desired accuracy is significantly smaller for the
new wavelet basis. Moreover, due to the shorter support of the wavelets, the stiffness matrix is sparser and thus
one iteration requires smaller number of operations.

Appendix A. Quadratic spline wavelet bases.
In this section we present inner and boundary scaling functions and wavelets that were used in numerical

experiments in Section6. The wavelet bases is generated from these function by the similar way as in (2.6) and
(2.9). Let φ be given by (2.2) and φ̌b = 2φb/3, whereφb is given by (2.4). Since diagonal preconditioning
(5.4) is similar to the normalization of the basis with respect tothe energy norm, the multiplication ofφb with a
constant has no effect on resulting condition numbers presented in Section5 and numerical results in Section6.
The wavelets are given by

ψ̌ (x) =

7∑

k=0

gkφ (2x− k) , ψ̌i = gi−1φ̌
b (2x) +

5∑

k=0

gikφ (2x− k) ,

for i = 1, 2. The values of the parametersgk andgik are presented for several constructions below.

A.1. Primbs wavelet basis.The parameters for the construction from [20] are given by

[g0, . . . , g7] = [−3,−9, 7, 45,−45,−7, 9, 3] /64,

[
g1−1, . . . , g

1
6

]
=

[
−10,

65

6
,− 9

14
,−31

7
,−11

21
,
15

14
,
5

14

]
/64,

[
g2−1, . . . , g

2
6

]
=

[
−10

3
,−5

6
,
65

6
,−25

3
,−13

9
,
3

2
,
1

2

]
/64.

More precisely, in [20] the parameters are multiplications of these parameters, but as we already mentioned
different normalization does not play a role, because we usediagonal preconditioning (5.4) in our experiments.

A.2. Dijkema wavelet basis. There are several constructions in [11]. We used the parameters that are
listed in the file mats.zip attached to [11], but we found that in the case of quadratic spline wavelets with three
vanishing moments and homogeneous boundary conditions these parameters are multiples of the parameters
from [20] and thus they lead to the same results.

A.3. Modification of Chui-Quak wavelet basis. In [5] the semiorthogonal quadratic spline wavelets with
three vanishing moments were adapted to the interval. We adapt these wavelets to homogeneous boundary
conditions. Since wavelets on the levelj are linear combinations of scaling functions on the levelj + 1, they
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are given by2j+1 parameters. We want to preserve semiorthogonality, therefore we have2j conditions on
orthogonality to scaling functions on the levelj. Furthermore, we want to preserve three vanishing moments.
We obtain homogeneous system with2j + 2 independent equations with2j+1 variables that has only2j − 2
independent solutions. Therefore there exists only2j − 2 wavelets with three vanishing moments that are
semiorthogonal. We add two wavelets on each level that are semiorthogonal but without vanishing moments.
We obtain wavelets with parameters:

[g0, . . . , g7] = [−1, 29,−147, 303,−303, 147,−29, 1] /480,[
g1−1, . . . , g

1
6

]
= [450,−332, 148,−29, 1, 0, 0] /480,

[
g2−1, . . . , g

2
6

]
=

[
780

11
,−1949

11
,
3481

11
,−3362

11
,
1618

11
,−29, 1

]
/480.

A.4. Modification of Bittner wavelet basis. In [3] spline wavelet bases on the interval were constructed.
We use the similar approach as in [3], but for quadratic spline wavelets with three vanishing moments satisfying
homogeneous boundary conditions. The inner wavelet is the third derivative of the sixth-order B-spline on
knots[0, 1, 2, 5/2, 3, 4, 5]. The boundary wavelets are the third derivatives of the sixth-order B-splines on knots
[0, 0, 1/2, 1, 2, 3, 4] and[0, 0, 1, 3/2, 2, 3, 4], respectively. We found that by this approach we again obtain the
same wavelets up to a constant factor as in [11, 20].
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The paper is concerned with the construction of a cubic spline wavelet basis on the unit

interval and an adaptation of this basis to the first-order homogeneous Dirichlet boundary

conditions. The wavelets have four vanishing moments and they have the shortest possible

support among all cubic spline wavelets with four vanishing moments corresponding to B-

spline scaling functions. We provide a rigorous proof of the stability of the basis in the space

L2 (0, 1) or its subspace incorporating boundary conditions. To illustrate the applicability of

the constructed bases we apply the wavelet-Galerkin method to option pricing under the double

exponential jump-diffusion model and we compare the results with other cubic spline wavelet

bases and with other methods.
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1. Introduction

Wavelets have already found applications in numerous fields, including signal analysis,

image processing, approximation theory, engineering applications, and numerical simula-

tions. They have been used for the numerical solution of various types of partial differen-

tial and integral equations. Wavelet methods are suitable for preconditioning of systems

of linear algebraic equations arising from the discretization of elliptic problems,19 adap-

tive solution of operator equations,16 the numerical solution of certain types of partial

differential equations with a dimension independent convergence rate.23 Wavelet meth-

ods seem to be superior to classical methods especially for the solution of integral and

partial integro-differential equations, because they enable to represent the integral term

by sparse or almost sparse matrices while the classical methods suffer from the fact that

the matrices arising from discretization are full.3,12

The quantitative properties of any wavelet method strongly depend on the used

wavelet basis, namely on the length of the support of basis functions, the number of

vanishing wavelet moments, the smoothness of basis functions and the condition number

of the basis. Hence, a construction of appropriate wavelet bases is an important issue.

In this paper, we construct a cubic spline wavelet basis on the interval and we adapt

this basis to homogeneous Dirichlet boundary conditions of the first order. The bases

are well-conditioned, the wavelets have four vanishing moments and we show that the

support is the shortest among all cubic spline wavelets with four vanishing moment

corresponding to B-spline scaling functions. The wavelet basis is composed of scaling

1
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functions and inner and boundary wavelets. The inner wavelets are the same as wavelets

constructed in Ref. 11, 28. We provide a rigorous proof of the Riesz basis property. While

such proofs are usually based on semiorthogonality of the wavelets,15,34 the local supports

of the biorthogonal wavelets,18,20 the estimates of the norms of certain projections7,36

or spectral properties of the matrices of the inner products of primal and dual scaling

functions,8,9, 24 we use a different approach that is based on analyzing the sets of inner

and boundary wavelets separately and verifying the minimal angle condition between

spaces generated by inner and boundary wavelets.

To illustrate the applicability of the bases we apply the Crank-Nicolson scheme com-

bined with the Galerkin method with the constructed basis for option pricing under

the double exponential jump-diffusion model that was proposed by Kou in Ref. 39. This

model is represented by a nonstationary partial integro-differential equation. We show the

decay of elements of the matrices arising from discretization of the integral term. Due to

this decay the discretization matrices can be truncated and represented by quasi-sparse

matrices while the most standard methods suffer from the fact that the discretization

matrices are full. Since the basis functions are piecewise cubic we obtain a high order

convergence and the problem can be resolved with the small number of degrees of free-

dom. We present numerical examples for European options and we compare the results

with other cubic spline wavelet bases and with other methods. For more details about

wavelet-Galerkin method and using this method for the numerical solution of various

option pricing problems we refer the reader to Ref. 25, 31, 32, 44.

First, let us briefly recall constructions of cubic spline wavelet and multiwavelet bases

on the interval. Several constructions of biorthogonal B-spline wavelet bases on the in-

terval were proposed in Ref. 20. In these cases both the primal and dual wavelets are

local, but the disadvantage of these bases is their relatively large condition number.

Modifications of these constructions that lead to better conditioned bases can be found

in Ref. 4, 5, 6, 22, 42. Biorthogonal cubic Hermite spline multiwavelet bases on the in-

terval with local duals were designed in Ref. 18, 45. Several cubic spline wavelet and

multiwavelet bases with nonlocal duals have been constructed and adapted to various

types of boundary conditions in Ref. 7, 8, 9, 10, 15, 24, 30, 34, 35, 36, 38, 41, 43. The

main advantages of these types of bases in comparison with bases with local duals are

usually the shorter support of wavelets, the lower condition number of the basis and the

corresponding stiffness matrices, and the simplicity of the construction.

We recall the concept of a wavelet basis and introduce the notation. Let (a, b) be a

bounded interval. Let L2 (a, b) be a Hilbert space of all Lebesgue measurable real-valued

functions defined on (a, b) such that their L2-norm

‖f‖ =




b∫

a

f2 (x) dx




1/2

(1.1)

is finite. This space is equipped with the inner product

〈f, g〉 =
b∫

a

f (x) g (x) dx. (1.2)

Let H1 (a, b) be the Sobolev space, i.e. the space of all functions from L2 (a, b) for which

their first-order weak derivatives also belong to L2 (a, b).
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We consider four spaces, the space V N (a, b) = L2 (a, b) and the subspaces of L2 (a, b)

incorporating homogeneous boundary conditions in one or both endpoints, namely the

spaces

V D (a, b) =
{
v ∈ H1 (a, b) : v (a) = v (b) = 0

}
, (1.3)

V L (a, b) =
{
v ∈ H1 (a, b) : v (a) = 0

}
, (1.4)

V R (a, b) =
{
v ∈ H1 (a, b) : v (b) = 0

}
, (1.5)

equipped with inner product (1.2). We use the shorthand notation V r = V r (0, 1), r =

N,D,L,N . We construct wavelet bases for these spaces and prove their L2-stability.

Let J be a finite or countably infinite index set and let

‖v‖ =

√∑

λ∈J
v2λ, for v = {vλ}λ∈J , vλ ∈ R, (1.6)

and

l2 (J ) =
{
v : v = {vλ}λ∈J , vλ ∈ R, ‖v‖ <∞

}
. (1.7)

For the operator M : l2 (J ) −→ l2 (J ) we define its spectral norm as

‖M‖ = sup
0 6=v∈l2(J )

‖Mv‖
‖v‖ . (1.8)

Schur’s Theorem implies that if M is symmetric and its 1-norm defined as

‖M‖1 = sup
j∈J

∑

i∈J
|Mi,j | (1.9)

is finite, then M is a bounded operator on l2 (J ) and ‖M‖ ≤ ‖M‖1. Let λi, i ∈ J , be

eigenvalues of M and let us denote

λmax (M) = sup
i∈J

|λi| , λmin (M) = inf
i∈J

|λi| . (1.10)

Let H ⊂ L2 (a, b) be a real Hilbert space equipped with the inner product 〈·, ·〉H and

the norm ‖·‖H . Our aim is to construct a wavelet basis for H in the sense of the following

definition.

Definition 1.1. Let J be at most countable index set where each index λ ∈ J takes the

form λ = (j, k) and let denote |λ| = j ∈ Z. A family Ψ = {ψλ, λ ∈ J } is called a wavelet

basis of H, if

i) Ψ is a Riesz basis for H, i.e. the span of Ψ is dense in H and there exist constants

c, C ∈ (0,∞) such that

c ‖b‖ ≤
∥∥∥∥∥
∑

λ∈J
bλψλ

∥∥∥∥∥
H

≤ C ‖b‖ , (1.11)

for all b = {bλ}λ∈J ∈ l2 (J ).

ii) The functions are local in the sense that

diam supp ψλ ≤ C2−|λ|, λ ∈ J , (1.12)

where the constant C does not depend on λ, and at a given level j the supports

of only finitely many wavelets overlap at any point x.
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iii) The family Ψ has the hierarchical structure

Ψ = Φj0 ∪
K⋃

j=j0

Ψj (1.13)

for some K ∈ N ∪ {∞}.
iv) There exists L ≥ 1 such that all functions ψλ ∈ Ψj, j0 ≤ j ≤ K, have L

vanishing moments, i.e.

b∫

a

xk ψλ (x) = 0, k = 0, . . . , L− 1. (1.14)

The definition of a wavelet basis is not unified in the mathematical literature and the

conditions i)− iv) from Definition 1.1 can be generalized. The functions from the set Φj0
are called scaling functions and the functions from the set Ψj , j ≥ j0, are called wavelets

on the level j. Wavelets in the inner part of the interval are typically translations and

dilations of one function ψ or several functions ψ1, . . . , ψp also called wavelets and the

functions near the boundary are derived from functions called boundary wavelets.

The Riesz basis property (1.11) is crucial for stability and accuracy of the computation

and for many types of operator equations it guaranties that the diagonally preconditioned

system matrix is well conditioned.17,19

For the two countable sets of functions Γ,Θ ⊂ L2 (Ω) the symbol 〈Γ,Θ〉 denotes the
matrix

〈Γ,Θ〉 = {〈γ, θ〉}γ∈Γ,θ∈Θ . (1.15)

Remark 1.1. The constants

cΨ = sup {c : c satisfies (1.11)} and CΨ = inf {C : C satisfies (1.11)} (1.16)

are called (optimal) Riesz bounds and the number cond Ψ = CΨ/cΨ is called the condition

number of Ψ. In some papers the squares of norms are used in (1.11) and Riesz bounds

are defined as c2Ψ and C2
Ψ. The Gram matrix 〈Ψ,Ψ〉 can be finite or biinfinite and it

is known that it represents a linear operator which is continuous, positive definite, and

self-adjoint, and that the constants cΨ and CΨ satisfy

cΨ =
√
λmin (〈Ψ,Ψ〉), CΨ =

√
λmax (〈Ψ,Ψ〉). (1.17)

Remark 1.2. The set of functions is called a Riesz sequence in H if there exist positive

constants c and C that satisfy (1.11) but the closure of this set is not necessarily H.

2. Construction of a cubic spline wavelet basis on the unit interval

We define a scaling basis as a basis of cubic B-splines in the same way as in Ref. 5, 15,

42. Let φ be a cubic B-spline defined on knots [0, 1, 2, 3, 4]. It can be written explicitly

as

φ(x) =





x3

6 , x ∈ [0, 1],

−x3

2 + 2x2 − 2x+ 2
3 , x ∈ [1, 2],

x3

2 − 4x2 + 10x− 22
3 , x ∈ [2, 3],

(4−x)3
6 , x ∈ [3, 4],

0, otherwise.

(2.1)
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Then φ satisfies a scaling equation

φ (x) =
φ (2x)

8
+
φ (2x− 1)

2
+

3φ (2x− 2)

4
+
φ (2x− 3)

2
+
φ (2x− 4)

8
. (2.2)

We define three boundary scaling functions. Let φb0 be a cubic B-spline defined on knots

[0, 0, 0, 0, 1], i.e.

φb0(x) =

{
(1− x)

3
, x ∈ [0, 1],

0, otherwise.
(2.3)

Furthermore, let φb1 be a cubic B-spline defined on knots [0, 0, 0, 1, 2] and φb2 be a cubic

B-spline defined on knots [0, 0, 1, 2, 3]. The explicit forms of φb1 and φb2 are

φb1(x) =





7x3

4 − 9x2

2 + 3x, x ∈ [0, 1],
(2−x)3

4 , x ∈ [1, 2],

0, otherwise,

(2.4)

and

φb2(x) =





− 11x3

12 + 3x2

2 , x ∈ [0, 1],
7x3

12 − 3x2 + 9x
2 − 3

2 , x ∈ [1, 2],
(3−x)3

6 , x ∈ [2, 3],

0, otherwise.

(2.5)

Then the functions φb0, φb1, and φb2 satisfy scaling equations

φb0 (x) = φb0 (2x) +
φb1 (2x)

2
, (2.6)

φb1 (x) =
φb1 (2x)

2
+

3φb2 (2x)

4
+

3φ (2x)

16
, (2.7)

φb2 (x) =
φb2 (2x)

4
+

11φ (2x)

16
+
φ (2x− 1)

2
+
φ (2x− 2)

8
. (2.8)

The graphs of the functions φb0, φb1, φb2, and φ are displayed in Figure 1.

0 1 2 3
0

0.2

0.4

0.6

0.8

1

b0

b1

b2

0 1 2 3 4
0

0.2

0.4

0.6

0.8

Fig. 1. The boundary scaling functions φb0, φb1, and φb2 (left) and the scaling function φ (right).
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For j ≥ 3 and x ∈ [0, 1] we set

φj,k(x) =
2j/2φ(2jx− k + 3)

‖φ‖ , k = 3, ..., 2j , (2.9)

φj,0(x) =
2j/2φb0(2

jx)

‖φb0‖
, φj,2j+3(x) =

2j/2φb0(2
j(1− x))

‖φb0‖
,

φj,1(x) =
2j/2φb1(2

jx)

‖φb1‖
, φj,2j+2(x) =

2j/2φb1(2
j(1− x))

‖φb1‖
,

φj,2(x) =
2j/2φb2(2

jx)

‖φb2‖
, φj,2j+1(x) =

2j/2φb2(2
j(1− x))

‖φb2‖
.

Hence, the basis functions φj,k are normalized with respect to the L2-norm. Since there

are four types of spaces, we define four types of scaling bases

ΦNj =
{
φj,k, k = 0, . . . , 2j + 3

}
, (2.10)

ΦDj =
{
φj,k, k = 1, . . . , 2j + 2

}
, (2.11)

ΦLj =
{
φj,k, k = 1, . . . , 2j + 3

}
, (2.12)

ΦRj =
{
φj,k, k = 0, . . . , 2j + 2

}
, (2.13)

for j ≥ 3. We define a wavelet ψ as

ψ(x) = φ(2x− 1)− 4φ(2x− 2) + 6φ(2x− 3)− 4φ(2x− 4) + φ(2x− 5). (2.14)

Then suppψ = [0.5, 4.5] and ψ has four vanishing moments, i.e.

4.5∫

0.5

xkψ(x)dx = 0, k = 0, 1, 2, 3. (2.15)

It can be verified easily using substitution of (2.1) and (2.14) into (2.15).

In the following lemma we show that the wavelet ψ has the shortest possible support

among all wavelets with four vanishing moments that are generated from cubic B-splines.

Lemma 2.1. Let the function φ be given by (2.1). If

ψ ∈ span {φ (2 · −k) , k ∈ Z} (2.16)

and ψ has four vanishing moments, then the length of the support of ψ is at least four.

Proof. Since ψ ∈ span {φ (2 · −k) , k ∈ Z} we have

ψ (x) =
∑

k∈Z
hkφ (2x− k) , x ∈ R,

for some coefficients hk ∈ R. Let us suppose that the length of the support of ψ is at

most four. Then

suppψ ⊂
[
j

2
,
j + 8

2

]
(2.17)

for some j ∈ Z. Since

ψ (x) = 0 for x ∈
[
k

2
,
k + 1

2

]
, k ∈ Z\ {j, j + 1, . . . , j + 7} , (2.18)
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and

suppφ (2 · −k) =
[
k

2
,
k + 4

2

]
, (2.19)

the coefficients satisfy

hk = 0, k ∈ Z\ {j, j + 1, j + 2, j + 3, j + 4} . (2.20)

Due to the four vanishing moments of the function ψ we obtain a homogeneous system of

four linearly independent algebraic equations for the five parameters hj , . . . , hj+4. Thus

up to a multiplication by a constant and shifting by k/2, k ∈ Z, there is only one wavelet

that has the length of the support at most four and this wavelet is a wavelet defined

by (2.14).

The boundary wavelets ψb1 and ψb2 are defined by

ψb1(x) =
25

3
φb0(2x)−

385

36
φb1(2x) +

1489

216
φb2(2x)−

369

160
φ(2x) +

2

5
φ(2x− 1), (2.21)

and

ψb2(x) = 6φb1(2x)−
57

5
φb2(2x) +

919

100
φ(2x)− 116

25
φ(2x− 1) + φ(2x− 2). (2.22)

Then suppψb1 = [0, 2.5], suppψb2 = [0, 3], and both wavelets have four vanishing mo-

ments, i.e.

2.5∫

0

xkψb1(x)dx = 0 and

3∫

0

xkψb2(x)dx = 0, (2.23)

for k = 0, 1, 2, 3.

Using the similar argument as in the proof of Lemma 2.1 it is easy to see that also the

boundary wavelets ψb1 and ψb2 have the shortest possible supports among all boundary

wavelets with four vanishing moments corresponding to scaling functions defined by (2.9)

and that other such boundary wavelets with the supports in [0, 3] are linear combinations

of ψb1 and ψb2.

Then the wavelet basis on the level j ≥ 3 is defined as

ΨNj =
{
ψj,k, k = 1, . . . , 2j

}
, (2.24)

where

ψj,k(x) =
2j/2ψ(2jx− k + 2)

‖ψ‖ , k = 3, ..., 2j − 2, (2.25)

ψj,1(x) =
2j/2ψb1(2

jx)

‖ψb1‖
, ψj,2j (x) =

2j/2ψb1(2
j(1− x))

‖ψb1‖
, (2.26)

ψj,2(x) =
2j/2ψb2(2

jx)

‖ψb2‖
, ψj,2j−1(x) =

2j/2ψb2(2
j(1− x))

‖ψb2‖
. (2.27)

Hence, the basis functions ψj,k are also normalized with respect to the L2-norm. To

adapt the set ΨNj to homogeneous Dirichlet boundary conditions we have to replace the

function ψb1 which is not equal to zero in the point 0 with another function. We denote

this function as ψb3 and we define it as

ψb3(x) =
7

3
φb2(2x)−

319

60
φ(2x) +

101

15
φ(2x− 1)− 25

6
φ(2x− 2) + φ(2x− 3). (2.28)
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Then the wavelet ψb3 has also four vanishing moments and its support is [0, 3.5]. We

define the boundary functions on the level j ≥ 3 that are adapted to homogeneous

Dirichlet boundary conditions as

ψDj,1(x) =
2j/2ψb2(2

jx)

‖ψb2‖
, ψDj,2j (x) =

2j/2ψb2(2
j(1− x))

‖ψb2‖
, (2.29)

ψDj,2(x) =
2j/2ψb3(2

jx)

‖ψb3‖
, ψDj,2j−1(x) =

2j/2ψb3(2
j(1− x))

‖ψb3‖
.

We set

ΨDj =
{
ψDj,k, k = 1, 2, 2j − 1, 2j

}
∪
{
ψj,k, k = 3, . . . , 2j − 2

}
, (2.30)

ΨLj =
{
ψDj,k, k = 1, 2

}
∪
{
ψj,k, k = 3, . . . , 2j

}
, (2.31)

ΨRj =
{
ψj,k, k = 1, . . . , 2j − 2

}
∪
{
ψDj,k, k = 2j − 1, 2j

}
. (2.32)

The graphs of wavelets ψb1, ψb2, ψb3, and ψ are displayed in Figure 2.

0 1 2 3
-5

0

5

10

b1

b2

b3

1 2 3 4
-2

-1

0

1

2

3

Fig. 2. The boundary wavelets ψb1, ψb2, ψb3, and the wavelet ψ.

Our aim is to show that for r = N,D,L,R, the set

Ψr = Φr3 ∪
∞⋃

j=3

Ψrj , (2.33)

is a Riesz basis of the space V r. We denote the finite-dimensional subset of Ψr with s

levels of wavelets as

Ψrs = Φr3 ∪
2+s⋃

j=3

Ψrj . (2.34)

First we define auxiliary bases Ψ̌r and Ψ̌rj , r = N,D,L,R, that contain the same

inner wavelets and generate the same spaces, i.e. span Ψ̌rj = spanΨrj , but boundary

wavelets are different. The reason is that some constants characterizing the bases that

are used in the proof of the Riesz basis property are too large for the bases Ψr. Hence,

let us define

ψ̌b1(x) = ψb1(x)− 0.3ψb2(x), ψ̌b2(x) = 0.3ψb1(x) + 0.4ψb2(x), (2.35)
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and

ψ̌j,1(x) =
2j/2ψ̌b1(2

jx)∥∥ψ̌b1
∥∥ , ψ̌j,2j (x) =

2j/2ψ̌b1(2
j(1− x))∥∥ψ̌b1
∥∥ , (2.36)

ψ̌j,2(x) =
2j/2ψ̌b2(2

jx)∥∥ψ̌b2
∥∥ , ψ̌j,2j−1(x) =

2j/2ψ̌b2(2
j(1− x))∥∥ψ̌b2
∥∥ . (2.37)

and the wavelet basis on the level j ≥ 3 is defined as

Ψ̌Nj =
{
ψ̌j,k, k = 1, 2, 2j − 1, 2j

}
∪
{
ψj,k, k = 3, . . . , 2j − 2

}
. (2.38)

We define

ψ̌b3(x) = 0.9ψb2(x) + 1.63ψb3(x), ψ̌b4(x) = 0.69ψb2(x)− 0.4ψb3(x), (2.39)

and

ψ̌Dj,1(x) =
2j/2ψ̌b3(2

jx)∥∥ψ̌b3
∥∥ , ψ̌Dj,2j (x) =

2j/2ψ̌b3(2
j(1− x))∥∥ψ̌b3
∥∥ , (2.40)

ψ̌Dj,2(x) =
2j/2ψ̌b4(2

jx)∥∥ψ̌b4
∥∥ , ψ̌Dj,2j−1(x) =

2j/2ψ̌b4(2
j(1− x))∥∥ψ̌b4
∥∥ . (2.41)

and we set

Ψ̌Dj =
{
ψ̌Dj,1, ψ̌

D
j,2, ψ̌

D
j,2j−1, ψ̌

D
j,2j

}
∪
{
ψj,k, k = 3, . . . , 2j − 2

}
, (2.42)

Ψ̌Lj =
{
ψ̌Dj,1, ψ̌

D
j,2, ψ̌j,2j−1, ψ̌j,2j

}
∪
{
ψj,k, k = 3, . . . , 2j − 2

}
, (2.43)

Ψ̌Rj =
{
ψ̌j,1, ψ̌j,2, ψ̌

D
j,2j−1, ψ̌

D
j,2j

}
∪
{
ψj,k, k = 3, . . . , 2j − 2

}
, (2.44)

and for r = N,D,L,R, we set

Ψ̌r = Φr3 ∪
∞⋃

j=3

Ψ̌rj , Ψ̌rs = Φr3 ∪
2+s⋃

j=3

Ψ̌rj , s ∈ N. (2.45)

Now we formulate sufficient conditions under which the sum of Riesz sequences is a

Riesz sequence. We employ frame theory from Ref. 13, 14, 27. Let us recall that {fk}k∈I
is a frame sequence, if there exist constants c̃f , C̃f > 0 such that

c̃f ‖f‖2 ≤
∑

k∈I
|〈f, fk〉|2 ≤ C̃f ‖f‖2 (2.46)

hold for all functions f ∈ span
(
{fk}k∈I

)
. Supremum of {c̃f : c̃f satisfies (2.46)} is called

a lower frame bound.

For the spaces F and G which are subspaces of the space L2 (0, 1), we define two

notions of cosine:

cos (F,G) = sup
0 6=f∈F̃ ,0 6=g∈G̃

|〈f, g〉|
‖f‖ ‖g‖ , cos (F,G) = sup

0 6=f∈F,0 6=g∈G

|〈f, g〉|
‖f‖ ‖g‖ , (2.47)

where F̃ = F∩(F ∩G)⊥, G̃ = G∩(F ∩G)⊥, andM⊥ denotes the orthogonal complement

of M . Clearly 0 ≤ cos (F,G) ≤ cos (F,G) ≤ 1. The following theorem was derived in

Ref. 27.

Theorem 2.1. Let I and J be countable index sets and let {fk}k∈I and {gl}l∈J be frame

sequences in L2 (0, 1) with lower frame bounds c̃f and c̃g, respectively. If cos (F,G) < 1
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for F = span
(
{fk}k∈I

)
and G = span

(
{gl}l∈J

)
, then {fk}k∈I ∪ {gl}l∈J is a frame

sequence with a lower frame bound

c̃f,g = (1− cos (F,G)) ·min (c̃f , c̃g) . (2.48)

The consequence of this theorem is the following theorem about the Riesz sequences.

Theorem 2.2. Let I and J be countable index sets, {fk}k∈I be a Riesz sequence with

a Riesz lower bound cf and {gl}l∈J be a Riesz sequence with a Riesz lower bound cg,

F = span
(
{fk}k∈I

)
and G = span

(
{gl}l∈J

)
. If cos (F,G) < 1, then {fk}k∈I ∪ {gl}l∈J

is a Riesz sequence and its Riesz lower bound c satisfies

c ≥
√

1− cos (F,G) ·min (cf , cg) . (2.49)

Proof. It is known that if {fk}k∈I is a Riesz sequence, then {fk}k∈I is a frame se-

quence.14 From Theorem 2.1 and the fact that cos (F,G) ≤ cos (F,G) < 1 it follows

that {fk}k∈I ∪ {gl}l∈J is a frame sequence. Furthermore, cos (F,G) < 1 implies that

F ∩G = {0} and thus the set {fk}k∈I ∪ {gl}l∈J is ω-independent, i.e.

∑

λ∈J
cλfλ = 0 (2.50)

implies that cλ = 0 for all λ ∈ J . Indeed, if f ∈ {fk}k∈I ∪ {gl}l∈J is nonzero function,

then

cos (F,G) = sup
0 6=u∈F,0 6=v∈G

|〈u, v〉|
‖u‖ ‖v‖ ≥ |〈f, f〉|

‖f‖ ‖f‖ = 1, (2.51)

which is the contradiction. Since a frame sequence of ω-independent functions with a

frame lower bound b is a Riesz sequence with a Riesz lower bound
√
b,14 the Theorem 2.2

is proved.

In the following theorem we derive the upper bound for cos (F,G).

Theorem 2.3. Let I and J be countable index sets, {fk}k∈I be a Riesz sequence with

a Riesz lower bound cf and {gl}l∈J be a Riesz sequence with a Riesz lower bound cg.

Then

cos (F,G) ≤ ‖G‖
cfcg

, (2.52)

where the entries of the matrix G are defined by Gk,l = 〈fk, gl〉, k ∈ I, l ∈ J .

Proof. For u =
∑
k∈I (cu)k fk and v =

∑
l∈J (cv)l gl we have

sup
0 6=v∈G

|〈u, v〉|
‖v‖ ≤ sup

0 6=cv∈l2(J)

|〈Gcu, cv〉|
cg ‖cv‖

=
‖Gcu‖
cg

≤ ‖G‖ ‖cu‖
cg

≤ ‖G‖ ‖u‖
cfcg

. (2.53)

Hence, we have

cos (F,G) = sup
0 6=u∈F,0 6=v∈G

|〈u, v〉|
‖u‖ ‖v‖ ≤ ‖G‖

cfcg
. (2.54)

This completes the proof.
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Now we focus on the inner wavelets that are translations and dilations of ψ. We show

that the set of all these wavelets is a Riesz sequence and estimate its Riesz lower bound.

Theorem 2.4. The set ΨI =
{
ψj,k, k = 3, . . . , 2j − 2, j ≥ 3

}
is a Riesz sequence with a

Riesz lower bound cI > 0.783.

Proof. It was shown in Ref. 11 and Ref. 28 that
{
2j/2ψ

(
2jx− k

)
, j, k ∈ Z

}
(2.55)

is a Riesz basis of the space L2 (R). Since ΨI is its subset, it is a Riesz sequence. We

estimate its Riesz lower bound. Let cKI be a Riesz lower bound of the Riesz sequence

ΨKI =
{
ψj,k, k = 3, . . . , 2j − 2, 3 ≤ j ≤ K

}
which is clearly a subset of ΨI . We estimate

the Riesz lower bounds cKI using Remark 1.1. Due to the structure of the set ΨKI , the

Gram matrix GK
I =

〈
ΨKI ,Ψ

K
I

〉
has the block structure

GK
I =




G3,3 G3,4 . . . G3,K

G4,3 G4,4 . . . G4,K

...
...

. . .
...

GK,3 GK,4 . . . GK,K


 , (2.56)

where Gi,j =
〈
ΨIi ,Ψ

I
j

〉
for ΨIj =

{
ψj,k, k = 3, . . . , 2j − 2

}
. The matrix GK

I is symmetric

and due to the normalization of basis functions it has ones on the diagonal. Let FK1 be

a matrix that contains the diagonal blocks and the blocks next to the diagonal blocks of

the matrix GK
I , but without the diagonal entries, i.e.

FK1 =




G3,3 G3,4 0 . . . 0

G4,3 G4,4 G4,5

...

0 G5,4 G5,5
. . . 0

...
...

. . .
. . . GK−1,K

0 . . . 0 GK,K−1 GK,K




− I, (2.57)

where I is an identity matrix and 0 are zero matrices of appropriate sizes. Let FK2 =

GK
I − FK1 − I. Let x be a normalized eigenvector corresponding to λmin

(
GK
I

)
. Then

λmin
(
GK
I

)
= xTGK

I x = xT Ix+ xTFK1 x+ xTFK2 x (2.58)

≥ 1−
∣∣xTFK1 x

∣∣−
∣∣xTFK2 x

∣∣ .

For k ≥ 3 direct computation yields

(Gk,k)i,j =





1, i = j,

− 7
2652 , |i− j| = 1,

− 7
78 , |i− j| = 2,
7

2652 , |i− j| = 3,

0, otherwise.

(2.59)

The nonzero entries of the matrix Gk+1,k are given by

(Gk+1,k)i,j = hi−2j+1, (2.60)
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for i, j ∈ N such that 1 ≤ i ≤ 2k+1, 1 ≤ j ≤ 2k, and −3 ≤ i− 2j + 1 ≤ 8, and

hk =

4.5∫

0.5

√
2ψ (x)ψ (2x− k) dx. (2.61)

Since ψ is a piecewise polynomial function, it is easy to compute the exact values of hk.

We obtain

[h−3, . . . , h2] = a

[
1

161280
,

169

23040
,− 1187

23040
,
679

4608
,−16643

80640
,
1189

11520

]
(2.62)

with

a =
105

√
2

442
, and hk = h5−k, k = 3, . . . , 8. (2.63)

Due to the symmetry of the matrix GK
I we have Gk,k+1 = GT

k+1,k.

The matrix FK1 is symmetric and thus
∣∣xTFK1 x

∣∣ ≤ λmax
(
FK1

)
and

λmax
(
FK1

)
=

∥∥FK1
∥∥ =

∥∥∥
(
FK1

)m∥∥∥
1/m

(2.64)

for all m ∈ N. Since the matrix FK1 is known in the explicit form, the number of nonzero

entries of FK1 in any row and column is bounded by a constant C independent of K, and

the matrix FK1 has repeated structure, we are able to compute
∥∥(FK1

)m∥∥
1
. For m = 16

we obtain

λmax
(
FK1

)
=

∥∥∥
(
FK1

)m∥∥∥
1/m

≤
∥∥∥
(
FK1

)m∥∥∥
1/m

1
≤ 0.375. (2.65)

Since FK2 is also symmetric, we have
∣∣xTFK2 x

∣∣ ≤ λmax
(
FK2

)
and

λmax
(
FK2

)
=

∥∥FK2
∥∥ ≤

∥∥FK2
∥∥
1
< 0.011. (2.66)

In summary, we have λmin
(
GK
I

)
≥ 1 − 0.375 − 0.011 = 0.614 and cKI ≥

√
0.614 for all

K ≥ 3 and thus cI ≥
√
0.614 > 0.783.

Now we estimate Riesz lower bounds for the sets of boundary wavelets.

Theorem 2.5. a) The set Ψ̌NL =
{
ψ̌j,1, ψ̌j,2, j ≥ 3

}
is a Riesz sequence with a Riesz

lower bound čNL > 0.490.

b) The set Ψ̌DL =
{
ψ̌Dj,1, ψ̌

D
j,2, j ≥ 3

}
is a Riesz sequence with a Riesz lower bound čDL >

0.380.

Proof. a) According to Remark 1.1 the set Ψ̌NL is a Riesz sequence if and only if the

extremal eigenvalues of the (biinfinite) matrix GN
L =

〈
Ψ̌NL , Ψ̌

N
L

〉
satisfy

0 < λmin
(
GN
L

)
≤ λmax

(
GN
L

)
<∞. (2.67)

We denote

Ψ̌N,KL =
{
ψ̌j,1, ψ̌j,2, 3 ≤ j ≤ K

}
, GN,K

L =
〈
Ψ̌N,KL , Ψ̌N,KL

〉
. (2.68)

Due to the length of the supports of the functions ψ̌j,1 and ψ̌j,2, and four vanishing

moments of the wavelets, we have
(
GN,K
L

)
i,j

= 0, if |i− j| > 5. (2.69)
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Hence, the matrix GN,K
L is banded. Moreover it is symmetric, it has repeated structure

and it is known in an explicit form. Therefore, it is easy to compute an estimate of its

1-norm. We have

λmax

(
GN,K
L

)
≤

∥∥∥GN,K
L

∥∥∥
1
≤ 1.763. (2.70)

Let HK = GN,K
L − I, where I is the identity matrix of the appropriate size. We have

λmin

(
GN,K
L

)
≥ 1−

∥∥HK
∥∥ ≥ 1−

∥∥∥
(
HK

)m∥∥∥
1/m

1
≥ 0.241 (2.71)

for m = 4. Since the estimates in (2.70) and (2.71) do not depend on the maximal level

K, the condition (2.67) is satisfied and therefore the set Ψ̌NL is a Riesz sequence and its

Riesz lower bound satisfies čNL >
√
0.241 > 0.490.

b) The proof follows the lines of the proof of the part a) with m = 8.

Corollary 2.1. Since

Ψ̌NR =
{
ψ̌j,2j−1, ψ̌j,2j , j ≥ 3

}
(2.72)

has similar structure as Ψ̌NL , the set Ψ̌NR is a Riesz sequence with a Riesz lower bound

čNR = čNL . Due to the non-overlapping supports of ψ̌j,k, k = 1, 2, and ψ̌j,l, l = 2j − 1, 2j ,

the set Ψ̌Nb = Ψ̌NL ∪ Ψ̌NR is also a Riesz sequence with a Riesz lower bound čNb = čNL = čNR .

Similarly, we define

Ψ̌DR =
{
ψ̌Dj,2j−1, ψ̌

D
j,2j , j ≥ 3

}
, (2.73)

and

Ψ̌Db = Ψ̌DL ∪ Ψ̌DR , Ψ̌Lb = Ψ̌DL ∪ Ψ̌NR , Ψ̌Rb = Ψ̌NL ∪ Ψ̌DR . (2.74)

We denote their Riesz lower bounds by čDb , č
L
b , and č

R
b , respectively. We have čDb = čDL ,

čLb = čRb = min
(
čNL , č

D
L

)
.

For r = N,D,L,R we denote the set of all wavelets as Ψ̌rm = Ψ̌rb∪ΨI . In the following

theorem we prove that Ψ̌rm is a Riesz sequence.

Theorem 2.6. The sets Ψ̌rm, r = N,D,L,R, are Riesz sequences in the space V r.

Proof. From Theorem 2.4 and Corollary 2.1 we already know that ΨI and Ψ̌rb for

r = N,D,L,R, are Riesz sequences. Thus, due to Theorem 2.2 and Theorem 2.3 to

prove that Ψ̌rm is a Riesz sequence it remains to show that the matrix Hr =
〈
Ψ̌rb ,ΨI

〉

satisfies

‖Hr‖
črbcI

< 1. (2.75)

Using the relation

‖Hr‖ =

√∥∥∥Hr (Hr)
T
∥∥∥ ≤

∥∥∥
(
Hr (Hr)

T
)m∥∥∥

1/2m

1
(2.76)

for m = 8 we obtain
∥∥HD

∥∥ < 0.293 and
∥∥HN

∥∥ < 0.278 and we may conclude that (2.75)

is satisfied and that Ψ̌Dm and Ψ̌Nm are Riesz sequences. Hence, also Ψ̌DL ∪ ΨI , Ψ̌
N
L ∪ ΨI ,

ΨI ∪ Ψ̌DR , and ΨI ∪ Ψ̌DL , are Riesz sequences and due to the non-overlapping supports of

the functions from Ψ̌rL and Ψ̌rR, the sets Ψ̌Lm and Ψ̌Rm are also Riesz sequences.
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Theorem 2.7. For r = N,D,L,R, the set Ψr is a Riesz basis of the space V r.

Proof. First we show that the set

Ψ̌r = Φr3 ∪ Ψ̌rm (2.77)

is a Riesz basis of the space V r. We already know that Ψ̌rm is a Riesz sequence. Since Φr3
is a finite set of functions, it is a Riesz sequence too. Therefore, the spaces

F = spanΨ̌am and G = spanΦa3 (2.78)

are closed and since G is finite-dimensional, the set F +G is also closed. The closedness

of F +G and the fact that F ∩G = {0} implies cos (F,G) < 1.21 Since it is known that

the spline spaces V rj = spanΦrj = span Ψ̌rj−3 are nested and their union is dense in V r,

see e.g. Ref. 5, 42, the set Ψ̌r is dense in V r. Due to this fact and Theorem 2.2, the set

Ψ̌r is a Riesz basis of V r.

Since Ψ̌r = MΨr, where M is a biinfinite block diagonal matrix such that the first

diagonal block of M is an identity matrix and other diagonal blocks are of the form



a1 a2 0 . . . 0 0 0

a3 a4 0 0

0 0 1 0
...

. . .
...

0 1 0 0

0 0 b1 b2
0 0 0 . . . 0 b3 b4




, (2.79)

where ai and bi, i = 1, . . . , 4, are determined by the relations (2.35) and (2.39). Since

‖M‖ and
∥∥M−1

∥∥ are bounded and

〈Ψr,Ψr〉 = M−1
〈
Ψ̌r, Ψ̌r

〉 (
M−1

)T
(2.80)

the Remark 1.1 implies that Ψr is a Riesz basis of V r.

Remark 2.1. A wavelet basis on a general domain can be constructed in the following

way: First, the wavelet basis for the space V r (a, b) is derived from Ψr using a simple

linear transformation y = (x− a) / (b− a). Then a wavelet basis on the hyperrectangle

can be constructed using an isotropic, anisotropic, or sparse tensor product. Finally,

by splitting the domain into subdomains which are images of the hyperrectangle under

appropriate parametric mappings one can obtain a wavelet basis on a fairly general

domain.

3. Numerical results

In this section we use the Galerkin method with the constructed wavelets for valuation

of options under a double exponential jump-diffusion model proposed by Kou in Ref. 39

and we compare the results with other approaches and other cubic spline wavelet bases.

Let S be the price of the underlying asset, t represent time to maturity, r be a risk-

free rate and U (S, t) be the market price of the option. Then the general jump-diffusion

models are represented by the equation

∂U

∂t
−D (U)− I (U) = 0, S > 0, t ∈ (0, T ) , (3.1)
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where the operators D and I are given by

D (U) =
σ2S2

2

∂2U

∂S2
+ (r − λκ)S

∂U

∂S
− (r + λ)U (3.2)

and

I (U) = λ

∞∫

−∞

U (Sex, t) g (x) dx. (3.3)

The parameter λ is the intensity of the price jumps, i.e. the average number of jumps

per unit time. The function g represents the probability density function which in the

model of Kou is given by

g (x) = p η1e
−η1xH (x) + q η2e

η2xH (−x) , x ∈ R, (3.4)

where H denotes the Heaviside function, p ∈ (0, 1) represents the probability of the

upward jump, q = 1 − p represents the probability of the downward jump, η1 > 1, and

η2 > 0. The parameter κ in this model is given by

κ =
p η1
η1 − 1

+
q η2
η2 + 1

− 1. (3.5)

The initial and boundary conditions depend on the type of the option. We present

the approach for a European put option. The value of a European call option can be

computed using the put-call parity.1 The initial condition for a European vanilla put

option is given by

U (S, 0) = max (K − S, 0) , (3.6)

where K is the strike price, and the boundary conditions have the form

U (0, t) = Ke−rt,
∂U

∂S
(S, t) ≈ 0 for S → ∞. (3.7)

We choose the maximal value Smax large enough and approximate the unbounded

domain (0,∞) by a domain Ω = (0, Smax). We replace the boundary conditions with

U (0, t) = Ke−rt,
∂U

∂S
(Smax, t) = 0. (3.8)

Furthermore we have

I (U) = λ

∞∫

−∞

U (Sex, t) g (x) dx = λ

∞∫

0

U (y, t)
g
(
log y

S

)

y
dy. (3.9)

Since

U (y, t)
g
(
log y

S

)

y
≈ 0 for y → ∞, (3.10)

we define

Ĩ (U) = λ

Smax∫

0

U (y, t)
g
(
log y

S

)

y
dy (3.11)

and we approximate I (U) ≈ Ĩ (U).
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Let Ũ = U −W , where U is the solution of the equation (3.1) satisfying the initial

and boundary conditions defined above and W is defined by W (S, t) = Ke−rt for S ∈
[0, Smax] and t ∈ [0, T ]. Then Ũ ∈ V L (0, Smax) and Ũ is the solution of the equation

∂Ũ

∂t
−D

(
Ũ
)
− Ĩ

(
Ũ
)
= f (W ) , (3.12)

with

f (W ) = −∂W
∂t

+D (W ) + Ĩ (W ) (3.13)

satisfying the initial condition

Ũ (S, 0) = U (S, 0)−K, S ∈ [0, Smax] , (3.14)

and boundary conditions

Ũ (0, t) = 0,
∂Ũ

∂S
(Smax, t) = 0, t ∈ [0, T ] . (3.15)

We use the Crank-Nicolson scheme for temporal discretization. Let

M ∈ N, τ =
T

M
, tl = lτ, l = 0, . . . ,M, (3.16)

and let us denote

Ũl (S) = Ũ (S, tl) , fl (S) = f (W (S, tl)) . (3.17)

The Crank-Nicolson scheme has the form

Ũl+1 − Ũl
τ

−
D
(
Ũl+1

)

2
−

Ĩ
(
Ũl+1

)

2
=

D
(
Ũl

)

2
+

Ĩ
(
Ũl

)

2
+
fl + fl+1

2
(3.18)

for l = 0, . . . ,M − 1.

Let ΨL be a smooth enough wavelet basis for the space V L (0, Smax), ΨLs be its

finite-dimensional subset with s levels of wavelets, and V Ls = spanΨLs . We define

a (u, v) = 〈D (u) , v〉+
〈
Ĩ (u) , v

〉
, (3.19)

for all u, v ∈ V Ls , s ≥ 1. The Galerkin method consists in finding Ũsl+1 ∈ V Ls such that
〈
Ũsl+1, v

〉

τ
−
a
(
Ũsl+1, v

)

2
=

〈
Ũsl , v

〉

τ
+
a
(
Ũsl , v

)

2
+

〈
fl + fl+1

2
, v

〉
(3.20)

for all v ∈ V Ls . If we set v = ψµ ∈ ΨLs and we expand Ũsl+1 in a basis ΨLs , i.e.

Ũsl+1 =
∑

ψλ∈ΨL
s

usλψλ, (3.21)

then the vector of coefficients us = {usλ} is the solution of the system of linear algebraic

equations Asus = fs, where

As
µ,λ =

〈ψλ, ψµ〉
τ

− a (ψλ, ψµ)

2
(3.22)

and

fsµ =

〈
Ũsl , ψµ

〉

τ
+
a
(
Ũsl , ψµ

)

2
+

〈
fl + fl+1

2
, ψµ

〉
. (3.23)



Cubic spline wavelets with four vanishing moments 17

It is clear that fs and us depend on the time level tl, but for simplicity we omit the

index l.

For preconditioning we use the Jacobi diagonal preconditionerDs, where the diagonal

elements of Ds satisfy

Ds
λ,λ =

√
As
λ,λ. (3.24)

We obtain the preconditioned system

Ãsũs = f̃s (3.25)

with

Ãs = (Ds)
−1

As (Ds)
−1
, f̃s = (Ds)

−1
fs, ũs = Dsus. (3.26)

It is well-known that due to the compact support of the wavelets and a hierarchical

structure of the wavelet basis the matrices arising from discretization of the differential

operator D have so-called finger-band pattern.44 Hence, we focus on the properties of

the matrix Cs with entries

Cs
µ,λ =

〈
Ĩ (ψλ) , ψµ

〉
, ψλ, ψµ ∈ ΨLs . (3.27)

For the standard Galerkin method with the standard spline basis such matrix is full.

However, it is known that for integral equations with some types of kernels and for

wavelet bases with vanishing moments many entries of discretization matrices are small

and can be thresholded and the matrices arising from discretization of the integral term

can be approximated with a matrix that is sparse or quasi-sparse.3,12 The following

theorem provides the decay estimates for the entries of the matrix Cs corresponding to

a general wavelets with L vanishing moments.

Theorem 3.1. Let ψi,k and ψj,l be wavelets with L vanishing moments, i.e. the condi-

tions i)− iv) from Definition 1.1 are satisfied, and let us denote

Ωi,k = suppψi,k, Ωj,l = suppψj,l, Ωi,j,k,l = Ωi,k × Ωj,l. (3.28)

Let ε be some small parameter such that 0 < ε < Smax and let us denote

Ωε = {(S, y) : S 6= y, S, y ∈ [0, Smax]} \ [0, ε]2 . (3.29)

If

interior (Ωi,j,k,l) ⊂ Ωε, (3.30)

then ∣∣∣
〈
Ĩ (ψλ) , ψµ

〉∣∣∣ ≤ C2−(L+
1
2 )(i+j), (3.31)

where C is a constant independent on i, j, k, l.

Proof. Let the centers of the supports of ψi,k and ψj,l be denoted by Si,k and yj,l,

respectively. Let us define

K(S, y)=λ
g
(
log y

S

)

y
, S, y ∈ (0, Smax] , (3.32)

and K(S, y) = 0 if y = 0 or S = 0. If the condition (3.30) is satisfied, then K ∈
C∞ (Ωi,k × Ωj,l). By Taylor Theorem there exists a function P that is a polynomial of
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degree at most L−1 with respect to S and there exists a function Q that is a polynomial

of degree at most L− 1 with respect to y such that

K (S, y) = P (S, y) +Q (S, y) +
1

(2L)!

∂2LK (ξ (S, y))

∂SL∂yL
(S − Si,k)

L
(y − yj,l)

L
, (3.33)

where

ξ (S, y) = (Si,k, yj,l) + α ((S, y)− (Si,k, yj,l)) (3.34)

for some α ∈ [0, 1]. Due to the L vanishing moments of the wavelets ψi,k and ψj,l we

obtain ∫∫

Ωi,j,k,l

P (S, y)ψi,k (S)ψj,l (y) dS dy = 0 (3.35)

and ∫∫

Ωi,j,k,l

Q (S, y)ψi,k (S)ψj,l (y) dS dy = 0. (3.36)

Due to the property ii) from Definition 1.1 there exists a constant C1 independent on

i, j, k, l such that

|S − Si,k|L ≤ C12
−Li, |y − yj,l|L ≤ C12

−Lj . (3.37)

From (2.25) and (2.29) there exists a constant C2 independent on i, j, k, l such that
∫

Ωi,k

|ψi,k (S)| dS ≤ C22
−i/2,

∫

Ωj,l

|ψj,l (y)| dy ≤ C22
−j/2. (3.38)

Hence, we have

∣∣∣
〈
Ĩ (ψi,k) , ψj,l

〉∣∣∣ =

∣∣∣∣∣∣∣

∫∫

Ωi,j,k,l

K (S, y)ψi,k (S)ψj,l (y) dS dy

∣∣∣∣∣∣∣
(3.39)

≤ C

∫∫

Ωi,j,k,l

|S − Si,k|L |y − yj,l|L|ψi,k(S)ψj,l (y)| dSdy

≤ C 2−Li−Lj−i/2−j/2,

with

C =
C1 C2

(2L)!
sup

(S,y)∈Ωε

∣∣∣∣
∂L∂LK (S, y)

∂SL∂yL

∣∣∣∣ . (3.40)

This proves the theorem.

Let

C̃s = (Ds)
−1

Cs (Ds)
−1

(3.41)

with Ds defined in the previous section. Then the discretization matrix Ãs is the sum

of the matrix C̃s and the matrix arising from discretization of the differential operator.

Due to Theorem 3.1 and the local support of wavelets, many entries of the matrix Ãs

are small and they can be thresholded. The structure of the truncated matrix Ãs is
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presented in Figure 3. This matrix contains only entries larger than 10−10 and it was

computed for the option with parameters from Example 3.1 and the wavelet basis from

Section 2 with six levels of wavelets, but the structure is similar for options with other

parameters and for other wavelet bases.

0 100 200 300 400 500
nz = 21183

0

100

200

300

400

500

Fig. 3. The structure of the truncated discretization matrix Ãs.

Example 3.1. We use the proposed scheme for computing values of European vanilla

options. We use the same parameters as in Ref. 26, 33, 37, 40, 46, i.e. option maturity

T = 0.25 year, interest rate r = 0.05, volatility σ = 0.15, intensity λ = 0.1, η1 = 3.0465,

η2 = 3.0775, probability of the upward jump p = 0.3445, and the strike price K = 100.

We choose Smax = 400 and the threshold 10−10 for matrix compression. The resulting

functions representing the values of the options are displayed in Figure 4.

0.20
0

t

put

0.1100

50

S
200

0

100

300

0

50

100

0.2

150

200

t

call

0.1 300

S

200
1000 0

Fig. 4. Functions representing the values of a European put and call option for the Kou model.

The resulting values of the options for the asset prices S = 90, S = 100, and S = 110

are listed in Table 1. According to Ref. 40 the reference value is 9.430457 for S = 90,
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2.731259 for S = 100, and 0.552363 for S = 110 for a put option. Reference values for

call options are computed by put-call parity. In Table 1 we also present the pointwise

errors, i.e. the differences between the computed values and the reference values, and the

experimental rates of convergence computed as

rate =
log error

(
N+2
2 , M4

)
− log error (N,M)

log 2
. (3.42)

The optimal order for the Crank-Nicolson scheme is O
(
τ2
)
and optimal order for cubic

spline approximation is O
(
h4

)
, where h = 1/ (N − 2) represents the spatial step. It

seems that the errors presented in Table 1 correspond to the optimal order O
(
h4 + τ2

)
.

Table 1. Values of a European vanilla put and call options, errors and rates of convergence.

S N M put call error rate

90 18 1 9.558719 0.800939 1.28e-1

34 4 9.465419 0.707639 3.50e-2 1.87

66 16 9.429905 0.672125 5.52e-4 5.99

130 64 9.430436 0.672656 2.21e-5 4.64

258 256 9.430464 0.672684 6.88e-6 1.68

100 18 1 2.949505 4.191725 2.18e-1

34 4 2.707230 3.949449 2.40e-2 3.18

66 16 2.729640 3.971860 1.62e-3 3.89

130 64 2.731205 3.973425 5.31e-5 4.93

258 256 2.731261 3.973481 1.58e-6 5.07

110 18 1 0.264414 11.506634 2.88e-1

34 4 0.550486 11.792706 1.88e-3 7.26

66 16 0.551193 11.793413 1.17e-3 0.68

130 64 0.552399 11.794619 3.53e-5 5.05

258 256 0.552369 11.794588 5.78e-6 2.61

For the convenience of the reader we present in Table 2 the errors for values of

European option with the same parameters as in this example, the Kou model and

methods from Ref. 26, 37, 40. Other numerical results can be found in Ref. 33, 46. In

comparison with methods from Ref. 26, 33, 37, 40, 46, the parameter N representing the

number of basis functions needed to compute the solution with a desired accuracy is for

our method significantly smaller. Thus significantly smaller matrices are involved in the

computation.

The proposed scheme can be used also with other wavelet bases than those con-

structed in this paper. We compare the results with the results for wavelet bases of

similar type, i.e. the wavelet basis that satisfies the following conditions:

i) It was proved that the basis is a Riesz basis of the space V L (0, Smax).

ii) All inner and boundary wavelets should have at least one vanishing moment.

iii) To achieve the similar rate of convergence, the basis functions should be piecewise

cubic.

iv) The basis should be well-conditioned.
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Table 2. Errors for values of European vanilla options for various methods.

Kwon, Lee40 d’Halluin et al.26 Kadalbajoo et al.37

S N M error N M error N M error

90 128 25 3.63e-3 128 34 1.36e-3 128 12 8.42e-4

256 50 8.78e-4 255 65 4.67e-4 256 24 3.06e-4

512 100 2.24e-4 509 132 1.42e-4 512 48 8.48e-5

1024 200 5.60e-5 1017 266 4.70e-5 1024 96 2.24e-5

2048 400 1.40e-5 2033 533 7.00e-6 2048 192 5.79e-6

100 128 25 3.47e-2 128 34 3.51e-3 128 12 1.96e-3

256 50 8.72e-3 255 65 1.00e-3 256 24 3.98e-4

512 100 2.17e-3 509 132 3.72e-4 512 48 8.96e-5

1024 200 5.42e-4 1017 266 1.57e-4 1024 96 2.15e-5

2048 400 1.36e-4 2033 533 7.20e-5 2048 192 5.60e-6

110 128 25 8.15e-3 128 34 5.31e-3 128 12 1.85e-3

256 50 2.10e-3 255 65 2.10e-3 256 24 4.99e-4

512 100 5.28e-4 509 132 9.13e-4 512 48 1.28e-4

1024 200 1.32e-4 1017 266 4.23e-4 1024 96 3.28e-5

2048 400 3.30e-5 2033 533 1.03e-4 2048 192 8.51e-6

The bases that satisfy i)− iii) were constructed e.g. in Ref. 4, 5, 22, 42. However, the

cubic spline wavelet basis from Ref. 42 is not well-conditioned. Since the bases from Ref.

4, 5, 22 have the same inner wavelets and they differ only in the definition of boundary

wavelets, we compare the results for the basis constructed in this paper with the results

for the cubic spline wavelet basis from Ref. 5. Quite surprisingly for us most constructions

of cubic spline wavelet or multiwavelet bases do not satisfy all conditions i)−iv). Indeed,
wavelets from Ref. 15 are not adapted to boundary conditions, the wavelet bases from

Ref. 8, 10, 24, 34 satisfy only the first order Dirichlet boundary conditions, and bases

from Ref. 6, 7, 45 satisfy only the second order Dirichlet boundary conditions. Thus,

these bases satisfy ii)− iv), but do not satisfy i). Constructions of cubic spline wavelets

without adaptation to boundary conditions and without the proof of the Riesz basis

property can be found in Ref. 38, 43. The recently constructed cubic Hermite spline

wavelets from Ref. 29 also have not yet been adapted to be the basis for V L (0, Smax).

Boundary wavelets from Ref. 30 and Ref. 41 do not have vanishing moments.

In Table 3 we present the number of nonzero elements (nnz) of the matrix truncated

using the threshold 10−10 and the condition numbers (cond) of diagonally precondi-

tioned discretization matrices for the Galerkin method with wavelet basis from Section 2

(short4), biorthogonal wavelet basis with 6 vanishing moments from Ref. 5 (bior4.6) and

for the Galerkin method with B-splines (B-splines). Furthermore, we list the number of

outer and the number of inner iterations needed to resolve the resulting system of equa-

tions by the generalized minimal residual method (GMRES) with the following input

parameters: restart after ten iterations, maximum number of outer iterations is 100 and

the iterations stop if the relative residual is less than 10−12. As expected the discretiza-

tion matrix corresponding to B-splines is well-conditioned but full. The truncated matrix

corresponding to biorthogonal wavelets from Ref. 5 is quasi-sparse. For some problems,

see e.g. Ref. 5, the discretization matrix is well-conditioned. However, it is known, that
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the boundary biorthogonal wavelets are typically highly oscillatory and have relatively

large support and that this can lead to badly conditioned matrices. As can be seen in

Table 3 this situation occurs in our case. We also computed the results for bior4.4 and

bior4.8 wavelets from Ref. 5, but the condition numbers were even higher than for bior4.6

wavelets.

Table 3. The number of nonzero entries (nnz) and the condition number (cond) of the truncated dis-

cretization matrices, and the number of GMRES iterations (it).

basis N M nnz cond it

short4 34 4 891 36 7(6)

66 16 2105 38 7(8)

130 64 4716 40 7(10)

258 256 10042 40 7(9)

514 1024 21183 41 7(6)

bior4.6 34 4 1061 2.0e3 83(5)

66 16 2895 1.4e5 100(10)

130 64 7474 6.6e6 100(10)

258 256 19024 3.2e8 100(10)

B-spline 34 4 1156 17 5(5)

66 16 4333 18 5(9)

130 64 16616 18 5(7)

258 256 64111 18 5(6)

514 1024 244518 18 5(5)

4. Conclusion

We constructed the cubic spline wavelet basis on the interval with four vanishing wavelet

moments and with short support and we adapted this basis to Dirichlet boundary con-

ditions. We proved the Riesz basis property with respect to the L2-norm. Using the ten-

sor product and appropriate parametric mappings this basis can be adapted to higher-

dimensional bounded domains. We used the Crank-Nicolson scheme and the Galerkin

method with the constructed basis for the numerical solution of the partial integro-

differential equations that represents the Kou’s option pricing model. The advantage of

the proposed method is the quasi-sparse structure of the discretization matrices and in

comparison with methods from Ref. 26, 33, 37, 40, and 46, the presented method requires

significantly smaller number of degrees of freedom needed to compute the solution with

desired accuracy. We showed that our basis is more appropriate for the proposed scheme

than biorthogonal cubic spline wavelet bases from Ref. 5 and than the basis of cubic

B-splines and we discussed also other choices of cubic spline wavelet bases.
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