
} w��������
��
Æ������������ !"#$%&'()+,-./012345<yA| Faculty of Informatics

Masaryk University

Experimental Research Towards

Software Systems Quality

Habilitation Thesis

(Collection of Articles)

Bruno Rossi

April 2023
Brno, Czech Republic

Abstract

Software Systems are playing a significant role in nowadays society. Their importance is even

more relevant nowadays as Smart Environments have been envisioned and deployed. The

integration of cyber and physical systems brings new needs in terms of the qualities of such

systems in terms of availability, reliability, safety, security, and resilience. Software develop-

ment processes need to adapt to consider these quality concerns, leading to the adaptation

of software development approaches for designing such systems and taking automation needs

into account.

This Habilitation Thesis brings forward my contributions with a focus on improving

the quality of designing such systems, discussing the properties and impact of qualities

in the development process and at the level of software reliability of such systems. The

contributions are supported by empirical Software Engineering methods with the evaluation

of automation for improving system qualities at design time (software mutation testing,

code reviewers recommendation, technical debt identification, automation of issue severity

recommendation and triaging) and for the evaluation of the reliability of software systems

utilizing Software Reliability Growth Models (SRGMs). The journey in this direction adopts

Smart Grids as a representative specimen of cyber-physical systems that can be studied

for the evaluation of qualitative properties in terms of co-simulations and software testing

activities.

The Habilitation Thesis is structured as a commentary to a collection of articles dis-

cussing the contributions to the state of the art, linking them in a cohesive view related to

software systems qualities.

Keywords: Empirical Software Engineering, Software Quality, Software Systems, Smart

Grids.

i

Acknowledgements

I thank Tomáš Pitner for welcoming me to the Lasaris Lab after my application as Assistant

Professor at Masaryk University in late 2013. I am thankful for all the suggestions and

guidance in all these years. I am also grateful to my colleagues Barbora Bühnová and

Radek Ošleǰsek for all the support and ongoing collaborations during these years as ”senior”

members of the lab.

I am thankful to all colleagues and Lasaris members over all these years. Especially the

”historical” members: Stanislav Chren, Karoĺına Burská, Martin Macák, Lukáš Daubner –

those that were keeping the lab alive all this period. I am also indebted to all my colleagues

from the Center of Applied Software Engineering (CASE) at FUB for all the research col-

laborations, projects, and productive discussions carried on more than nine years ago.

Without my family, all this would not have been possible with all those sacrifices that I hope

I will be able to repay.

Most of the studies collected here would not have been possible without access to the

resources from CERIT-SC. Part of the research was supported from European Regional De-

velopment Fund Project CERIT Scientific Cloud (No. CZ.02.1.01/0.0/0.0/16 013/0001802),

and from access to the CERIT-SC computing and storage facilities provided by the CERIT-

SC Center under the programme ”Projects of Large Research, Development, and Innovations

Infrastructures” (CERIT Scientific Cloud LM2015085).

Most of the results were achieved in the context of the ERDF project ”CyberSe-

curity, CyberCrime and Critical Information Infrastructures Center of Excellence” (No.

CZ.02.1.01/0.0/0.0/16 019/0000822).

Bruno Rossi

ii

Contents

I Commentary 1

1 Introduction 3

1.1 Motivation . 3

1.2 Focus of the thesis . 4

1.3 Methods . 4

1.4 Thesis structure . 5

1.5 Papers Collection . 6

2 Software Systems Quality 9

2.1 Contributions . 10

2.1.1 Scaling Agile Software Development 10

2.1.2 Software Code Reviews Automated Recommendation 11

2.1.3 Mutation Testing to improve Test Quality 12

2.1.4 Technical Debt Identification . 13

2.1.5 Software Quality & Reliability Engineering 14

2.1.6 Software Quality in Software Engineering Education 17

2.1.7 Ongoing Research Directions . 18

3 Application Domain: Smart Grids 21

3.1 Contributions . 23

3.1.1 Anomaly Detection in the Smart Grids Context 23

3.1.2 Smart Grids Co-Simulations . 26

3.1.3 Ongoing Research Directions . 30

4 Conclusion 33

Bibliography 35

II Collection of Articles 45

A Selection of Articles 46

A.1 A Large-scale Study on Source Code Reviewer Recommendation (C1) 49

iii

A.2 Is Mutation Testing Ready to be adopted Industry-wide? (C2) 50

A.3 Towards an Improvement of Bug Severity Classification (C3) 51

A.4 Automated Bug Triaging in an Industrial Context (C4) 52

A.5 Strait: A Tool for Automated Software Reliability Growth Analysis (C5) . . . 53

A.6 Applicability of Software Reliability Growth Models to Open Source Soft-

ware (C6) . 54

A.7 Mistakes in UML Diagrams: Analysis of Student Projects in a Software En-

gineering Course (C7) . 55

A.8 Evaluating Code Improvements in Software Quality Course Projects (C8) . . 56

A.9 Anomaly Detection in Smart Grid Data: An Experience Report (C9) 57

A.10 Big Data Platform for Smart Grids Power Consumption Anomaly Detec-

tion (C10) . 58

A.11 Smart Grids Co-Simulations with Low-Cost Hardware (C11) 59

A.12 Scaling Agile in Large Organizations: Practices, Challenges, and Success

Factors (J1) . 60

A.13 Comparing Maintainability Index, SIG Method, and SQALE for Technical

Debt Identification (J2) . 61

A.14 Smart Grids Data Analysis: A Systematic Mapping Study (J3) 62

A.15 Recommendations for Smart Grid Security Risk Management (J4) 63

A.16 Smart Grids Co-Simulations: Survey & Research Directions (J5) 64

A.17 Smart Grid Testing Management Platform (SGTMP) (J6) 65

iv

Part I

Commentary

1

2

1.1 Motivation 3

1.2 Focus 4

1.3 Methods 4

1.4 Thesis structure 5

1.5 Papers collection 5

Chapter 1. Introduction

Chapter 1

Introduction

This Habilitation Thesis consists of a collection of 17 selected peer-reviewed publications:

11 conference papers and 6 journal papers. These represent a selected list to showcase my

effort in the area of Software Systems Quality improvement in the range of nine years in the

period 2014-2022.

In this introductory chapter, there will be a discussion about the main motivations behind

this thesis, a summary of the areas covered, and the main goals and structure of the thesis.

The following chapters will go into more detail about the contributions in the areas covered

in the thesis.

1.1 Motivation

The implementation of software systems has become nowadays a challenging activity based

on the size, complexity, and interrelations of modern software systems [82]. There has been

a paradigm shift from the 70s, where the definition of algorithms was the main challenge,

to more recent years in which System-of-Systems (SoS) and System-of-Systems Engineering

(SoSE) started to be the focus of research, attempting to develop methods and support for

large scale software development and deployment.

Lehman’s Laws of software evolution were originally defined in the ’80s [69, 70] as a set of laws

for the software evolution of software systems, stating in the second law that evolving systems

are subject to inevitable effort if activities are not undertaken to reduce such complexity.

While the last laws were formalized in the 90’s [70], modern systems represent complexities

that go beyond the laws, taking into account the complexity of the interactions among

different components, systems, and sub-systems can lead to emerging behaviors difficult to

fully control and understand by software development teams [118].

3

Chapter 1. Introduction

1.2 Focus of the thesis

To better support and understand the software development processes in terms of the im-

pact on software systems’ qualities, my research dealt with the definition of automation and

the application of automated data analysis methods to support quality during the software

development processes (software mutation testing, code reviewers recommendation, tech-

nical debt identification, automation of issue severity recommendation and triaging) and for

the evaluation of the reliability of software systems utilizing Software Reliability Growth

Models (SRGMs). The concrete domain of application was the context of Smart Grids in

which anomaly detection and co-simulations, and testing processes were investigated. This

progresses from my PhD thesis [101] in which I was delving into path-dependent processes

to understand open-source software development processes.

This Habilitation Thesis focuses on providing an overview of my achievement in the area of

Software Quality and the connection with cyber-physical systems with a specific focus on

Smart Grids. The main results of my research in software development process quality and

systems qualities are summarized in Chapter 2, while Chapter 3 is focused on the applic-

ation domain of Smart Grids in which we investigated anomaly detection in data analysis

processes and the application of co-simulations for testing. Each of the chapters is divided

by research topic, which is then supported by the research articles that are framed in the

discussion. A brief overview of my own contribution is described for each paper.

1.3 Methods

In this Habilitation Thesis, several methods from empirical software engineering – more con-

cretely Evidence-Based Software Engineering (EBSE) [63, 29] – have been applied. EBSE

aims to improve software development practices through the use of empirical data and sci-

entific methods [63]. The methods seek to provide evidence-based answers to questions

related to software engineering, such as what software development methods are most ef-

fective, what quality attributes are most important for different types of software systems,

and how to measure the effectiveness of software development processes. EBSE uses data

from various sources, such as experiments, surveys, and case studies, to gain insights into

software engineering practices and to develop best practices for software development. The

goal of EBSE is to make software development more efficient, effective, and reliable by

relying on evidence and data, rather than intuition and opinion [29].

In this thesis, various methods of empirical software engineering has been adopted, from

action research, to mining software repositories research, data analysis, controlled experi-

ments, mapping studies and systematic literature reviews.

1. Quasi experimental designs [16]. As in software engineering context is difficult to con-

duct controlled experiments, quasi experimental designs are typically adopted missing

4

Chapter 1. Introduction

the randomization method for assignment and also less direct control of the treatment;

2. Mining Software Repositories [47]. Processing, collecting, analyzing data from source

control systems and bug repositories represents an opportunity for understanding soft-

ware development models but also to build models about the reliability of software

systems based on the stored information. This approach has been adopted in several

large-scale studies in this research collection. For example, building Software Reliab-

ility Growth Models (SRGMs) on a large set of open source software projects [85].

3. Prediction Models. Several machine learning models have been adopted during

the research. Either building models such as Software Reliability Growth Models

(SRGMs) [105, 24, 85] or adopting models such as Naive Bayes (NB) classifier (e.g.,

in [58]) or Support Vector Machines (SVM) (e.g., in [26]) for the classification of

severity of software defects or for the automation of the bug triaging recommenda-

tion process. These quantitative models have been useful for the automation of the

evaluation of phenomena in the context of software development efforts.

4. Action research [114, 9] is a research method that has been adopted when the re-

searcher interacts with the industrial partner, directly participating to the activities

while conducting the research – this is very different from typical case study-based

research.

5. Replications [111] are also a relevant instrument in EBSE to gather in some cases,

replicating part of teh study can give insights about the quality of the research and if

there are any issues. Especially replicability of results is a complex problem in Software

Engineering so the aim was in recent years to publish the experimental packages –

however, such effort is often undervalued in conference submission, even though there

has been a trend of increasing importance in recent years.

6. Systematic Mapping Studies (SMS) [98] and Systematic Literature Reviews (SLR) [14].

These methodologies of reviewing literature in a systematic way have been adopted in

a consistent way thorughout the research. They have been adopted in the context of

EBSE to gather more relevant research.

One key aspect is the collaboration with industry that is relevant in the context of

EBSE [17]. This was reflected in some of the articles, in which the applied component is

fundamental for knowledge transfer (e.g.,[57, 26]).

1.4 Thesis structure

Each chapter and section of this Habilitation Thesis represents the area in which the de-

scribed research problems that have been tackled. To help navigate through each contribu-

5

Chapter 1. Introduction

tion, Fig. 1.1 summarizes the main areas of contribution of the collection of articles included

in this Habilitation Thesis.

In Chapter 2, we outline the main state of the art in software quality and specifically

research into software development process quality and systems qualities with specific focus

on the software reliability improvements. Scaling Agile Software Development, Software

Code Reviews Automated Recommendation, Mutation Testing to improve Test Quality,

Technical Debt Identification, Software Quality & Reliability Engineering with SRGMs, but

also Software Quality in Software Engineering Education are discussed.

In Chapter 3, we outline the application domain of Smart Grids, that is how the quality

considerations introduced in the previous chapter have been discussed in the context of

Smart Grids in terms of anomaly detection and testing and co-simulation platforms that

have been researched and implemented during the research.

In Chapter 4 there are the main conclusions, summarizing the main results derived from the

collection of research works included in the Habilitation Thesis.

In Appendix A, we present the list of the articles included in this Habilitation thesis

divided by type of contribution and impact.

1.5 Papers Collection

Figure 1.1: Mapping of the articles included in the Habilitation Thesis to different quality

areas (the full list of articles is available in Appendix A)

C1. (CORE B). J. Lipcak and B. Rossi. A large-scale study on source code reviewer

recommendation. In 2018 44th Euromicro Conference on Software Engineering and

6

Chapter 1. Introduction

Advanced Applications (SEAA), pages 378–387, 2018

C2. (CORE B). J. Možucha and B. Rossi. Is mutation testing ready to be adopted

industry-wide? In P. Abrahamsson, A. Jedlitschka, A. Nguyen Duc, M. Felderer,

S. Amasaki, and T. Mikkonen, editors, Product-Focused Software Process Improve-

ment, pages 217–232, Cham, 2016. Springer International Publishing

C3. (CORE B). N. Kanti-Singha Roy and B. Rossi. Towards an improvement of bug

severity classification. In 2014 40th Euromicro Conference on Software Engineering

and Advanced Applications, pages 269–276, 2014

C4. (CORE B). V. Ded́ık and B. Rossi. Automated bug triaging in an industrial context.

In 2016 42th Euromicro Conference on Software Engineering and Advanced Applica-

tions (SEAA), pages 363–367, 2016

C5. (CORE A). S. Chren, R. Micko, B. Buhnova, and B. Rossi. Strait: A tool for auto-

mated software reliability growth analysis. In 2019 IEEE/ACM 16th International

Conference on Mining Software Repositories (MSR), pages 105–110, 2019

C6. (CORE B). R. Mičko, S. Chren, and B. Rossi. Applicability of software reliabil-

ity growth models to open source software. In 2022 48th Euromicro Conference on

Software Engineering and Advanced Applications (SEAA), pages 255–262, 2022

C7. (CORE A). S. Chren, B. Buhnova, M. Macak, L. Daubner, and B. Rossi. Mistakes

in uml diagrams: Analysis of student projects in a software engineering course. In

2019 IEEE/ACM 41st International Conference on Software Engineering: Software

Engineering Education and Training (ICSE-SEET), pages 100–109, 2019

C8. (CORE A). S. Chren, M. Macák, B. Rossi, and B. Buhnova. Evaluating code im-

provements in software quality course projects. In Proceedings of the International

Conference on Evaluation and Assessment in Software Engineering 2022, EASE ’22,

page 160–169, New York, NY, USA, 2022. Association for Computing Machinery

C9. (CORE B). B. Rossi, S. Chren, B. Buhnova, and T. Pitner. Anomaly detection in

smart grid data: An experience report. In 2016 IEEE International Conference on

Systems, Man, and Cybernetics (SMC), pages 2313–2318, 2016

C10. (CORE B). P. Lipčák, M. Macak, and B. Rossi. Big data platform for smart grids

power consumption anomaly detection. In 2019 Federated Conference on Computer

Science and Information Systems (FedCSIS), pages 771–780, 2019

C11. (CORE B). M. Schvarcbacher and B. Rossi. Smart grids co-simulations with low-

cost hardware. In 2017 43rd Euromicro Conference on Software Engineering and

Advanced Applications (SEAA), pages 252–255, 2017

7

Chapter 1. Introduction

J1. (Q2 - IF2018: 2.046). M. Kalenda, P. Hyna, and B. Rossi. Scaling agile in large

organizations: Practices, challenges, and success factors. Journal of Software: Evolution

and Process, 30(10):e1954, 2018. e1954 smr.1954

J2. (Q3, IF2020: 1.025). P. Strečanský, S. Chren, and B. Rossi. Comparing maintain-

ability index, sig method, and sqale for technical debt identification. Scientific Pro-

gramming, 2020:14, Jul 2020

J3. (Q1, IF: 10.215). B. Rossi and S. Chren. Smart grids data analysis: A systematic

mapping study. IEEE Transactions on Industrial Informatics, 16(6):3619–3639, 2020

J4. (Q2). V. Lamba, N. Šimková, and B. Rossi. Recommendations for smart grid security

risk management. Cyber-Physical Systems, 5(2):92–118, 2019

J5. (Q1, IF: 4.028). P. Mihal, M. Schvarcbacher, B. Rossi, and T. Pitner. Smart grids

co-simulations: Survey & research directions. Sustainable Computing: Informatics and

Systems, 35:100726, 2022

J6. (Q1, IF2018: 2.217). M. Schvarcbacher, K. Hrabovská, B. Rossi, and T. Pitner.

Smart grid testing management platform (sgtmp). Applied Sciences, 8(11), 2018

8

Chapter 2. Software Systems Quality

Chapter 2

Software Systems Quality

Software Quality research started in the late 60s when the implementation of large-scale

mission-critical software systems led to questioning the importance of methods and tech-

niques to improve and care about the quality management in software processes [11]. This

led to the creation of the first Software Quality Models (e.g., Boehm et al. [11, 10] and McCall

model [79]). All these models later converged towards several standards, like the IEC/ISO

91260 Software Quality Model [51] and the most recent update ISO/IEC 25010:2011 Stand-

ard [52].

The rigorous study of Software Quality acquired importance in the 80s with the public-

ation of seminal works about Software Reliability [88, 89, 77], Software Metrics [35, 37], and

Software Testing [42]. The common view of the software quality community and represented

in the standards (Fig. 2.1) is that process quality can impact software product quality that

can be measured by both internal (e.g., source code metrics) and external quality measures

(e.g., number of failures during the testing process). Such aspects then impact the software

product from the side of the users that can perceive the quality of the final software product.

Figure 2.1: Software Quality impact, adapted from [51]

Software Quality has been defined as an elusive target [62], as it needs to be defined with

9

Chapter 2. Software Systems Quality

precise metrics and measurements [36]. Furthermore, the whole concept can be interpreted

from a different point of view, like the conformance to software specifications or the fitness

for purpose [62]. As such, software systems quality cannot be seen as an independent

aspect of software development process quality but is rather impacted by the quality of the

development processes.

2.1 Contributions

The selected contributions in the area of Software Quality cover a thread that spans from

software development process quality (adoption of scaling agile methods in Section 2.1.1,

automated recommendation of code reviews in Section 2.1.2, mutation testing in Sec-

tion 2.1.3) to product quality improvement (study of technical debt identification in Sec-

tion 2.1.4), to the application of Software Reliability Growth Models (SRGMs) and experi-

mentation for the evaluation of systems reliability (in Section 2.1.5). Ending this thread in

evaluating Software Quality in the context of Software Engineering Education (Section 2.1.6)

based on the impact of a Software Quality university course initiated several years ago at

Masaryk University.

2.1.1 Scaling Agile Software Development

Agile methods have acquired large importance in recent years for developing software sys-

tems. Scaling software development has acquired high importance recently for overall

quality. Nowadays, several frameworks that can be used to guide the scaling process in

organizations [100, 30, 27, 86], several methods, practices, and frameworks were derived

from extending traditional agile methods: Scrum of Scrums (SoS), Scaled Agile Frame-

work (SAFe), Large-Scale Scrum (LeSS), Disciplined Agile Delivery (DAD), Lean Scal-

able Agility for Engineering (LeanSAFE), Recipes for Agile Governance in the Enterprise

(RAGE) [2, 30, 107, 68].

In this work [57], we conducted a one-year Action Research in the context of Kentico’s

company to derive the benefits and challenges of scaling agile. We derived 20+ factors com-

pared in the context of existing research. We have been using Action Research feedback

loops to see the impact during the implementation to evaluate the effect of several practices

that were adopted.

We studied the company’s concrete scaling practices, which success factors the company ex-

perienced, and which challenges the company faced. Agile culture within the company and

prior agile and lean experience, management support, and unification of views and values

were key success factors during the action research process. Resistance to change, too quick

roll-out, quality assurance issues, and the integration with previous non-agile parts of the

organization were found to be critical challenges in the scaling process.

This action research was considered one as one of the exemplary applications of Action Re-

10

Chapter 2. Software Systems Quality

search to be listed in the Software Engineering Empirical Standards1 [99]. This article is

also one of the most influential papers in the area of research about Scaling Agile methods.

Article: [57] M. Kalenda, P. Hyna, and B. Rossi. Scaling agile in large organizations:

Practices, challenges, and success factors. Journal of Software: Evolution and Process,

30(10):e1954, 2018. e1954 smr.1954

I designed the study, granted the collaboration with the company and coordinated the action

research process. Contributed to writing the final journal version. Contribution ∼30%.

2.1.2 Software Code Reviews Automated Recommendation

One of the main activities related to the management of large-scale software development is

running source code reviews to improve the quality of the implemented solutions. Reviewers

recommendation area implies the automated suggestion of the most useful reviewer for source

code pull requests. There are many algorithms that have been suggested over the years. We

considered the most important categories:

• Heuristic-based approaches: Such approaches are based on finding similarities based

on some assumptions. For example, if a developer has in the past dealt with a library,

the developer might be a candidate for the suggestion, according to the similarity of

the reviewing task (e.g., RevFinder [117]).

• Machine Learning-based: Usage of different Machine Learning techniques for the re-

commendation of code reviewers. A model will need to be built based on a training

set (e.g., [55]).

• Social Networks-based: Social networks have also been used to determine similarities

in communication between developers (e.g., Comment Network (CN) [127])

• Hybrid approaches: use a combination of approaches (e.g.,CoreDevRec [56] that builds

a model based on a different set of features, also considering Social Network metrics).

In this work [73], we implemented a Naive Bayes-based approach for reviewers’ recom-

mendation and ran a large-scale evaluation of with the RevFinder implementation to identify

the best code reviewers (51 projects, more than 293K pull requests analyzed, 180K owners

and 157K reviewers). At the time it was written, this was the largest study about source

code reviewers’ recommendations. Overall, we found that no model can be generalized as

best for all projects and that the usage of a different repository (Gerrit, GitHub) can have

an impact on the recommendation results. Within the 51 projects, RevFinder generally

provides better results in terms of Mean Reciprocal Ranks (MRR), but the effect size is

1https://acmsigsoft.github.io/EmpiricalStandards/docs/?standard=ActionResearch

11

Chapter 2. Software Systems Quality

small, and differences might be limited. RevFinder reaches in this dataset 60% MRR. Con-

sidering the 14 Gerrit projects with additional features, sub-project information can bring

significant improvements to the recommendation results for the NB-based approach with a

medium effect size.

Article: [73] J. Lipcak and B. Rossi. A large-scale study on source code reviewer

recommendation. In 2018 44th Euromicro Conference on Software Engineering and

Advanced Applications (SEAA), pages 378–387, 2018

I designed the study, supervised the student for the evaluation of the recommendation al-

gorithms, contributed to the final version of the article. Contribution ∼30%.

2.1.3 Mutation Testing to improve Test Quality

Software Quality measurement is based on identifying and collecting metrics about the

process and product quality. One critical area in the context of software testing is the

quality of the written tests. Relying on code coverage is a common misunderstanding, as it

cannot give a real evaluation of the quality of the tests. This is one of the major reasons

why Software Mutation Testing has been proposed to improve the quality of software tests.

However, it has not yet reached a wide consensus for industry-wide adoption, mainly due to

missing clear benefits and computational complexity for the application to large systems.

In this work [87], we conducted an experiment to look at the support of mutation testing

in the context of Java Virtual Machine (JVM) environments. In particular, we looked at

the application of Higher Order Mutation (HOM): taking into account the original mutants

as the First Order Mutants (FOMs), the technique creates mutants with more than a single

mutation. We evaluated four different algorithms (Last2First, DifferentOperators, ClosePair

and RandomMix):

• Last2First: the first mutant in the list of FOMs is combined with the last mutant in

the list, the second mutant with next to last, and so on;

• DifferentOperators: only FOMs generated by different mutation operators are com-

bined;

• ClosePair: two neighboring FOMs from the list are combined;

• RandomMix: any two mutants from the FOMs are combined;

We found out that while default configurations are unbearable for larger projects,

strategies such as selective operators, second-order mutation, and multi-threading can in-

crease the approach’s applicability. However, we also found a trade-off concerning the quality

of the achieved results of the mutation analysis process. Using Selective Operators can bring

benefits in terms of runtime performance, however, at the expense of lower mutation scores.

12

Chapter 2. Software Systems Quality

Article: [87] J. Možucha and B. Rossi. Is mutation testing ready to be adopted

industry-wide? In P. Abrahamsson, A. Jedlitschka, A. Nguyen Duc, M. Felderer,

S. Amasaki, and T. Mikkonen, editors, Product-Focused Software Process Improve-

ment, pages 217–232, Cham, 2016. Springer International Publishing

I designed the study, supervised the student, redone graphical representations and data ana-

lysis, rewritten for conference article. Contribution ∼40%.

2.1.4 Technical Debt Identification

Technical Debt (TD) is a metaphor for how technical decisions made at development time

coined can have a long-term impact similar to economic debt. The main origin of such a

concept was the so-called Lehman’s laws of software evolution [70] – especially in the second

law that states that ”as a system evolves, its complexity increases unless work is done to

maintain or reduce it”. There is still no clear definition of TD, and many models have been

proposed over the years for the measurement. OF the many models that were proposed over

the years for the calculation of TD, we were interested in the following :

• the Maintainability Index (MI) defined through the average Halstead Volume per mod-

ule, the average Cyclomatic Complexity per module, the average lines of code per

module, and the average lines of comments per module [94];

• SIG TD model that quantifies TD based on an estimation of repair effort and estim-

ation of maintenance effort, which provides a view about the cost of repair and the

expected payback period [93];

• Software QuALity Enhancement (SQALE) that provides an operationalization of the

ISO 9126 Software Quality standard utilizing several code metrics that are attached

to the taxonomy defined in the ISO/IEC 9126 standard [71];

In this work [115], we compared three techniques of TD identification that were proposed

over time: (i) the Maintainability Index (MI), (ii) SIG TD models, and (iii) SQALE analysis.

Considering 20 open source Python libraries, we compared the TD measurements time series

in terms of trends and evolution according to different sets of releases (major, minor, and

micro) to see if the perception of practitioners about TD evolution could be impacted. While

all methods report generally growing trends of TD over time, there are different patterns.

SQALE reports more periods of steady states compared to MI and SIG TD. MI is the

method that reports more repayments of TD compared to the other methods. SIG TD and

MI are the models that show more similarity in how TD evolves, while SQALE and MI are

less similar. The implications are that each method gives a slightly different perception of

TD evolution, which can have an impact when selecting a method to adopt.

Article: [115] P. Strečanský, S. Chren, and B. Rossi. Comparing maintainability

index, sig method, and sqale for technical debt identification. Scientific Programming,

13

Chapter 2. Software Systems Quality

2020:14, Jul 2020

I designed the study, supervised the student, contributed to writing of the article for the

journal. Contribution ∼30%.

2.1.5 Software Quality & Reliability Engineering

Being able to predict the severity of software defects has been found in previous studies to

improve the overall resolution process. Many classification/prediction approaches emerged

to provide automated reasoning over severity classes.

In the first seminal paper from Menzies and Marcus from 2008, the authors proposed to

use text mining approaches to determine the severity levels for NASA projects [83]. The

approach proposed was based on entropy and information gain, supported by a rule learner.

Utilizing the top-terms, the results were in the range of 65%-98% in terms of F-Measure.

Some initial attempt was also based on the use of the Näıve Bayes classifier to classify issues

considered as severe, non-severe [66]. The main results had a precision and recall from 65%

to 75% (Mozilla and Eclipse) and 70%-85% (GNOME).

Lamkanfi et al. also provided a comparison of several classifiers by using their previously

proposed approach [67], comparing Näıve Bayes (NB), Näıve Bayes Multinomial (NBM),

K-Nearest Neighbor (K-NN) and Support Vector Machines (SVM) applied to Eclipse and

GNOME projects. Feature selection was adopted to improve the results of severity pre-

diction algorithms [125] – comparing three different feature selection schemes: Information

Gain, Chi-Square, and Correlation Coefficient.

In this work [58], we used text mining together with bi-grams and feature selection to

improve the classification of bugs in severe/non-severe classes. We adopt the Naive Bayes

(NB) classifier considering Mozilla and Eclipse datasets commonly used in related works.

Overall, the results show that applying bi-grams can slightly improve the classifier’s per-

formance, but feature selection can be more effective in determining the most informative

terms and bi-grams.

Article: [58] N. Kanti-Singha Roy and B. Rossi. Towards an improvement of bug

severity classification. In 2014 40th Euromicro Conference on Software Engineering

and Advanced Applications, pages 269–276, 2014

I designed the study. Participated to the analysis and contributed with most of the writing.

Contribution ∼50%.

The bug triaging process recommendation automation represents the automation of the

assignment of the most appropriate developers for solving issues in bug reports. With this

aim, we devised an automation method. We cooperated with an industrial partner to define

an automated bug triager that could automate the process of assigning developers to software

defects for resolution.

In this work [26] After reporting the requirements and needs that were set within the

14

Chapter 2. Software Systems Quality

industrial project, we compare the analysis results with those from an open source project

used frequently in related research (Firefox). Overall, we found that more easily configurable

models (such as SVM+TF–IDF) are preferred, and top-x recommendations, number of issues

per developer, and online learning can all be relevant factors when dealing with industrial

collaboration.

Article: [26] V. Ded́ık and B. Rossi. Automated bug triaging in an industrial context.

In 2016 42th Euromicro Conference on Software Engineering and Advanced Applica-

tions (SEAA), pages 363–367, 2016

I designed the study and supervised the student for the conduction of the analysis. Coordin-

ated the cooperation with the industrial partner. Contributed to the writing. Contribu-

tion ∼35%.

Software Reliability Growth Models (SRGM) emerged in the ’70es when Jelinski and

Moranda proposed the JM model for fitting cumulative failure data to define a methodology

to analyze and predict project failures over time [77, 54]. Failure events are encountered

during the testing and early operation phases of the software life cycle. They are recorded,

and the underlying faults that caused them are removed, which results in a process called

reliability growth. SRGMs are regression-based models whose purpose is to estimate the

parameters of a mean value function m(t) based on the input data: m(t) represents the

cumulative number of faults detected by the given time t. SRGMs have been my interest

since my PhD studies. We had one of the first papers with the application of SRGMs to

open source software in 2010 [105] - considered one of the starting points in literature for

the application of SRGMs in this context. SRGMs are regression-based models that use

historical failure data to predict the reliability of software projects. The main contributions

were to provide a dedicated tool to support the whole process of SRGMs data preparation

and application from issue repositories that can be used for data analysis. The tool was

then adopted to conduct the largest study of the application of SRGMs in the context of

open source software projects.

In this work [24], to support the replicability of results and analyze large datasets, we

implemented one tool (STRAIT) that can help with the analysis of software projects for

the definition of SRGMs. The tool provides features such as downloading, filtering, and

processing of data from provided issue repositories for use in multiple SRGMs, supporting

fitting SRGMs with different snapshots in the tool. The tool allows customization of the

filtering capabilities and the implementation of custom SRGMs.

Article: [24] S. Chren, R. Micko, B. Buhnova, and B. Rossi. Strait: A tool for

automated software reliability growth analysis. In 2019 IEEE/ACM 16th International

Conference on Mining Software Repositories (MSR), pages 105–110, 2019

I participated to the tool design. Contributed to the writing. Contribution ∼20%.

In this work [85], we analyzed the performance of SRGMs for the understanding of open

15

Chapter 2. Software Systems Quality

Figure 2.2: Sample output from STRAIT fitting cumulative failure data with the Goel-

Okumoto S-Shaped model

source software projects. The main issues in the applicability of SRGMs to OSS are based

on the assumptions that are made about the defects-fixing process. Some of these assump-

tions might be violated, like the fact that faults are repaired when they are discovered, fault

repairs are perfect, or that no new code is introduced during the defects fixing process [122].

We compared nine SRGMs (Goel-Okumoto (GO) & Goel-Okumoto S-Shaped (GOS) [43],

Hossain-Dahiya (HD) [49], Musa-Okumoto (MO) [90], Duane (DU) [28], Weibull (WE) [89],

Yamada Exponential (YE) [124], Yamada Raleigh (YR) [124], Log-Logistic (LL) [44]) . We

present an experimental study of SRGMs applicability to a total of 88 OSS projects, com-

paring nine SRGMs, looking at the stability of the best models on the whole projects, on

releases, on different domains, and according to different projects’ attributes. This repres-

ents a large-scale study (1 053 SRGMs, ∼400K software defects) with the aid of the STRAIT

tool [24]. We found good applicability of SRGMs to OSS, but with different performance

when segmenting the dataset into releases and domains. Based on 792 fitted SRGMs, con-

sidering the R2 metric, we found that LL, YR, WE, HD, DU are the best models. GO,

GOS, MO, YE show the highest variance than other models. GOS is, in general, the worse

model in terms of R2.

Considering several domains of the systems, the results in terms of R2 metric report some

models with good consistency across domains (e.g., LL, WE, YR). The GOS model, while

statistically worse than all other models when considering the whole dataset, has some do-

mains in which it has low variance and good R2 rankings.

Considering the effect of releases on SRGM has limited impact in terms of R2 (the top-3

models remain the same). Considering different performance metrics can lead to different

rankings of models, signaling that some models, such as YR might be penalized for overfit-

ting the data. The GOS model remains the worse, both considering releases and projects as

a whole.

16

Chapter 2. Software Systems Quality

Article: [85] R. Mičko, S. Chren, and B. Rossi. Applicability of software reliability

growth models to open source software. In 2022 48th Euromicro Conference on Soft-

ware Engineering and Advanced Applications (SEAA), pages 255–262, 2022

I participated to the design of the study. Conducted additional data analysis. Contributed

to the writing. Contribution ∼30%.

2.1.6 Software Quality in Software Engineering Education

In recent years, new courses targeting Software Quality have emerged in universities to

make students aware of concerns and techniques related to Software Quality (e.g., [53, 81]).

Although studies looked at the quality of students’ contributions (e.g., [123, 46, 76, 64, 59,

13]), there was still no comprehensive evaluation of the impact of such a course on the quality

of the produced source code.

In this work [23], we performed an extensive study about the quality of source code

related to students of the Software Quality course given at the Faculty of Informatics of Mas-

aryk University. The aim was to see if the efforts in teaching various Software Quality as-

pects affect the quality of the produced code. As a source, we designed a quasi-experimental

design, one group pre-test post-test (O1XO2), in which a group of students performs the

initial project implementation (O1). The treatment (X, Software Quality course) is applied,

afterward the implementation by students is repeated (O2). Manual inspections and code

metrics are used for the evaluation. We analyzed 54 project submissions from 27 students

using manual and automated quality assessment methods. We have employed 30 manual and

22 automated quality characteristics related to coding style, architecture design, and general

development practices. We examined which characteristics of the code have improved the

most and what were the most common issues. Overall, we found that Code Complexity was

improved for all categories of students. There were good improvements in SRP and OCP

categories of SOLID principles. Code Smells and Checkstyle normalized errors were reduced

in the final submission. The most common issues were related to error handling, structuring

of methods, and issues related to code documentation. Violations of Single Responsibility

and Open-Closed principles with insufficient separation of responsibilities were also common

concerns. Test automation was generally absent in the initial submission and very limited

in the final version.

Article: [23] S. Chren, M. Macák, B. Rossi, and B. Buhnova. Evaluating code im-

provements in software quality course projects. In Proceedings of the International

Conference on Evaluation and Assessment in Software Engineering 2022, EASE ’22,

page 160–169, New York, NY, USA, 2022. Association for Computing Machinery

I participated to the design of the study. Analysis of one research question. Contributed to

the writing. Contribution ∼20%.

In this work [22], we experimented to understand the impact of the usage of the Unified

17

Chapter 2. Software Systems Quality

Modelling Language (UML) in terms of the most common errors and misconceptions. The

outcome was a catalogue of the most common issues in learning UML models that can be

useful for future generations of students. Overall, 146 types of mistakes in eight types of

diagrams were represented in the catalogue. We utilized the catalogue to analyze students’

projects in a software engineering course with 2,700 diagrams submitted by 123 students.

We reviewed the frequency of mistakes, the correlations of the mistakes between different

diagram types, and the correlation of the quality of student projects to exam results, among

other aspects.

Article: [22] S. Chren, B. Buhnova, M. Macak, L. Daubner, and B. Rossi. Mistakes

in uml diagrams: Analysis of student projects in a software engineering course. In

2019 IEEE/ACM 41st International Conference on Software Engineering: Software

Engineering Education and Training (ICSE-SEET), pages 100–109, 2019

I participated to the design of the study. Analysis of one research question. Contributed to

the writing. Contribution ∼15%.

2.1.7 Ongoing Research Directions

Several research directions are still to be explored. I mention here the two main areas I plan

to focus the research:

• Automation in Software Engineering : many works in this collection deal with the auto-

mation of processes to improve the quality of processes and systems. With the recent

emergence of generative AI language models [119] many new possibilities go beyond

the initial design of the models and studies. The application can be at several levels

and impact most of the studies in this Habilitation Thesis – to exemplify, the models

can have a potential impact on mutation testing for the definition of mutants [87],

at the level of source code reviewers recommendation thinking about agents that can

self-perform recommendation tasks and bug triaging [73, 26], but the applications can

be many that can be explored to evaluate the positive and negative effects.

• Software Reliability and SRGMs: the application of SRGMs has been based on

data collection by means of Mining Software Repositories studies. This will still

be my research focus in comparing quality models of open source software projects

versus SRGMs models. However, my focus will be more on applying such models to

Microservices-based systems for the improvement of reliability and resilience by using

the outputs of the models to provide improvements for Microservices as self-adaptive

systems. This will bring more interesting results in terms of architectural and soft-

ware systems engineering approaches to take into account knowledge learned from the

models analyzing the current run of the systems. I plan to connect this part to the

simulation parts discussed in the upcoming Section 3.1.2 as running the models in

18

Chapter 2. Software Systems Quality

a simulated environment can bring benefits to evaluating the properties of the run-

ning systems and modifying them in production systems based on the results of the

simulations. At the moment, many theses are on-going to investigate these matters

– for example, about reconstructing resilience patterns from a Microservice system

to a Microservice simulator for running models about the runtime availability of the

services.

19

Chapter 2. Software Systems Quality

20

Chapter 3. Application Domain: Smart Grids

Chapter 3

Application Domain: Smart

Grids

Software Quality is a critical aspect of Smart Grid Systems, as it directly impacts the reli-

ability, security, and efficiency of these systems [33]. Smart Grids (SGs) are cyber-physical

systems that use the information to provide reliable, efficient, and sustainable electricity to

end-users [33]. They play a significant role in the Smart Cities concept by enabling the in-

tegration of Smart Energy systems that interconnect utilities and end-users through a Smart

Infrastructure [41, 12, 31]. SGs enhance the decision-making process, enable self-healing and

automation of the energy grid, and facilitate the integration of renewable energy sources [41].

In Smart Grids, the software is used to manage, monitor, and control the flow of electricity

in the grid, as well as to support customers and power load management. As such, high-

quality software is essential for the efficient and reliable functioning of Smart Grids.

In particular, Software Quality attributes such as reliability, maintainability, scalability, and

security are particularly important. Software must be able to withstand high levels of stress

and variability in the electrical grid, as well as to be quickly and easily updated as needed.

Additionally, software must be secured to prevent security threats that could disrupt the

flow of electricity.

The US National Institute of Standards and Technologies (NIST) was one of the first or-

ganizations to create a structure for a Smart Grid (SG), developing a conceptual model and

a more specific reference architecture model [91, 92]. The CEN-CENELEC-ETSI stand-

ardization Group later modified these models for the European context, resulting in the

Smart Grid Architecture Model (SGAM) Framework (Fig. 3.1). This framework has mul-

tiple interoperability layers mapped to the SG pane, which is formed by physical, electrical

domains and information management zones. The SGAM model aims to represent the zones

of information management where interactions between domains occur.

SGs face several challenges arising from the integration of physical infrastructure with in-

21

Chapter 3. Application Domain: Smart Grids

Figure 3.1: The Smart Grid Architecture Model (SGAM) [18]

formation and communication technologies [18]. Addressing these challenges requires a hol-

istic approach that considers all layers of the SG ecosystem [18]. These challenges include

prioritizing communication network availability over traditional confidentiality and integrity

aspects [5], ensuring customers’ privacy and infrastructure security [80], finding reliable ways

to integrate renewable energy sources [121], and utilizing information/data for self-healing

and self-monitoring purposes [3, 34, 4].

The interoperability layers define viewpoints through which the SG has to be considered

[18]. The Component layer specifies the physical distribution of all participating components

in the SG, including actors, applications, power system equipment, protection and control

devices, network infrastructure, and any kind of devices. The Communication layer de-

scribes protocols and mechanisms for the exchange of data between components within the

context of usage scenario, function, or service. The Information layer details the informa-

tion that is exchanged between functions, services, and components. It contains information

objects and the underlying data models.

The SGAM physical electrical domains capture the electrical energy conversion chain and

consist of five parts. Bulk generation represents the energy generation in large quantit-

ies, for example, by fossil, nuclear or hydro-power plants. Such generation is connected

to the transmission system. Transmission represents the infrastructure and organization

for long-distance energy transportation. The distribution represents the infrastructure and

organization that distributes the electricity to customers. Distributed Energy Resources

22

Chapter 3. Application Domain: Smart Grids

(DER) describes the distributed electrical resources connected to the public distribution

grid. Customer premises include the consumers of electricity and the local producers.

3.1 Contributions

In the area of Smart Grids, the contributions span from the evaluation of data analysis tech-

niques, data quality concerns, and anomaly detection that have been applied in the context

of ongoing projects (Section 3.1.1). Afterward, the knowledge acquired has been applied

in the context of Smart Grids co-simulations (Section 3.1.2) culminating in the evaluation

of a low-cost hardware-in-the-loop prototype and the creation of a platform (SGTMP) to

support Smart Grids testing with the Mosaik co-simulation framework.

3.1.1 Anomaly Detection in the Smart Grids Context

The emergence of Smart Grids has created a large set of opportunities for data analytics

initiatives. The vast amount of data collected from the smart infrastructure can be utilized

for decision support and predictive algorithms to enhance the services provided [103]. One

such initiative is power load forecasting, which predicts customers’ electricity consumption

over time [61]. Another example is Demand Response (DR), which involves balancing energy

supply and demand load during peak hours [39].

In this work [102], we conducted a large Systematic Mapping Study (SMS) in the area

of Smart Grids, gathering methods that have been adopted in the area for analyzing various

aspects of SG.

We gathered techniques that were applied in different application subdomains (e.g., power

load control), aspects covered (e.g., forecasting), used techniques (e.g., clustering), tool sup-

port, research methods (e.g., experiments/simulations), and replicability/reproducibility of

research. We identified ten main sub-domains for SG data analysis: C1. customer profil-

ing, C2. energy output forecasts, C3. events analysis, C4. load segregation, C5. Power

loads/consumption analysis, C6. power quality, C7. pricing, C8. privacy, C9. security, C10.

Smart Grid failures. The themes that are covered in order of numerosity of research are

loads forecasting, energy pricing forecasting, forecasting production from renewable power

sources, power loads clustering, users power consumption profile clustering, false data in-

jection attacks, users power consumption pattern recognition, power quality disturbances

classification, non-intrusive appliance load monitoring, power data compression, energy theft

detection, and SG faults detection.

As interesting findings, simulations and experiments are crucial in many areas. The rep-

licability of studies is limited concerning the provided implemented algorithms and, to a

lower extent, due to the usage of private datasets. This paper has been published in IEEE

Transactions in Industrial Informatics, which has an IF of over 10: with 358 articles being

the largest study conducted in the area.

23

Chapter 3. Application Domain: Smart Grids

Article: [102] B. Rossi and S. Chren. Smart grids data analysis: A systematic mapping

study. IEEE Transactions on Industrial Informatics, 16(6):3619–3639, 2020

I designed the study. Shared the conduction of data analysis and review. Contributed to the

writing. Contribution ∼50%.

In the context of the collaboration with industrial partners, we worked on defining an-

omaly detection based on Smart Metering events.

Anomaly detection is a complex task, requiring identifying various types of anomalies. Point,

context, and collective anomalies have been categorized in the literature [19, 1]. Point an-

omalies are single instances that deviate from the rest of the data, while context anomalies

consider external factors in determining whether a data point is anomalous. Collective an-

omalies consider specific patterns identified over time and require a different approach for

detection. Therefore, identifying anomalies by looking at threshold intervals might not be

sufficient in certain cases.

There are several approaches for detecting anomalies, such as probabilistic models that define

properties for anomalies based on data distributions or models that use data proximities,

such as k-nearest neighbor algorithms, which examine distances between k-data points in

space. Time series properties can also be used for anomaly detection [1].

Power consumption anomaly detection focuses on identifying anomalous data traces that

could indicate relevant domain events, such as energy theft, tampering with smart meters,

or device failure. Typically, time series are used to represent power traces that change over

time, and multiple time series, such as power traces and weather data, may be used to

identify anomalies.

The application of different models for anomaly detection varies significantly. Typically,

most models incorporate temporal aspects and involve statistical properties. At a funda-

mental level, there are several categories of anomaly detection models, including linear mod-

els (e.g., regression-based), proximity models (e.g., k-nearest neighbour), statistical models

(e.g., two sigma rule), and density-based models (e.g., clustering). However, it can be diffi-

cult to categorize models strictly as many approaches are often combined in ensemble models

(e.g., time series forecasting methods with extreme value anomaly detection approaches).

Several models have been proposed for power consumption anomaly detection. Initial mod-

els, like the one presented in [128], used regression models to estimate power consumption

and temperature, flagging data points that deviated from the real values by a predefined

threshold as anomalies. A similar approach, based on AutoRegressive Integrated Moving

Average (ARIMA) models, was used in [21]. Other models, such as the Periodic Auto

Regression with eXogenous variables (PARX) proposed in Ardakanian et al. [8] and later

improved in Liu et al. [75], focused on clustering power consumption data by temporal

properties. Saad et al. [106] proposed an approach based on clustering. In contrast, Sial

et al. [112] used heuristics based on the domain to group data traces by time and type of

the day and then used distance-based anomaly detection techniques (e.g., kNN) to detect

anomalies. Buzau et al. [15] used several machine learning approaches (k-NN, SVM, Logistic

24

Chapter 3. Application Domain: Smart Grids

Regression, XGBoost) to identify anomalies in users’ power consumption profiles. Recent

models have focused on the stochastic nature of the underlying processes and the importance

of detecting concept drifts, such as in Fenza et al. [38].

In this work [103], we proposed a method based on the concept of itemsets of events

that may be anomalous based on their patterns of appearance. This moves from the concept

of single events identified as an anomaly to the concept of collective anomaly [1]. By analyz-

ing Smart Meters data streams, we used frequent itemset mining and categorical clustering

with clustering silhouette thresholding to detect anomalous behavior. In this study, we con-

sider Smart Meters [25] as data sources of data streaming, allowing the analysis of all data

derived from the Smart Meters’ operations. The Smart Meter events are used to notify the

data center about important state changes that happened at the level of the Smart Meter,

such as powering up or down of the meter, tariff and rate switching, and time synchroniza-

tion. Each event belongs to one of the possible 76 event types.

Article: [103] B. Rossi, S. Chren, B. Buhnova, and T. Pitner. Anomaly detection

in smart grid data: An experience report. In 2016 IEEE International Conference on

Systems, Man, and Cybernetics (SMC), pages 2313–2318, 2016

I designed the study. Conducted the main data analysis part. Contributed to the writing.

Contribution ∼45%.

When looking at the Smart Grids, we examined the impact of data quality in the differ-

ent parts of the system to suggest adopting a data quality model as a frame of reference.

New devices in Smart Grids, such as smart meters and sensors, have emerged to become a

massive and complex network where a large volume of data flows to the smart grid systems.

Data can be real-time, streaming, and originating from various smart devices. However,

data quality issues might cause the delayed, inaccurate analysis of results in the context of

Smart Grid Systems [40]. Based on the previous works [103, 102, 40, 104], we dealt with

the adoption of Big Data Platforms for Anomaly Detection of Smart Grids data. The pro-

cessing in the Smart Grid context requires real-time data analysis for several applications

(e.g., intrusion and data injection attacks detection, electric device health monitoring). Two

popular architectures were proposed over time, Lambda and Kappa [78, 72], based on the

importance of batch and stream processing.

In this work [74], we provided the implementation of a Big Data platform for power con-

sumption anomaly detection with the main components mapped to the reference architecture

proposed by Pääkkönen and Pakkala [95]. We showcased the results of a scenario run with

public datasets to assess the applicability of batch-oriented (Apache Spark), stream-oriented

(Apache Storm), and hybrid (Apache Flink) frameworks. The platform is based on an in-

gestion layer with data densification options, Apache Flink as part of the speed layer, and

HDFS/KairosDB as data storage layers. We also tested Lambda vs. Kappa architectures

for power consumption data processing.

25

Chapter 3. Application Domain: Smart Grids

Figure 3.2: Architecture of the Big Data Platform for Power Consumption Anomaly Detec-

tion [74]

Article: [74] P. Lipčák, M. Macak, and B. Rossi. Big data platform for smart grids

power consumption anomaly detection. In 2019 Federated Conference on Computer

Science and Information Systems (FedCSIS), pages 771–780, 2019

I designed the study, supervised the student for the system design, implementation, data

analysis. Contributed to the writing. Contribution ∼30%.

3.1.2 Smart Grids Co-Simulations

The area of co-simulation is one of the most interesting aspects in the context of Smart

Grids evaluation, as highlighted from the review we conducted about data analysis in the

context of SGs [102]. Integrating renewable sources, communication, and power networks

with information and communication technologies is one of the main challenges in Smart

Grids (SG) for large-scale testing [84]. To test for the multiple layers explained in the SGAM

model (Fig 3.1), we need to let multiple systems interact, with the need to simulate and

emulate part of the hardware and software devices. Different simulators, each running in

their runtime environment, are commonly referred to as the concept of co-simulation. A

co-simulator allows the connection of multiple software simulators and hardware emulators

to enable multiple unified simulation scenarios [120, 84].

26

Chapter 3. Application Domain: Smart Grids

In this work [84], we provided one large Systematic Mapping Study to define how co-

simulations has been used in the context of Smart Grids. For this reason, the coupling of

simulators is commonly used to dynamically simulate several aspects of the SG infrastructure

in the so-called co-simulations. We provided a scoping review of research of co-simulations

in the context of Smart Grids: focusing on the research areas and problems addressed by

co-simulations, any specific co-simulation aspects that are the focus of research, the coup-

ling of simulators in co-simulation studies. We mapped the problem addressed in different

areas reliability and wide-area awareness, customer energy efficiency, energy resource dis-

tribution, grid energy storage, electric Transportation, Advanced Metering Infrastructure,

Management of the distribution grid, Cybersecurity, and Network communications. While

several co-simulation frameworks exist (e.g., HELICS [97], Daccosim-NG [32]), we mainly

adopted the Mosaik framework [110] based on discrete-events and an ad-hoc architecture

for our research.

Article: [84] P. Mihal, M. Schvarcbacher, B. Rossi, and T. Pitner. Smart grids co-

simulations: Survey & research directions. Sustainable Computing: Informatics and

Systems, 35:100726, 2022

I designed the study, participated to the review analysis of the model. Contributed to the

writing for the journal article. Contribution ∼30%.

Due to the complexity of the Smart Grids infrastructure, many Smart Grids laboratories

have emerged over the years to provide partially virtualized environments for simulations

and testing (e.g., Erigrid [48]). However, the costs for setting-up such environments are

quite high, representing a huge barrier for newcomers and educational purposes.

In this work [109], we investigated a hardware-in-the-loop (HIL) architectural solution

based on Arduino and Raspberry PI boards, supported by the Mosaik framework to simulate

different Smart Grids scenarios on a small and cost-effective scale. We highlighted the

educational benefits the solution can bring for understanding simulations and HIL in an

affordable & effective way in an easy-to-deploy environment. Furthermore, we had some

modifications to the Mosaik co-sim framework - we studied the possibilities of simulating

node failure scenarios with a modification of the Mosaik co-simulation platform to allow for

dynamic topologies changes. We show how co-simulations can help determine the impact of

different failure patterns using a sample scenario of households and PV units [45].

Article: [109] M. Schvarcbacher and B. Rossi. Smart grids co-simulations with low-

cost hardware. In 2017 43rd Euromicro Conference on Software Engineering and

Advanced Applications (SEAA), pages 252–255, 2017

I designed the study, supervised the student for the creation of the prototype and the data

analysis design. Contributed to the writing for the conference paper. Contribution ∼40%.

This led to the integration of a platform for testing Smart Grids. As a first step, we

defined the need for introducing a Testing Management Framework [50] – the framework is

27

Chapter 3. Application Domain: Smart Grids

Figure 3.3: Smart Grids simulation with low cost hardware [109]

based on the concept of the definition of risks. For this reason, we investigated risk man-

agement in the Smart Grids infrastructure and the definition of a testing process that could

be adopted in the platform.

In this work [65], we collected common suggestions from practices and other frameworks

to provide a common risk management framework for Smart Grids. In particular, we fo-

cused on planning, identifying, assessing, prioritizing, monitoring, and controlling security

risks involved in Smart Grids management. Following the SGAM model [18], the Smart

Grids’ multiple layers and domains need to be considered to accurately predict, manage,

and mitigate the risks involved in Smart Grids management. The proposed recommenda-

tions cover traditional risk management activities, such as defining the purpose and scope of

the risk assessment, developing risk models, and defining threats and impact analysis. These

aspects should consider the communication layers with many interactions, protocols, and

devices with a definition of recommended security mechanisms such as integrated security

for field devices, secure access control, and secure communication protocols.

Article: [65] V. Lamba, N. Šimková, and B. Rossi. Recommendations for smart grid

security risk management. Cyber-Physical Systems, 5(2):92–118, 2019

I designed the study, supervised the student. Contributed to the writing and revision for the

journal article. Contribution ∼30%.

This led to integrating different parts in the so-called Smart Grids Testing Management

Platform (SGTMP). Software Testing is crucial to ensure reliable and safe systems [126].

However, testing in the context of SGs is highly complex due to the multi-layered struc-

ture of the infrastructure. Each layer, responsible for different areas such as communication

protocols and service provision, must be tested individually and as a whole to guarantee a

faultless and dependable energy supply [18]. Additionally, as SGs are cyber-physical systems

28

Chapter 3. Application Domain: Smart Grids

Figure 3.4: Proposed Testing process for SGTMP, based on ISO/IEC/IEEE 29119 [108]

that integrate with hardware devices, modeling, and simulations are essential to detecting

integration issues on a large scale [96, 60]. Many SG testing/simulation platforms emerged

over the years, focusing on simulating part of the complexity within SGs, both at the power

and at the communication network level [120]: SmartGridLab [113], GridSim [6], Smart-Grid

Common Open Research Emulator (SCORE) [116], Smart Grid Testbed [7], and GridLAB-

D [20] are some of the main platforms available. The main goal of such platforms is to provide

a common testbed for SG implementation capabilities supported by ”co-simulations”: the

evaluation of multiple independent simulations integrated using a software interface [120].

In this work [108], we proposed a platform, Smart Grid Testing Management Platform

Figure 3.5: SGTMP Platform for the integration of Mosaik simulator [108]

(SGTMP), to take into account co-simulations for reducing the complexity of testing in

a Smart Grids infrastructure. SGTMP can allow the execution of real-time hardware-in-

29

Chapter 3. Application Domain: Smart Grids

the-loop SG tests and experiments that can simplify the testing process in the context of

interconnected SG devices. We provided the context of usage, the system architecture, the

interactive web-based interface, the provided API, and the integration with co-simulation

frameworks to provide virtualized environments for testing. Furthermore, we presented one

main scenario for stress-testing SG devices that can showcase the applicability of the plat-

form. SGTMP comprises several components, mainly the Mosaik Interface written in Python

and the overall Java-based Testing Platform for the support, including test management and

execution, viewing test/simulation results, and the web interface. For the developers, there

is an extension of the Mosaik high-level Java API to integrate existing simulators into this

system.

[108] M. Schvarcbacher, K. Hrabovská, B. Rossi, and T. Pitner. Smart grid testing man-

agement platform (sgtmp). Applied Sciences, 8(11), 2018

I supervised both students. Together we designed the platform. Structured the article and

contributed to the writing of the journal article. Contribution ∼30%.

3.1.3 Ongoing Research Directions

Several research directions are worth investigating in the application domain of Smart Grids:

• Anomaly Detection: The models implemented, and the Big Data Platform for anomaly

detection were separated from the SGTMP platform created to support co-simulations

running by means of the Mosaik framework. One research direction can be integrating

the two platforms, allowing anomaly detection on the data collected from the SGTMP

platform. This can bring a useful scenario in which data from various simulation envir-

onments can be analyzed for anomalies, supporting not only multiple algorithms that

can be plugged-in but also potentially supporting large data streams, as the experi-

ments on the platforms showed that it can scale on a massive number of data points

with adequate reliability. Furthermore, a more extensive evaluation of anomaly detec-

tion algorithms when plugged into the platform would be useful. This will imply the

evaluation and implementation of algorithms reviewed in some of the articles included

in this Habilitation Thesis (e.g., [102]). For experimentation purposes, the platform

also contained a data densification part [74] that can be improved based on the needs

of the implemented algorithms.

• Co-simulations: As mentioned in Section 2.1.7 about ongoing research directions

in software systems’ qualities, the knowledge acquired in the research about co-

simulations can be exploited for the evaluation of Microservice-based systems to im-

prove self-adaptive properties, in particular the availability of the systems based on

the models for software reliability discussed in the previous chapter. The plan is to use

30

Chapter 3. Application Domain: Smart Grids

Microservice simulators for deriving properties of runtime systems. Another direction

is to refactor and revise the SGTMP platform and integrate it with the newest ver-

sions of the Mosaik framework to run more accurate experiments about the system’s

adoption.

31

Chapter 3. Application Domain: Smart Grids

32

Chapter 4. Conclusion

Chapter 4

Conclusion

This Habilitation Thesis is structured as a commented collection of 17 selected peer-reviewed

publications: 11 conference papers and 6 journal papers. These represent a selected list to

showcase my research efforts in nine years in the period 2014-2022.

The area of software quality has evolved during the last years, requiring higher levels

of automation. Furthermore, aspects such as the scalability of the software solutions and

the software development models have acquired key importance. There is a discussion of

several contributions in this direction, under the light that process improvement can lead

to software solutions improvements. Starting with the discussion and an action research on

scaling agile software development to understand which practices can lead to more qualitative

software development processes. The automation of processes such as source code reviews,

technical debt identification, mutation testing, software defect severity identification, and

automated triaging were discussed in the context of process improvement. Adopting models

such as Software Reliability Growth Models (SRGMs) with tool support can provide a

way to understand the cumulative failure rate of software projects towards improving the

processes and final quality of the software products. Finally, several contributions were

made in the area of software quality for software engineering education, namely, through

quasi-experimental designs understanding which are the aspects that students find more

challenging and more useful to adopt high-quality practices and principles in their software

projects. The application domain was the area of Smart Grids, in which the contribution

was in the area of data analysis anomaly detection based on experience in the software

engineering automation domain. Due to the Smart Grids infrastructure’s complexity, testing

has to consider the interactions between the different layers. For this reason, we adopted and

proposed a model and platform based on the Mosaik frameworks for testing based on the

concept of co-simulations. To keep in line with the educational aspects, we also proposed a

low-cost solution that can allow us to more easily understand the concepts of co-simulations

with the support of commodity hardware.

33

Chapter 4. Conclusion

The full texts of the articles are excluded from the public version of this thesis collection

to avoid copyright violation.

34

BIBLIOGRAPHY

Bibliography

[1] C. C. Aggarwal. An Introduction to Outlier Analysis, pages 1–34. Springer Interna-

tional Publishing, Cham, 2017.

[2] M. Alqudah and R. Razali. A review of scaling agile methods in large software de-

velopment. International Journal on Advanced Science, Engineering and Information

Technology, 6(6):828–837, 2016.

[3] M. Amin. Challenges in reliability, security, efficiency, and resilience of energy infra-

structure: Toward smart self-healing electric power grid. In Power and Energy Society

General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century,

pages 1–5. IEEE, 2008.

[4] S. M. Amin and B. F. Wollenberg. Toward a smart grid: power delivery for the 21st

century. IEEE power and energy magazine, 3(5):34–41, 2005.

[5] E. Ancillotti, R. Bruno, and M. Conti. The role of communication systems in smart

grids: Architectures, technical solutions and research challenges. Computer Commu-

nications, 36(17-18):1665–1697, 2013.

[6] D. Anderson, C. Zhao, C. Hauser, V. Venkatasubramanian, D. Bakken, and A. Bose.

Intelligent design” real-time simulation for smart grid control and communications

design. IEEE Power and Energy Magazine, 10(1):49–57, 2012.

[7] M. Annor-Asante and B. Pranggono. Development of smart grid testbed with low-cost

hardware and software for cybersecurity research and education. Wireless Personal

Communications, pages 1–21, 2018.

[8] O. Ardakanian, N. Koochakzadeh, R. P. Singh, L. Golab, and S. Keshav. Computing

electricity consumption profiles from household smart meter data. In EDBT/ICDT

Workshops, volume 14, pages 140–147, 2014.

[9] D. E. Avison, F. Lau, M. D. Myers, and P. A. Nielsen. Action research. Communica-

tions of the ACM, 42(1):94–97, 1999.

[10] B. W. Boehm. Trw systems engineering and integration division. characteristics of

software quality. TRW Software Series: TRW-SS, 1973.

35

BIBLIOGRAPHY

[11] B. W. Boehm, J. R. Brown, and M. Lipow. Quantitative evaluation of software quality.

In Proceedings of the 2nd international conference on Software engineering, pages 592–

605, 1976.

[12] R. Bonetto and M. Rossi. Smart grid for the smart city. In Designing, Developing,

and Facilitating Smart Cities, pages 241–263. Springer, 2017.

[13] D. M. Breuker, J. Derriks, and J. Brunekreef. Measuring static quality of student

code. In Proceedings of the 16th annual joint conference on Innovation and technology

in computer science education, pages 13–17, 2011.

[14] D. Budgen and P. Brereton. Performing systematic literature reviews in software en-

gineering. In Proceedings of the 28th international conference on Software engineering,

pages 1051–1052, 2006.

[15] M. M. Buzau, J. Tejedor-Aguilera, P. Cruz-Romero, and A. Gómez-Expósito. Detec-

tion of non-technical losses using smart meter data and supervised learning. IEEE

Transactions on Smart Grid, 10(3):2661–2670, 2018.

[16] D. T. Campbell and J. C. Stanley. Experimental and quasi-experimental designs for

research. Ravenio books, 2015.

[17] J. C. Carver and R. Prikladnicki. Industry–academia collaboration in software engin-

eering. IEEE Software, 35(5):120–124, 2018.

[18] S. G. C. CEN-CENELEC-ETSI. Group.(2012). Smart Grid Reference Architecture,

pages 1–107, 2012.

[19] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM

computing surveys (CSUR), 41(3):15, 2009.

[20] D. P. Chassin, K. Schneider, and C. Gerkensmeyer. Gridlab-d: An open-source power

systems modeling and simulation environment. In Transmission and distribution con-

ference and exposition, 2008. t&d. IEEE/PES, pages 1–5. IEEE, 2008.

[21] J.-S. Chou and A. S. Telaga. Real-time detection of anomalous power consumption.

Renewable and Sustainable Energy Reviews, 33:400–411, 2014.

[22] S. Chren, B. Buhnova, M. Macak, L. Daubner, and B. Rossi. Mistakes in uml diagrams:

Analysis of student projects in a software engineering course. In 2019 IEEE/ACM 41st

International Conference on Software Engineering: Software Engineering Education

and Training (ICSE-SEET), pages 100–109, 2019.

[23] S. Chren, M. Macák, B. Rossi, and B. Buhnova. Evaluating code improvements in

software quality course projects. In Proceedings of the International Conference on

Evaluation and Assessment in Software Engineering 2022, EASE ’22, page 160–169,

New York, NY, USA, 2022. Association for Computing Machinery.

36

BIBLIOGRAPHY

[24] S. Chren, R. Micko, B. Buhnova, and B. Rossi. Strait: A tool for automated software

reliability growth analysis. In 2019 IEEE/ACM 16th International Conference on

Mining Software Repositories (MSR), pages 105–110, 2019.

[25] S. Chren, B. Rossi, and T. Pitner. Smart grids deployments within eu projects: The

role of smart meters. In 2016 Smart Cities Symposium Prague (SCSP), pages 1–5,

2016.

[26] V. Ded́ık and B. Rossi. Automated bug triaging in an industrial context. In 2016 42th

Euromicro Conference on Software Engineering and Advanced Applications (SEAA),

pages 363–367, 2016.

[27] T. Dingsøyr and N. B. Moe. Towards principles of large-scale agile development. In

International Conference on Agile Software Development, pages 1–8. Springer, 2014.

[28] J. T. Duane. Learning curve approach to reliability monitoring. IEEE Transactions

on Aerospace, pages 563–566, 1964.

[29] T. Dyba, B. A. Kitchenham, and M. Jorgensen. Evidence-based software engineering

for practitioners. IEEE software, 22(1):58–65, 2005.

[30] C. Ebert and M. Paasivaara. Scaling agile. IEEE Software, 34(6):98–103, November

2017.

[31] M. Eremia, L. Toma, and M. Sanduleac. The smart city concept in the 21st century.

Procedia Engineering, 181:12–19, 2017.

[32] J. Évora Gómez, J. J. Hernández Cabrera, J.-P. Tavella, S. Vialle, E. Kremers, and

L. Frayssinet. Daccosim ng: co-simulation made simpler and faster. In Linköping

electronic conference proceedings, 2019.

[33] X. Fang, S. Misra, G. Xue, and D. Yang. Smart grid—the new and improved power

grid: A survey. Communications Surveys & Tutorials, IEEE, 14(4):944–980, 2012.

[34] H. Farhangi. The path of the smart grid. IEEE power and energy magazine, 8(1),

2010.

[35] N. Fenton. Software measurement: A necessary scientific basis. IEEE Transactions

on software engineering, 20(3):199–206, 1994.

[36] N. Fenton and J. Bieman. Software metrics: a rigorous and practical approach. CRC

press, 2014.

[37] N. E. Fenton and M. Neil. Software metrics: roadmap. In Proceedings of the Conference

on the Future of Software Engineering, pages 357–370, 2000.

[38] G. Fenza, M. Gallo, and V. Loia. Drift-aware methodology for anomaly detection in

smart grid. IEEE Access, 7:9645–9657, 2019.

37

BIBLIOGRAPHY

[39] M. Frincu and Z. Gima. A bottom-up approach to sustained curtailment and com-

fort for controlled demand response. In 2014 IEEE Conference on Technologies for

Sustainability (SUSTECH), pages 61–68. IEEE Oregon Sect; REGION 6; IEEE USA;

IEEE Consumer Elect Soc; IEEE Soc Social Implications Technology, 2014.

[40] M. Ge, S. Chren, B. Rossi, and T. Pitner. Data quality management framework for

smart grid systems. In W. Abramowicz and R. Corchuelo, editors, Business Informa-

tion Systems, pages 299–310, Cham, 2019. Springer International Publishing.

[41] K. Geisler. The relationship between smart grids and smart cities. IEEE newsletter,

May, 2013.

[42] D. Gelperin and B. Hetzel. The growth of software testing. Communications of the

ACM, 31(6):687–695, 1988.

[43] A. L. Goel and K. Okumoto. Time-dependent error-detection rate model for software

reliability and other performance measures. IEEE Transactions on Reliability, R-

28(3):206–211, 1979.

[44] S. S. Gokhale and K. S. Trivedi. Log-logistic software reliability growth model. In Pro-

ceedings Third IEEE International High-Assurance Systems Engineering Symposium

(Cat. No.98EX231), pages 34–41, 1998.

[45] L. Gryga and B. Rossi. Co-simulation of smart grids: Dynamically changing topologies

in failure scenarios. In Proceedings of the 6th International Conference on Complex-

ity, Future Information Systems and Risk - Volume 1: COMPLEXIS,, pages 63–69.

INSTICC, SciTePress, 2021.

[46] S. Hamer, C. Quesada-López, and M. Jenkins. Students projects’ source code changes

impact on software quality through static analysis. In Quality of Information and

Communications Technology, pages 553–564. Springer International Publishing, 2021.

[47] A. E. Hassan. The road ahead for mining software repositories. In 2008 frontiers of

software maintenance, pages 48–57. IEEE, 2008.

[48] K. Heussen, C. Steinbrink, I. F. Abdulhadi, V. H. Nguyen, M. Z. Degefa, J. Merino,

T. V. Jensen, H. Guo, O. Gehrke, D. E. M. Bondy, et al. Erigrid holistic test description

for validating cyber-physical energy systems. Energies, 12(14):2722, 2019.

[49] S. A. Hossain and R. C. Dahiya. Estimating the parameters of a non-homogeneous

poisson-process model for software reliability. IEEE Transactions on Reliability, pages

604–612, 1993.

[50] K. Hrabovská, B. Rossi, and T. Pitner. Software testing process models benefits &

drawbacks: a systematic literature review, 2019.

[51] International Standard Organization (ISO). International standard iso/iec 9126, in-

formation technology - product quality - part1: Quality model, 2001.

38

BIBLIOGRAPHY

[52] ISO/IEC 25010. ISO/IEC 25010:2011, systems and software engineering — systems

and software quality requirements and evaluation (square) — system and software

quality models, 2011.

[53] M. L. Jaccheri. Software quality and software process improvement course based on

interaction with the local software industry. Computer Applications in Engineering

Education, 9(4):265–272, 2001.

[54] Z. Jelinski and P. Moranda. Software reliability research. In Statistical computer

performance evaluation, pages 465–484. Elsevier, 1972.

[55] G. Jeong, S. Kim, T. Zimmermann, and K. Yi. Improving code review by predicting

reviewers and acceptance of patches. Research on Software Analysis for Error-free

Computing Center Tech-Memo (ROSAEC MEMO 2009-006), pages 1–18, 2009.

[56] J. Jiang, J.-H. He, and X.-Y. Chen. Coredevrec: Automatic core member recom-

mendation for contribution evaluation. Journal of Computer Science and Technology,

30(5):998–1016, 2015.

[57] M. Kalenda, P. Hyna, and B. Rossi. Scaling agile in large organizations: Prac-

tices, challenges, and success factors. Journal of Software: Evolution and Process,

30(10):e1954, 2018. e1954 smr.1954.

[58] N. Kanti-Singha Roy and B. Rossi. Towards an improvement of bug severity classi-

fication. In 2014 40th Euromicro Conference on Software Engineering and Advanced

Applications, pages 269–276, 2014.

[59] H. Keuning, B. Heeren, and J. Jeuring. Code quality issues in student programs. In

Proceedings of the 2017 ACM Conference on Innovation and Technology in Computer

Science Education, pages 110–115, 2017.

[60] S. K. Khaitan and J. D. McCalley. Design techniques and applications of cyberphysical

systems: A survey. IEEE Systems Journal, 9(2):350–365, 2015.

[61] H. A. Khan, A. C. M. Tan, Y. Xiao, V. Sreeram, and H. H. C. Iu. An implementation

of novel CMAC algorithm for very short term load forecasting. Journal of Ambient

Intelligence and Humanized Computing, 4(6):673–683, 2013.

[62] B. Kitchenham and S. L. Pfleeger. Software quality: the elusive target [special issues

section]. IEEE software, 13(1):12–21, 1996.

[63] B. A. Kitchenham, T. Dyba, and M. Jorgensen. Evidence-based software engineering.

In Proceedings. 26th International Conference on Software Engineering, pages 273–

281. IEEE, 2004.

[64] F. Koetter, M. Kochanowski, M. Kintz, B. Kersjes, I. Bogicevic, and S. Wagner. As-

sessing software quality of agile student projects by data-mining software repositories.

In CSEDU (2), pages 244–251, 2019.

39

BIBLIOGRAPHY

[65] V. Lamba, N. Šimková, and B. Rossi. Recommendations for smart grid security risk

management. Cyber-Physical Systems, 5(2):92–118, 2019.

[66] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals. Predicting the severity of a

reported bug. In MSR, pages 1–10, 2010.

[67] A. Lamkanfi, S. Demeyer, Q. Soetens, and T. Verdonck. Comparing mining algorithms

for predicting the severity of a reported bug. In 2011 15th European Conference on

Software Maintenance and Reengineering (CSMR), pages 249–258, 2011.

[68] C. Larman and B. Vodde. Practices for scaling lean & Agile development: large,

multisite, and offshore product development with large-scale scrum. Pearson Education,

2010.

[69] M. M. Lehman. On understanding laws, evolution, and conservation in the large-

program life cycle. Journal of Systems and Software, 1:213–221, 1979.

[70] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, and W. M. Turski. Metrics

and laws of software evolution-the nineties view. In Proceedings Fourth International

Software Metrics Symposium, pages 20–32. IEEE, 1997.

[71] J.-L. Letouzey. The sqale method for evaluating technical debt. In Third International

Workshop on Managing Technical Debt (MTD), pages 31–36. IEEE, 2012.

[72] J. Lin. The lambda and the kappa. IEEE Internet Computing, 21(5):60–66, 2017.

[73] J. Lipcak and B. Rossi. A large-scale study on source code reviewer recommendation.

In 2018 44th Euromicro Conference on Software Engineering and Advanced Applica-

tions (SEAA), pages 378–387, 2018.

[74] P. Lipčák, M. Macak, and B. Rossi. Big data platform for smart grids power con-

sumption anomaly detection. In 2019 Federated Conference on Computer Science and

Information Systems (FedCSIS), pages 771–780, 2019.

[75] X. Liu and P. S. Nielsen. Regression-based online anomaly detection for smart grid

data. arXiv preprint arXiv:1606.05781, 2016.

[76] Y. Lu, X. Mao, T. Wang, G. Yin, and Z. Li. Improving students’ programming

quality with the continuous inspection process: a social coding perspective. Frontiers

of Computer Science, 14(5):1–18, 2020.

[77] M. R. Lyu. Handbook of software reliability engineering. IEEE Computer Society

Press, 1996.

[78] N. Marz and J. Warren. Big Data: Principles and best practices of scalable real-time

data systems. New York; Manning Publications Co., 2015.

40

BIBLIOGRAPHY

[79] J. A. McCall, P. K. Richards, and G. F. Walters. Factors in software quality. volume

i. concepts and definitions of software quality. Technical report, General Electric CO

Synnyvale, CA, 1977.

[80] P. McDaniel and S. McLaughlin. Security and privacy challenges in the smart grid.

IEEE Security & Privacy, 7(3), 2009.

[81] N. R. Mead, T. B. Hilburn, and R. C. Linger. Software assurance curriculum project

volume 2: Undergraduate course outlines. Technical report, Carnegie-Mellon Univer-

sity Pittsburgh PA Software Engineering Institute, 2010.

[82] T. Mens. On the complexity of software systems. Computer, 45(08):79–81, 2012.

[83] T. Menzies and A. Marcus. Automated severity assessment of software defect reports.

In Software Maintenance, 2008. ICSM 2008. IEEE International Conference on, pages

346–355, 2008.

[84] P. Mihal, M. Schvarcbacher, B. Rossi, and T. Pitner. Smart grids co-simulations:

Survey & research directions. Sustainable Computing: Informatics and Systems,

35:100726, 2022.

[85] R. Mičko, S. Chren, and B. Rossi. Applicability of software reliability growth models

to open source software. In 2022 48th Euromicro Conference on Software Engineering

and Advanced Applications (SEAA), pages 255–262, 2022.

[86] N. B. Moe and T. Dingsøyr. Emerging research themes and updated research agenda

for large-scale agile development: a summary of the 5th international workshop at

xp2017. In Proceedings of the XP2017 Scientific Workshops, page 14. ACM, 2017.

[87] J. Možucha and B. Rossi. Is mutation testing ready to be adopted industry-wide?

In P. Abrahamsson, A. Jedlitschka, A. Nguyen Duc, M. Felderer, S. Amasaki, and

T. Mikkonen, editors, Product-Focused Software Process Improvement, pages 217–232,

Cham, 2016. Springer International Publishing.

[88] J. D. Musa. A theory of software reliability and its application. IEEE transactions on

software engineering, 1(03):312–327, 1975.

[89] J. D. Musa, A. Iannino, and K. Okumoto. Software reliability: measurement, predic-

tion, application. McGraw-Hill, Inc., 1987.

[90] J. D. Musa and K. Okumoto. A logarithmic poisson execution time model for soft-

ware reliability measurement. In Proceedings of the 7th International Conference on

Software Engineering, pages 230–238, Piscataway, NJ, USA, 1984. IEEE Press.

[91] NIST. Nist framework and roadmap for smart grid interoperability standards, release

1.0 (draft), jan. Dept. of Commerce, USA, Framework and Roadma, 2010.

41

BIBLIOGRAPHY

[92] NIST. Roadmap for smart grid interoperability standards, release 2.0. NIST special

publication 1108R2, 2012.

[93] A. Nugroho, J. Visser, and T. Kuipers. An empirical model of technical debt and

interest. In Proceedings of the 2Nd Workshop on Managing Technical Debt, MTD ’11,

pages 1–8, New York, NY, USA, 2011. ACM.

[94] P. Oman and J. Hagemeister. Construction and testing of polynomials predicting

software maintainability. Journal of Systems and Software, 24(3):251 – 266, 1994.

Oregon Workshop on Software Metrics.

[95] P. Pääkkönen and D. Pakkala. Reference architecture and classification of technologies,

products and services for big data systems. Big data research, 2(4):166–186, 2015.

[96] P. Palensky, E. Widl, and A. Elsheikh. Simulating cyber-physical energy systems:

Challenges, tools and methods. IEEE Transactions on Systems, Man, and Cybernetics:

Systems, 44(3):318–326, 2014.

[97] B. Palmintier, D. Krishnamurthy, P. Top, S. Smith, J. Daily, and J. Fuller. Design

of the helics high-performance transmission-distribution-communication-market co-

simulation framework. In 2017 Workshop on Modeling and Simulation of Cyber-

Physical Energy Systems (MSCPES), pages 1–6. IEEE, 2017.

[98] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson. Systematic mapping studies in

software engineering. In 12th International Conference on Evaluation and Assessment

in Software Engineering (EASE) 12, pages 1–10, 2008.

[99] P. Ralph, N. b. Ali, S. Baltes, D. Bianculli, J. Diaz, Y. Dittrich, N. Ernst, M. Felderer,

R. Feldt, A. Filieri, et al. Empirical standards for software engineering research. arXiv

preprint arXiv:2010.03525, 2020.

[100] D. J. Reifer, F. Maurer, and H. Erdogmus. Scaling agile methods. IEEE software,

20(4):12–14, 2003.

[101] B. Rossi. Towards a Simulation Model including Network Externalities in Free / Libre

Open Source Software (FLOSS) Adoption. PhD thesis, Free University of Bozen-

Bolzano, 2007.

[102] B. Rossi and S. Chren. Smart grids data analysis: A systematic mapping study. IEEE

Transactions on Industrial Informatics, 16(6):3619–3639, 2020.

[103] B. Rossi, S. Chren, B. Buhnova, and T. Pitner. Anomaly detection in smart grid data:

An experience report. In 2016 IEEE International Conference on Systems, Man, and

Cybernetics (SMC), pages 2313–2318, 2016.

[104] B. Rossi et al. A large-scale replication of smart grids power consumption anomaly

detection. In IoTBDS, pages 288–295, 2020.

42

BIBLIOGRAPHY

[105] B. Rossi, B. Russo, and G. Succi. Modelling failures occurrences of open source soft-

ware with reliability growth. In P. Ågerfalk, C. Boldyreff, J. M. González-Barahona,

G. R. Madey, and J. Noll, editors, Open Source Software: New Horizons, pages 268–

280, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[106] A. Saad and N. Sisworahardjo. Data analytics-based anomaly detection in smart

distribution network. In 2017 International Conference on High Voltage Engineering

and Power Systems (ICHVEPS), pages 1–5. IEEE, 2017.

[107] I. Scaled Agile. Safe 4.0 introduction a scaled agile, inc. white paper july 2016 overview

of the scaled agile framework for lean software and systems engineering. Technical

report, Scaled Agile, Inc., 5480 Valmont Rd, Suite 100, Boulder CO 80301 USA, July

2016.

[108] M. Schvarcbacher, K. Hrabovská, B. Rossi, and T. Pitner. Smart grid testing man-

agement platform (sgtmp). Applied Sciences, 8(11), 2018.

[109] M. Schvarcbacher and B. Rossi. Smart grids co-simulations with low-cost hardware. In

2017 43rd Euromicro Conference on Software Engineering and Advanced Applications

(SEAA), pages 252–255, 2017.

[110] S. Schütte, S. Scherfke, and M. Tröschel. Mosaik: A framework for modular simulation

of active components in smart grids. In 2011 IEEE First International Workshop on

Smart Grid Modeling and Simulation (SGMS), pages 55–60, Oct 2011.

[111] F. J. Shull, J. C. Carver, S. Vegas, and N. Juristo. The role of replications in empirical

software engineering. Empirical software engineering, 13:211–218, 2008.

[112] A. Sial, A. Singh, A. Mahanti, and M. Gong. Heuristics-based detection of abnor-

mal energy consumption. In International Conference on Smart Grid Inspired Future

Technologies, pages 21–31. Springer, 2018.

[113] W.-Z. Song, D. De, S. Tan, S. K. Das, and L. Tong. A wireless smart grid testbed in

lab. IEEE Wireless Communications, 19(3), 2012.

[114] M. Staron. Action research in software engineering. Springer, 2020.

[115] P. Strečanský, S. Chren, and B. Rossi. Comparing maintainability index, sig method,

and sqale for technical debt identification. Scientific Programming, 2020:14, Jul 2020.

[116] S. Tan, W.-Z. Song, Q. Dong, and L. Tong. Score: Smart-grid common open research

emulator. In Smart Grid Communications (SmartGridComm), 2012 IEEE Third In-

ternational Conference on, pages 282–287. IEEE, 2012.

[117] P. Thongtanunam, C. Tantithamthavorn, R. G. Kula, N. Yoshida, H. Iida, and K.-i.

Matsumoto. Who should review my code? a file location-based code-reviewer re-

commendation approach for modern code review. In Software Analysis, Evolution

43

BIBLIOGRAPHY

and Reengineering (SANER), 2015 IEEE 22nd International Conference on, pages

141–150. IEEE, 2015.

[118] V. Tomic. A bionic view on complex software systems-and the consequences for digital

resilience. Master’s thesis, Wien, 2021.

[119] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,

and I. Polosukhin. Attention is all you need. Advances in neural information processing

systems, 30, 2017.

[120] M. Vogt, F. Marten, and M. Braun. A survey and statistical analysis of smart grid

co-simulations. Applied Energy, 222:67–78, 2018.

[121] M. Wolsink. The research agenda on social acceptance of distributed generation in

smart grids: Renewable as common pool resources. Renewable and Sust. Energy Re-

views, 16(1):822–835, 2012.

[122] A. Wood. Software reliability growth models. Technical report, Tandem Computers

Inc., Cupertino, CA 95014, 1996.

[123] R. W lodarski, A. Poniszewska-Marańda, and J.-R. Falleri. Impact of software de-

velopment processes on the outcomes of student computing projects: A tale of two

universities. Information and Software Technology, 144:106787, 2022.

[124] S. Yamada, M. Ohba, and S. Osaki. S-shaped reliability growth modeling for software

error detection. IEEE Transactions on Reliability, R-32(5):475–484, 1983.

[125] C.-Z. Yang, C.-C. Hou, W.-C. Kao, and I.-X. Chen. An empirical study on improving

severity prediction of defect reports using feature selection. In Software Engineering

Conference (APSEC), 2012 19th Asia-Pacific, volume 1, pages 240–249, 2012.

[126] M. Young. Software testing and analysis: process, principles, and techniques. John

Wiley & Sons, 2008.

[127] Y. Yu, H. Wang, G. Yin, and T. Wang. Reviewer recommendation for pull-requests in

github: What can we learn from code review and bug assignment? Information and

Software Technology, 74:204–218, 2016.

[128] Y. Zhang, W. Chen, and J. Black. Anomaly detection in premise energy consumption

data. In 2011 IEEE Power and Energy Society General Meeting, pages 1–8. IEEE,

2011.

44

Part II

Collection of Articles

45

Appendix A. Selection of Articles

Appendix A

Selection of Articles

This appendix lists all the articles that have been included in this Habilitation Thesis.

Acronyms in the index distinguish between journal (J) and conference (C) papers. The

full-texts of the articles follow this section1.

A.1 (C1.) J. Lipcak and B. Rossi. A large-scale study on source code reviewer recommend-

ation. In 2018 44th Euromicro Conference on Software Engineering and Advanced

Applications (SEAA), pages 378–387, 2018

A.2 (C2.) J. Možucha and B. Rossi. Is mutation testing ready to be adopted industry-

wide? In P. Abrahamsson, A. Jedlitschka, A. Nguyen Duc, M. Felderer, S. Amasaki,

and T. Mikkonen, editors, Product-Focused Software Process Improvement, pages 217–

232, Cham, 2016. Springer International Publishing

A.3 (C3.) N. Kanti-Singha Roy and B. Rossi. Towards an improvement of bug severity clas-

sification. In 2014 40th Euromicro Conference on Software Engineering and Advanced

Applications, pages 269–276, 2014

A.4 (C4.) V. Ded́ık and B. Rossi. Automated bug triaging in an industrial context. In

2016 42th Euromicro Conference on Software Engineering and Advanced Applications

(SEAA), pages 363–367, 2016

A.5 (C5.) S. Chren, R. Micko, B. Buhnova, and B. Rossi. Strait: A tool for automated

software reliability growth analysis. In 2019 IEEE/ACM 16th International Conference

on Mining Software Repositories (MSR), pages 105–110, 2019

A.6 (C6.) R. Mičko, S. Chren, and B. Rossi. Applicability of software reliability growth

models to open source software. In 2022 48th Euromicro Conference on Software

Engineering and Advanced Applications (SEAA), pages 255–262, 2022

1full-texts are omitted from the public version of the thesis to avoid copyright infrigement.

46

Appendix A. Selection of Articles

A.7 (C7.) S. Chren, B. Buhnova, M. Macak, L. Daubner, and B. Rossi. Mistakes in uml

diagrams: Analysis of student projects in a software engineering course. In 2019

IEEE/ACM 41st International Conference on Software Engineering: Software Engin-

eering Education and Training (ICSE-SEET), pages 100–109, 2019

A.8 (C8.) S. Chren, M. Macák, B. Rossi, and B. Buhnova. Evaluating code improvements

in software quality course projects. In Proceedings of the International Conference on

Evaluation and Assessment in Software Engineering 2022, EASE ’22, page 160–169,

New York, NY, USA, 2022. Association for Computing Machinery

A.9 (C9.) B. Rossi, S. Chren, B. Buhnova, and T. Pitner. Anomaly detection in smart grid

data: An experience report. In 2016 IEEE International Conference on Systems, Man,

and Cybernetics (SMC), pages 2313–2318, 2016

A.10 (C10.) P. Lipčák, M. Macak, and B. Rossi. Big data platform for smart grids power

consumption anomaly detection. In 2019 Federated Conference on Computer Science

and Information Systems (FedCSIS), pages 771–780, 2019

A.11 (C11.) M. Schvarcbacher and B. Rossi. Smart grids co-simulations with low-cost

hardware. In 2017 43rd Euromicro Conference on Software Engineering and Advanced

Applications (SEAA), pages 252–255, 2017

A.12 (J1.) M. Kalenda, P. Hyna, and B. Rossi. Scaling agile in large organizations: Prac-

tices, challenges, and success factors. Journal of Software: Evolution and Process,

30(10):e1954, 2018. e1954 smr.1954

A.13 (J2.) P. Strečanský, S. Chren, and B. Rossi. Comparing maintainability index, sig

method, and sqale for technical debt identification. Scientific Programming, 2020:14,

Jul 2020

A.14 (J3.) B. Rossi and S. Chren. Smart grids data analysis: A systematic mapping study.

IEEE Transactions on Industrial Informatics, 16(6):3619–3639, 2020

A.15 (J4.) V. Lamba, N. Šimková, and B. Rossi. Recommendations for smart grid security

risk management. Cyber-Physical Systems, 5(2):92–118, 2019

A.16 (J5.) P. Mihal, M. Schvarcbacher, B. Rossi, and T. Pitner. Smart grids co-simulations:

Survey & research directions. Sustainable Computing: Informatics and Systems,

35:100726, 2022

A.17 (J6.) M. Schvarcbacher, K. Hrabovská, B. Rossi, and T. Pitner. Smart grid testing

management platform (sgtmp). Applied Sciences, 8(11), 2018

47

Appendix A. Selection of Articles

48

Appendix A. Selection of Articles

A.1 A Large-scale Study on Source Code Reviewer Re-

commendation (C1)

J. Lipcak and B. Rossi. A large-scale study on source code reviewer recom-

mendation. In 2018 44th Euromicro Conference on Software Engineering and

Advanced Applications (SEAA), pages 378–387, 2018

Abstract. Context: Software code reviews are an important part of the development

process, leading to better software quality and reduced overall costs. However, finding

appropriate code reviewers is a complex and time-consuming task. Goals: In this paper,

we propose a large-scale study to compare performance of two main source code reviewer

recommendation algorithms (RevFinder and a Naive Bayes-based approach) in identifying

the best code reviewers for opened pull requests. Method: We mined data from Github

and Gerrit repositories, building a large dataset of 51 projects, with more than 293K pull

requests analyzed, 180K owners and 157K reviewers. Results: Based on the large analysis,

we can state that i) no model can be generalized as best for all projects, ii) the usage of a

different repository (Gerrit, GitHub) can have impact on the the recommendation results,

iii) exploiting sub-projects information available in Gerrit can improve the recommendation

results.

49

Appendix A. Selection of Articles

A.2 Is Mutation Testing Ready to be adopted Industry-

wide? (C2)

J. Možucha and B. Rossi. Is mutation testing ready to be adopted industry-

wide? In P. Abrahamsson, A. Jedlitschka, A. Nguyen Duc, M. Felderer, S. Ama-

saki, and T. Mikkonen, editors, Product-Focused Software Process Improve-

ment, pages 217–232, Cham, 2016. Springer International Publishing

Abstract. Mutation Testing has a long research history as a way to improve the qual-

ity of software tests. However, it has not yet reached wide consensus for industry-wide

adoption, mainly due to missing clear benefits and computational complexity for the applic-

ation to large systems. In this paper, we investigate the current state of mutation testing

support for Java Virtual Machine (JVM) environments. By running an experimental eval-

uation, we found out that while default configurations are unbearable for larger projects,

using strategies such as selective operators, second order mutation and multi-threading can

increase the applicability of the approach. However, there is a trade-off in terms of quality

of the achieved results of the mutation analysis process that needs to be taken into account.

50

Appendix A. Selection of Articles

A.3 Towards an Improvement of Bug Severity Classi-

fication (C3)

N. Kanti-Singha Roy and B. Rossi. Towards an improvement of bug severity

classification. In 2014 40th Euromicro Conference on Software Engineering

and Advanced Applications, pages 269–276, 2014

Abstract. Predicting the severity of bugs has been found in past research to improve

triaging and the bug resolution process. For this reason, many classification/prediction

approaches emerged over the years to provide an automated reasoning over severity classes.

In this paper, we use text mining together with bi-grams and feature selection to improve

the classification of bugs in severe/non-severe classes. We adopt the Naive Bayes (NB)

classifier considering Mozilla and Eclipse datasets commonly used in related works. Overall,

the results show that the application of bi-grams can improve slightly the performance of

the classifier, but feature selection can be more effective to determine the most informative

terms and bi-grams. The results are in any case project-dependent, as in some cases the

addition of bi-grams may worsen the performance.

51

Appendix A. Selection of Articles

A.4 Automated Bug Triaging in an Industrial Con-

text (C4)

V. Ded́ık and B. Rossi. Automated bug triaging in an industrial context.

In 2016 42th Euromicro Conference on Software Engineering and Advanced

Applications (SEAA), pages 363–367, 2016

Abstract. There is an increasing need to introduce some form of automation within the

bug triaging process, so that no time is wasted on the initial assignment of issues. However,

there is a gap in current research, as most of the studies deal with open source projects,

ignoring the industrial context and needs. In this paper, we report our experience in dealing

with the automation of the bug triaging process within a research-industry cooperation.

After reporting the requirements and needs that were set within the industrial project, we

compare the analysis results with those from an open source project used frequently in

related research (Firefox). In spite of the fact that the projects have different size and

development process, the data distributions are similar and the best models as well. We

found out that more easily configurable models (such as SVM+TF–IDF) are preferred, and

that top-x recommendations, number of issues per developers, and online learning can all

be relevant factors when dealing with an industrial collaboration.

52

Appendix A. Selection of Articles

A.5 Strait: A Tool for Automated Software Reliability

Growth Analysis (C5)

S. Chren, R. Micko, B. Buhnova, and B. Rossi. Strait: A tool for automated

software reliability growth analysis. In 2019 IEEE/ACM 16th International

Conference on Mining Software Repositories (MSR), pages 105–110, 2019

Abstract. Reliability is an essential attribute of mission- and safety-critical systems.

Software Reliability Growth Models (SRGMs) are regression-based models that use histor-

ical failure data to predict the reliability-related parameters. At the moment, there is no

dedicated tool available that would be able to cover the whole process of SRGMs data pre-

paration and application from issue repositories, discouraging replications and reuse in other

projects. In this paper, we introduce STRAIT, a free and open source tool for automatic

software reliability growth analysis which utilizes data from issue repositories. STRAIT fea-

tures downloading, filtering and processing of data from provided issue repositories for use

in multiple SRGMs, suggesting the best fitting SRGM with multiple data snapshots to con-

sider software evolution. The tool is designed to be highly extensible, in terms of additional

issue repositories, SRGMs, and new data filtering and processing options. Quality engineers

can use STRAIT for the evaluation of their software systems. The research community can

use STRAIT for empirical studies which involve evaluation of new SRGMs or comparison

of multiple SRGMs.

53

Appendix A. Selection of Articles

A.6 Applicability of Software Reliability Growth Mod-

els to Open Source Software (C6)

R. Mičko, S. Chren, and B. Rossi. Applicability of software reliability growth

models to open source software. In 2022 48th Euromicro Conference on Soft-

ware Engineering and Advanced Applications (SEAA), pages 255–262, 2022

Abstract. Software Reliability Growth Models (SRGMs) are based on underlying as-

sumptions which make them typically more suited for quality evaluation of closed-source

projects and their development lifecycles. Their usage in open-source software (OSS) pro-

jects is a subject of debate. Although the studies investigating the SRGMs applicability in

OSS context do exist, they are limited by the number of models and projects considered

which might lead to inconclusive results. In this paper, we present an experimental study

of SRGMs applicability to a total of 88 OSS projects, comparing nine SRGMs, looking at

the stability of the best models on the whole projects, on releases, on different domains, and

according to different projects’ attributes. With the aid of the STRAIT tool, we automated

repository mining, data processing, and SRGM analysis for better reproducibility. Overall,

we found good applicability of SRGMs to OSS, but with different performance when seg-

menting the dataset into releases and domains, highlighting the difficulty in generalizing the

findings and in the search for one-fits-all models.

54

Appendix A. Selection of Articles

A.7 Mistakes in UML Diagrams: Analysis of Student

Projects in a Software Engineering Course (C7)

S. Chren, B. Buhnova, M. Macak, L. Daubner, and B. Rossi. Mistakes in

uml diagrams: Analysis of student projects in a software engineering course.

In 2019 IEEE/ACM 41st International Conference on Software Engineering:

Software Engineering Education and Training (ICSE-SEET), pages 100–109,

2019

Abstract. The Unified Modelling Language (UML) is being widely accepted as a mod-

elling notation for visualizing software systems during design and development. UML has

thus become part of many software engineering course curricula at universities worldwide,

providing a recognized tool for practical training of students in understanding and visualiz-

ing software design. It is however common that students have difficulties in absorbing UML

in its complexity, and often repeat the same mistakes that have been observed by course

tutors in previous years. Having a catalogue of such mistakes could hence increase the ef-

fectiveness of both teaching and learning of UML diagrams. In this paper, we introduce such

a catalogue, consisting of 146 types of mistakes in eight types of diagrams. As the main

contribution of this study, we use this catalogue to guide the analysis of student projects

within a software engineering course. In total, over 2,700 diagrams submitted over 12 weeks

of a semester by 123 students were analysed to identify the frequency of mistakes (from the

catalogue), correlations of the mistakes between different diagram types, correlation of the

quality of student projects to exam results, student behaviour in terms of introducing and

fixing the mistakes over time, and other interesting insights. The analysis is described to-

gether with its setup and execution, and all datasets and detailed guidebook to the catalogue

of all mistakes is made available for download.

55

Appendix A. Selection of Articles

A.8 Evaluating Code Improvements in Software Qual-

ity Course Projects (C8)

S. Chren, M. Macák, B. Rossi, and B. Buhnova. Evaluating code improvements

in software quality course projects. In Proceedings of the International Con-

ference on Evaluation and Assessment in Software Engineering 2022, EASE

’22, page 160–169, New York, NY, USA, 2022. Association for Computing

Machinery

Abstract. Software quality sits at the core of software engineering as a discipline. Yet,

although each university software-engineering and the software development course covers

software quality to some extent, practitioners still lament on graduates’ readiness for practise

for this very reason—poor quality of their code. As a result, we have engaged university

industrial partners in designing a master-degree Software Quality course that puts the key

software quality topics in one place. In this paper, we report on the effects of the course

on the quality of students’ coding projects. To this end, we have analysed a total of 54

project submissions from 27 students, with both manual and automated quality assessment

methods. We have employed 30 manual and 22 automated quality characteristics related

to coding style, architecture design and general development practices. In particular, we

examine which characteristics of the code have improved the most and what were the most

common issues. Additionally, we investigate how the code quality improvement is related to

external aspects such as students’ prior coding experience, interest and their time spent on

the assignments. We use the results to formulate a set of lessons learned in order to improve

the design of the course and to inspire educators who consider introducing a similar type of

course.

56

Appendix A. Selection of Articles

A.9 Anomaly Detection in Smart Grid Data: An Ex-

perience Report (C9)

B. Rossi, S. Chren, B. Buhnova, and T. Pitner. Anomaly detection in smart

grid data: An experience report. In 2016 IEEE International Conference on

Systems, Man, and Cybernetics (SMC), pages 2313–2318, 2016

Abstract. In recent years, we have been witnessing profound transformation of energy

distribution systems fueled by Information and Communication Technologies (ICT), towards

the so called Smart Grid. However, while the Smart Grid design strategies have been studied

by academia, only anecdotal guidance is provided to the industry with respect to increasing

the level of grid intelligence. In this paper, we report on a successful project in assisting the

industry in this way, via conducting a large anomaly-detection study on the data of one of

the power distribution companies in the Czech Republic. In the study, we move away from

the concept of single events identified as anomaly to the concept of collective anomaly, that

is itemsets of events that may be anomalous based on their patterns of appearance. This

can assist the operators of the distribution system in the transformation of their grid to a

smarter grid. By analyzing Smart Meters data streams, we used frequent itemset mining and

categorical clustering with clustering silhouette thresholding to detect anomalous behaviour.

As the main result, we provided to stakeholders both a visual representation of the candidate

anomalies and the identification of the top-10 anomalies for a subset of Smart Meters

57

Appendix A. Selection of Articles

A.10 Big Data Platform for Smart Grids Power Con-

sumption Anomaly Detection (C10)

P. Lipčák, M. Macak, and B. Rossi. Big data platform for smart grids power

consumption anomaly detection. In 2019 Federated Conference on Computer

Science and Information Systems (FedCSIS), pages 771–780, 2019

Abstract. Big data processing in the Smart Grid context has many large-scale applica-

tions that require real-time data analysis (e.g., intrusion and data injection attacks detection,

electric device health monitoring). In this paper, we present a big data platform for anom-

aly detection of power consumption data. The platform is based on an ingestion layer with

data densification options, Apache Flink as part of the speed layer and HDFS/KairosDB

as data storage layers. We showcase the application of the platform to a scenario of power

consumption anomaly detection, benchmarking different alternative frameworks used at the

speed layer level (Flink, Storm, Spark).

58

Appendix A. Selection of Articles

A.11 Smart Grids Co-Simulations with Low-Cost Hard-

ware (C11)

M. Schvarcbacher and B. Rossi. Smart grids co-simulations with low-cost

hardware. In 2017 43rd Euromicro Conference on Software Engineering and

Advanced Applications (SEAA), pages 252–255, 2017

Abstract. Smart Grids have nowadays gained wide diffusion and relevance. Due to

the complexity of the grid, many Smart Grids laboratories have emerged over the years

to provide partially virtualized environments for testing and co-simulation testbeds for the

modern grid. However, the costs for setting-up Smart Grids laboratories are substantial,

representing a barrier for newcomers and for educational purposes. In this paper, we propose

an hardware-in-the-loop (HIL) architectural solution based on Arduino and Raspberry PI

boards, supported by the Mosaik framework to simulate different Smart Grids scenarios

on a small and cost-effective scale. We highlight the educational benefits that the solution

can bring for understanding simulations and HIL in an affordable & effective way in an

easy-to-deploy environment.

59

Appendix A. Selection of Articles

A.12 Scaling Agile in Large Organizations: Practices,

Challenges, and Success Factors (J1)

M. Kalenda, P. Hyna, and B. Rossi. Scaling agile in large organizations: Prac-

tices, challenges, and success factors. Journal of Software: Evolution and Pro-

cess, 30(10):e1954, 2018. e1954 smr.1954

Abstract. Context: Agile software development has nowadays reached wide adoption.

However, moving agile to large-scale contexts is a complex task with many challenges in-

volved. Objective: In this paper, we review practices, challenges, and success factors for

scaling agile both from literature and within a large software company, identifying the most

critical factors. Method: We conduct a focused literature review to map the importance of

scaling practices, challenges, and success factors. The outcome of this focused literature re-

view is used to guide action research within a software company with a view to scaling agile

processes. Results: Company culture, prior agile and lean experience, management support,

and value unification were found to be key success factors during the action research process.

Resistance to change, an overly aggressive roll-out time frame, quality assurance concerns,

and integration into preexisting nonagile business processes were found to be the critical

challenges in the scaling process. Conclusion: The action research process allowed to cross-

fertilize ideas from literature to the company’s context. Scaling agile within an organization

does not need to follow a specific scheme, rather the process can be tailored to the needs

while keeping the core values and principles of agile methodologies.

60

Appendix A. Selection of Articles

A.13 Comparing Maintainability Index, SIG Method,

and SQALE for Technical Debt Identification (J2)

P. Strečanský, S. Chren, and B. Rossi. Comparing maintainability index, sig

method, and sqale for technical debt identification. Scientific Programming,

2020:14, Jul 2020

Abstract. There are many definitions of software Technical Debt (TD) that were pro-

posed over time. While many techniques to measure TD emerged in recent times, there

is still not a clear understanding about how different techniques compare when applied to

software projects. Thee goal of this paper is to shed some light on this aspect, by comparing

three techniques about TD identification that were proposed over time: (i) the Maintain-

ability Index (MI), (ii) SIG TD models, and (iii) SQALE analysis. Considering 20 open

source Python libraries, we compare the TD measurements time series in terms of trends

and evolution according to different sets of releases (major, minor, and micro), to see if the

perception of practitioners about TD evolution could be impacted. While all methods report

generally growing trends of TD over time, there are different patterns. SQALE reports more

periods of steady states compared to MI and SIG TD. MI is the method that reports more

repayments of TD compared to the other methods. SIG TD and MI are the models that

show more similarity in the way TD evolves, while SQALE and MI are less similar. The

implications are that each method gives slightly a different perception about TD evolution.

61

Appendix A. Selection of Articles

A.14 Smart Grids Data Analysis: A Systematic Map-

ping Study (J3)

B. Rossi and S. Chren. Smart grids data analysis: A systematic mapping study.

IEEE Transactions on Industrial Informatics, 16(6):3619–3639, 2020

Abstract. Data analytics and data science play a significant role in nowadays society.

In the context of smart grids, the collection of vast amounts of data has seen the emergence

of a plethora of data analysis approaches. In this article, we conduct a systematic mapping

study aimed at getting insights about different facets of SG data analysis: application sub-

domains (e.g., power load control), aspects covered (e.g., forecasting), used techniques (e.g.,

clustering), tool support, research methods (e.g., experiments/simulations), and replicab-

ility/reproducibility of research. The final goal is to provide a view of the current status

of research. Overall, we found that each subdomain has its peculiarities in terms of tech-

niques, approaches, and research methodologies applied. Simulations and experiments play

a crucial role in many areas. The replicability of studies is limited concerning the provided

implemented algorithms, and to a lower extent due to the usage of private datasets.

62

Appendix A. Selection of Articles

A.15 Recommendations for Smart Grid Security Risk

Management (J4)

V. Lamba, N. Šimková, and B. Rossi. Recommendations for smart grid security

risk management. Cyber-Physical Systems, 5(2):92–118, 2019

Abstract. Smart grids (SGs) represent a paradigm shift for the traditional electric

power infrastructure in terms of generation, transmission, and distribution of electricity in

real time. The vast use of Information and Communication Technology (ICT) is a key enabler

for the provision of smart energy services to customers. For such provision and sustainability

of services, the SG infrastructure has a high level of complexity that brings an increased risk

of security threats that need to be properly accounted and managed. The goal of this article

is to provide recommendations for security risk management for SGs, discussing aspects

of SG risk management, and the peculiarities for the planning, identification, assessment,

prioritisation, monitoring, and control of security risks.

63

Appendix A. Selection of Articles

A.16 Smart Grids Co-Simulations: Survey & Research

Directions (J5)

P. Mihal, M. Schvarcbacher, B. Rossi, and T. Pitner. Smart grids co-

simulations: Survey & research directions. Sustainable Computing: Informatics

and Systems, 35:100726, 2022

Abstract. The integration of renewable sources, communication and power networks

with information and communication technologies is one of the main challenges in Smart

Grids (SG) large-scale testing. For this reason, the coupling of simulators is commonly

used to dynamically simulate several aspects of the SG infrastructure, in the so-called co-

simulations. In this paper, we provide a scoping review of research of co-simulations in the

context of Smart Grids: i) research areas and research problems addressed by co-simulations,

ii) specific co-simulation aspects focus of research, iii) typical coupling of simulators in co-

simulation studies. Based on the results, we discuss research directions of future SG co-

simulation research in each of the identified are

64

Appendix A. Selection of Articles

A.17 Smart Grid Testing Management Platform

(SGTMP) (J6)

M. Schvarcbacher, K. Hrabovská, B. Rossi, and T. Pitner. Smart grid testing

management platform (sgtmp). Applied Sciences, 8(11), 2018

Abstract. The Smart Grid (SG) is nowadays an essential part of modern society, provid-

ing two-way energy flow and smart services between providers and customers. The main

drawback is the SG complexity, with an SG composed of multiple layers, with devices and

components that have to communicate, integrate, and cooperate as a unified system. Such

complexity brings challenges for ensuring proper reliability, resilience, availability, integra-

tion, and security of the overall infrastructure. In this paper, we introduce a new smart grid

testing management platform (herein called SGTMP) for executing real-time hardware-in-

the-loop SG tests and experiments that can simplify the testing process in the context of

interconnected SG devices. We discuss the context of usage, the system architecture, the

interactive web-based interface, the provided API, and the integration with co-simulations

frameworks to provide virtualized environments for testing. Furthermore, we present one

main scenario about the stress-testing of SG devices that can showcase the applicability of

the platform.

65

