
Software Performance
Optimization in Scientific

Computing

Jǐŕı Filipovič

}w��������
��������������� !"#$%&'()+,-./012345<yA|

Habilitation Thesis

2023

Acknowledgments

I would like to express my deep thanks to my advisors Prof. Luděk Matyska and Prof.
Siegfried Benkner, for their guidance and comments on my work during my postdoc at
Masaryk University and the University of Vienna. I would also like to thank my inter-
disciplinary collaborators: the group of Prof. Jǐŕı Damborský for collaboration on the
simulation of transport processes in proteins, and the group of Prof. José M. Carazo and
Dr. Carlos S. Sorzano for collaboration on GPU acceleration of image processing in cryo-
electron microscopy. My deep thanks also belong to my current and former colleagues,
who I had the pleasure to work and publish with: Dr. Jana Hozzová, Dr. David Střelák,
Filip Petrovič, Jaroslav Oĺha, Petra Němcová, Dr. Amin Nezarat, Dr. Jan Fousek, Jan
Plhák, David Myška, Jan Polák, and Jakub Kiska.

Last but not least, my special thanks belong to my family for being patient with me
when I was working on my research.

Abstract

Scientific computing is considered to be the third mode of science, complementing exper-
iments and theory. It uses simulation and modeling to understand complex problems,
make predictions, or analyze hypothetical situations. In many practical settings, the com-
putational experiment requires processing complex models, introducing a vast amount of
computations, and, hence, high demands for hardware resources. Therefore, multiple ap-
proaches are applied to make those models computationally feasible. Besides searching for
algorithms in a better time complexity class, results can be approximated by employing
computationally less demanding models, or high-performance computing methods can be
used to optimize and scale algorithms on parallel computers.

This thesis surveys the author’s contribution to multiple methods for improving the
computational efficiency of scientific computing applications. We focus on optimizing al-
gorithms where their alternatives in better time complexity are unknown. We apply a
holistic top-down approach, decreasing the computational cost by leveraging mathemati-
cally different and computationally less demanding models and bringing speedup by source
code optimization and acceleration on GPUs. We generalize the results when possible, so
they are applicable in different problem domains.

Employing different approximative models is described in two use-cases from compu-
tational biology: analysis of transport processes in proteins and haptic interactions with
deformable models of tissues. In the first case, we introduce a novel path-finding tech-
nique for searching many-dimensional spaces of molecular movement and conformational
changes as an alternative to more computationally expensive molecular dynamics. In the
second case, we employ a precomputation-interpolation scheme as an alternative for real-
time deformation computation, so a model that is too complex for real-time updating can
be used in interactive simulations.

GPU acceleration is examined in two problem domains: GPU-accelerated molecular
modeling and GPU-accelerated image reconstruction in cryo-electron microscopy. The
GPU accelerated implementation typically requires not only parallelization of the acceler-
ated algorithm but also its re-formulation in order to fit the GPU architecture better. In
contrast to altering a computational model, many GPU-accelerated codes share optimiza-
tion strategies. Therefore, we generalize certain code optimization tasks typically applied
in GPU acceleration and describe our contribution to the state-of-the-art in kernel fusion
(code transformation improving data locality) and autotuning (automatic adaptation of
the code to perform best according to processed data and used hardware).

The thesis is a collection of papers. It contains the commentary part, describing

v

vi

the main contribution of the papers, summarizing their results, and putting them in
the context of the state-of-the-art. The collection contains ten journal papers and four
conference or workshop papers. The papers often span across multiple parts of the thesis:
for example, they focus on GPU acceleration used in an approximative model or describe
general optimization methods on application from cryo-electron microscopy. Except for
three papers, the author of this thesis is the first or corresponding author of the papers
included in the collection.

Contents

I Commentary 1

1 Introduction 3
1.1 Papers in the Collection . 6

2 Approximative Modelling 9
2.1 Modelling Transport Processes in Proteins 9

2.1.1 Contribution . 10
2.2 Haptic Deformation Models . 13

2.2.1 Contribution . 14

3 Applications of GPU Acceleration 17
3.1 GPU Acceleration in Computational Chemistry 17

3.1.1 Contribution . 18
3.2 GPU Acceleration in cryo-Electron Microscopy 19

3.2.1 Contribution . 20

4 Automatic Optimization 23
4.1 Kernel Fusion . 23

4.1.1 Contribution . 24
4.2 Autotuning . 26

4.2.1 Contribution . 29

5 Conclusion 35

II Collection of Articles 49

vii

Part I

Commentary

Chapter 1

Introduction

When the computation demands of some application exceed the capabilities of hardware
we can use for it, we can employ multiple strategies to decrease the demands. In multiple
cases, we can formulate an algorithm, that solves the same problem, but in a better
complexity class. In this thesis, we focus on cases when it is not possible, or the algorithm
in a better complexity class is simply unknown. In such cases, there are still multiple
ways of making the application less computationally demanding. In the case of scientific
computing, we can attack the computational demands by changing a mathematical model.
In some cases, a mathematically different model can be formulated, which sacrifices some
precision for better computational speed (which can lead to better time complexity, or
just reduce the amount of computations by a constant factor). We can also accelerate
the implementation using specialized hardware, such as GPU processors, to speed up the
application by a constant factor and get better power efficiency. In this thesis, we attack
the computational demands at multiple levels: by changing the mathematical formulation
of the model, by optimization of a source code, and by accelerating implementation on
GPUs. Furthermore, we generalize some approaches to GPU acceleration and introduce
their automation. The automation decreases the complexity of GPU programming while
improving the performance portability of GPU-accelerated codes (i. e., the code performs
well after input or hardware change from those used to optimize the code).

When dealing with the computationally demanding application, we apply the top-down
approach, considering modification of the computational model first. In Chapter 2, we
describe two examples of such an approach. First, we focus on modeling transport pro-
cesses in proteins when a small molecule is transported via a protein’s channel or tunnel
into a position of our interest. Understanding those processes is of great importance in
many fundamental biochemical processes as well as in various applications, such as drug
design [63] or protein engineering [22]. Typically, the molecular system is simulated in
time by molecular dynamics [101, 105], which requires enormous computational power if
the transportation seldom occurs, as long evolution of the molecular system has to be
simulated. Our contribution to this field lies in replacing molecular dynamics by search-
ing for an energetically efficient path of the transported molecule (practically removing
the time dimension from the simulation). The path search algorithm needs to pass a

3

4 CHAPTER 1. INTRODUCTION

many-dimensional continuous space of molecular movements and conformational changes.
We introduced a novel algorithm, combining the search method with mathematical opti-
mization based on molecular docking [108], which is modified to search for energetically
favorable positions under constraints required by the search algorithm [29, 110].

The second application of model modification is haptic deformation modeling. Haptic
rendering requires very high refresh rates for a smooth haptic perception (typically around
1 kHz). Simulation of human tissues is an important application, usable, e. g., in surgical
simulators [10]. The deformable bodies, such as human organs, have complex geometry
and display nonlinear responses [66]. The combination of high refresh rates required by
haptic devices and computationally demanding models, such as nonlinear deformation
of bodies, is challenging. We address this problem with a precomputation-interpolation
scheme. Instead of computing the model in its present state in each iteration of the haptic
loop, we pre-compute an area of close deformations of the deformable body at a lower
refresh rate and interpolate from the pre-computed data at a refresh rate required by
the haptic device. The close deformations can be computed independently so that the
algorithm can scale to a high number of processors easily [36, 79].

Alongside papers [29, 36, 79, 110] included in this collection, we have also introduced a
web interface for CaverDock [112], python interface [109], use it for massive screening [83,
84], sketch a new version of CaverDock including limited receptor flexibility [69], and
improved haptic rendering by RBF interpolation [40].

Whether a model modification can speed up the computation or not, we can inde-
pendently decrease the computational costs by optimizing the code or accelerating the
application’s bottlenecks on GPU processors. Contemporary GPUs have an order of mag-
nitude higher arithmetic power than multi-core CPUs. Therefore, GPU acceleration brings
constant-fold speedup. We demonstrate GPU acceleration in two application areas in
Chapter 3: molecular modeling and cryo-electron microscopy. We have accelerated molec-
ular map generation for AutoDock force field [68] by carefully fitting the computation
of constant and distant-dependent dielectric to properties of GPU architecture [75]. Fur-
thermore, we have improved state-of-the-art implementation of long-range molecular forces
computation [95] by replacing grid z-dimension slicing with thread coarsening optimization
technique [37]. We have also accelerated molecular clustering by introducing accelerated
computation of dRMSD similarity metric [38], where we also show the limitations of the
GPU cache system and formulate rules on how to use caches efficiently.

We also focused on the acceleration of the image processing algorithm from the area
of cryo-electron microscopy. Cryo-electron microscopy is a popular method for studying
the structure of biological specimens in their native environment: water. The method
suffers from a very low signal-to-noise ratio. Therefore, a high amount of computations
is needed to reach near-atomic resolution [44]. We focused on GPU acceleration of 3D
reconstruction [2]. The original implementation is difficult to parallelize efficiently due
to poor memory locality and overlapping memory writes. We have introduced a novel
GPU-friendly algorithm, which uses alternative mapping of threads to input and output
arrays, removing race conditions and improving memory locality [99]. This novel approach
brings an order of magnitude speedup compared to parallel CPU implementations and a
several-fold speedup compared to previous GPU implementations. We also focused on

5

one of the first steps in the cryo-electron microscopy pipeline: the movie alignment. We
introduced FlexAlign [96]. This work demonstrates a complex GPU-accelerated applica-
tion, connecting FFT transformation with auto-tuned settings, GPU-accelerated kernels
for image correlation analysis, and CPU-based mathematical optimization.

Alongside papers [37, 38, 75, 96, 99] included in the collection, we have also accelerated
RMSD computation for molecular metadynamics [34], element subroutines for haptic de-
formation modeling described in Chapter 2 [31, 35], movie alignment using deep-NN [53]
and deformation fields of macromolecules [45–47] for cryo-electron microscopy.

Some optimization approaches are usable for multiple algorithms spanning different ap-
plication domains. We focus on kernel fusion and autotuning in Chapter 4. Kernel fusion
is a method of connecting multiple parallel functions (kernels) into one [102, 114, 117]. It
allows to improve data locality, increase parallelism, or eliminate common subexpressions.
We have used kernel fusion to improve the speed of element subroutines in deformation
modeling [35] and investigated the effect of different methods of kernel fusion optimization
targetting GPUs, CPUs, and Xeon Phis [30]. Furthermore, we have investigated automa-
tion of the kernel fusion: we proposed a source-to-source compiler, allowing to fuse any
CUDA kernels performing parallel map [39], reduce, and possibly nested parallel map and
reduce [33]. We demonstrated that with automatic fusion on typical sequences of BLAS
operations, it is possible to outperform vendor-optimized BLAS library more than 2× [33].

Most GPU-accelerated applications are implemented in CUDA (supported on NVIDIA
architectures and x86 processors) or OpenCL (supported over a broad range of GPUs,
CPUs, and FPGAs). Although it is possible to implement a portable code, the perfor-
mance portability is poor across different hardware architectures [56] or problem inpus [42].
Autotuning allows optimizing the application’s tuning parameters (properties influencing
the application performance) to perform the execution more efficiently and hence solve
the performance portability issue. We have introduced an autotuning framework called
Kernel Tuning Toolkit, allowing us to tune CUDA and OpenCL source code [37]. More-
over, we demonstrated that this tuning can be performed dynamically during program
execution [82]. We also experimentally showed that autotuning solves the performance
portability problem, as the unified codebase was tuned to near-peak performance for mul-
tiple different GPU architectures [82]. We further focused on improving the autotuning
process in terms of scheduling and tuning space search efficiency. We proposed a model
allowing us to predict the number of tuning space search iterations [74], which is necessary
for deciding whether autotuning should be executed under a limited time budget. Further-
more, we proposed a novel method for tuning space search [32], which utilizes hardware
performance counters in order to analyze bottlenecks of a tuned code and decide how to
change tuning parameters in order to speed it up. As this method understands the perfor-
mance problems of the tuned code, it outperforms both mathematic optimization-based
solutions and end-to-end machine learning solutions. Last but not least, we showed that
autotuning can also be applied to the size of data selection in the case of Fast Fourier
transform [98]. When the application allows for padding or cropping the data, the proper
selection of its size can improve the speed of FFT more than 6×. The most efficient data
size depends on the FFT implementation and GPU model. Therefore, autotuning with
heuristic pruning is used to search for the best data size empirically.

6 CHAPTER 1. INTRODUCTION

Alongside papers [32, 37, 74, 82, 98] included in this collection, we have also introduced
Kernel Tuning Toolkit 2.0 [81], a benchmark for autotuning frameworks [107], and a
framework integrating autotuning into image-processing pipelines [97].

1.1 Papers in the Collection

This thesis is a collection of papers. In this section, we list the papers used in this thesis
and explicitly describe the thesis author’s contribution.

� [29] Jiř́ı Filipovič, Ondřej Vávra, Jan Plhák, David Bednář, Sérgio M. Marques, Jan
Brezovský, Luděk Matyska, Jǐŕı Damborský. CaverDock: A Novel Method for the
Fast Analysis of Ligand Transport. In IEEE/ACM Transactions on Computational
Biology and Bioinformatics, Volume 17, Issue 5, 2019. [Author’s contribution: First
author (shared), 35%: method design and implementation, writing.]

� [110] Ondřej Vávra, Jiř́ı Filipovič, Jan Plhák, David Bednář, Sérgio M. Marques, Jan
Brezovský, Jan Štourač, Luděk Matyska, Jǐŕı Damborský. CaverDock: a molecular
docking-based tool to analyse ligand transport through protein tunnels and channels.
In Bioinformatics, Volume 35, Issue 23, 2019. [Author’s contribution: First author
(shared), 35%: method design and implementation, writing.]

� [79] Igor Peterĺık, Jiř́ı Filipovič. Distributed Construction of Configuration Spaces
for Real-Time Haptic Deformation Modeling. In IEEE Transactions on Industrial
Electronics, Volume 58, Issue 8, 2011. [Author’s contribution: 40%: discussion,
some implementation, some writing, experiments.]

� [75] Marek Oľsák, Jiř́ı Filipovič, Martin Prokop. FastGrid – the Accelerated Auto-
Grid Potential Maps Generation for Molecular Docking. In Computing and Infor-
matics, Volume 29, Issue 6a, 2010. [Author’s contribution: 20%: discussion, some
implementation, writing.]

� [37] Jiř́ı Filipovič, Filip Petrovič, Siegfried Benkner. Autotuning of OpenCL Ker-
nels with Global Optimizations. In ANDARE ’17: 1st Workshop on AutotuniNg
and aDaptivity AppRoaches for Energy efficient HPC Systems, 2017. [Author’s con-
tribution: First author, 35%: discussion, method, some implementation, writing.]

� [38] Jiř́ı Filipovič, Jan Plhák, David Střelák. Acceleration of dRMSD Calculation
and Efficient Usage of GPU Caches. In International Conference on High Per-
formance Computing & Simulation (HPCS), 2015. [Author’s contribution: First
author, 40%: discussion, method, experiments, writing.]

� [99] David Střelák, Carlos Óscar S. Sorzano, José Maŕıa Carazo, Jiř́ı Filipovič. A
GPU acceleration of 3-D Fourier reconstruction in cryo-EM. In The International
Journal of High Performance Computing Applications, Volume 33, Issue 5, 2019.
[Author’s contribution: Principal investigator, 30%: method, some implementa-
tion, experiments, writing.]

1.1. PAPERS IN THE COLLECTION 7

� [96] David Střelák, Jiř́ı Filipovič, Amaya Jimenénez-Moreno, José Maŕıa Carazo,
Carlos Óscar S. Sorzano. FlexAlign: An Accurate and Fast Algorithm for Movie
Alignment in Cryo-Electron Microscopy, In Electronics, Volume 9, Issue 6, 2020.
[Author’s contribution: 20%: some method design, some experiments, some writing.]

� [30] Jiř́ı Filipovič, Siegfried Benkner. OpenCL Kernel Fusion for GPU, Xeon Phi and
CPU. In 27th International Symposium on Computer Architecture and High Perfor-
mance Computing, 2015. [Author’s contribution: First author, 90%: discussion,
method, implementation, some writing.]

� [33] Jiř́ı Filipovič, Matúš Madzin, Jan Fousek, Luděk Matyska. Optimizing CUDA
code by kernel fusion: application on BLAS. In Journal of Supercomputing, Volume
71, Issue 10, 2015. [Author’s contribution: First author and Principal investi-
gator, 50%: discussion, method, some implementation, experiments, writing.]

� [82] Filip Petrovič, David Střelák, Jana Hozzová, Jaroslav Oĺha, Richard Trembecký,
Siegfried Benkner, Jiř́ı Filipovič. A benchmark set of highly-efficient CUDA and
OpenCL kernels and its dynamic autotuning with Kernel Tuning Toolkit. In Future
Generations Computer Systems, Volume 208, 2020. [Author’s contribution: Prin-
cipal investigator, 20%: discussion, method, some implementation, experiments,
writing.]

� [74] Jaroslav Oĺha, Jana Hozzová, Jan Fousek, Jiř́ı Filipovič. Exploiting historical
data: Pruning autotuning spaces and estimating the number of tuning steps. In
Concurrency and Computation: Practice and Experience, Volume 32, 2020. [Au-
thor’s contribution: Principal investigator, 30%: discussion, method, experi-
ments, writing.]

� [32] Jiř́ı Filipovič, Jana Hozzová, Amin Nezarat, Jaroslav Oĺha, Filip Petrovič. Us-
ing hardware performance counters to speed up autotuning convergence on GPUs In
Journal of Parallel and Distributed Computing, Volume 160, 2022. [Author’s con-
tribution: First author, Principal investigator, 50%: discussion, method, some
implementation, some experiments, writing.]

� [98] David Střelák, Jiř́ı Filipovič. Performance analysis and autotuning setup of
the cuFFT library. In ANDARE ’18: 2nd Workshop on AutotuniNg and aDaptiv-
ity AppRoaches for Energy efficient HPC Systems, 2018. [Author’s contribution:
Principal investigator, 20%: discussion, some method, some experiments, some
writing.]

Chapter 2

Approximative Modelling

In this chapter, we focus on methods, which decrease computational demands by utilizing
an alternative model of the computation. We select a model, which is computationally
less demanding, resulting in slightly different, but still valuable, results. Section 2.1 is
based on papers [29, 110], and describes a novel approach to model transport processes in
proteins. Section 2.2 is based on paper [79] and introduces a precomputation-interpolation
scheme allowing haptic modeling of deformable bodies with complex mathematic models.

2.1 Modelling Transport Processes in Proteins

Understanding protein-ligand interactions (interaction of a small molecule – a ligand, with
a big biomolecule – a protein) is of great importance in many fundamental biochemical
processes as well as in various applications. For example, studying a ligand that may
inhibit protein function allowing a virus to attack a cell, or to designing inhibitors blocking
tunnels and channels is considered to be a new paradigm in drug design [63]. The ligand
interacts with the protein in its active or binding site – the functional site of a protein.
Many proteins have binding sites buried inside their cores, which implies that a ligand
must traverse through a tunnel before it can bind to the functional site in the protein. In
such cases, we need to analyze whether the ligand is likely to pass through the tunnel into
the protein core.

All chemical systems, such as the proteins interacting with ligands, follow the second
law of thermodynamics: they tend to minimize their potential energy. In practice, the
most probable conformation of the molecules (i. e., spatial position of their atoms) is the
one with the lowest potential energy. However, it is also possible for molecules to make
a transition from one local minimum to another, depending on system temperature and
height of the energetic barrier between minima – the smaller the energetic barrier, the
more probable the transition.

The ligand binding to a protein’s binding site is usually computed by molecular dock-
ing. A molecular docking is in principle a mathematical optimization algorithm. The
interactions between ligand and protein are approximated by a force field, and the dock-
ing algorithm traverses the conformation space of the protein-ligand complex and searches

9

10 CHAPTER 2. APPROXIMATIVE MODELLING

for energetic minima of the force field [26, 68, 104, 108]. The result of the molecular
docking is the structure of the protein-ligand complexes together with an estimation of
the respective free energy of binding. Thus, the users can learn which ligand binds with
the lowest energy or study the orientation of a ligand in a protein active site. However,
molecular docking computes only the lowest energy positions of a ligand within some re-
gion of a protein, and thus it is not suitable for the study of the ligand transport through
a protein tunnel.

The access tunnel can be studied by geometry-based approaches [19, 93, 118]. The
geometry-based approach does not consider any chemical forces – the accessibility is de-
termined from the tunnel geometry only.

The molecular dynamics (MD) uses an empirical force field to model the physical prop-
erties of the atoms and their interactions in time. The ligand passage through a tunnel can
be studied by well-established software tools for MD, such as Amber [91] or Gromacs [1].
However, it is not practical to model the transportation of a ligand through a tunnel with
classical MD, as the simulation time is often extremely long. The metadynamics [13] and
steered molecular dynamics [101] are enhanced techniques. Metadynamics biases molec-
ular energy towards unexplored configurations (metadynamics), whereas steered-MD ap-
plies external force to the ligand to pass a tunnel quickly (steered MD). Although it is
possible to accelerate passing the tunnel with such methods [105], their settings require
a domain expert with good knowledge of the studied protein and are not suitable for au-
tomatic analysis of the huge amount of ligands (e. g., potential drugs). Moreover, those
methods are still more computationally demanding than geometrical approaches.

2.1.1 Contribution

One possible approach to analyze a ligand’s ability to pass tunnel in protein is a compu-
tation of the ligand’s path with minimal energy (i. e., the path which crosses the lowest
energetic barriers possible, without simulating ligand in time as it is done by MD). How-
ever, as a ligand is a flexible body, its movement has typically tens of degrees of freedom
(position, orientation, and torsions), classical path-finding algorithms are not practical:
they either discretize the space, which quickly exceed memory capacity due to high di-
mensionality, or they generate random positions of ligand and connect them, which is not
usable in narrow parts of the tunnel (as most of the random ligand’s positions are unfeasi-
ble). The main idea behind our method is to (i) generate suitable ligand snapshots along
the tunnel by molecular docking (the mathematical optimization places ligand in feasible
positions) and (ii) connect the snapshots (possibly by generating new ones) into contin-
uous trajectory. Therefore, it combines mathematical optimization and a path-searching
algorithm, creating new snapshots on demand, if the path representing continuous move-
ment cannot be found. The newly generated snapshots are located in local minima (due to
molecular docking), satisfying constraints (generated by the search method). The method
is presented in papers [29, 110].

CaverDock uses geometrical information about the tunnel as an input. Before Caver-
Dock execution, we need to compute the tunnel by Caver [19] or a similar tool. The
tunnel is defined as a sequence of spheres in 3D space. Then, CaverDock discretizes the

2.1. MODELLING TRANSPORT PROCESSES IN PROTEINS 11

Figure 2.1: Discretization of a tunnel in the native toluene/o-xylene monooxygenase hy-
droxylase. The red circles represent the discs, the red arrows represent the tunnel direction
and the grey spheres represent the tunnel obtained from Caver [19].

tunnel: it cuts the tunnel finely into slices of upper-bound thickness [29]. Those slices
are represented as discs in 3D space. See Figure 2.1 for an illustration of the discretized
tunnel.

CaverDock internally uses a molecular docking algorithm and force field derived from
AutoDock Vina [108]. AutoDock Vina’s docking is a stochastic mathematical optimization
method that takes positions and types of all the atoms in the system (i. e., both the ligand
and the receptor) and optimizes the position of the ligand’s atoms in order to minimize the
empirical energy (a function of atoms’ positions and types). Molecular docking is able to
find one or more suitable ligand snapshots (spatial position of all its atoms), but users have
limited control over the position where the ligand is docked. As CaverDock uses docking
to generate a continuous trajectory of a ligand, it implements restraints into AutoDock
Vina force field, which allows for better control of both the position of the ligand in the
tunnel (ligand is snapped to the disc) and the pattern restricting the acceptable position
of ligand’s atoms (ligand is docked into the vicinity of its previous position).

A pre-selected ligand’s atom (typically an atom in the center of the ligand) can be
snapped to a disc: position restraint. By applying the position restraint iteratively, a
disc by disc, CaverDock generates a non-continuous trajectory of the ligand: with this
step-by-step approach, the ligand can change its rotation or conformation freely between
discs and even miss some obstacles, see Figure 2.2 for illustration. Such a non-continuous
trajectory is called a lower-bound trajectory, as it leads to an optimistic energy profile.

The second part of CaverDock execution attempts to generate a continuous trajectory
of the ligand by restraining other atoms of the ligand: it forces atoms’ positions to stay in
the vicinity of their position at the previous disc: pattern restraint, see Figure 2.3. This
ensures the continuity of the ligand’s movement while still taking into account the position
restraints and the energy taken from molecular docking.

To obtain energy-efficient continuous movement, we need to search the space of possible
ligand atoms’ trajectories. We choose to minimize either the maximal energy of any
snapshot in the trajectory or the cumulative energetic barrier of the whole trajectory.

Seeking for the optimal trajectory is computationally unfeasible even for short tunnels
and simple ligands due to the high dimensionality of the search space. Therefore, a

12 CHAPTER 2. APPROXIMATIVE MODELLING

disc 1

dragged atom

disc 5 disc 6 disc 7...

Figure 2.2: Schematic 2D view of Y-shaped ligand traversing a tunnel. The selected
ligand’s atom (depicted as a red circle) is placed onto consecutive disks (red lines). As
no contiguous movement of the ligand is required, the ligand flips between disks 6 and 7,
thus the small geometrical bottleneck between those disks is not detected.

dragged atom

Figure 2.3: Schematic 2D view of a ligand traversing a tunnel. The ligand is depicted in
black, its previous position used as a pattern restraint is shown in grey. Restricting the
movement of atoms causes the geometrical bottleneck between discs 6 and 7 to be detected
when the ligand passes from disc 7 to disc 8, as can be seen in the last figure.

heuristic search in this optimization space is used. First, with a given pattern and position
restraint, only a few local minima are computed by molecular docking, so not all possible
snapshots are considered. Second, to avoid getting stuck in the narrow part of the tunnel
in suboptimal rotation or conformation of the ligand, CaverDock combines forward and
backward movement of the ligand. When a strong energetic barrier is reached at some
disc, a different snapshot of the ligand at the same disc is selected and the ligand is moved
backward. Then, several scenarios can happen: (i) the previously computed forward and
backward trajectories converge, (ii) the ligand reaches the first disc, replacing the original
forward trajectory, or (iii) the ligand hits another energetic barrier, which is stronger than
the one triggering the backward movement, and the backward trajectory is discarded.
Finally, CaverDock continues from the disc where the backward movement is triggered.
The trajectory obtained this way is called the upper-bound trajectory, as it is the result of
the search heuristic: the optimal trajectory may have a better energetic profile than the

2.2. HAPTIC DEFORMATION MODELS 13

trajectory found by CaverDock, so it lies between upper- and lower-bound.

The result of CaverDock is continuous movement of the ligand, going from the active
site to the tunnel entrance (or vice versa), and its energetic profile. Compared to MD-
based methods, no expert user is needed to configure CaverDock, and the trajectory can
be easily studied (MD simulates the stochastic movement of the ligand in time, so the
trajectory typically contains a lot of movements not related to moving ligand from/to the
tunnel or going back and forth in some part of the tunnel), making CaverDock ideal tool
for virtual screening. Compared to MoMA-LigPath [24], CaverDock generates energetic
profiles and not only continuous trajectories. Compared to SLITHER [59], CaverDock
generates a continuous trajectory without gaps. We have evaluated CaverDock on a set of
biologically relevant molecules [110], showing it is a robust tool that finds ligands trajectory
in cases its competitors SLITHER [59] and MoMA-LigPath [24] fail. Furthermore, it
successfully observes blockages in tunnels in multiple variants of haloalkane-dehalogenase
LinB, agreeing with results observed in [14].

In our following work, we show CaverDock can be used for massive screening of
FDA-approved drugs against pharmacologically relevant targets [83] and against spike-
glycoprotein of the new SARS-CoV-2 virus [84]. The CaverDock calculations are also
available to the broad community via the CAVER web server [112].

2.2 Haptic Deformation Models

Haptic rendering is one of the most advanced techniques in the area of human-computer
interaction. Besides vision, haptics represent another important perception necessary for
most of human activities. Therefore, human-computer interfaces employing haptic devices
provide new approaches to understanding many phenomena, e. g., in computer simulation
of physical processes.

We focus on the area of haptic rendering which enables a user to touch, feel, and
manipulate virtual objects through a haptic interface [11, 58]. Similarly, as in the case
of visual rendering, haptic rendering can be a very efficient tool for studying various
phenomena, e. g., to display a deformed body under applied forces. One of the basic issues
in the area of haptic rendering is caused by the high sensitivity of human touch. When
compared to visual perception where a refresh frequency of 60Hz is sufficient to provide
the illusion of a smooth motion, the refresh rate needed in haptics exceeds 1 kHz. As the
force often depends on the global behavior of the underlying mathematical object, only
simple models can be considered for the case when the force is computed directly in the
haptic loop. However, usually complex models showing, e. g., non-linear behavior are of
great interest.

There have been several attempts to address the high-frequency issue, such as sim-
plification of the underlying models [15, 85] or employing some precomputations before
the real interaction occurs [9, 20]. We focus mainly on the design of the surgical simula-
tors (see, e. g., [10]). Soft tissue simulations require a rather computationally demanding
mathematical model: the deformable bodies (e. g., organs) have usually complex geometry
and the behavior displays non-linear response [66]).

14 CHAPTER 2. APPROXIMATIVE MODELLING

2.2.1 Contribution

We introduced a method suitable for the stable haptic rendering of complex objects with
non-linear behavior in our papers [36, 79]. The method builds on the previous precom-
putation method introduced in [80]. The main idea behind the approach is to profit from
using a high-performance computing environment such as a grid to overcome the basic
issue of the haptic rendering given by the high refresh rate.

The mathematical representation of the deformable body works with its discretized
finite mesh. The deformation is solved numerically by finite element method. The method
results in a non-linear system K(u) = F of 3N algebraic equations where N is the
total number of the nodes in the FE mesh. In order to solve the non-linear system,
boundary conditions are imposed, so the solution is unique. First, the homogeneous
conditions are defined by choosing a set of surface nodes with zero displacement. Sec-
ond, the non-homogeneous conditions are introduced. In the current implementation, the
displacement-driven point interaction is used to couple the haptic interaction and deforma-
tion model [78]. The interaction point is snaped to a node of the finite mesh and is driven
by the haptic device: the position of the haptic interaction point determines the displace-
ment of the snapped node, resulting in a deformation of the entire body and a correspond-
ing response force acting in the snapped node and hence haptic device. Mathematically,
the prescribed displacement of the snapped node is represented by the non-homogeneous
Dirichlet boundary condition, which is implemented using Lagrange multipliers [80]. The
non-linear system given above is solved using the Newton-Raphson method: in each step,
a linearized system based on the spatial derivative of the non-linear mapping K(u) is
assembled, both the homogeneous and non-homogeneous Dirichlet conditions are applied
using Lagrange multipliers and the augmented system is solved to obtain a new estima-
tion of the unknown vector of the response force and nodal displacements. The process is
iterated until the convergence is achieved that is ∥K(u)− F∥ < ε for some small ε.

The system assembly and solving is highly computationally demanding and cannot be
solved at the frequency required by the haptic interface. Therefore, we have introduced a
precomputation method, which precomputes close deformation on a regular grid. The pre-
computation happens in time of the haptic simulation, so only a part of the configuration
space, which can be actually visited, is precomputed. The main idea of the method is as
follows: after specifying the parameters of the simulation (material coefficients, nodes fixed
in space, and snapped node), the interaction starts being composed of two main processes:
construction of new configurations and interpolation of the configurations. The computa-
tionally expensive constructions are performed in a distributed environment, whereas the
interpolation is simple enough to be calculated in the haptic loop which is executed on a
single PC attached to the haptic device. Apparently, the main task of the algorithm is to
ensure that the data required by the interpolation method are constructed on time, so it
can be used when needed.

The implementation of our method is based on a client-server scheme. The client
is represented by a haptic driver and scheduler, whereas the server is represented by a
distributed pool of solvers running as independent processes on remote nodes connected
to the client by a network. The haptic driver executes the haptic loop running at the

2.2. HAPTIC DEFORMATION MODELS 15

Figure 2.4: Scheme of the algorithm components (solid-outlined boxes) grouped in threads
(dashed-outlined boxes).

high frequency of 1,000Hz. It is responsible for haptic rendering and communication with
the haptic device. The scheduler running at the lower frequency of 100Hz is responsible
for constructing the configuration space that is needed by the haptic driver. During the
simulation, it schedules the computation of the configurations among the solvers according
to the motion of the haptic interaction point. Finally, each solver works as an event-driven
process: it is waiting for the message from the scheduler containing the transition which
is to be computed. Immediately after the message is received, it executes an iterative
numerical procedure based on the Newton-Raphson method. The architecture of the
proposed application is depicted in Figure 2.4. The illustration of the precomputation in
relation to the haptic device movement is given in Fugure 2.5.

Quantity SV M1 SV M2 MR M1 MR M2

tconf [s] 0.42 3.15 1.47 10.9

vmax[mm/s] 24.1 3.1 6.8 0.92

Table 2.1: Table showing the time needed for computation of one deformation (tconf), and
maximum allowed speed of HIP during the on-line construction (vmax), i. e., observing a
new part of deformation space.

Obviously, the speed of the haptic device is limited by the speed of precomputation
(as the haptic interaction point cannot leave the precomputed area). We have shown that
with dozens of computing nodes, the limitation of the speed is sufficient [79] – see Ta-
ble 2.1. The results are evaluated for two models of liver: M1 is a coarse mesh composed
of 1777 elements, and fine mesh M2 includes 10280 elements. Two materials were sim-

16 CHAPTER 2. APPROXIMATIVE MODELLING

Figure 2.5: Four snapshots of the online precomputations. The trajectory of the haptic
interaction point is visualized by the thick black curve, its vicinity is depicted by the
gray circle, and configurations are denoted as follows: full circles show the configurations
computed before and actually used for the interpolation, empty circles show the config-
urations computed before and currently unused (cached), and stars show configurations
being actually computed to be potentially used after cell switching.

ulated: Mooney-Rivlin (MR) and StVenant-Kirchhoff. The speed of the haptic interface
is acceptable for both materials using the coarse model, although computation of one de-
formation can be more than one second, i. e., three orders of magnitude slower than the
haptic loop.

Additionally to the papers included in this collection, we also introduced RBF inter-
polation and extrapolation into the scheme [40], which relaxes the speed restrictions even
more. We have also demonstrated that kernel fusion and change of parallel granularity
improve the speed of the system of equation assembly [35] and demonstrated automation
of fusions by the compiler presented in Section 4.1 in [31].

Chapter 3

Applications of GPU Acceleration

Contemporary GPUs provide an order of magnitude higher arithmetic power and multiple
times higher memory bandwidth compared to conventional CPUs. However, as GPUs
implement massive parallelism, execute threads in lock-step mode, and have very limited
caching capabilities (L1 caches are typically for read-only data), using their arithmetic
power and memory bandwidth efficiently is challenging. Therefore, algorithms typically
have to be carefully optimized for GPUs or even re-designed from scratch to fit GPU
architecture well.

The GPUs were successfully used to accelerate software in virtually any scientific com-
puting domain. Essential HPC libraries, such as vendor-provided cuBLAS, cuFFT, and
their open-source alternatives MAGMA [4], clBLAST [70], MPFFT [61], allows replace-
ment of their CPU-based counterparts and acceleration of software using those libraries
without need of invasive changes of a source code. However, in many cases, specialized al-
gorithms whose performance does not rely on those libraries must be accelerated to speed
up the software.

In this chapter, we focus on the application of GPU acceleration in scientific computing.
Section 3.1 is based on papers [37, 38, 75] and describes the acceleration of two methods rel-
evant in computational chemistry. Section 3.2, which is based on papers [96, 99], describes
the acceleration of two important image processing steps in cryo-electron microscopy.

3.1 GPU Acceleration in Computational Chemistry

Computational chemistry employs computer simulation to solve chemical problems, such
as the determination of molecular structure, simulation of molecular interaction, confor-
mational changes, etc. Compared to the wet-lab experiment, the computer simulation is
typically cheaper and safer. Moreover, it allows us to observe some phenomena that can-
not be directly observed experimentally, such as conformational changes of large molecules
or protein-ligand or protein-protein interactions.

Here, we focus on molecular mechanics, which simulates large molecular systems as
balls and springs, which empirically determined and parametrized interactions. Although
molecular mechanics have lower precision compared to methods based on quantum chem-

17

18 CHAPTER 3. APPLICATIONS OF GPU ACCELERATION

istry (i. e., solving or approximating Schrödinger equation), it is also less computationally
demanding, allowing simulation of large biomolecules. The molecular mechanics is an in-
stance of n-body problem; therefore, its computational time scales at worst quadratically
with respect to the number of atoms. The computational demands of molecular mechanics
become challenging when long evolvement, large molecular systems, or many different sys-
tems are simulated. For example, an all-atom simulation of HIV-1 capsid was performed
in 2017, using 3880 GPU-accelerated nodes of the TITAN supercomputer [77]. Nowadays,
the GPU accelerated molecular simulation is available to the broad community in prob-
ably the most popular programs for molecular dynamics based on molecular mechanics,
AMBER [91] and GROMACS [1].

Another computationally demanding molecular mechanic task ismolecular docking [68,
108]. Molecular docking is a method for the prediction of a position and an orientation
of one molecule to another when bound to each other to form a stable complex. One of
the categories of molecular docking, which is important in computer-aided drug design, is
protein-ligand docking, where a small molecule of a ligand (putative drug) is docked into
a binding site of a protein. Calculation of interaction energy between the protein and the
ligand is the most computationally demanding part of docking algorithms. The energy is
typically pre-computed in a regular grid and then interpolated during searching for the
most favorable ligand position. Although molecular docking is generally less computation-
ally demanding than molecular dynamics, it is typically used to screen large amounts of
molecules, significantly increasing computational demands [67].

3.1.1 Contribution

We have extended state-of-the-art in GPU-accelerated molecular mechanics and molecular
modeling in several directions. First, we focused on molecular docking. We have extended
GPU-accelerated electrostatic potential map generation introduced by Stone et al. [95] by
adding distance dependent dielectrics and integrating GPU-accelerated long-range interac-
tions with CPU-computed short-range interactions [75]. We have also further accelerated
electrostatic map generation by introducing thread coarsening in z-dimension [37]. Sec-
ond, we have introduced GPU-accelerated computation of dRMSD, a distance metric for
molecules, used in their clustering [38].

Docking programs, such as AutoDock [68], precompute energetic potential around a
protein into a regular grid by a program AutoGrid. AutoGrid pre-computes multiple en-
ergetic terms at a 3D grid surrounding a molecule: electrostatic potential, van der Waals
potential, and hydrogen bonds. In [95], a method for precomputing electrostatic potential
on GPU was presented. The most computationally extensive part of the algorithm is the
computation of Euclidean distance between atoms and points of the 3D grid. The method
slices the 3D grid to the 2D plate and pre-computes squared distances in z-dimension at
CPU, reducing the amount of arithmetic operations performed by GPU. Our contribu-
tion here is the implementation of FastGrid [75]. FastGrid introduces hybrid CPU-GPU
computation. On the GPU side, a long-range electrostatic potential is computed. We
extended original constant dielectric [95] potential computation by option to compute
distance-dependent dielectric. The distance-dependent dielectric approximates the pro-

3.2. GPU ACCELERATION IN CRYO-ELECTRON MICROSCOPY 19

gressive decline of the electrostatic potential due to ions and water dipoles in the natural
environment. The computation of distance-dependent dielectric requires more arithmetic
operations than the original constant dielectric. Therefore, we used a precomputed table
of the distance-dependent dielectric term cached in texture memory and implemented an
on-the-fly computation of the distance-dependent term. Depending on cache efficiency,
the algorithm uses either pre-computed data or on-the-fly computation [75]. Moreover, we
have implemented a hybrid CPU-GPU implementation, where short-range interactions are
computed on the CPU. As the long-range interactions have higher asymptotic complexity,
GPU performance is crucial for large molecules. Compared to the original single-threaded
AutoGrid computation, we reached more than 400× speedup using 4 CPU cores and
GeForce GTX 280.

We further analyzed the constant dielectric computation introduced in [95] and came
up with a new optimization for this algorithm. Instead of precomputation of z-distance
on the CPU side, we serialize several iterations over z-dimension in GPU threads [37].
Such implementation uses a slightly higher number of arithmetic operations than [95], but
improves strong scaling by using more threads simultaneously and reduces the overhead
of GPU-CPU communication. With the new optimization, we reached a speedup of factor
1.14× at GeForce GTX 1070 over the state-of-the-art.

RMSD (root-mean-square deviation) is used in computational chemistry to compare
different structures of a molecule. It is used, for example, in clustering of similar molecules
or in molecular dynamics to quantify changes in simulated systems. We focused on dRMSD
calculation, originally introduced in [106]. We introduced parallel GPU-accelerated im-
plementation of dRMSD computation in [38]. The implementation parallelizes a nested
loop going over atoms, synchronizing memory access to load batches of atoms into shared
memory. Furthermore, we increase register locality by thread-coarsening (see, e. g., [111]).
By careful tuning of the algorithm, we show that it is possible to rely on GPU caching
capabilities and reach performance close to the version using explicit caching in shared
memory. Compared to parallel CPU implementation in ClusCo [51], we reached 62.7×
speedup of dRMSD calculation, yielding 13.4× faster clustering.

3.2 GPU Acceleration in cryo-Electron Microscopy

Cryo-electron microscopy (cryo-EM) is a popular method for studying a structure of bio-
logical specimens, such as proteins or larger particles, e. g., viruses. In contrast to X-ray
crystallography, the specimen is studied in vitreous ice at cryogenic temperatures, which
allows it to preserve the same conformation as in the native environment. Compared to
nuclear magnetic resonance, cryo-EM allows studying larger structures, making it a supe-
rior method in many use cases. In recent years, rapid development in cryo-EM allowed us
to study specimens at near-atomic resolution [44], resulting in the identification of cryo-
EM as the method of the year by Nature Methods in 2015 and granting Nobel price in
Chemistry for cryo-EM pioneers in 2017.

Due to a low signal-to-noise ratio and unknown orientation of frozen specimens, ob-
taining a 3D structure from cryo-EM heavily depends on image processing. The image

20 CHAPTER 3. APPLICATIONS OF GPU ACCELERATION

processing pipeline of the Cryo-EM project might be very complicated. However, it always
contains certain computationally demanding steps. Probably the most notable ones are
movie alignment, 2D classification, and 3D refinement. In this section, we focus on GPU
acceleration of the movie alignment and 3D refinement.

To obtain a single frame, a beam of electrons is fired against the sample. After passing
the sample, the beam is recorded by a direct electron detection camera. Since the electron
beam causes radiation damage, the electron dose has to be very low. This, on the other
hand, results in an extremely low signal-to-noise ratio. To get more signal, we can repeat
the imaging several times using the same sample and then average the resulting frames.
However, before averaging the frames, they have to be properly aligned as the sample
moves during the acquisition [41]. This movement can be both global and local, and
both types need to be corrected. There are multiple programs available to perform movie
alignment. The Optical Flow [3] has high computational demands as it is not accelerated
on GPUs. Relion [121] provides both local and global alignment but also lacks GPU-
accelerated implementation. The same approach as in [121], but carefully optimized and
accelerated, is implemented in MotionCorr2 [120]. Although MotionCorr2 is very fast,
it is a closed-source implementation and does not provide some important data, such as
per-pixel movement, required for particle polishing.

During the 3D reconstruction, a 3D volume is created from a large number of 2D
projections (images of the specimen). However, the orientations of projections are not
known a priori. In order to determine the orientation of projections, we need to solve
the inverse problem iteratively: creation of the 3D volume from projections, which is a
nontrivial process due to noise in images, errors in orientation parameters, and the finite
number of discrete parameters covering the projection space non-uniformly [76]. There
are multiple approaches to the 3D reconstruction [2, 87, 94]. One of possible approaches is
direct Fourier reconstruction [2], based on the central slice theorem [21, 54]: the 2D Fourier
transform of the projection of the 3D object lies on the plane centered at the origin of
the 3D Fourier transform (FT) of the object and preserves the same orientation as the
projection. In order to reconstruct a 3D body from a given set of projections and their
orientations, we need to insert the FT of all images into a 3D voxel array and then obtain
the final 3D shape by performing inverse FT of the voxel array. The most computationally
demanding part of the direct Fourier reconstruction is the 2D FT of input images and their
insertion into the voxel array.

3.2.1 Contribution

We have introduced the program FlexAlign, a GPU-accelerated global and local movie
alignment, in [96]. The performance of FlexAlign heavily depends on forward FT perfor-
mance and the speed of data movements between CPU and GPU memory.

For the FT, we use vendor library cuFFT [73]. The performance of cuFFT heavily
depends on the size of input data, which can be modified in cryo-EM: the microscope
provides images in giver resolution; however, we can crop these images. When cropping
only a small fraction of an image, the information loss is negligible, whereas FT speedup
can be several-fold. We have proposed a novel auto-tuning approach [98], which searches

3.2. GPU ACCELERATION IN CRYO-ELECTRON MICROSCOPY 21

Figure 3.1: Schematic view of the iteration space in the cut of the 3D grid. The solid line
represents a 2D sample, dashed lines represent the boundaries of an area affected by the
interpolation window. Arrows show the computation of the initial iteration in the third
dimension (i. e. dimension not iterated at the iteration plane). The updated voxels are
emphasized.

for similar sizes of FT input, which leads to much higher FT speed (see Section 4.2 for
more details). With this approach, we can get up to 6.9× faster FT computation.

The FlexAlign algorithm requires the computation of correlation for all pairs of images.
As one movie easily exceeds the capacity of GPU memory, we have designed a pipelined
batch processing of them: the images are uploaded to GPU in batches, such that multiple
correlations are computed per image upload (inside the batch and among two batches).
This approach allows for decreased PCI-E bandwidth, so the FlexAlign speed is determined
by FT speed on mid-range GPUs.

A GPU acceleration of 3D Fourier reconstruction is described in [99]. To the best of
our knowledge, all state-of-the-art GPU implementations of the 3D Fourier reconstruction
use the scatter memory pattern [55, 60, 100, 119], which writes each pixel of the 2D
projection into multiple voxels of the 3D space (multiple voxels are affected due to the
interpolation). Although it is well known that scatter memory pattern is suboptimal
when data accessed by multiple threads overlap, it is not straightforward to formulate a
3D Fourier reconstruction with a gather memory access pattern.

We introduced a novel approach to parallelization 3D Fourier reconstruction, which
results in a gather memory access. With our parallel algorithm, the value of each voxel
in the output 3D volume is computed by interpolating from multiple pixels of the 2D
projection. It eliminates race conditions in writing into the 3D volume and improves
memory locality as repeated memory accesses are moved from the 3D volume into the
much smaller 2D projection. When implemented naively, the gather memory pattern
raises complexity from O(in2) to O(in3), where i is the number of images insertions
(number of images multiplied by the number of symmetries) and n is images’ resolution.
We introduced and concept of iteration plane: a 2D space of parallel threads, which
computes only relevant voxels of their columns (see Figure 3.1). The iteration plane is
always orthogonal to one of three axes x, y, z. The orthogonal axis is selected to maximize
the projection of the 2D projection to the iteration plane. Then, for each pixel of the

22 CHAPTER 3. APPLICATIONS OF GPU ACCELERATION

iteration plane, a GPU thread is created (so we have O(n2) threads). Each thread modifies
only voxels in the direction of the axis orthogonal to the iteration plane, keeping the
time complexity the same as with the scatter approach. We further implemented several
optimizations and autotuned them via our autotuning framework called Kernel Tuning
Toolkit (see Section 4.2). The resulting application is an order of magnitude faster than
parallel CPU implementation. Furthermore, it is 2.14× to 5.96× faster than the same
algorithm based on a state-of-the-art scatter memory pattern.

Chapter 4

Automatic Optimization

Improving the speed of concrete scientific codes is of high importance. However, it is a
task that does not necessarily be done for each new problem from scratch: in some cases,
we can identify common code optimization techniques, which can be applied to multiple
problems. In such a case, we often can (at least partially) automatize the optimization
process. In this chapter, we describe our contribution to two automatic methods: kernel
fusion, which is a method optimizing multiple kernels (parallel functions in, e. g., CUDA
or OpenCL) by connecting them into one, and autotuning, which is automatic selection of
parameters maximizing application’s performance under given conditions (used hardware,
program input).

4.1 Kernel Fusion

It is natural to create multiple kernels performing different functions, similar to libraries
of multiple functions in commonly used programming languages, such as C. However,
partitioning of the code into too many kernels may lead to performance degradation:

� each kernel is compiled and optimized separately; thus, no inlining or cross-kernel
optimizations are possible;

� a kernel is executed in a parallel environment, which needs to be initialized and
managed; thus, kernel invocation and execution introduces some overhead.

Kernel fusion is an optimization method, which glues together multiple kernel codes
into a single kernel and modifies the host code which manages the kernels accordingly
(configuring and executing fused kernels). It can improve performance by decreasing kernel
execution overhead, improving instruction efficiency, and, probably most importantly, data
locality.

With generative programming, code is written in some high-level language or by using
patterns, and the OpenCL or CUDA code is then automatically generated. Kernel fusion
has a slightly different meaning here – instead of creating fused kernels from unfused
ones (explicitly written in C for CUDA or OpenCL), fusion is performed on high-level
functions, which the kernel code is generated from. This kind of kernel fusion is enabled

23

24 CHAPTER 4. AUTOMATIC OPTIMIZATION

in some frameworks working with algorithmic skeletons [48, 92] and in languages for array
programming [17, 57]. In these approaches, fusion is restricted to the scalar function
executed by the predefined parallel skeleton or applied to array elements.

Automatic kernel fusion has also been explored in a framework for domain-specific
languages [16]. A compiler framework allowing kernel fusion in the domain of relational
algebra operations has been introduced in [117].

Performance projection frameworks are used to analyze a given code, predict its per-
formance, and provide optimization hints for the programmer. Kernel fusion is one of
the optimization methods considered in [64, 65, 113]. Nevertheless, implementation of the
fusion is left to the programmers.

Fusion generators are frameworks, which take OpenCL or CUDA kernels and some
programmer annotations as an input and generate fused kernels as an output. The perfor-
mance projection framework presented in [113] has been extended so that it can analyze
user-written kernels and generate fused kernels [114] in the context of CUDA stencil ker-
nels.

The importance of kernel fusion of BLAS routines has been demonstrated on Krylov
subspace methods [6, 23, 90, 102] and equations assembly in finite element methods [35, 49].
In [102], kernel fusion is studied in deeper detail, but only for data-independent kernels.
Thus, performance improvements are reported mainly for relatively small inputs. In [90],
fusion is employed for both data-dependent and data-independent BLAS kernels.

4.1.1 Contribution

In [30], we studied three types of kernel fusion, applicable to both data-independent and
data-dependent kernels, on three platforms programmable with OpenCL: GPU, Xeon Phi,
and CPU. We analyzed the effect of kernel fusion on those hardware platforms and showed
how it can be used to improve performance.

For data-independent kernels, we propose a serial fusion (performing kernels one after
another) and parallel fusion (executing a code of multiple kernels) at once. On an example
of data-independent vector addition (performing a = b+ c and d = e+ f), we show that
for small vectors, it is better to fuse the kernels instead of executing them independently
(see Figure 4.1), especially on GPUs and Xeon Phi.

Fusion of data-dependent kernels is a non-trivial task since OpenCL and CUDA rely
on an explicitly managed memory model and it is not possible to freely transfer data
between thread blocks (work-groups) in a single kernel instance. We proposed a basic code
transformation method for fusing kernels without cross-thread block data dependency,
called basic data fusion. The method basically ”glues” the kernel codes together and
renames conflicting variables. Although no memory transfers are explicitly spared (by
moving data into some kind of fastest memory), the fused kernel maintains cache locality
better (as the memory footprint of the thread block is limited) or allows the compiler to
bypass some redundant memory accesses. The advantage of the basic fusion method is
that it requires only very simple source code transformations; thus, it is applicable to a
wide area of kernels and has good potential to be automatized. On an example of fusing
data-dependent vector addition (performing a = b+ c+ d by two calls of a kernel adding

4.1. KERNEL FUSION 25

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10000 20000 30000 40000 50000

b
a

n
d

w
id

th
 (

G
B

/s
)

vector size

Unfused, 1 queue
Unfused, 2 queues

Serial fusion
Parallel fusion

(a) GeForce GTX750

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10000 20000 30000 40000 50000

b
a

n
d

w
id

th
 (

G
B

/s
)

vector size

Unfused, 1 queue
Unfused, 2 queues

Serial fusion
Parallel fusion

(b) Radeon R9 290X

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 10000 20000 30000 40000 50000

b
a

n
d

w
id

th
 (

G
B

/s
)

vector size

Unfused, 1 queue
Unfused, 2 queues

Serial fusion
Parallel fusion

(c) Core i7-3820

 0

 10

 20

 30

 40

 50

 60

 70

 0 200000 400000 600000 800000 1e+06

b
a

n
d

w
id

th
 (

G
B

/s
)

vector size

Unfused, 1 queue
Unfused, 2 queues

Serial fusion
Parallel fusion

(d) Xeon Phi 5110P

Figure 4.1: Performance of data independent vector additions.

two vectors), we show that the efficiency of the basic transformation method is limited
but outperforms unfused kernels (see Figure 4.2).

We address more advanced fusion of data-dependent kernels in [33]. As it is difficult
to fuse generic kernels automatically, we limited the type of operations performed by
kernels, which can be fused to those performing map, reduce, or their nested combination.
Although some related work allows to fuse map or reduce kernels [17, 57, 92, 103], the
first-order function is always serial in these cases. The important feature of our approach
is that the first-order function executed by map or reduce can be parallel. Consequently,
our approach allows user code to operate on matrix tiles or subvectors instead of matrix
or vector scalar elements. It allows us to naturally implement inter-thread optimizations
such as tiling (collective reading of shared data into shared memory and reusing them by
other threads). The performance benefit of this fusion method is the explicit storing of
common data in a faster memory (shared memory or registers), instead of transferring
them via global memory in unfused kernels.

We introduced a source-to-source compiler performing the fusion of data-dependent
CUDA kernels. The compiler works with a library of elementary functions and a script,
calling functions from the library. It fuses selected functions to improve their performance
and preserve the semantics defined by the script. We note that fusing all kernels does not

26 CHAPTER 4. AUTOMATIC OPTIMIZATION

 0

 20

 40

 60

 80

 100

 120

 0 100000 200000 300000 400000 500000

b
a

n
d

w
id

th
 (

G
B

/s
)

vector size

Unfused
Basic data fusion

Advanced data fusion

(a) GeForce GTX750

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 100000 200000 300000 400000 500000

b
a

n
d

w
id

th
 (

G
B

/s
)

vector size

Unfused
Basic data fusion

Advanced data fusion

(b) Radeon R9 290X

 0

 5

 10

 15

 20

 25

 0 500000 1e+06 1.5e+06 2e+06

b
a

n
d

w
id

th
 (

G
B

/s
)

vector size

Unfused
Basic data fusion

Advanced data fusion

(c) Core i7-3820

 0

 20

 40

 60

 80

 100

 120

 0 500000 1e+06 1.5e+06 2e+06

b
a

n
d

w
id

th
 (

G
B

/s
)

vector size

Unfused
Basic data fusion

Advanced data fusion

(d) Xeon Phi 5110P

Figure 4.2: Performance of data dependent vector addition.

necessarily lead to performance improvement in all cases. Thus, the compiler searches and
prunes the optimization space to find efficient fusions. It has to decide which kernels to
fuse, and how to implement the fusion (e. g., where to place the data).

To demonstrate the performance benefit of kernel fusions generated by our compiler, we
have accelerated several sequences of BLAS (Basic Linear Algebra Subprograms) routine
calls and compared the result of our compiler to a vendor cuBLAS library. The sequences
are described in Table 4.1. The performance improvement over CUBLAS is shown in
Table 4.2.

Alongside papers included in this collection, we have also demonstrated kernel fusion
effect on element subroutines in FEM (see Section 2.2) [35] and their automation [31].
The simpler automatic fusion usable for kernels implementing parallel map was described
in [39].

4.2 Autotuning

In recent years, the heterogeneity of both commodity and supercomputer hardware has
increased sharply. Accelerators, such as GPU co-processors, are often key to improv-
ing the speed and energy efficiency of highly parallel codes. Although languages such

4.2. AUTOTUNING 27

Sequence Operation
AXPYDOT z ← w − αv

r ← zTu
BiCGK q ← Ap

s← AT r
GEMVER B ← A+ u1v

T
1 + u2v

T
2

x← βBT y + z
w ← αBx

GESUMMV y ← αAx+ βBx
VADD x← w + y + z
WAXPBY w ← αx+ βy

Table 4.1: Sequences of kernels which can benefit from fusion, adopted from [12].

Tesla M2090 Tesla K20 GeForce GTX980
Perf. Speedup Perf. Speedup Perf. Speedup

AXPYDOT 28.38 1.85× 30.46 1.84× 40.44 1.67×
BiCGK 86.97 2.02× 79.43 1.68× 169.1 1.99×
GEMVER 38.27 1.72× 38.83 1.56× 78.28 2.24×
GESUMMV 50.24 1.33× 53.49 1.11× 86.6 0.99×
VADD 15.44 2.04× 17.68 2.14× 21.07 1.48×
WAXPBY 31.88 2.05× 33.75 2.00× 41.22 1.93×

Table 4.2: Performance (in GFlops) of generated sequences and the speedup over cuBLAS
using GPUs of three different architectures. Single precision arithmetics is used in all
sequences.

28 CHAPTER 4. AUTOMATIC OPTIMIZATION

as OpenCL allow writing kernels that can be compiled for multiple different processor
architectures, performance portability is not ensured. More precisely, the hardware char-
acteristics heavily influence the performance of a given kernel, so its code needs to be
adapted for each hardware architecture to achieve optimal performance [56, 71, 82]. Fur-
thermore, kernels’ performance is also sensitive to input size, structure, or application
settings, so a code optimized for certain input characteristics may run sub-optimally when
that change [42, 70, 99].

Addressing the challenges associated with performance optimization and performance
portability, autotuning has gained a lot of interest. Autotuning of performance-relevant
source-code parameters allows to automatically tune applications without hard coding
optimizations and thus helps with keeping the performance portable. More precisely, it
enables the automatic source code modification according to user-defined tuning parame-
ters (properties of the source code, which affects its efficiency) and empirically benchmarks
each tuning configuration (a unique combination of tuning parameters’ values). During
this process, it searches for the configuration (and hence a source code), which performs
best according to provided input and hardware.

Autotuning can be performed offline1, i. e., before the execution of a tuned code.
Offline tuning is easier to implement but does not allow an application to re-tune when
its environment changes. Online autotuning allows the application to tune itself during
runtime by means of changing some runtime parameters. With dynamic autotuning, the
application can even build the space of different variants during runtime, i. e., it is able
to compile tuned kernels during the tuning process. Although several code parameters
autotuning frameworks for heterogeneous computing have been introduced [5, 71, 88, 116],
they are intended to be used in a standalone tuning tool, supporting offline autotuning
only. Tighter integration into applications has been recently identified as one of the main
challenges in autotuning [7].

For some specific cases, it is meaningful to not only autotune the application code itself
but also the application’s input. The Fourier Transform is an important tool in many fields
of science. Digital signal processing [18], optics [43], astronomy [89], all these are using its
variant, so-called Fast Fourier Transform (FFT) to process the data somehow. The size
of the signal and parameters of FFT affect the execution time and memory requirements
necessary to perform the transformation heavily. In many applications, it is possible to
relax the requirements of an ’exact’ size of the signal. It might be acceptable to crop
(both in the time/frequency domain) or pad it with zeros (in the time domain) prior to
the transformation. Therefore, by autotuning, it is possible to search for an optimal signal
size and perform the FFT faster. Interestingly, this opportunity is completely missed in the
literature: there are a number of other articles that focus on better / faster implementation
of FFT for e. g. FPGA [50], autotuning for a specific dimension of the input [72], using
autotuning with OpenCL [62] or FFT for specific purposes [25]. However, none of the
papers cited above analyses the behavior of the cuFFT in detail or searches for the most
efficient configuration of FFT under user-defined constraints.

One of the key features of autotuning frameworks is searching the tuning space (com-

1We adopt the nomenclature from [7].

4.2. AUTOTUNING 29

Figure 4.3: Schematic view of KTT architecture. The dashed line shows components that
are typically active during dynamic tuning inside the main application loop.

bination of all possible tuning parameters) for a tuning configuration that minimizes a
tuning objective (usually runtime or power consumption). Autotuning spaces have several
properties that make their efficient search difficult. These discrete optimization spaces
with many dimensions are known to be non-convex, non-linear, and with poor locality [8].
The time needed to perform a tuning space search can limit the practical usage of au-
totuning. This happens especially in two cases: (i) when the tuning space is vast, and
most of its configurations perform poorly, thus the search takes long; (ii) when the per-
formance depends significantly on input characteristics (e. g., size), which often change,
thus the search needs to happen often. The state-of-the-art methods for searching tuning
spaces are based on mathematical optimization [8, 116], or they use a surrogate perfor-
mance/power model built from a sample of the tuning space [27, 28, 52, 86]. Because the
relation between tuning parameters and the tuning objective differs with hardware and
input, those methods require the autotuning to be repeated from scratch when hardware
or input changes.

4.2.1 Contribution

We presented our approach to autotuning in [37, 82], introducing our framework Kernel
Tuning Toolkit (KTT). It was designed to simplify the process of autotuning integration
by two key features: inter-kernel optimizations and dynamic autotuning. KTT creates
an intermediate layer between the application and OpenCL or CUDA API, so the ap-

30 CHAPTER 4. AUTOMATIC OPTIMIZATION

Benchmark 2080Ti 1070 750 K20 Vega56 E5-2650 5110P
BiCG 88.3% 84.7% 81.7% 50.4% 75.6% 46.0% 6.45%
Coulomb 3D 91.8% 91.4% 84.3% 43.2% 65.3% 74.2% 22.2%
GEMM 79.8% 80.6% 91.1% 51.3% 96.3% 37.5% 19.7%
GEMM batched 86.8% 81.4% 90.0% 49.6% 86.0% 27.7% 20.9%
Transpose 87.1% 80.2% 86.3% 64.2% 86.1% 62.5% 10.0%
N-body 89.7% 86.6% 87.7% 40.6% 82.2% 77.7% 29.9%
Reduction 68.7% 87.5% 89.4% 64.1% 71.6% 33.9% 10.1%

Table 4.3: Performance of benchmarks autotuned for various hardware devices (GeForce
RTX 2080Ti, GeForce GTX 1070, GeForce GTX 750, Tesla K20, Radeon Vega56, 2x Xeon
E5-2650, Xeon Phi 5110P). The performance relative to the theoretical peak of devices is
shown.

best runtime dynamic tuning
GeForce RTX 2080Ti 1m40s 88% ± 3%
GeForce GTX 1070 5m49s 96% ± 2%
GeForce GTX 750 16m59s 92% ± 4%
GeForce GTX 680 15m12s 94% ± 2%

Table 4.4: The relative performance of dynamically-tuned 3D Fourier reconstruction com-
pared to ōrāculum. The best runtime is measured with ōrāculum.

plication configures and executes kernels indirectly via KTT (its architecture is sketched
in Figure 4.3). Therefore, the application source code has to be adapted to incorporate
KTT calls. However, once integrated, the application can transparently switch between
execution and tuning of the kernels, allowing dynamic autotuning. For example, the ap-
plication can re-tune itself if it is executed on new hardware or start its execution with
already optimized tuning parameters and automatically start re-tuning during runtime
when the input changes.

Using KTT, we have developed a benchmark set comprising ten autotuned codes. We
have executed the benchmark set on multiple hardware devices, including GPUs from
NVIDIA and AMD, CPU, and the Xeon Phi. We prove that our autotuned implementa-
tions are highly efficient – using just a single tunable code base, they often reach perfor-
mance close to the theoretical peak – see Table 4.3.

Finally, we proved the applicability of dynamic tuning by KTT in a real application:
3D Fourier Reconstruction in Xmipp [99] (see Section 3.2). The efficiency of 3D Fourier
Reconstruction greatly drops when it is tuned for a different GPU or input image size
than is executed with: the performance can drop more than 3× when ’bad’ input or GPU
is used. Therefore, dynamic autotuning can bring considerable speedup. We prepared an
experiment using a real-world setup, performing reconstruction of the Brome Mosaic Virus
[115] (EMPIAR entry 10010), processing 1,826,160 samples in resolution 156 × 156. In
our experiment, the tuning is performed at the beginning of the computation, when both
the used hardware and sample size are known. The performance of the dynamically tuned
code is compared to the performance of code with ōrāculum (i. e., when the optimal tuning

4.2. AUTOTUNING 31

configuration obtained by the offline tuning using exhaustive search is always known at
the beginning of the computation for any hardware and input). We let KTT perform
50 search steps with random search and then continue with the fastest kernel explored.
As the random search was used, the experiment was repeated 100 times. Results of this
experiment are shown in Table 4.4. As we can see, the performance penalty of dynamic
tuning is smaller than the performance penalty we get for a code that was tuned offline
for a different hardware device or input size (recall it can drop to less than 33%). This
experiment shows that even if the reconstruction program runs in minutes only, dynamic
tuning is able to reach better performance than offline tuning. Note that with a longer
runtime, dynamic autotuning converges to ōrāculum, provided the optimal configuration
is found during the search process.

Besides autotuning source code parameters, we have also targeted a different view
of autotuning: we optimize the speed of FFT calculation by changing its input size. If
the application allows to change the size of a signal slightly, it can result in much faster
Fourier transform computation. We target a popular implementation of FFT for GPU
accelerators: the cuFFT library. We analyze the behavior and the performance of the
cuFFT library with respect to input sizes and plan settings. We developed a new tool,
cuFFTAdvisor, which proposes and, by means of autotuning, finds the best configuration
of the library for given constraints of input size and plan settings [98]. We experimentally
show that our tool is able to propose different settings of the transformation, resulting in
an average 6× speedup using fast heuristics and 6.9× speedup using autotuning. We have
also demonstrated its usability in the FlexAlign tool (see Section 3.2).

Besides autotuning frameworks, we have also targeted the problem of tuning space
search. The tuning space can be large and difficult to search, so the cost of autotuning
can outweigh its benefits, especially with dynamic tuning (i. e., the time invested into the
autotuning process is longer than time spared by finding more efficient implementation).
Therefore, estimating the tuning time in advance is very important in dynamic tuning
applications. In [74], we show that it is possible to estimate how many searching steps are
needed to achieve reasonable performance. We demonstrated that the portion of tuning
space composed of well-performing configurations remains stable for a given problem across
different hardware for a majority of cases, even in cases when the well-performing configu-
rations differ. Therefore, it is possible to use historical data to reliably predict the number
of tuning steps that are necessary to find a well-performing configuration. We evaluated
our hypotheses on a number of HPC benchmarks written in CUDA and OpenCL, using
several different generations of GPUs and CPUs. Although we still cannot predict tuning
time precisely, as it also depends on the runtime of empirically tested kernels, compilation
time, and expected number of kernel’s execution, our results presented in [74] confirm
our initial hypothesis that histogram of code performance for a tuning space is similar on
different hardware, which allows us to use static historical data to make tuning decisions
on new hardware when using searching for well-performing configurations.

As we already mentioned, tuning space search is often essential for the efficiency of
autotuning. To the best of our knowledge, all state-of-the-art tuning space searchers
(see, e. g., [8, 27, 28, 52, 86, 116]) relate tuning parameters to tuning objective (typically
the code performance). Because the function giving the performance depends not only

32 CHAPTER 4. AUTOMATIC OPTIMIZATION

on tuning parameters but also on input and hardware, tuning has to be repeated when
hardware or input changes. The essential contribution of our research presented in [32] is
the introduction of a novel tuning space search method that breaks the aforementioned
relation. Once the tuning space is partially explored for some hardware and input, the
portable model makes it possible to speed up tuning when input or hardware changes.

Our method mimics the iterative optimization performed by developers. Developers
use profilers to collect performance counters and identify bottlenecks (overloaded processor
subsystems) on multiple levels of hardware hierarchy. They also understand how the prop-
erties of their code (i. e., tuning parameters) are related to performance counters. They
iteratively detect bottlenecks and modify the code to reduce stress on the bottlenecks until
they reach sufficient code performance. Our method aims to do the same. It requires a
training phase, wherein the model is trained to capture how tuning parameters influence
performance counters (machine-learning-based analogy to a developer’s understanding of
the relationship). During autotuning, the method iteratively profiles the code and acquires
performance counters analyzes bottlenecks, and determines which performance counters
should be changed to soften the bottlenecks using an expert system (analogy to a devel-
oper’s work with a profiling tool). Then, it uses the previously built model to determine
which tuning configurations change performance counters in the required way. Finally, it
selects the next tuning configuration to profile (analogy to a developer’s modification of
the code).

The strength of our method is its ability to build a model using a particular GPU
and input and use this model to speed up autotuning of a kernel running on a different
GPU or processing different input. This is possible because the method builds the model
of relations between tuning parameters and performance counters and searches for the
performance gain based on the performance counters instead of relating tuning parameters
directly to the performance. Compared to the performance itself, the tuning parameters
affect performance counters measuring the number of operations at some subsystem in a
more straightforward and stable way2. Therefore, we can build a machine learning model,
capturing relations between tuning parameters and performance counters measuring a
number of operations. During autotuning, the expert system deduces bottlenecks, using
performance counters measuring the stress of the processor subsystems, and asks the
machine learning model how to modify tuning parameters to decrease operations causing
the bottleneck. The architecture of our searcher is sketched in Figure 4.4.

We have compared our searcher to a state-of-the-art searcher in Kernel Tuner [116].
Using five benchmarks, we have shown that our searcher systematically outperforms Kernel
Tuner’s best searcher Basin Hopping in both number of tuning steps and convergence time
– see examples in Figure 4.5 and Figure 4.6. We also show that it outperforms ML-based
Starchart [52] in four out of five benchmarks.

2For example, we can have a tuning parameter, which removes some redundant floating-point operations
at the cost of lowering the parallelism. Although the optimal value of this parameter depends on GPU
and input, the effect of decreasing arithmetic operations and amount of threads persist.

4.2. AUTOTUNING 33

Figure 4.4: Schematic view of the searcher workflow. The boxes show program components
and the cylinders show data objects. PC = performance counter, TP = tuning parameter.

 2.5e+06

 2.6e+06

 2.7e+06

 2.8e+06

 2.9e+06

 3e+06

 3.1e+06

 3.2e+06

 3.3e+06

 3.4e+06

 0 50 100 150 200 250

be
st

 k
er

ne
l t

im
e

(n
s)

tuning time (s)

profile-based KTT
random KTT

basinhopping Kernel Tuner

 2.6e+06

 2.8e+06

 3e+06

 3.2e+06

 3.4e+06

 3.6e+06

 3.8e+06

 4e+06

 4.2e+06

 0 200 400 600 800 1000

be
st

 k
er

ne
l t

im
e

(n
s)

tuning iteration

profile-based KTT
random KTT

basinhopping Kernel Tuner

Figure 4.5: Convergence of the GEMM benchmark using KTT and Kernel Tuner. Left:
convergence speed in time. Right: comparison of iterations (empirical tests). The solid
line shows the average, and the transparent area shows the standard deviation.

34 CHAPTER 4. AUTOMATIC OPTIMIZATION

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 0 50 100 150 200 250

be
st

 k
er

ne
l t

im
e

(n
s)

tuning time (s)

profile-based KTT
random KTT

basinhopping Kernel Tuner

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 0 50 100 150 200 250 300

be
st

 k
er

ne
l t

im
e

(n
s)

tuning iteration

profile-based KTT
random KTT

basinhopping Kernel Tuner

Figure 4.6: Convergence of the Convolution benchmark using KTT and Kernel Tuner.
Left: convergence speed in time. Right: comparison of iterations (empirical tests). The
solid line shows the average, and the transparent area shows the standard deviation.

Chapter 5

Conclusion

In this text, I have presented a broad area of software performance optimization and
my contribution to the state-of-the-art. As the performance can be optimized at multiple
levels, it is important to use a holistic approach, spanning from changing computing models
through code parallelization and optimization to using specialized hardware. Finally, as
some steps in the optimization process can be automatized, I present several ways to do
so. This collection includes 14 papers proving my contribution in all aforementioned areas.

In future work, I plan to focus further on software adaptability and its application in
scientific software. The profile-based searcher we proposed in [32] opens a wide area of
further research. I believe it is possible to replace the expert system in the searcher with
a machine learning model, improving the results of the searcher and (with explainable
AI) deepening our knowledge of GPU hardware. Furthermore, the performance counters
also allow for analyzing and optimizing the tuning space. I plan to further work on the
prediction of tuning cost, which would improve the practical applicability of dynamic auto-
tuning. I also plan to focus on adaptability in high-level programming, such as algorithmic
skeletons, which would enable domain experts to write highly efficient code. Last but not
least, I plan to continue accelerating concrete scientific software tools, such as CaverDock
and Xmipp. With CaverDock, we are currently working on a version allowing limited
flexibility of the receptor, which increases the applicability of CaverDock for cases when
tunnel geometry is dynamic (and therefore, current CaverDock may observe bottlenecks
that appear and disappear in a real system). Regarding Xmipp, we continuously improve
the speed of newly developed algorithms.

35

Bibliography

[1] M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, and E. Lindahl.
GROMACS: High performance molecular simulations through multi-level parallelism
from laptops to supercomputers. SoftwareX, 1-2:19 – 25, 2015.

[2] V. Abrishami, J. R. Bilbao-Castro, J. Vargas, R. Marabini, J. M. Carazo, and
C. O. S. Sorzano. A fast iterative convolution weighting approach for gridding-
based direct fourier three-dimensional reconstruction with correction for the contrast
transfer function. Ultramicroscopy, 157:79 – 87, 2015.

[3] V. Abrishami, J. Vargas, X. Li, Y. Cheng, R. Marabini, C. O. S. Sorzano, and J. M.
Carazo. Alignment of direct detection device micrographs using a robust optical
flow approach. Journal of structural biology, 189(3):163–176, 2015.

[4] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou, H Ltaief,
P. Luszczek, and S. Tomov. Numerical linear algebra on emerging architectures: The
PLASMA and MAGMA projects. Journal of Physics: Conference Series, 180(1),
2009.

[5] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom, U.-M.
O’Reilly, and S. Amarasinghe. OpenTuner: An extensible framework for program
autotuning. In Proceedings of the 23rd International Conference on Parallel Archi-
tectures and Compilation, PACT ’14, pages 303–316, 2014.

[6] Hartwig Anzt, Stanimire Tomov, Piotr Luszczek, William Sawyer, and Jack Don-
garra. Acceleration of gpu-based krylov solvers via data transfer reduction. The
International Journal of High Performance Computing Applications, 29(3):366–383,
2015.

[7] P. Balaprakash, J. Dongarra, T. Gamblin, M. Hall, J. K. Hollingsworth, B. Norris,
and R. Vuduc. Autotuning in high-performance computing applications. Proceedings
of the IEEE, 106(11):2068–2083, Nov 2018.

[8] P. Balaprakash, S. M. Wild, and P. D.” Hovland. Can search algorithms save large-
scale automatic performance tuning? Procedia Computer Science, 4:2136 – 2145,
2011.

37

38 BIBLIOGRAPHY

[9] J. Barbič and D. L. James. Six-dof haptic rendering of contact between geometrically
complex reduced deformable models. IEEE Transation on Haptics, 1(1):39–52, 2008.

[10] C. Basdogan, M. Sedef, M. Harders, and S. Wesarg. Virtual reality supported sim-
ulators for training in minimally invasive surgery (invited paper). IEEE Computer
Graphics and Applications, 27(2):54–66, 2007.

[11] C. Basdogan and M. A. Srinivasan. Haptic Rendering In Virtual Environments,
pages 157–174. Lawrence Erlbaum Associates, 2001.

[12] G. Belter, E. R. Jessup, I. Karlin, and J. G. Siek. Automating the generation of com-
posed linear algebra kernels. In Proceedings of the Conference on High Performance
Computing, Networking, Storage and Analysis (SC09), pages 1–12. ACM, 2009.

[13] D. Branduardi, F. L. Gervasio, and M. Parrinello. From A to B in free energy space.
The Journal of Chemical Physics, 126(5):054103, 2007.

[14] J. Brezovsky, P. Babkova, O. Degtjarik, A. Fortova, A. Gora, I. Iermak, P. Rezacova,
P. Dvorak, I. Kuta Smatanova, Z. Prokop, R. Chaloupkova, and J. Damborsky.
Engineering a de novo transport tunnel. ACS Catalysis, 6(11):7597–7610, 2016.

[15] M. Bro-Nielsen. Finite element modeling in surgery simulation. In Proceedings of
the IEEE, pages 490–503, 1998.

[16] K.J. Brown, A.K. Sujeeth, Hyouk Joong Lee, T. Rompf, H. Chafi, M. Odersky, and
K. Olukotun. A heterogeneous parallel framework for domain-specific languages.
In Parallel Architectures and Compilation Techniques (PACT), 2011 International
Conference on, 2011.

[17] B. Catanzaro, M. Garland, and K. Keutzer. Copperhead: compiling an embedded
data parallel language. In The 16th ACM Symposium on Principles and Practice of
Parallel Programming (PPoPP), 2011.

[18] Chi-Tsong Chen. Digital signal processing: spectral computation and filter design.
Oxford University Press, Inc., 2000.

[19] E. Chovancová, A. Pavelka, P. Beneš, O. Strnad, J. Brezovský, B. Kozĺıková, and
et al. CAVER 3.0: A tool for the analysis of transport pathways in dynamic protein
structures. PLoS Computational Biology, 8(10), 2012.

[20] S. Cotin, H. Delingette, and N. Ayache. Real-time elastic deformations of soft
tissues for surgery simulation. IEEE Transactions On Visualization and Computer
Graphics, 5(1):62–73, 1999.

[21] R. A. Crowther, D. J. DeRosier, and F. R. S. Klug. The reconstruction of a three-
dimensional structure from projections and its application to electron microscopy.
Proceedings of the Royal Society of London A: Mathematical, Physical and Engi-
neering Sciences, 317(1530):319–340, 1970.

BIBLIOGRAPHY 39

[22] J. Damborsky and J. Brezovsky. Computational tools for designing and engineering
biocatalysts. Current Opinion in Chemical Biology, 13(1):26–34, 2009. Biocatalysis
and Biotransformation/Bioinorganic Chemistry.

[23] M. M. Dehnavi, D. M. Fernández, and D. Giannacopoulos. Enhancing the perfor-
mance of conjugate gradient solvers on graphic processing units. IEEE Transactions
on Magnetics, 47(5), 2011.

[24] D. Devaurs, L. Bouard, M. Vaisset, C. Zanon, I. Al-Bluwi, R. Iehl, T. Siméon,
and J. Cortés. MoMA-LigPath: a web server to simulate protein–ligand unbinding.
Nucleic Acids Research, 41(W1), 2013.

[25] Sofia Dimoudi, Karel Adamek, Prabu Thiagaraj, Scott M Ransom, Aris Karaster-
giou, and Wesley Armour. A gpu implementation of the correlation technique for
real-time fourier domain pulsar acceleration searches. The Astrophysical Journal
Supplement Series, 239(2):28, 2018.

[26] T. J. A. Ewing, S. Makino, A. G. Skillman, and I. D. Kuntz. DOCK 4.0: Search
strategies for automated molecular docking of flexible molecule databases. Journal
of Computer-Aided Molecular Design, 15(5), 2001.

[27] T. L. Falch and A. C. Elster. Machine learning based auto-tuning for enhanced
OpenCL performance portability. In Proceedings of the 2015 IEEE International
Parallel and Distributed Processing Symposium Workshop, 2015.

[28] W. Feng and T. S. Abdelrahman. A sampling based strategy to automatic perfor-
mance tuning of gpu programs. In 2017 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), 2017.

[29] J. Filipovic, O. Vavra, J. Plhak, D. Bednar, S. M. Marques, J. Brezovsky, L. Matyska,
and J. Damborsky. Caverdock: A novel method for the fast analysis of ligand
transport. IEEE/ACM Transactions on Computational Biology and Bioinformatics,
17(5):1625–1638, 2020.

[30] J. Filipovič and S. Benkner. Opencl kernel fusion for gpu, xeon phi and cpu. In
2015 27th International Symposium on Computer Architecture and High Perfor-
mance Computing (SBAC-PAD), pages 98–105, 2015.

[31] J. Filipovič, J. Fousek., B. Lakomý, and M. Madzin. Automatically optimized GPU
acceleration of element subroutines in finite element method. In Symposium on
Application Accelerators in High-Performance Computing (SAAHPC), 2012.

[32] J. Filipovič, J. Hozzová, Nezarat A., J. Oĺha, and F. Petrovič. Using hardware per-
formance counters to speed up autotuning convergence on gpus. Journal of Parallel
and Distributed Computing, 160:16–35, 2022.

[33] J. Filipovič, M. Madzin, J. Fousek, and L. Matyska. Optimizing CUDA code by
kernel fusion: application on BLAS. Journal of Supercomputing, 71(10):3934–3957,
2015.

40 BIBLIOGRAPHY

[34] J. Filipovič, J. Pazúriková, A. Křenek, and V. Spiwok. Accelerated rmsd calculation
for molecular metadynamics. In Proceedings of the 2016 European Simulation and
Modelling Conference, pages 278–280, 2016.

[35] J. Filipovič, I. Peterĺık, and J. Fousek. GPU acceleration of equations assembly in
finite elements method – preliminary results. In Symposium on Application Accel-
erators in High-Performance Computing (SAAHPC), 2009.

[36] J. Filipovič, I. Peterĺık, and L. Matyska. On-line precomputation algorithm for
real-time haptic interaction with non-linear deformable bodies. In Third Joint Eu-
roHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment
and Teleoperator Systems (WHC), 2009.

[37] J. Filipovič, F. Petrovič, and S. Benkner. Autotuning of OpenCL kernels with global
optimizations. In Proceedings of the 1st Workshop on AutotuniNg and aDaptivity
AppRoaches for Energy Efficient HPC Systems (ANDARE ’17), 2017.

[38] J. Filipovič, J Plhák, and D. Střelák. Acceleration of drmsd calculation and effi-
cient usage of gpu caches. In 2015 International Conference on High Performance
Computing Simulation (HPCS), 2015.

[39] J. Fousek, J. Filipovič, and M. Madzin. Automatic fusions of CUDA-GPU kernels
for parallel map. In Second International workshop on highly-efficient accelerators
and reconfigurable technologies (HEART), pages 42–47, 2011.

[40] J. Fousek, T. Golembiovský, J. Filipovič, and I. Peterĺık. Haptic rendering based
on rbf approximation from dynamically updated data. In Sixth Doctoral Workshop
on Mathematical and Engineering Methods in Computer Science (MEMICS’10)–
Selected Papers. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2011.

[41] R. M. Glaeser. Chapter two - specimen behavior in the electron beam. In R. A.
Crowther, editor, The Resolution Revolution: Recent Advances In cryoEM, volume
579 of Methods in Enzymology, pages 19 – 50. Academic Press, 2016.

[42] S. G. D. Gonzalo, S. D. Hammond, C. R. Trott, and W. M. a. Hwu. Revisiting
online autotuning for sparse-matrix vector multiplication kernels on next-generation
architectures. In 2017 IEEE 19th International Conference on High Performance
Computing and Communications; IEEE 15th International Conference on Smart
City; IEEE 3rd International Conference on Data Science and Systems (HPCC/S-
martCity/DSS), 2017.

[43] Joseph W Goodman and P Sutton. Introduction to fourier optics. Quantum and
Semiclassical Optics-Journal of the European Optical Society Part B, 8(5):1095,
1996.

[44] Richard Henderson. Overview and future of single particle electron cryomicroscopy.
Arch Biochem Biophys, 581:19–24, Sep 2015.

BIBLIOGRAPHY 41

[45] D. Herreros, J. Kiska, E. Ramı́rez-Aportela, J. Filipovic, J.M. Carazo, and C.O.S.
Sorzano. Zart: A novel multiresolution reconstruction algorithm with motion-blur
correction for single particle analysis. Journal of Molecular Biology, 435(9):168088,
2023.

[46] D. Herreros, R. R. Lederman, J. Krieger, A. Jiménez-Moreno, M. Mart́ınez,
D. Myška, D. Střelák, J. Filipovič, I. Bahar, J. M. Carazo, and C. O. S. Sorzano.
Approximating deformation fields for the analysis of continuous heterogeneity of
biological macromolecules by 3d zernike polynomials. IUCrJ, 8(6), 2021.

[47] D. Herreros, R. R. Lederman, J. M. Krieger, A. Jiménez-Moreno, M. Mart́ınez,
D. Myška, D. Strelak, J. Filipovic, C.O.S. Sorzano, and J.M. Carazo. Estimating
conformational landscapes from cryo-em particles by 3d zernike polynomials. Nature
Communications, 14(1):154, 2023.

[48] J. Hoberock and N. Bell. Thrust: A parallel template library, 2009.

[49] X. S. Hu, G. Hsieh, L. Tang, S. D. Hammond, D. Z. Chen, M. Niemier, and R. F.
Barrett. GPU acceleration of data assembly in finite element methods and its energy
implications. In Proceedings of the 2013 IEEE 24th International Conference on
Application-specific Systems, Architectures and Processors (ASAP), 2013.

[50] Muhammad Ibrahim and Omar Khan. Performance analysis of fast fourier transform
on field programmable gate arrays and graphic cards. In Computing, Electronic and
Electrical Engineering (ICE Cube), 2016 International Conference on, pages 158–
162. IEEE, 2016.

[51] M. Jamroz and A. Kolinski. ClusCo: clustering and comparison of protein models.
BMC Bioinformatics, 14(62), 2013.

[52] W. Jia, K. A. Shaw, and M. Martonosi. Starchart: Hardware and software optimiza-
tion using recursive partitioning regression trees. In Proceedings of the 22nd Inter-
national Conference on Parallel Architectures and Compilation Techniques, 2013.

[53] A. Jiménez-Moreno, Střelák D., J. Filipovič, J. M. Carazo, and C. O. S. Sorzano.
Deepalign, a 3d alignment method based on regionalized deep learning for cryo-em.
Journal of Structural Biology, 213(2), 2021.

[54] S. Jonic, C. O. S. Sorzano, P. Thévenaz, C. El-Bez, S. De Carlo, and
M. Unser. Spline-based image-to-volume registration for three-dimensional electron
microscopy. Ultramicroscopy, 103/104:303–317, 2005.

[55] D. Kimanius, B. O. Forsberg, S.H.W. Scheres, and E. Lindahl. Accelerated cryo-em
structure determination with parallelisation using gpus in relion-2. eLife, 5:e18722,
2016.

[56] J. Kurzak, S. Tomov, and J. Dongarra. Autotuning GEMM kernels for the Fermi
GPU. IEEE Transactions on Parallel and Distributed Systems, 23(11):2045–2057,
2012.

42 BIBLIOGRAPHY

[57] B. Larsen. Simple optimizations for an applicative array language for graphics pro-
cessors. In Proceedings of the sixth workshop on Declarative aspects of multicore
programming (DAMP), 2011.

[58] S. D. Laycock and A. M. Day. A survey of haptic rendering techniques. In Computer
graphics forum, volume 26, pages 50–65. Wiley Online Library, 2007.

[59] P. H. Lee, K. L. Kuo, P.Y. Chu, E. M. Liu, and J. H. Lin. SLITHER: a web server
for generating contiguous conformations of substrate molecules entering into deep
active sites of proteins or migrating through channels in membrane transporters.
Nucleic Acid Research, 37(W559-64), 2009.

[60] X. Li, N. Grigorieff, and Y. Cheng. Gpu-enabled frealign: Accelerating single particle
3d reconstruction and refinement in fourier space on graphics processors. Journal of
Structural Biology, 172(3):407 – 412, 2010.

[61] Y. Li, Y.-Q. Zhang, Y.-Q. Liu, G.-P. Long, and H.-P. Jia. MPFFT: An auto-tuning
FFT library for OpenCL GPUs. Journal of Computer Science and Technology,
28(1):90–105, 2013.

[62] Yan Li, Yunquan Zhang, Haipeng Jia, Guoping Long, and Ke Wang. Automatic fft
performance tuning on opencl gpus. In Parallel and Distributed Systems (ICPADS),
2011 IEEE 17th International Conference on, pages 228–235. IEEE, 2011.

[63] S.M. Marques, L. Daniel, T. Buryska, Z. Prokop, J. Brezovsky, and J. Damborsky.
Enzyme tunnels and gates as relevant targets in drug design. Medicinal Research
Reviews, 37(5):1095–1139, 2017.

[64] J. Meng, V. A. Morozov, V. Vishwanath, and K. Kumaran. Dataflow-driven GPU
performance projection for multi-kernel transformations. In International Confer-
ence for High Performance Computing, Networking, Storage and Analysis (SC12),
2012.

[65] J. Meng, X. Wu, V. Morozov, V. Vishwanath, K. Kumaran, and V. Taylor. SKOPE:
A framework for modeling and exploring workload behavior. In Proceedings of the
11th ACM Conference on Computing Frontiers (CF), 2014.

[66] S. Misra, A. M. Okamura, and K. T. Ramesh. Force feedback is noticeably different
for linear versus nonlinear elastic tissue models. In Proceedings of the Second Joint
EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environ-
ment and Teleoperator Systems, 2007.

[67] T. Mohammad, Y. Mathur, and M. I. Hassan. InstaDock: A single-click graph-
ical user interface for molecular docking-based virtual high-throughput screening.
Briefings in Bioinformatics, 22(4), 10 2020.

[68] G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Good-
sell, and A. J. Olson. AutoDock4 and AutoDockTools4: Automated docking with
selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2009.

BIBLIOGRAPHY 43

[69] P. Němcová, J. Hozzová, and J. Filipovič. Improving ligand transport trajectory
within flexible receptor in caverdock. In Proceedings of the 37th ACM/SIGAPP
Symposium on Applied Computing, pages 619–626, 2022.

[70] C. Nugteren. CLBlast: A tuned OpenCL BLAS library. In Proceedings of the
International Workshop on OpenCL, IWOCL ’18, pages 5:1–5:10. ACM, 2018.

[71] C. Nugteren and V. Codreanu. CLTune: A generic auto-tuner for OpenCL ker-
nels. In Proceedings of the IEEE 9th International Symposium on Embedded
Multicore/Many-core Systems-on-Chip (MCSoC), 2015.

[72] Akira Nukada and Satoshi Matsuoka. Auto-tuning 3-d fft library for cuda gpus. In
Proceedings of the Conference on High Performance Computing Networking, Storage
and Analysis, page 30. ACM, 2009.

[73] NVIDIA. cufft: The cuda fast fourier transform library, 2022.

[74] J. Oľha, J. Hozzová, J. Fousek, and J. Filipovič. Exploiting historical data: Pruning
autotuning spaces and estimating the number of tuning steps. Concurrency and
Computation: Practice and Experience, 32(21), 2020.

[75] M. Oľsák, J. Filipovič, and M. Prokop. Fastgrid — the accelerated autogrid potential
maps generation for molecular docking. Computing and Informatics, 29(6+), 2010.

[76] P. A. Penczek. Chapter one - fundamentals of three-dimensional reconstruction from
projections. In Cryo-EM, Part B: 3-D Reconstruction, volume 482 of Methods in
Enzymology, pages 1 – 33. Academic Press, 2010.

[77] J. R. Perilla and K. Schulten. Physical properties of the hiv-1 capsid from all-atom
molecular dynamics simulations. Nature Communications, 8, 2017.

[78] I. Peterĺık. Efficient precomputation of configuration space for haptic deformation
modeling. In Conference on Human System Interactions, 2008.

[79] I. Peterĺık, J. Filipovič, and L. Matyska. Distributed construction of configuration
spaces for real-time haptic deformation modeling. IEEE Transactions on Industrial
Electronics, 58(8), 2011.

[80] I. Peterĺık and L. Matyska. An algorithm of state-space precomputation allowing
non-linear haptic deformation modelling using finite element method. In Second
Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual En-
vironment and Teleoperator Systems, 2007.

[81] F. Petrovič and J. Filipovič. Kernel tuning toolkit. SoftwareX, 22:101385, 2023.

[82] F. Petrovič, D. Střelák, J. Hozzová, J. Oľha, R. Trembecký, S. Benkner, and J. Fil-
ipovič. A benchmark set of highly-efficient CUDA and OpenCL kernels and its
dynamic autotuning with kernel tuning toolkit. Future Generation Computer Sys-
tems, 108:161–177, 2020.

44 BIBLIOGRAPHY

[83] G. Pinto, O. Vávra, J. Filipovič, J. Štourač, D. Bednář, and J. Damborský. Fast
screening of binding and unbinding of inhibitors using novel software tool CaverDock.
Frontiers in Chemistry, 7, 2019.

[84] G. P. Pinto, O. Vávra, S. M. Marques, J. Filipovič, D. Bednář, and J. Damborský.
Screening of world approved drugs against highly dynamical spike glycoprotein of
sars-cov-2 using caverdock and machine learning. Computational and Structural
Biotechnology Journal, 19:3187–3197, 2021.

[85] D. C. Popescu and M. Compton. A model for efficient and accurate interaction with
elastic objects in haptic virtual environments. In GRAPHITE ’03: Proceedings of
the 1st international conference on Computer graphics and interactive techniques in
Australasia and South East Asia, pages 245–250, New York, NY, USA, 2003. ACM
Press.

[86] J Price and S. McIntosh-Smith. Improving auto-tuning convergence times with dy-
namically generated predictive performance models. In 2015 IEEE 9th International
Symposium on Embedded Multicore/Many-core Systems-on-Chip, 2015.

[87] M. Radermacher. Weighted Back-Projection Methods, pages 91–115. Springer US,
Boston, MA, 1992.

[88] A. Rasch and S. Gorlatch. ATF: A generic directive-based auto-tuning framework.
Concurrency and Computation: Practice and Experience, 0(0):e4423, 2018.

[89] Daniel N Rockmore. The fft: an algorithm the whole family can use. Computing in
Science & Engineering, 2(1):60–64, 2000.

[90] K. Rupp, J. Weinbub, A. Jüngel, and T Grasser. Pipelined iterative solvers with
kernel fusion for graphics processing units. PAMM, 14(1), 2014.

[91] R. Salomon-Ferrer, D. A. Case, and R. C. Walker. An overview of the Amber
biomolecular simulation package. Wiley Interdisciplinary Reviews: Computational
Molecular Science, 3(2):198–210, 2013.

[92] S. Sato and H. Iwasaki. A skeletal parallel framework with fusion optimizer for
GPGPU programming. In Programming Languages and Systems, volume 5904 of
Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 2009.

[93] D. Sehnal, R. Svobodová Vařeková, K. Berka, L. Pravda, V. Navrátilová, P. Banáš,
C. M. Ionescu, M. Otyepka, and J. Koča. MOLE 2.0: advanced approach for analysis
of biomacromolecular channels. Journal of Cheminformatics, 39(5), 2013.

[94] C. O. S. Sorzano, J. Vargas, J. Otón, J. L. Vilas, M. Kazemi, R. Melero, L. del Caño,
J. Cuenca, P. Conesa, J. Gómez-Blanco, R. Marabini, and J. M. Carazo. A survey
of the use of iterative reconstruction algorithms in electron microscopy. BioMed
Research Intl., 2017:6482567, 2017.

BIBLIOGRAPHY 45

[95] J. E. Stone, J. C. Phillips, P. L. Freddolino, D. J. Hardy, L. G. Trabuco, and
K. Schulten. Accelerating molecular modeling applications with graphics processors.
Journal of Computational Chemistry, 28(16), 2007.

[96] D. Střelák, J. Filipovič, A. Jiménez-Moreno, J. M. Carazo, and C. O. S. Sorzano.
Flexalign: An accurate and fast algorithm for movie alignment in cryo-electron
microscopy. Electronics, 9(6):1040, 2020.

[97] D. Střelák, D. Myška, F. Petrovič, J. Polák, J. Ol’ha, and J. Filipovič. Umpalumpa:
a framework for efficient execution of complex image processing workloads on het-
erogeneous nodes. Computing, pages 1–29, 2023.

[98] D. Střelák and J. Filipovič. Performance analysis and autotuning setup of the cufft
library. In Proceedings of the 2nd Workshop on AutotuniNg and ADaptivity Ap-
pRoaches for Energy Efficient HPC Systems, ANDARE ’18, New York, NY, USA,
2018. Association for Computing Machinery.

[99] D. Střelák, C. O. S. Sorzano, J. M. Carazo, and J. Filipovič. A GPU accelera-
tion of 3D Fourier reconstruction in Cryo-EM. The International Journal of High
Performance Computing Applications, 0, 2019.

[100] H. Su, W. Wen, X. Du, X. Lu, M. Liao, and D. Li. Gerelion: Gpu-enhanced parallel
implementation of single particle cryo-em image processing. bioRxiv, 2016.

[101] M. Suan Li and B. Khanh Mai. Steered molecular dynamics-a promising tool for
drug design. Current Bioinformatics, 7(4):342–351, 2012.

[102] S. Tabik, Ortegam G., and E. M. Garzón. Performance evaluation of kernel fu-
sion BLAS routines on the GPU: iterative solvers as case study. The Journal of
Supercomputing, 70(2), 2014.

[103] D. Tarditi, S. Puri, and J. Oglesby. Accelerator: using data parallelism to program
GPUs for general-purpose uses. SIGARCH Computer Architure News, 34(5), 2006.

[104] R. Thomsen and M. H. Christensen. MolDock: A new technique for high-accuracy
molecular docking. Journal of Medicinal Chemistry, 49(11):3315–3321, 2006.

[105] P. Tiwary, V. Limongelli, M. Salvalaglio, and M. Parrinello. Kinetics of pro-
tein–ligand unbinding: Predicting pathways, rates, and rate-limiting steps. Pro-
ceedings of the National Academy of Sciences, 112(5):E386–E391, 2015.

[106] A. E. Torda and W. F. van Gunsteren. Algorithms for clustering molecular dynamics
configurations. Journal of Computational Chemistry, 15(12), 1994.

[107] J.O. Tørring, B. van Werkhoven, F. Petrovč, F.-J. Willemsen, J. Filipovič, and A.C.
Elster. Towards a benchmarking suite for kernel tuners. In 2023 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW), pages 724–
733. IEEE, 2023.

46 BIBLIOGRAPHY

[108] O. Trott and A. J. Olson. Autodock vina: Improving the speed and accuracy of
docking with a new scoring function, efficient optimization, and multithreading.
Journal of Computational Chemistry, 31(2), 2010.

[109] O. Vavra, J. Beranek, J. Stourac, M. Surkovsky, J. Filipovic, J. Damborsky, J. Mar-
tinovic, and D. Bednar. pycaverdock: Python implementation of the popular tool for
analysis of ligand transport with advanced caching and batch calculation support.
Bioinformatics, 39(8):btad443, 2023.

[110] O. Vavra, J. Filipovic, J. Plhak, D. Bednar, S. M. Marques, J. Brezovsky, J. Stourac,
L. Matyska, and J. Damborsky. CaverDock: a molecular docking-based tool to
analyse ligand transport through protein tunnels and channels. Bioinformatics,
35(23):4986–4993, 05 2019.

[111] V. Volkov and J. W. Demmel. Benchmarking GPUs to tune dense linear algebra.
In ACM/IEEE conference on Supercomputing (SC), 2008.

[112] J. Štourač, O. Vávra, P. Kokkonen, J. Filipovič, G. P. Pinto, J. Brezovský,
J. Damborský, and D. Bednář. Caver Web 1.0: identification of tunnels and channels
in proteins and analysis of ligand transport. Nucleic Acids Research, 47(W1):W414–
W422, 2019.

[113] M. Wahib and N. Maruyama. Scalable kernel fusion for memory-bound GPU appli-
cations. In International Conference for High Performance Computing, Networking,
Storage and Analysis (SC14), 2014.

[114] M. Wahib and N. Maruyama. Automated GPU kernel transformations in large-scale
production stencil applications. In Proceedings of the 24th International Symposium
on High-Performance Parallel and Distributed Computing (HPDC), 2015.

[115] Z. Wang, C. F. Hryc, B. Bammes, P. V. Afonine, J. Jakana, D.-H. Chen, X. Liu,
M. L. Baker, C. Kao, S. J. Ludtke, M. F. Schmid, P. D. Adams, and W. Chiu. An
atomic model of brome mosaic virus using direct electron detection and real-space
optimization. Nat Commun, 5:4808, 2014.

[116] B. van Werkhoven. Kernel tuner: A search-optimizing gpu code auto-tuner. Future
Generation Computer Systems, 90:347 – 358, 2019.

[117] H. Wu, G. Diamos, S. Cadambi, and S. Yalamanchili. Kernel weaver: Automatically
fusing database primitives for efficient GPU computation. In Proceedings of the 2012
45th Annual IEEE/ACM International Symposium on Microarchitecture, 2012.

[118] E. Yaffe, D. Fishelovitch, H. J. Wolfson, D. Halperin, and R. Nussinov. MolAxis:
Efficient and accurate identification of channels in macromolecules. Proteins: Struc-
ture, Function, and Bioinformatics, 73(1):72–86, 2008.

[119] X. Zhang, X. Zhang, and Z.H. Zhou. Low cost, high performance gpu comput-
ing solution for atomic resolution cryoem single-particle reconstruction. Journal of
Structural Biology, 172(3):400 – 406, 2010.

BIBLIOGRAPHY 47

[120] S. Q. Zheng, E. Palovcak, J. P. Armache, K. A. Verba, Y. Cheng, and D. A.
Agard. Motioncor2: anisotropic correction of beam-induced motion for improved
cryo-electron microscopy. Nature methods, 14(4):331–332, 2017.

[121] J. Zivanov, T. Nakane, B. O. Forsberg, D. Kimanius, W. J. H. Hagen, E. Lindahl,
and S. H. W. Scheres. New tools for automated high-resolution cryo-em structure
determination in relion-3. Elife, 7, 2018.

Part II

Collection of Articles

51

Articles are not available in public version of this thesis.

