

Annex No. 10 to the MU Directive on Habilitation Procedures and Professor Appointment
Procedures

HABILITATION THESIS REVIEWER'S REPORT

Masaryk University
Applicant Jiří Filipovič, Ph.D.
Habilitation thesis Software Performance Optimization in Scientific

Computing
Reviewer Richard Vuduc, Ph.D.
Reviewer's home unit,
institution

School of Computational Science and Engineering,
Georgia Institute of Technology (“Georgia Tech”)

This habilitation thesis concerns how to make software for scientific computing efficient in
practice. Efficiency “in practice” refers to using as little wall clock time as possible when
running the software on a real computer system. By contrast, efficiency “in theory” is
achieved when a new algorithm or design is shown to use fewer operations or less memory
than a baseline algorithm when running on an abstract machine with some idealized notion
of cost. The present thesis takes advantage of its practical outlook, leading to an immediate
impact on real applications, as well as contributing novel methodologies that I estimate will
have an impact on future applications.

The thesis describes several distinct contributions, all of which have been published in peer-
reviewed journals, conferences, or workshop papers. These contributions are organized into
three “parts” (Chapters 2, 3, and 4, respectively).

The first part focuses on two technical contributions that directly improve specific applications
that are based on computer simulations (Chapter 2).

In its first contribution, this thesis develops novel strategies to improve the speed of a
phenomenon in biomolecular systems known as molecular docking (Section 2.1), wherein a
small molecule attaches itself to a larger molecule. Molecular docking is of interest in the
design of drugs, for instance. This phenomenon is typically studied by physically accurate but
expensive, long-running computer-based molecular dynamics simulations. Expertly designed
heuristics can reduce this cost, but deriving such heuristics is impractical when one wishes to
analyze many configurations (e.g., screening hundreds of drug candidates) since the
heuristics may require tuning for each scenario. To address this problem, the thesis
proposes a mathematical method to approximate the shapes of the molecules in such a way
that it systematically narrows the configurations that must be explored. While I am not an
expert in this domain, I do believe the proposed strategy is technically sound. More
importantly, since the method is implemented, evaluated on realistic test cases, and made
publicly available, independent domain experts will be able to try it easily, which enhances its
potential for impact.

The second contribution is a system that enables real-time virtual surgical simulations
(Section 2.2). In this setting, a human performs a simulated surgical procedure in a machine
that provides haptic feedback that must be calculated in real-time. The calculations involve
solving a nonlinear system of partial differential equations. The challenge is that a solution
must be computed in response to what the human operator does. To speed up these

2

calculations, the thesis describes a novel precomputation scheme. The proposed technique
anticipates possible human actions and, using a pool of servers, precomputes solutions,
selecting the appropriate one once the human input is received. The precomputation is
based on further approximations to ensure the overall system can meet the real-time
constraints of the application. Again, while I am not an expert in this area, I find the proposed
strategy to be a creative one. The application is also challenging and exciting, not to mention
one that can have an immediate and possibly commercial or industrial impact.

The second part (Chapter 3) develops methods to speed up computer simulations using
graphics co-processors, or GPUs. Compared to conventional multicore CPU processors,
GPUs provide many more, but simpler, cores. Whereas multicore CPUs are best suited to
concurrent or task-parallel computations where the threads are loosely coupled and the
performance of each thread is the performance limiter (due to the presence of irregular
branching and control, for instance), GPUs are well-suited to “PRAM-style” computations that
have a lot of fine-grained synchronous parallelism (where one can exploit many threads that
each thread carries out more or less the same operations as any other). Although GPUs
have been around for a long time, modern programmers have little direct exposure to parallel
processing, so exploiting GPUs remains a challenging activity, and while we know many
principles for how to exploit them, there is still much to explore. As such, it is still common to
see case studies that help to identify these principles. This thesis presents two such case
studies.

The first case study of GPU acceleration is for computational chemistry via particle
simulations, where one critical bottleneck is the calculation of distances between atoms.
Such calculations are known to be compute-bound, meaning their speed is limited only by
the time to perform arithmetic operations, instead of the time to move data or communicate.
As such, one would guess that a simple approach to parallelization, ignoring communication
cost, would be sufficient to get good performance. Indeed, the fundamental design of a GPU
system is to provide more hardware support for many concurrent threads than for caches or
other components of a memory hierarchy, which might otherwise communication costs (as
they do on multicore CPUs). The surprising finding of this case study is that exploiting
caches (and registers, which function as a kind of cache on GPUs) is critical, contrary to a
priori expectations. But doing also naïvely incurs overheads, and overcoming those requires
combining several other performance-engineering techniques. Overall, the case study is a
well-designed and well-written example of the effort required, and I expect it will serve as an
important example for future efforts to automate this engineering process.

The second case study involves volumetric image reconstruction from electron microscopy
data. Like the previous case study, this one brings multiple performance-engineering
techniques together. One strategy is to replace a “write-oriented” algorithm with a “read-
oriented” one, which ends up reducing communication costs. Another is to precompute
partial results, thereby reducing the overall algorithmic complexity of the calculation. A third is
to carefully tune the innermost loops. The tuning challenge is that there are many tuning
options and no clear way to distinguish them without doing experiments. But rather than
conduct this tuning by hand, the case study develops an automated tuning method. The
technical contribution in this case is both identifying the tuning options, which requires expert
judgement, as well as efficiently exploring these options. When combined, the resulting
implementation is an order of magnitude faster than an already-parallel baseline.

While the case studies are valuable and impactful, they are also specific, raising the natural
question of how well the methods can be generalized. The third part of the thesis (Chapter 4)
takes up this question directly, proposing generic techniques that can be applied more
broadly.

3

The first proposed technique is kernel fusion, where distinct parallel functions are combined
into a single parallel function. The goals of fusion are to reduce the overheads of separate
invocations of the parallel functions as well as to improve their data locality. This form of
fusion is related to classical loop fusion in the compiler literature except the program
representation considered here has two significant differences: it is explicitly parallel and
explicitly manages data movement through a multi-level memory hierarchy. Nevertheless, as
with classical loop fusion, in kernel fusion it can be hard to reason about when the fusion is
legal and when it will pay off, as fusion increases the memory and code footprint of the
function. The thesis studies kernel fusion in this setting, showing the same benefits of
classical fusion can extend to this other type of program representation. Moreover, it
proposes higher-level abstract primitives that can be used to simplify the program
representation and, thereby, enable automatic kernel fusion to be applied in more settings.
Lastly, to address the issue of when to apply kernel fusion, it develops a methodology to
analyze the efficacy of kernel fusion using automated experiments. This combination of
techniques appears quite promising, leading, for instance, to implementations of widely used
dense linear algebra routines that outperform a strong baseline (a very fast, hand-tuned
vendor library), by just over a factor of two.

A common theme of the contributions described above is the use of automated performance-
tuning experiments to find the best implementation, an area that has come to be known
(since the late 1990s) as autotuning. The thesis contributes a new autotuning framework
called the Kernel Tuning Toolkit (KTT). It aims to simplify how end-user developers can make
their programs “tunable,” and by exposing the tuning options to the KTT system, automate
what would otherwise be a manual tuning process. While several systems exist with similar
goals, the KTT is the most comprehensive of these to date, comprising a programming
interface for users, a code generator, a search engine (to run automated experiments and
explore the tuning space using a variety of heuristic algorithms), and targeting GPUs. KTT is
applied to several case studies, including the one related to image reconstruction mentioned
previously.

One aspect of the autotuning problem is especially vexing, namely, how to retune an
implementation portably. Portability in this case refers specifically to two scenarios, namely,
when the input changes and when the hardware changes. The strategy employed in the
thesis is to learn models during the tuning process. In particular, the proposed strategy
records detailed profiles of the program as it is tuned, collecting performance-counter data
observable on most modern processors, and then uses these profiles to construct empirical
models of the program’s performance behavior as a function of those data. This model can
be used to predict performance as the tuning parameters changed when moving to a new set
of inputs or a new platform. This approach is implemented in a tool called the Kernel Tuner,
which is then shown to outperform a state-of-the-art baseline tool (Starchart) that uses
different machine learning techniques.

Reviewer's questions for the habilitation thesis defence (number of questions up to the
reviewer)

All questions I had about the thesis are addressed in the attached publications. I have no
additional questions beyond those.

Conclusion

This habilitation thesis contains includes a wide range of contributions, some with immediate
practical impact (application-specific performance enhancements, Chapter 2), some
concerning an important class of modern machines (performance engineering for GPUs,

4

Chapter 3), and others that try to use those experiences to derive general lessons into tools
that can be applied more broadly (autotuning tools, Chapter 4). Overall, this variety in the
styles of work conducted demonstrates the versatility and flexibility of the author’s research
program, which is nevertheless coherently focused on performance engineering for scientific
simulations.

To understand the relative impact of this work, I might compare Filipovič to two highly
recognized scholars working in similar areas of performance engineering within the US: Tze
Meng Low (Carnegie Mellon) and Richard Veras (U. Oklahoma). Low is a recently tenured
Associate Professor who is slightly more senior than Filipovič, and Veras a mid-career
Assistant Professor who is more junior. Filipovič’s overall citation counts and h-index are
roughly the same as Low and Veras, indicating that, objectively speaking, we might expect
similar levels of positive impact and career trajectories. From a qualitative or style
perspective, I would characterize Low’s and Veras’s work as more theoretical in style and
more focused on more general numerical tools from linear algebra and graph analytics,
whereas Filipovič’s work is deeper in scientific computing applications than Low’s and
Veras’s as well as more practical given its specific GPU focus. In any case, the quality of
Low’s work is highly regarded, and I find Filipovič’s work to be of comparable quality.

Given its overall breadth and depth and positive comparisons to work by peer scholars, the
habilitation entitled “Software performance optimization in scientific computing” by Jiří
Filipovič, Ph.D., fulfils requirements expected of a habilitation thesis in the field of Computer
Science.

Date: April 8, 2024 Signature:

