
} w��������
��Æ������������ !"#$%&'()+,-./012345<yA| Faculty of Informatics

Masaryk University

Quality-Driven Architecture Design

of Software Systems

Habilitation Thesis

(Collection of Articles)

Barbora Bühnová

January 2016
Brno, Czech Republic

Abstract

Over the years, software-intensive systems have become an inseparable part of our lives,

gradually supporting critical business and industrial processes, such as in enterprise inform-

ation systems, e-business applications, or industrial control systems. Along the trend of

automation of critical software processes, the quality of these software solutions became the

key concern to many research teams worldwide. Although techniques for formal quality

assessment have long been available, the size and complexity of the present day software

systems introduced new challenges motivating the emergence of novel approaches to tackle

the complexity via decomposition of the problem along the architecture of the software

solutions.

In this thesis, I elaborate on the role of architecture-based quality assessment during

system development process. In particular, I focus on the system design phase, when critical

architectural design decisions are being made, which strongly affect the software quality of

the final product. This text details my contributions towards the quality-driven design of

a software system from three different perspectives, which are the functional correctness,

reliability and performance, and discusses the techniques to support this aim. Besides the

techniques to model and evaluate the quality of a certain system design alternative, specific

attention is being paid to challenges and techniques of architecture-based design decision

making and automated architecture design optimization.

The thesis is structured as a collection of articles accompanied with a commentary put-

ting my contributions in the context of the state of the art in the area, and linking them to

an integrated view on the quality-driven architecture design of software systems.

Keywords: Software architecture, software system design, quality, reliability, performance,

architecture optimization.

i

Abstrakt

V pr̊uběhu let se softwarové systémy staly ned́ılnou součást́ı našich život̊u, kdy se stále

častěji dostávaj́ı na pozad́ı kĺıčových obchodńıch a pr̊umyslových proces̊u, at’ už v rámci

podnikových informačńıch systémů, systémů pro elektronické obchodováńı či systémů pro

ř́ızeńı výroby. Spolu s trendem automatizace kritických softwarových proces̊u se do popřed́ı

zájmu mnoha výzkumných týmů dostává kvalita těchto softwarových řešeńı. Ačkoli formálńı

přistupy k ř́ızeńı kvality jsou k dispozici již řadu let, velikost a složitost dnešńıch softwarových

systémů přináš́ı nové otázky motivuj́ıćı vznik technik pro analýzu takto složitých systémů

za pomoćı dekompozice problému na základě architektury systémů.

Tato práce se věnuje roli analýzy kvality systému na základě jeho architektury v pr̊uběhu

procesu vývoje systému. V práci se konkrétně zaměřuji na fázi návrhu systému, kdy jsou

přij́ımána kĺıčová návrhová rozhodnut́ı s dopadem na architekturu a následně i kvalitu

finálńıho softwarového produktu. Tato práce přibližuje mé př́ınosy k procesu návrhu soft-

warového systému s ohledem na jeho kvalitu, a to ze tř́ı perspektiv, kterými jsou funkčńı

korektnost, spolehlivost a výkonnost, a diskutuje techniky pro podporu tohoto ćıle. Vedle

technik pro modelováńı a analýzu kvality konkrétńıho návrhu systému, je zvláštńı pozor-

nost věnována problémům a technikám spojeným s návrhovými rozhodnut́ımi na základě

architektury systému a automatické optimalizaci návrhu architektury.

Tato práce je souborem publikovaných vědeckých praćı doprovozených komentářem,

který mé výsledky zasazuje do kontextu aktuálńıho stavu výzkumu v této oblasti, a propo-

juje je do integrovaného pohledu na kvalitou ř́ızený návrh softwarového systému s ohledem

na jeho architekturu.

Kĺıčová slova: Softwarová architektura, návrh softwarového systému, kvalita, spolehlivost,

výkonnost, optimalizace architektury.

ii

Acknowledgements

I would like to express my appreciation to all the tremendous mentors I have had along my

journey—to Jǐŕı Sochor and Ivana Černá for guiding me during my Ph.D. studies, to Ralf

Reussner for helping me to grow as a scientist after I graduated and for becoming one of

my greatest inspirations, and to Tomáš Pitner for welcoming me warmly in the LaSArIS

lab after I joined FI MU as an assistant professor. I would like to thank all my colleagues,

co-authors, and LaSArIS members for being such a great team to work with.

Finally and foremost, I wish to thank my parents, husband and children for being my

home, my love, my joy.

Barbora Bühnová

iii

iv

Contents

I Commentary 1

1 Introduction 3

1.1 Focus of the thesis . 4

1.2 Thesis structure . 4

2 Software architecture models 7

2.1 Functionality . 8

2.2 Reliability . 11

2.3 Performance . 15

3 Architecture quality assessment 19

3.1 Functionality . 19

3.2 Reliability . 23

3.3 Performance . 26

4 Design process support 29

4.1 Design decision making . 29

4.2 Architecture optimization . 33

5 Conclusion 37

Bibliography 39

II Collection of Articles 51

A Journal articles and chapters 53

B Conference papers 55

C Case studies and tool papers 57

v

vi

Part I

Commentary

1

2

1.1 Focus of the thesis 4

1.2 Thesis structure 4

Chapter 1. Introduction

Chapter 1

Introduction

The idea of system quality assessment has been around since the 1960s, when research on

rigorous methods for analysing complex concurrent systems was initiated. The field has

evolved very dynamically and today, there are many methods and techniques available for

either manual or automated program analysis and verification [120, 38].

In the context of large-scale business and industrial systems, however, rigorous quality

assessment methods started to set up quite recently, together with the emergence of the

concept of architecture-based reasoning, which suggests to decompose the complexity of the

quality assessment problem along the architecture of the software system [84, 7].

The importance of software architecture within the design and quality assessment of soft-

ware systems started to be recognized around 1990, when the increasing industrial demand

towards software systems with high complexity and challenging quality requirements be-

came apparent. At that time, the emergence of the Component-Based Development (CBD)

paradigm [126, 71] initiated discussions on the separation of concerns with respect to the

wide-ranging functionality available throughout a given software system. Although the CBD,

which suggests to build software systems via composition of existing autonomous components

similarly to manufacturing, did not find its way into the mainstream of software engineering,

it provided the basis for overly very popular concept of Service-Oriented Architecture (SOA),

which relies on very similar foundations. Along with this transformation, the complexity of

the systems further increased into the Systems of Systems considerations, and the concept

of software architecture became an integral part of both industrial and academic reasoning.

In industry, architecture specifications and models [74] not only structure complex soft-

ware systems, but also provide a blueprint that is the foundation for later software engin-

eering activities. Thanks to architecture specifications, which identify system components,

their communication and mapping to the underlying infrastructure, software engineers are

better supported in reasoning about the desired quality attributes of the developed sys-

tems [13]. This is where industry meets academia, which aims at developing techniques and

tools that can assist software architects in this endeavour.

3

Chapter 1. Introduction

Initially, the research focused on the compositional reasoning targeting the functional

quality of large software systems, which was to large extent reusing and adapting existing

results from the formal verification domain [33, 133]. However, it soon became apparent that

the attention must be turned also to the non-functional quality criteria, such as reliability,

availability or performance, which became widely studied within the software architecture

context mainly in the last decade [73, 79].

1.1 Focus of the thesis

This thesis summarizes my contributions to the progress within the field of architecture-

based quality assessment of software systems and its role in the development process. Over

the years when I studied software quality from different perspectives (e.g. functional correct-

ness, reliability, performance, energy consumption) and over different application domains

(e.g. enterprise software systems, large control systems, embedded systems), I became to

understand that critical decisions influencing the quality of the software product are be-

ing made early during the architecture design, which is when software engineers should be

supported with adequate techniques and tools that help them to identify the right design

alternative, despite high uncertainty about the context that is yet unknown at that time.

This text discusses the techniques that are in line with this goal, aimed at the quality

assessment of large-scale systems early during system design, and the support of architecture

design based on their results. Specific attention is being paid to three quality perspectives –

functional correctness, reliability and performance – and the role of uncertainty within this

endeavour. All this is closely linked to my contributions in this field. This text is a follow

up of my doctoral thesis [137], which however only targeted the functional perspective on

system quality, and understood system design in a narrow scope of component composition,

as distinct from the high diversity of architecture-based design activities discussed here.

1.2 Thesis structure

An essential precondition for early assessment of software system quality based on its ar-

chitecture is an adequate model of the analysed software system and its architecture in

particular. In Section 2 we therefore outline the state of the art and my contributions

within the domain of software architecture models from the three perspectives outlined

above, i.e. functionality, reliability and performance. In Section 3, we study the actual

techniques for architecture-based quality assessment of individual design alternatives for the

particular system. Having the basis to model and evaluate individual design alternatives,

Section 4 elaborates on the challenges and techniques of architecture-based design decision

making and later also the automated architecture design optimization, which is the ultimate

goal within the targeted research area.

4

Chapter 1. Introduction

Each section presents the state of the art within the particular problem domain, my

contributions to its progress, and lists selected articles I have co-authored that are attached

to this text to exemplify my contributions. Some of the articles are mentioned more than

once, as they contribute to multiple aspects studied in this text. The overall collection of

articles is listed in Part II of this thesis.

5

Chapter 1. Introduction

6

2.1 Functionality 8

2.2 Reliability 11

2.3 Performance 15

Chapter 2. Software architecture models

Chapter 2

Software architecture models

Benefits of compositional reasoning are widely understood since the works of Lamport,

Pnueli and others in early 80s [83, 110, 11], which is why compositional system models are

not new either. Initially, system models have been decomposed into processes, modelled

with different variations of Labelled Transition Systems (LTS) and Process Algebras (PA),

which became the basis for architecture-based modelling as well.

However, the emergence of Component-Based Development (CBD) [126, 71] was ac-

companied with new views and concepts, which is why a plethora of modelling approaches

has been built since the concept of a software component became more clear and commer-

cial component frameworks, such as Microsoft’s COM [102], Sun’s EJB [125] and OMG’s

CCM [108], appeared. A component in this work is understood as a self-contained, replace-

able part of a software system that fulfils a clear function or a group of related functions

in the context of software architecture [73]. We distinguish two types of components: basic

and composite. Each basic component is assumed to be a collection of services provided to

other components in the system, each composite component is understood as an assembly

of components (basic or composite).

In its early stages, component-based methods targeted mainly the functional quality of

software systems under consideration. In order to leverage architecture-based reasoning to

build correct and dependable software systems, researchers have developed various formal

and semiformal component models, which concentrate on different yet related aspects of

component modelling [109, 31, 91, 5, 52]. However, soon after that, architecture-based

modelling notations highlighting the non-functional aspects of software system quality (such

as reliability, availability, performance or energy consumption) started to be introduced [64,

9, 79, 22, 67].

7

Chapter 2. Software architecture models

2.1 Functionality

Within the context of functional correctness of systems with component-based architecture,

the most popular modelling approaches rely on process algebra, automata-based approaches

and architecture description languages, which are briefly described in this section.

Process algebra. Process algebras [8, 23, 50] allow a high-level view on interacting sys-

tems. The interacting components are regarded as processes, and the interaction among

them is defined with a set of operators within an algebraic theory. Process algebras have

their operational semantics defined in terms of labelled transition systems. Since the 1980s

when the extensive work in the field was initiated by the works of Milner [103] and Hoare [72],

a number of different process algebras has been developed. A similarity among them is the

definition of the system communication behaviour in terms of process expressions, and their

interaction in terms of synchronization primitives. Among the best known representatives,

there are Milner’s CCS [104] studying interaction on complementary input/output actions;

Hoare’s CSP [72], offering an alternative view on component communication via multi-

synchronization; Bergstra’s and Klop’s ACP [8] with even a more general communication

scheme; and Milner’s Pi-calculus [105], based on CCS with support of mobile processes.

The most influential representative of the process algebras in the domain of component-

interaction modelling, is with no doubt the Calculus of Communicating Systems (CCS) [104].

Automata-based languages. The basic constructs defined in CCS, namely the trans-

ition interpretation of process semantics and communication on complementary actions, be-

came the fundamental basis of Input/Output-automata-based languages. These languages

produce system models directly in terms of transition systems labelled with three types of

actions: input, output and internal. As distinct to process algebras, the automata-based

languages are usually used in a strictly compositional manner, where only the basic pro-

cesses (representing the basic components as described above) are constructed explicitly (as

transition systems); components on higher levels (i.e. composite components) are created

solely via composition of existing automata, in a hierarchical manner. The languages often

add a number of restrictions on the components entering the composition, to better adhere

to the type of systems the languages are defined for. The best-known languages in this

field are the I/O automata [89, 88], its extension Team automata [16, 47], and modification

Interface automata [42, 43].

Architecture description languages. Concurrently with the evolution of I/O-

automata-based modelling languages, the software engineering community put effort in the

design of interaction-specification languages within emerging Architecture Description Lan-

guages (ADLs). The origination of ADLs was motivated by the practical need of descrip-

tion and formalization of software architectures at the beginning of the 1990s, and was

8

Chapter 2. Software architecture models

followed by a second advent in the 2000s triggered by the growing popularity of CBD.

Architecture description languages allow us to specify both static (system architecture,

bindings among components) and dynamic (component behaviour, interactions) aspects

of hierarchical component-based systems, hence they have wider scope than the languages

discussed above. In fact, they define specific sub-languages for component-interaction mod-

elling. Among the best known, there are SOFA Behavior protocols [109], Darwin Tracta [91],

Wright [6] or Fractal pNets [12].

Component-Interaction Automata. In my doctoral thesis [137], I aimed at con-

necting the formal body of knowledge available within the automata-based languages

and the specifics of real-world component-based systems, reflected within architecture de-

scription languages, which resulted into the introduction of Component-Interaction auto-

mata [26, 34, 139], which are an automata-based specification language for modelling com-

ponent interactions in component-based software systems. In Component-Interaction auto-

mata, each component is modelled as an automaton with actions representing points in its

communication with the environment, and the system is modelled via composition of the

automata representing the components it consists of. The language builds on a simple, yet

powerful, composition operator that can be parameterized to simulate several communica-

tion strategies used in various component models. In this manner, Component-Interaction

automata can be instantiated to a particular component model by fixing the composition

operator and semantics of actions, which helped them to become a recognized notation

employed by a number of authors worldwide [87, 75, 86].

Contributions

As the follow up of my doctoral thesis [137], which introduced the Component-Interaction

automata notation [26] and a set of equivalence relations that can be employed for the

evaluation of safe component integration and replacement [35], my contribution within the

context of this text is in the examination of the applicability of the Component-Interaction

automata notation in the context of real business and industrial systems [139, 128, 21], and

the challenges that emerge during this effort [138, 129, 127].

My aim in this context have been to build a bridge for existing verification techniques

to verify realistically large business and industrial systems, and to show how the intricate

specifics of component based systems can be modelled with simple labelled transition systems

notation, such as the Component-Interaction automata.

The initial set of component-based system specifics, which served as the test base for

this effort, was derived from the common component modelling example [115], designed to

comprise a large number of various aspects and modelling issues that can be identified in

different types of component-based systems. Together with a detailed specification of the

example in terms of Java source code (125 Java classes in total), the example originally

9

Chapter 2. Software architecture models

served as a common modelling example for the CoCoME (Common Component Modelling

Example) Modelling Contest [114], whose aim was to compare practical applicability of

existing component modelling approaches and component models on a common component-

based system [115, 139].

Specifically, we have defined a mapping of Java methods and events to the actions in the

model, and we have identified different types of communication among components that we

have realized by the parameterizable composition operator that the Component-Interaction

automata provide. During the modelling process, we have faced many modelling issues,

which have been detailed both in [139] and a number of our subsequent works [138, 128, 129].

Namely, we studied the modelling of exception handling, including advanced concepts

like forwarding of exceptions among method calls [139], and examined the modelling of the

internal persistent state of a component and its influence on component’s behaviour, as

well as the role of the global shared state within the system [139]. We discuss modelling

of not only the synchronous communication, but also two common types of asynchronous

communication schemes, the point-to-point and publish-and-subscribe schemes [128, 139].

We elaborated on how creation and destruction of component instances can be modelled

within a finite-state formalism [138, 127]. And we also touched the restriction of the system

model to a given usage profile and its impact on system analysis [21, 139]. In summary, we

were successful in demonstrating that even a simple automata-based language, such as the

Component-Interaction automata, has the power to faithfully model a number of non-trivial

situations common in real component-based software systems.

Articles in collection

[139] B. Zimmerova, P. Vařeková, N. Beneš, I. Černá, L. Brim, and J. Sochor. The Common

Component Modeling Example: Comparing Software Component Models, volume 5153

of LNCS, chapter Component-Interaction Automata Approach (CoIn), pages 146–176.

Springer, 2008

I devised the modelling process, designed the solutions to the modelling challenges and cre-

ated all the models. I contributed to the verification process and wrote most of the text.

Contribution 60%.

[128] P. Vařeková and B. Zimmerova. Challenge Problem: Subject-Observer Specification

with Component-Interaction Automata. In Proceedings of the ESEC/FSE Conference

on Specification and Verification of Component-Based Systems (SAVCBS’07), pages

75–81. ACM Press, September 2007

I was responsible for the modelling part of the paper and participated in devising the verific-

ation approach. I wrote most of the text. Contribution 50%.

[138] B. Zimmerova and P. Vařeková. Reflecting Creation and Destruction of Instances in

CBSs Modelling and Verification. In Proceedings of the Doctoral Workshop on Mathem-

10

Chapter 2. Software architecture models

atical and Engineering Methods in Computer Science (MEMICS’07), pages 257–264,

October 2007

I devised the modelling and part of the verification approach and wrote the paper. Contri-

bution 70%.

[19] N. Beneš, L. Brim, I. Černá, J. Sochor, P. Vařeková, and B. Zimmerova. The CoIn

Tool: Modelling and Verification of Interactions in Component-Based Systems. In Pre-

proceedings of the International Workshop on Formal Aspects of Component Software

(FACS’08), pages 221–225. Department of Computer Science, University of Malaga,

2008

I participated in the design of the tool and its algorithms, and paper writing. Contribution

15%.

2.2 Reliability

In the realm of software systems, the reliability characterizes the likelihood of failure-free

behaviour of a software system, because even a high-quality software development process

generally cannot eliminate every fault in the system. Some faults are hard to localize, because

of having complex activation and propagation patterns, which may only be revealed at run-

time [65]. The role of reliability engineering within the software development process is

hence to track the expected system reliability and guide design decisions that reduce the

potential negative effect of the faults that may still be present in the system.

Reliability definition. The failure behaviour of the system or its components is usu-

ally defined as a failure rate, time-dependent failure intensity, or probability of failure on

demand [57]. Failure rate is the frequency in which the failures occur. Time-dependent

failure intensity is defined as the rate of change of the expected number of failures with

respect to time [90]. The probability of failure on demand is understood as 1 − r where

r is the probability of failure-free operation of a software system for a specified period of

time in a specified environment [73]. In general, the failure behaviour can be specified in

greater detail by additional parameters, such as the failure dependencies, their durations or

latency [24], although such parameters are utilized very rarely.

When discussing the reliability-relevant system properties in this text, we refer to system

failures and faults. The term failure is used for any deviation of the system’s behaviour from

its intended functionality as perceived by a system user. Fault on the other hand refers to

any defect in system’s behaviour that may but needs not to lead to a failure.

Software reliability models. The fundamental approaches in the domain of software

reliability engineering are concerned mainly with system tests and reliability growth models,

11

Chapter 2. Software architecture models

treating systems as black boxes [107, 90]. Recently, architecture-based reliability approaches,

which take advantage of the compositional structure of component-based software systems,

have been introduced and their limitations studied by different authors [73, 57, 62].

The architecture of a system is most commonly being modelled with either a discrete

time Markov chain (DTMC) [37, 122, 131, 58] or a UML-like modelling notation that is

later transformed to a Markovian model [40, 59, 136, 117, 111]. Next to DTMCs, which

are together with Markov decision processes (MDP) being employed for the analysis of

system reliability under a given terminating usage scenario, continuous time Markov chains

(CTMC) and semi-Markov processes (SMP) are better suited for continuously operating

software applications, such as real-time control systems [62].

The role of execution environment. While the approaches detailed above focus on the

software-level modelling only, some authors are beginning to recognize that the reliability

of a software system is critically dependent on the reliability of the underlying execution

environment, in which the system is deployed, and hence include this aspect in their models

to increase the plausibility of the reliability analysis [119, 63, 41, 44].

Execution environment in software systems typically comprises of hardware resources and

network infrastructure. The reliability of the hardware resources is being understood via

their availability, which may be compromised by resource breakdowns due to hardware wear

out. Typically, a broken-down resource, which might be a CPU, memory or storage device,

for instance, is eventually repaired or replaced with a new resource. The reliability of such

resources is therefore expressed in terms of Mean Time To Failure (MTTF) and Mean Time

To Repair (MTTR) [121]. Reliability in networks is being defined either as a probability

of successful communication between a specified pair of nodes within the network, or as

the ratio of correctly delivered data. The reliability is often modelled either with a random

variable or with a fixed constant [135, 136].

Although the reliability of the execution environment is well understood, the reasoning

about the software reliability in the presence of unreliable execution environment is non-

trivial and not yet well resolved, since the nature of the software and hardware reliability

is very different and the interplay of the two depends on the probability that the software

operation uses a certain hardware resource, which depends on many aspects (e.g. the imple-

mentation of involved services, user inputs). This is especially true for systems with complex

architecture and deployment settings.

Contributions

Over the last years, I have contributed to numerous works on software reliability analysis,

which relied on architecture-based models of reliability-relevant system properties [29, 27,

97, 28, 30, 17, 96, 95].

12

Chapter 2. Software architecture models

Together with Brosch et al., we have identified that two major aspects that disturb the

results of reliability analysis in large software systems, are the missing consideration of the

execution environment, and overlooked usage profile modelling [29, 28]. Based on these

findings, we have developed an approach that integrates these two views into reliability

modelling and assessment for large software systems.

Our work builds upon the Palladio Component Model (PCM) [15], originally designed

for performance modelling and prediction, and incorporates the notion of software failures,

communication link failures, and unavailable hardware into its modelling and analytical cap-

abilities. In the work, we employed a UML-like notation that details the reliability effects on

different levels of system architecture, starting with component services and their internal

computation, and propagating it through the reliability of individual components to the sys-

tem level. We considered the influence of system usage and explicitly model the propagation

of the usage profile throughout the architecture. Furthermore, the execution environment

and software component allocation is also modelled in detail (in a UML-like fashion too),

so that the effect of physical-resource breakdowns and network problems can be propagated

to the software reliability assessment. Tool support for an automated transformation of

the UML-like models into Markov chains and space-effective evaluation of these chains is

implemented using the Eclipse Modeling Framework (EMF) within the Palladio Component

Model (PCM) Bench tool set [2].

In the approach, we have associated individual software actions and communication links

with failure probabilities, and hardware resources with Mean Time To Failure (MTTF) and

Mean Time To Repair (MTTR) values. Taking these into account, we assume that the

execution of a system scenario fails if a software failure happens during component-internal

processing, a communication link fails in propagating a call between two components, or

a hardware resource is unavailable when required by service execution.

Fault tolerance. In [27] we further extended the modelling capabilities of our approach

to include various fault-tolerance mechanisms, which are commonly employed to mask faults

in software systems and prohibit them to result in a failure. Fault-tolerance mechanisms

may be established on different abstraction levels, such as exception handling on the source

code level, watch dog and heart beat as design patterns, and replication on the architec-

ture level [113, 106]. This allowed us to reason about the effect of various fault-tolerance

mechanisms on the reliability of the system and hence navigate the developer to use them

wisely [27], which was a novel contribution, not yet considered by related work [57, 61, 73].

Estimation of failure model parameters. While some parameters of the models can be

obtained straightforwardly (e.g. MTTF specified by hardware vendor or benchmarked [121]),

there are parameters that need to be based on estimates (e.g. failure probabilities of

component-internal actions), which is why reliability model accuracy may be questioned,

because some parameters are hard to estimate before system implementation. In [32] we

13

Chapter 2. Software architecture models

have therefore surveyed existing techniques for estimation and collection of failure para-

meters for architecture-based reliability assessment models, and presented the findings that

can be learned from their detailed analysis. To accomplish this goal, we studied possible

reliability-model parameters, failure data sources, methods and analytical capabilities of

existing techniques. The techniques have then been analysed and classified according to

devised classification scheme.

Reliability models for embedded systems. Because of certain specifics of embedded

systems comparing to the information software systems targeted in the above work, we have

further developed multiple reliability models for embedded systems with complex architec-

tures [96, 95, 97]. Embedded systems, such as avionic or automotive control systems, rely on

different concepts, typically driven by sensors and actuators. They are deployed on compact

self-contained computational units (containing both processing and memory part), known

as Electronic Control Units (ECUs), interconnected into the architecture through commu-

nication buses. The software layer of an embedded system consists of a high number of

lightweight components, representing the logical blocks of system functionality (typically in

a low-level programming language). In our work [96, 95, 97], we have defined modelling ab-

straction of such systems, presenting the software and hardware architecture models, along

with the model of failure behaviour with respect to various reliability assessment problems.

Articles in collection

[29] F. Brosch, H. Koziolek, B. Buhnova, and R. Reussner. Architecture-based reliability

prediction with the palladio component model. IEEE Transactions on Software En-

gineering, 38(6):1319–1339, 2012. ISSN 0098-5589

I participated in devising the approach, its evaluation and paper writing. I was responsible

for the formal correctness of the whole approach. Contribution 30%.

[27] F. Brosch, B. Buhnova, H. Koziolek, and R. Reussner. Reliability prediction for fault-

tolerant software architectures. In Proceedings of the joint ACM SIGSOFT conference

QoSA and ACM SIGSOFT symposium ISARCS on Quality of software architectures

(QoSA) and architecting critical systems (ISARCS), pages 75–84. ACM, 2011

I participated in devising the approach and defining the fault tolerance mechanisms included

in the model, for which I then designed the trafsformation into the formal model and its

evaluation. I participated in paper writing. Contribution 30%.

[32] B. Buhnova, S. Chren, and L. Fabrikova. Failure data collection for reliability predic-

tion models: A survey. In Proceedings of the 10th International ACM Sigsoft Confer-

ence on the Quality of Software Architectures, pages 83–92. ACM, 2014

I participated in all phases of work on the paper, including paper writing. Contribution 35%.

14

Chapter 2. Software architecture models

[97] I. Meedeniya, B. Buhnova, A. Aleti, and L. Grunske. Reliability-driven deployment

optimization for embedded systems. Journal of Systems and Software, 84(5):835–846,

2011. ISSN 0164-1212

I was mainly responsible for the problem statement and quality assessment model definition

and evaluation. I participated in paper writing. Contribution 35%.

2.3 Performance

Software performance is one of the essential quality attributes of software systems nowadays,

being understood as a collection of more specific attributes, namely the response time,

throughput and resource utilization.

Although classical performance models such as queuing networks [85, 46, 99], execution

graphs [48, 69], and discrete-time Markov chains [123] are applicable to model performance

also in the context of software architectures, specialized models are emerging that take

advantage of the benefits of the compositional structure and interplay between both software

and hardware components in component-based systems.

These approaches [9, 79] take advantage of the knowledge of the system architecture and

model it first with a UML-like notation, which is later transformed to one of the classical

performance prediction notations (e.g. queuing networks or Markov chains) so that the

available techniques can be used to compute the expected performance. UML is a very good

basis for system modelling, as it allows modelling the system architecture with component

diagrams, and for each component also its behaviour with sequence, activity, and communic-

ation diagrams. Component allocation can be described with deployment diagrams. While

UML only supports functional specifications, its extension mechanisms (profiles, consisting

of stereotypes, constraints, and tagged values) allow modelling performance attributes such

as timing values and workload parameters [79].

The architecture-based performance engineering approaches aim at understanding the

performance (i.e., response time, throughput, resource utilisation) of the software system

based on the performance properties of individual components and their deployment con-

text [14]. Within the state of the art, well surveyed in [9, 79], one can identify numerous

challenges that have been addressed by the community in the recent years. First of all,

the performance of a component-based system is influenced by a number of factors, includ-

ing component implementation, deployment, environmental context and system usage. The

component developer has to provide a parameterized specification (i.e. a function over the

different factors), which makes the influences by these external factors explicit.

Specifically, for each provided service of a component, the component developer should

provide a performance specification that besides the functional control flow (similar to the

functional and reliability models) includes the details of resource demand. The demanded

15

Chapter 2. Software architecture models

resources are typically CPUs or storage devices, but can also include memory buffers, threads

from a pool, etc., and since the execution often demands changing portion of the resource

time, it may be specified by different means (e.g. with a mean value, distribution function,

best/worst case).

Additionally, similarly to the functional and reliability models, it is critical to well in-

corporate the usage model into the system model, so that one can reason about various

execution scenarios of the system. For the usage profile to be effectively integrated into

the performance model, it is important to well resolve the information propagation in the

model. Another challenge is that only a few methods deal with modelling the internal state

of a component at runtime (analogous to a global state of a system as such), although the

internal state can have severe effects on component’s performance [79, 70].

Contributions

I have been involved in numerous research activities related to performance modelling for

early performance assessment, in the context of large enterprise systems [70, 77, 76], cloud-

based applications [53] and automotive embedded systems [95]. The most relevant to the

aim of this text are the works extending an already established performance modelling

approach [14] with new performance-relevant details without increasing the model size and

complexity over the limit that would hinder its analysis. These included the modelling of

component internal state [70, 77] and the automation of model enrichment with low-level

performance characteristics, called model completions [76].

Internal state modelling. In [70, 77] we studied the dependence of system perform-

ance on a configuration, context or history related state of the system, typically reflected

with a (persistent) system attribute, and implying the existence of stateful services, stateful

components and stateful systems as such. More specifically, we targeted the issue of ap-

propriate balance between the expressiveness and complexity of performance models via an

effective abstraction of state modelling. We identified and classified stateful information in

component-based software systems, studied the performance impact of the individual state

categories, and analysed the costs of their modelling in terms of the increased model size.

Model completions. To provide accurate performance predictions, performance mod-

els need to include many low-level details that affect the performance (e.g., performance-

relevant middleware configurations). Such details can be integrated into architectural mod-

els through model refinements (realised by model-driven transformations), called comple-

tions [132]. Completions introduce quality-relevant details into the model, for example

defined as abstractions of design patterns for a specific purpose, such as concurrency. How-

ever, it may be intricate to employ completions automatically, as they may influence each

other. In [76] we studied the possible conflicts among performance completions and based on

16

Chapter 2. Software architecture models

it proposed a systematic method of conflict localization and resolution reflecting the quality

effects of different transformation orders (completion chains).

Performance models for embedded systems. Within the scope of automotive em-

bedded systems research, we have been concerned with performance modelling in [95],

within which we relied on the specific architectural characteristics of embedded systems

(of hardware-software co-design within so called Electronic Control Units, ECUs), which

enabled us to study the effect of redundancy allocation (deployment of redundant ECUs

to increase system reliability) on system performance. For this purpose, we described the

system behaviour as a Markov model with probabilities of execution transfer between com-

ponents together with the probabilities of execution initialisation at each component, and

used the approach of Kubat [82] to estimate the performance.

Articles in collection

[77] L. Kapova, B. Buhnova, A. Martens, J. Happe, and R. Reussner. State depend-

ence in performance evaluation of component-based software systems. In Proceedings

of the Joint WOSP/SIPEW International Conference on Performance Engineering

(ICPE’10), pages 37–48. ACM, 2010

I was an author of the main idea, I contributed significantly to the problem statement, state

of the art analysis and realized the modelling part of the approach. I wrote the text of most

of the paper. Contribution 30%.

[70] L. Happe, B. Buhnova, and R. Reussner. Stateful component-based performance mod-

els. Software and Systems Modeling, 13(4):1319–1343, 2014. ISSN 1619-1374

I contributed to several parts of the paper, I was responsible for the state identification,

modelling and the definition of the heuristics. I wrote most of the text. Contribution 40%.

[76] L. Kapova and B. Buhnova. Performance-driven stepwise refinement of component-

based architectures. In Proceedings of the 2nd International Workshop on the Quality

of Service-Oriented Software Systems, pages 1–7. ACM, 2010

I participated in all phases of work on the paper, and was responsible mainly for the employed

techniques and the overall correctness. I participated in paper writing. Contribution 40%.

[95] I. Meedeniya, A. Aleti, and B. Buhnova. Redundancy allocation in automotive systems

using multi-objective optimisation. In Symposium on Automotive/Avionics Systems

Engineering (SAASE’09), pages 1–16, 2009

I participated in devising the approach, its models and its formulation in terms of an optim-

ization problem. I participated in paper writing. Contribution 30%.

17

Chapter 2. Software architecture models

18

3.1 Functionality 19

3.2 Reliability 23

3.3 Performance 26

Chapter 3. Architecture quality assessment

Chapter 3

Architecture quality assessment

Having an architecture-based model of a software system emphasizing a certain quality

perspective, the next step is to quantify the quality of the design alternative represented by

the model, to allow its comparison with alternative designs.

The methods for quality quantification are typically based on either mathematical ana-

lysis of the model or on the simulation of an executable version of the model, and can have

many forms, combining different techniques, which can be best understood from available

surveys, e.g. for reliability [64], performance [9, 79], energy consumption [22], and safety [67].

3.1 Functionality

The functional correctness is being typically understood in terms of functional require-

ments satisfaction. In case of the architecture-based models, two separate aspects need to

be considered, which are the correctness of each basic component, and the correctness of

a composite system. The first point of view refers to the functionality that is encapsulated

in the basic components, which are the building blocks of the system. The components are

usually delivered by third parties without source code or implementation details, which may

come with a serious risk of system faultiness. Current solutions to this problem are based

mainly on third party certification and third party testing, which results in trusted compon-

ents [100]. The second point of view, the correctness of a composite system, refers to the fact

that even if we assume that each individual component is trusted and can be supposed to be

correct, there is no guarantee that the components cooperate correctly to deliver expected

results. Thus what remains to be assessed is the interconnection logic among components,

which we refer to as component interactions.

19

Chapter 3. Architecture quality assessment

Correctness of a basic component. In component-based development, components are

developed independently of their deployment context. In such settings, the correctness of

a component can be hardly defined, because a component can behave correctly in one context

but incorrectly in another. Existing techniques [101, 100] instead propose to assign each

component a certified description of its properties, including sequences of allowed service

calls and their effects, so that each user of a component can decide whether the component

behaves correctly in their context. Or alternatively, components come with a set of property

qualities that are guaranteed in all the contexts that have an expected behaviour [134, 39].

Correctness of a composite system. Whenever the components are assembled into

a composite system, automated formal methods can be employed to analyse the compos-

ite system as a whole. Formal analysis can include verification of coordination errors, like

deadlocks, computational progress or fairness, or checking various temporal properties on the

system, such as the interaction among specific components [38, 120]. We can for instance ask

whether a component always serves given calls in a given order, or if two components can ac-

cess a given service at the same time. We can also focus on verification of component-specific

errors, like local deadlocks of selected components [21]. The verification can be carried out

with traditional verification methods, like model checking or theorem proving [38, 120], or

can take advantage of component-specific characteristics of systems, like the composition-

ality in the assume-guarantee manner [134, 54]. Compositional verification in general aims

at decomposing a global system property specification into local properties that hold for

small sub-parts of the system [33, 133]. In case of component-based systems, a system-level

requirements are decomposed into local component requirements, which are verified on the

components in isolation [25, 134]. The isolated validity then guarantees the validity of the

system-level property on the whole system.

Assessment complexity. In practice, real systems are composed of a large number of

concurrent components, which are often independent of each other. In such a case, auto-

mated verification becomes challenging due to model size and complexity. This motivates

the search of component-specific attributes, which can be exploited in order to make the

verification feasible. One of the techniques successfully employed to state-space reduction is

the partial order reduction. This technique is able to identify redundancies in the model dur-

ing the verification process, commonly caused by interleaving of independent actions. This

allows the technique to omit the generation of some of them while at least one representative

of each equivalence class remains part of the actually verified model [55].

Contributions

Having a realistic architecture-based model of a large software systems modelled in

Component-Interaction automata [139], as discussed in Section 2.1, the aim of our sub-

20

Chapter 3. Architecture quality assessment

sequent work was to devise techniques for efficient verification of a reasonable set of proper-

ties that would be capable of describing realistic functional requirements related to system

architecture and component interaction in the modelled system.

Correctness properties. For the specification of system requirements that shall be veri-

fied on system models, we have introduced an extended version of the action-based linear

time logic LTL, called CI-LTL [21], together with the identification of a set of properties

defining correctness issues in component-based systems, their formalization in terms of CI-

LTL temporal logic, and demonstration of the feasibility and efficiency of their automated

verification in parallel settings [139, 21]. In [18], we have further experimented with the

state/event LTL [36, 1], which reflects that although communication among components

proceeds via events, which represent message passing, service calls, delivery of return val-

ues, etc., components may at the same time preserve also persistent state information about

current values of their attributes. For instance in [21] we defined and analysed two ba-

sic properties describing the broadcasting ability of the event-channel components, three

properties concerning the possibility of a local deadlock, two properties addressing the com-

ponent blocking problem, and two properties dealing with the problems caused by cycles in

the model. Besides these we discuss how the verification helped us to check the validity of

the model during modelling.

Verification and model complexity. For the verification itself we have used the

automata-based model checking algorithms implemented in the model checking tool Di-

VinE [10, 45] and our custom model-checking tool CoIn Tool [19] designed specifically for

formal verification of interactions among components in hierarchical component-based sys-

tems. As distinct from existing verification frameworks, the CoIn Tool is able to analyse

complex hierarchical models on the fly, and to verify linear temporal properties involving

both state and action propositions. DiVinE, on the other hand, implements parallel model

checking algorithms, which are effective in case of tremendous model size given by con-

currency of components in the system. Furthermore, besides parallel verification, we have

experimented with other approaches to tackle the complexity of the verification tasks.

Partial order reduction. One of the crucial observations we made during the verification

is that the correctness attributes often highlight interaction among specific components,

which form only a small part of the system. Even if the rest of the system is also important as

it may coordinate these components, with appropriate reduction techniques a large portion

of its complexity can be abstracted away during verification. In [18, 20] we have developed

a partial order reduction method for state/event LTL, and for action-based LTL as its special

case. The core of the partial order reduction is a novel notion of stuttering equivalence, which

we call state/event stuttering equivalence. The positive attribute of the equivalence is that

it can be resolved with existing methods for partial order reduction.

21

Chapter 3. Architecture quality assessment

High number of component instances. Another reason for enormous model size is

the occurrence of large number of component instances of the same type in the software

architecture. To tackle this issue, we have developed a verification techniques for checking

LTL-like interaction properties on the specific type of systems with a certain component

occurring in many (possibly unknown number of) instances. The method is based on com-

puting a cut-off on the number of component instances under study, such that if the system

is proved to be correct for every number of instances up to the cut-off, it is guaranteed to

be correct for any larger number of component instances [129, 127].

Articles in collection

[129] P. Vařeková, B. Zimmerova, P. Moravec, and I. Černá. Formal Verification of Systems

with an Unlimited Number of Components. IET Software journal, 2(6):532–546, 2008.

ISSN 1751-8814

I participated in devising the approach and formulating the proofs, together with its evalu-

ation and considerable part of paper writing. Contribution 25%.

[18] N. Beneš, L. Brim, B. Buhnova, I. Černá, J. Sochor, and P. Vařeková. Partial order

reduction for State/Event LTL with application to Component-Interaction Automata.

Science of Computer Programming, 76(10):877–890, 2011. ISSN 0167-6423

I participated in devising the approach, its evaluation and paper writing. Contribution 20%.

[139] B. Zimmerova, P. Vařeková, N. Beneš, I. Černá, L. Brim, and J. Sochor. The Common

Component Modeling Example: Comparing Software Component Models, volume 5153

of LNCS, chapter Component-Interaction Automata Approach (CoIn), pages 146–176.

Springer, 2008

I devised the modelling process, designed the solutions to the modelling challenges and cre-

ated all the models. I contributed to the verification process and wrote most of the text.

Contribution 60%.

[21] N. Beneš, I. Černá, J. Sochor, P. Vařeková, and B. Zimmerova. A Case Study in

Parallel Verification of Component-Based Systems. In Proceedings of the Workshop

on Parallel and Distributed Methods in verifiCation (PDMC’08), ENTCS, pages 35–

51. Elsevier Science Publishers, March 2008

I was responsible for the modelling part of the case study and participated in the design of

the properties for verification. I wrote relevant parts of the paper. Contribution 25%.

22

Chapter 3. Architecture quality assessment

3.2 Reliability

The initial works on software reliability assessment [107, 90] were based on system tests and

reliability growth models, treating systems as black boxes. As opposed to them, architecture-

based reliability assessment approaches revealed the internal system architecture and intro-

duced new techniques that take advantage of it [61, 57, 73, 118, 116].

Thanks to the so called white-box view, the architecture-based reliability analysis can

be successfully employed not only for (early) reliability prediction, but more importantly

to identify critical software components, quantify their influence on the overall system reli-

ability, and optimise future testing activities [81]. Early quantification of expected system

reliability allows software engineers to assess the reliability impact of their design decisions

(e.g. the effect of different fault-tolerance mechanisms) and increases the maturity of the

software engineering process.

Therefore, although the actual quantification of expected software reliability is not very

novel, as it relies on existing algorithms for computing the probability of reaching a certain

set of states (the failure states, in fact) within a Markovian model (which is the prevalent

notation in this case, as discussed in Section 2.2), there is significant body of knowledge

in the state of the art in transforming various reliability-related research questions into the

Markovian settings [61, 57, 73, 118].

Moreover, the challenge in this case is to make the reliability assessment models as

accurate as possible, without making them too complex for the analysis. That is why many

approaches neglect the importance the execution environment or system usage, as discussed

in Section 2.2, or consider very coarse-grained system descriptions, assuming the reliability

of individual software components as given, and only considering the system level [37, 130],

which strongly impairs their accuracy.

Contributions

Our work on the architecture-based reliability assessment targeted mainly an efficient com-

putation of the failure-free system operation in the presence of many system details that are

included in the reliability models (as discussed in Section 2.2), and the identification of the

critical system elements with respect to reliability.

Execution environment and usage profile. Since our main aim was to explicitly con-

sider and integrate the execution environment and usage profile into an efficient software

reliability assessment, we developed a technique that offers usage-profile separation and

propagation through the concept of parameter dependencies [80] and accounts for hardware

unavailability through reliability evaluation of service execution under different hardware

availability states. The combined consideration of the software, hardware, and network di-

23

Chapter 3. Architecture quality assessment

mensions within our approach enables the reflection of their interplay in the context of the

overall architecture and system usage profile, which respects the following:

• Unavailable hardware resources and failing communication links only impact the sys-

tem’s reliability if they are actually required by the service execution.

• Software faults only lead to failures if the respective parts of the implementation are

actually executed under a given usage profile.

• The failure potential of all three dimensions depends on the control and data flow

through the architecture, which is captured by the component behaviour specifications

and the architectural model.

Reliability assessment. The reliability solver, which has been implemented as an Ec-

lipse plug-in integrated into the Palladio Component Model (PCM) Bench [2], takes a fully

specified model instance as an input and calculates system reliability as an output. Op-

tionally, a more detailed output differentiates the determined failure potential according to

user-defined failure types. Furthermore, stop conditions can be defined for fast evaluation

of systems with many hardware resources, at the cost of prediction accuracy. Such stop

conditions define a maximal number of evaluated physical system states, a maximal solving

time, or a minimal reached numerical accuracy.

Sensitivity analysis. We have studied techniques to determine the software components

that are strongly affecting system reliability, and examined the techniques to understand the

sensitivity of the system reliability to the reliability of such components. For this purpose,

we have also enriched our tool support with the sensitivity analyses over varying user-defined

parameters of the models [29, 28, 27].

User-defined reliability. As far as the reliability is understood solely as the probability

of avoiding failure states in the system model execution, the simple Markov-based compu-

tation techniques are sufficient. In [17], we elaborated how the situation changes if we want

to include different user-defined reliability attributes, such as that no critical and at most

one non-critical fault occurs during system execution. Our approach in [17] was based on

the probabilistic model checking of Markov decision processes (MDP), and the reliability

assessment criteria formalized in the probabilistic linear temporal logic (PLTL). To increase

the usability of the approach, we introduced the intermediate modelling notation of commu-

nicating automata with probabilistic transitions (CAWPTs) and discuss the incorporation

of various types of behavioural uncertainties into CAWPT models.

Reliability assessment for embedded systems. The reliability assessment problems

we have studied in case of embedded systems included the problem of balancing the reli-

24

Chapter 3. Architecture quality assessment

ability of various system services [97], which in the case of automotive application studied

in [97] included the Anti-lock Brake System (ABS), Adaptive Cruise Control (ACC) and the

Airbag service, or to balance the reliability (being increased by introduction of redundant

components) with the energy consumption of the system [96], its performance and cost [95],

which are all impaired along the reliability improvement.

Articles in collection

[29] F. Brosch, H. Koziolek, B. Buhnova, and R. Reussner. Architecture-based reliability

prediction with the palladio component model. IEEE Transactions on Software En-

gineering, 38(6):1319–1339, 2012. ISSN 0098-5589

I participated in devising the approach, its evaluation and paper writing. I was responsible

for the formal correctness of the whole approach. Contribution 30%.

[30] F. Brosch and B. Zimmerova. Design-time reliability prediction for software systems.

In Proc. International Workshop on Software Quality and Maintainability (SQM’09),

pages 1–5, 2009

The paper presents the first version of the approach, on which I participated with a fair share.

Contribution 50%.

[17] N. Benes, B. Buhnova, I. Cerna, and R. Oslejsek. Reliability analysis in component-

based development via probabilistic model checking. In Proceedings of the 15th ACM

SIGSOFT symposium on Component Based Software Engineering, pages 83–92. ACM,

2012

I was an author of the idea and participated strongly in all phases of the work, with an

emphasis on properties definition and uncertainty encoding into the model. Contribution

40%.

[97] I. Meedeniya, B. Buhnova, A. Aleti, and L. Grunske. Reliability-driven deployment

optimization for embedded systems. Journal of Systems and Software, 84(5):835–846,

2011. ISSN 0164-1212

I was mainly responsible for the problem statement and quality assessment model definition

and evaluation. I participated in paper writing. Contribution 35%.

[96] I. Meedeniya, B. Buhnova, A. Aleti, and L. Grunske. Architecture-driven reliability

and energy optimization for complex embedded systems. In Proceedings of the Sixth

International Conference on the Quality of Software Architectures, volume 6093 of

LNCS, pages 52–67. Springer, 2010

I contributed significantly to the problem statement, model formalization and design altern-

ative evaluation. I participated in paper writing. Contribution 30%.

25

Chapter 3. Architecture quality assessment

3.3 Performance

Since 2000, researchers have proposed many approaches for evaluating system performance

(i.e., response time, throughput, resource utilisation) of software systems with component-

based architectures [79, 9]. The central goal of these approaches is besides the performance

measurement of an existing system, the performance prediction for a system under design,

i.e. before its actual implementation. The benefits of the design-time performance predic-

tion include not only the prevention of costly software architecture re-design, but also the

possibility to examine system performance under various hardware configurations, which

can be simulated or described mathematically instead of being physically deployed.

In the recent surveys [79, 9], one can see that the overall trend of early performance

assessment is very similar for many approaches, which only differ in their modelling capabil-

ities and prediction effectiveness and efficiency. The systems under study are first modelled

with a UML-like notation that describes both the software and hardware architecture of

the system, labelled with performance-relevant characteristics. Such a model is then trans-

formed into a formal model, mostly a kind of queuing networks or Markov chains [9, 79],

which are then solved with standard methods. One of the most complete representatives of

early performance prediction approaches for component-based architectures is the Palladio

approach, based on the Palladio Component Model (PCM) [15], which we describe in more

detail.

The Palladio approach. The Palladio approach [15] to architecture-based design-time

performance prediction is tailored for a separation of four developer roles, who contribute to

building the performance models. Component developers model the performance properties

of component services with annotated control flow graphs, which include resource demands

and required service calls, being parameterized with input and output parameter values.

Resource demands can be specified using general distribution functions. Software architects

compose these component performance models into component assemblies. System deployers

model the deployment environment as well as the allocation of components to hardware

resources. Finally, domain experts model the usage profile (including workload, user flow,

and input parameters).

The PCM-Bench tool [2], implemented as a set of Eclipse plugins, allows graphical mod-

elling of various performance-relevant aspects of a software architecture in a UML-like nota-

tion. Model transformations are then employed to automatically enrich the models with

low-level performance-relevant middleware features (e.g., connector protocols, message chan-

nel properties), and the full model is then mapped into formal performance models based

on queuing networks, which are solved by simulation or numerical analysis. There is also

support to generate code stubs and performance prototypes from the models.

26

Chapter 3. Architecture quality assessment

Contributions

Besides my contributions to the Palladio Component Model (PCM) in terms of reliability

extensions, described in Section 3.2, I have participated also in its performance extensions

related to component internal state inclusion in the performance analysis [70, 77], and the

automated model completion with low-level performance characteristics [76], both discussed

already in Section 2.3.

Component internal state. Besides the modelling approach to include state informa-

tion into performance prediction models, discussed in Section 2.3, we have implemented an

extension to the Palladio approach, which allowed us to experimentally evaluate the increase

in performance prediction accuracy and model size costs associated with including state in-

formation in performance models [70, 77]. Based on these experiments, we have introduced

and evaluated a number of heuristics summarising the advices to software engineers, help-

ing them to competently decide on the appropriate abstraction of state modelling, because

the state information inclusion is only recommended if the increase in prediction accuracy

justifies the increase in model complexity.

Model completions. Besides the study of possible conflicts among the model comple-

tions (enriching performance models with low-level details) as discussed in Section 2.3, we

have in [76] also introduced a method of conflict localization and resolution. The approach

optimises the completion order, based on its validity and performance-relevant impact. The

introduced method addresses not only the automatic unambiguous transformation order

specification for individual model elements, but also the order of processing the elements.

This way, we provide a software architect with a performance semantics to decide on the

optimal execution order of given completions, with respect to their performance impact and

implied model validity. To verify the introduced method, we implemented the method upon

the Palladio Component Model (PCM) and its capabilities of performance prediction.

Articles in collection

[77] L. Kapova, B. Buhnova, A. Martens, J. Happe, and R. Reussner. State depend-

ence in performance evaluation of component-based software systems. In Proceedings

of the Joint WOSP/SIPEW International Conference on Performance Engineering

(ICPE’10), pages 37–48. ACM, 2010

I was an author of the main idea, I contributed significantly to the problem statement, state

of the art analysis and realized the modelling part of the approach. I wrote the text of most

of the paper. Contribution 30%.

[70] L. Happe, B. Buhnova, and R. Reussner. Stateful component-based performance mod-

els. Software and Systems Modeling, 13(4):1319–1343, 2014. ISSN 1619-1374

27

Chapter 3. Architecture quality assessment

I contributed to several parts of the paper, I was responsible for the state identification,

modelling and the definition of the heuristics. I wrote most of the text. Contribution 40%.

[76] L. Kapova and B. Buhnova. Performance-driven stepwise refinement of component-

based architectures. In Proceedings of the 2nd International Workshop on the Quality

of Service-Oriented Software Systems, pages 1–7. ACM, 2010

I participated in all phases of work on the paper, and was responsible mainly for the employed

techniques and the overall correctness. I participated in paper writing. Contribution 40%.

28

4.1 Design decision making 29

4.2 Architecture optimization 33

Chapter 4. Design process support

Chapter 4

Design process support

The design of a software system, which is in case of a component-based system essentially

based on the architecture design and its refinement, is considered to be one of the most

important activities in a software engineering project [13]. The decisions made during ar-

chitecture design have significant implications for economic and quality goals, which is why

software architects should be supported with adequate techniques and tools that help them

to make the right design decisions. Examples of architecture-level decisions include the

selection of software and hardware components, their replication, the mapping of software

components to available hardware nodes, and the overall system topology.

After the study of design-time quality assessment approaches in Chapters 2 and 3, which

summarized techniques for modelling and evaluation of individual design alternatives, this

section details the challenges and techniques of architecture-based design decision making

and automated architecture design optimization, which is the ultimate goal within this

research area.

4.1 Design decision making

To support fundamental architectural design decisions early in the development process,

model-based quality assessment techniques discussed earlier can be employed to both eval-

uate the quality of system design from the perspective of a specific quality attribute (such

as reliability or performance), and to identify the critical elements in the architecture that

strongly affect the quality attribute. Multiple surveys of these approaches exist, for in-

stance [61, 57, 73, 118] for reliability or [79, 9] for performance.

Then starting from an initial architecture model, the software architect can evaluate mul-

tiple options for architecture improvement, possibly from different perspectives, and choose

the most beneficial one. This process may be repeated to stepwise improve the architec-

29

Chapter 4. Design process support

ture until a sequence of changes converts into another architecture that satisfies existing

quality and cost goals. When considering architectural models discussed in Chapter 2, the

improvement can for instance be modelled with a topological change of the architecture, by

changing component deployment, by replacing or replicating a specific software or hardware

component, or by adjusting values used for model annotation (e.g. by decreasing a failure

rate of a certain action and agreeing that the action will be implemented in a way that

confirms to it).

Conflicting quality views. Along the decision process, it is critically important that the

software architect is supported with evaluation methods for multiple quality views that need

to be incorporated in the design, because if for instance the design was only evaluated from

the reliability perspective, the performance of the design could easily drop below acceptable

threshold, because of conflicts among these quality attributes (i.e. reliability-increasing

techniques usually decrease performance). That is why many techniques try to evaluate

multiple quality criteria at once, being then confronted with the issue of choosing the right

design from a set of hardly comparable alternatives (e.g. if one is better in performance, the

other in reliability, it is hard to say which one is more beneficial overall) [4].

Quality improvement tactics. To better guide the software architect along the design

process and prevent an evaluation of an enormous number of design alternatives, various

architectural tactics have been introduced [13, 78]. Generally, these tactics are designed

to improve a specific quality attribute, but often declare the additional cost in terms of

degrading the architecture with respect to other quality attributes. It is the task of the

software architect to evaluate various solutions and determine a good trade-off between all

existing quality and cost goals.

Model changes and parameterization. One of the essential prerequisites of an ap-

proach to be usable for the design decision support is an efficient support for model changes.

The notations need to be designed in a way that allows easy model configuration and para-

meterization that is then automatically propagated to the formal model behind it. That

is why it is very popular to model the system in a UML-like notation first and then run

an automated transformation into a formal model [79]. In practice, it for instance means

that various system information is propagated throughout the architecture model in terms

of parameters and in effect influences different formal-model annotations (such as transition

probabilities) that are in case of a parameter change generated automatically and do not

need to be adjusted manually.

Model uncertainties. One of the reasons why it is challenging to identify the right

design alternative early during system development is that at design time, uncertainties

about the exact functionality of the system as well as the expected system context and

30

Chapter 4. Design process support

usage significantly affect the accuracy of the quality assessment. The prevalent approach

to acknowledge uncertainties in quality assessment models is to replace point estimates of

uncertain model parameters with confidence intervals, to determine the risk associated with

the estimate [60, 56, 49]. Meedeniya et al. [98] additionally introduce a simulation-based

approach that accommodates diverse parameter-range distributions, and reports the desired

percentiles of the reliability values.

Contributions

Along the work I contributed to (whether in terms of functionality, reliability or perform-

ance), we always put high emphasis on the compositional structure of the models, with model

parameters encapsulating critical design changes. This allowed us to make our techniques

ready for the design process support, which we explicitly discussed in numerous research con-

tributions [29, 28, 27, 17, 139]. These works elaborate on the evaluation of various quality

perspectives, whether in terms of quality attributes, such as functional correctness [139, 21],

reliability [29, 97], performance [70, 76], or energy consumption [96], but also on varying

aspects of the quality attributes, such as in [17] where we studied different custom-defined

reliability properties of the system. Besides the assessment of system quality, we also focused

on the identification of the critical architectural elements with high impact on system qual-

ity, so that they can be given special attention during system development [29], or evaluated

the effect of quality improvement constructs [27]. Furthermore, the Palladio Component

Model (PCM) [15], which we used as the basis for much of our work, allowed us to support

distributed design process with multiple developer roles who can independently specify their

respective parts of the architecture and contribute with different views to autonomous model

parts, which can then be integrated automatically for the purpose of quality assessment [29].

Model changes and parameterization. Within much of our work, mainly related to

reliability and performance [29, 28, 27, 70, 77], we relied on a highly parameterized UML-

like model based on the PCM, which facilitated transparent evaluation of architectural

design options, as it covers the propagation of the system usage profile throughout the

architecture, and the impact of the execution environment, which are neglected in most of the

existing approaches. Before analysis, the model is automatically transformed into a formal

model in order to support effective analytical techniques to be employed. The extensive

parameterization of our model allowed for sensitivity analysis in a straightforward way, which

for instance helped us to examined the sensitivity of system reliability to individual failure

probabilities, variations in the system-level usage profile, and changing hardware availability

due to wear out effects [29]. This capability not only enabled us to identify quality-critical

model parameters, but also allowed us to detect the parameters, whose uncertainty needs to

be reduced by further investigation to prevent the distortion of quality assessment results [28,

29].

31

Chapter 4. Design process support

Model accuracy. There are many different types of parameters commonly present in

quality assessment models. In [32] we have surveyed possible parameter types in architecture-

based reliability assessment models and methods of their estimation, together with the

artefacts that can be used for this purpose (e.g. previous system versions, similar systems,

design-time artefacts). Moreover, to make the models more precise, we in [76] studied so

called model completions, which are meant for automated enrichment of quality prediction

models with low-level details, which would be too laborious to add manually.

Model uncertainties. Besides the employment of sensitivity analysis to evaluate the

role of uncertainty in architectural design decisions [29], we have in [17] investigated the

employment of Markov decision processes (MDP) as the formalism well suited for the in-

corporation of model uncertainties in terms of nondeterministic (scheduler-decided) choices

in the MDP to model the uncertainty in component behaviour on various levels (choices in

possible behaviour and structural generalization of uncertain behavioural patterns).

Articles in collection

[28] F. Brosch, H. Koziolek, B. Buhnova, and R. Reussner. Parameterized reliability predic-

tion for component-based software architectures. In Proc. 6th Int. Conf. on the Quality

of Software Architectures (QoSA’10), volume 6093 of LNCS, pages 36–51. Springer,

2010

My contribution was mainly in the inclusion of failure parameters in the model and its trans-

formation into the formal model, together with its evaluation. Besides that I participated in

the whole approach, as well as in paper writing. Contribution 30%.

[29] F. Brosch, H. Koziolek, B. Buhnova, and R. Reussner. Architecture-based reliability

prediction with the palladio component model. IEEE Transactions on Software En-

gineering, 38(6):1319–1339, 2012. ISSN 0098-5589

I participated in devising the approach, its evaluation and paper writing. I was responsible

for the formal correctness of the whole approach. Contribution 30%.

[27] F. Brosch, B. Buhnova, H. Koziolek, and R. Reussner. Reliability prediction for fault-

tolerant software architectures. In Proceedings of the joint ACM SIGSOFT conference

QoSA and ACM SIGSOFT symposium ISARCS on Quality of software architectures

(QoSA) and architecting critical systems (ISARCS), pages 75–84. ACM, 2011

I participated in devising the approach and defining the fault tolerance mechanisms included

in the model, for which I then designed the trafsformation into the formal model and its

evaluation. I participated in paper writing. Contribution 30%.

[17] N. Benes, B. Buhnova, I. Cerna, and R. Oslejsek. Reliability analysis in component-

based development via probabilistic model checking. In Proceedings of the 15th ACM

32

Chapter 4. Design process support

SIGSOFT symposium on Component Based Software Engineering, pages 83–92. ACM,

2012

I was an author of the idea and participated strongly in all phases of the work, with an

emphasis on properties definition and uncertainty encoding into the model. Contribution

40%.

[32] B. Buhnova, S. Chren, and L. Fabrikova. Failure data collection for reliability predic-

tion models: A survey. In Proceedings of the 10th International ACM Sigsoft Confer-

ence on the Quality of Software Architectures, pages 83–92. ACM, 2014

I participated in all phases of work on the paper, including paper writing. Contribution 35%.

4.2 Architecture optimization

Due to increasing system complexity, software architects are often facing an overwhelming

number of design alternatives when searching for an optimal architecture design with re-

spect to defined quality attributes and constraints. This results in a selection problem that

may be beyond human capabilities and makes the architectural design very challenging [68].

The need for automated exploration of the design alternative space has already been recog-

nized in existing literature [112] and numerous architecture optimization approaches have

been developed for this purpose. This section summarizes our findings on the architecture

optimization state of the art, which resulted from the systematic literature review on ar-

chitecture optimization that we performed on 188 different approaches [4], and outlines our

contributions within this context.

Design changes. To handle the complexity of the task, the optimization approaches

restrict the variability of architectural decisions, optimizing the architecture by modifying

one of its specific aspects, where the allocation, hardware replication, and hardware selection

are the most intensively studied design changes [4]. However as the popularity of these

design changes depends strongly on the purpose (what quality attribute is being optimized),

research approaches to their optimization are scattered across many research communities,

with similar approaches being proposed by multiple research teams without being aware of

each other [4].

Quality attributes. It became evident during the study [4] that some quality attributes

are addressed more frequently than others. Examples of frequently addresses quality at-

tributes are performance, cost, and reliability. Other quality attributes that are harder to

quantify, such as security, are not considered very often. Since quality attributes are often

in conflict with each other, many approaches consider multiple quality attributes during

the optimization. Among the quality attributes studied together, the combinations reliab-

ility/performance, reliability/cost, availability/cost, and cost/energy consumption seem to

33

Chapter 4. Design process support

receive the greatest attention. The majority of architecture level optimization approaches

have been applied in the embedded systems domain, while a comparatively low number of

approaches have been applied to enterprise information systems.

Constraints. A major influencer on the architecture of software systems are constraints

that need to be satisfied in order for the system to be accepted (such as the cost or per-

formance limits). However, our study [4] revealed that a high number of papers solve the

architecture optimization problem without considering any constraints. It is important to

note that constraint satisfaction is a crucial aspect of optimization, especially in the design

of embedded system. However, it is true that constraints add more complexity to the prob-

lem, which may be the reason for ignoring them, even if their later reflection can be very

laborious.

Optimization strategy. Both approximate and exact approaches are being employed for

the architecture optimization problem. When the search time and resources used to perform

the optimization process are limited, then approximate algorithms are the right optimization

approach, although they reveal only near-optimal solutions. On the other hand, if the goal

is to find the optimal solutions and the resources and time are unlimited, then one may

choose exact optimization algorithms. Due to the complexity of the problem in realistic

settings, the vast majority of approaches use approximate methods (mostly metaheuristics)

as an optimization technique [4].

Contributions

Besides the architecture-optimization survey [4], which provided a consolidated view on

existing research efforts in the area of architecture optimization and helped researchers

to identify future research directions, we have focused on numerous specific architecture

optimization problems [97, 95, 96], some of which are described here.

In all the three works [97, 95, 96], we have applied architecture optimization within the

domain of embedded systems, which have certain specifics. Namely, they consist of a high

number of lightweight components, representing the logical blocks of system functionality

(typically in a low-level programming language), deployed on compact self-contained compu-

tational units, known as Electronic Control Units (ECUs). For the architecture optimization

approaches defined for the enterprise information systems upon the Palladio Component

Model (PCM) see [92, 93].

Reliability optimization via deployment changes. In [97] we addressed the prob-

lem of reliability-driven component deployment for embedded systems, and the automotive

domain in particular. In the paper, we have defined a modelling framework to express the im-

portant attributes of embedded systems with respect to reliability, and designed a method

34

Chapter 4. Design process support

to find the set of near-optimal deployments, optimizing the conflicting objectives of sys-

tem services (like the ABS, the ACC, or the Airbag service in an automotive case study).

First, we have formalized the propagation of hardware level and software level properties

to the reliability evaluation model. To solve the optimization problem, we employ one of

the most popular algorithms for addressing the deployment problem, Genetic Algorithm

(GA) [94, 51, 66].

Performance/reliability/cost optimization via redundancy allocation changes.

Redundancy allocation, which is in fact the employment of redundant components in the

system, is a widely used method for the reliability improvement in complex embedded sys-

tems. The allocation of redundant components can however affect other non-functional

quality attributes of the system, which are as important as reliability and very often con-

flicting with each other. In [95] we have developed a multi-objective optimization method

based on the Ant Colony Optimisation algorithm, to identify the right design options bal-

ancing reliability together with system cost and response time.

Reliability/energy consumption optimization via redundancy allocation changes.

In [96] we have studied the effects of redundancy allocation in the context of trade-off between

reliability and energy consumption in embedded systems, which are both affected signific-

antly by the allocation of redundant components in the system. To achieve this aim, we

first identified the main reliability- and energy-relevant attributes of distributed embedded

systems with respect to the redundancy allocation problem. Then we formalized the system

model in terms of an annotated Markov Reward Model, formulated the optimization prob-

lem, and designed an algorithm to resolve it. Specifically, we employed the Non-dominated

Sorting Genetic Algorithm (NSGA) [124], which has shown to be robust and have good

performance in the settings related to ours.

ArcheOpterix framework. The tool support for all the three discussed approaches [97,

95, 96] has been implemented as a part of the ArcheOpterix framework [3], developed with

Java and Eclipse. The ArcheOpterix tool provides a generic platform that can be used

to specify, evaluate and optimize embedded system architectures. ArcheOpterix provides

a set of features to specify the embedded-system model, to check for constraint satisfaction,

evaluate the model, and find the set of near-optimal deployments using various approximate

optimization algorithms.

Articles in collection

[4] A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, and I. Meedeniya. Software architecture

optimization methods: A systematic literature review. IEEE Transactions on Software

Engineering, 5(39):658–683, 2013. ISSN 0098-5589

I participated in all phases of work on the paper, including paper writing. Contribution 20%.

35

Chapter 4. Design process support

[95] I. Meedeniya, A. Aleti, and B. Buhnova. Redundancy allocation in automotive systems

using multi-objective optimisation. In Symposium on Automotive/Avionics Systems

Engineering (SAASE’09), pages 1–16, 2009

I participated in devising the approach, its models and its formulation in terms of an optim-

ization problem. I participated in paper writing. Contribution 30%.

[97] I. Meedeniya, B. Buhnova, A. Aleti, and L. Grunske. Reliability-driven deployment

optimization for embedded systems. Journal of Systems and Software, 84(5):835–846,

2011. ISSN 0164-1212

I was mainly responsible for the problem statement and quality assessment model definition

and evaluation. I participated in paper writing. Contribution 35%.

[96] I. Meedeniya, B. Buhnova, A. Aleti, and L. Grunske. Architecture-driven reliability

and energy optimization for complex embedded systems. In Proceedings of the Sixth

International Conference on the Quality of Software Architectures, volume 6093 of

LNCS, pages 52–67. Springer, 2010

I contributed significantly to the problem statement, model formalization and design altern-

ative evaluation. I participated in paper writing. Contribution 30%.

36

Chapter 5. Conclusion

Chapter 5

Conclusion

In this text, I have presented my research contributions to the progress within the area

of quality-driven architecture design of software systems, and put these in the context of

the state of the art in the area. In this commentary, the individual research contributions

were presented as pieces of one puzzle, which spans across numerous steps leading to the

architecture-design support driven by various quality perspectives, which are the functional

correctness, reliability and performance in case of my work. The individual research con-

tributions were accompanied with selected representative articles I have co-authored, which

are also attached to this text1.

1The fulltexts of the articles are excluded from the public version of this text to avoid copyright violation.

37

Chapter 5. Conclusion

38

BIBLIOGRAPHY

Bibliography

[1] Concurrent software verification with states, events, and deadlocks. Formal Aspects

of Computing, 17(4):461–483, 2005.

[2] PCM: Palladio Component Model. URL http://www.palladio-approach.net, May

2011. Last retrieved 2016-01-01.

[3] A. Aleti, S. Björnander, L. Grunske, and I. Meedeniya. ArcheOpterix: An extendable

tool for architecture optimization of AADL models. In Model-based Methodologies for

Pervasive and Embedded Software (MOMPES), pages 61–71. ACM and IEEE Digital

Libraries, 2009.

[4] A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, and I. Meedeniya. Software archi-

tecture optimization methods: A systematic literature review. IEEE Transactions on

Software Engineering, 5(39):658–683, 2013. ISSN 0098-5589.

[5] R. J. Allen. A Formal Approach to Software Architecture. PhD thesis, Carnegie Mellon

University, School of Computer Science, USA, May 1997.

[6] R. J. Allen and D. Garlan. The Wright Architectural Specification Language. Technical

Report CMU-CS-96-TBD, Carnegie Mellon University, School of Computer Science,

USA, September 1996.

[7] C. Atkinson, C. Bunse, H. G. Gross, and C. Peper, editors. Component-Based Soft-

ware Development for Embedded Systems – An Overview of current Research Trends.

Springer-Verlag, 2005. ISBN 3-540-30644-7.

[8] J. C. M. Baeten and W. P. Weijland. Process Algebra. Cambridge University Press,

UK, 1995. ISBN 0-521-40043-0.

[9] S. Balsamo, A. D. Marco, P. Inverardi, and M. Simeoni. Model-Based Performance

Prediction in Software Development: A Survey. IEEE Transactions on Software En-

gineering, 30(5):295–310, 2004.

[10] J. Barnat, L. Brim, I. Černá, P. Moravec, P. Ročkai, and P. Šimecek. DiVinE –

A Tool for Distributed Verification. In Proceedings of the Computer Aided Verification

conference (CAV’06), pages 278–281. LNCS Berlin, Germany, August 2006.

39

BIBLIOGRAPHY

[11] H. Barringer, R. Kuiper, and A. Pnueli. Now you may compose temporal logic spe-

cifications. In Proc. of the 16th ACM Symposium on Theory of Computing, pages

51–63. ACM, 1984.

[12] T. Barros. Formal Specification and Verification of Distributed Component Systems.

PhD thesis, Université de Nice – Sophia Antipolis, France, November 2005.

[13] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. Addison-

Wesley, second edition, 2003.

[14] S. Becker, L. Grunske, R. Mirandola, and S. Overhage. Performance prediction of

component-based systems. In Architecting Systems with Trustworthy Components,

volume 3938 of LNCS, pages 169–192. Springer, 2006.

[15] S. Becker, H. Koziolek, and R. Reussner. The Palladio Component Model for Model-

Driven Performance Prediction. Journal of Systems and Software, 82(1):3–22, January

2009.

[16] M. Beek, C. Ellis, J. Kleijn, and G. Rozenberg. Synchronizations in Team Automata

for Groupware Systems. Computer Supported Cooperative Work — The Journal of

Collaborative Computing, 12(1):21–69, February 2003.

[17] N. Benes, B. Buhnova, I. Cerna, and R. Oslejsek. Reliability analysis in component-

based development via probabilistic model checking. In Proceedings of the 15th ACM

SIGSOFT symposium on Component Based Software Engineering, pages 83–92. ACM,

2012.

[18] N. Beneš, L. Brim, B. Buhnova, I. Černá, J. Sochor, and P. Vařeková. Partial order

reduction for State/Event LTL with application to Component-Interaction Automata.

Science of Computer Programming, 76(10):877–890, 2011. ISSN 0167-6423.

[19] N. Beneš, L. Brim, I. Černá, J. Sochor, P. Vařeková, and B. Zimmerova. The CoIn

Tool: Modelling and Verification of Interactions in Component-Based Systems. In Pre-

proceedings of the International Workshop on Formal Aspects of Component Software

(FACS’08), pages 221–225. Department of Computer Science, University of Malaga,

2008.

[20] N. Beneš, L. Brim, I. Černá, J. Sochor, P. Vařeková, and B. Zimmerova. Partial

order reduction for state/event ltl. In Proceedings of the International Conference on

Integrated Formal Methods (IFM’09), volume 5423 of LNCS, pages 307–321. Springer,

2009.

[21] N. Beneš, I. Černá, J. Sochor, P. Vařeková, and B. Zimmerova. A Case Study in

Parallel Verification of Component-Based Systems. In Proceedings of the Workshop

on Parallel and Distributed Methods in verifiCation (PDMC’08), ENTCS, pages 35–

51. Elsevier Science Publishers, March 2008.

40

BIBLIOGRAPHY

[22] L. Benini, A. Bogliolo, and G. D. Micheli. A survey of design techniques for system-

level dynamic power management. IEEE Transactions on Very Large Scale Integration

Systems, 8(3):299–316, 2000.

[23] J. A. Bergstra, A. Ponse, and S. A. Smolka, editors. Handbook of Process Algebra.

Elsevier Science Publishers, 2001. ISBN 0-444-82830-3.

[24] S. Bernardi, J. Merseguer, and D. C. Petriu. A dependability profile within MARTE.

Software & Systems Modeling, 10(3):313–336, 2011.

[25] C. Blundell, D. Giannakopoulou, and C. S. Pasareanu. Assume-Guarantee Testing. In

Proceedings of the conference on Specification and Verification of Component-Based

Systems (SAVCBS’05), pages 7–14. ACM Press, September 2005.

[26] L. Brim, I. Černá, P. Vařeková, and B. Zimmerova. Component-Interaction Automata

as a Verification-Oriented Component-Based System Specification. ACM SIGSOFT

Software Engineering Notes, 31(2):1–8, March 2006. SESSION: Specification and Veri-

fication of Component-Based Systems (SAVCBS 2005), Article No. 4.

[27] F. Brosch, B. Buhnova, H. Koziolek, and R. Reussner. Reliability prediction for fault-

tolerant software architectures. In Proceedings of the joint ACM SIGSOFT conference

QoSA and ACM SIGSOFT symposium ISARCS on Quality of software architectures

(QoSA) and architecting critical systems (ISARCS), pages 75–84. ACM, 2011.

[28] F. Brosch, H. Koziolek, B. Buhnova, and R. Reussner. Parameterized reliability pre-

diction for component-based software architectures. In Proc. 6th Int. Conf. on the

Quality of Software Architectures (QoSA’10), volume 6093 of LNCS, pages 36–51.

Springer, 2010.

[29] F. Brosch, H. Koziolek, B. Buhnova, and R. Reussner. Architecture-based reliabil-

ity prediction with the palladio component model. IEEE Transactions on Software

Engineering, 38(6):1319–1339, 2012. ISSN 0098-5589.

[30] F. Brosch and B. Zimmerova. Design-time reliability prediction for software systems.

In Proc. International Workshop on Software Quality and Maintainability (SQM’09),

pages 1–5, 2009.

[31] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani. The Fractal

Component Model and its Support in Java. Software: Practice and Experience, 36(11-

12):1257–1284, August 2006.

[32] B. Buhnova, S. Chren, and L. Fabrikova. Failure data collection for reliability predic-

tion models: A survey. In Proceedings of the 10th International ACM Sigsoft Confer-

ence on the Quality of Software Architectures, pages 83–92. ACM, 2014.

41

BIBLIOGRAPHY

[33] M. Caporuscio, P. Inverardi, and P. Pelliccione. Compositional Verification of

Middleware-Based Software Architecture Descriptions. In Proceedings of the Interna-

tional Conference on Software Engineering (ICSE’04), pages 221–230. IEEE Computer

Society, May 2004.

[34] I. Černá, P. Vařeková, and B. Zimmerova. Component-Interaction Automata Model-

ling Language. Technical Report FIMU-RS-2006-08, Masaryk University, Faculty of

Informatics, Brno, Czech Republic, October 2006.

[35] I. Černá, P. Vařeková, and B. Zimmerova. Component Substitutability via Equivalen-

cies of Component-Interaction Automata. Electronic Notes in Theoretical Computer

Science, 182:39–55, June 2007. ISSN 1571-0661.

[36] S. Chaki, E. M. Clarke, J. Ouaknine, N. Sharygina, and N. Sinha. State/event-based

software model checking. In Proceedings of Integrated Formal Methods’04, volume 2999

of LNCS, pages 128–147. Springer Berlin Heidelberg, 2004.

[37] R. C. Cheung. A user-oriented software reliability model. IEEE Transactions on

Software Engineering, 6(2):118–125, 1980.

[38] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press, USA,

January 2000. ISBN 0-262-03270-8.

[39] J. M. Cobleigh, D. Giannakopoulou, and C. S. Pasareanu. Learning Assumptions for

Compositional Verification. In Proceedings of the International Conference on Tools

and Algorithms for the Construction and Analysis of Systems (TACAS’03), volume

2619 of LNCS, pages 331–346. Springer-Verlag, January 2003.

[40] V. Cortellessa, H. Singh, and B. Cukic. Early reliability assessment of UML based soft-

ware models. In Proc. 3rd Int. Workshop on Software and Performance (WOSP’02),

pages 302–309, New York, NY, USA, 2002. ACM.

[41] O. Das and C. M. Woodside. Dependability modeling of self-healing client-server

applications. In Proc. Workshop on Software Architectures for Dependable Systems

(WADS’03), volume 3069 of LNCS, pages 266–285. Springer, 2003.

[42] L. de Alfaro and T. A. Henzinger. Interface Automata. In Proceedings of the 9th Annual

Symposium on Foundations of Software Engineering (FSE’01), pages 109–120. ACM

Press, September 2001.

[43] L. de Alfaro and T. A. Henzinger. Interface-based Design. In Proceedings of the 2004

Marktoberdorf Summer School, pages 1–25. Kluwer, The Netherlands, 2005.

[44] S. Distefano and A. Puliafito. Dependability evaluation with dynamic reliability block

diagrams and dynamic fault trees. IEEE Trans. on Dependable and Secure Computing,

6(1):4–17, 2009.

42

BIBLIOGRAPHY

[45] DiVinE – Distributed Verification Environment. Last retrieved 2016-01-01.

[46] H. El-Sayed, D. Cameron, and C. M. Woodside. Automation support for software

performance engineering. In SIGMETRICS/Performance, pages 301–311. ACM, 2001.

[47] C. Ellis. Team Automata for Groupware Systems. In Proceedings of the International

ACM SIGGROUP Conference on Supporting Group Work: The Integration Challenge

(GROUP’97), pages 415–424. ACM Press, November 1997.

[48] R. Ernst, J. Henkel, and T. Benner. Hardware-software cosynthesis for microcontrol-

lers. IEEE Design & Test, 10:64–75, October 1993.

[49] L. Fiondella and S. Gokhale. Importance measures for modular software with uncertain

parameters. Software Testing, Verification and Reliability, 20(1):63–85, March 2010.

[50] W. Fokkink. Introduction to Process Algebra. Springer-Verlag, 2000. ISBN 3-540-

66579-X.

[51] J. Fredriksson, K. Sandström, and M. Åkerholm. Optimizing resource usage in

component-based real-time systems. In Component-Based Software Engineering, 8th

International Symposium (CBSE), volume 3489 of Lecture Notes in Computer Science,

pages 49–65. Springer, 2005.

[52] D. Garlan, R. T. Monroe, and D. Wile. Foundations of Component-Based Systems,

chapter Acme: Architectural Description of Component-Based Systems. Cambridge

University Press, USA, 2000. ISBN 0-521-77164-1.

[53] D. Gesvindr and B. Buhnova. Performance challenges, current bad practices and

hints in PaaS cloud application design. ACM SIGMETRICS Performance Evaluation

Review, pages 1–10, to appear in 2016. ISSN 0163-5999.

[54] D. Giannakopoulou, C. S. Pasareanu, and J. M. Cobleigh. Assume-Guarantee Verific-

ation of Source Code with Design-Level Assumptions. In Proceedings of the Interna-

tional Conference on Software Engineering (ICSE’04), pages 211–220. IEEE Computer

Society, May 2004.

[55] P. Godefroid. Using partial orders to improve automatic verification methods. In

Proceedings of CAV’90, volume 531 of LNCS, pages 176–185. Springer, 1991.

[56] S. S. Gokhale. Quantifying the variance in application reliability. In Proc. 10th IEEE

Int. Symp. on Dependable Computing (PRDC’04), pages 113–121. IEEE Computer

Society, 2004.

[57] S. S. Gokhale. Architecture-based software reliability analysis: Overview and limita-

tions. IEEE Trans. on Dependable and Secure Computing, 4(1):32–40, January-March

2007.

43

BIBLIOGRAPHY

[58] S. S. Gokhale and K. S. Trivedi. Reliability prediction and sensitivity analysis based

on software architecture. In Proc. 13th Int. Symp. on Software Reliability Engineering

(ISSRE’02), pages 64–78. IEEE Computer Society, 2002.

[59] K. Goseva-Popstojanova, A. Hassan, A. Guedem, W. Abdelmoez, D. E. M. Nassar,

H. Ammar, and A. Mili. Architectural-level risk analysis using uml. IEEE Transactions

on Software Engineering, 29(10):946–960, October 2003.

[60] K. Goseva-Popstojanova and S. Kamavaram. Assessing uncertainty in reliability of

component-based software systems. In Proc. 14th Int. Symp. on Software Reliability

Engineering, pages 307–320. IEEE Computer Society, 2003.

[61] K. Goseva-Popstojanova and K. S. Trivedi. Architecture-based approach to reliability

assessment of software systems. Performance Evaluation, 45(2-3):179–204, May 2001.

[62] K. Goseva-Popstojanova and K. S. Trivedi. Architecture-based approaches to software

reliability prediction. Computers & Mathematics with Applications, 46(7):1023–1036,

October 2003.

[63] K. K. Goswami and R. K. Iyer. Simulation of software behavior under hardware faults.

In Proc. 23rd Int. Symp. on Fault-Tolerant Computing, pages 218–227, 1993.

[64] K. Goševa-Popstojanova and K. S. Trivedi. Architecture-based approach to reliability

assessment of software systems. Performance Evaluation, 45(2-3):179–204, 2001.

[65] M. Grottke and K. S. Trivedi. Software faults, software aging and software rejuven-

ation. Journal of the Reliability Engineering Association of Japan, 27(7):425–438,

2005.

[66] L. Grunske. Identifying ”good” architectural design alternatives with multi-objective

optimization strategies. In International Conference on Software Engineering, ICSE,

pages 849–852. ACM, 2006.

[67] L. Grunske and J. Han. A comparative study into architecture-based safety evaluation

methodologies using AADL’s error annex and failure propagation models. In IEEE

High Assurance Systems Engineering Symposium, (HASE’08), pages 283–292. IEEE

Computer Society, 2008.

[68] L. Grunske, P. A. Lindsay, E. Bondarev, Y. Papadopoulos, and D. Parker. An outline

of an architecture-based method for optimizing dependability attributes of software-

intensive systems. In WADS, volume 4615 of Lecture Notes in Computer Science,

pages 188–209. Springer, 2006.

[69] R. K. Gupta. Co-Synthesis of Hardware and Software for Digital Embedded Systems.

Kluwer Acad. Publishers, Norwell, USA, 1995.

[70] L. Happe, B. Buhnova, and R. Reussner. Stateful component-based performance

models. Software and Systems Modeling, 13(4):1319–1343, 2014. ISSN 1619-1374.

44

BIBLIOGRAPHY

[71] G. T. Heineman and W. T. Councill. Component Based Software Engineering – Putting

the Pieces Together. Addison-Wesley, USA, May 2001. ISBN 0-201-70485-4.

[72] C. Hoare. Communicating Sequential Processes. Prentice Hall, 1985. ISBN 0-13-

153271-5 hardback, ISBN 0-13-153289-8 paperback.

[73] A. Immonen and E. Niemelä. Survey of reliability and availability prediction methods

from the viewpoint of software architecture. Journal on Softw. Syst. Model., 7(1):49–

65, February 2008.

[74] International Standard Organization. ISO/IEC Standard for Systems and Soft-

ware Engineering - Recommended Practice for Architectural Description of Software-

Intensive Systems. ISO/IEC 42010 IEEE Std 1471-2000 First edition 2007-07-15,

pages c1 –24, 6 2007.

[75] Y. Jia, Z. Li, and Z. Zhang. Timed component-interaction automata for specification

and verification of real-time reactive systems. In Proceedings of the International

Conference on Computer Science and Software Engineering, pages 135–138. IEEE,

2008.

[76] L. Kapova and B. Buhnova. Performance-driven stepwise refinement of component-

based architectures. In Proceedings of the 2nd International Workshop on the Quality

of Service-Oriented Software Systems, pages 1–7. ACM, 2010.

[77] L. Kapova, B. Buhnova, A. Martens, J. Happe, and R. Reussner. State depend-

ence in performance evaluation of component-based software systems. In Proceedings

of the Joint WOSP/SIPEW International Conference on Performance Engineering

(ICPE’10), pages 37–48. ACM, 2010.

[78] S. Kim, D.-K. Kim, L. Lu, and S. Park. Quality-driven architecture development using

architectural tactics. Journal of Systems and Software, 82(8):1211–1231, August 2009.

[79] H. Koziolek. Performance evaluation for component-based software systems: A survey.

Performance Evaluation, 67(8):634–658, 2010.

[80] H. Koziolek and F. Brosch. Parameter dependencies for component reliability spe-

cifications. In Proc. 6th Int. Workshop on Formal Engineering Approaches to Soft-

ware Components and Architecture (FESCA’09), volume 253 of ENTCS, pages 23–38.

Elsevier, 2009.

[81] H. Koziolek, B. Schlich, and C. Bilich. A Large-Scale Industrial Case Study on

Architecture-based Software Reliability Analysis. In Proc. 21st IEEE Int. Symp. on

Software Reliability Engineering (ISSRE’10), pages 279–288. IEEE Computer Society,

2010.

[82] P. Kubat. Assessing reliability of modular software. Operations Research Letters,

8(1):35–41, 1989.

45

BIBLIOGRAPHY

[83] L. Lamport. Specifying concurrent program modules. ACM Transactions on Program-

ming Languages and Systems (TOPLAS), 5(2):190–222, 1983.

[84] G. T. Leavens and M. Sitaraman, editors. Foundations of Component-Based Systems.

Cambridge University Press, UK, 2000. ISBN 0-521-77164-1.

[85] H. Li, G. Casale, and T. N. Ellahi. SLA-driven planning and optimization of enterprise

applications. In Proceedings of the first joint WOSP/SIPEW International Conference

on Performance Engineering, 2010, pages 117–128, 2010.

[86] M. Lumpe. Action prefixes: reified synchronization paths in minimal component

interaction automata. In Proceedings of the 6th International Workshop on Formal

Aspects of Component Software (FACS 2009), volume 263 of ENTCS, pages 179–195.

Elsevier, 2010.

[87] M. Lumpe. Partition refinement of Component Interaction Automata. Science of

Computer Programming, 78(1):27–45, 2012.

[88] N. A. Lynch and M. R. Tuttle. Hierarchical Correctness Proofs for Distributed Al-

gorithms. In Proceedings of the 6th Annual ACM Symposium on Principles of Distrib-

uted Computing (PODC’87), pages 137–151. ACM Press, August 1987.

[89] N. A. Lynch and M. R. Tuttle. An Introduction to Input/Output Automata. CWI

Quarterly, 2(3):219–246, September 1989.

[90] M. Lyu, editor. Handbook of Software Reliability Engineering. McGraw-Hill, Inc.,

1996.

[91] J. Magee, J. Kramer, and D. Giannakopoulou. Behaviour Analysis of Software Archi-

tectures. In Proceedings of the 1st Working IFIP Conference on Software Architecture

(WICSA’99), pages 35–50. Kluwer, The Netherlands, February 1999.

[92] A. Martens, F. Brosch, and R. Reussner. Optimising multiple quality criteria of service-

oriented software architectures. In Proc. 1st Int. workshop on Quality of service-

oriented software systems (QUASOSS’09), pages 25–32. ACM, 2009.

[93] A. Martens, H. Koziolek, S. Becker, and R. Reussner. Automatically improve soft-

ware architecture models for performance, reliability, and cost using evolutionary al-

gorithms. In Proc. 1st Joint WOSP/SIPEW Int. Conf. on Performance Engineering

(ICPE’10), pages 105–116. ACM, 2010.

[94] N. Medvidovic and S. Malek. Software deployment architecture and quality-of-service

in pervasive environments. In Workshop on the Engineering of Software Services for

Pervasive Environements, ESSPE, pages 47–51. ACM, 2007.

[95] I. Meedeniya, A. Aleti, and B. Buhnova. Redundancy allocation in automotive systems

using multi-objective optimisation. In Symposium on Automotive/Avionics Systems

Engineering (SAASE’09), pages 1–16, 2009.

46

BIBLIOGRAPHY

[96] I. Meedeniya, B. Buhnova, A. Aleti, and L. Grunske. Architecture-driven reliability

and energy optimization for complex embedded systems. In Proceedings of the Sixth

International Conference on the Quality of Software Architectures, volume 6093 of

LNCS, pages 52–67. Springer, 2010.

[97] I. Meedeniya, B. Buhnova, A. Aleti, and L. Grunske. Reliability-driven deployment

optimization for embedded systems. Journal of Systems and Software, 84(5):835–846,

2011. ISSN 0164-1212.

[98] I. Meedeniya, I. Moser, A. Aleti, and L. Grunske. Architecture-based reliability eval-

uation under uncertainty. In Proc. of joint ACM SIGSOFT conference–QoSA and

ACM SIGSOFT symposium–ISARCS on Quality of software architectures–QoSA and

architecting critical systems–ISARCS, pages 85–94. ACM, 2011.

[99] D. A. Menascé and V. Dubey. Utility-based qos brokering in service oriented archi-

tectures. In Proceedings of the International Conference on Web Services ICWS ’07,

pages 422–430, 2007.

[100] B. Meyer. The Grand Challenge of Trusted Components. In Proceedings of the 25th

International Conference on Software Engineering (ICSE’03), pages 660–667. IEEE

Computer Society, May 2003.

[101] B. Meyer, C. Mingins, and H. Schmidt. Providing Trusted Components to the In-

dustry. Computer, 31(5):104–105, May 1998.

[102] Microsoft Corporation. COM: Component Object Model Technologies. URL ht-

tps://www.microsoft.com/com/. Last retrieved 2016-01-01.

[103] R. Milner. A Calculus of Communicating Systems. Springer-Verlag, 1980. ISBN

3-540-10235-3.

[104] R. Milner. Communication and Concurrency. Prentice Hall, 1989. ISBN 0-13-115007-

3.

[105] R. Milner. Communicating and Mobile Systems: the π-calculus. Cambridge University

Press, UK, 1999. ISBN 0-521-65869-1.

[106] H. Muccini and A. Romanovsky. Architecting fault tolerant systems. Technical Report

CS-TR-1051, University of Newcastle upon Tyne, September 2007.

[107] J. D. Musa, A. Iannino, and K. Okumoto. Software reliability: measurement, predic-

tion, application. McGraw-Hill, Inc., New York, NY, USA, 1987.

[108] Object Management Group. CORBA Component Model 4.0 Specification. Technical

Report formal/06-04-01, Object Management Group, April 2006.

[109] F. Plášil and S. Vǐsňovský. Behavior Protocols for Software Components. IEEE

Transactions on Software Engineering, 28(11):1056–1076, November 2002.

47

BIBLIOGRAPHY

[110] A. Pnueli. In transition from global to modular reasoning about programs. In Proc.

of Logics and Models of Concurrent Systems, volume 13 of NATO ASI Series, 1985.

[111] P. Popic, D. Desovski, W. Abdelmoez, and B. Cukic. Error propagation in the reliab-

ility analysis of component based systems. In Proc. 16th IEEE Int. Symp. on Software

Reliability Engineering (ISSRE’05), pages 53–62. IEEE Computer Society, 2005.

[112] A. Pretschner, M. Broy, I. H. Krüger, and T. Stauner. Software engineering for auto-

motive systems: A roadmap. In FOSE ’07: 2007 Future of Software Engineering,

pages 55–71. IEEE Computer Society, 2007.

[113] B. Randell. System structure for software fault tolerance. In Proc. Int. Conf. on

Reliable software, pages 437–449. ACM, 1975.

[114] A. Rausch, R. Reussner, R. Mirandola, and F. Plášil. Modelling Contest: Common

Component Modelling Example (CoCoME). URL http://www.cocome.org/. Last

retrieved 2016-01-01.

[115] A. Rausch, R. Reussner, R. Mirandola, and F. Plášil, editors. The Common Com-

ponent Modeling Example: Comparing Software Component Models, volume 5153 of

LNCS. Springer.

[116] R. H. Reussner, H. W. Schmidt, and I. H. Poernomo. Reliability prediction for

component-based software architectures. Journal of Systems and Software, 66(3):241–

252, 2003.

[117] G. N. Rodrigues, D. S. Rosenblum, and S. Uchitel. Using scenarios to predict the

reliability of concurrent component-based software systems. In Proc. Fundamental

Approaches to Software Engineering (FASE’05), volume 3442 of LNCS, pages 111–

126. Springer, 2005.

[118] R. Roshandel, N. Medvidovic, and L. Golubchik. A Bayesian model for predicting

reliability of software systems at the architectural level. In Proc. Int. Conf. on Quality

of Software Architectures, QoSA, volume 4880 of LNCS, pages 108–126. Springer,

2007.

[119] N. Sato and K. S. Trivedi. Accurate and efficient stochastic reliability analysis of

composite services using their compact markov reward model representations. In Proc.

IEEE Int. Conf. on Services Computing (SCC’07), pages 114–121. IEEE Computer

Society, 2007.

[120] K. Schneider. Verification of Reactive Systems – Formal Methods and Algorithms.

Springer-Verlag, 2004. ISBN 3-540-00296-0.

[121] B. Schroeder and G. A. Gibson. Disk failures in the real word: What does an MTTF

of 1,000,000 hours mean to you? In Proc. 5th USENIX Conf. on File and Storage

Technologies (FAST’07), 2007.

48

BIBLIOGRAPHY

[122] V. Sharma and K. Trivedi. Quantifying software performance, reliability and security:

An architecture-based approach. Journal of Systems and Software, 80:493–509, August

2007.

[123] V. S. Sharma and P. Jalote. Deploying software components for performance. In

Component-Based Software Engineering, 11th International Symposium, CBSE 2008,

volume 5282 of Lecture Notes in Computer Science, pages 32–47, 2008.

[124] N. Srinivas and K. Deb. Multiobjective optimization using nondominated sorting in

genetic algorithms. Evolutionary Computation, 2(3):221–248, 1995.

[125] Sun Microsystems. Enterprise JavaBeans 3.0 Specification, May 2006.

[126] C. Szyperski. Component Software – Beyond Object-Oriented Programming. Addison-

Wesley, USA, 2. edition, 2002. ISBN 0-201-74572-0.

[127] P. Vařeková, P. Moravec, I. Černá, and B. Zimmerova. Effective Verification of Systems

with a Dynamic Number of Components. In Proceedings of the ESEC/FSE Conference

on Specification and Verification of Component-Based Systems (SAVCBS’07), pages

3–13. ACM Press, September 2007.

[128] P. Vařeková and B. Zimmerova. Challenge Problem: Subject-Observer Specification

with Component-Interaction Automata. In Proceedings of the ESEC/FSE Conference

on Specification and Verification of Component-Based Systems (SAVCBS’07), pages

75–81. ACM Press, September 2007.

[129] P. Vařeková, B. Zimmerova, P. Moravec, and I. Černá. Formal Verification of Systems

with an Unlimited Number of Components. IET Software journal, 2(6):532–546, 2008.

ISSN 1751-8814.

[130] W. Wang, D. Pan, and M. Chen. An architecture-based software reliability model. In

Proceedings of PRDS ’99, pages 143–150. IEEE Computer Society, 1999.

[131] W.-L. Wang, D. Pan, and M.-H. Chen. Architecture-based software reliability model-

ing. Journal of Systems and Software, 79(1):132–146, January 2006.

[132] X. Wu and M. Woodside. Performance Modeling from Software Components. SIG-

SOFT Softw. Eng. Notes, 29(1):290–301, 2004.

[133] F. Xie and J. C. Browne. Verified systems by composition from verified components.

In Proceedings of the European Software Engineering Conference (ESEC’03), pages

277–286. ACM Press, September 2003.

[134] G. Xie. Decompositional Verification of Component-based Systems – A Hybrid Ap-

proach. In Proceedings of the IEEE International Conference on Automated Software

Engineering (ASE’04), pages 414–417. IEEE Computer Society, September 2004.

49

BIBLIOGRAPHY

[135] L. Xing. Fault-tolerant network reliability and importance analysis using binary de-

cision diagrams. In Proc. of 2004 Annual Symposium on Reliability and Maintainab-

ility, RAMS, pages 122–128. IEEE, 2004.

[136] S. M. Yacoub, B. Cukic, and H. H. Ammar. A scenario-based reliability analysis

approach for component-based software. IEEE Transactions on Reliability, 53(4):465–

480, 2004.

[137] B. Zimmerova. Modelling and Formal Analysis of Component-Based Systems in View

of Component Interaction. PhD thesis, Masaryk University, Czech Republic, 2008.

[138] B. Zimmerova and P. Vařeková. Reflecting Creation and Destruction of Instances

in CBSs Modelling and Verification. In Proceedings of the Doctoral Workshop on

Mathematical and Engineering Methods in Computer Science (MEMICS’07), pages

257–264, October 2007.

[139] B. Zimmerova, P. Vařeková, N. Beneš, I. Černá, L. Brim, and J. Sochor. The Common

Component Modeling Example: Comparing Software Component Models, volume 5153

of LNCS, chapter Component-Interaction Automata Approach (CoIn), pages 146–176.

Springer, 2008.

50

Part II

Collection of Articles

51

52

Appendix A. Journal articles and chapters

Appendix A

Journal articles and chapters

This appendix together with Appendix B and C list (in the chronological order) the total

of 20 research articles that were selected as the representatives of my contributions within

the studied research field. The fulltexts of the articles are inserted into the corresponding

appendixes of the printed version of this thesis1 and referenced via the article numbers

assigned in the list below (replacing page numbers). The same holds for Appendix B and C.

Article A.1: P. Vařeková, B. Zimmerova, P. Moravec, and I. Černá. Formal Verification of

Systems with an Unlimited Number of Components. IET Software journal, 2(6):532–

546, 2008. ISSN 1751-8814

Article A.2: B. Zimmerova, P. Vařeková, N. Beneš, I. Černá, L. Brim, and J. Sochor.

The Common Component Modeling Example: Comparing Software Component Models,

volume 5153 of LNCS, chapter Component-Interaction Automata Approach (CoIn),

pages 146–176. Springer, 2008

Article A.3: N. Beneš, L. Brim, B. Buhnova, I. Černá, J. Sochor, and P. Vařeková. Par-

tial order reduction for State/Event LTL with application to Component-Interaction

Automata. Science of Computer Programming, 76(10):877–890, 2011. ISSN 0167-6423

Article A.4: I. Meedeniya, B. Buhnova, A. Aleti, and L. Grunske. Reliability-driven

deployment optimization for embedded systems. Journal of Systems and Software,

84(5):835–846, 2011. ISSN 0164-1212

Article A.5: F. Brosch, H. Koziolek, B. Buhnova, and R. Reussner. Architecture-based

reliability prediction with the palladio component model. IEEE Transactions on Soft-

ware Engineering, 38(6):1319–1339, 2012. ISSN 0098-5589

1The fulltexts of the articles are excluded from the publicly available electronic version of this text to

avoid copyright violation.

53

Appendix A. Journal articles and chapters

Article A.6: A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, and I. Meedeniya. Software

architecture optimization methods: A systematic literature review. IEEE Transactions

on Software Engineering, 5(39):658–683, 2013. ISSN 0098-5589

Article A.7: L. Happe, B. Buhnova, and R. Reussner. Stateful component-based perform-

ance models. Software and Systems Modeling, 13(4):1319–1343, 2014. ISSN 1619-1374

54

Appendix B. Conference papers

Appendix B

Conference papers

Article B.1: P. Vařeková and B. Zimmerova. Challenge Problem: Subject-Observer

Specification with Component-Interaction Automata. In Proceedings of the

ESEC/FSE Conference on Specification and Verification of Component-Based Systems

(SAVCBS’07), pages 75–81. ACM Press, September 2007

Article B.2: B. Zimmerova and P. Vařeková. Reflecting Creation and Destruction of

Instances in CBSs Modelling and Verification. In Proceedings of the Doctoral Workshop

on Mathematical and Engineering Methods in Computer Science (MEMICS’07), pages

257–264, October 2007

Article B.3: F. Brosch and B. Zimmerova. Design-time reliability prediction for software

systems. In Proc. International Workshop on Software Quality and Maintainability

(SQM’09), pages 1–5, 2009

Article B.4: I. Meedeniya, A. Aleti, and B. Buhnova. Redundancy allocation in automot-

ive systems using multi-objective optimisation. In Symposium on Automotive/Avionics

Systems Engineering (SAASE’09), pages 1–16, 2009

Article B.5: F. Brosch, H. Koziolek, B. Buhnova, and R. Reussner. Parameterized reliab-

ility prediction for component-based software architectures. In Proc. 6th Int. Conf. on

the Quality of Software Architectures (QoSA’10), volume 6093 of LNCS, pages 36–51.

Springer, 2010

Article B.6: L. Kapova and B. Buhnova. Performance-driven stepwise refinement of

component-based architectures. In Proceedings of the 2nd International Workshop

on the Quality of Service-Oriented Software Systems, pages 1–7. ACM, 2010

Article B.7: L. Kapova, B. Buhnova, A. Martens, J. Happe, and R. Reussner. State

dependence in performance evaluation of component-based software systems. In Pro-

ceedings of the Joint WOSP/SIPEW International Conference on Performance En-

gineering (ICPE’10), pages 37–48. ACM, 2010

55

Appendix B. Conference papers

Article B.8: I. Meedeniya, B. Buhnova, A. Aleti, and L. Grunske. Architecture-driven

reliability and energy optimization for complex embedded systems. In Proceedings of

the Sixth International Conference on the Quality of Software Architectures, volume

6093 of LNCS, pages 52–67. Springer, 2010

Article B.9: F. Brosch, B. Buhnova, H. Koziolek, and R. Reussner. Reliability prediction

for fault-tolerant software architectures. In Proceedings of the joint ACM SIGSOFT

conference QoSA and ACM SIGSOFT symposium ISARCS on Quality of software

architectures (QoSA) and architecting critical systems (ISARCS), pages 75–84. ACM,

2011

Article B.10: N. Benes, B. Buhnova, I. Cerna, and R. Oslejsek. Reliability analysis in

component-based development via probabilistic model checking. In Proceedings of the

15th ACM SIGSOFT symposium on Component Based Software Engineering, pages

83–92. ACM, 2012

Article B.11: B. Buhnova, S. Chren, and L. Fabrikova. Failure data collection for reliabil-

ity prediction models: A survey. In Proceedings of the 10th International ACM Sigsoft

Conference on the Quality of Software Architectures, pages 83–92. ACM, 2014

56

Appendix C. Case studies and tool papers

Appendix C

Case studies and tool papers

Article C.1: N. Beneš, L. Brim, I. Černá, J. Sochor, P. Vařeková, and B. Zimmerova. The

CoIn Tool: Modelling and Verification of Interactions in Component-Based Systems.

In Pre-proceedings of the International Workshop on Formal Aspects of Component

Software (FACS’08), pages 221–225. Department of Computer Science, University of

Malaga, 2008

Article C.2: N. Beneš, I. Černá, J. Sochor, P. Vařeková, and B. Zimmerova. A Case

Study in Parallel Verification of Component-Based Systems. In Proceedings of the

Workshop on Parallel and Distributed Methods in verifiCation (PDMC’08), ENTCS,

pages 35–51. Elsevier Science Publishers, March 2008

57

Appendix C. Case studies and tool papers

58

