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List of Symbols

N the set of all positive integers

N0 the set of all nonnegative integers

Z the set of all integers

R the set of all real numbers

Ω the closure of the set Ω

|·| the absolute value

δi,j the Kronecker delta, δi,i := 1, δi,j := 0 for i 6= j

span the linear span

supp the support

κ (·) the spectral condition number of a matrix

C . D means that C can be bounded by a multiple of D independently of param-
eters on which they may depend

Lp (0, 1) the space of square integrable functions

Hs (0, 1) the Sobolev space of order s ∈ R on (0, 1)

H1
0 (0, 1) the Sobolev space of H1 functions satisfying homogeneous Dirichlet bound-

ary conditions

Cm (R) m ∈ N0, the space of m-times continuously differentiable functions

l2 (J ) l2 (J ) :=
{
v : J → R,

∑
λ∈J |vλ|

2 <∞
}

Πm (0, 1) the space of all algebraic polynomials on (0, 1) of degree less or equal to
m ∈ N0

‖·‖ L2-norm

‖·‖H a norm on some space H

|·|Hs(0,1) the seminorm on Hs (0, 1)

〈·, ·〉 L2-inner product or a dual form

〈·, ·〉H an inner product in H
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j0 the coarsest level in a multiresolution analysis in a given context

λ a wavelet index λ := (j, k)

φ (φ̃) a primal (dual) scaling function

ψ (ψ̃) a primal (dual) wavelet

f̂ the Fourier transform of the function f

fj,k(x) the translation and the dilatation of the function fj,k(x) := f(2jx− k)

4



Introduction

We present here some obtained results concerning constructions of well-conditioned wavelet
bases. This work consists of three chapters. In the first chapter, we shortly introduce
wavelet bases on the real line generated by one wavelet and by one scaling function. We
start with properties of Riesz bases. Then we continue with a multiresolution analysis and
with orthonormal and biorthogonal wavelets. Consequently we introduce oblique projec-
tions, the discrete wavelet transform, approximation properties of wavelets and we collect
some important properties of B-splines which are often used as primal scaling functions.
In the second chapter, we introduce wavelet bases on the bounded interval. They are
usually constructed from wavelets on the real line. The main idea is to retain most of the
inner functions, i.e. the scaling functions and wavelets whose supports is contained in the
interval, and to construct appropriate boundary scaling functions and wavelets separately.
At the same time the important properties of wavelets should be preserved such as a Riesz
basis property, a smoothness, a local support of basis functions and a polynomial exactness
of the wavelet basis. Unlike the first chapter, we consider in the second chapter wavelet
systems generated by many wavelets and by many scaling functions. Wavelets can be even
different at different decomposition levels. The second chapter contains basic definitions, a
derivation of a multiscale transform, theorems which can be used to prove that constructed
basis is a Riesz basis, and finally we show that condition numbers of stiffness matrices
arising from discretization of elliptic partial differential equations by wavelets depend on
Riesz constants of a wavelet basis.
In the third chapter we present selected results which were published in the following five
papers:

• Černá, D.; Finěk, V.; Najzar, K.: On the exact values of coefficients of Coiflets, Cent.
Eur. J. Math. 6(1), (2008), pp. 159-170. My contribution to this paper was 60%.

• Černá, D.; Finěk, V.: Construction of optimally conditioned cubic spline wavelets on
the interval, Adv. Comput. Math. 34(2), (2011), pp. 219-252. My contribution to
this paper was 40%.

• Černá, D.; Finěk, V.: Cubic Spline Wavelets with Complementary Boundary Condi-
tions, Appl. Math. Comput. 219, (2012), pp. 1853-1865. My contribution to this
paper was 40%.
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• Černá, D.; Finěk, V.: Wavelet basis of cubic splines on the hypercube satisfying homo-
geneous boundary conditions, Int. J. Wavelets Multi. 13(3), (2015), pp. 1550014/1-
21. My contribution to this paper was 40%.

• Černá, D.; Finěk, V.: On a sparse representation of a n-dimensional Laplacian in
wavelet coordinates, Result. Math., DOI 10.1007/s00025-015-0488-5, (2015). My
contribution to this paper was 60%.

In the paper “On the Exact Values of Coefficients of Coiflets” [14], we proposed a system
of necessary conditions which is redundant free and more simple than other known systems
due to elimination of some quadratic (orthonormality) conditions, thus a computation of
scaling coefficient of coiflets is substantially simplified and enables to find the exact values
of the scaling coefficients up to filters of the length 8 and two further with filters of the
length 12. For scaling coefficients of coiflets with filters of the length 14 we obtained two
quadratic equations, which can be transformed to polynomial of degree 4 and there is an
algebraic formula to solve them. For larger filters up to filters of the length 20, we were
able to find all possible solutions by employing a Gröbner basis method.

In the paper “Construction of Optimally Conditioned Cubic Spline Wavelets on the Inter-
val” [7], we constructed spline wavelet bases on the interval with condition numbers which
are close to condition numbers of spline wavelet bases on the real line. Both primal and dual
functions are compactly supported. Constructed cubic wavelet bases have improved con-
dition numbers in comparison with previous constructions of the same type. Furthermore,
we showed that the constructed wavelets form indeed a Riesz basis for the space L2 (0, 1)
and for the Sobolev space Hs (0, 1) for a certain range of s. Finally, we adapted primal
bases to homogeneous Dirichlet boundary conditions of the first order and we compared
quantitative properties of the constructed bases and the efficiency of an adaptive wavelet
scheme for several spline wavelet bases to demonstrate a superiority of our construction.

In the paper “Cubic Spline Wavelets with Complementary Boundary Conditions” [8], we
constructed a new stable cubic spline wavelet basis on the interval with six vanishing
moments. The proposed basis satisfies complementary boundary conditions of the sec-
ond order i.e. the primal basis functions are adapted to homogeneous Dirichlet boundary
conditions of the second order, while the dual wavelet basis preserves the full degree of
polynomial exactness. Moreover, we proposed further decomposition of the scaling basis
at the coarsest level. It leads to improved Riesz condition numbers of the proposed ba-
sis. Finally, we presented quantitative properties of the proposed basis and we compared
them with some other cubic spline wavelet bases to show superiority of our construction.
Numerical examples were presented for the two-dimensional biharmonic equation.

In the paper “Wavelet Basis of Cubic Splines on the Hypercube Satisfying Homogeneous
Boundary Conditions” [12], we constructed new cubic spline wavelet basis on the hypercube
that is well-conditioned, adapted to homogeneous Dirichlet boundary conditions and the
wavelets have two vanishing moments. Unlike our construction proposed in [7], we do not
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require a compact support for dual functions which enables to construct primal functions
with better properties. The advantage of our construction is that the support of wavelets
is shorter, Riesz condition numbers are smaller and another advantage is also a simple
construction. Then stiffness matrices arising from discretization of elliptic problems using
proposed wavelets have uniformly bounded condition numbers and these condition numbers
are small. It leads in combination with the shorter support of wavelets to more efficient
numerical solvers. Finally, we presented quantitative properties of the constructed basis
and we provided a numerical example to show an efficiency of Galerkin method using
constructed basis.

In the paper “On a Sparse Representation of a n-dimensional Laplacian in Wavelet Coor-
dinates” [13], we constructed a wavelet basis based on Hermite cubic splines with respect
to which both the mass matrix and the stiffness matrix corresponding to one dimensional
Poisson equation are sparse. While stiffness matrices in wavelet coordinates are usually
only quasi sparse. Then, matrix-vector multiplication can be performed exactly with linear
complexity for any second order PDEs with constant coefficients. Moreover, the proposed
basis is very well-conditioned for low decomposition levels. Small condition numbers for
low decomposition levels and a sparse structure of stiffness matrices are kept for any sec-
ond order PDEs with constant coefficients, which are well-conditioned in the sense of (2.7),
and moreover they are independent of the space dimension. Further, we proved that the
constructed basis is a Riesz basis and computed condition numbers for model problems
and compared them with condition numbers for a similar wavelet basis proposed in [29].

All paper presented in this thesis comes from a collaboration with my colleague Dana
Černá. I would like to thank her for this fruitful collaboration, and look forward to its
continuation.
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Chapter 1

Wavelets on the Real Line

In this chapter, we shortly introduce wavelet bases on the real line generated by one wavelet
and by one scaling function. First, we introduce an important definition of a Riesz basis
which is a generalization of an orthonormal basis.

1.1 Riesz Bases

Definition 1. A family {ek}k∈Z is called a Riesz basis of a Hilbert space H, if and only if
it spans H, i.e. all finite linear combinations of the ek are dense in H, and if there exist
constants c, C such that 0 < c ≤ C and

c

(∑

k∈Z
|xk|2

)1/2

≤
∥∥∥∥∥
∑

k∈Z
xkek

∥∥∥∥∥
H

≤ C

(∑

k∈Z
|xk|2

)1/2

∀ {xk} ∈ l2 (Z) . (1.1)

The constants c, C are called Riesz bounds.

It is well known that any orthonormal basis satisfies (1.1) with c = C = 1. Riesz bases
have many useful properties of orthonormal bases without requiring orthonormality. The
condition (1.1) can be interpreted as ensuring stability of the reconstruction of an arbitrary
element x ∈ H from its coefficients {xk} in the sense that small roundoff errors in the
computation of the coefficients xk can not lead to a large error in the reconstruction. The
main properties of Riesz bases are summarized in the following theorem.

Theorem 2. Let {ek}k∈Z be a Riesz basis in a separable Hilbert space H and let the operator
T : l2 (Z)→ H be defined by

T : {ck}k∈Z 7→
∑

k∈Z
ckek.

Then

• The series
∑

k∈Z ckek converges unconditionally in H, i.e. its terms can be arbitrarily
permuted without affecting the convergence, if and only if {ck}k∈Z ∈ l2 (Z).
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• Any x ∈ H can be decomposed in a unique way according to

x =
∑

k∈Z
ckek with {ck}k∈Z ∈ l2 (Z) .

• T is an isomorphism from l2 (Z) to H.

• There exists a unique biorthogonal Riesz basis {ẽk}k∈Z in H, i.e. {ẽk}k∈Z is a Riesz
basis and 〈ek, ẽl〉H = δk,l. This basis is defined by

ẽk = (TT ∗)−1 ek,

where T ∗ denotes the adjoint mapping to T .

• There exists constants 0 < c ≤ C such that

c ‖x‖2
H ≤

∑

k∈Z

∣∣〈x, ek〉2H
∣∣ ≤ C ‖x‖2

H ∀x ∈ H.

Further details can be found in [18]. The next theorem gives equivalent conditions for
{ek}k∈Z to be a Riesz basis.

Theorem 3. For a sequence {ek}k∈Z spanning a Hilbert space H, the following conditions
are equivalent:

• {ek}k∈Z is a Riesz basis for H.

• The Gram matrix {〈ek, el〉}k,l∈Z defines a bounded, invertible operator on l2 (Z) .

• {ek}k∈Z is a Bessel sequence, and there exists a biorthogonal sequence {fk}k∈Z which
is also a Bessel sequence spanning H.

The proof of this Theorem can be found in [15]. For completeness we provide also a
definition of a Bessel sequence.

Definition 4. A sequence {ek}k∈Z in a separable Hilbert spaceH is called a Bessel sequence
if there exists a constant C > 0 such that

∥∥∥∥∥
∑

k∈Z
xkek

∥∥∥∥∥
H

≤ C

(∑

k∈Z
|xk|2

)1/2

∀ {xk} ∈ l2 (Z) .
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1.2 Wavelets

In this chapter, we consider H = L2 (R). A function φ is called L2-stable if {φ (x− k)}k∈Z
is a Riesz basis of its span in L2 (R). Now we can define a wavelet, a biorthogonal wavelet
and an orthonormal wavelet.

Definition 5. A function ψ ∈ L2 (R) is called a wavelet if the family of functions {ψj,k}j,k∈Z,

where ψj,k(x) = 2j/2ψ (2jx− k), is a Riesz basis of L2 (R). A dual wavelet ψ̃ is called
biorthogonal to a (primal) wavelet ψ if

〈
ψj,k, ψ̃i,l

〉
= δi,jδk,l ∀i, j, k, l ∈ Z.

The wavelet is called orthonormal if

〈ψj,k, ψi,l〉 = δi,jδk,l ∀i, j, k, l ∈ Z.

Example 6. The simplest example of orthonormal wavelet is the Haar wavelet. The Haar
wavelet is the function defined on the real line as

H(x) =





1 ∀x ∈
[
0, 1

2

)
,

−1 ∀x ∈
[

1
2
, 1
]
,

0 otherwise.

It is well-known [42, 43] that the system
{

2j/2H(2jx− k)
}
j,k∈Z is orthonormal in L2 (R) .

Wavelets are usually constructed with an assistance of a multiresolution analysis.

Definition 7. A sequence {Vj}j∈Z of closed subspaces of L2 (R) is called a multiresolution
analysis if it satisfies the following conditions:

1) The sequence is nested, i.e.

Vj ⊂ Vj+1 ∀j ∈ Z.

2) The spaces are related to each other by dyadic scaling, i.e.

f (x) ∈ Vj ⇔ f (2x) ∈ Vj+1 ∀j ∈ Z.

3) The union of the spaces is dense, i.e.

⋃

j∈Z
Vj = L2 (R) .

4) The intersection of the spaces is reduced to the set containing only the null function,
i.e. ⋂

j∈Z
Vj = {0} .
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5) There exists a scaling function φ ∈ V0 such that

{φ (x− k)}k∈Z
is a Riesz basis of V0.

If we construct an orthonormal basis than we require at the point 5) of the above definition
that a scaling function φ forms an orthonormal basis of V0. Spaces Vj from the above
definition are often called principal shift-invariant spaces and most of their properties can
be studied by means of Fourier analysis.

Example 8. For the Haar system
{

2j/2H(2jx− k)
}
j,k∈Z, the scaling function is defined

by [42, 43]:

φH(x) =

{
1 ∀x ∈ [0, 1]

0 otherwise.

Consequences of the Riesz basis property:

• Since V0 ⊂ V1 and from Theorem 2, there exists a sequence {hk}k∈Z ∈ l2 (Z) such
that

φ (x) =
∑

k∈Z
hkφ (2x− k) ∀x ∈ R. (1.2)

This equation is called refinement or scaling equation and the coefficients hk are
known as scaling or refinement coefficients. These coefficients will be used later in a
discrete wavelet transform and also to a construction of dual wavelets.

• For each j ∈ Z, the set
{

2j/2φ (2jx− k)
}
k∈Z is a Riesz basis of Vj with Riesz bounds

independent of j.

1.3 Biorthogonal wavelets

Now, let have two different scaling functions φ and φ̃, which usually generate different

multiresolution analyses {Vj}j∈Z,
{
Ṽj

}
j∈Z

, and consequently also two different wavelet

functions ψ, ψ̃. Then we have two sets of scaling coefficients while we have only one set of
scaling coefficients in the case of orthonormal wavelets. Therefore biorthogonal wavelets
provide more degrees of freedom in comparison with orthonormal wavelets and it is possible
to construct primal wavelets with better properties. For instance, primal wavelets are
usually smoother than orthonormal wavelets with the same length of the support.
Wavelet coefficients can be determined as

gn = (−1)n h̃1−n, g̃n = (−1)n h1−n, (1.3)
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where hn and h̃n are scaling coefficients corresponding to φ and φ̃, respectively. Wavelets
are then given by

ψ (x) =
∑

n∈Z
gnφ (2x− n) , ψ̃ (x) =

∑

n∈Z
g̃nφ̃ (2x− n) ∀x ∈ R. (1.4)

The function φ is called a primal scaling function, the sequence {Vj}j∈Z is called a primal

multiresolution analysis and ψ is a primal wavelet, while φ̃,
{
Ṽj

}
j∈Z

, and ψ̃ are called dual.

Let us define

Wj = span {ψj,k, k ∈ Z}, W̃j = span
{
ψ̃j,k, k ∈ Z

}
.

The following lemma describes basic properties of biorthogonal wavelets.

Theorem 9. Let sequences {Vj}j∈Z and
{
Ṽj

}
j∈Z

be two multiresolution analyses with

mutually biorthogonal scaling functions φ and φ̃ so that
〈
φ (x− k) , φ̃ (x− l)

〉
= δk,l for all

k, l ∈ Z. Further let wavelet coefficients be defined by (1.3) and primal and dual wavelets
be defined by (1.4). Then

• ψ(x) ∈ V1 and ψ̃(x) ∈ Ṽ1.

• ψ̃ is biorthogonal to ψ, i.e.
〈
ψ (x− k) , ψ̃ (x− l)

〉
= δk,l ∀k, l ∈ Z. (1.5)

• 〈
ψ (x− k) , φ̃ (x− l)

〉
=
〈
ψ̃ (x− k) , φ (x− l)

〉
= δk,l ∀k, l ∈ Z. (1.6)

• For any j ∈ Z the set {ψj,k, k ∈ Z} is a Riesz basis of Vj and for any j ∈ Z the set{
ψ̃j,k, k ∈ Z

}
is a Riesz basis of Ṽj.

• If moreover φ(x) and φ̃(x) for some C > 0 and ∀ξ ∈ R satisfy

∣∣∣φ̂(ξ)
∣∣∣ ≤ C(1 + |ξ|)−1 and

∣∣∣ ˆ̃φ(ξ)
∣∣∣ ≤ C(1 + |ξ|)−1,

then {ψj,k}j,k∈Z and
{
ψ̃j,k

}
j,k∈Z

are Riesz bases of L2 (R) .

For the proof of this theorem which relies on techniques based on the Fourier transform,
we refer to [42]. The consequence of (1.5) and (1.6) is that the spaces Wj and W̃l are
orthogonal for all j 6= l, the space Wj is orthogonal to Ṽl for all l ≤ j and the space W̃j

is orthogonal to Vl for all l ≤ j. Moreover Wj complements Vj in Vj+1 and similarly W̃j

complements Ṽj in Ṽj+1. Then the space Vj can be decomposed:

Vj = Vj0 ⊕Wj0 ⊕Wj0+1 . . .⊕Wj−1

12



and due to (1.5) any function f ∈ Vj can be expanded into

f =
∑

k∈Z

〈
f, φ̃j,k

〉
φj,k =

∑

k∈Z

〈
f, φ̃j0,k

〉
φj0,k +

j−1∑

j=j0

∑

k∈Z

〈
f, ψ̃j,k

〉
ψj,k. (1.7)

The first part of the expansion (1.7) is called a singlescale representation of the function f
while the second part of the expansion is called a multiresolution or multiscale representa-
tion of the function f .
Many properties of wavelets can be formulated by equivalent or necessary conditions on
its Fourier transform, on its symbols and its scaling coefficients. For instance, necessary
conditions on symbols and scaling coefficient, which are useful for the construction of the
dual scaling function or for the computation of scaling coefficients of orthonormal wavelets,
are given in the following theorem proved in [18].

Theorem 10. If scaling functions φ and φ̃ are mutually biorthogonal then

1) the scaling coefficients hn and h̃n satisfy

∑

n∈Z
hnh̃n−2k = 2δ0,k ∀k ∈ Z

2) and the symbols of scaling functions m (ω) and m̃ (ω) satisfy

m (ω) m̃ (ω) +m (ω + π) m̃ (ω + π) = 1 ∀ω ∈ R,

where

m (ω) =
1

2

∑

n∈Z
hne−inω, m̃ (ω) =

1

2

∑

n∈Z
h̃ne−inω ∀ω ∈ R. (1.8)

Moreover, the conditions 1) and 2) are equivalent. Furthermore, if wavelet coefficients are
defined by (1.3) then ∑

n∈Z
gng̃n−2k = 2δ0,k ∀k ∈ Z

and ∑

n∈Z
hng̃n−2k =

∑

n∈Z
gnh̃n−2k = 0 ∀k ∈ Z.

1.4 Oblique projections

A requirement on biorthogonal scaling functions to be also in V0 leads in many cases to
globally supported biorthogonal scaling functions [18]. It causes some difficulties such as
a complicated evaluation of scalar products with them. Therefore we do not require that
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V0 = Ṽ0 and we define so called oblique projections Pj : L2 (R)→ Vj and P̃j : L2 (R)→ Ṽj
by

Pjf =
∑

k∈Z

〈
f, φ̃j,k

〉
φj,k, P̃jf =

∑

k∈Z
〈f, φj,k〉 φ̃j,k,

and detail operators Qj : L2 (R)→ Wj, Q̃j : L2 (R)→ W̃j by

Qjf = Pj+1f − Pjf, Q̃jf = P̃j+1f − P̃jf.

Since the spaces Vj are nested, we have PjPl = Pj for all j < l. Consequently the detail
operator Qj is also a projection on a space Wj and can be expanded into [18]

Qjf =
∑

k∈Z

〈
f, ψ̃j,k

〉
ψj,k.

Then the space Wj can be also defined as the kernel of Pj in Vj+1.
It is known from [33] that if φ is a compactly supported L2-stable refinable function then
there always exists a dual scaling function to φ̃ which is also compactly supported. In the
rest of this chapter, we will assume that both scaling functions φ and φ̃ are compactly
supported. Basic properties of projections Pj and P̃ are described in the next theorem.

Theorem 11. If both scaling functions φ and φ̃ are compactly supported and mutually
biorthogonal then

• The scaling functions φ and φ̃ are L2-stable.

• Oblique projectors Pj and P̃j are L2-bounded independently of j.

•
lim
j→∞
‖Pjf − f‖ → 0 ⇐⇒

∫

R
φ̃ (x) dx

∑

k∈Z
φ (x− k) = 1 a.e.

and

lim
j→∞

∥∥∥P̃jf − f
∥∥∥→ 0 ⇐⇒

∫

R
φ (x) dx

∑

k∈Z
φ̃ (x− k) = 1 a.e.

• Both scaling functions φ and φ̃ have non-zero integral, and satisfy
∫

R
φ (x) dx

∫

R
φ̃ (x) dx = 1.

Up to a renormalization, we can assume that
∫
R φ (x) dx =

∫
R φ̃ (x) dx = 1. And the

corresponding scaling coefficients hk and h̃k satisfy

∑

k∈Z
hk =

∑

k∈Z
h̃k = 2,

∑

k∈Z
(−1)khk =

∑

k∈Z
(−1)kh̃k = 0.

14



The proof of Theorem 11 can be found in [18]. It follows from Theorem 11, that for any
f ∈ L2 (R) holds

f = lim
j→∞

(∑

k∈Z

〈
f, φ̃j,k

〉
φj,k

)
= lim

j→∞

(∑

k∈Z

〈
f, φ̃j0,k

〉
φj0,k +

j−1∑

j=j0

∑

k∈Z

〈
f, ψ̃j,k

〉
ψj,k

)
.

1.5 The Discrete Wavelet Transform

For a computation with wavelets it is in the most cases more advantageous to work with
a multiscale representation but in some case it is more efficient to work with a single scale
representation (for example evaluation of scalar products with wavelets). Therefore we
need an efficient tool which enables to change both representations easily. This tool is
called the discrete wavelet transform (DWT). Its first part can be derived from the scaling
equation (1.2) and the wavelet equation (1.4). We have from (1.2)

φ̃j,k(x) = 2j/2φ̃
(
2jx− k

)
= 2j/2

∑

n∈Z
h̃nφ̃

(
2j+1x− 2k − n

)

= 2−1/2
∑

m∈Z
h̃m−2k2

(j+1)/2φ̃
(
2j+1x−m

)
= 2−1/2

∑

m∈Z
h̃m−2kφ̃j+1,m(x).

This implies that

cj,k = 2−1/2
∑

m∈Z
h̃m−2kcj+1,m. (1.9)

From (1.4) we obtain

ψ̃j,k(x) = 2j/2ψ̃
(
2jx− k

)
= 2j/2

∑

n∈Z
g̃nφ̃

(
2j+1x− 2k − n

)

= 2−1/2
∑

m∈Z
g̃m−2k2

(j+1)/2φ̃
(
2j+1x−m

)
= 2−1/2

∑

m∈Z
g̃m−2kφ̃j+1,m.

It follows that
dj,k = 2−1/2

∑

m∈Z
g̃m−2kcj+1,m. (1.10)

The equations (1.9) and (1.10) represent the decomposition algorithm. We can also recon-
struct coefficients cj+1,k from coefficients cj,k and dj,k. From the relation Ṽj = Ṽj−1 + W̃j−1,
it follows that

∑

k∈Z
cj,kφ̃j,k =

∑

k∈Z
cj−1,kφ̃j−1,k +

∑

k∈Z
dj−1,kψ̃j−1,k

= 2−1/2
∑

k∈Z
cj−1,k

∑

n∈Z
h̃n−2kφ̃j,k + 2−1/2

∑

k∈Z
dj−1,k

∑

n∈Z
g̃n−2kφ̃j,k.
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By matching coefficients, we obtain the reconstruction algorithm:

cj,k = 2−1/2
∑

n∈Z
h̃k−2ncj−1,n + 2−1/2

∑

n∈Z
g̃k−2ndj−1,n. (1.11)

The reconstruction algorithm is the second half of the discrete wavelet transform. The first
part of (1.11) can be also used to obtain an approximation (prediction) of the coefficients
cj,k from the data at coarser scale j − 1. In practice, we deal with functions with compact
support. Then there exist k1 ∈ Z, n ∈ N such that cj,k = 0 for k > k1 and k ≤ k1 + n. In
this case the discrete wavelet transform can be performed in O(n) operations.

1.6 Polynomial exactness

The rate of decay of the approximation error of a function f defined by ‖Pjf − f‖ is given
by the polynomial exactness of the primal scaling basis and by the regularity of f . In the
next theorem, equivalent conditions for the polynomial exactness are given.

Theorem 12. Let φ, φ̃ ∈ L1(R) be a compactly supported functions satisfying
∫
R φ(x) dx =

1. Then the following properties are equivalent:

• φ satisfies the Strang-Fix conditions of order L− 1, i.e.

(
∂

∂ω

)q
φ̂(2πn) = 0, n ∈ Z \ {0}, ∀q = 0, . . . , L− 1.

• For all q = 0, . . . , L− 1, we can expand the polynomial xq according to

xq =
∑

k∈Z

〈
xq, φ̃ (x− k)

〉
φ (x− k) , a.e.

• The symbol of φ defined by (1.8) has the factorized form

m (ω) =

(
1 + e−iω

2

)L
p (ω) ,

where p (ω) is a trigonometric polynomial.

• The dual wavelet ψ̃ has L vanishing moments, i.e.
∫

R
xqψ̃ (x) dx = 0 ∀q = 0, . . . , L− 1.

• There exists a constant C > 0 such that we have for any f ∈ HL(R):

‖f − Pjf‖Hq(R) ≤ C2−j(L−q) |f |HL(R) , ∀q = 0, . . . , L− 1.
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The proof can be found in [18]. Another important condition based on the regularity of
the scaling function can be found also in [18]:

Theorem 13. If φ is a L2-stable compactly supported refinable function in HL(R) for
L ∈ N0, then it satisfies the Strang-Fix conditions of order L.

For the analysis of the regularity of the scaling function based on the explicitly know scaling
coefficients, we refer for example [38].

1.7 B-Splines

In this part we shortly introduce basic properties of B-splines which are frequently used as
primal scaling functions.

Definition 14. The B-spline BN of degree N is defined by B0(x) = φH(x) (the Haar
scaling function) and then recursively by the convolution:

BN(x) = B0(x) ∗BN−1(x) :=

∫

R
B0 (t)BN−1 (x− t) dt, N ∈ N.

The following theorem summarizes properties of B-splines.

Theorem 15. For N ∈ N the functions BN have the following properties:

• BN is supported in [0, N + 1].

• BN (x) > 0 ∀x ∈ (0, N + 1).

• The function BN is symmetric with respect to the point N+1
2

, i.e.

BN

(
N + 1

2
− x
)

= BN

(
N + 1

2
+ x

)
∀x ∈ R.

•
∫
RBN (x) dx = 1.

•
BN (x) =

1

N !

N+1∑

k=0

(−1)k
(
N + 1

k

)
(x− k)N+ ∀x ∈ R,

where xN+ = (max {0, x})N .

• The set {BN(2jx− k)}k∈Z generates the multiresolution spaces

Vj =
{
f ∈ L2 (R) ∩ CN−1 (R) : f |[ k

2j
, k+1

2j
] ∈ ΠN , ∀k ∈ Z

}
.

• BN is L2-stable.
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• BN is a refinable function, i.e. it satisfies (1.2), and nonzero scaling coefficients are
given by

hn = 2−N
(
N + 1

n

)
∀n = 0, . . . N.

The proof of statements of this theorem and other interesting properties of splines can be
found in [4, 16, 18, 43]. Now, we can define the primal scaling function as φN := BN , this
function reproduces polynomials up to degree N . It has been shown in [21] that for each
N and any Ñ ∈ N, Ñ ≥ N , such that N + Ñ is even, there exists a compactly supported
dual scaling function, which is exact of order Ñ .
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Chapter 2

Wavelets on the Bounded Interval

Wavelets on the real line are not usually suitable in applications which are defined on
bounded domains. Therefore it is necessary to adapt them first on the bounded interval.
The main idea is to retain most of the inner functions, i.e. the scaling functions and wa-
velets whose supports is contained in the interval, and to treat boundary scaling functions
and wavelets separately. In some cases it is possible to take restrictions of some of the
overlapping functions but in the most cases it is necessary to construct so called bound-
ary functions. During their construction the important properties of wavelets should be
preserved such as a Riesz basis property, a smoothness, a local support of basis functions
and a polynomial exactness of the wavelet basis. The main disadvantage of some existing
constructions is a large condition number of wavelet bases resulting in a bad numerical
stability and bad spectral properties of the corresponding stiffness matrices when solving
differential equations numerically. This chapter provides an introduction to wavelets on
the bounded interval and unlike the previous chapter we consider here wavelet systems
generated by many wavelets and by many scaling functions. Wavelets can be even differ-
ent at different decomposition levels. All these facts complicate not only notation but also
a theory.

2.1 Wavelet Basis

We start with a definition of a wavelet basis. We consider here families Ψ = {ψλ, λ ∈ J } ⊂
L2(0, 1) of functions where J is an infinite index set and J = JΦ ∪ JΨ, where JΦ is a
finite set representing scaling functions living on the coarsest scale. Any index λ ∈ J is
of the form λ = (j, k), where |λ| = j denotes a scale and k denotes spatial location. The
above notation enables us to write wavelet expansions as

dTΨ :=
∑

λ∈J
dλψλ.
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Further, we will use the following shorthand notations for two collections of functions Ψ,
Ψ̃ ∈ L2(0, 1): 〈

Ψ, Ψ̃
〉
L2(0,1)

:=

(〈
ψ, ψ̃

〉
L2(0,1)

)

ψ∈Ψ,ψ̃∈,Ψ̃
.

Thus, the biorthogonality condition can be written as

〈
Ψ, Ψ̃

〉
= I.

Definition 16. The family Ψ = {ψλ, λ ∈ J } ⊂ L2(0, 1) is called a wavelet basis of Hs for
some γ, γ̃ > 0 and s ∈ (−γ̃, γ), if

• Ψ normalized in Hs is a Riesz basis of Hs; it means that Ψ forms a basis of Hs and
there exist constants cs, Cs > 0 such that for all b = {bλ}λ∈J ∈ l2 (J ) holds

cs ‖b‖l2(J ) ≤
∥∥∥∥∥
∑

λ∈J

bλψλ
‖ψλ‖Hs

∥∥∥∥∥
Hs

≤ Cs ‖b‖l2(J ) ,

where sup cs, inf Cs are called Riesz bounds and cond (Ψ) :=
inf Cs
sup cs

is called the

condition number of Ψ.

• The functions are local in the sense that diam (suppψλ) . 2−|λ| ∀λ ∈ J .

• Functions ψλ, λ ∈ JΨ, have cancellation properties of order m, i.e.,

∣∣∣∣
∫ 1

0

v(x)ψλ(x) dx

∣∣∣∣ . 2−m|λ| |v|Hm(0,1) , ∀v ∈ Hm (0, 1) .

It means that integration against wavelets eliminates smooth parts of functions. It
is equivalent with vanishing wavelet moments of order m and with the polynomial
exactness of dual multiresolution analysis of order m− 1.

The wavelet system Ψ is usually constructed with the assistance of a multiresolution anal-
ysis.

Definition 17. A sequence V = {Vj}j∈Nj0 of closed linear subspaces Vj ⊂ Hs is called a

multiresolution or multiscale analysis, if the subspaces are nested, i.e.,

Vj0 ⊂ Vj0+1 ⊂ . . . ⊂ Vj ⊂ Vj+1 ⊂ . . . ⊂ Hs

and is dense in H, i.e.

∪j∈Nj0Vj
Hs

= Hs.
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We now assume that Vj is spanned by set of scaling functions

Φj := {φj,k, k ∈ Ij} ,
where Ij is a finite index set. Furthermore, the collections Φj will always be assumed to
be uniformly stable, uniformly bounded and uniformly local in the sense that ∀k ∈ Ij and
∀x ∈ (0, 1)

diam (suppφj,k) . 2−j and #
{
k ∈ Ij, B(x, 2−j) ∩ suppφj,k 6= ∅

}
. 1,

where B(x, 2−j) is the ball with radius 2−j centered at x.
The nestedness of V and the uniform stability of the Riesz bases imply the existence of a
bounded linear operator Mj,0 =

(
mj,0
l,k

)
l∈Ij+1,k∈Ij

such that

φj,k =
∑

l∈Ij+1

mj,0
l,kφj+1,l.

Viewing Φj as a column vector, above refinement relations can be expressed in a matrix
form as

Φj = MT
j,0Φj+1. (2.1)

As a consequence of uniform locality, the matrices Mj,0 are uniformly sparse i.e. the
number of entries per each row and column is uniformly bounded. Similarly as in the
previous chapter, the nestedness of V further implies the existence of the complement
spaces Wj. Let

Ψj := {ψj,k, k ∈ Jj} , Jj := Ij+1 \ Ij, j ≥ j0,

be a Riesz basis of Wj. Functions in Ψj are called wavelets. Since Ψj ⊂ Vj+1 and Φj+1

forms a Riesz basis of its span, we have a unique representation

ψj,k =
∑

l∈Ij+1

mj,1
l,kφj+1,l,

which can be again expressed in a matrix form as

Ψj = MT
j,1Φj+1, (2.2)

where Mj,1 is a bounded linear operator given by Mj,1 =
(
mj,1
l,k

)
l∈Ij+1,k∈Jj

. Further, we

assume that collection Ψj is uniformly local and then Mj,1 is also uniformly sparse. The
refinement relations (2.1) and (2.2) lead to refinement equations in a matrix form

(
Φj

Ψj

)
= MT

j Φj+1,

with a refinement matrix Mj := (Mj,0,Mj,1). Matrices Mj are invertible and let inverse
matrices be defined by

M−1
j := Gj =

(
Gj,0

Gj,1

)
.
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Inverses of sparse matrices are not in the general case sparse. However, when we require
uniformly local dual wavelets then the inverses of these matrices have to be uniformly
sparse. In this case, wavelets are usually constructed by a method of stable completion
proposed in [6].

Definition 18. Any Mj,1 ∈ [l2 (Jj) , l2 (Ij+1)] is called a stable completion of Mj,0, if

κ(Mj), κ(M−1
j ) = O (1) , j →∞,

where Mj := (Mj,0,Mj,1).

It is known that Φj ∪ Ψj is uniformly stable if and only if Mj,1 is a stable completion of
Mj,0, see [6]. However, it does not imply the Riesz stability over all levels.

2.2 Multiscale Transform

The multiscale basis of VJ is given by

ΨJ = Φj0 ∪
J−1⋃

j=j0

Ψj. (2.3)

Since the union of subspaces Vj is dense in Hs, a multiscale basis of Hs is given by

Ψ = Φj0 ∪
∞⋃

j=j0

Ψj,

and we can split J into two index sets

Jφ := {(j0 − 1, k) , k ∈ Ij} , Jψ := {(j, k) , j ≥ j0, k ∈ Jj} .

From (2.3) it follows that any v ∈ VJ has a single-scale representation

v = cTJΦ =
∑

k∈Ij
cj,kφj,k,

as well as a multiscale representation

v = cTj0Φj0 + dTj0Ψj0 + . . .+ dTJ−1ΨJ−1 =
∑

k∈Ij0

cj0,kφj0,k +
J−1∑

j=j0

∑

k∈Jj
dj,kψj,k.

The corresponding vectors of the single-scale and multiscale representations are related by
the multiscale transformation TJ : l2 (IJ)→ l2 (IJ):

cJ = TJ

(
cTj0 ,d

T
j0
, . . .dTJ−1

)T
.
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From refinement relations (2.1) and (2.2), it follows that

cTj Φj + dTj Ψj = (Mj,0cj + Mj,1dj)
T Φj+1 = cTj+1Φj+1

and then the multiscale transform TJ is given by:

TJ = TJ,J−1 . . .TJ,j0 , where TJ,j =

(
Mj 0

0 I

)
.

To determine the inverse multiscale transform T−1
J , note that

cTj+1Φj+1 = GT
j,0c

T
j+1Φj + GT

j,1c
T
j+1Ψj = cTj Φj + dTj Ψj.

Thus, the inverse multiscale transform T−1
J can be obtained by applying inverses of the

matrices TJ,j in the opposite order:

T−1
J = T−1

J,j0
. . .T−1

J,J−1, where T−1
J,j =

(
Gj 0

0 I

)
.

If refinement matrices Mj and Gj are uniformly sparse then both the multiscale transform
TJ and the inverse multiscale transform T−1

J can be performed in O (NJ) operations, where
Nj is the dimension of the space Vj. The next theorem shows a relation between properties
of the multiscale basis Ψ and the multiscale transform TJ .

Theorem 19. Assume that Φj are uniformly stable. Then TJ are well-conditioned or
stable in the sense of κ(TJ), κ(T−1

J ) = O (1) if and only if Ψ is a Riesz basis in a Hilbert
space H.

For further details, we refer to [23].

2.3 Riesz Bases in Sobolev Spaces

As was already mentioned in the previous chapter, any wavelet compression algorithm
based on removing small coefficients can be reasonable only when wavelets form a Riesz
basis. The following theorem from [40] gives useful characterization of Riesz bases.

Theorem 20. Let j0 be the coarsest level and let

Vj0 ⊂ Vj0+1 ⊂ . . . ⊂ H, Ṽj0 ⊂ Ṽj0+1 ⊂ . . . ⊂ H

be sequences of closed subspaces of H such that with dimVj = dim Ṽj, then the following
statements are equivalent:

• There exist uniform Riesz bases Φj and Φ̃j for Vj and Ṽj such that
〈

Φj, Φ̃j

〉
is

invertible and the inverses are uniformly bounded.

23



•
inf
j∈N0

inf
0 6=ṽ∈Ṽj0+j

sup
06=v∈Vj0+j

| 〈ṽ, v〉 |
||ṽ|| ||v|| > 0.

• There exist unique uniformly bounded projections Pj : H → Vj with Im(I−Pj) = Ṽ ⊥j
and these projections are given by

Pjx =
〈
x, Φ̃j

〉〈
Φj, Φ̃j

〉−1

Φj.

• To any uniform Riesz basis for Vj there exist a unique uniform biorthogonal Riesz

basis in Ṽj.

Let any of the above conditions be satisfied and moreover let the following minimum angle
condition hold

sup
j∈N0

cos∠(Vj0+j,Wj0+j) < 1 where cos∠(Vj,Wj) := sup
06=v∈Vj , 0 6=w∈Wj

| 〈w, v〉 |
||w|| ||v|| ,

then (I − Pj)|Wj
: Wj → Vj+1 ∩ Ṽ ⊥j is invertible and the inverses are uniformly bounded.

The first part of the previous theorem enables to formulate prior results from [25] without
explicit knowledge of some biorthogonal bases while the second part was used in [40] to a
construction of biorthogonal wavelets on non-uniform meshes. In this construction both
primal and dual wavelets are known in explicit form, have a compact support and are
piecewise polynomials. The following two theorems state how Riesz bases for a range
of Sobolev spaces can be created. The first theorem describes the case, when we have
two mutually biorthogonal bases, while the second one describes the case, when a dual
biorthogonal basis in not known.

Theorem 21. Let j0 be the coarsest level and let

Vj0 ⊂ Vj0+1 ⊂ . . . ⊂ L2(0, 1), Ṽj0 ⊂ Ṽj0+1 ⊂ . . . ⊂ L2(0, 1)

be sequences of primal and dual spaces which are mutually biorthogonal and which are
equipped uniform L2(0, 1)−Riesz bases Φj and Φ̃j for Vj and Ṽj, respectively. In addition,
for some 0 < γ < d, let

inf
vj∈Vj

||v − vj||L2(0,1) . 2−jd||v||Hd(0,1) ∀v ∈ Hd(0, 1),

(Jackson or direct estimate) and

||vj||Hs(0,1) . 2js||vj||L2(0,1) ∀vj ∈ Vj, s ∈ [0, γ),

(Bernstein or inverse estimate) and let similar estimates be valid at the dual side with

Vj, d, γ,H
s(0, 1) reading as Ṽj, d̃, γ̃, H̃

s(0, 1). And let Ψj be uniform L2(0, 1)−Riesz bases

for Wj := Vj+1 ∩ Ṽ ⊥L
2(0,1)

j , then for s ∈ (−γ̃, γ) the collection

Φj0 ∪
⋃

j∈N0

2−sjΨj0+j

is a Riesz basis for Hs(0, 1), where Hs(0, 1) := (H−s(0, 1))
′

for s < 0.
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This theorem is a consequence of results from [25, 40]. The following theorem from [29]
summarizes results from [23, 25]:

Theorem 22. Let j0 be the coarsest level and let

Vj0 ⊂ Vj0+1 ⊂ . . . ⊂ L2(0, 1), Ṽj0 ⊂ Ṽj0+1 ⊂ . . . ⊂ L2(0, 1)

be sequences of primal and dual spaces with

dimVj = dim Ṽj

such that for uniform L2(0, 1)−Riesz bases Φj and Φ̃j for Vj and Ṽj, respectively,

〈
Φj, Φ̃j

〉−1

L2(0,1)

exists with a uniformly bounded spectral norm. In addition, for some 0 < γ < d, let

inf
vj∈Vj

||v − vj||L2(0,1) . 2−jd||v||Hd(0,1) ∀v ∈ Hd(0, 1),

(Jackson or direct estimate) and (Bernstein or inverse estimate)

||vj||Hs(0,1) . 2js||vj||L2(0,1) ∀vj ∈ Vj, s ∈ [0, γ),

where, for s ∈ [0, d], Hs(0, 1) =
[
L2(0, 1), Hd(0, 1) ∩H1

0 (0, 1)
]
s/d
, and let similar estimates

be valid at the dual side with Vj, d, γ,Hs(0, 1) reading as Ṽj, d̃, γ̃, H̃s(0, 1). And let Ψj be

uniform L2(0, 1)−Riesz bases for Wj := Vj+1∩ Ṽ ⊥L
2(0,1)

j , then for s ∈ (−γ̃, γ) the collection

Φj0 ∪
⋃

j∈N0

2−sjΨj0+j

is a Riesz basis for Hs(0, 1), where Hs(0, 1) := (H−s(0, 1))
′

for s < 0.

Concerning validity of direct and inverse estimates, it is well-known [17] that a direct
estimate of order d is satisfied when all polynomials of order d satisfying possibly boundary
conditions are included in the space Vj0 , while an inverse estimate of order γ is known to
hold with γ = r + 3

2
when spaces Vj are spanned by piecewise smooth Cr(0, 1) functions

for some r ∈ {−1, 0, 1, . . .}, where r = −1 means that no global continuity is satisfied.
Further generalization of previous works was proposed in [36]. It is useful especially in the
case when a proposed basis in not a Riesz basis of the space L2(0, 1).

Theorem 23. Let j0 be the coarsest level and let for some 0 < γ,

Vj0 ⊂ Vj0+1 ⊂ Vj0+2 ⊂ . . . ⊂ Hs(0, 1) ∀s ∈ [0, γ)
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be a sequence of primal spaces with uniformly local and uniformly stable bases Φj for Vj
which is a Bessel sequence in Hs(0, 1), ∀s ∈ (0, γ). In addition, for some γ ≤ d, let

inf
vj∈Vj

||v − vj||L2(0,1) . 2−jd||v||Hd(0,1) ∀v ∈ Hd(0, 1)

and let there exist a projection Pj : Vj+1 → Vj and 0 < µ < γ such that

||Pm · · ·Pn−1|| . 2µ(n−m) ∀m,n ∈ N with j0 ≤ m < n.

And let Ψj be uniform L2(0, 1)−Riesz bases for Wj := KerPj, then for s ∈ (µ, γ) the
collection

Φj0 ∪
⋃

j∈N0

2−sjΨj0+j

is a Riesz basis for Hs(0, 1).

Some sufficient conditions for Φj to be a Bessel sequence are given in [35].

2.4 An Application of Riesz Basis Property

We show here that condition numbers of stiffness matrices arising from discretization of
elliptic partial differential equations by wavelets depend on Riesz constants of a wavelet
basis. Therefore it is necessary construct wavelet bases which are well-conditioned in the
sense that their Riesz condition number is as small as possible. We consider here the
following Dirichlet problem

u−
d∑

i=1

∂2u

∂x2
i

= f in Ω = (0, 1)d with u = 0 on ∂Ω (2.4)

for given f ∈ H−1 (Ω) . A Riesz wavelet basis for H1
0 (Ω) can be constructed by a tensor

product of univariate Riesz wavelet bases. Indeed, let Ψ = {ψλ, λ ∈ J } be after appropriate
normalization a Riesz wavelet basis for spaces L2(0, 1) and H1

0 (0, 1) then

Ψ =

{
ψλ :=

⊗dj=1ψλm∥∥⊗dj=1ψλm
∥∥
H1(Ω)

,λ ∈ J d

}

is a Riesz basis for H1
0 (Ω) (see [31]) with the Riesz constants (see [28])

min (c0, c1) cd−1
0 ‖b‖2

l2(J d) ≤

∥∥∥∥∥∥
∑

λ∈J d
bλψλ

∥∥∥∥∥∥

2

H1(Ω)

≤ max (C0, C1)Cd−1
0 ‖b‖2

l2(J d) (2.5)

∀b ∈ l2
(
J d
)
, where constants c0, C0, c1, C1 are Riesz constants with respect to spaces L2

and H1, respectively, and the index set J d is defined by J d := {λ = (λ1, . . . , λd), λi ∈ J }
Writing

u = uTΨ :=
∑

λ∈J d
uλψλ and f = (f(ψλ))λ∈J d ,
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then an equivalent formulation of (2.4) is

Au = f

with
A = D−1/2 (M⊗ . . .⊗M + S⊗ . . .⊗M + · · ·+ M⊗ . . .⊗ S) D−1/2,

where D = diag
[∥∥⊗dj=1ψλm

∥∥
H1(Ω)

]
λ∈J d

, and

S =

(∫ 1

0

∂ψλ
∂x

∂ψµ
∂x

dx

)

λ,µ∈J
and M =

(∫ 1

0

ψλ ψµ dx

)

λ,µ∈J

are the one-dimensional stiffness and the mass matrices, respectively. Then (2.5) implies

cond (A) ≤ max (C0, C1)Cd−1
0

min (c0, c1) cd−1
0

.

In general case, let us assume, that we have the following variational problem: for given
f ∈ H′ find u ∈ H such that

a(u, v) = f(v) ∀v ∈ H, (2.6)

where H is a Hilbert space and a is a continuous bilinear form. Then, we define the
operator A : H → H′ by

A(u)(v) = a(u, v) ∀v ∈ H,
and then (2.6) is equivalent to

A(u) = f.

If a is H−elliptic, then there exist positive constants cA, CA such that

cA ‖v‖H ≤ ‖A(v)‖H′ ≤ CA ‖v‖H ∀v ∈ H. (2.7)

Moreover, we will assume that we have a suitable wavelet basis Ψ of the spaceH normalized
in H with Riesz constants c, C and we define A = a (Ψ,Ψ) and f = f (Ψ), then

A(u) = f ⇐⇒ Au = f ,

where u = uTΨ, and

cond (A) ≤ C2CA
c2cA

.

Proof can be found in [3]. Thus we can conclude that the condition number of the stiffness
matrix A is bounded which favorably influences a number of iteration needed to solve a
system of equations resulting from a wavelet discretization of (2.6). And then it greatly
influences efficiency of adaptive wavelet methods. Therefore it is useful to develop well-
conditioned wavelet bases on the interval. Well-conditioned wavelet basis for different
types of wavelets and for different types of boundary conditions were already constructed
in [7, 8, 10, 11, 37].
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Chapter 3

Selected Results

In the last chapter we present selected results published in the following four papers:

• Černá, D.; Finěk, V.; Najzar, K.: On the exact values of coefficients of Coiflets, Cent.
Eur. J. Math. 6(1), (2008), pp. 159-170.

• Černá, D.; Finěk, V.: Construction of optimally conditioned cubic spline wavelets on
the interval, Adv. Comput. Math. 34(2), (2011), pp. 219-252.

• Černá, D.; Finěk, V.: Cubic Spline Wavelets with Complementary Boundary Condi-
tions, Appl. Math. Comput. 219, (2012), pp. 1853-1865.

• Černá, D.; Finěk, V.: Wavelet basis of cubic splines on the hypercube satisfying homo-
geneous boundary conditions, Int. J. Wavelets Multi. 13(3), (2015), pp. 1550014/1-
21.

• Černá, D.; Finěk, V.: On a sparse representation of a n-dimensional Laplacian in
wavelet coordinates, Result. Math., DOI 10.1007/s00025-015-0488-5, (2015).

We shortly introduce here these papers and then we include them into this work.

3.1 On the Exact Values of Coefficients of Coiflets

In 1989, R. Coifman suggested orthonormal wavelets in L2(R) with vanishing moments
for both scaling and wavelet functions. In practical applications these wavelets are useful
due to their nearly linear phase and almost interpolating property. For more details we
refer to [34]. They were first constructed by I. Daubechies [26, 27] and she named them
coiflets. She created coiflets by setting an equal number N of vanishing wavelet moments
and vanishing scaling moments for even N and the length of support 3N , see [26, 27]. It
was noticed in [1] that these coiflets has one additional vanishing scaling moment than
imposed. Another types of coiflets can be found in literature. For example C. S. Burrus
and J. E. Odegard [5] constructed coiflets with N vanishing moments for odd N and the

28



length of support 3N + 1 which has two additional vanishing scaling moments. Another
approach proposed in [34] consists in a parametrization of coiflets by the first moment of
the scaling function. By allowing noninteger values for this parameter, the interpolation
and linear phase properties of coiflets can be further optimized.
In the paper “On the Exact Values of Coefficients of Coiflets” [14], we proposed a system
of necessary conditions which is redundant free and more simple than other known systems
due to elimination of some quadratic (orthonormality) conditions, thus a computation of
scaling coefficient of coiflets is substantially simplified and enables to find the exact values
of the scaling coefficients up to filters of the length 8 and two further with filters of the
length 12. For scaling coefficients of coiflets with filters of the length 14 we obtained two
quadratic equations, which can be transformed to polynomial of degree 4 and there is
an algebraic formula to solve them. For larger filters up to filters of the length 20, we
were able to find all possible solutions by employing a Gröbner basis method. Finally, we
verified orthonormality by the sufficient Lawton criterion [32] and found that all solutions
correspond to an orthonormal wavelet. Obtained solutions are not of the same quality,
because also their smoothness and symmetry plays a role. For this reason, we also computed
their Sobolev exponents of smoothness by methods proposed in [30, 41].
There is a number of numerical methods which were used to find scaling coefficients of
coiflets but these methods enable to derive only one particular solution for each system
and the convergence and the obtained solution depends on the initial starting point, thus
it is difficult to find all possible solutions. Moreover, the coefficients for length greater than
16 are given with less precision due to the round-off error [27].

3.2 Construction of Optimally Conditioned Cubic

Spline Wavelets on the Interval

The first biorthogonal spline wavelet bases on the unit interval were constructed in [24].
In this construction both primal and dual bases functions are compactly supported. How-
ever in the most cases, these bases have relatively large condition numbers which causes
problems in practical applications. Many modifications improving condition numbers were
proposed. We mention only a construction proposed by M. Primbs [37] which seems to
outperform the previous constructions with respect to the Riesz bounds as well as spectral
properties of the corresponding stiffness matrices in the case of linear and quadratic spline
wavelets.
In the paper “Construction of Optimally Conditioned Cubic Spline Wavelets on the Inter-
val” [7], we focused on cubic spline wavelets and we constructed spline wavelet bases on
the interval with condition numbers which are close to condition numbers of spline wavelet
bases on the real line. In this sense, they are optimally conditioned because it is known that
a condition number of the wavelet basis on the interval can not be better then a condition
number of a wavelet basis on the real line [2]. From the viewpoint of numerical stability,
ideal wavelet bases are orthogonal wavelet bases. However, they are usually avoided in
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the numerical treatment of partial differential and integral equations, because they are not
usually known in a closed form, sufficiently smooth orthogonal wavelets typically have a
large support and it is not possible to increase a number of vanishing wavelet moments
independent from the order of accuracy.
Constructed wavelets have the following properties:

• Riesz basis property. Functions form a Riesz basis of the space L2 (0, 1).

• Locality. Basis functions are local.

• Biorthogonality. Primal and dual wavelet bases form a biorthogonal pair.

• Polynomial exactness. Primal multiresolution analysis has a polynomial exactness of
order N and the dual multiresolution analysis has a polynomial exactness of order
Ñ . As in [21], N + Ñ has to be even and Ñ ≥ N .

• Smoothness. Certain smoothness for primal and dual wavelet basis functions.

• Closed form. Primal scaling functions and wavelets are known in the closed form.

• Well-conditioned bases. Constructed wavelet bases have improved condition numbers
in comparison with previous constructions of the same type.

The primal scaling functions are B-splines, which have been used also in [37]. Then we
constructed a dual multiresolution analysis which is generated by three types of scaling
functions. Inner scaling functions are the same as in [21] and there are two types of
boundary scaling functions. Scaling functions of the first type are defined to preserve
the prescribed polynomial exactness in the same way as in [22]. Scaling functions of the
second type are constructed to be as similar as possible to restrictions of inner scaling
functions. Consequently we computed refinement matrices and constructed wavelets by a
method of stable completion. The construction of initial stable completion is along the
lines of [24]. Furthermore, we showed that the constructed set of functions are indeed a
Riesz basis for the space L2 (0, 1) and for the Sobolev space Hs (0, 1) for a certain range
of s. Finally, we adapted primal bases to homogeneous Dirichlet boundary conditions of
the first order and we compared quantitative properties of the constructed bases and the
efficiency of an adaptive wavelet scheme for several spline wavelet bases to demonstrate a
superiority of our construction. Numerical examples were presented for one-dimensional
and two-dimensional Poisson equations where the solution has a steep gradient.

3.3 Cubic Spline Wavelets with Complementary

Boundary Conditions

In the paper “Cubic Spline Wavelets with Complementary Boundary Conditions” [8], we
constructed a new stable cubic spline wavelet basis on the interval satisfying complemen-
tary boundary conditions of the second order i.e. the primal wavelet basis is adapted to
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homogeneous Dirichlet boundary conditions of the second order, while the dual wavelet
basis preserves the full degree of polynomial exactness. Primal wavelets have six vanishing
moments. Moreover, we proposed further decomposition of the scaling basis at the coars-
est level. We decomposed the scaling basis Φ4 into the scaling basis Φ3 and the wavelet
basis Ψ3. These new wavelets from Ψ3 have four vanishing moments while supports of new
boundary scaling functions from Φ3 overlap in contrast to boundary scaling functions from
Φ4. This modification leads to improved Riesz condition numbers of the proposed basis.
The primal scaling functions are B-splines satisfying homogeneous Dirichlet boundary con-
ditions of the second order. Then in the similar way as in [7], we constructed a dual mul-
tiresolution analysis which is generated by three types of scaling functions. Inner scaling
functions are the same as in [21] and there are two types of boundary scaling functions.
Scaling functions of the first type are defined to preserve the prescribed polynomial exact-
ness while scaling functions of the second type are constructed to be as similar as possible
to restrictions of inner scaling functions. Consequently we computed refinement matrices
and constructed wavelets by a method of stable completion. We proposed a new con-
struction of the initial stable completion because the standard construction from [24] led
to singular matrices. Finally, we presented quantitative properties of the proposed basis
and we compared them with some other cubic spline wavelet bases to show superiority of
our construction. Numerical examples were presented for the two-dimensional biharmonic
equation where the solution has a steep gradient.

3.4 Wavelet Basis of Cubic Splines on the Hypercube

Satisfying Homogeneous Boundary Conditions

In the paper “Wavelet Basis of Cubic Splines on the Hypercube Satisfying Homogeneous
Boundary Conditions” [12], we constructed new cubic spline wavelet basis on the hypercube
that is well-conditioned, adapted to homogeneous Dirichlet boundary conditions and the
wavelets have two vanishing moments. Proposed wavelets have the same properties as
wavelets in the construction [7] with one exception. We do not require compact support
for dual functions which enables to construct primal functions with better properties. Dual
functions are not in fact used in some applications of wavelets such as numerical solution
of linear differential equations. The advantage of our construction in comparison with
similar cubic spline wavelets with local dual functions [7, 8, 24, 37] is that the support of
wavelets is shorter, Riesz condition numbers are smaller and another advantage is also a
simple construction. Then stiffness matrices arising from discretization of elliptic problems
using proposed wavelets have uniformly bounded condition numbers and these condition
numbers are small. It leads in combination with shorter support to more efficient numerical
solvers.
The primal scaling functions are B-splines, which have been used also in [7]. Then we
constructed a primal wavelet basis generated by one inner and two boundary wavelets.
Inner wavelets are generated by a single function supported in the interval [0, 5] and there
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are at each side two boundary wavelets. The first one is supported in the interval [0, 4]
and the second one is supported in the interval [0, 3]. All three types of wavelet are
constructed to be orthogonal to continuous piecewise linear functions which are linear on
pieces

[
k
2
, k+1

2

]
for k ∈ N. A space generated by these continuous piecewise linear functions

forms a dual multiresolution space which is consequently used in the proof of the Riesz basis
property. Moreover from the construction immediately follows that constructed wavelets
have two vanishing wavelet moments. Finally, we presented quantitative properties of
the constructed basis and we also provided a numerical example to show an efficiency of
Galerkin method using constructed basis.

3.5 On a Sparse Representation of a n-dimensional

Laplacian in Wavelet Coordinates

A general concept for solving of operator equations by means of wavelets was proposed
by A. Cohen, W. Dahmen and R. DeVore in [19, 20]. It consists of the following steps:
transformation of the variational formulation into the well-conditioned infinite-dimensional
problem in the space l2, finding of the convergent iteration process for the l2− problem
and finally a derivation of its computable version. The aim is to find an approximation of
the unknown solution u which should correspond to the best N -term approximation, and
the associated computational work should be proportional to the number of unknowns.
Essential components to achieve this goal are well-conditioned wavelet stiffness matrices
and an efficient approximate multiplication of quasi-sparse wavelet stiffness matrices with
vectors.
In [19], authors exploited an off-diagonal decay of entries of the wavelet stiffness matrices
and designed a numerical routine APPLY which approximates the exact matrix-vector
product with the desired tolerance ε and that has linear computational complexity, up to
sorting operations. The idea of APPLY is following: To truncate A in scale by zeroing
ai,j whenever δ(i, j) > k (δ represents the level difference of two functions in the wavelet
expansion) and denote resulting matrix by Ak. At the same time to sort vector entries v
with respect to the size of their absolute values. One obtains vk by retaining 2k biggest
coefficients in absolute values of v and setting all other equal to zero. The maximum
value of k should be determined to reach a desired accuracy of approximation. Then one
computes an approximation of Av by

w := Akv0 + Ak−1(v1 − v0) + . . .+ A0(vk − vk−1) (3.1)

with the aim to balance both accuracy and computational complexity at the same time.
Improvements of this scheme were proposed in [9, 28, 39]. Although the APPLY routine
has optimal computational complexity, its application is relatively time consuming and
moreover it is not easy to implement it efficiently.
In the paper “On a Sparse Representation of a n-dimensional Laplacian in Wavelet Coor-
dinates” [13], we constructed a wavelet basis based on Hermite cubic splines with respect
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to which both the mass matrix and the stiffness matrix corresponding to one dimensional
Poisson equation are sparse. This means that the number of nonzero elements in any col-
umn is bounded independently of matrix size while stiffness matrices in wavelet coordinates
are usually only quasi sparse. Then, matrix-vector multiplication can be performed exactly
with linear complexity for any second order PDEs with constant coefficients. Moreover,
the proposed basis is very well-conditioned for low decomposition levels. Small condition
numbers for low decomposition levels and a sparse structure of stiffness matrices are kept
for any second order PDEs with constant coefficients, which are well-conditioned in the
sense of (2.7), and moreover they are independent of the space dimension. Wavelets with
similar properties were already proposed in [29]. Our wavelets generate the same multires-
olution spaces as wavelets from [29] but have improved condition numbers. In comparison
with wavelets from [29], we constructed two new wavelets (the first two wavelets are the
same) and we also modified boundary scaling functions at the coarsest level as well as
wavelets at the coarsest level.
Our construction proceeded in this way. First, we constructed four wavelets in such a way
that wavelets from the space Wn+1 are orthogonal to the scaling functions from the space
Vn for n ≥ 1. This property ensures that both the mass and stiffness matrices corresponding
to the one-dimensional Laplacian have at most three wavelet blocks of nonzero elements in
any column and, consequently, the number of nonzero elements in any column is bounded
independently of matrix size. The first two wavelets have supports in [−1, 1]. They are
uniquely determined by their orthogonality to cubic polynomials and by imposing that
the first one is odd and the second one is even. The other two wavelets have supports in
[−2, 2]. We impose on them the above orthogonality condition again, which will be ensured
by requiring that they are orthogonal to cubic polynomials on intervals [−2, 0] and [0, 2],
respectively. Again, the first of them should be odd, and the second one even. There
remains several free parameters. To obtain a more sparse stiffness matrix and a better
conditioned wavelet basis, we use these free parameters to prescribe the orthogonality of
the first derivative of constructed wavelets to the first derivative of the first two wavelets. In
the next step, we modified boundary scaling functions at the coarsest level and also wavelets
at the coarsest level to further improve condition numbers of the constructed wavelet basis
and to preserve or improve a sparse structure of the stiffness matrix corresponding to the
one-dimensional Laplacian, and a sparser structure of the mass matrix, respectively. A
span of these new functions will be the same as the span of the original functions. In [13],
we proved that the constructed basis is a Riesz basis and computed condition numbers for
model problems and compared them with condition numbers for a similar wavelet basis
proposed in [29].
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by I. Daubechies [16, 15] and she named them coiflets. In this paper, we propose a system

of necessary conditions which is redundant free and more simple than the known system due

to elimination of some quadratic conditions, thus a construction of coiflets is simplified and

enables us to find the exact values of the scaling coefficients of coiflets up to length 8 and two
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two quadratic equations, which can be transformed to polynomial of degree 4 and there is an
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1 Introduction

Approximation properties of multiresolution analysis and the smoothness of wavelet and

the scaling function depend on the number of vanishing wavelet moments. In [14]

Daubechies constructed orthonormal wavelets with arbitrary number N of vanishing

wavelet moments and the minimal length of support 2N − 1. The filter coefficients

were computed there by an analytical method and exact values could be found only for
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filters up to length 6. In [26] Shann and Yen calculated the exact values of filter coef-

ficients of Daubechies wavelets of length 8 and 10. Other approaches for constructing

Daubechies wavelets which enables to find exact values of some coefficients can be found

in [9, 10, 23, 24].

In addition to the orthogonality, compact support and vanishing wavelet moments,

Coifman has suggested that also requiring vanishing scaling moments has some advan-

tages. In practical applications these wavelets are useful due to their ’nearly linear phase’

and ’almost interpolating property’, see [22]. Daubechies created coiflets by setting an

equal number N of vanishing wavelet moments and vanishing scaling moments for even

N and the length of support 3N , see [16, 15]. It was noticed in [4] that these coiflets has

one additional vanishing scaling moment than is imposed. Tian constructed coiflets with

N vanishing moments for odd N and the length of support 3N − 1 in [27, 29]. Burrus

and Odegard constructed coiflets with N vanishing moments for odd N and the length

of support 3N + 1 which has two additional vanishing scaling moments, see [7]. In this

paper the computation of exact values of filter coefficients of coiflets up to filter length

14 is presented.

There exist a number of coiflet filter design methods, such as Newton’s method [16, 25]

or iterative numerical optimization [7]. These methods enable to derive one particular

solution for each system and the convergence and the obtained solution depends on the

initial starting point, thus it is difficult to find all possible solutions. Moreover, the

coefficients for length greater than 16 are given with less precision due to the roundoff

error [15]. As an alternative one can use Gröbner basis method [1, 6, 21]. This method

is geared toward solving a polynomial system of equations with finite solutions. The idea

consists of finding a new set of equations equivalent to the original set, which can be

solved more easily. The advantage of such an approach is that solutions can be computed

to arbitrary precision and that in some cases it gives all possible solutions for a given

system of polynomial equations. In this paper we derive a redundant free and simplified

system of equations and then aplly Gröbner basis method. By this approach we are able

to find some exact values of filter coefficients and to find all possible solutions for filters

up to length 20.

2 Preliminaries

The scaling function φ, which generates a coiflet, is constructed as the solution of scaling

equation

φ = 2
∑

k∈Z
hkφ(2 · −k), (1)

where scaling coefficients {hk} are determined so that the corresponding scaling functions

and wavelets have required properties.
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Definition 2.1. An orthonormal wavelet ψ with compact support is called a coiflet of

order N , if the following conditions are satisfied:

i)

∫ ∞

−∞
xnψ (x) dx = 0 for n = 0, . . . N − 1,

ii)

∫ ∞

−∞
xnφ (x) dx = δn for n = 0, . . . N − 1,

where φ is scaling function corresponding to ψ and δn is Kronecker delta, i.e. δ0 = 1 and

δn = 0 for n 6= 0.

Since also a length of support plays a role, it is common to consider a wavelet satisfying

i) and ii) which has the minimal length of support. The existence of coiflet for an arbitrary

order N is still an open question. We rewrite this definition in terms of filter coefficients

{hk}. It is known that for orthonormal wavelet with compact support a number of filter

coefficients is even number, we denote it by 2M .

Lemma 2.2. Let {hk}N2
k=N1

be the real coefficients, N2 = N1 +2M−1. If the orthonormal

wavelet corresponding to the scaling function φ(·) = 2
∑N2

k=N1
hk φ(2 · −k) is a coiflet of

order N , then the following three conditions are satisfied:

i) δm = 2

N2−N1−2m∑

j=0

hN1+jhN1+2m+j for 0 ≤ m ≤M − 1,

ii)

N2∑

k=N1

hkk
n = δn for 0 ≤ n ≤ N − 1,

iii)

N2∑

k=N1

(−1)khkk
n = 0 for 0 ≤ n ≤ N − 1.

Condition i) is necessary but not sufficient for wavelet to be orthonormal. Conditions

ii) and iii) are equivalent to vanishing wavelet and vanishing scaling function moments,

respectively. In summary, conditions in Lemma 2.2 are only necessary. It is known

that they are not sufficient to generate a coiflet system. There exist functions given

by (1) with filter coefficients satisfying i) − iii) from Lemma 2.2 which are very rough.

Hence after finding coefficients satisfying i) − iii) orthonormality should be verified, for

example using Cohen [11] or Lawton [20] condition. There are typically more than one

wavelet satisfying these conditions and some of them, despite zero wavelet moments, are

very rough. Likewise, in spite of zero scaling function moments, some are not at all

symmetric. In practical applications the most regular wavelet or the wavelet with the

most symetrical scaling function is typically chosen.

3 Construction

It is well known that coiflets have more vanishing scaling moments than required in

above definition. This was first noted by G. Beylkin at al. in [4]. In this paper, we derive



4 D. Černá, V. Finěk / Central European Science Journals 1 (2003) 1–15

redundant free and simpler definition of coiflets. The key component of our approach is

formed by the following Theorem:

Theorem 3.1. Let N2 = N1 + 2M − 1 then

δm = 2

N2−2m∑

j=N1

hjhj+2m for 0 ≤ m ≤M − 1 (2)

is equivalent to

1

2
δn =

2n∑

i=0

(
2n

i

)
(−1)i(aia2n−i + bib2n−i) for 0 ≤ n ≤M − 1, (3)

where

ai =
M−1∑

k=0

(N1 + 2k)ihN1+2k and bi =
M−1∑

k=0

(N1 + 2k + 1)ihN1+2k+1. (4)

Proof. Since the condition (2) is equivalent to condition

|m (ω) |2 + |m (ω + π) |2 = 1, (5)

where

m (ω) =

N2∑

k=N1

hke
−ikω,

we can repeat the proof of Theorem 3.1 in [19] with some obvious changes. 2

Due to Theorem 3.1 we are now able to impose necessary conditions on filter coeffi-

cients to generate a coiflet which are equivalent to conditions from Lemma 2.2 and the

arising system is without redundant conditions.

Corollary 3.2. Let {hk}N2
k=N1

be the real coefficients, N2 = N1 + 2M − 1 and let ai and

bi be defined by (4). Then conditions i) − iii) from Lemma 2.2 are equivalent to the

following conditions:

i∗) 0 =
2n∑

i=0

(
2n

i

)
(−1)i(aia2n−i + bib2n−i) for N ≤ n ≤M − 1,

ii∗) a0 = b0 =
1

2
,

iii∗) an = bn = 0 for 1 ≤ n ≤ N − 1,

iv∗) a2n + b2n = 0 for N ≤ 2n ≤ 2N − 2.
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Proof. It is clear that ii) and iii) are equivalent to ii∗) and iii∗). The rest follows from

Theorem 3.1. 2

The consequence of this Corollary is that the minimal length of support of coiflet

of order N is 3N for even N and 3N − 1 for odd N and that some coiflets have more

vanishing moments than is imposed. Thus, we have three classes of coiflets, see Table 1.

Table 1 The length of filter 2M , the number of vanishing scaling and wavelet moments for
coiflet of order N

N 2M number of vanishing number of vanishing

scaling moments wavelet moments

set actual set actual

even 3N N N+1 N N

odd 3N-1 N N N N

odd 3N+1 N+1 N+2 N N

Now we further simplify the system by replacing some quadratic conditions by linear

ones.

Lemma 3.3. Let ai, bi be defined by (4). Then ai for i ≥ M is linear combination of

a0, . . . aM−1 and bi for i ≥M is linear combination of b0, . . . bM−1.

Proof. Coefficients hN1 , hN1+2, . . . hN1+2M−2 are solution of the system of linear algebraic

equations (4). Since the matrix of this system is regular, the solution exists and is unique.

ai is a linear combination of hN1 , hN1+2, . . . hN1+2M−2 and thus ai for i ≥ M is a linear

combination of ai for 0 ≤ i ≤M − 1:

ai = ci0a0 + ci1a1 + . . . ciM−1aM−1,

where the coefficients of this linear combinations are given by




1 N1 N2
1 . . . NM−1

1

1 N1 + 2 (N1 + 2)2 . . . (N1 + 2)M−1

...
...

1 N1 + 2M − 2 (N1 + 2M − 2)2 . . . (N1 + 2M − 2)M−1







ci0

ci1
...

ciM−1




=




N i
1

(N1 + 2)i

...

(N1 + 2M − 2)i



.

The situation for bi is similar. 2

Now we summarize the procedure of construction which enables us to find exact values

of coefficients of coiflets up to length of support 14:
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1. For given N take the system of algebraic equations given by Corollary 3.2.

2. Replace aM , . . . a2M−2 by linear combinations of a0, . . . aM−1 and bM , . . . b2M−2 by

linear combinations of b0, . . . bM−1.

3. Solve the arising system for a0, . . . aM−1, b0, . . . bM−1. For greater N use Gröbner

basis method to simplify the system.

4. Compute filter coefficients hN1 , . . . , hN2 by solving the system of linear algebraic

equations (4).

4 Examples

At last we provide two examples to illustrate our approach based on Corollary 3.2.

Example 4.1. For N = 4 and N1 = −5, the following system will be obtained

a0 = b0 =
1

2
and a1 = a2 = a3 = b1 = b2 = b3 = 0,

a4 + b4 = 0 and a6 + b6 = 0, (6)

a8 + b8 + 140 b2
4 = 0 and a10 + b10 + 840 b4 b6 − 252(a2

5 + b2
5) = 0. (7)

Now a6, a8, a10, b6, b8, b10 are linear combinations of a0 . . . a5, b0 . . . b5. We find

these linear combinations and substitute them to (6) and (7). Then after simplification

we obtain system

−135 + 12b4 + 8b2
4 = 0, a4 + b4 = 0,

75− 10b4 + 4b5 = 0, 32a2
5 + 12300b4 − 28575 = 0.

In this case we can easily find both real solutions in closed form. See Table 2 and Table 3.

Example 4.2. For N = 5 and N1 = −5, the following system will be obtained

a0 = b0 =
1

2
and a1 = a2 = a3 = a4 = b1 = b2 = b3 = b4 = 0,

a6 + b6 = 0 and a8 + b8 = 0, (8)

a10+b10−252(a2
5+b2

5) = 0 and a12+b12−1584 b5 b7−1584 a5 a7+924(a2
5+b2

5) = 0. (9)

Now a7, a8, a10, a12, b6, b8, b10, b12 are linear combinations of a0 . . . a6, b0 . . . b6.

We find these linear combinations and substitute them to (8) and (9). Consequently we

simplify arising system and finally we compute its Gröbner bases. The following system

is obtained:

11419648 b4
5 + 246374400 b3

5 − 13765248000 b2
5 − 497539800000 b5 − 4303042734375 = 0,

298890000 a5 − 5709824 b3
5 + 3945600 b2

5 + 6931764000 b5 + 94943559375 = 0,
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8 a6 + 64 b5 + 525 = 0, −525− 64 b5 + 8 b6 = 0.

Then by using an algebraic formula for the solution of polynomials of degree 4 we obtain

two different real roots:

b5 =
15
(√

15u3/4 − 4010u1/6v1/4 ±
√

15
√
w
)

11152u1/6v1/4
,

where

u = 4854802096+ 369
√

15
√

66685436848043, v = 8475076u1/3 + 697u2/3−3366028373,

w = 16950152u1/3
√
v − 697

√
v u2/3 + 3366028373

√
v + 13383342756

√
15
√
u.

Once we have the values of b5, we simply find a5, a6, and b6. And finally we transform

coefficients ai and bi to scaling coefficients hi.

5 Properties of coiflets

Let us now mention the properties of constructed wavelets. It is well-known that the

approximation properties depend on the number of vanishing wavelet moments. More

precisely, let Pjf be an approximation of f ∈ L2 (R) on level j, i.e.

Pjf =
∑

k∈Z
〈f, φj,k〉φj,k (10)

and for J < j, it holds

Pjf =
∑

k∈Z
〈f, φJ,k〉φJ,k +

j−1∑

l=J

∑

k∈Z
〈f, ψl,k〉ψl,k, (11)

where φl,k = 2l/2φ
(
2l · −k

)
, ψl,k = 2l/2ψ

(
2l · −k

)
for l, k ∈ Z. Let us further denote

Il,k = supp φl,k, Jl,k = supp ψl,k. Wavelet coefficients satisfy

〈f, ψl,k〉 =

∫ ∞

−∞
f (x) 2l/2ψ

(
2lx− k

)
dx. (12)

and if f ∈ CN(Jl,k), then expanding f about
k

2l
by Taylor’s formula, it follows that for

all x ∈ Jl,k,

f (x) = f

(
k

2l

)
+f ′

(
k

2l

)(
x− k

2l

)
+. . .+

f (N−1)
(
k
2l

)

(N − 1)!

(
x− k

2l

)N−1

+
f (N) (ξ)

N !

(
x− k

2l

)N
,

(13)

where ξ depends on x and belongs to the interval Jl,k. If ψ has N vanishing moments,

i.e. condition i) in Definition 2.1 is satisfied, then the first N terms don’t contribute and

|〈f, ψl,k〉| =
∣∣∣∣∣

∫ ∞

−∞

f (N) (ξ (x))

N !

(
x− k

2l

)N
2l/2ψ

(
2lx− k

)
dx

∣∣∣∣∣ ≤ C2−l(N+1/2), (14)
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where

C =
maxξ∈Jl,k

∣∣f (N) (ξ)
∣∣

N !

∫

Jl,k

|y|N ψ (y) dy. (15)

Thus, for l large, the wavelet coefficients are small except these which are near singularities

of the function f or its derivatives. Small coefficients can be set to zero and the function

f can be represented by a small number of coefficients. This compression property of

wavelets has many applications. Most important are data compression, signal analysis

and efficient adaptive schemes for PDE’s. Note that more vanishing wavelet moments

implies a faster decay of wavelet coefficients and that only local smoothness of the function

f is involved in the above estimate. It was observed in [2] that also regularity of the scaling

function plays a role. We confirmed in our experiments that this is true for coiflets as

well. As an example, let us consider

f (x) = x5 if 0 ≤ x ≤ 0.5,

= (1− x)5 if 0.5 < x ≤ 1,

= 0 otherwise,

and its n-term approximation

fn (x) =
∑

λ=(l,k)∈Λnφ

〈f, φλ〉φλ +
∑

λ=(l,k)∈Λnψ

〈f, ψλ〉ψλ, (16)

where Λn
φ ⊂ {λ = (J, k) , k ∈ Z}, Λn

ψ ⊂ {λ = (l, k) , J ≤ l < j, k ∈ Z} and Λn
φ ∪ Λn

ψ is the

set of indexes of the n largest coefficients. In our case, the coarsest level is J = 3, the

finest level is j = 9 and the number of preserved coefficients is n = 50. The function

f has sharp derivative near the point x = 0.5 and the approximation is automatically

refined near this point. Errors of approximation for some of the constructed coiflets are

shown in Table 2. We can see that the most regular coiflet of prescribed order gives the

best result.

The significance of vanishing scaling moments highly depends on the type of appli-

cation. In [16], it is proved that all real orthonormal wavelets with compact support

are asymmetric. However, vanishing scaling moments result in ’almost symmetry’ of the

scaling function and filter. In image coding, more symmetry would result in greater com-

pressibility for the same perceptual error and it makes easier to deal with the boundaries

of the image. Vanishing scaling moments also causes ’nearly linear phase’, which is a de-

sired quality in many applications, e.g. transmission of audio and video signals, because

it doesn’t cause phase distortion. In numerical analysis, vanishing scaling moments are

important due to their ’almost interpolating property’. It means that any f ∈ CN
0 (R)

can be approximated by

fj = 2−j/2
∑

k∈Z
f

(
k

2j

)
φj,k (17)

and if the number of vanishing scaling and wavelet moments is N then this approximation

satisfies the following estimate

‖f − fj‖ ≤ C2−jN , (18)
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where C depends only on f and the scaling function φ, see [28]. Due to this property,

some types of operators can be treated efficiently. Thus coiflets have some interesting

properties and for some applications are more suitable than orthonormal wavelets with

vanishing wavelet moments only. The price to pay is of course the length of support, which

can make the computation more expensive. We should also mention that we can obtain

symmetric wavelets by giving up orthonormality. Symmetric biorthogonal wavelets were

constructed in [12], and construction of biorthogonal coiflets can be found in [28, 29].

However, there are applications where orthogonality plays a role and the disadvantage of

biorthogonal wavelets is their bad stability when adapted to the interval, see [5, 13].

In literature, one can find coiflets which are the most symmetrical among all coiflets

of given order and given length of support, see [7, 15, 16, 27, 29]. As we could see above,

these coiflets needn’t be the best and other solutions of equations given in Corollarry 3.2

may be better suited for some type of applications. Typically the most regular coiflet

for given order N has the best compression property and due to almost interpolating

property and ability to generate a stable wavelet basis on bounded domain it seems to

be very well suited for some applications, e.g. numerical solution of PDE’s.

Table 2 Error of approximation of the function f by 50 coefficients for coiflets of order N , length
of support 2M and Sobolev exponent of smoothness α

N 2M α L∞ of error L2 norm of error H1 seminorm of error

×10−6 ×10−7 ×10−4

1 4 0.604 743 1986 1358

1 4 0.050 2800 7332 5642

2 6 0.041 402 978 706

2 6 1.232 44 116 46

2 6 0.590 184 469 234

2 6 1.022 83 200 87

3 8 0.147 103 225 137

3 8 1.775 2 6 1

3 8 1.422 20 31 13

3 8 0.936 44 97 33

3 8 1.464 15 33 10

3 8 1.773 3 5 1
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6 Conclusion

The arising system from the Corollary 3.2 is redundant-free, more simple (due to elimi-

nation of some quadratic conditions) and enables to find directly the exact values of the

scaling coefficients of coiflets up to length 8 and two further with length 12 in closed form.

The results are given in Table 3, Table 4 and Table 5. We verified orthonormality by Law-

ton criterion, all the results correspond to orthonormal scaling function. As mentioned

earlier, the solutions are not of the same quality, because also smoothness and symmetry

plays a role. For this reason the most symmetrical scaling function among all scaling

functions of order N is denoted in Tables and the Sobolev exponents of smoothness are

computed by method from [17, 31]. Furthermore for remaining coiflets up to length 14 we

obtain two quadratic equations of two variables, which can be transformed to polynomial

of degree 4 and there is an algebraic formula to find solutions in closed form. These

solutions we do not provide because of their length and complicated structure. Moreover,

one can use our approach to find all possible solutions to given system up to the length of

filter 20. For longer filters the computation failed, because the coefficients of polynomials

in Gröbner basis were too large numbers.
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Table 3 Scaling coefficients of coiflets of order N , length of filter 2M and Sobolev exponent α

n hn n hn

N = 1, 2M = 2 0 1
2

1 7+
√

7
16

Haar wavelet 1 1
2

2 1+
√

7
16

N = 1, 2M = 4 -1 3
8
−
√

3
8

3 −3−
√

7
32

α = 0.604 0 3
8

+
√

3
8

N = 2, 2M = 6 -2 1−
√

7
32

1 1
8

+
√

3
8

α = 1.022 -1 5+
√

7
32

2 1
8
−
√

3
8

most symmetrical 0 7+
√

7
16

N = 1, 2M = 4 -1 3
8

+
√

3
8

1 7−
√

7
16

α = 0.050 0 3
8
−
√

3
8

2 1−
√

7
16

1 1
8
−
√

3
8

3 −3+
√

7
32

2 1
8

+
√

3
8

N = 3, 2M = 8 -1 15
64

+ 3
√

1495
1664

N = 2, 2M = 6 -1 9+
√

15
32

α = 0.147 0 59
128
−
√

1495
832

α = 0.041 0 13−
√

15
32

1 15
64
− 9

√
1495

1664

1 3−
√

15
16

2 15
128

+ 3
√

1495
832

2 3+
√

15
16

3 5
64

+ 9
√

1495
1664

3 1+
√

15
32

4 − 15
128
− 3

√
1495

832

4 −3−
√

15
32

5 − 3
64
− 3

√
1495

1664

N = 2, 2M = 6 -1 9−
√

15
32

6 5
128

+
√

1495
832

α = 1.232 0 13+
√

15
32

N = 3, 2M = 8 -1 15
64
− 3

√
1495

1664

1 3+
√

15
16

α = 1.775 0 59
128

+
√

1495
832

2 3−
√

15
16

1 15
64

+ 9
√

1495
1664

3 1−
√

15
32

2 15
128
− 3

√
1495

832

4 −3+
√

15
32

3 5
64
− 9

√
1495

1664

N = 2, 2M = 6 -2 1+
√

7
32

4 − 15
128

+ 3
√

1495
832

α = 0.590 -1 5−
√

7
32

5 − 3
64

+ 3
√

1495
1664

0 7−
√

7
16

6 5
128
−
√

1495
832



14 D. Černá, V. Finěk / Central European Science Journals 1 (2003) 1–15

Table 4 Scaling coefficients of coiflets of order N , length of filter 2M and Sobolev exponent α

n hn n hn

N = 3, 2M = 8 -2 21
640
− 3

√
31

320
N = 3, 2M = 8 -3 − 1

32
−
√

7
128

α = 1.422 -1 51
320

+ 3
√

31
640

α = 1.773 -2 − 3
128

0 257
640

+ 9
√

31
320

most symmetrical -1 9
32

+ 3
√

7
128

1 147
320
− 9

√
31

640
0 73

128

2 63
640
− 9

√
31

320
1 9

32
− 3

√
7

128

3 −47
320

+ 9
√

31
640

2 − 9
128

4 −21
640

+ 3
√

31
320

3 − 1
32

+
√

7
128

5 9
320
− 3

√
31

640
4 3

128

N = 3, 2M = 8 -2 21
640

+ 3
√

31
320

N = 4, 2M = 12 -5 7
1024

+
√

31
1024
−
√

336+82
√

31

2048

α = 0.936 -1 51
320
− 3

√
31

640
α = 1.707 -4 7

2048
− 3

√
31

2048

0 257
640
− 9

√
31

320
-3 − 53

1024
− 3

√
31

1024
+

5
√

336+82
√

31

2048

1 147
320

+ 9
√

31
640

-2 − 39
2048

+ 11
√

31
2048

2 63
640

+ 9
√

31
320

-1 151
512

+
√

31
512
− 5
√

336+82
√

31

1024

3 −47
320
− 9

√
31

640
0 555

1024
− 7

√
31

1024

4 −21
640
− 3

√
31

320
1 151

512
+
√

31
512

+
5
√

336+82
√

31

1024

5 9
320

+ 3
√

31
640

2 − 47
1024

+ 3
√

31
1024

N = 3, 2M = 8 -3 − 1
32

+
√

7
128

3 − 53
1024
− 3

√
31

1024
− 5
√

336+82
√

31

1024

α = 1.464 -2 − 3
128

4 51
2048

+
√

31
2048

-1 9
32
− 3

√
7

128
5 7

1024
+
√

31
1024

+

√
336+82

√
31

1024

0 73
128

6 − 11
2048
−
√

31
2048

1 9
32

+ 3
√

7
128

2 − 9
128

3 − 1
32
−
√

7
128

4 3
128
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Table 5 Scaling coefficients of coiflets of order N , length of filter 2M and Sobolev exponent α

n hn

N = 4, 2M = 12 -5 7
1024

+
√

31
1024

+

√
336+82

√
31

2048

α = 2.174 -4 7
2048
− 3

√
31

2048

-3 − 53
1024
− 3

√
31

1024
− 5
√

336+82
√

31

2048

-2 − 39
2048

+ 11
√

31
2048

-1 151
512

+
√

31
512

+
5
√

336+82
√

31

1024

0 555
1024
− 7

√
31

1024

1 151
512

+
√

31
512
− 5
√

336+82
√

31

1024

2 − 47
1024

+ 3
√

31
1024

3 − 53
1024
− 3

√
31

1024
+

5
√

336+82
√

31

1024

4 51
2048

+
√

31
2048

5 7
1024

+
√

31
1024
−
√

336+82
√

31

1024

6 − 11
2048
−
√

31
2048
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Abstract The paper is concerned with the construction of new spline-wavelet bases on the interval. The result-
ing bases generate multiresolution analyses on the unit interval with the desired number of vanishing wavelet
moments for primal and dual wavelets. Both primal and dual wavelets have compact support. Inner wavelets
are translated and dilated versions of well-known waveletsdesigned by Cohen, Daubechies, and Feauveau. Our
objective is to construct interval spline-wavelet bases with the condition number which is close to the condition
number of the spline wavelet bases on the real line, especially in the case of the cubic spline wavelets. We show
that the constructed set of functions is indeed a Riesz basisfor the spaceL2 ([0,1]) and for the Sobolev space
Hs([0,1]) for a certain range ofs. Then we adapt the primal bases to the homogeneous Dirichletboundary con-
ditions of the first order and the dual bases to the complementary boundary conditions. Quantitative properties
of the constructed bases are presented. Finally, we comparethe efficiency of adaptive wavelet scheme for several
spline-wavelet bases and we show the superiority of our construction. Numerical examples are presented for
one-dimensional and two-dimensional Poisson equations where the solution has steep gradients.
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1 Introduction

Wavelets are by now a widely accepted tool in signal and imageprocessing as well as in numerical simulation. In
the field of numerical analysis, methods based on wavelets are successfully used especially for preconditioning of
large systems arising from discretization of elliptic partial differential equations, sparse representations of some
types of operators and adaptive solving of operator equations. The quantitative performance of such methods
strongly depends on the choice of the wavelet basis, in particular on its condition number.

Wavelet bases on a bounded domain are usually constructed inthe following way: Wavelets on the real line
are adapted to the interval and then by tensor product technique to then-dimensional cube. Finally by splitting
the domain into subdomains which are images of(0,1)n under appropriate parametric mappings one can obtain
wavelet bases on a fairly general domain. Thus, the properties of the employed wavelet basis on the interval are
crucial for the properties of the resulting bases on generaldomain.
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Biorthogonal spline-wavelet bases on the unit interval were constructed in [16]. The disadvantage of them
is their bad condition which causes problems in practical applications. Some modifications which lead to better
conditioned bases were proposed in [2], [17], [24], and [33]. The recent construction by M. Primbs, see [12],
[24], or [25], seems to outperform the previous constructions with respect to the Riesz bounds as well as spectral
properties of the corresponding stiffness matrices in the case of linear and quadratic spline-wavelets. In this
paper, we focus on cubic spline wavelets and we construct interval spline-wavelet bases with the condition
number which is close to the condition number of the spline wavelet bases on the real line. It is known that the
condition number of the wavelet basis on the real line is lessor equal to the condition number of the interval
wavelet basis, where the inner functions are restrictions of scaling functions and wavelets on the real line.

First of all, we summarize the desired properties:

– Riesz basis property.The functions form a Riesz basis of the spaceL2 ([0,1]).
– Locality.The basis functions are local. Then the corresponding decomposition and reconstruction algorithms

are simple and fast.
– Biorthogonality.The primal and dual wavelet bases form a biorthogonal pair.
– Polymial exactness.The primal MRA has polynomial exactness of orderN and the dual MRA has polynomial

exactness of order̃N. As in [9], N+ Ñ has to be even and̃N ≥ N.
– Smoothness.The smoothness of primal and dual wavelet bases is another desired property. It ensures the

validity of norm equivalences, for details see below.
– Closed form.The primal scaling functions and wavelets are known in the closed form. It is desirable property

for the fast computation of integrals involving primal scaling functions and wavelets.
– Well-conditioned bases.Our objective is to construct wavelet bases with improved condition number, espe-

cially for larger values ofN andÑ.

From the viewpoint of numerical stability, ideal wavelet bases are orthogonal wavelet bases. However, they
are usually avoided in numerical treatment of partial differential and integral equations, because they are not
accessible analytically, the complementary boundary conditions can not be satisfied and it is not possible to in-
crease the number of vanishing wavelet moments independentfrom the order of accuracy. Moreover, sufficiently
smooth orthogonal wavelets typically have a large support.

Biorthogonal wavelet bases on the unit interval derived from B-splines were constructed also in [8] and [19]
and they were adapted to homogeneous Dirichlet boundary conditions in [20]. These bases are well-conditioned,
but have globally supported dual basis functions. Another construction of spline-wavelets was proposed in [4],
but the corresponding dual bases are unknown so far. We should also mention the construction of spline multi-
wavelets [15], [22], and [28], though the dual wavelets havea low Sobolev regularity.

The paper is organized as follows. Section 2 provides a shortintroduction to the concept of wavelet bases.
Section 3 is concerned with the construction of primal multiresolution analysis on the interval. The primal scaling
functions are B-splines defined on the Schoenberg sequence of knots, which have been used also in [4], [8], and
[24]. In Section 4 we construct dual multiresolution analysis. There are two types of boundary scaling functions.
The functions of the first type are defined in order to preservethe full degree of polynomial exactness as in
[1] and [10]. The construction of the scaling functions of the second type is a delicate task, because the low
condition number and nestedness of the multiresolution spaces have to be preserved. Section 5 is concerned
with the computation of refinement matrices. In Section 6 wavelets are constructed by the method of stable
completion proposed in [18]. The construction of initial stable completion is along the lines of [16]. In Section
7 we show that the constructed set of functions is indeed a Riesz basis for the spaceL2 ([0,1]) and for the
Sobolev spaceHs([0,1]) for a certain range ofs. In Section 8 we adapt the primal bases to the homogeneous
Dirichlet boundary conditions of the first order and the dualbases to the complementary boundary conditions.
Quantitative properties of the constructed bases are presented in Section 9. Finally, in Section 10, we compare
the efficiency of adaptive wavelet scheme for several spline-wavelet bases and we show the superiority of our
construction. Numerical examples are presented for one-dimensional and two-dimensional Poisson equations
where the solution has steep gradients.
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2 Wavelet bases

This section provides a short introduction to the concept ofwavelet bases. Let us introduce some notation. We use
N, Z, Q, andR to denote the set of positive integers, integers, rational numbers, and real numbers, respectively.
LetN j0 denote the set of integers which are greater than or equal toj0.

We consider the domainΩ ⊂ Rd and the spaceL2 (Ω) with inner product〈·, ·〉 and induced norm‖·‖. Let
J be some index set and let each indexλ ∈ J take the formλ = ( j,k), where|λ | = j ∈ Z is scaleor level.
Let l2 (J ) be a space of all sequencesb= {bλ}λ∈J such that

‖b‖l2(J ) :=

(
∑

λ∈J

|bλ |2
) 1

2

< ∞. (1)

Definition 1. A family Ψ := {ψλ ∈ J } ⊂ L2 (Ω) is called awavelet basisof L2 (Ω), if

i) Ψ is aRiesz basisfor L2 (Ω), it means that the linear span ofΨ is dense inL2 (Ω) and there exist constants
c,C∈ (0,∞) such that

c‖b‖l2(J ) ≤
∥∥∥∥∥ ∑

λ∈J

bλ ψλ

∥∥∥∥∥≤C‖b‖l2(J ) for all b= {bλ}λ∈J ∈ l2 (J ) . (2)

Constantscψ := sup{c : c satisfies(2)},Cψ := inf {C : C satisfies(2)} are calledRiesz boundsandcondΨ =
Cψ/cψ is called thecondition numberof Ψ .

ii) The functions arelocal in the sense that

diam(Ωλ )≤ C2−|λ | for all λ ∈ J , (3)

whereΩλ is the support ofψλ , and at a given levelj the supports of only finitely many wavelets overlap in
any pointx∈ Ω .

By the Riesz representation theorem, there exists a unique familyΨ̃ =
{

ψ̃λ ,λ ∈ J̃
}
⊂ L2 (Ω) biorthogonal

toΨ , i.e. 〈
ψi,k, ψ̃ j,l

〉
= δi, jδk,l , for all (i,k) ∈ J , ( j, l) ∈ J̃ . (4)

Here,δi, j denotes the Kronecker delta, i.e.δi,i := 1,δi, j := 0 for i 6= j. This family is also a Riesz basis forL2 (Ω).
The basisΨ is calledprimal wavelet basis,̃Ψ is calleddualwavelet basis.

In many cases, the wavelet systemΨ is constructed with the aid of a multiresolution analysis.

Definition 2. A sequenceS=
{

Sj
}

j∈N j0
of closed linear subspacesSj ⊂ L2 (Ω) is called amultiresolutionor

multiscale analysis, if

Sj0 ⊂ Sj0+1 ⊂ . . .⊂ Sj ⊂ Sj+1 ⊂ . . .L2 (Ω) and
(
∪ j∈N j0

Sj

)
= L2 (Ω) . (5)

The nestedness of the multiresolution analysis implies theexistence of thecomplement spaces Wj such that

Sj+1 = Sj ⊕Wj , (6)

where⊕ denotes the direct product.
We now assume thatSj andWj are spanned by sets of basis functions

Φ j :=
{

φ j,k,k∈ I j
}
, Ψj :=

{
ψ j,k,k∈ J j

}
, (7)

whereI j , J j are finite or at most countable index sets. We refer toφ j,k asscaling functionsandψ j,k aswavelets.
The multiscale basis is given by

Ψj0,s = Φ j0 ∪
j0+s−1⋃

j= j0

Ψj (8)
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and the overall wavelet basis ofL2 (Ω) is obtained by

Ψ = Φ j0 ∪
⋃

j≥ j0

Ψj . (9)

The single-scale and the multiscale bases are interrelatedby thewavelet transformT j,s : l2 (I j+s)→ l2 (I j+s),

Ψj,s = T j,sΦ j+s. (10)

The dual wavelet system̃Ψ generates a dual multiresolution analysisS̃with a dual scaling basis̃Φ .
Polynomial exactnessof orderN ∈ N for the primal scaling basis and of orderÑ ∈ N for the dual scaling

basis is another desired property of wavelet bases. It meansthat

ΠN−1 (Ω)⊂ Sj , ΠÑ−1 (Ω)⊂ S̃j , j ≥ j0, (11)

whereΠm(Ω) is the space of all algebraic polynomials onΩ of degree at mostm.

3 Primal Scaling Basis

The primal scaling bases will be the same as bases designed byChui and Quak in [8], because they are known
to be well-conditioned. A big advantage of this approach is that it readily adapts to the bounded interval by
introducing multiple knots at the endpoints. LetN be the desired order of polynomial exactness of primal scaling

basis and lett j =
(

t j
k

)2 j+N−1

k=−N+1
be aSchoenberg sequence of knotsdefined by

t j
k := 0, k=−N+1, . . . ,0, (12)

t j
k :=

k
2 j , k= 1, . . . ,2 j −1,

t j
k := 1, k= 2 j , . . . ,2 j +N−1.

The correspondingB-splines of order Nare defined by

B j
k,N (x) :=

(
t j
k+N − t j

k

)[
t j
k , . . . , t

j
k+N

]
(t −x)N−1

+ , x∈ 〈0,1〉 , (13)

where(x)+ := max{0,x}. The symbol[tk, . . .tk+N] f is theN-th divided difference off which is recursively
defined as

[tk, . . . , tk+N] f =
[tk+1, . . . , tk+N] f − [tk, . . . , tk+N−1] f

tk+N − tk
if tk 6= tk+N,

=
f (N) (tk)

N!
if tk = tk+N,

with [tk] f = f (tk).
The setΦ j =

{
φ j,k,k=−N+1, . . . ,2 j −1

}
of primal scaling functions is then simply defined by

φ j,k = 2 j/2B j
k,N, k=−N+1, . . . ,2 j −1, j ≥ 0. (14)

Thus there are 2j −N+1 inner scaling functions andN−1 functions at each boundary. Figure 1 shows the primal
scaling functions forN = 4 and j = 3. Inner scaling functions are translations and dilations of one functionφ
which corresponds to the primal scaling function constructed by Cohen, Daubechies, Feauveau in [9]. In the
following, we considerφ from [9] which is shifted so that its support is[0,N].

We define the primal multiresolution spaces by

Sj = spanΦ j . (15)

Lemma 3. Under the above assumptions, the following holds:
i) For any j0 ∈ N the sequenceS =

{
Sj
}

j≥ j0
forms a multiresolution analysis of L2 ([0,1]).

ii) The spaces Sj are exact of order N, i.e.

ΠN−1 ([0,1])⊂ Sj , j ≥ 1. (16)

The proof can be found in [8], [24], [29].
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Fig. 1 Primal scaling functions forN = 4 and j = 3 without boundary conditions.

4 Dual Scaling Basis

The desired property of dual scaling basisΦ̃ is the biorthogonality toΦ and the polynomial exactness of order
Ñ. Let φ̃ be the dual scaling function which was designed by Cohen, Daubechies, and Feauveau in [9] and which
is shifted so that

〈
φ , φ̃

〉
= 0, i.e. its support is

[
−Ñ+1,N+ Ñ−1

]
. In this caseÑ ≥ N andÑ+N has to be an

even number. It is known that there exist sequences{hk}k∈Z and{h̃k}k∈Z such that the functionsφ andφ̃ satisfy
therefinement equations

φ (x) = ∑
k∈Z

hkφ (2x−k) , φ̃ (x) = ∑
k∈Z

h̃kφ̃ (2x−k) , x∈ R. (17)

The parametershk andh̃k are calledscaling coefficients. By biorthogonality ofφ andφ̃ , we have

2 ∑
k∈Z

h2m+kh̃k = δ0,m, m∈ Z. (18)

Note that only coefficientsh0, . . . ,hN andh̃−Ñ+1, . . . , h̃N+Ñ−1 may be nonzero.
In the sequel, we assume that

j ≥ j0 :=
⌈
log2

(
N+2Ñ−3

)⌉
(19)

so that the supports of the boundary functions are containedin [0,1]. We define inner scaling functions as trans-
lations and dilations of̃φ :

θ j,k = 2 j/2φ̃
(
2 j ·−k

)
, k= Ñ−1, . . . ,2 j −N− Ñ+1. (20)

There will be two types of basis functions at each boundary. In the following, it will be convenient to abbre-
viate the boundary and inner index sets by

I L,1
j =

{
−N+1, . . . ,−N+ Ñ

}
, (21)

I L,2
j =

{
−N+ Ñ+1, . . . , Ñ−2

}
, (22)

I 0
j =

{
Ñ−1, . . . ,2 j −N− Ñ+1

}
, (23)

I R,2
j =

{
2 j −N− Ñ+2, . . .2 j − Ñ−1

}
, (24)

I R,1
j =

{
2 j − Ñ, . . . ,2 j −1

}
, (25)

and

I L
j = I L,1

j ∪I L,2
j =

{
−N+1, . . . , Ñ−2

}
, (26)

I R
j = I R,2

j ∪I R,1
j =

{
2 j −N− Ñ+2, . . . ,2 j −1

}
, (27)

I j = I L,1
j ∪I L,2

j ∪I 0
j ∪I R,2

j ∪I R,1
j =

{
−N+1, . . . ,2 j −1

}
. (28)
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Basis functions of the first type are defined to preserve polynomial exactness by the same way as in [1], [10]
:

θ j,k = 2 j/2
Ñ−2

∑
l=−N−Ñ+2

〈pk+N−1,φ (·− l)〉 φ̃
(
2 j ·−l

)
|[0,1], k∈ I L,1

j , (29)

where
{

p0, . . . , pÑ−1

}
is a basis ofΠÑ−1 ([0,1]). In Lemma 6 we show that the resulting dual scaling func-

tions do not depend on the choice of the polynomial basis. In our case,pk are the Bernstein polynomials defined
by

pk (x) := b−Ñ+1
(

Ñ−1
k

)
xk (b−x)Ñ−1−k , k= 0, . . . , Ñ−1, x∈ R. (30)

The Bernstein polynomials were used also in [16]. On the contrary to [16], in our case the choice of polynomials
does not affect the resulting dual scaling basisΨ̃ , but it has only the effect of stabilization of the computation,
for details see Lemma 6 and the discussion below.

The definition of basis functions of the second type is a delicate task, because the low condition number
and the nestedness of the multiresolution spaces have to be preserved. This means that the relationθ j,k ⊂ Ṽj ⊂
Ṽj+1, k ∈ I L,2

j , should hold. Therefore we defineθ j,k, k ∈ I L,2
j , as linear combinations of functions which

are already inṼj+1. To obtain well-conditioned bases, we define functionsθ j,k, k ∈ I L,2
j , which are close to

φ̃R
j,k := 2 j/2φ̃

(
2 j ·−k

)
, becauseφ̃R

j,k, k ∈ I L,2
j , are biorthogonal to the inner primal scaling functions andthe

condition of
{

φ̃R
j,k,k∈ I L,2

j ∪I 0
j

}
is the same as the condition of the set of inner dual basis functions.

For this reason, we define the basis functions of the second type by

θ j,k = 2
j
2

N+Ñ−1

∑
l=Ñ−1−2k

h̃l φ̃
(
2 j+1 ·−2k− l

)
|[0,1], k∈ I L,2

j , (31)

where h̃i are the scaling coefficients corresponding to the scaling function φ̃ . Thenθ j,k is close toφ̃R
j,k|[0,1],

because by (17) we have

φ̃R
j,k|[0,1] = 2

j
2

N+Ñ−1

∑
k=−Ñ+1

h̃l φ̃
(
2 j+1 ·−2k− l

)
|[0,1], k∈ I L,2

j . (32)

Figure 2 shows the functionsθ j,k andφ̃R
j,k for N = 4, Ñ = 6, and j = 4.

The boundary functions at the right boundary are defined to besymmetric with the left boundary functions:

θ j,k = θ j,2 j−k (1−·) , k∈ I R
j . (33)

It is easy to see that
θ j+1,k = 21/2θ j,k (2·) , k∈ I L

j (34)

for left boundary functions and

θ j+1,k (1−·) = 21/2θ j,k (1−2·) , k∈ I R
j (35)

for right boundary functions.
Since the setΘ j :=

{
θ j,k,k∈ I j

}
is not biorthogonal toΦ j , we derive a new set

Φ̃ j :=
{

φ̃ j,k,k∈ I j
}

(36)

from Θ j by biorthogonalization. Let
Q j =

(〈
φ j,k,θ j,l

〉)
k,l∈I j

. (37)

Then viewingΦ̃ j andΘ j as column vectors we define

Φ̃ j := Q−T
j Θ j , (38)



7

0 0.2 0.4 0.6 0.8 1
−30

−20

−10

0

10

20

30

40

φ̃R4,7

0 0.2 0.4 0.6 0.8 1
−30

−20

−10

0

10

20

30

40

φ̃R4,8

0 0.2 0.4 0.6 0.8 1
−30

−20

−10

0

10

20

30

40

θ4,7

0 0.2 0.4 0.6 0.8 1
−30

−20

−10

0

10

20

30

40

θ4,8

Fig. 2 The functionsφ̃R
4,k andθ4,k for N = 4 andÑ = 6.

assuming thatQ j is invertible, which is the case of all choices ofN andÑ considered in our numerical examples
below.

ThenΦ̃ j is biorthogonal toΦ j , because

〈
Φ j ,Φ̃ j

〉
=
〈

Φ j ,Q−T
j Θ j

〉
= Q jQ−1

j = I#I j , (39)

where the symbol # denotes the cardinality of the set andIm denotes the identity matrix of the sizem×m.

Lemma 4. i) Let Φ j , Θ j be defined as above. Then the matrices

Q j,L =
(〈

φ j,k,θ j,l
〉)

k,l∈I L
j

and Q j,R =
(〈

φ j,k,θ j,l
〉)

k,l∈I R
j

(40)

are independent of j, i.e. there are matricesQL, QR such that

Q j,L = QL, Q j,R = QR. (41)

Moreover, the matrixQR results from the matrixQL by reversing the ordering of rows and columns, which means
that

(QR)k,l = (QL)2 j−N−k,2 j−N−l , k, l ∈ I R
j . (42)

ii) The following holds:
(Q j)k,l = δk,l , k∈ I j , l ∈ I 0

j . (43)

iii) The following holds:
(Q j)k,l = 0, k∈ I 0

j , l ∈ I L
j ∪I R

j . (44)

Proof Due to (34) and by substitution we have fork, l ∈ I L
j

〈
φ j,k,θ j,l

〉
=
〈

2
j− j0

2 φ j0,k
(
2 j− j0·

)
,2

j− j0
2 θ j0,l

(
2 j− j0·

)〉
=
〈
φ j0,k,θ j0,l

〉
. (45)

Therefore,Q j,L = Q j0,L = QL, i.e. the matrixQ j,L is independent ofj. Due to (35)Q j,R is independent ofj too.
The property (42) is a direct consequence of the reflection invariance (33).
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The propertyii) follows from the biorthogonality of{φ (·−k)}k∈Z and
{

φ̃ (·− l)
}

l∈Z. It also implies (44)

for k ∈ I 0
j , l ∈ I L,1

j ∪I R,1
j . It remains to prove (44) fork ∈ I 0

j , l ∈ I L,2
j ∪I R,2

j . By the definition of dual

scaling functions of the second type (31), refinement relation (17) for the dual scaling functioñφ , and (18), we
have fork∈ I 0

j , l ∈ I L,2
j ,

〈
φ j,k,θ j,l

〉
=

〈
φ (·−k) ,

√
2

N+Ñ−1

∑
m=Ñ−1−2k

h̃l φ̃ (2·−2l −m) |[0,1]
〉

(46)

= 2

〈
N

∑
n=0

hnφ (2·−2k−n) ,
N+Ñ−1

∑
m=Ñ−1−2k

h̃mφ̃ (2·−2l −m) |[0,1]
〉

(47)

= 2
N

∑
n=0

N+Ñ−1

∑
m=Ñ−1−2k

hnh̃mδ2k+n,2l+m = 2
N+Ñ−1

∑
m=Ñ−1−2k

h2l−2k+mh̃m (48)

= 2 ∑
m∈Z

h2l−2k+mh̃m = 0. (49)

By (33), the relation (44) holds also fork∈ I 0
j , l ∈ I R,2

j .

Thus, we can write

Φ̃ j := Q−T
j Θ j =




QL

I#I 0
j

QR




−T

Θ j =




Q−T
L

I#I 0
j

Q−T
R


Θ j , (50)

Since the matrixQ j is symmetric in the sense of (42), the properties (33), (34),and (35) hold forφ̃ j,k as well.
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Fig. 3 Boundary dual scaling functions forN = 4 andÑ = 6 without boundary conditions.

Remark 5. It is known that the scaling functioñφ has typically a low Sobolev regularity for smaller values of
Ñ. Thus the functionsθ j,k have a low Sobolev regularity for smaller values ofÑ, too. Therefore, we do not obtain
the sufficiently accurate entries of the matrixQ j directly by classical quadratures. Fortunately, we are able to

compute the matrixQ j precisely up to the round off errors. For k∈ I L,1
j ∪I L,2

j , l ∈ I L,1
j we have

〈
φ j,k,θ j,l

〉
=

Ñ−2

∑
m=−N−Ñ+2

Ñ−1

∑
n=0

cl ,n 〈(·)n ,φ (·−m)〉
〈
φ (·−k) , φ̃ (·−m)

〉
L2(〈0,1〉) , (51)
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with cl ,n given by(63). Sinceφ is a piecewise polynomial function and̃φ is refinable, for k∈ I L,1
j ∪I L,2

j ,

l ∈ I L,1
j we can compute the entries ofQ j by the method from [11]. By refinement relation we easily obtain the

following relations for the computation of the remaining entries ofQL:

〈
φ j,k,θ j,l

〉
=

N+Ñ−1

∑
m=Ñ−1−2l

h̃m
〈
φ0,k, φ̃ (·−2k−m)

〉
, k=−N+1, . . . ,−1, l ∈ I L,2

j ,

= 2−1
N+Ñ−1

∑
m=Ñ−1−2l

h2k−2l+mh̃m, k= 0, . . . , Ñ−2, l ∈ I L,2
j .

Since the submatrixQR is obtained from a matrixQL by reversing the ordering of rows and columns, the matrix
Q j can be indeed computed precisely up to the round off errors.

Now we show that the resulting dual scaling basisΦ̃ does not depend on the choice of polynomial basis of
the spaceΠÑ ([0,1]) in the formula (29).

Lemma 6. We suppose that P1 =
{

p1
0, . . . , p

1
Ñ−1

}
, P2 =

{
p2

0, . . . , p
2
Ñ−1

}
are two different bases of the space

ΠÑ ([0,1]) and for i= 1,2 we define the setsΘ i
j =
{

θ i
j,k

}2 j−1

k=−N+1
by

θ i
j,k = 2 j/2

Ñ−2

∑
l=−N−Ñ+2

〈
pi

k+N−1,φ (·− l)
〉

φ̃
(
2 j ·−l

)
|[0,1], k∈ I L,1

j ,

θ i
j,k = θ i

j,2 j−N−k, k∈ I R,1
j ,

θ i
j,k = θ j,k, k∈ I L,2

j ∪I 0
j ∪I R,2

j .

Furthermore, we define

Qi
j =
〈
Φ j ,Θ i

j

〉
, Φ̃ i

j =
(
Qi

j

)−T Θ i
j , i = 1,2, (52)

and we assume thatQi
j is nonsingular. TheñΦ1

j = Φ̃2
j .

Proof SinceP1 andP2 are both bases of the spaceΠÑ ([0,1]), there exists a regular matrixBL such thatP2 =
BLP1. The consequence is that

Θ2 = B jΘ1, (53)

with

B j =




BL

I#I 0
j

BR


 , (54)

whereBR results from a matrixBL by reversing the ordering of rows and columns, which means that

(BR)k,l = (BL)2 j−N−k,2 j−N−l , k, l ∈ I L,1
j . (55)

Therefore, we have
Φ̃2

j =
(
Q2

j

)−T Θ2
j =

(
Q1

j

)−T
B−1

j B jΘ1
j = Φ̃1

j . (56)

Although the choice of polynomial basis does not influence the resulting dual scaling basis, it has an influence
on the stability of the computation and the preciseness of the results, because some choices of the polynomial
bases leads to the critical values of the condition number ofthe biorthogonalization matrix. We present the

condition numbers of the matrixQL for the monomial basis
{

1,x,x2, . . .xÑ−1
}

and Bernstein polynomials (30)

with the parametersb= 4 andb= 10 in Table 4. In our numerical experiments in Section 9 we chooseb= 10.

Remark 7. In the case of linear primal basis, i.e. N= 2, there are no boundary dual functions of the second type.
In [24] the primal scaling functions and the inner dual scaling functions are the same as ours. The boundary
dual functions before biorthogonalizations are defined by (29) with the same choice of polynomials p0, . . . , pÑ−1
as in [10]. Due to the Lemma 6, for N= 2 the wavelet basis in [24] is identical to the wavelet basis constructed
in this section.
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For the proof of Theorem 9 below and also for deriving of refinement matrices we will need the following
lemma.

Lemma 8. For the left boundary functions of the first type there exist refinement coefficients mn,k, k ∈ I L,1
j ,

n∈ I L,1
j ∪I 3

j , I 3
j :=

{
Ñ−1, . . . ,3Ñ+N−5

}
such that

θ j,k =
−N+Ñ

∑
n=−N+1

mn,kθ j+1,n+
3Ñ+N−5

∑
n=Ñ−1

mn,kθ j+1,n, k∈ I L,1
j . (57)

Proof Let Θ0
j =

{
θ j,k,k∈ I 3

j

}
andΘL,1,mon

j =
{

θ mon
j,k ,k∈ I L,1

j

}
be defined by

θ mon
j,k = 2 j/2

Ñ−2

∑
l=−N−Ñ+2

〈
(·)i ,φ (·− l)

〉
φ̃
(
2 j ·−l

)
|[0,1], k∈ I L,1

j . (58)

Then

ΘL,1,mon
j = (Mmon)T

(
ΘL,1,mon

j+1
Θ0

j+1

)
, (59)

where the refinement matrixMmon=
{

mmon
n,k

}
n∈I L,1

j ∪I 3
j ,k∈I L,1

j

is given by

mmon
n,k =

1√
2

2−k, k= n, n∈ I L,1
j , (60)

=
1√
2

Ñ−2

∑
q=
⌈

n−N−Ñ+1
2

⌉

〈
(·)k+N−1 ,φ (·−q)

〉
h̃n−2q, k∈ I L,1

j , n∈ I 3
j , (61)

= 0, otherwise. (62)

For deriving ofMmonsee [16]. It is known that the coefficients of Bernstein polynomials in a monomial basis are
given by

cl ,n = (−1)l−n
(

Ñ−1
n

)(
n
l

)
b−n, if n≥ l , (63)

= 0, otherwise. (64)

Hence, the matrixC =
{
Cl ,n
}−N+Ñ

l ,n=−N+1 is an upper triangular matrix with nonzero entries on the diagonal which

implies thatC is invertible. We denoteΘL,1
j =

{
θ j,k,k∈ I L,1

j

}
and we obtain

ΘL,1
j = CΘL,1,mon

j = C(Mmon)T

(
ΘL,1,mon

j+1
Θ0

j+1

)
= C(Mmon)T

(
C−1 0

0 I

)(
ΘL,1

j+1
Θ0

j+1

)
. (65)

Table 1 Condition numbers of the matricesQL

N Ñ mon. b= 4 b= 10 N Ñ mon. b= 4 b= 10

2 2 6.68e+00 9.94e+00 3.16e+01 4 4 2.46e+04 6.75e+02 1.33e+04
2 4 4.66e+02 1.94e+01 9.48e+02 4 6 1.30e+07 2.94e+04 7.34e+04
2 6 1.40e+05 1.00e+02 4.47e+03 4 8 1.24e+10 6.24e+06 9.42e+04
2 8 1.03e+08 8.52e+03 5.81e+03 4 10 1.92e+13 2.26e+09 5.24e+04
2 10 1.48e+11 1.67e+06 1.58e+03 5 5 5.34e+06 3.29e+04 1.26e+05
3 3 2.18e+02 1.07e+02 1.00e+03 5 7 5.62e+09 6.91e+06 3.73e+05
3 5 3.73e+04 1.88e+02 1.05e+04 5 9 9.39e+12 2.57e+09 3.47e+05
3 7 1.64e+07 1.20e+04 2.26e+04 6 6 1.20e+09 3.68e+06 6.81e+05
3 9 1.54e+10 2.90e+06 1.33e+04 6 8 2.97e+12 1.92e+09 1.81e+06
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Therefore, the refinement matrixM =
{

mn,k
}

n∈I L,1
j ∪I 3

j ,k∈I L,1
j

is given by

M =

(
C−T 0

0 I

)
MmonCT . (66)

We define the dual multiresolution spaces by

S̃j := spanΦ̃ j . (67)

Theorem 9. Under the above assumptions, the following holds
i) The sequenceS̃ =

{
S̃j
}

j≥ j0
forms a multiresolution analysis of L2 ([0,1]).

ii) The spaces̃Sj are exact of order̃N, i.e.

ΠÑ−1 ([0,1])⊂ S̃j , j > j0. (68)

Proof To provei) we have to show the nestedness of the spacesS̃j , i.e. S̃j ⊂ S̃j+1. Note that

S̃j = spanΦ̃ j = spanΘ j . (69)

Therefore, it is sufficient to prove that any function fromΘ j can be written as a linear combination of the
functions fromΘ j+1. For the left boundary functions of the first type it is a consequence of Lemma 8. By
definition (31) it holds also for the left boundary functionsof the second type. Since the inner basis functions
are just translated and dilated scaling functionφ̃ , they obviously satisfy the refinement relation. Finally, right
boundary scaling functions are derived by reflection from the left boundary scaling functions and therefore, they
satisfy the refinement relation, too. It remains to prove that

⋃

j≥ j0

S̃j = L2 ([0,1]) , (70)

whereM denotes the closure of the setM in L2 ([0,1]). It is known [26] that for the spaces generated by inner
functions

S̃0
j :=

{
θ j,k,k∈ I 0

j

}
(71)

we have ⋃

j≥ j0

S̃0
j = L2 ([0,1]) . (72)

Hence, (70) holds independently of the choice of boundary functions.
To prove ii) we recall that the scaling functioñφ is exact of order̃N, i.e.

2 j(r+1/2)xr = ∑
k∈Z

αk,r2
j/2φ̃

(
2 jx−k

)
, x∈ R a.e., r = 0, . . . , Ñ−1, (73)

where
αk,r =

〈
(·)k ,φ (·− r)

〉
. (74)

It implies that forr = 0, . . . , Ñ−1, x∈ 〈0,1〉, the following holds

2 j(r+1/2)xr |〈0,1〉 =
Ñ−2

∑
k=−N−Ñ+2

αk,r2
j/2φ̃

(
2 jx−k

)
|〈0,1〉+

2 j−N−Ñ+1

∑
k=Ñ−1

αk,r2
j/2φ̃

(
2 jx−k

)
|〈0,1〉

+
2 j+Ñ−2

∑
k=2 j−N−Ñ+2

αk,r2
j/2φ̃

(
2 jx−k

)
|〈0,1〉.

By (29), (33), and (69), we immediately have

ΠÑ−1 ([0,1])⊂ span
{

φ̃ j,k,k∈ I L,1
j ∪I 0

j ∪I R,1
j

}
⊂ S̃j . (75)
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5 Refinement Matrices

Due to the length of support of primal scaling functions, therefinement matrixM j,0 corresponding toΦ has the
following structure:

M j,0 =




ML

A j

MR



. (76)

whereML, MR are blocks(2N−2)× (N−1) andA j is a
(
2 j+1−N+2

)
×
(
2 j −N+2

)
matrix given by

(A j)m,n =
1√
2

hm−2n, 0≤ m−2n≤ N. (77)

Since the matrixML is given by




φ j,−N+1

φ j,−N+2
...

φ j,−1


= MT

L




φ j+1,−N+1

φ j+1,−N+2
...

φ j+1,N−1


 , (78)

it could be computed by solving the system

P1 = MT
L P2, (79)

where

P1 =




φ0,−N+1 (0) φ0,−N+1 (1) . . . φ0,−N+1 (2N−3)
φ0,−N+2 (0) φ0,−N+2 (1) . . . φ0,−N+2 (2N−3)

...
...

φ0,−1 (0) φ0,−1 (1) . . . φ0,−1 (2N−3)


 (80)

and

P2 =




φ1,−N+1 (0) φ1,−N+1 (1) . . . φ1,−N+1 (2N−3)
φ1,−N+2 (0) φ1,−N+2 (1) . . . φ1,−N+2 (2N−3)

...
...

φ1,N−1 (0) φ1,N−1 (1) . . . φ1,N−1 (2N−3)


 . (81)

The solution of system (79) exists and is unique if and only ifthe matrixP2 is nonsingular. The proof of
nonsingularity ofP2 can be found [35].

To compute the refinement matrix corresponding to the dual scaling functions, we need to identify first the
structure of refinement matricesMΘ

j,0 corresponding toΘ .

MΘ
j,0 =




MΘ
L

Ã j

MΘ
R



, (82)

whereMΘ
L andMΘ

R are blocks
(
2N+3Ñ−5

)
×
(
N+ Ñ−2

)
andÃ j is a matrix of the size

(
2 j+1−N−2Ñ+3

)
×(

2 j −N−2Ñ+3
)

given by

(
Ã j
)

m,n =
1√
2

h̃m−2n, 0≤ m−2n≤ N+ Ñ−2. (83)
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The receipt for the computation of the refinement coefficients for the left boundary functions of the first type is
the proof of Lemma 8. The refinement coefficients for the left boundary functions of the second type are given
by definition (31). The matrixMΘ

R can be computed by the similar way.
Since we have

Φ̃ j = Q−T
j Θ j = Q−T

j

(
MΘ

j,0

)T
Θ j+1 = Q−T

j

(
MΘ

j,0

)T
QT

j+1Φ̃ j+1, (84)

the refinement matrix̃M j,0 corresponding to the dual scaling basisΦ̃ j is given by

M̃ j,0 = Q j+1MΘ
j,0Q−1

j . (85)
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Fig. 4 Nonzero pattern of the matricesM5,0 andM̃5,0 for N = 4 andÑ = 6, nz is the number of nonzero entries.

6 Wavelets

Our next goal is to determine the corresponding wavelet bases. This is directly connected to the task of deter-
mining an appropriate matricesM j,1 andM̃ j,1. Thus, the problem has been transferred from functional analysis
to linear algebra. We follow a general principle calledstable completionwhich was proposed in [6].

Definition 10. Any M j,1 : l2 (Jj)→ l2 (I j+1) is called astable completionof M j,0, if

∥∥M j
∥∥ ,
∥∥∥M−1

j

∥∥∥= O(1) , j → ∞, (86)

whereM j := (M j,0,M j,1).

The idea is to determine first an initial stable completion and then to project it to the desired complement
spaceWj determined by

{
Ṽj
}

j≥ j0
. This is summarized in the following theorem [6].

Theorem 11. Let Φ j and Φ̃ j be primal and dual scaling basis, respectively. LetM j,0 and M̃ j,0 be refinement
matrices corresponding to these bases. Suppose thatM̌ j,1 is some stable completion ofM j,0 and Ǧ j = M̌−1

j .
Then

M j,1 :=
(
I −M j,0M̃T

j,0

)
M̌ j,1 (87)

is also a stable completion andG j = M−1
j has the form

G j =

(
M̃T

j,0

Ǧ j,1

)
. (88)
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Moreover, the collections
Ψj := MT

j,1Φ j+1, Ψ̃j := ǦT
j,1Φ̃ j+1 (89)

form biorthogonal systems 〈
Ψj ,Ψ̃j

〉
= I ,

〈
Φ j ,Ψ̃j

〉
=
〈
Ψj ,Φ̃ j

〉
= 0. (90)

We found the initial stable completion by the method from [16], [18] with some small changes. The differ-
ence is only in the dimensions of the involved matrices and inthe definion of the matrixF j . Recall thatA j is the
interior block in the matrixM j,0 of the form

A j =
1√
2




h0 0 . . . 0

h1 0
...

h3 h0
...

...
...

hN hN−2
...

0 hN−1 0
0 hN h0
...

...
0 hN




, (91)

whereh0, . . . ,hN are scaling coefficients corresponding toφ . By a suitable elimination we will successively
reduce the upper and lower bands fromA j such that afteri steps we obtain

A(i)
j =




0 0 0
...

...
...

0 0
h(i)⌈ i

2⌉ 0

h(i)⌈ i
2⌉+1

0

... h(i)⌈ i
2⌉

...
...

h(i)
N−⌊ i

2⌋
0
...

h(i)
N−⌊ i

2⌋
0
...

0 0




}
⌈

i
2

⌉

}
⌊

i
2

⌋

, A(0)
j := A j . (92)

In [16], it was proved for B-spline scaling functions that

h(i)⌈i/2⌉, . . . ,hN−⌊i/2⌋ 6= 0, i = 1, . . . ,N. (93)

Therefore, the ellimination is always possible. The elimination matrices are of the form

H(2i−1)
j := diag(I i−1,U2i−1, . . . ,U2i−1, IN−1) , (94)

H(2i)
j := diag(IN−i ,L2i , . . . ,L2i , I i−1) , (95)

where

Ui+1 :=


1 − h(i)⌈i/2⌉

h(i)⌈i/2⌉+1

0 1


 , L i+1 :=




1 0

− h(i)N−⌊i/2⌋
h(i)N−⌊i/2⌋−1

1


 . (96)
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It is easy to see that indeed

A(i)
j = H(i)

j A(i−1)
j . (97)

After N elimination steps we obtain the matrixA(N)
j which looks as follows

A(N)
j = H jA j =




0 0 0
...

...
...

0 0
b 0
0 0
0 b
... 0

...
b
0

...
...

0 0




}
⌈

N
2

⌉

}⌊
N
2

⌋

, where H j := H(N)
j . . .H(1)

j , (98)

with b 6= 0. We define

B j :=
(

A(N)
j

)−1
=




0 . . . 0 b−1 0 0 0 . . . 0
0 . . . 0 0 0 b−1 0 . . . 0

...
b−1 0 . . . 0


 (99)

︸ ︷︷ ︸
⌈N

2 ⌉
︸ ︷︷ ︸
⌊N

2 ⌋

and

F j :=




0 0
...

...
0 0
1 0
0 0
0 1
... 0

...
1
0
...
0




}
⌈

N
2

⌉
−1

.

}
⌊

N
2

⌋
+1

(100)

Then, we have
B jF j = 0. (101)

After these preparations we define extended versions of the matricesH j , A j , A(N)
j , andB j by

Ĥ j :=




IN−1

H j

IN−1


 , Â(N)

j :=




IN−1

A(N)
j

IN−1


 , (102)

Â j :=




IN−1

A j

IN−1


 , B̂T

j :=




IN−1

BT
j

IN−1


 . (103)

Note thatĤ j , Â j , Â(N)
j , andB̂ j are all matrices of the size(#I j+1)× (#I j). Hence, the completion of̂A(N)

j

has to be a(#I j+1)×2 j . On the contrary to the construction in [16], we define an expanded version ofF j as in
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[5], because it leads to a more natural formulation, when then the entries of both the refinement matrices belong
to

√
2Q. The difference is in multiplication by

√
2.

F̂ j :=
√

2




O
I⌈N

2 ⌉−1

F j

I⌊N
2 ⌋

O




}
N−1

.

}
N−1

(104)

The above findings can be summarized as follows.

Lemma 12. The following relations hold:

B̂ j Â
(N)
j = I#I j ,

1
2

F̂T
j F̂ j = I2 j (105)

and

B̂ j F̂ j = 0, F̂T
j Â(N)

j = 0. (106)

The proof of this lemma is similar to the proof in [16]. Note the refinement matrixM j,0 can be factorized as

M j,0 = P j Â j = P j Ĥ−1
j Â(N)

j (107)

with

P j :=




ML

I#I j+1−2N

MR



. (108)

Now we are able to define the initial stable completions of therefinement matricesM j,0.

Lemma 13. Under the above assumptions, the matrices

M̌ j,1 := P j Ĥ−1
j F̂ j , j ≥ j0, (109)

are uniformly stable completions of the matricesM j,0. Moreover, the inverse

Ǧ j =

(
Ǧ j,0

Ǧ j,1

)
(110)

of M̌ j =
(
M j,0,M̌ j,1

)
is given by

Ǧ j,0 = B̂ j Ĥ jP−1
j , Ǧ j,1 =

1
2

F̂T
j Ĥ jP−1

j . (111)

The proof of this lemma is straightforward and similar to theproof in [16]. Then using the initial stable
completionM̌ j,1 we are already able to contruct wavelets according to the Theorem 11.
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7 Norm equivalences

In this section, we prove norm equivalences and we show thatΨ andΨ̃ are Riesz bases for the spaceL2 ([0,1]).
Furthermore, we show that

{
2−s|λ |ψλ ,λ ∈ J

}
is a Riesz basis for Sobolev spaceHs([0,1]) for somesspecified

below. The proofs are based on the theory developed in [13] and [16].
Let us define

γ := sup{s : φ ∈ Hs(R)} , γ̃ := sup
{

s : φ̃ ∈ Hs(R)
}
. (112)

It is known thatγ = N− 1
2 . The Sobolev exponent of smoothnessγ̃ can be computed by method from [21]. The

functions inΦ j andΨj , j ≥ j0, have the Sobolev regularity at leastγ, because the primal scaling functions are
B-splines and the primal wavelets are finite linear combinations of the primal scaling functions. Similarly, the
functions inΦ̃ j andΨ̃j , j ≥ j0, have the Sobolev regularity at leastγ̃ .

Theorem 14. i) The sets
{

Φ j
}

:=
{

Φ j
}

j≥ j0
and

{
Φ̃ j
}

:=
{

Φ̃ j
}

j≥ j0
are uniformly stable, i.e.

c‖b‖l2(I j) ≤
∥∥∥∥∥ ∑

k∈I j

bkφ j,k

∥∥∥∥∥≤C‖b‖l2(I j) for all b = {bk}k∈I j
∈ l2 (I j) , j ≥ j0. (113)

ii) For all j ≥ j0, the Jackson inequalities hold, i.e.

inf
v j∈Sj

∥∥v−v j
∥∥. 2−s j‖v‖Hs([0,1]) for all v ∈ Hs([0,1]) and s< N, (114)

and

inf
v j∈S̃j

∥∥v−v j
∥∥. 2−s j‖v‖Hs([0,1]) for all v ∈ Hs([0,1]) and s< Ñ. (115)

iii) For all j ≥ j0, the Bernstein inequalities hold, i.e.

∥∥v j
∥∥

Hs([0,1]) . 2s j
∥∥v j
∥∥ for all v j ∈ Sj and s< γ, (116)

and ∥∥v j
∥∥

Hs([0,1]) . 2s j
∥∥v j
∥∥ for all v j ∈ S̃j and s< γ̃ . (117)
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Fig. 5 Some primal wavelets forN = 4 andÑ = 6 without boundary conditions.
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Proof i) Due to Lemma 2.1 in [16], the collections
{

Φ j
}

:=
{

Φ j
}

j≥ j0
and

{
Φ̃ j
}

:=
{

Φ̃ j
}

j≥ j0
are uniformly

stable, ifΦ j andΦ̃ j are biorthogonal,
∥∥φ j,k

∥∥. 1,
∥∥φ̃ j,k

∥∥. 1, k∈ I j , j ≥ j0, (118)

andΦ j andΦ̃ j are locally finite, i.e.

#
{

k′ ∈ I j : Ω j,k′ ∩Ω j,k 6= /0
}
. 1, for all k∈ I j , j ≥ j0, (119)

and
#
{

k′ ∈ I j : Ω̃ j,k′ ∩ Ω̃ j,k 6= /0
}
. 1, for all k∈ I j , j ≥ j0, (120)

whereΩ j,k := suppφ j,k andΩ̃ j,k := suppφ̃ j,k.
By (39) the setsΦ j andΦ̃ j are biorthogonal. The properties (118), (119), and (120) follow from (14), (20),

and (34).
ii) By Lemma 2.1 in [16], the Jackson inequalities are the consequences of i) and the polynomial exactness

(16) and (68).
iii) The Bernstein inequalities follow from i) and the regularity of basis functions, for details see [14].

The following fact follows from [13].

Corollary 1. We have the norm equivalences

‖v‖2
Hs ∼ 22s j0

∥∥∥∥∥∥ ∑
k∈I j0

〈
v, φ̃ j0,k

〉
φ j0,k

∥∥∥∥∥∥

2

+
∞

∑
j= j0

22s j

∥∥∥∥∥ ∑
k∈J j

〈
v, ψ̃ j,k

〉
ψ j,k

∥∥∥∥∥

2

, (121)

where v∈ Hs([0,1]) and s∈ (−γ̃,γ).

The norm equivalence fors= 0, Theorem 11, and Lemma 13, imply that

Ψ := Φ j0 ∪
∞⋃

j= j0

Ψj and Ψ̃ := Φ̃ j0 ∪
∞⋃

j= j0

Ψ̃j (122)

are biorthogonal Riesz bases of the spaceL2 ([0,1]). Let us define

D =
(

Dλ ,λ̃

)
λ ,λ̃∈J

, Dλ ,λ̃ := δλ ,λ̃ 2|λ |, λ , λ̃ ∈ J . (123)

The relation (121) implies thatD−sΨ is a Riesz basis of the Sobolev spaceHs([0,1]) for s∈ (−γ̃,γ).

8 Adaptation to Complementary Boundary Conditions

In this section, we introduce a construction of well-conditioned spline-wavelet bases on the interval satisfying
complementary boundary conditions of the first order. This means that the primal wavelet basis is adapted to
homogeneous Dirichlet boundary conditions of the first order, whereas the dual wavelet basis preserves the full
degree of polynomial exactness. This construction is basedon the spline-wavelet bases constructed above. As
already mentioned in Remark 7, in the linear case, i.e.N = 2, our bases are identical to the bases constructed
in [24]. The adaptation of these bases to complementary boundary conditions can be found in [24]. Thus, we
consider only the caseN ≥ 3.

Let Φ j =
{

φ j,k,k=−N+1, . . . ,2 j −1
}

be defined as above. Note that the functionsφ j,−N+1, φ j,2 j−1 are the
only two functions which do not vanish at zero. Therefore, defining

Φcomp
j =

{
φ j,k,k=−N+2, . . . ,2 j −2

}
(124)

we obtain primal scaling bases satisfying complementary boundary conditions of the first order.
On the dual side, we also need to omit one scaling function at each boundary, because the number of primal

scaling functions must be the same as the number of dual scaling functions. LetΘ j =
{

θ j,k,k∈ I j
}

be the dual
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scaling basis on levelj before biorthogonalization from Section 4. There are boundary functions of two types.
Recall that functionsθ j,−N+1, . . ., θ j,−N+Ñ are left boundary functions of the first type which are definedto
preserve polynomial exactness of the orderÑ. Functionsθ j,−N+Ñ+1, . . ., θ j,Ñ−2 are left boundary functions of the
second type. The right boundary scaling functions are then derived by reflection of the left boundary functions.
Since we want to preserve the full degree of polynomial exactness, we omit one function of the second type at
each boundary. Thus, we define

θ comp
j,k = θ j,k−1, k=−N+2, . . . ,−N+ Ñ+1,

θ comp
j,k = θ j,k, k=−N+ Ñ+2, . . . ,2 j − Ñ−2,

θ comp
j,k = θ j,k+1, k= 2 j − Ñ−1, . . . ,2 j −2.

Since the setΘ comp
j :=

{
θ comp

j,k : k=−N+2, . . . ,2 j −2
}

is not biorthogonal toΦ j , we derive a new set̃Φcomp
j

from Θ comp
j by biorthogonalization. LetQcomp

j =
(〈

φ j,k,θ comp
j,l

〉)2 j−2

k,l=−N+2
, then viewingΦ̃comp

j andΘ comp
j as

column vectors we define

Φ̃comp
j :=

(
Qcomp

j

)−T
Θ comp

j . (125)

Our next goal is to determine the corresponding waveletsΨ comp
j :=

{
ψcomp

j,k ,k= 0, . . . ,2 j −1
}

, Ψ̃ comp
j :=

{
ψ̃comp

j,k ,k= 0, . . . ,2 j −1
}

. It can be done by the method of stable completion as in Section 6.

9 Quantitative Properties of Constructed Bases

In this section the condition numbers of scaling bases, the single-scale wavelet bases and the multiscale wavelet
bases are computed. As in [24] it can be improved by theL2-normalization on the primal side. It will be shown
that in the case of cubic spline wavelets bases the construction presented in this thesis yields optimalL2-stability,
which is not the case of constructions in [16] and [24]. The condition numbers of scaling bases and wavelet bases
satisfying the complementary boundary conditions of the first order are presented as well. The other criteria for
the effectiveness of wavelet bases is the condition number of the corresponding preconditioned stiffness matrix.
To improve it further we apply orthogonal transformation tothe scaling basis on the coarsest level and then we
use a diagonal matrix for preconditioning.

It is known that Riesz bounds (2) of basisΦ j can be computed by

c=
√

λmin(G j), C=
√

λmax(G j), (126)
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Fig. 6 Primal scaling basis forN = 4 and j = 3 satisfying complementary boundary conditions of the first order.
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whereG j is the Gram matrix, i.e.G j =
(〈

φ j,k,φ j,l
〉)

k,l∈I j
, andλmin(G j), λmax(G j) denote the smallest and the

largest eigenvalue ofG j , respectively. The Riesz bounds ofΦ̃ j , Ψj andΨ̃j are computed in a similar way.
The condition of constructed bases is presented in Table 2. To improve it further we provide a diagonal

rescaling in the following way:

φN
j,k =

φ j,k√〈
φ j,k,φ j,k

〉 , φ̃N
j,k = φ̃ j,k ∗

√〈
φ j,k,φ j,k

〉
, k∈ I j , j ≥ j0, (127)

ψN
j,k =

ψ j,k√〈
ψ j,k,ψ j,k

〉 , ψ̃N
j,k = ψ̃ j,k ∗

√〈
ψ j,k,ψ j,k

〉
, k∈ J j , j ≥ j0. (128)

Then the new primal scaling and wavelet bases are normalizedwith respect to theL2-norm. As already mentioned
in Remark 7, the resulting bases forN = 2 are the same as those designed in [24] and [25]. For quadratic spline-
wavelet bases, i.e.N = 3, the condition of our bases is comparable to the condition of the bases from [24] and
[25]. In [3], it was shown that for any spline wavelet basis oforderN on the real line, the condition is bounded
below by 2N−1. This result readily carries over to the case of spline wavelet bases on the interval. Now, the
constructions from [24], [25] yields wavelet bases whose Riesz bounds are nearly optimal, i.e. condΨ N

j ≈ 2N−1

for N = 2 andN = 3. Unfortunately, theL2-stability gets considerably worse forN ≥ 4. As can be seen in Table
2, the column ”Ψ N

j ”, the presented construction seems to yield the optimalL2-stability also forN = 4. Note that
the caseN = 4, Ñ = 4 is not included in Table 2. It was shown in [9] that the corresponding scaling functions
and wavelets do not belong to the spaceL2.

In Table 3 the condition of the multiscale wavelet basesΨj0,s = Φ j0 ∪
⋃ j0+s−1

j= j0
Ψj is presented.

It is known that the condition number of the original basis onthe real line from [9] is less than or equal to
the condition number of the interval wavelet basis where theinner functions are identical to the basis functions
from [9]. Therefore, we use the condition number of the wavelet bases from [9] as benchmark. In Table 4, we
compare the condition number of our wavelet bases and wavelet bases from [9], [24].

The condition of single-scale bases adapted to complementary boundary condition of the first order are listed
in Table 5. We improve the condition of constructed bases byL2-normalization. ForN = 4 the condition number
of bases constructed in this contribution is again significantly better than the condition of bases from [24].

The other criteria for the effectiveness of wavelet bases isthe condition number of the corresponding stiffness
matrix. Here, let us consider the stiffness matrix for the Poisson equation:

A j0,s =

(〈(
ψcomp

j,k

)′
,
(

ψcomp
l ,m

)′〉)

ψcomp
j,k ,ψcomp

l ,m ∈Ψcomp
j0,s

, (129)
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Fig. 7 Some primal wavelets forN = 4 andÑ = 6 satisfying the complementary boundary conditions of the first order.
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whereΨ comp
j0,s

= Φcomp
j0

∪⋃ j0+s−1
j= j0

Ψ comp
j denotes the multiscale basis adapted to complementary boundary

conditions. It is well-known that the condition number ofA j0,s increases quadratically with the matrix size. To
remedy this, we use the diagonal matrix for preconditioning

Aprec
j0,s

= D−1
j0,s

A j0,sD
−1
j0,s

, D j0,s = diag

(〈(
ψcomp

j,k

)′
,
(

ψcomp
j,k

)′〉1/2
)

ψcomp
j,k ∈Ψcomp

j0,s

. (130)

To improve further the condition number ofAprec
j0,s

we apply the orthogonal transformation to the scaling basis
on the coarsest level as in [7] and then we use the diagonal matrix for preconditioning. We denote the obtained
matrix byAort

j0,s
. Condition numbers of resulting matrices are listed in Table 6.

10 Adaptive wavelet methods

In recent years adaptive wavelet methods have been successfully used for solving partial differential as well as
integral equations, both linear and nonlinear. It has been shown that these methods converge and that they are
asymptotically optimal in the sense that storage and numberof floating point operations, needed to resolve the
problem with desired accuracy, remain proportional to the problem size when the resolution of the discretization
is refined. Thus, the computational complexity for all stepsof the algorithm is controlled.

The effectiveness of adaptive wavelet methods is strongly influenced by the choice of a wavelet basis, in
particular by the condition of the basis. In this section, our intention is to compare the quantitative behaviour of
the adaptive wavelet method for cubic spline wavelet bases constructed in this paper and cubic spline wavelet
bases from [24].

Table 2 The condition of single-scale scaling and wavelet bases

N Ñ j Φ j ΦN
j Φ̃ j Φ̃N

j Ψj ΨN
j Ψ̃j Ψ̃N

j

2 2 10 2.00 1.73 2.30 1.97 2.00 2.00 2.02 2.00
2 4 10 2.00 1.73 2.09 1.80 2.00 2.00 2.04 2.00
2 6 10 2.00 1.73 2.26 2.03 2.00 2.00 2.30 2.26
2 8 10 2.00 1.73 2.90 2.78 2.34 2.22 3.14 3.81
3 3 10 3.25 2.76 7.58 6.37 4.49 4.00 7.07 4.27
3 5 10 3.25 2.76 3.93 3.49 4.63 4.00 5.55 4.05
3 7 10 3.25 2.76 3.53 3.11 4.55 4.00 5.13 4.01
3 9 10 3.25 2.76 3.75 3.32 4.44 4.00 5.51 4.23
4 6 10 5.18 4.42 10.88 9.07 14.02 8.00 24.36 9.23
4 8 10 5.18 4.42 6.69 5.88 13.96 8.00 16.98 8.20
4 10 10 5.18 4.42 5.83 5.16 13.82 8.00 15.27 8.00
5 9 10 8.32 7.13 29.87 25.23 67.74 27.44 169.76 68.90

Table 3 The condition of the multiscale wavelet bases

N Ñ j0 ΨN
j0,1

ΨN
j0,2

ΨN
j0,3

ΨN
j0,4

ΨN
j0,5

Ψ̃N
j0,1

Ψ̃N
j0,2

Ψ̃N
j0,3

Ψ̃N
j0,4

Ψ̃N
j0,5

2 2 2 1.98 2.27 2.52 2.65 2.76 2.20 2.42 2.65 2.78 2.87
2 4 3 2.13 2.25 2.30 2.33 2.34 2.15 2.26 2.31 2.33 2.35
2 6 4 2.47 2.71 2.84 2.92 2.99 2.60 2.78 2.88 2.94 3.00
2 8 4 3.71 4.77 5.35 5.68 5.89 4.44 5.17 5.57 5.82 5.98
3 3 3 4.92 6.01 7.15 7.87 8.50 7.25 8.54 9.50 10.08 10.48
3 5 4 4.51 4.82 5.01 5.10 5.14 4.63 4.98 5.11 5.15 5.16
3 7 4 4.19 4.38 4.44 4.46 4.48 4.24 4.39 4.45 4.48 4.49
3 9 5 4.44 4.55 4.61 4.64 4.65 4.48 4.58 4.62 4.64 4.66
4 6 4 9.55 10.90 11.88 12.50 12.90 10.88 12.90 13.35 13.48 13.58
4 8 5 8.01 8.31 8.54 8.68 8.76 8.23 8.60 8.73 8.79 8.81
4 10 5 7.89 8.02 8.09 8.12 8.13 7.93 8.05 8.11 8.13 8.14
5 9 5 30.22 64.60 75.17 81.03 84.81 72.34 83.19 87.93 90.11 91.27
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Table 4 The condition number of our multiscale wavelet basesΨN
j0,5

andΨ̃N
j0,5

and multiscale wavelet bases from [9] and [24]

N Ñ j0 s ΨCDF
j0,5

ΨPrimbs
j0,5

ΨN
j0,5

Ψ̃CDF
j0,5

Ψ̃Primbs
j0,5

Ψ̃N
j0,5

3 3 3 5 6.68 6.25 8.50 8.52 8.17 10.48
3 5 4 5 4.36 5.31 5.14 4.37 5.36 5.16
3 7 4 5 4.04 8.57 4.48 4.04 8.63 4.49
3 9 5 5 4.00 25.40 4.65 4.00 25.76 4.66
4 6 4 5 9.89 141.95 12.90 10.43 160.54 13.58
4 8 5 5 8.27 257.41 8.76 8.27 258.56 8.81
4 10 5 5 8.04 917.10 8.13 8.04 935.38 8.14
4 12 5 5 8.01 3971.65 8.44 8.01 3992.29 8.45

Example 15. We consider one-dimensional Poisson equation with homogeneous Dirichlet boundary conditions

−u′′ = f , in Ω = (0,1) , u(0) = u(1) = 0, (131)

whose solutionu is given by

u(x) = 4
e50x−1
e50−1

(
1− e50x−1

e50−1

)
+x(1−x) , x∈ Ω . (132)

The solution exhibits steep gradient near the boundary, seeFigure 8.
Let us define the diagonal matrix

D = diag
(〈

ψ ′
j,k,ψ

′
j,k

〉1/2
)

ψ j,k∈Ψ
(133)

and operators
A = D−1〈Ψ ′,Ψ ′〉D−1, f = D−1 〈 f ,Ψ〉 . (134)

Then the variational formulation of (131) is equivalent to

AU = f (135)

Table 5 The condition of scaling bases and single-scale wavelet bases satisfying complementary boundary conditions of the first
order

N Ñ j Φ j ΦN
j Φ̃ j Φ̃N

j Ψj ΨN
j Ψ̃j Ψ̃N

j

3 3 10 2.74 2.74 4.49 4.34 4.00 4.00 4.13 4.00
3 5 10 2.74 2.74 4.94 4.58 4.00 4.00 6.68 6.27
3 7 10 2.74 2.74 8.61 8.33 4.84 4.27 12.11 16.05
3 9 10 2.74 2.74 17.94 17.78 8.16 6.25 25.17 46.10
4 6 10 4.53 4.31 7.90 6.83 9.47 8.00 16.46 8.00
4 8 10 4.53 4.31 11.16 10.04 8.46 8.03 25.40 15.32
4 10 10 4.53 4.31 17.90 16.97 8.39 8.42 37.78 35.93

Table 6 The condition number of the stiffness matricesAprec
j,s , Aort

j,s of the sizeM×M

N Ñ j s M Aprec
j,s Aort

j,s N Ñ j s M Aprec
j,s Aort

j,s

3 3 3 1 16 12.24 3.78 4 4 4 1 33 47.02 15.38
4 128 12.82 5.05 4 259 50.01 18.13
7 1024 12.86 5.37 7 2049 50.28 18.91

3 5 4 1 32 52.97 4.20 4 6 4 1 33 48.98 15.25
4 256 55.09 8.41 4 259 51.61 16.15
7 2048 55.24 9.47 7 2049 50.28 16.31

3 7 4 1 32 71.07 10.74 4 8 5 1 65 205.56 15.92
4 256 71.90 33.52 4 513 208.88 26.80
7 2048 71.91 38.66 7 4097 209.31 27.69
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Fig. 8 The exact solution and the right hand side of (131).

and the solutionu is given byu = UD−1Ψ . We solve the infinite dimensional problem (135) by the inexact
damped Richardson iterations. This algorithm was originally proposed by Cohen, Dahmen and DeVore in [10].
Here, we use its modified version from [30].

Figure 9 shows a convergence history for the spline-waveletbases designed in this contribution withN = 4
andÑ = 6 denoted by CF and the spline-wavelet bases with the same polynomial exactness from [24]. We use
also the algorithm with the stiffness matrixAort which has lower condition number, see Table 6. Its convergence
history is denoted by CFort. Note that the relative error in the energy norm for an adaptive scheme with our bases
is significantly smaller even though the number of involved basis functions is about half compared with bases in
[24].
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Fig. 9 Convergence history for 1d example, comparison of our waveletbases with and without orthogonalization and wavelet bases
from [24].

Example 16. We consider two-dimensional Poisson equation

−∆u= f , in Ω = (0,1)2 , ∂Ω = 0, (136)

with the solutionu given by
u(x,y) = u(x)u(y) , (x,y) ∈ Ω , (137)

whereu(x), u(y) are given by (137). We use the adaptive wavelet scheme with the cubic wavelet basis
adapted to homogeneous Dirichlet boundary conditions of the first order. The convergence history for our wavelet
bases with and without orthogonalization and wavelet basesfrom [24] is shown in Figure 10.
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from [24].
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6. Carnicer, J.M.; Dahmen, W.; Peňa, J.M.:Local decomposition of refinable spaces,Appl. Comp. Harm. Anal.6, (1999), pp. 1-52.
7. Canuto, C.; Tabacco, A.; Urban, K.:The Wavelet Element Method, Part I: Construction and Analysis, Appl. Comp. Harm. Anal.

6, (1999), pp. 1-52.
8. Chui, C.K.; Quak, E.:,Wavelets on a Bounded Interval,in: Numerical Methods of Approximation Theory (Braess, D.; Schumaker,
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Abstract

We propose a new construction of a stable cubic spline-wavelet basis on the
interval satisfying complementary boundary conditions of the second order.
It means that the primal wavelet basis is adapted to homogeneous Dirich-
let boundary conditions of the second order, while the dual wavelet basis
preserves the full degree of polynomial exactness. We present quantitative
properties of the constructed bases and we show superiority of our construc-
tion in comparison to some other known spline wavelet bases in an adaptive
wavelet method for the partial differential equation with the biharmonic ope-
rator.
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1. Introduction

In recent years wavelets have been successfully used for solving partial dif-
ferential equations [2, 11, 12, 16, 27] as well as integral equations [22, 24, 25],
both linear and nonlinear. Wavelet bases are useful in the numerical treat-
ment of operator equations, because they are stable, enable high order-
approximation, functions from Besov spaces have sparse representation in
wavelet bases, condition numbers of stiffness matrices are uniformly bounded
and matrices representing operators are typically sparse or quasi-sparse. The
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quantitative properties of wavelet methods strongly depend on the choice of
a wavelet basis, in particular on its condition number. Therefore, a construc-
tion of a wavelet basis is always an important issue.

Wavelet bases on a bounded domain are usually constructed in the fol-
lowing way: Wavelets on the real line are adapted to the interval and then by
tensor product technique to the n-dimensional cube. Finally by splitting the
domain into overlapping or non-overlapping subdomains which are images of
a unit cube under appropriate parametric mappings one can obtain a wavelet
basis or a wavelet frame on a fairly general domain. Thus, the properties of
the employed wavelet basis on the interval are crucial for the properties of
the resulting bases or frames on a general domain.

In this paper, we propose a construction of cubic spline wavelet basis
on the interval that is adapted to homogeneous Dirichlet boundary condi-
tions of the second order on the primal side and preserves the full degree of
polynomial exactness on the dual side. Such boundary conditions are called
complementary boundary conditions [18]. We compare properties of wavelet
bases such as the condition number of the basis and the condition number of
the corresponding stiffness matrix. Finally, quantitative behaviour of adap-
tive wavelet method for several boundary-adapted cubic spline wavelet bases
is studied.

First of all, we summarize the desired properties of a constructed basis:

- Polymial exactness. Since the primal basis functions are cubic B-
splines, the primal multiresolution analysis has polynomial exactness of
order four. The dual multiresolution analysis has polynomial exactness
of order six. As a consequence, the primal wavelets have six vanishing
moments.

- Riesz basis property. The functions form a Riesz basis of the space
L2 ([0, 1]) and if scaled properly they form a Riesz basis of the space
H2

0 ([0, 1]).

- Locality. The primal and dual basis functions are local, see definition
of locality below. Then the corresponding decomposition and recon-
struction algorithms are simple and fast.

- Biorthogonality. The primal and dual wavelet bases form a biorthogo-
nal pair.

- Smoothness. The smoothness of primal and dual wavelet bases is an-
other desired property. It ensures the validity of norm equivalences.

- Closed form. The primal scaling functions and wavelets are known in

2



the closed form. It is a desirable property for the fast computation of
integrals involving primal scaling functions and wavelets.

- Complementary boundary conditions. Our wavelet basis satisfy com-
plementary boundary conditions of the second order.

- Well-conditioned bases. Our objective is to construct a well conditioned
wavelet basis.

Many constructions of cubic spline wavelet or multiwavelet bases on the
interval have been proposed in recent years. In [5, 17, 26] cubic spline wavelets
on the interval were constructed. In [14] cubic spline multiwavelet bases were
designed and they were adapted to complementary boundary conditions of
the second order in [28]. In this case dual functions are known and are lo-
cal. Cubic spline wavelet bases were also constructed in [1, 9, 20, 21]. A
construction of cubic spline multiwavelet basis was proposed in [19] and this
basis was already used for solving differential equations in [8, 23]. How-
ever, in these cases duals are not known or are not local. Locality of duals
are important in some methods and theory, let us mention construction of
wavelet bases on general domain [18], adaptive wavelet methods especially
for nonlinear equations, data analysis, signal and image processing. A gen-
eral method of adaptation of biorthogonal wavelet bases to complementary
boundary conditions was presented in [18], but this method often leads to
very badly conditioned bases.

This paper is organized as follows: In Section 2 we briefly review the
concept of wavelet bases. In Section 3 we propose a construction of primal
and dual scaling bases. The refinement matrices are computed in Section 4
and in Section 5 primal and dual wavelets are constructed. Quantitative
properties of constructed bases and other known cubic spline wavelet and
multiwavelet bases are studied in Section 6. In Section 7 we compare the
number of basis functions and the number of iterations needed to resolve the
problem with desired accuracy for our bases and bases from [28]. A numerical
example is presented for an equation with the biharmonic operator in two
dimensions.

2. Wavelet bases

This section provides a short introduction to the concept of wavelet bases
in Sobolev spaces. We consider the domain Ω ⊂ Rd and the Sobolev space
or its subspace H ⊂ Hs (Ω) for nonnegative integer s with an inner product

3



〈·, ·〉H , a norm ‖·‖H and a seminorm |·|H . In case s = 0 we consider the space
L2 (Ω) and we denote by 〈·, ·〉 and ‖·‖ the L2-inner product and the L2-norm,
respectively. Let J be some index set and let each index λ ∈ J take the
form λ = (j, k), where |λ| := j ∈ Z is a scale or a level. Let

l2 (J ) :=

{
v : J → R,

∑

λ∈J
|vλ|2 <∞

}
. (1)

A family Ψ := {ψλ, λ ∈ J } is called a wavelet basis of H, if

i) Ψ is a Riesz basis for H, i.e. the closure of the span of Ψ is H and
there exist constants c, C ∈ (0,∞) such that

c ‖b‖l2(J ) ≤
∥∥∥∥∥
∑

λ∈J
bλψλ

∥∥∥∥∥
H

≤ C ‖b‖l2(J ) , b := {bλ}λ∈J ∈ l2 (J ) . (2)

Constants cψ := sup {c : c satisfies (2)}, Cψ := inf {C : C satisfies (2)}
are called Riesz bounds and cond Ψ = Cψ/cψ is called the condition
number of Ψ.

ii) The functions are local in the sense that diam (Ωλ) ≤ C2−|λ| for all
λ ∈ J , where Ωλ is the support of ψλ, and at a given level j the
supports of only finitely many wavelets overlap at any point x ∈ Ω.

By the Riesz representation theorem, there exists a unique family Ψ̃ ={
ψ̃λ, λ ∈ J̃

}
⊂ H biorthogonal to Ψ, i.e.

〈
ψi,k, ψ̃j,l

〉
H
= δi,jδk,l, for all (i, k) ∈ J , (j, l) ∈ J̃ . (3)

This family is also a Riesz basis for H. The basis Ψ is called a primal wavelet
basis, while Ψ̃ is called a dual wavelet basis.

In many cases, the wavelet system Ψ is constructed with the aid of a
multiresolution analysis. A sequence V = {Vj}j≥j0 , of closed linear subspaces
Vj ⊂ H is called a multiresolution or multiscale analysis, if

Vj0 ⊂ Vj0+1 ⊂ . . . ⊂ Vj ⊂ Vj+1 ⊂ . . . H (4)

and ∪j≥j0Vj is complete in H.
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The nestedness and the closedness of the multiresolution analysis implies
the existence of the complement spaces Wj such that Vj+1 = Vj ⊕Wj.

We now assume that Vj and Wj are spanned by sets of basis functions

Φj := {φj,k, k ∈ Ij} , Ψj := {ψj,k, k ∈ Jj} , (5)

where Ij and Jj are finite or at most countable index sets. We refer to φj,k
as scaling functions and ψj,k as wavelets. The multiscale basis is given by
Ψj0,s = Φj0 ∪

⋃j0+s−1
j=j0

Ψj and the wavelet basis of H is obtained by Ψ =

Φj0 ∪
⋃
j≥j0 Ψj. The dual wavelet system Ψ̃ generates a dual multiresolution

analysis Ṽ with a dual scaling basis Φ̃j0 .
Polynomial exactness of order N ∈ N for the primal scaling basis and of

order Ñ ∈ N for the dual scaling basis is another desired property of wavelet
bases. It means that

PN−1 (Ω) ⊂ Vj, PÑ−1 (Ω) ⊂ Ṽj , j ≥ j0, (6)

where Pm (Ω) is the space of all algebraic polynomials on Ω of degree less or
equal to m.

By Taylor theorem, the polynomial exactness of order Ñ on the dual side
is equivalent to Ñ vanishing wavelet moments on the primal side, i.e.

∫

Ω

P (x)ψλ (x) dx = 0, P ∈ PÑ−1, ψλ ∈
⋃

j≥j0
Ψj. (7)

3. Construction of Scaling Functions

We propose a new cubic spline wavelet basis with six vanishing wavelet mo-
ments satisfying homogeneous Dirichlet boundary conditions of order two.
Six vanishing wavelet moments on the primal side is equivalent to the poly-
nomial exactness of order six on the dual side. We choose polynomial exact-
ness of this order, because the dual scaling function of order four does not
belong to L2 (R) and the polynomial exactness of order greater than six leads
to a larger support of primal wavelets which makes the computation more
expensive.

The first step is the construction of primal scaling functions on the unit
interval. Primal scaling basis is formed by cubic B-splines on the knots tjk
defined by

tj−2 = tj−1 := 0, tj0 :=
1

2j+1
, tjk :=

k

2j
, k = 1, . . . 2j − 1, (8)
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tj
2j
:=

2j+1 − 1

2j+1
, tj

2j+1
= tj

2j+2
:= 1.

The corresponding cubic B-splines are defined by

Bj
k (x) :=

(
tjk+4 − tjk

) [
tjk, . . . , t

j
k+4

]
t
(t− x)3+ , x ∈ [0, 1] ,

where (x)+ := max {0, x} and [t1, . . . tN ]t f is the N -th divided difference
of f . The set Φj := {φj,k, k = −2, . . . , 2j − 2} of primal scaling functions is
simply given by

φj,k := 2j/2Bj
k, k = −2, . . . , 2j − 2, j ≥ 0. (9)

Thus there are 2j−5 inner scaling functions and 3 boundary functions at
each edge. The inner functions are translations and dilations of a function
φ which corresponds to the primal scaling function constructed by Cohen,
Daubechies, and Feauveau in [10]. Note that the primal scaling basis differs
from the primal scaling basis constructed in [4, 5, 17, 26], because there are

additional knots 1
2j+1 and 2j+1−1

2j+1 .
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Figure 1: Primal scaling functions for the scale j = 4.

The desired property of a dual scaling basis Φ̃ is the biorthogonality to Φ
and the polynomial exactness of order six. Let φ̃ be the dual scaling function
which was designed by Cohen, Daubechies, and Feauveau in [10] and which
is shifted so that φ̃ is orthogonal to φ, i.e. its support is [−5, 9]. It is known
that there exist sequences {hk}4k=0 and {h̃k}9k=−5 such that the functions φ

and φ̃ satisfy the refinement equations

φ (x) =
4∑

k=0

hkφ (2x− k) , φ̃ (x) =
9∑

k=−5

h̃kφ̃ (2x− k) , x ∈ R. (10)
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The parameters hk and h̃k are called scaling coefficients.
In the sequel, we assume that j ≥ j0 := 4. We define inner scaling

functions as translations and dilations of φ̃:

θj,k = 2j/2φ̃
(
2j · −k

)
, k = 5, . . . , 2j − 9. (11)

There will be two types of basis functions at each boundary. In the
following, it will be convenient to abbreviate the boundary and inner index
sets by

IL,1j = {−2, . . . , 3} , IL,2j = {4} , I0
j =

{
5, . . . , 2j − 9

}
, (12)

IR,2j =
{
2j − 8

}
, IR,1j =

{
2j − 7, . . . , 2j − 2

}
,

and

ILj = IL,1j ∪ IL,2j = {−2, . . . , 4} , (13)

IRj = IR,2j ∪ IR,1j =
{
2j − 8, . . . , 2j − 2

}
,

Ij = IL,1j ∪ IL,2j ∪ I0
j ∪ IR,2j ∪ IR,1j =

{
−2, . . . , 2j − 2

}
.

Basis functions of the first type are defined to preserve polynomial ex-
actness and the nestedness of multiresolution spaces by the same way as in
[17]:

θj,k (x) = 2j/2
4∑

l=−8

〈pk+2, φ (· − l)〉 φ̃
(
2jx− l

)
, k ∈ IL,1j , x ∈ [0, 1] , (14)

where {p0, . . . , p5} is a monomial basis of P5 ([0, 1]), i.e. pi (x) = xi, x ∈ [0, 1],
i = 0, . . . , 5.

The definition of basis functions of the second type is a delicate task,
because the low condition number and the nestedness of the multiresolution
spaces have to be preserved. This means that the relation θj,4 ∈ Ṽj ⊂ Ṽj+1

should hold. Therefore we define θj,4 as linear combinations of functions that
are already in Ṽj+1. To obtain well-conditioned basis, we define a function
θj,4 which is close to φ̃R

j,4 := 2j/2φ̃ (2j · −4), because φ̃R
j,4 is biorthogonal to

the inner primal scaling functions and the condition of
{
φ̃R
j,4, k ∈ IL,2j ∪ I0

j

}

is close to the condition of the set of inner dual basis functions.
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For this reason, we define the basis function of the second type by

θj,4 (x) = 2j/2
9∑

l=−3

h̃lφ̃
(
2j+1x− 8− l

)
, x ∈ [0, 1] , (15)

where h̃i are the scaling coefficients corresponding to the scaling function φ̃.
Then θj,4 is close to φ̃R

j,4 restricted to the interval [0, 1], because by (10) we
have

φ̃R
j,4 (x) = 2j/2

9∑

l=−5

h̃lφ̃
(
2j+1x− 8− l

)
, x ∈ [0, 1] . (16)

Figure 2 shows the functions θ4,4 and φ̃R
4,4.
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Figure 2: The functions φ̃R
4,4 and θ4,4.

The boundary functions at the right boundary are defined to be symmet-
ric with the left boundary functions:

θj,k (x) = θj,2j−4−k (1− x) , x ∈ [0, 1] , k ∈ IRj . (17)

It is easy to see that

θj+1,k (x) =
√
2 θj,k (2x) , x ∈ [0, 1] , k ∈ ILj , (18)

for left boundary functions and

θj+1,k (1− x) =
√
2 θj,k (1− 2x) , x ∈ [0, 1] , k ∈ IRj , (19)

for right boundary functions.
Since the set Θj := {θj,k, k ∈ Ij} is not biorthogonal to Φj, we derive a

new set
Φ̃j :=

{
φ̃j,k, k ∈ Ij

}
(20)
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from Θj by biorthogonalization. Let

Qj = (〈φj,k, θj,l〉)k,l∈Ij . (21)

We verify numerically that Qj is invertible. Viewing Φ̃j and Θj as column
vectors we define

Φ̃j := Q−T
j Θj. (22)

Then Φ̃j is biorthogonal to Φj, because

〈
Φj, Φ̃j

〉
=

〈
Φj ,Q

−T
j Θj

〉
= QjQ

−1
j = I#Ij , (23)

where the symbol # denotes the cardinality of the set and Im denotes the
identity matrix of the size m×m.

Remark 1. General approach of adapting wavelet bases to the unit interval
was proposed in [18]. The idea is to remove certain boundary scaling func-
tions to achieve homogeneous boundary conditions on the primal side. Then
it is necessary to have the same number of basis functions on the dual side.
Therefore an appropriate number of inner dual functions is used for the def-
inition of boundary dual generators in formula (14). Applying this approach
to cubic spline basis constructed in [5] and basis constructed in [26] we obtain
the same resulting basis, because these constructions differs in the definition
of some functions which are discarded during adaptation to complementary
boundary conditions of the second order. Unfortunately, this basis has large
condition number, although the starting basis in [5] is well conditioned. Its
quantitative properties are presented in Section 6.

4. Refinement matrices

From the nestedness and the closedness of multiresolution spaces it follows
that there exist refinement matrices Mj,0 and Mj,1 such that

Φj = MT
j,0Φj+1, Φ̃j = MT

j,1Φ̃j+1. (24)
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Due to the length of support of primal scaling functions, the refinement
matrix Mj,0 has the following structure:

Mj,0 =




ML

Aj

MR



. (25)

where Aj is a (2j+1 − 5)× (2j − 5) matrix given by

(Aj)m,n =
hm+1−2n√

2
, n = 1, . . . , 2j − 5, 0 ≤ m+ 1− 2n ≤ 4, (26)

= 0, otherwise,

where hm are primal scaling coefficients (10), and ML, MR are given by

ML =
1√
2




1
4

0 0
7
8

1
8

0
1
4

3
4

0

0 3
5

2
5

0 3
20

29
40

0 0 1
2

0 0 1
8




, MR = M
l
L. (27)

The symbol Ml denotes a matrix that results from a matrix M by reversing
the ordering of rows and columns. To compute the refinement matrix corre-
sponding to the dual scaling functions, we need to identify first the structure
of refinement matrices MΘ

j,0 corresponding to Θ:

MΘ
j,0 =




MΘ
L

Ãj

MΘ
R



, (28)
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whereMΘ
L andMΘ

R are blocks 21×7 and Ãj is a matrix of the size (2j+1 − 13)×
(2j − 13) given by

(
Ãj

)
m,n

=
h̃m−2n−4√

2
, n = 1, . . . 2j − 13, −1 ≤ m− 2n ≤ 13, (29)

= 0, otherwise,

where h̃m are dual scaling coefficients (10). The refinement coefficients for
the left boundary functions of the first type are computed according to the
proof of Lemma 3.1 in [17]. The refinement coefficients for the left boundary
functions of the second type are given by definition (15). The matrix MΘ

R

can be computed by the similar way. Since

Φ̃j = Q−T
j Θj = Q−T

j

(
MΘ

j,0

)T
Θj+1 = Q−T

j

(
MΘ

j,0

)T
QT
j+1Φ̃j+1, (30)

the refinement matrix M̃j,0 corresponding to the dual scaling basis Φ̃j is given
by

M̃j,0 = Qj+1M
Θ
j,0Q

−1
j . (31)

5. Construction of wavelets

Our next goal is to determine the corresponding single-scale wavelet bases
Ψj. It is directly connected to the task of determining an appropriate matri-
ces Mj,1 such that

Ψj = MT
j,1Φj+1. (32)

We follow a general principle called stable completion which was proposed in
[3]. This approach was already used in [5, 17, 26]. In our case, however, the
initial stable completion can not be found by the same way, because it leads
to singular matrices.

Definition 1. Any Mj,1 : l
2 (Jj) → l2 (Ij+1) is called a stable completion of

Mj,0, if

‖Mj‖l2(Ij+1)→l2(Ij+1)
= O (1) ,

∥∥M−1
j

∥∥
l2(Ij+1)→l2(Ij+1)

= O (1) , j → ∞,

(33)
where Mj := (Mj,0,Mj,1).

The idea is to determine first an initial stable completion and then to
project it to the desired complement space Wj. This is summarized in the
following theorem [3].
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Theorem 2. Let Φj and Φ̃j be a primal and a dual scaling basis, respectively.

Let Mj,0 and M̃j,0 be refinement matrices corresponding to these bases. Sup-
pose that M̌j,1 is some stable completion of Mj,0 and Ǧj = M̌−1

j . Then

Mj,1 :=
(
I−Mj,0M̃

T
j,0

)
M̌j,1 (34)

is also a stable completion and Gj = M−1
j has the form

Gj =

(
M̃T

j,0

Ǧj,1

)
. (35)

Moreover, the collections

Ψj := MT
j,1Φj+1, Ψ̃j := Ǧj,1Φ̃j+1, (36)

form biorthogonal systems
〈
Ψj, Ψ̃j

〉
= I,

〈
Φj, Ψ̃j

〉
=

〈
Ψj, Φ̃j

〉
= 0. (37)

To find the initial stable completion we use a factorization Mj,0 = HjCj,
where

Hj :=




HL

HI
j

HR



, (38)

HL :=




0.25 0 0 0 0
0.875 1 8 0 0
0.25 6 1 0 0
0 4.8 0 1 0
0 1.2 0 1.8125 2
0 0 0 1.25 1
0 0 0 0.3125 0




, HR := H
l
L, (39)

Matrix
(
HI
j

)
has the size (2j+1 − 7)× (2j+1 − 9). Its elements are given by:

(
HI
j

)
mn

:= 1, 1 ≤ n ≤ 2j+1 − 9, n odd,m = n+ 1 (40)

:= hI2,m−n+2, 1 ≤ n ≤ 2j+1 − 9, n even,−1 ≤ m− n ≤ 3,

:= 0, otherwise,
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where hI11 = hI15 = 0.25, hI12 = hI14 = 1, hI13 = 1.5, and

Cj :=
1√
2




CL

CI
j

CR



, CL :=




1 0 0
0 1

8
0

0 0 0
0 0 2

5


 , (41)

CR := C
l
L, CI

j :=




0 0 0
0 0
b 0
0 0
0 b
... 0

. . .
b
0

0 0




, b :=
7

8
. (42)

The factorization corresponding to inner and boundary blocks is not the same
as the factorization in [15]. Therefore by our approach we obtain new inner
and boundary wavelets. We define

Bj :=
√
2




BL

BI
j

BR



,BL :=




1 0 0 0
0 8 0 0
0 0 0 5

2


 ,BR := B

l
L, (43)

BI
j :=




0 0 b−1 0 0 0 . . . 0
0 0 0 0 b−1 0 . . . 0

. . .

b−1 0 0


 , (44)

and

Fj :=




FL

FI
j

FR



, (45)
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FL :=




0 0
1 0
0 0
0 1


 , FR :=




0
1
0


 , FI

j :=




1 0
0 0
0 1
... 0

. . .

1



. (46)

The above findings can be summarized as follows.

Lemma 3. The following relations hold:

BjCj = I#Ij , FT
j Fj = I2j , BjFj = 0, FT

j Cj = 0. (47)

Now we are able to define the initial stable completions of the refinement
matrices Mj,0.

Lemma 4. Under the above assumptions, the matrices

M̌j,1 := HjFj, j ≥ j0, (48)

are uniformly stable completions of the matrices Mj,0. Moreover, the inverse

Ǧj =

(
Ǧj,0

Ǧj,1

)
(49)

of M̌j =
(
Mj,0, M̌j,1

)
is given by Ǧj,0 = BjH

−1
j , Ǧj,1 = FT

j H
−1
j .

The proof of this lemma is straightforward and similar to the proof in
[17]. Then using the initial stable completion M̌j,1 we are already able to
contruct wavelets according to the Theorem 2. Left boundary wavelets are
displayed at the Figure 5.

5.1. Decomposition of a scaling basis on a coarse scale

In the previous sections we assumed that the supports of the left and right
boundary functions do not overlap and therefore the coarsest level was four.
It might be too restrictive, especially in higher dimensions, because then
there are many scaling functions. Here we decompose scaling basis Φ4 into
two parts Φ3 and Ψ3. It also improves the condition number of the basis.
We construct wavelets on the level three to have four vanishing moments.
Note that wavelets on other levels have six vanishing moments, but there the
vanishing moments guaranties the smoothness of dual functions [10], and four
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Figure 3: Left boundary wavelets for the scale j = 4.

vanishing moments for wavelets are sufficient in the most of the applications.
Scaling functions in Φ3 are defined by (9) for j = 3. Functions in Ψ3 are
defined by

ψ3,k (x) :=
(B8

tk
)(4) (x)∥∥(B8
tk
)(4)

∥∥ , k = 1, . . . , 8, x ∈ [0, 1] , (50)

where B8
tk

is a B-spline of order eight on the sequence of knots tk and (4)

denotes the fourth derivative. The sequences of knots tk are given by:

t1 = [0, 0, 1/32, 1/16, 1/8, 2/8, 3/8, 4/8, 5/8]; (51)

t2 = [0, 1/32, 1/16, 1/8, 3/16, 2/8, 3/8, 4/8, 5/8];

t3 = [1/32, 1/16, 1/8, 2/8, 5/16, 3/8, 4/8, 5/8, 6/8];

t4 = [1/16, 1/8, 2/8, 3/8, 7/16, 4/8, 5/8, 6/8, 7/8];

t5 = [1/8, 2/8, 3/8, 4/8, 9/16, 5/8, 6/8, 7/8, 15/16];

t6 = [2/8, 3/8, 4/8, 5/8, 11/16, 6/8, 7/8, 15/16, 31/32];

t7 = [3/8, 4/8, 5/8, 6/8, 13/16, 7/8, 15/16, 31/32, 1];

t8 = [3/8, 4/8, 5/8, 6/8, 7/8, 15/16, 31/32, 1, 1];

Lemma 5. Functions from the set Φ3 ∪ Ψ3 generate the same space as
functions from the set Φ4, i.e. span Φ3 ∪ Ψ3 = span Φ4. Functions ψ3,k,
k = 1, . . . , 8, have four vanishing wavelet moments.
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Proof. Since Φ4 is a basis of the space of all cubic splines on the knots
t4 = [0, 0, 1/32, 1/16, 2/16, . . . , 15/16, 31/32, 1, 1]. Functions in Φ3 are cubic
splines on the subsets of these knots. Functions in Ψ3 are also cubic splines,
because they are fourth derivative of the spline of order eight, and they are
defined on the subsets of knots t4. Therefore Φ3 ∪Ψ3 ⊂ span Φ4.

Functions in Φ3 are linearly independent. Function ψ3,i cannot be written
as linear combination of functions from Φ3 ∪Ψ3\ {ψ3,i}, because it is a cubic
spline on sequence of the knots ti containing an additional knot. Hence,
Ψ3 ∪ Φ3 is a linearly independent subset of span Φ4, which proves the first
assertion.

To prove that the functions ψ3,k, k = 1, . . . , 8, have four vanishing mo-
ments, we use the integration by parts. We obtain for n = 0, . . . , 3:

∫ 1

0

xn(B8
tk
)(4) (x) dx =

[
xn

(
B8
tk

)(3)
(x)

]1
0
−

∫ 1

0

nxn−1
(
B8
tk

)(3)
(x) dx. (52)

Since
(
B8
tk

)(n)
is the spline of order 8−n on the knots of multiplicity at most

two in points 0 and 1, we have

(
B8
tk

)(n)
(0) =

(
B8
tk

)(n)
(1) = 0, n = 0, . . . 4, (53)

and thus ∫ 1

0

(B8
tk
)(4) (x) dx = 0 (54)

and
∫ 1

0

xn(B8
tk
)(4) (x) dx = −

∫ 1

0

nxn−1
(
B8
tk

)(3)
(x) dx, n = 1, . . . , 3. (55)

Using (53) and the integration by parts three times, we obtain:

∫ 1

0

xn(B8
tk
)(4) (x) dx = (−1)n n!

[(
B8
tk

)(4−n)
(1)−

(
B8
tk

)(4−n)
(0)

]
= 0, (56)

for n = 1, . . . , 3, which proves the assertion.

Remark 2. In some constructions, the condition number of the wavelet ba-
sis is improved by orthogonalization of boundary wavelets or by the orthog-
onalization of scaling functions on the coarsest level. In our case, the im-
provement was insignificant.
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5.2. Norm equivalences

It remains to prove that Ψ and Ψ̃ are Riesz bases for the space L2 ([0, 1])
and that properly normalized basis Ψ is a Riesz basis for Sobolev space
Hs ([0, 1]) for some s specified below. The proofs are based on the theory
developed in [13] and [17].

For a function f defined on the real line a Sobolev exponent of smoothness
is defined as sup {s : f ∈ Hs (R)}. It is known that primal scaling functions
extended to the real line by zero have the Sobolev regularity at least γ = 5

2

and that dual scaling functions extended to the real line by zero have the
Sobolev regularity at least γ̃ = 0.344.

Theorem 6. i) The sets {Φj} := {Φj}j≥j0 and
{
Φ̃j

}
:=

{
Φ̃j

}
j≥j0

are uni-

formly stable, i.e.

c ‖b‖l2(Ij) ≤

∥∥∥∥∥∥
∑

k∈Ij
bkφj,k

∥∥∥∥∥∥
≤ C ‖b‖l2(Ij) for all b = {bk}k∈Ij ∈ l2 (Ij) , j ≥ j0.

(57)
ii) For all j ≥ j0, the Jackson inequalities hold, i.e.

inf
vj∈Sj

‖v − vj‖ . 2−sj ‖v‖Hs([0,1]) for all v ∈ Hs ([0, 1]) and s < N, (58)

and

inf
vj∈S̃j

‖v − vj‖ . 2−sj ‖v‖Hs([0,1]) for all v ∈ Hs ([0, 1]) and s < Ñ. (59)

iii) For all j ≥ j0, the Bernstein inequalities hold, i.e.

‖vj‖Hs([0,1]) . 2sj ‖vj‖ for all vj ∈ Sj and s < γ, (60)

and
‖vj‖Hs([0,1]) . 2sj ‖vj‖ for all vj ∈ S̃j and s < γ̃. (61)

Proof. i) Due to Lemma 2.1 in [17], the collections {Φj} := {Φj}j≥j0 and{
Φ̃j

}
:=

{
Φ̃j

}
j≥j0

are uniformly stable, if Φj and Φ̃j are biorthogonal,

‖φj,k‖ . 1,
∥∥∥φ̃j,k

∥∥∥ . 1, k ∈ Ij, j ≥ j0, (62)
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and Φj and Φ̃j are locally finite, i.e.

# {k′ ∈ Ij : Ωj,k′ ∩ Ωj,k 6= ∅} . 1, for all k ∈ Ij, j ≥ j0, (63)

and
#
{
k′ ∈ Ij : Ω̃j,k′ ∩ Ω̃j,k 6= ∅

}
. 1, for all k ∈ Ij, j ≥ j0, (64)

where Ωj,k := supp φj,k and Ω̃j,k := supp φ̃j,k. By (23) the sets Φj and Φ̃j

are biorthogonal. The properties (62), (63), and (64) follow from (9), (11),
and (18).

ii) By Lemma 2.1 in [17], the Jackson inequalities are the consequences of
i) and the polynomial exactness of primal and dual multiresolution analyses.

iii) The Bernstein inequalities follow from i) and the regularity of basis
functions, for details see [17].

The following fact follows from [13].

Corollary 1. We have the norm equivalences

‖v‖2Hs ∼ 22sj0

∥∥∥∥∥∥
∑

k∈Ij0

〈
v, φ̃j0,k

〉
φj0,k

∥∥∥∥∥∥

2

+
∞∑

j=j0

22sj

∥∥∥∥∥∥
∑

k∈Jj

〈
v, ψ̃j,k

〉
ψj,k

∥∥∥∥∥∥

2

, (65)

where v ∈ Hs ([0, 1]) and s ∈ (−γ̃, γ).

The norm equivalence for s = 0, Theorem 2, and Lemma 4, imply that

Ψ := Φj0 ∪
∞⋃

j=j0

Ψj and Ψ̃ := Φ̃j0 ∪
∞⋃

j=j0

Ψ̃j (66)

are biorthogonal Riesz bases of the space L2 ([0, 1]). Let us define

D =
(
Dλ,λ̃

)
λ,λ̃∈J , Dλ,λ̃ := δλ,λ̃2

|λ|, λ, λ̃ ∈ J . (67)

The relation (65) implies that D−sΨ is a Riesz basis of the Sobolev space
Hs ([0, 1]) for s ∈ (−γ̃, γ).
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6. Quantitative properties of constructed bases

In this section, we compare quantitative properties of bases constructed in
this paper, cubic spline-wavelet basis from [26] and cubic spline multiwavelet
basis recently adapted to homogeneous boundary conditions in [28]. The
condition of multi-scale wavelet bases is shown in Table 1. Our wavelet basis
is denoted by CF, a basis from [28] is denoted by Schneider and a basis from
[26] adapted to complementary boundary conditions by method from [18] is
denoted by Primbs. The last basis is the same as the basis from [5] adapted
to complementary boundary conditions by method from [18], see Remark 1.

Other criteria for the effectiveness of wavelet bases is the condition num-
ber of a corresponding stiffness matrix. Here, let us consider the stiffness
matrix:

Aj0,s =
(〈
ψ′′
j,k, ψ

′′
l,m

〉)
ψj,k,ψl,m∈Ψj0,s

. (68)

It is well-known that the condition number of Aj0,s increases quadratically
with the matrix size. To remedy this, we use a diagonal matrix for precon-
ditioning

Aprec
j0,s

= D−1
j0,s

Aj0,sD
−1
j0,s
, (69)

where
Dj0,s = diag

(〈
ψ′′
j,k, ψ

′′
j,k

〉1/2)
ψj,k∈Ψj0,s

. (70)

In [7] the anisotropic wavelet basis were used for solving fourth-order prob-
lems. Here, we use isotropic wavelet basis, i.e. we define multiscale wavelet
basis on the unit square by

Ψ2D
3,s = Φ2D

3 ∪
s⋃

j=3

Ψ2D
j , (71)

Table 1: The condition numbers of wavelet bases and stiffness matrices, j0 = 3 for CF and
Schneider, j0 = 4 for Primbs.

Ψj0,j Aprec
j0,j

j CF Schneider Primbs CF Schneider Primbs
1 8.3 1.9 14.9 64.8 472.0 1111.0
3 12.5 2.4 45.9 66.5 569.5 1116.9
5 15.3 2.6 69.8 66.6 640.8 1117.0
7 18.0 2.7 85.8 66.7 693.0 1117.0
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where

Φ2D
3 = Φ3 ⊗ Φ3, Ψ2D

j = Φj ⊗Ψj ∪Ψj ⊗ Φj ∪Ψj ⊗Ψj. (72)

The symbol ⊗ denotes the tensor product. The preconditioned stiffness ma-
trix 2DAprec

j0,s
for the biharmonic equation defined on the unit square is similar

to the one dimensional case. Condition numbers of the stiffness matrices are
listed in Table 1 and Table 2. The condition number of the stiffness matrix
corresponding to wavelet basis by Primbs exceeds 104 already for number of
levels j = 3. Wavelet basis from [17] adapted to complementary boundary
conditions by method from [18] is very badly conditioned, its quantitative
properties can be found in [28].

7. Numerical example

Now, we compare the quantitative behaviour of the adaptive wavelet
method with our bases and bases from [28]. Both bases are formed by cubic
splines and have local duals. We consider the equation

∆2u = f in Ω, u =
∂u

∂n
= 0 on ∂Ω, (73)

for Ω = (0, 1)2, where the solution u is given by

u (x, y) = v (x) v (y) , v (x) := x2
(
1− e10x

e10

)2

. (74)

Note that the solution exhibits a sharp gradient near the point [1, 1]. We
solve the problem by the method designed in [12] with the approximate

Table 2: The condition of numbers of stiffness matrices of the size N ×N for j levels.

j N CF N Schneider
1 289 128.05 900 484.35
2 1089 141.28 3844 583.41
3 4225 212.01 15876 626.91
4 16641 257.56 64516 653.45
5 66049 281.21 260100 673.19
6 263169 297.23 1044484 689.43
7 1050625 306.12 4186116 703.42
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Figure 4: The convergence history for adaptive wavelet scheme with various wavelet bases.

multiplication of the stiffness matrix with a vector proposed in [6]. We use
wavelets up to the scale |λ| ≤ 10. The convergence history is shown in
Figure 4. In our experiments, the convergence rate, i.e. the slope of the
curve, is similar for both bases. However, they significantly differ in the
number of basis functions and number of iterations needed to resolve the
problem with desired accuracy. The number of basis functions was about
104 for an error in L∞-norm about 10−7. The number of all basis functions
for full grid, i.e. basis functions on the level ten or less, is about 106, therefore
by using an adaptive method the significant compression was achieved. It
can seem that the number of iterations is quite large, but one could take
into account that in the beginning the iterations were done for much smaller
vector and the size of the vector increases successively. The algorithm is
asymptotically optimal, i.e. the computational time depends linearly on the
number of basis functions, see [12].
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[4] D. Černá, V. Finěk, Optimized construction of biorthogonal spline-
wavelets, in: T.E. Simos et al. (Eds.), ICNAAM 2008, AIP Conference
Proceedings 1048, American Institute of Physics, New York, 2008, pp.
134-137.
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In the paper, we propose a construction of a new cubic spline-wavelet basis on the
hypercube satisfying homogeneous Dirichlet boundary conditions. Wavelets have two

vanishing moments. Stiffness matrices arising from discretization of elliptic problems
using a constructed wavelet basis have uniformly bounded condition numbers and we
show that these condition numbers are small. We present quantitative properties of the
constructed basis and we provide a numerical example to show an efficiency of Galerkin
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1. Introduction

In this paper, we propose a construction of a new cubic spline wavelet basis on the

hypercube that is well-conditioned, adapted to homogeneous Dirichlet boundary

conditions and the wavelets have two vanishing moments. The wavelet basis of the

space H1
0 (Ω), where Ω = (0, 1)

d
and d ∈ N, is then obtained by a tensor product

and a proper normalization.

First of all, we summarize the desired properties of a constructed basis:

- Riesz basis property. We construct Riesz basis of the space L2 (Ω) that, when

normalized with respect to H1-seminorm, is also a Riesz basis of the space

H1
0 (Ω).

∗Corresponding author
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- Polymial exactness. Since the primal basis functions are cubic B-splines, the

primal multiresolution analysis has polynomial exactness of order four. It means

that all polynomials of degree less than four belong to the span of scaling

functions at the given level.

- Vanishing moments. The wavelets have two vanishing moments.

- Locality. The primal basis functions are local in the sense of Definition 1.1

below.

- Smoothness. Primal basis functions belong to C2 (Ω) and dual basis functions

belong to C (Ω), where C (Ω) is the space of continuous functions on domain

Ω and Cn (Ω) is the space of functions on domain Ω that have continuous

derivatives up to order n ∈ N.
- Closed form. The primal scaling functions and wavelets are known in the closed

form.

- Homogeneous Dirichlet boundary conditions. Constructed wavelet basis satisfies

homogeneous Dirichlet boundary conditions.

- Well-conditioned bases. Our objective is to construct a wavelet basis that is well

conditioned with respect to the L2-norm and is well conditioned with respect

to the H1-seminorm, when normalized appropriately.

We denote the Sobolev space or its subspace by H ⊂ Hs (Ω) for nonnegative

integer s and the corresponding inner product by 〈·, ·〉H , a norm by ‖·‖H and a

seminorm by |·|H . In case s = 0 we consider the space L2 (Ω) and we denote by 〈·, ·〉
and ‖·‖ the L2-inner product and the L2-norm, respectively. Let J be some index

set and let each index λ ∈ J take the form λ = (j, k), where |λ| := j ∈ Z is a scale.

Let

‖v‖2 :=

√∑

λ∈J
v2λ, for v = {vλ}λ∈J , vλ ∈ R, (1.1)

and

l2 (J ) :=
{
v : v = {vλ}λ∈J , vλ ∈ R, ‖v‖2 <∞

}
. (1.2)

Our aim is to construct a wavelet basis in the sence of the following definition.

Definition 1.1. A family Ψ := {ψλ, λ ∈ J } is called a (primal) wavelet basis of

H, if

i) Ψ is a Riesz basis for H, i.e. the closure of the span of Ψ is H and there exist

constants c, C ∈ (0,∞) such that

c ‖b‖2 ≤
∥∥∥∥∥
∑

λ∈J
bλψλ

∥∥∥∥∥
H

≤ C ‖b‖2 , for all b := {bλ}λ∈J ∈ l2 (J ) . (1.3)

Constants cΨ := sup {c : c satisfies (1.3)}, CΨ := inf {C : C satisfies (1.3)} are

called Riesz bounds and cond Ψ = CΨ/cΨ is called the condition number of Ψ.
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ii) The functions are local in the sense that diam (Ωλ) ≤ C2−|λ| for all λ ∈ J ,

where Ωλ is the support of ψλ, and at a given level j the supports of only

finitely many wavelets overlap at any point x ∈ Ω.

For the two countable sets of functions Γ,Ω ⊂ H , the symbol 〈Γ,Ω〉H denotes

the matrix

〈Γ,Ω〉H := {〈γ, ω〉H}γ∈Γ,ω∈Ω . (1.4)

Remark 1.1. It is known that the constants cΨ and CΨ from Definition 1.1 satisfy:

cΨ =
√
λmin (〈Ψ,Ψ〉H), CΨ =

√
λmax (〈Ψ,Ψ〉H), (1.5)

where λmin (〈Ψ,Ψ〉H) and λmax (〈Ψ,Ψ〉H) are the smallest and the largest eigen-

values of the matrix 〈Ψ,Ψ〉H , respectively.

Many constructions of spline wavelet or multiwavelet bases on the interval have

been proposed in recent years.3,4, 15,18,19,21 In Ref. 1, 2, 11, 17 cubic spline wavelets

on the interval were constructed. In these cases dual functions are known and

are local. Spline wavelet or multiwavelet bases where duals are not local are also

known.5,12–15 The advantage of our construction in comparison with cubic spline

biorthogonal wavelets with local duals1,2, 11,17 is that the support of wavelets is

shorter, condition numbers of the corressponding stiffness matrices are smaller and

the advantage is also a simple construction.

2. Construction of scaling functions

A primal scaling basis is the same as a scaling basis in Ref. 1, 17. It is generated from

functions φ, φb1 and φb2. Let φ be a cubic B-spline defined on knots {0, 1, 2, 3, 4}.
It can be written explicitly as:

φ(x) =





x3

6 , x ∈ [0, 1],

−x3

2 + 2x2 − 2x+ 2
3 , x ∈ [1, 2],

x3

2 − 4x2 + 10x− 22
3 , x ∈ [2, 3],

(4−x)3

6 , x ∈ [3, 4],

0, otherwise.

(2.1)

Then φ satisfies a scaling equation1,17 :

φ (x) =
φ (2x)

8
+
φ (2x− 1)

2
+

3φ (2x− 2)

4
+
φ (2x− 3)

2
+
φ (2x− 4)

8
. (2.2)

Let φb1 be a cubic B-spline defined on knots {0, 0, 0, 1, 2} and φb2 be a cubic

B-spline defined on knots {0, 0, 1, 2, 3}, i.e.,

φb1(x) =





7x3

4 − 9x2

2 + 3x, x ∈ [0, 1],
(2−x)3

4 , x ∈ [1, 2],

0, otherwise,

(2.3)
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and

φb2(x) =





− 11x3

12 + 3x2

2 , x ∈ [0, 1],
7x3

12 − 3x2 + 9x
2 − 3

2 , x ∈ [1, 2],
(3−x)3

6 , x ∈ [2, 3],

0, otherwise.

(2.4)

Then φb1 and φb2 satisfy scaling equations:1,17

φb1 (x) =
φb1 (2x)

2
+

3φb2 (2x)

4
+

3φ (2x)

16
, (2.5)

φb2 (x) =
φb2 (2x)

4
+

11φ (2x)

16
+
φ (2x− 1)

2
+
φ (2x− 2)

8
.

For j ∈ N, j ≥ 3 and x ∈ [0, 1] we set

φj,k (x) = 2j/2φ(2jx− k), k = 3, . . . 2j − 1, (2.6)

φj,1 (x) = 2j/2φb1(2
jx), φj,2j+1 (x) = 2j/2φb1(2

j(1− x)),

φj,2 (x) = 2j/2φb2(2
jx), φj,2j (x) = 2j/2φb2(2

j(1− x)).

(2.7)

Furthermore, we define

Φj =
{
φj,k/ ‖φj,k‖ , k = 1, . . . , 2j + 1

}
and Vj = spanΦj . (2.8)

The sets Φj are uniform Riesz bases of the space Vj . It means that the sets Φj

are Riesz bases of the space Vj with Riesz bounds independent on j. The proof can

be found in Ref. 1. The graphs of the functions φj,k on the coarsest level j = 3 are

displayed in Figure 1.

0 0.5 1
0

0.5

1

1.5

2

Fig. 1. Functions φ3,k, k = 1, . . . , 9.



November 18, 2014 13:27 WSPC/WS-IJWMIP cerna˙finek

Wavelet basis of cubic splines on the hypercube satisfying homogeneous boundary conditions 5

3. Construction of wavelets

In some applications such as adaptive wavelet methods,6,7 vanishing moments of

wavelets are needed. In our case, we construct wavelets with two vanishing moments,

i.e.
∫ ∞

−∞
xkψ(x)dx = 0, k = 0, 1. (3.1)

We set Ṽj as the space of continuous piecewise linear function:

Ṽj = C (0, 1) ∩
2j−1∏

k=0

P1

(
k

2j
,
k + 1

2j

)
, (3.2)

where P1 (a, b) is the space of all algebraic polynomials on (a, b) of degree less or

equal to 1. Clearly, with this choice the dimension of Ṽj is 2
j +1 that is the same as

the dimension of Vj . We construct wavelets ψj,k, k = 1, . . . , 2j , such that ψj,k ∈ Vj+1

and
〈
ψj,k, φ̃

〉
= 0 (3.3)

for all functions φ̃ ∈ Ṽj , because then (3.1) will be satisfied.

Since we want ψj,k ∈ Vj+1, we define a generator wavelet ψ as

ψ(x) =

6∑

k=0

gkφ(2x− k), (3.4)

and

[g0, . . . , g6] =

[−1

184
,
7

46
,
−119

184
, 1,

−119

184
,
7

46
,
−1

184

]
. (3.5)

The coefficients gk are computed such that 〈ψ, ω〉 = 0 for all functions ω that are

continuous and are linear on intervals [k, k + 1], k ∈ Z. Then for

ψj,k(x) = 2j/2ψ(2jx− k + 2), k = 3, ..., 2j − 2, j ∈ N, j ≥ 3, (3.6)

the condition (3.3) is satisfied and the functions ψ and ψj,k have two vanishing

wavelet moments. The support of the wavelet ψ is [0, 5]. The graph of ψ is shown

in Figure 2.

We define boundary wavelets ψb1 and ψb2 by:

ψb1(x) = gb10 φb1(2x) + gb11 φb2(2x) +

4∑

k=2

gb1k φ(2x− k + 2), (3.7)

ψb2(x) = gb20 φb1(2x) + gb21 φb2(2x) +
6∑

k=2

gb2k φ(2x− k + 2),
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0 1 2 3 4 5

−0.2

0

0.2

0.4
ψ

0 1 2 3

−6

−4

−2

0

2

4
ψb1

0 1 2 3 4
−6

−4

−2

0

2

4

ψb2

Fig. 2. Wavelets ψ, ψb1 and ψb2.

where

[
gb10 , . . . , g

b1
4

]
=

[
939

70
,
−393

20
,
6233

560
,−4, 1

]
, (3.8)

[
gb20 , . . . , g

b2
6

]
=

[
2770661

1828560
,
256057

457140
,
−493633

76992
,
20761777

1828560
,
−76369591

7314240
, 7,−3

]
.

Then suppψb1 = [0, 3], suppψb2 = [0, 4] and both boundary wavelets have two

vanishing moments.

For j ∈ N, j ≥ 3 and x ∈ [0, 1] we define

ψj,1(x) = 2j/2ψb1(2
jx), ψj,2j (x) = 2j/2ψb1(2

j(1− x)), (3.9)

ψj,2(x) = 2j/2ψb2(2
jx), ψj,2j−1(x) = 2j/2ψb2(2

j(1− x)).

and

Ψj =
{
ψj,k/ ‖ψj,k‖ , k = 1, . . . , 2j

}
, Wj = spanΨj . (3.10)

We denote

Ψs = Φ3 ∪
2+s⋃

j=3

Ψj and Ψ = Φ3 ∪
∞⋃

j=3

Ψj . (3.11)

In the following, we prove that Ψ is Riesz basis of the space L2 (0, 1). The set

Ψs is a finite dimensional approximation of Ψ.

Theorem 3.1. The sets Ψj, j ≥ 3, are uniform Riesz bases of Wj.

Proof. We computed the matrix

Fj := 〈Ψj , Ψj〉 (3.12)
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using (3.4) and (3.7). For example, for j = 3 we obtained

F3 =




1.000 0.128 0.103 0.003 0 0 0 0

0.128 1.000 0.432 −0.145 −0.014 0 0 0

0.103 0.432 1.000 −0.029 −0.077 0.001 0 0

0.003 −0.145 −0.029 1.000 −0.029 −0.077 −0.014 0

0 −0.014 −0.077 −0.029 1.000 −0.029 −0.145 0.003

0 0 0.001 −0.077 −0.029 1.000 0.432 0.103

0 0 0 −0.014 −0.145 0.432 1.000 0.128

0 0 0 0 0.003 0.103 0.128 1.000




, (3.13)

where the numbers are rounded to three decimal places. The matrix Fj for j ≥ 3

has the similar structure. The first two rows and columns and the last two rows and

columns corresponds to boundary wavelets and for k, l = 3, . . . 2j − 2:

(Fj)k,l =





1, k = l,

−0.029, |k − l| = 1,

−0.077, |k − l| = 2,

−0.001, |k − l| = 3,

0, otherwise.

(3.14)

It is easy to see that Fj is banded and diagonally dominant. Estimates for the

smallest eigenvalue λjmin and the largest eigenvalue λjmax of the matrix Fj can be

computed using the Gershgorin circle theorem:

λjmin ≥ min

(∣∣∣F j
ii

∣∣∣−
n∑

k=1

∣∣∣F j
ik

∣∣∣
)
> 0.2, (3.15)

λjmax ≤ max

(∣∣∣F j
ii

∣∣∣+
n∑

k=1

∣∣∣F j
ik

∣∣∣
)
< 1.8, (3.16)

(3.17)

where F j
ik are the entries of the matrix Fj . With the help of Remark 1.1 the assertion

is proven.

The proof that Ψ is a Riesz basis is based on the following theorem.8,12

Theorem 3.2. Let J ∈ N and let Vj and Ṽj, j ≥ J , be subspaces of L2 (0, 1) such

that

Vj ⊂ Vj+1, Ṽj ⊂ Ṽj+1, dimVj = dimṼj <∞, j ≥ J. (3.18)

Let Φj be uniform Riesz bases of Vj, Φ̃j be uniform Riesz bases of Ṽj, Ψj be uniform

Riesz bases of Ṽ ⊥
j ∩Vj+1, where Ṽ

⊥
j is the orthogonal complement of Ṽj with respect

to the L2-inner product, and let

Ψ = {ψλ, λ ∈ J } = ΦJ ∪
∞⋃

j=J

Ψj . (3.19)
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Furthermore, let the matrix

Gj :=
〈
Φj , Φ̃j

〉
(3.20)

be invertible and the spectral norm of G−1
j is bounded independently on j. In addi-

tion, for some positive constants C, γ and d, γ < d, let

inf
vj∈Vj

‖v − vj‖ ≤ C2−jd ‖v‖Hd(0,1) , v ∈ Hd
0 (0, 1) , (3.21)

and for 0 ≤ s < γ let

‖vj‖Hd(0,1) ≤ C2js ‖vj‖ , vj ∈ Vj , (3.22)

and let similar estimates (3.21) and (3.22) hold for γ̃ and d̃ on the dual side. Then

there exist constants k and K, 0 < k ≤ K <∞, such that

k ‖b‖2 ≤
∥∥∥∥∥
∑

λ∈J
bλ2

−|λ|sψλ

∥∥∥∥∥
Hs(0,1)

≤ K ‖b‖2 , b := {bλ}λ∈J ∈ l2 (J ) (3.23)

holds for s ∈ (−γ̃, γ).

Theorem 3.3. The set Ψ is a wavelet basis of the space L2 (0, 1).

Proof. We consider the set

Φ̄j =
{
φj,k, k = 1, . . . , 2j

}
(3.24)

that is a Riesz basis of the space Vj . Recall that Ṽj is defined by (3.2). Let

φ̃(x) =





x+ 1, x ∈ [−1, 0],

1− x, x ∈ [0, 1],

0, otherwise,

(3.25)

and for x ∈ [0, 1] we define

φ̃j,k (x) = 2j/2φ̃
(
2jx− k

)
, k = 1, . . . , 2j − 1, (3.26)

φ̃j,k (x) = 2(j+1)/2φ̃
(
2jx− k

)
, k = 0, 2j . (3.27)

Then

Φ̃j =
{
φ̃j,k, k = 0, . . . , 2j

}
(3.28)

are uniform Riesz basis of the space Ṽj .
1
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The matrix Gj =
〈
Φ̄j , Φ̃j

〉
has the structure

Gj =




17
40

11
40

11
80 0 0 0 0 0

19
120

9
20

17
80

11
120 0 0 0 0

1
60

13
60

11
20

13
60

1
120 0 0 0

0 1
120

13
60

11
20

13
60

1
120 0

0 0
. . .

. . .
. . .

. . .
. . .

...
... 1

120
13
60

11
20

13
60

1
120 0

0 1
120

13
60

11
20

13
60

1
60

0 11
120

17
80

9
20

19
120

0 11
80

11
40

17
40




. (3.29)

It is easy to verify that the matrix Gj is banded and strictly diagonally dominant.

Therefore, it is invertible and the spectral norm of G−1
j is bounded independently

on j. It is known8 that when γ is the Sobolev exponent of smoothness of the basis

functions and d is the polynomial exactness of Vj than (3.21) and (3.22) are satisfied.

In our case, the Sobolev exponent of smoothness is γ = 3.5 and the polynomial

exactness of Vj is d = 4. On the dual side, γ̃ = 1.5 and d̃ = 2. Therefore, due to

Theorem 3.2, the norm equivalence (3.23) is satisfied for s ∈ (−1.5, 3.5). Since we

proved that (3.23) holds for s = 0, the set Ψ is indeed a wavelet basis of the space

L2 (0, 1).

It remains to prove that when the wavelet basis Ψ is normalized in the H1-

seminorm, then it is a wavelet basis of the space H1
0 (0, 1). We denote

I3 := {0, 1, . . . , 8} and Jj :=
{
1, . . . , 2j

}
. (3.30)

Theorem 3.4. The set{
φ3,k/ |φ3,k|H1

0 (0,1)
, k ∈ I3

}
∪
{
ψj,k/ |ψj,k|H1

0 (0,1)
, j ≥ 3, k ∈ Jj

}
(3.31)

is a wavelet basis of the space H1
0 (0, 1).

Proof. We follow the Proof of Theorem 2 in Ref. 3. From the proof of Theorem 3.3,

we know that the relation (3.23) holds for s = 1. Therefore the set
{
2−3φ3,k, k ∈ I3

}
∪
{
2−jψj,k, j ≥ 3, k ∈ Jj

}
(3.32)

is a wavelet basis of the space H1
0 (0, 1). From (2.6), (3.6) and (3.9) there exist

nonzero constants C1 and C2 such that

C12
j ≤ |ψj,k|H1

0 (Ω) ≤ C22
j , for j ≥ 3, k ∈ Jj , (3.33)

and

C12
3 ≤ |φ3,k|H1

0 (Ω) ≤ C22
3, for k ∈ I3. (3.34)
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Let b̂ = {â3,k, k ∈ I3} ∪
{
b̂j,k, j ≥ 3, k ∈ Jj

}
be such that

∥∥∥b̂
∥∥∥
2

2
=
∑

k∈I3

â23,k +
∑

k∈Jj ,j≥3

b̂2j,k <∞. (3.35)

We define

a3,k =
23â3,k

|φ3,k|H1
0 (0,1)

, k ∈ I3, bj,k =
2j b̂j,k

|ψj,k|H1
0 (0,1)

, j ≥ 3, k ∈ Jj , (3.36)

and b = {a3,k, k ∈ I3} ∪ {bj,k, j ≥ 3, k ∈ Jj}. Then

‖b‖2 ≤

∥∥∥b̂
∥∥∥
2

C1
<∞. (3.37)

Since (3.32) is a Riesz basis of H1
0 (0, 1) there exist constants C3 and C4 such

that

C3 ‖b‖2 ≤

∥∥∥∥∥∥
∑

k∈I3

a3,k2
−3φ3,k +

∑

k∈Jj ,j≥3

bj,k2
−jψj,k

∥∥∥∥∥∥
H1

0 (0,1)

≤ C4 ‖b‖2 . (3.38)

Therefore

C4

C1

∥∥∥b̂
∥∥∥
2
≥ C4 ‖b‖2 ≥

∥∥∥∥∥∥
∑

k∈I3

a3,k2
−3φ3,k +

∑

k∈Jj ,j≥3

bj,k2
−jψj,k

∥∥∥∥∥∥
H1

0 (0,1)

(3.39)

=

∥∥∥∥∥∥
∑

k∈I3

â3,k
|φ3,k|H1

0 (0,1)

φ3,k +
∑

k∈Jj ,j≥3

b̂3,k
|ψj,k|H1

0 (0,1)

ψj,k

∥∥∥∥∥∥
H1

0 (0,1)

and similarly

C3

C2

∥∥∥b̂
∥∥∥
2
≤

∥∥∥∥∥∥
∑

k∈I3

â3,k
|φ3,k|H1

0 (0,1)

φ3,k +
∑

k∈Jj ,j≥3

b̂3,k
|ψj,k|H1

0 (0,1)

ψj,k

∥∥∥∥∥∥
H1

0 (0,1)

. (3.40)

It is known1,16 that an orthogonalization of the scaling functions on the coarsest

level can lead to improved quantitative properties of the resulting wavelet basis.

Therefore, we define the set

Φort
3 =

{
φort3,k, k ∈ I3

}
(3.41)

by

Φort
3 := K−1Φ3, K = 〈Φ3,Φ3〉 . (3.42)

Then the set of scaling functions Φort
3 is orthonormal and

Ψort := Φort
3 ∪

∞⋃

j=3

Ψj (3.43)

is a wavelet basis of the space L2 (0, 1) and its appropriate rescaling is a wavelet

basis of the space H1
0 (0, 1).
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4. Multivariate wavelets

We present two well-known constructions of multivariate wavelet bases on the unit

hypercube.22 They are both based on tensorizing univariate wavelet bases and pre-

serve Riesz basis property, locality of wavelets, vanishing moments and polynomial

exactness.

4.1. Anisotropic construction

For notational simplicity, we denote

ψ2,k := φort3,k, k ∈ J2 := I3 (4.1)

and

J := {(j, k) , j ≥ 2, k ∈ Jj} . (4.2)

Then we can write

Ψort = {ψj,k, j ≥ 2, k ∈ Jj} = {ψλ, λ ∈ J } . (4.3)

Recall that for λ = (j, k) we denote |λ| = j. We use u⊗v to denote the tensor product
of functions u and v, i.e. (u⊗ v) (x1, x2) = u (x1) v (x2). We define multivariate basis

functions as:

ψλ = ⊗d
i=1ψλi

, λ = (λ1, . . . , λd) ∈ J, J = J d = J ⊗ . . .⊗ J . (4.4)

Since Ψort is a Riesz basis of L2 (0, 1) and Ψort normalized with respect to H1-

seminorm is a Riesz basis of H1
0 (0, 1), the set

Ψani := {ψλ,λ ∈ J} (4.5)

is a Riesz basis of L2 (Ω), Ω = (0, 1)
d
, and its normalization

{
ψλ

|ψλ|H1((0,1)d)
,λ ∈ J

}
(4.6)

is a Riesz basis of H1
0 (Ω). The set

Ψani
s := {ψλ,λ = (λ1, . . . , λd) , |λi| < 2 + s} (4.7)

is a finite-dimensional approximation of Ψani.

4.2. Isotropic construction

We define for j ≥ 3 and k = (k1, . . . kd) multivariate scaling functions:

φj,k := ⊗d
i=1φj,ki

, (4.8)

and

Φiso
j := {φj,k, k = (k1, . . . kd) , ki ∈ Ij , i = 1, . . . , d} . (4.9)
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For e ∈ {0, 1} we define

ψj,k,e =

{
φj,k, e = 0,

ψj,k, e = 1.
(4.10)

We denote the index set:

Jj,e =

{ Ij , e = 0,

Jj , e = 1.
(4.11)

For k = (k1, . . . kd) and e = (e1, . . . , ed) we define multivariate functions

ψj,k,e = ⊗d
i=1ψj,ki,ei (4.12)

and the set of wavelets on the level j as

Ψiso
j = {ψj,k,e, ki ∈ Jj,ei , e ∈ E} , where E = {0, 1}d \ {0} . (4.13)

It is known that then the set

Ψiso = Φiso
3 ∪

∞⋃

j=3

Ψiso
j (4.14)

is a wavelet basis of L2 (Ω) and its normalization with respect to the H1 (Ω)-

seminorm is a Riesz basis of H1
0 (Ω). The set

Ψiso
s = Φiso

3 ∪
2+s⋃

j=3

Ψiso
j (4.15)

is a finite dimensional approximation of Ψiso.

5. Quantitative properties

In this section, we present the condition numbers of the stiffness matrices for the

following elliptic problem:

−ε∆u+ au = f on Ω, u = 0 on ∂Ω, (5.1)

where ∆ is the Laplace operator, ε and a are positive constants. The variational

formulation for an anisotropic wavelet basis is

Aaniuani = fani, (5.2)

where

Aani := ε
〈
∇Ψani,∇Ψani

〉
+ a

〈
Ψani,Ψani

〉
, (5.3)

u :=
(
uani

)T
Ψani, fani =

〈
f,Ψani

〉
.

An advantage of discretization of elliptic equation (5.1) using a wavelet basis is that

the system (5.2) can be simply precondtioned by a diagonal preconditioner.10 Let
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D be a matrix of diagonal elements of the matrix A, i.e. Dλ,µ = Aλ,µδλ,µ, where

δλ,µ denotes Kronecker delta. Setting

Ãani :=
(
Dani

)−1/2
Aani

(
Dani

)−1/2
, (5.4)

ũani :=
(
Dani

)1/2
uani, f̃ani :=

(
Dani

)−1/2
fani

we obtain the preconditioned system Ãaniũani = f̃ani. It is known10 that

cond Ãani ≤ C <∞. (5.5)

Let

Aani
s = ε

〈
∇Ψani

s ,∇Ψani
s

〉
+ a

〈
Ψani

s ,Ψani
s

〉
, (5.6)

uanis =
(
uani
s

)T
Ψani

s , fanis =
〈
f,Ψani

s

〉
.

and let Dani
s be a matrix of diagonal elements of the matrix Aani

s , i.e.
(
Dani

s

)
λ,µ

=(
Aani

s

)
λ,µ

δλ,µ. We set

Ãani
s :=

(
Dani

s

)−1/2
Aani

s

(
Dani

s

)−1/2
, (5.7)

ũani
s :=

(
Dani

s

)1/2
uani
s , f̃anis :=

(
Dani

s

)−1/2
fanis

and obtain preconditioned finite-dimensional system

Ãani
s ũani

s = f̃anis . (5.8)

Since Ãani
s is a part of the matrix Aani that is symmetric and positive definite, we

have also

cond Ãani
s ≤ C. (5.9)

The preconditioned system for an isotropic wavelet basis

Ãiso
s ũiso

s = f̃ isos . (5.10)

is derived in a similar way. The stiffness matrix Ãiso
s also satisfies

cond Ãiso
s ≤ C. (5.11)

The eigenvalues and condition numbers of the stiffness matrices for one-dimensional

problem are shown in Table 1. We denote the stiffness matrix for the bases Ψs and

Ψort
s preconditioned as in (5.7) by Ãs and Ãort

s , respectively. The consequence

of Remark 1.1 is that the condition number with respect to the H1-seminorm of

the multiscale wavelet basis Ψs normalized with respect to the H1-seminorm is

equal to the square root of the condition number of the stiffness matrix Ãs. The

eigenvalues and condition numbers of the stiffness matrices for two-dimensional and

three-dimensional problems are shown in Table 2 and Table 3. Table 1, Table 2 and

Table 3 correspond to the choice of parameters ε = 1 and a = 0, i.e. for the Poisson

equation.

In Table 4 and Table 5 a dependence of the condition number on the parameter

ε is shown. It is computed for the two-dimensional problem and a = 1. It can be
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Table 1. The maximal eigenvalues, the minimal eigenvalues and the condition numbers numbers

of the matrices Ãort
s and Ãs of the size N ×N corresponding to the one-dimensional problem.

s N λortmax λortmin condÃort
s λmax λmin condÃs

1 17 4.03 5.56 2.89 19.83 7.74 2.89

2 33 5.55 5.60 2.78 21.35 7.79 2.78

3 65 6.85 5.61 2.78 22.13 7.81 2.78

4 129 8.00 5.62 2.78 22.66 7.81 2.78

5 257 9.01 5.62 2.78 23.03 7.82 2.78

6 513 9.91 5.62 2.78 23.30 7.82 2.78

7 1 025 10.68 5.62 2.78 23.49 7.82 2.78

8 2 049 11.35 5.62 2.78 23.63 7.82 2.78

Table 2. The maximal eigenvalues, the minimal eigenvalues and the condition numbers of the
stiffness matrices Ãani

s and Ãiso
s of the size N×N corresponding to the two-dimensional problem.

s N λanimax λanimin condÃani
s λisomax λisomin condÃiso

s

1 289 2.46 0.15 16.2 3.21 0.06 51.6

2 1 089 2.67 0.14 19.2 3.27 0.06 58.4

3 4 225 2.80 0.12 23.8 3.29 0.06 58.8

4 16 641 2.88 0.10 29.6 3.31 0.06 59.0

5 66 049 2.92 0.08 35.4 3.31 0.06 59.2

6 263 169 2.94 0.07 41.1 3.32 0.06 59.2

7 1 058 841 2.95 0.06 46.3 3.32 0.06 59.3

8 4 231 249 2.96 0.06 50.9 3.32 0.06 59.3

Table 3. The maximal eigenvalues, the minimal eigenvalues and the condition numbers of the
stiffness matrices Ãani

s and Ãiso
s of the sizeN×N corresponding to the three-dimensional problem.

s N λanimax λanimin condÃani
s λisomax λisomin condÃiso

s

1 4 913 3.94 0.07 58.2 6.34 0.01 829.3

2 35 937 4.47 0.05 88.0 6.47 0.01 871.4

3 274 625 4.77 0.04 125.4 6.52 0.01 879.5

4 2 146 689 5.01 0.03 181.2 6.56 0.01 883.0

5 16 974 593 5.12 0.02 250.7 6.56 0.01 885.0

seen that if ε increases the condition number become close to the condtion number

of the stiffness matrix for the Poisson problem and if ε decreases than the condition

number become close to the condition number of Grammian matrix with respect

to the L2-inner product, i.e. the case ε = 0 and a = 1. The condition numbers are

even significantly lower than condition numbers for one-dimensional problem and

periodized biorthogonal wavelets, see Tables in Ref. 22.
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Table 4. Condition numbers of the stiffness matrices Ãiso
s of the size N ×N for various values of

ε corresponding to the two-dimensional problem .

s N ε = 103 ε = 1 ε = 10−3 ε = 10−9 ε = 0

1 289 51.6 51.6 145.3 393.1 393.1

2 1 089 58.4 58.4 146.7 447.8 447.8

3 4 225 58.8 58.8 146.8 471.3 471.4

4 16 641 59.0 59.0 146.8 484.0 484.0

5 66 049 59.2 59.2 146.8 491.1 491.1

6 263 169 59.2 59.2 146.8 494.8 494.9

7 1 058 841 59.3 59.3 146.8 496.8 496.9

8 4 231 249 59.3 59.3 146.8 497.8 497.9

Table 5. Condition numbers of the stiffness matrices Ãani
s of the size N ×N for various values of

ε corresponding to the two-dimensional problem .

s N ε = 103 ε = 1 ε = 10−3 ε = 10−9 ε = 0

1 289 16.2 16.2 15.1 16.2 16.2

2 1 089 19.2 19.2 19.0 30.8 30.8

3 4 225 23.8 23.8 23.5 46.9 46.9

4 16 641 29.6 29.6 29.4 63.9 63.9

5 66 049 35.6 35.5 35.4 81.2 81.3

6 263 169 41.3 41.1 41.1 98.0 98.1

7 1 058 841 46.4 46.3 46.3 113.6 113.9

8 4 231 249 51.0 51.0 51.0 127.2 128.9

6. Numerical example

The constructed wavelet basis can be used for solving various types of problems.

Let us mention for example solving partial differential and integral equations by

adaptive wavelet method.6,7 In this section we use constructed wavelet basis in

wavelet-Galerkin method. We consider the problem (5.1) with Ω = (0, 1)
2
, ε = 1

and a = 0. The right-hand side f is such that the solution u is given by:

u (x, y) = v (x) v (y) , v (x) = x
(
1− e5x−5

)
. (6.1)

We discretize the equation using Galerkin method and the isotropic wavelet basis

constructed in this paper and we obtain discrete problem Ãiso
s ũs = f̃ isos . We solve

it by conjugate gradient method using a simple multilevel approach:

1. Compute Ãiso
s and f̃ isos , choose v0 of the length 92.

2. For j = 0, . . . , s find the solution ũj of the system Ãiso
j ũj = f̃ isoj by conjugate
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gradient method with initial vector vj defined for j ≥ 1 by

(vj) =

{
ũj−1, i = 1, . . . , kj ,

0, i = kj , . . . , kj+1,
(6.2)

where kj =
(
2j+2 + 1

)2
.

A criterion ‖rj‖ < εj , where rj := Ãiso
j ũj−f̃ isoj , is used for terminating iterations

of conjugate gradient (CG) method at level j. It is possible to choose smaller εj
on coarser levels,13 but in our case we choose εj constant for all levels, because

other choices of εj did not lead to significantly smaller number of iterations in our

experiments. The method for anisotropic wavelet basis is similar.

We denote the number of iterations on the level j as Mj . It is known
22 that one

CG iteration requires O (N) floating-point operations, where N×N is the size of the

matrix. Therefore the number of operations needed to compute one CG iteration

on the level j requires about one quarter of operations needed to compute one CG

iteration on the level j + 1, we compute the total number of iterations by

M =

s∑

j=0

Mj

4s−j
. (6.3)

The results are listed in Table 6 and Table 7. The residuum is denoted rs, u is the

exact solution of the given problem and us is an approximate solution obtained by

multilevel Galerkin method with s levels of wavelets. It can be seen that the number

of conjugate gradient iterations is quite small and that

‖us − u‖∞
‖us+1 − u‖∞

≈ ‖us − u‖
‖us+1 − u‖ ≈ 1

16
, (6.4)

i.e. that order of convergence is 4. It confirms the theory.

Table 6. Number of iterations and error estimates for multilevel conjugate gradient method for
isotropic wavelet basis.

s N M ‖rs‖ ‖us − u‖∞ ‖us − u‖
1 289 17.00 1.00e-6 1.02e-5 2.95e-6

2 1 089 17.06 1.51e-7 6.95e-7 2.49e-7

3 4 225 16.75 1.29e-8 4.83e-8 1.61e-8

4 16 641 15.31 1.78e-9 2.87e-9 9.92e-10

5 66 049 14.48 1.59e-10 1.79e-10 6.18e-11

6 263 169 12.77 3.21e-11 1.12e-11 3.77e-12

7 1 058 841 12.16 3.11e-12 1.38e-12 6.45e-13
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Table 7. Number of iterations and error estimates for multilevel conjugate gradient method for

anisotropic wavelet basis.

s N M ‖rs‖ ‖us − u‖∞ ‖us − u‖
1 289 9.25 8.15e-6 1.03e-5 2.97e-6

2 1 089 11.13 1.16e-6 7.10e-7 2.49e-7

3 4 225 11.42 1.33e-7 4.91e-8 1.62e-8

4 16 641 12.05 1.32e-8 2.90e-9 9.93e-10

5 66 049 12.14 1.31e-9 1.76e-10 6.20e-11

6 263 169 11.95 1.32e-10 1.14e-11 3.78e-12

7 1 058 841 11.98 1.46e-11 1.24e-12 6.01e-13
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1 Introduction

A general concept for solving of operator equations by means of wavelets was
proposed by A. Cohen, W. Dahmen and R. DeVore in [8,9]. It consists of the
following steps: transformation of the variational formulation into the well con-
ditioned infinite-dimensional problem in the space l2, finding of the convergent
iteration process for the l2− problem and finally a derivation of its computable
version. The aim is to find an approximation of the unknown solution u which
should correspond to the best N -term approximation, and the associated com-
putational work should be proportional to the number of unknowns. Essential
components to achieve this goal are well conditioned wavelet stiffness matrices
and an efficient approximate multiplication of quasi-sparse wavelet stiffness
matrices with vectors.

In [8], authors exploited an off-diagonal decay of entries of the wavelet stiff-
ness matrices and designed a numerical routine APPLY which approximates
the exact matrix-vector product with the desired tolerance ε and that has lin-
ear computational complexity, up to sorting operations. The idea of APPLY
is following: To truncate A in scale by zeroing ai,j whenever δ(i, j) > k (δ
represents the level difference of two functions in the wavelet expansion) and
denote resulting matrix by Ak. At the same time to sort vector entries v with
respect to the size of their absolute values. One obtains vk by retaining 2k

biggest coefficients in absolute values of v and setting all other equal to zero.
The maximum value of k should be determined to reach a desired accuracy of
approximation. Then one computes an approximation of Av by

w := Akv0 +Ak−1(v1 − v0) + . . .+A0(vk − vk−1) (1)

with the aim to balance both accuracy and computational complexity at the
same time. In [16], binning and approximate sorting strategy was used to
eliminate these sorting costs and then an asymptotically optimal algorithm
was obtained. The idea is following: Reorder the elements of v into the sets
V0, . . . , Vq, where vλ ∈ Vi if and only if

2−i−1 ‖v‖l2 < vλ < 2−i ‖v‖l2 , 0 ≤ i < q.

Eventual remaining elements are put into the set Vq. And subsequently to
generate vectors vk by successively extracting 2k elements from

⋃
i Vi, starting

from V0 and when it is empty continuing with V1 and so forth. Finally the
scheme (1) is applied. Further improvements of this scheme were proposed in
[4,12]. Although the APPLY routine has optimal computational complexity,
its application is relatively time consuming and moreover it is not easy to
implement it efficiently.

It is well known, that condition numbers of stiffness matrices in wavelet
coordinates depend on Riesz constants of a wavelet basis. Before we explain
it in more detail, we start with a definition of a wavelet basis. We consider
here families Ψ = {ψλ, λ ∈ J } ⊂ L2(0, 1) of functions (wavelets) where J is
an infinite index set and J = JΦ ∪ JΨ , where JΦ is a finite set representing
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scaling functions living on the coarsest scale. Any index λ ∈ J is of the form
λ = (j, k), where |λ| = j denotes a scale and k denotes spatial location. The
above notation enables us to write wavelet expansions as

dTΨ :=
∑

λ∈J
dλψλ.

At last, for s ≥ 0 the space Hs will denote a closed subspace of the Sobolev
space Hs (0, 1), defined e.g. by imposing homogeneous boundary conditions at
one or both endpoints, and for s < 0 the space Hs will denote the dual space
Hs := (H−s)′. ‖.‖Hs will denote the corresponding norm. Further l2(J ) will
denote the space consisting of the power summable sequences and ‖.‖l2(J ) will
denote the corresponding norm.

A family Ψ = {ψλ, λ ∈ J } ⊂ L2(0, 1) is called a wavelet basis of Hs for
some γ, γ̃ > 0 and s ∈ (−γ̃, γ), if

– Ψ normalized inHs is a Riesz basis ofHs, that means Ψ forms a basis ofHs

and there exist constants cs, Cs > 0 such that for all b = {bλ}λ∈J ∈ l2 (J )
holds

cs ‖b‖l2(J ) ≤
∥∥∥∥∥
∑

λ∈J

bλψλ
‖ψλ‖Hs

∥∥∥∥∥
Hs

≤ Cs ‖b‖l2(J ) , (2)

where sup cs, inf Cs are called Riesz bounds and cond (Ψ) :=
inf Cs
sup cs

is

called the condition number of Ψ .
– Functions are local in the sense that diam (suppψλ) ≤ C2−|λ| for all λ ∈ J ,

where C is a constant independent of λ.
– Functions ψλ, λ ∈ JΨ , have cancellation properties of order m, i.e.

∣∣∣∣
∫ 1

0

v(x)ψλ(x) dx

∣∣∣∣ ≤ 2−m|λ| |v|Hm(0,1) , ∀v ∈ Hm (0, 1) .

It means that integration against wavelets eliminates smooth parts of func-
tions and it is equivalent with vanishing wavelet moments of order m.

We consider here the following Dirichlet problem

u−
d∑

i=1

∂2u

∂x2i
= f in Ω = (0, 1)d with u = 0 on ∂Ω (3)

for given f ∈ H−1 (Ω) . A Riesz wavelet basis forH1
0 (Ω) can be constructed by

a tensor product of univariate Riesz wavelet bases. Indeed, let Ψ = {ψλ, λ ∈ J }
be after appropriate normalization a Riesz wavelet basis for spaces L2(0, 1) and
H1

0 (0, 1) then

Ψ =

{
ψλ :=

⊗dj=1ψλm∥∥⊗dj=1ψλm

∥∥
H1(Ω)

,λ ∈ J d

}
(4)
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is a Riesz basis for H1
0 (Ω) (see [14]) with the Riesz constants (see [12])

min (c0, c1) c
d−1
0 ‖b‖2l2(J d) ≤

∥∥∥∥∥∥
∑

λ∈J d

bλψλ

∥∥∥∥∥∥

2

H1(Ω)

≤ max (C0, C1)C
d−1
0 ‖b‖2l2(J d)

(5)
∀b ∈ l2

(
J d
)
, where constants c0, C0, c1, C1 are Riesz constants with respect

to spaces L2 and H1, respectively. Writing

u = uTΨ :=
∑

λ∈J d

uλψλ and f = [f(ψλ)]λ∈J d ,

then an equivalent formulation of (3) is

Au = f (6)

with

A =D−1 (M ⊗ . . .⊗M + S ⊗ . . .⊗M + · · ·+M ⊗ . . .⊗ S) ,

where D = diag
[∥∥⊗dj=1ψλm

∥∥
H1(Ω)

]
λ∈J d

, and

S =

[∫ 1

0

∂ψλ
∂x

∂ψµ
∂x

dx

]

λ,µ∈J
and M =

[∫ 1

0

ψλ ψµ dx

]

λ,µ∈J
(7)

are the one-dimensional stiffness and the mass matrices, respectively. Then (5)
implies

cond (A) ≤ max (C0, C1)C
d−1
0

min (c0, c1) c
d−1
0

.

In general case, let us assume, that we have the following variational prob-
lem: for given f ∈ H′ find u ∈ H such that

a(u, v) = f(v) ∀v ∈ H, (8)

where H is a Hilbert space and a is a continuous bilinear form. Then, we define
the operator A : H → H′ by

A(u)(v) = a(u, v) ∀v ∈ H,

and then (8) is equivalent to
A(u) = f. (9)

If a is H−elliptic, then there exist positive constants cA, CA such that

cA ‖v‖H ≤ ‖A(v)‖H′ ≤ CA ‖v‖H ∀v ∈ H. (10)

Moreover, we will assume that we have a suitable wavelet basis Ψ of the space
H normalized in H with Riesz constants c, C and we define A = a (Ψ,Ψ) and
f = f (Ψ), then

A(u) = f ⇐⇒ Au = f ,
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where u = uTΨ, and

cond (A) ≤ C2CA
c2cA

.

Proof can be found in [1].
Thus we can conclude that it is useful to develop well conditioned wavelet

bases on the interval. Well conditioned wavelet basis for different types of
wavelets and for different types of boundary conditions were already con-
structed in [2,3,5,6,15]. In this paper, we construct a wavelet basis based
on Hermite cubic splines with respect to which both the mass matrix and
the stiffness matrix corresponding to one dimensional Poisson equation are
sparse. This means that the number of nonzero elements in any column is
bounded independently of matrix size while stiffness matrices in wavelet coor-
dinates are usually only quasi sparse. Then, matrix-vector multiplication can
be performed exactly with linear complexity for any second order PDEs with
constant coefficients. Moreover, the proposed basis is very well conditioned
for low decomposition levels. Small condition numbers for low decomposition
levels and a sparse structure of stiffness matrices are kept for any second or-
der PDEs with constant coefficients, which are well conditioned in the sense
of (10), and moreover they are independent of the space dimension. Wavelets
with similar properties were already proposed in [13]. Our wavelets generate
the same multiresolution spaces as wavelets from [13] but have improved con-
dition numbers.

The paper is organized as follows: in the second section, we describe our
construction, in the third section, we prove that the constructed basis is a
Riesz basis and in the last section, we present condition numbers for model
problems and compare them with condition numbers for a similar wavelet basis
proposed in [13].

2 Cubic Hermite multiwavelets

We start with Hermite cubic splines as the primal scaling bases on interval.
They are defined by

φ1(x) =





(x+ 1)2(1− 2x) −1 ≤ x ≤ 0
(1− x)2(2x+ 1) 0 ≤ x ≤ 1

0 otherwise
, φ2(x) =





(x+ 1)2x −1 ≤ x ≤ 0
(1− x)2x 0 ≤ x ≤ 1

0 otherwise

or as a solutions of following scaling equations:

φ1(x) =
1

2
φ1(2x+ 1) + φ1(2x) +

1

2
φ1(2x− 1) +

3

4
φ2(2x+ 1)− 3

4
φ2(2x− 1),

φ2(x) = −1

8
φ1(2x+1)+

1

8
φ1(2x− 1)− 1

8
φ2(2x+1)+

1

2
φ2(2x)−

1

8
φ2(2x− 1).



6 Dana Černá, Václav Finěk
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Fig. 1 The Hermite cubic splines φ1 and φ2.

For n ≥ 1, let Vn be the space of piecewise cubic splines v ∈ C1(0, 1)∩C[0, 1]
for which v(0) = v(1) = 0. The dimension of Vn is 2n+1 and the set

Φn := {φ1(2nx− j) : j = 1, ..., 2n − 1} ∪
{
φ2(2

nx− j)|[0,1] : j = 0, ..., 2n
}

is a basis for Vn. Let Wn be the complement space of Vn in Vn+1 then we have
the following decomposition of space H1

0 (0, 1)

H1
0 (0, 1) = V1 ⊕W1 ⊕W2 ⊕W3 ⊕ . . . .

We construct four wavelets in such a way that wavelets from the space
Wn+1 are orthogonal to the scaling functions from the space Vn for n ≥ 1. This
property ensures that both the mass and stiffness matrices corresponding to
the one-dimensional Laplacian have at most three wavelet blocks of nonzero
elements in any column and then the number of nonzero elements in any
column is bounded independently of matrix size. The first two wavelets have
supports in [−1, 1] and are uniquely determined by their orthogonality to cubic
polynomials and by imposing that the first one is odd and the second one is
even:

ψ1(x) = φ1(2x+1)−φ1(2x− 1)+
39

7
φ2(2x+1)+

132

7
φ2(2x) +

39

7
φ2(2x− 1),

ψ2(x) = −1

2
φ1(2x+1)+φ1(2x)−

1

2
φ1(2x−1)− 15

4
φ2(2x+1)+

15

4
φ2(2x−1).

The second two wavelets have supports in [−2, 2]. And we impose on them
again the above orthogonality condition which will be ensured by requiring
that they are orthogonal to cubic polynomials on intervals [−2, 0] and [0, 2],
respectively. Again one of them should be odd and the second one even. There
remains several free parameters. To obtain a more sparse stiffness matrix and
a better conditioned wavelet basis, we use these free parameters to prescribe
the orthogonality of the first derivative of constructed wavelets to the first
derivative of the first two wavelets. We obtain these two wavelets:
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Fig. 2 The first two wavelets ψ1 and ψ2.

ψ3(x) = −151

480
φ1(2x+ 3) +

2

5
φ1(2x+ 2)− 281

480
φ1(2x+ 1) + φ1(2x)

−281

480
φ1(2x− 1) +

2

5
φ1(2x− 2)− 151

480
φ1(2x− 3)

−711

224
φ2(2x+ 3) +

79

56
φ2(2x+ 2)− 1551

224
φ2(2x+ 1)

+
1551

224
φ2(2x− 1)− 79

56
φ2(2x− 2) +

711

224
φ2(2x− 3),

ψ4(x) =
7

40
φ1(2x+ 3)− 19

90
φ1(2x+ 2) +

163

360
φ1(2x+ 1)

−163

360
φ1(2x− 1) +

19

90
φ1(2x− 2)− 7

40
φ1(2x− 3)

12

7
φ2(2x+ 3)− 25

42
φ2(2x+ 2) +

33

7
φ2(2x+ 1) + 5φ2(2x)

+
33

7
φ2(2x− 1)− 25

42
φ2(2x− 2) +

12

7
φ2(2x− 3),
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Fig. 3 The second two wavelets ψ3 and ψ4.
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Then a basis of the space Wn is defined by

Ψn :=
{
2

n+1
2 ψ1(2

nx− 2j − 1), 2
n+1
2 ψ2(2

nx− 2j − 1) : j = 0, ..., 2n−1 − 1
}

∪
{
2

n+1
2 ψ3(2

nx− 2j) : j = 1, ..., 2n−1 − 1
}

∪
{
2

n+1
2 ψ4(2

nx− 2j)|[0,1] : j = 0, ..., 2n−1
}
.

Now, we would like to improve condition numbers of the constructed wave-
let basis and to preserve or improve a sparse structure of the stiffness matrix
corresponding to the one-dimensional Laplacian and a sparser structure of
the mass matrix, respectively. We modify boundary scaling functions at the
coarsest level and also wavelets at the coarsest level. A span of new functions
will be the same as a span of original functions. First, we modify both boundary
scaling functions φ2(2x)|[0,1] and φ2(2x− 2)|[0,1] at the coarsest level in such a
way that new boundary functions will be orthogonal to functions φ1(2x − 1)
and φ2(2x− 1), and moreover they also will be also mutually orthogonal. And
we obtain

φ3(x) =
4

3
φ2(x+ 1)|[−1,1] + φ2(x) +

4

3
φ2(x− 1)|[−1,1],

φ4(x) = −12φ2(x+ 1)|[−1,1] + φ1(x) + 12φ2(x− 1)|[−1,1].
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−0.05

0

0.05

0.1

0.15

x
−1 −0.5 0 0.5 1

−1.5

−1

−0.5

0

0.5

1

x

Fig. 4 The modified boundary scaling functions φ3 and φ4.

Now a basis of the space V1 is defined by

Φ̂1 := {φ1(2x− 1), φ2(2x− 1), φ3(2x− 1), φ4(2x− 1)} .

To further improve condition numbers of the constructed basis, we con-
struct new basis functions for the space W1. The first two wavelets will be
orthogonal to scaling functions from the space V1, will not depend on the
boundary scaling functions from the space V2 and one of them will be odd and
the second one even. We obtain these two wavelets:

ψ5(x) = φ1(2x+1)− 794

331
φ1(2x)+φ1(2x−1)+

8793

662
φ2(2x+1)− 8793

662
φ2(2x−1),
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ψ6(x) = −φ1(2x+1)+φ1(2x−1)− 143

15
φ2(2x+1)− 52

3
φ2(2x)−

143

15
φ2(2x−1).
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Fig. 5 The first two modified wavelets ψ5 and ψ6.

The second two wavelets will be again orthogonal to scaling functions from
the space V1 and moreover will be orthogonal to the first two newly constructed
wavelets. Again one of them will be odd and the second one even. Then we
obtain:

ψ7(x) = φ1(2x+ 1)− φ1(2x− 1)− 144

7
φ2(2x+ 2)|[−1,1] −

275

21
φ2(2x+ 1)

−68

21
φ2(2x)−

275

21
φ2(2x− 1)− 144

7
φ2(2x− 2)|[−1,1].

ψ8(x) =
6947

32022
(φ1(2x+ 1) + φ1(2x− 1)) +

φ1(2x)

54
− 2137

593
φ2(2x+ 2)|[−1,1]

−25327

14232
φ2(2x+ 1) +

25327

14232
φ2(2x− 1) +

2137

593
φ2(2x− 2)|[−1,1],

−1 −0.5 0 0.5 1
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x
−1 −0.5 0 0.5 1

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

x

Fig. 6 The second two modified wavelets ψ7 and ψ8.

Now a basis of the space W1 is defined by

Ψ̂1 := {ψ5(2x− 1), ψ6(2x− 1), ψ7(2x− 1), ψ8(2x− 1)}
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and a basis of the space H1
0 (0, 1) is defined by

Ψ = Φ̂1 ∪ Ψ̂1

∞⋃

j=2

Ψj . (11)

A sparsity patterns for the mass matrixM and for the one dimensional stiffness
matrix S, respectively, defined in (7) can be seen in Figure 2. In the next
section, we prove that it is a wavelet basis.

0 10 20 30 40 50 60
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10

20

30

40

50

60

nz = 936
0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 760

Fig. 7 Nonzero elements of the mass matrix M and the stiffness matrix S.

3 Properties of the constructed basis

To proof that the constructed basis forms a Riesz basis of the space H1
0 (0, 1),

we use the following theorem from [13] which summarizes results from [10,11]:

Theorem 1 Let j0 be the coarsest level and let

Vj0 ⊂ Vj0+1 ⊂ . . . ⊂ L2(0, 1), Ṽj0 ⊂ Ṽj0+1 ⊂ . . . ⊂ L2(0, 1)

be sequences of primal and dual spaces with

dimVj = dim Ṽj

such that for uniform L2(0, 1)−Riesz bases Φj and Φ̃j for Vj and Ṽj , respec-
tively, 〈

Φj , Φ̃j

〉−1

L2(0,1)

exists with a uniformly bounded spectral norm. In addition, for some 0 < γ < d,
let (Jackson or direct estimate)

inf
vj∈Vj

||v − vj ||L2(0,1) . 2−jd||v||Hd(0,1) ∀v ∈ Hd(0, 1),

and (Bernstein or inverse estimate)

||vj ||Hs(0,1) . 2js||vj ||L2(0,1) ∀vj ∈ Vj , s ∈ [0, γ),
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where, for s ∈ [0, d], Hs(0, 1) =
[
L2(0, 1), H

d(0, 1) ∩H1
0 (0, 1)

]
s/d

, and let

similar estimates be valid at the dual side with Vj , d, γ,Hs(0, 1) reading as

Ṽj , d̃, γ̃, H̃s(0, 1). And let Ψj be uniform L2(0, 1)−Riesz bases for Wj := Vj+1∩
Ṽ

⊥L2(0,1)
j , then for s ∈ (−γ̃, γ) the collection

Φj0 ∪
⋃

j∈N
2−sjΨj0+j

is a Riesz basis for Hs(0, 1), where Hs(0, 1) := (H−s(0, 1))
′
for s < 0.

C . D means that C can be bounded by a multiple of D independently

of parameters on which they may depend. Let Ṽ1 := V1 and let the basis for
both spaces be

Φ̃1 =

{√
35

13
φ1(2x− 1),

√
105φ2(2x− 1),

√
135φ3(2x− 1), φ4(2x− 1)

}
.

Then

〈
Φ̃1, Φ̃1

〉
L2(0,1)

=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 .

And for j > 1, let Ṽj be the space of piecewise cubic functions on inter-

vals
[
k2−j+1, (k + 1)2−j+1

]
for k = 0, . . . , 2j−1 − 1. Then dimension of Ṽj is

apparently 2j+1 and from the construction immediately follows that Wj =

Vj+1 ∩ Ṽ ⊥L2(0,1)
j . Now, we construct uniform L2(0, 1)−Riesz bases Φj and Φ̃j

for spaces Vj , and Ṽj , respectively, such that
〈
Φj , Φ̃j

〉−1

L2(0,1)
exists with a uni-

formly bounded spectral norm. It means that Riesz bounds are independent
of j.

Theorem 2 There exists uniform L2(0, 1)−Riesz bases Φj and Φ̃j for Vj and

Ṽj , respectively, such that
〈
Φj , Φ̃j

〉−1

L2(0,1)
exists with a uniformly bounded spec-

tral norm.

Proof. We start with functions φ1(2x), φ2(2x), φ1(2x − 1), and φ2(2x − 1)
which span the space of C1(0, 1) cubic splines on the interval [0, 1] and with

functions φ̃i(·) := (x−1/2)i|[0,1] for i = 0, 1, 2, 3 which span the space of piece-
wise cubic functions on [0, 1]. Further we apply a number of transformation at
the both bases to obtain a sparse and strictly diagonally dominant matrices〈
Φj , Φ̃j

〉
L2(0,1)

. We keep the functions

α1(2x− 1) := φ1(2x− 1) and α2(2x− 1) := 6φ2(2x− 1)

which are supported in the interval [0, 1].
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Fig. 8 The first two primal basis functions α1 and α2.

In the second step, we construct the first two dual basis functions in a
such a way that these new dual basis functions are orthogonal to the first
two primal basis functions. Moreover the first new dual function is a linear
combination of even polynomials while the second one is a linear combination
of odd polynomials. After appropriate normalization, we obtain

β1(x) :=

(
3− 30

(
x− 1

2

)2
)∣∣∣∣∣

[0,1]

and

β2(x) :=

(
75

4

(
x− 1

2

)
− 245

2

(
x− 1

2

)3
)∣∣∣∣∣

[0,1]

.
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Fig. 9 The first two dual basis functions β1 and β2.

In the third step, we construct the second two new primal basis functions as
a linear combination of functions φ1(2x), φ2(2x), φ1(2x−1), φ2(2x−1), φ1(2x−
2), and φ2(2x − 2) in such a way that these new primal basis functions are
orthogonal to dual functions β1(x), β2(x), β1(x− 1), and β2(x− 1). Moreover,
we require that the first new primal basis function is even with respect to the
point x = 1, and the second one is odd with respect to the point x = 1. We
obtain

α3(2x) := φ1(2x) + 4φ1(2x− 1) + φ1(2x− 2)
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and

α4(2x) := φ2(2x) +
16

5
φ2(2x− 1) + φ2(2x− 2).
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Fig. 10 The second two primal basis functions α3 and α4.

In the fourth step, we construct the second two new dual basis functions as
a linear combination of functions φ̃i(x) and φ̃i(x+ 1) for i = 0, 1, 2, 3 in such
a way that these functions are orthogonal to functions α1(2x− 1), α2(2x− 1),
α1(2x+1), and α2(2x+1). Moreover, we require that the first new dual basis
function is orthogonal to functions α4(2x − 1), α4(2x + 1), and α4(2x + 3)
and the second one is orthogonal to functions α3(2x − 1), α3(2x + 1), and
α3(2x+ 3). After appropriate normalization, we obtain

β3(x) : =
−1

14

(
1 + 10

(
x+

1

2

)
− 30

(
x+

1

2

)2

− 140

(
x+

1

2

)3
)∣∣∣∣∣

[−1,0]

− 1

14

(
1− 10

(
x− 1

2

)
− 30

(
x− 1

2

)2

+ 140

(
x− 1

2

)3
)∣∣∣∣∣

[0,1]

and

β4(x) : =
5

28

(
1 +

15

2

(
x+

1

2

)
− 30

(
x+

1

2

)2

− 105

(
x+

1

2

)3
)∣∣∣∣∣

[−1,0]

+
5

28

(
−1 +

15

2

(
x− 1

2

)
+ 30

(
x− 1

2

)2

− 105

(
x− 1

2

)3
)∣∣∣∣∣

[0,1]

.

Then for j > 1, we define collections of functions

Φj : =
{√

2j−1α4(2
jx+ 1)|[0,1],

√
2j−1α1(2

jx− 1),
√
2j−1α2(2

jx− 1),
√
2j−1α3(2

jx− 1),
√
2j−1α4(2

jx− 1),
√
2j−1α1(2

jx− 3),√
2j−1α2(2

jx− 3), . . . ,
√
2j−1α1(2

jx− 2j + 1),
√
2j−1α2(2

jx− 2j + 1),
√
2j−1α4(2

jx− 2j + 1)|[0,1]
}
,
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−1 −0.5 0 0.5 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x
−1 −0.5 0 0.5 1

−3

−2

−1

0

1

2

3

x

Fig. 11 The second two dual basis functions β3 and β4.

and

Φ̃j : =

{√
2j−1β4(2

j−1x)
∣∣∣
[0,1]

,
√
2j−1β1(2

j−1x),
√
2j−1β2(2

j−1x),

√
2j−1β3(2

j−1x− 1),
√
2j−1β4(2

j−1x− 1),
√
2j−1β1(2

j−1x− 1),√
2j−1β2(2

j−1x− 1), . . . ,
√
2j−1β1(2

j−1x− 2j−1 + 1),
√
2j−1β2(2

j−1x− 2j−1 + 1),
√
2j−1β4(2

j−1x− 2j−1)
∣∣∣
[0,1]

}
.

From the construction directly follows that span Φj ⊂ Vj , and span Φ̃j ⊂
Ṽj , respectively and we can check that #Φj = dimVj , #Φ̃j = dim Ṽj . Fur-
thermore from the local supports and the normalization of the basis func-
tions, one can easily verify that spectral radii of matrices 〈Φj , Φj〉L2(0,1)

and〈
Φ̃j , Φ̃j

〉
L2(0,1)

are bounded uniformly in j and then we have for any vector cj

of the appropriate size ||cjTΦj ||L2(0,1) . ||cj||l2 and ||cjT Φ̃j ||L2(0,1) . ||cj||l2 .

〈
Φ2, Φ̃2

〉
L2(0,1)

=




1
2

0 0 0 −1
14

0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
−1
14

0 0 0 1 0 0 −1
14

0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

0 0 0 0 −1
14

0 0 1
2




Fig. 12

From the regular structure of matrices
〈
Φj , Φ̃j

〉
L2(0,1)

(see Figure 12 and

13) immediately follows that their eigenvalues are contained in the interval[
1
2 − 1

14 , 1 +
2
14

]
=
[
3
7 ,

8
7

]
and then inverse matrices exist with a uniformly

bounded spectral norm.
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〈
Φ3, Φ̃3

〉
L2(0,1)

=




1
2

0 0 0 −1
14

0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 −1
14

0 0 0 0 0 0 0 0
−1
14

0 0 0 1 0 0 0 −1
14

0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 −1
14

0 0 0 1 0 0 0 −1
14

0 0 0 0

0 0 0 0 −1
14

0 0 0 1 0 0 0 −1
14

0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 −1
14

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 −1
14

0 0 0 1 0 0 −1
14

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 −1
14

0 0 1
2




Fig. 13

From this property and from ||cTj Φj ||L2(0,1) . ||cj ||l2 , we have from [13]
that

||c̃j ||l2 .
∣∣∣∣
∣∣∣∣
〈
Φj , Φ̃j

〉
L2(0,1)

c̃j

∣∣∣∣
∣∣∣∣
l2

= sup
cj 6=0

∣∣∣∣∣

〈
cj ,
〈
Φj , Φ̃j

〉
L2(0,1)

c̃j

〉

l2

∣∣∣∣∣
||cj ||l2

= sup
cj 6=0

∣∣∣∣
〈
cTj Φj , c̃

T
j Φ̃j

〉
L2(0,1)

∣∣∣∣
||cj ||l2

. ||c̃Tj Φ̃j ||L2(0,1) sup
cj 6=0

∣∣|cTj Φj
∣∣ |L2(0,1)

||cj ||l2
= . ||c̃Tj Φ̃j ||L2(0,1),

and similarly from ||c̃Tj Φ̃j ||L2(0,1) . ||c̃j ||l2 , we have ||cj ||l2 . ||cTj Φj ||L2(0,1).

Thus, we constructed uniform L2(0, 1)−Riesz bases Φj and Φ̃j for spaces Vj ,

and Ṽj , respectively, such that
〈
Φj , Φ̃j

〉−1

L2(0,1)
exists with a uniformly bounded

spectral norm. �
It remains to prove that constructed wavelets form uniform L2(0, 1)−Riesz

bases for Wj := Vj ∩ Ṽ ⊥L2(0,1)
j−1 .

Theorem 3 Collections of functions Ψ̂1 and Ψj for j > 1 form uniform
L2(0, 1)−Riesz bases for the space W1 and Wj , respectively.

Proof. Due to the orthogonality of functions from Ψ̂1, they apparently form
uniform L2(0, 1)−Riesz bases for W1. For j > 1, we can numerically check
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that matrix

〈Ψj , Ψj〉L2(2−j−1,2−j) :=




107179
137200

264659
617400

−1756
5145

19
140

−37501
137200

84241
617400

264659
617400

38971
154350

−620
3087

53
630

−84241
617400

578
8575

−1756
5145

−620
3087

704
343 0 1756

5145
−620
3087

19
140

53
630 0 13

28
19
140

−53
630

−37501
137200

−84241
617400

1756
5145

19
140

107179
137200

−264659
617400

84241
617400

578
8575

−620
3087

−53
630

−264659
617400

38971
154350




,

which includes only wavelets with nonzero support in the interval
(
2−j−1, 2−j

)
,

is positive definite. The same matrix will be obtained in any interval in the form(
k2−j−1, (k + 1)2−j−1

)
for k = 1, . . . , 2j+1−2. For k = 1 and k = 2j+1−1, we

obtain similar matrix, where the first row and column will be deleted for k = 1
and the fifth row and column for k = 2j+1 − 1. These smaller matrices are
also positive definite. Consequently any matrix 〈Ψj , Ψj〉L2(0,1)

can be composed

from these small matrices and its the smallest eigenvalue can be bounded by
the smallest eigenvalue of the small matrix and the largest eigenvalue can
be bounded by double of the largest eigenvalue of the small matrix. Then
by using the same arguments as in the last paragraph of the previous proof,
we can conclude that collections of functions Ψj form uniform L2(0, 1)−Riesz
bases for the spaces Wj for j > 1. �

Now, we can apply Theorem 1. It is well-known [7] that a direct estimate of
order d is satisfied when all polynomials of order d satisfying possibly boundary
conditions are included in the space Vj0 , while an inverse estimate of order γ
is known to hold with γ = r + 3

2 when spaces Vj are spanned by piecewise
smooth Cr(0, 1) functions for some r ∈ {−1, 0, 1, . . .}, where r = −1 means

that no global continuity is satisfied. For constructed basis, we have d = d̃ = 4,
γ = 5

2 , and γ̃ = 1
2 . Then Theorems 1, 2, 3 imply the following results.

Theorem 4 Let Hs(0, 1) =
[
L2(0, 1), H

d(0, 1) ∩H1
0 (0, 1)

]
s/4

, for s ∈ [0, 4]

and Hs(0, 1) := (H−s(0, 1))
′
for s < 0. Then for s ∈ (− 1

2 ,
5
2 ), the collection

Φ̂1 ∪ 2−sΨ̂1

⋃∞
j=2 2

−sjΨj is a Riesz basis for Hs(0, 1).

Especially, the constructed basis, when normalized in L2(0, 1) or H
1(0, 1),

forms a Riesz basis for L2(0, 1) and H
1(0, 1), respectively.

4 Condition numbers

In this section, we provide condition numbers of one-dimensional stiffness ma-
trices S and condition numbers of mass matrices M (see (7)) for different
decomposition levels. Basis functions are normalized in L2(0, 1) or in H

1(0, 1),
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respectively:

S =

[ ∫ 1

0
∂ψλ

∂x
∂ψµ

∂x dx

|ψλ|H1(0,1) |ψµ|H1(0,1)

]

λ,µ∈J
and M =

[ ∫ 1

0
ψλ ψµ dx

‖ψλ‖L2(0,1)‖ψµ‖L2(0,1)

]

λ,µ∈J

And we compare condition numbers with condition numbers for a similar
wavelet basis proposed in [13]. Results are summarized in Table 1.

DS NEW
n COND L2 COND H1 COND L2 COND H1

4 7.0 1.7 1.0 2.6
8 15.2 4.4 1.0 2.9

16 24.3 5.5 6.3 3.7
32 32.0 5.8 12.7 4.4
64 37.3 6.2 18.8 4.8

128 41.2 6.6 24.4 5.1
256 44.1 6.8 29.3 5.3
512 46.3 6.9 33.6 5.4

1024 48.1 7.0 37.2 5.5
2048 49.5 7.1 40.4 5.5
4096 50.7 7.1 43.1 5.5

Table 1 Condition numbers of matrices M and S.

Further, we consider here the following Dirichlet problem

−
d∑

i=1

∂2u

∂x2i
= f in Ω = (0, 1)d with u = 0 on ∂Ω

for given f ∈ H−1 (Ω) in two and three dimensions. A Riesz wavelet basis for
H1

0 (Ω) can be constructed by a tensor product of univariate Riesz wavelet
bases. We consider here two options: an isotropic and an anisotropic tensor
product. Isotropic wavelets arise as a tensor product of univariate wavelets
and scaling functions from the same decomposition level. Then e.g. in two
dimensions, we have these three types of wavelets

φj,k ⊗ ψj,l, ψj,k ⊗ φj,l, ψj,k ⊗ ψj,l,

where φj,k is a scaling function on the level j and ψj,l is a wavelet on the same
level. For a definition in arbitrary dimensions, we refer to [17]. Anisotropic
wavelets were already introduced in (4). Then e.g. in two dimensions, wavelets
will be of the form

ψj,k ⊗ ψl,m,

where ψj,k and ψl,m are wavelets generally on different levels. Therefore their
supports can be arbitrarily anisotropic. In all cases, we use a normalization of
basis functions in H1− seminorm. In Tables 2 and 3, we summarize condition
numbers of stiffness matrices in two and three dimensions. We again compare
them with condition numbers for a similar wavelet basis proposed in [13].
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DS NEW
n isotropic anisotropic isotropic anisotropic
16 11.7 11.7 2.6 2.6
64 57.8 57.8 2.9 2.9

256 82.8 103.9 28.4 16.7
1024 90.2 144.0 49.8 43.4
4096 94.0 180.4 59.8 68.5

16384 95.4 213.4 66.1 92.9
65536 95.9 239.2 69.8 117.1

262144 96.1 259.6 72.2 138.7
1048576 96.2 281.0 73.7 158.1

Table 2 Condition numbers of stiffness matrices for d = 2.

In all tables, n represents the number of basis functions, NEW denotes
new wavelets, and finally DS denotes wavelets proposed in [13]. Obtained re-
sults confirm that condition numbers of stiffness matrices are on the first two
decomposition levels small and independent of the spatial dimension.

DS NEW
n isotropic anisotropic isotropic anisotropic
64 81.7 81.7 2.6 2.6

512 812.0 812.0 2.9 2.9
4096 1383.0 2329.0 366.7 100.3

32768 1537.5 4297.5 764.3 517.8
262144 1595.8 6147.1 1022.0 1212.6

2097152 1611.3 7994.3 1159.2 2125.2

Table 3 Condition numbers of stiffness matrices for d = 3.
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2. Černá, D., Finěk, V.: Construction of optimally conditioned cubic spline wavelets on the
interval. Adv. Comput. Math. 34, 219–252 (2011).
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5. Černá, D., Finěk, V.: Quadratic Spline Wavelets with Short Support for Fourth-Order
Problems. Result. Math. 66, 525–540 (2014).
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