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List of Symbols

the set of all positive integers

the set of all nonnegative integers

the set of all integers

the set of all real numbers

the closure of the set (2

the absolute value

the Kronecker delta, ¢;, :=1, §; j := 0 for ¢ # j
the linear span

the support

the spectral condition number of a matrix

means that C' can be bounded by a multiple of D independently of param-
eters on which they may depend

the space of square integrable functions
the Sobolev space of order s € R on (0, 1)

the Sobolev space of H! functions satisfying homogeneous Dirichlet bound-
ary conditions

m € Ny, the space of m-times continuously differentiable functions
P(T)={v:J =R, Y e vl < 0o}

the space of all algebraic polynomials on (0,1) of degree less or equal to
m € Ny

L?-norm

a norm on some space H

the seminorm on H* (0, 1)
L?-inner product or a dual form

an inner product in H



the coarsest level in a multiresolution analysis in a given context
a wavelet index A := (j, k)

a primal (dual) scaling function

a primal (dual) wavelet

the Fourier transform of the function f

the translation and the dilatation of the function f;(z) := f(27z — k)



Introduction

We present here some obtained results concerning constructions of well-conditioned wavelet
bases. This work consists of three chapters. In the first chapter, we shortly introduce
wavelet bases on the real line generated by one wavelet and by one scaling function. We
start with properties of Riesz bases. Then we continue with a multiresolution analysis and
with orthonormal and biorthogonal wavelets. Consequently we introduce oblique projec-
tions, the discrete wavelet transform, approximation properties of wavelets and we collect
some important properties of B-splines which are often used as primal scaling functions.
In the second chapter, we introduce wavelet bases on the bounded interval. They are
usually constructed from wavelets on the real line. The main idea is to retain most of the
inner functions, i.e. the scaling functions and wavelets whose supports is contained in the
interval, and to construct appropriate boundary scaling functions and wavelets separately.
At the same time the important properties of wavelets should be preserved such as a Riesz
basis property, a smoothness, a local support of basis functions and a polynomial exactness
of the wavelet basis. Unlike the first chapter, we consider in the second chapter wavelet
systems generated by many wavelets and by many scaling functions. Wavelets can be even
different at different decomposition levels. The second chapter contains basic definitions, a
derivation of a multiscale transform, theorems which can be used to prove that constructed
basis is a Riesz basis, and finally we show that condition numbers of stiffness matrices
arising from discretization of elliptic partial differential equations by wavelets depend on
Riesz constants of a wavelet basis.

In the third chapter we present selected results which were published in the following five
papers:

e Cernd, D.; Finek, V.; Najzar, K.: On the exact values of coefficients of Coiflets, Cent.
Eur. J. Math. 6(1), (2008), pp. 159-170. My contribution to this paper was 60%.

e Cernd, D.; Finek, V.: Construction of optimally conditioned cubic spline wavelets on
the interval, Adv. Comput. Math. 34(2), (2011), pp. 219-252. My contribution to
this paper was 40%.

e Cernd, D.; Finek, V.: Cubic Spline Wavelets with Complementary Boundary Condi-
tions, Appl. Math. Comput. 219, (2012), pp. 1853-1865. My contribution to this
paper was 40%.



e Cernd, D.; Finek, V.: Wavelet basis of cubic splines on the hypercube satisfying homo-
geneous boundary conditions, Int. J. Wavelets Multi. 13(3), (2015), pp. 1550014/1-
21. My contribution to this paper was 40%.

e Cernd, D.; Finek, V.: On a sparse representation of a n-dimensional Laplacian in
wavelet coordinates, Result. Math., DOI 10.1007/s00025-015-0488-5, (2015). My
contribution to this paper was 60%.

In the paper “On the Exact Values of Coefficients of Coiflets” [14], we proposed a system
of necessary conditions which is redundant free and more simple than other known systems
due to elimination of some quadratic (orthonormality) conditions, thus a computation of
scaling coefficient of coiflets is substantially simplified and enables to find the exact values
of the scaling coefficients up to filters of the length 8 and two further with filters of the
length 12. For scaling coefficients of coiflets with filters of the length 14 we obtained two
quadratic equations, which can be transformed to polynomial of degree 4 and there is an
algebraic formula to solve them. For larger filters up to filters of the length 20, we were
able to find all possible solutions by employing a Grobner basis method.

In the paper “Construction of Optimally Conditioned Cubic Spline Wavelets on the Inter-
val” [7], we constructed spline wavelet bases on the interval with condition numbers which
are close to condition numbers of spline wavelet bases on the real line. Both primal and dual
functions are compactly supported. Constructed cubic wavelet bases have improved con-
dition numbers in comparison with previous constructions of the same type. Furthermore,
we showed that the constructed wavelets form indeed a Riesz basis for the space L? (0, 1)
and for the Sobolev space H*®(0,1) for a certain range of s. Finally, we adapted primal
bases to homogeneous Dirichlet boundary conditions of the first order and we compared
quantitative properties of the constructed bases and the efficiency of an adaptive wavelet
scheme for several spline wavelet bases to demonstrate a superiority of our construction.

In the paper “Cubic Spline Wavelets with Complementary Boundary Conditions” [8], we
constructed a new stable cubic spline wavelet basis on the interval with six vanishing
moments. The proposed basis satisfies complementary boundary conditions of the sec-
ond order i.e. the primal basis functions are adapted to homogeneous Dirichlet boundary
conditions of the second order, while the dual wavelet basis preserves the full degree of
polynomial exactness. Moreover, we proposed further decomposition of the scaling basis
at the coarsest level. It leads to improved Riesz condition numbers of the proposed ba-
sis. Finally, we presented quantitative properties of the proposed basis and we compared
them with some other cubic spline wavelet bases to show superiority of our construction.
Numerical examples were presented for the two-dimensional biharmonic equation.

In the paper “Wavelet Basis of Cubic Splines on the Hypercube Satisfying Homogeneous
Boundary Conditions” [12], we constructed new cubic spline wavelet basis on the hypercube
that is well-conditioned, adapted to homogeneous Dirichlet boundary conditions and the
wavelets have two vanishing moments. Unlike our construction proposed in [7], we do not
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require a compact support for dual functions which enables to construct primal functions
with better properties. The advantage of our construction is that the support of wavelets
is shorter, Riesz condition numbers are smaller and another advantage is also a simple
construction. Then stiffness matrices arising from discretization of elliptic problems using
proposed wavelets have uniformly bounded condition numbers and these condition numbers
are small. It leads in combination with the shorter support of wavelets to more efficient
numerical solvers. Finally, we presented quantitative properties of the constructed basis
and we provided a numerical example to show an efficiency of Galerkin method using
constructed basis.

In the paper “On a Sparse Representation of a n-dimensional Laplacian in Wavelet Coor-
dinates” [13], we constructed a wavelet basis based on Hermite cubic splines with respect
to which both the mass matrix and the stiffness matrix corresponding to one dimensional
Poisson equation are sparse. While stiffness matrices in wavelet coordinates are usually
only quasi sparse. Then, matrix-vector multiplication can be performed exactly with linear
complexity for any second order PDEs with constant coefficients. Moreover, the proposed
basis is very well-conditioned for low decomposition levels. Small condition numbers for
low decomposition levels and a sparse structure of stiffness matrices are kept for any sec-
ond order PDEs with constant coefficients, which are well-conditioned in the sense of (2.7),
and moreover they are independent of the space dimension. Further, we proved that the
constructed basis is a Riesz basis and computed condition numbers for model problems
and compared them with condition numbers for a similar wavelet basis proposed in [29].

All paper presented in this thesis comes from a collaboration with my colleague Dana
Cerna. I would like to thank her for this fruitful collaboration, and look forward to its
continuation.



Chapter 1

Wavelets on the Real Line

In this chapter, we shortly introduce wavelet bases on the real line generated by one wavelet
and by one scaling function. First, we introduce an important definition of a Riesz basis
which is a generalization of an orthonormal basis.

1.1 Riesz Bases

Definition 1. A family {ej},., is called a Riesz basis of a Hilbert space H, if and only if
it spans H, i.e. all finite linear combinations of the e, are dense in H, and if there exist
constants ¢, C' such that 0 < ¢ < (' and

1/2 1/2
C<Z\xk|2> <D e gc(Zmy?) V{x,} € *(Z). (1.1)

keZ keZ keZ

The constants ¢, C' are called Riesz bounds.

It is well known that any orthonormal basis satisfies (1.1) with ¢ = C' = 1. Riesz bases
have many useful properties of orthonormal bases without requiring orthonormality. The
condition (1.1) can be interpreted as ensuring stability of the reconstruction of an arbitrary
element x € H from its coefficients {x;} in the sense that small roundoff errors in the
computation of the coefficients x; can not lead to a large error in the reconstruction. The
main properties of Riesz bases are summarized in the following theorem.

Theorem 2. Let {e}}, ., be a Riesz basis in a separable Hilbert space H and let the operator
T :1?>(Z) — H be defined by

T {Ck}keZ — Z CLCek-

kez
Then

o The series Y, ., crer converges unconditionally in H, i.e. its terms can be arbitrarily
permuted without affecting the convergence, if and only if {cy}op € * (Z).

8



Any x € H can be decomposed in a unique way according to

T = chek with  {ck}yey € P (Z).

kEZ

e T is an isomorphism from I* (Z) to H.

There exists a unique biorthogonal Riesz basis {€},c, i H, i.e. {€},c, 15 a Riesz
basis and (ey, €) ;; = O,;. This basis is defined by

e = (TT*) e,

where T* denotes the adjoint mapping to T'.

There exists constants 0 < ¢ < C' such that

cllel < 3w ey < Cllall}y,  Veem.

kEZ

Further details can be found in [18]. The next theorem gives equivalent conditions for
{€x}1ez to be a Riesz basis.

Theorem 3. For a sequence {ey}, ., spanning a Hilbert space H, the following conditions
are equivalent:

o {er}iey is a Riesz basis for H.
o The Gram matriz {{ex, e1) };, ez defines a bounded, invertible operator on I? (Z) .

o {ei}iey i5 a Bessel sequence, and there exists a biorthogonal sequence { fi.} e, which
15 also a Bessel sequence spanning H.

The proof of this Theorem can be found in [15]. For completeness we provide also a
definition of a Bessel sequence.

Definition 4. A sequence {e;}, ., in a separable Hilbert space H is called a Bessel sequence
if there exists a constant C' > 0 such that

1/2
Zxkek <C (Z ]xk|2> V{z,} €’ (Z).

keZ keZ



1.2 Wavelets

In this chapter, we consider H = L? (R). A function ¢ is called L*-stable if {¢ (x — k)},;,
is a Riesz basis of its span in L? (R). Now we can define a wavelet, a biorthogonal wavelet
and an orthonormal wavelet.

Definition 5. A function ¢ € L? (R) is called a wavelet if the family of functions {Vin};ren

where 9, (z) = 2//% (272 — k), is a Riesz basis of L?(R). A dual wavelet 1) is called
biorthogonal to a (primal) wavelet v if

<wj,k7 I;i,l> = 5i,j6k,l Vi7j7 k7l S 4.
The wavelet is called orthonormal if
(Vjge, ig) = 04,0k Vi, j, k,l € Z.

Example 6. The simplest example of orthonormal wavelet is the Haar wavelet. The Haar
wavelet is the function defined on the real line as

1 Vx € [O, %) ,
H(z) =< -1 Vze[3,1],

0  otherwise.
It is well-known [42, 43] that the system {2//?H(2/z — k)}j,keZ is orthonormal in L? (R) .
Wavelets are usually constructed with an assistance of a multiresolution analysis.

Definition 7. A sequence {V;},_, of closed subspaces of L? (R) is called a multiresolution
analysis if it satisfies the following conditions:

1) The sequence is nested, i.e.
ViCVipn  VjeL
2) The spaces are related to each other by dyadic scaling, i.e.
[@) eV, & f@2) eV VieL

3) The union of the spaces is dense, i.e.

UJv=2®).

jJEL
4) The intersection of the spaces is reduced to the set containing only the null function,

- NV = {0}

jez
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5) There exists a scaling function ¢ € Vi such that

{6 (x — k)}kez

is a Riesz basis of V.

If we construct an orthonormal basis than we require at the point 5) of the above definition
that a scaling function ¢ forms an orthonormal basis of Vj. Spaces V; from the above
definition are often called principal shift-invariant spaces and most of their properties can
be studied by means of Fourier analysis.

Example 8. For the Haar system {27/2H(27z — k)}] wege the scaling function is defined
by [42, 43]:
ou(x) =

0 otherwise.

{1 Vo € [0,1]

Consequences of the Riesz basis property:

e Since Vy C Vi and from Theorem 2, there exists a sequence {hy},., € I*>(Z) such
that
¢(x)=> ho(2r—k)  VreR. (1.2)
kez
This equation is called refinement or scaling equation and the coefficients h, are
known as scaling or refinement coefficients. These coefficients will be used later in a
discrete wavelet transform and also to a construction of dual wavelets.

e For each j € Z, the set {29/%¢ (2z — k)}kez is a Riesz basis of V; with Riesz bounds
independent of j.

1.3 Biorthogonal wavelets

Now, let have two different scaling functions ¢ and qg, which usually generate different

multiresolution analyses {V;} V]} , and consequently also two different wavelet
jez

ez’

functions v, ¢. Then we have two sets of scaling coefficients while we have only one set of
scaling coefficients in the case of orthonormal wavelets. Therefore biorthogonal wavelets
provide more degrees of freedom in comparison with orthonormal wavelets and it is possible
to construct primal wavelets with better properties. For instance, primal wavelets are
usually smoother than orthonormal wavelets with the same length of the support.
Wavelet coefficients can be determined as

gn = (_1>n iLl—na gn = (_1)n hl—n, (13)

11



where h,, and h,, are scaling coefficients corresponding to ¢ and 95, respectively. Wavelets
are then given by

Y (x) = Zgngb (2x —n), Y (z) = Zgan (2z —n) Vo e R. (1.4)

nez neL

The function ¢ is called a primal scaling function, the sequence {Vj}jGZ is called a primal

multiresolution analysis and 1 is a primal wavelet, while ¢, {‘7]} - ,and ¢ are called dual.

JEZ
Let us define

W; = span{¢; s, k € Z}, W, = span {@EM, ke Z}.

The following lemma describes basic properties of biorthogonal wavelets.

Theorem 9. Let sequences {V}-}jGZ and {‘7]} be two multiresolution analyses with
jEL
mutually biorthogonal scaling functions ¢ and ¢ so that <gz§ (x—k), ¢ (x— l)> = 0y, for all

k,l € Z. Further let wavelet coefficients be defined by (1.3) and primal and dual wavelets
be defined by (1.4). Then

o (z) € Vi and P(z) € V.

° 15 15 biorthogonal to 1, i.e.

<¢@—k%¢@—n>zﬁﬂ Vk, 1 € Z. (1.5)

<¢@—k%$@—0>:<$@—k%¢@—0>:@l Yk, € Z. (1.6)

o For any j € Z the set {vx, k € Z} is a Riesz basis of V; and for any j € Z the set
{@ij,ka ke Z} s a Riesz basis of f/j

e If moreover ¢(x) and ¢(x) for some C > 0 and V& € R satisfy

~

bl scaried™  and |s@|ca+ien

then {Y;x}; ez and {&jk}] veg O Riesz bases of L* (R).
For the proof of this theorem which relies on techniques based on the Fourier transform,
we refer to [42]. The consequence of (1.5) and (1.6) is that the spaces W; and W, are
orthogonal for all j # [, the space W} is orthogonal to V; for all | < j and the space VT/]
is orthogonal to V; for all [ < j. Moreover W; complements V; in V;;; and similarly Vf/j
complements f/J in f/jﬂ. Then the space V; can be decomposed:

V}':Vjo@mfjo@wjoJﬂ“'@Wj*l

12



and due to (1.5) any function f € V; can be expanded into

f= Z <f; $3k> Pjk = Z <f Bjosk >¢go,k + Z Z <f Wb, k> ik (1.7)

Jj=jo kEZ

The first part of the expansion (1.7) is called a singlescale representation of the function f
while the second part of the expansion is called a multiresolution or multiscale representa-
tion of the function f.

Many properties of wavelets can be formulated by equivalent or necessary conditions on
its Fourier transform, on its symbols and its scaling coefficients. For instance, necessary
conditions on symbols and scaling coefficient, which are useful for the construction of the
dual scaling function or for the computation of scaling coefficients of orthonormal wavelets,
are given in the following theorem proved in [18].

Theorem 10. If scaling functions ¢ and ¢ are mutually biorthogonal then

1) the scaling coefficients h,, and B satisfy

> hnhn oy =200,  VEEZ

ne”

2) and the symbols of scaling functions m (w) and m (w) satisfy

m(w)m(w)+mw+m)mw+mr)=1 Yw € R,

where

l\')l»—t
w|>—l

E /‘ —mw
€Z

Moreover, the conditions 1) and 2) are equivalent. Furthermore, if wavelet coefficients are
defined by (1.3) then

Z e ™ VYweR. (1.8)
€Z

Zgngn—%z = 200,k Vk € Z

ne”L

Y hdn-ok =Y Gahn-an =0 VkEZ.

neL neL

and

1.4 Oblique projections
A requirement on biorthogonal scaling functions to be also in V leads in many cases to

globally supported biorthogonal scaling functions [18]. It causes some difficulties such as
a complicated evaluation of scalar products with them. Therefore we do not require that

13



Vo = Vi and we define so called oblique projections P;: L?*(R) = V; and f’J : L2 (R) — f/j
by
Pif=> <f7 Qg]k'> Gk Pif = (L, 65k) Gin
keZ kEZ
and detail operators Q; : L? (R) — W;, Q; : L* (R) — W, by

ij = Pj+1f - ij7 ng = ]5j+1f - ]5]f

Since the spaces V; are nested, we have P;F, = P; for all j < [. Consequently the detail
operator (); is also a projection on a space W; and can be expanded into [18]

Qif = {f Bix) s
keZ
Then the space W; can be also defined as the kernel of P; in Vj,;.
It is known from [33] that if ¢ is a compactly supported L?-stable refinable function then
there always exists a dual scaling function to ¢ which is also compactly supported. In the
rest of this chapter, we will assume that both scaling functions ¢ and q~5 are compactly
supported. Basic properties of projections P; and P are described in the next theorem.

Theorem 11. If both scaling functions ¢ and qg are compactly supported and mutually
biorthogonal then

The scaling functions ¢ andqg are L?-stable.

Oblique projectors P; and 153 are L2-bounded independently of j.

lm [Bf=fl=0 = [é@drYe@-R =1 ac

keZ

and

lim ‘
Jj—00

f’jf—fH—)O = /Rgzﬁ(x)dxz:q;(a:—k:)zl a.e.

kEZ

Both scaling functions ¢ and ¢ have non-zero integral, and satisfy

/qu(x)dx/RqB(x)dx:L

Up to a renormalization, we can assume that [, ¢ (x)dx = qug(x) dr = 1. And the
corresponding scaling coefficients hy, and hy satisfy

b= h=2 D (- => (-1)fh =0

kEZ kEZ kEZ keZ
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The proof of Theorem 11 can be found in [18]. It follows from Theorem 11, that for any
f € L? (R) holds

f = lim (Z (£.9i) m) ~ lim (Z (£, %in ) bink + > (£ i) s k> .

kEZ keZ Jj=jo kEZ

1.5 The Discrete Wavelet Transform

For a computation with wavelets it is in the most cases more advantageous to work with
a multiscale representation but in some case it is more efficient to work with a single scale
representation (for example evaluation of scalar products with wavelets). Therefore we
need an efficient tool which enables to change both representations easily. This tool is
called the discrete wavelet transform (DWT). Its first part can be derived from the scaling
equation (1.2) and the wavelet equation (1.4). We have from (1.2)

Gin(x) = 2P (Va—k) =27 h¢ (2w — 2k —n)

nez
S o s (2 — ) =2 oy
el mEZ
This implies that
Cj,k: = 271/2 Z hm72kcj+1,m- (19)
meZ

From (1.4) we obtain

Yin(r) = 270 (Pr—k) =2 5.6 (2w — 2k — n)

ne”Z
— 9-1/2 Z gm_%z(a‘ﬂ)ﬂ& (2j+1x _ m) _ 912 Z gm_%q;jﬂm‘
meZ meZ
It follows that
dj,k =272 Z Im—2kCjt1,m- (1.10)
MEZ

The equations (1.9) and (1.10) represent the decomposition algorithm. We can also recon-
struct coefficients c; 1, from coefficients ¢; and d; ;. From the relation V V 1+ WJ 1
it follows that

Dbk = DGkt ) diiadioin

kez kez kez
~1/2 =~ ~ _1/9 B ~
271 E Ci—1k E oo i + 27 E dj—1p g Gn—2kDj -
keZ nel kEZ nel

15



By matching coefficients, we obtain the reconstruction algorithm:

Gk =273 MionCioin + 27D Gkondj1n- (1.11)

neZ ne’

The reconstruction algorithm is the second half of the discrete wavelet transform. The first
part of (1.11) can be also used to obtain an approximation (prediction) of the coefficients
c;r from the data at coarser scale j — 1. In practice, we deal with functions with compact
support. Then there exist k; € Z, n € N such that ¢;, =0 for k > k; and k < k; +n. In
this case the discrete wavelet transform can be performed in O(n) operations.

1.6 Polynomial exactness

The rate of decay of the approximation error of a function f defined by ||P;f — f|| is given
by the polynomial exactness of the primal scaling basis and by the regularity of f. In the
next theorem, equivalent conditions for the polynomial exactness are given.

Theorem 12. Let ¢, ¢ € L'(R) be a compactly supported functions satisfying Jg o(x) dz =
1. Then the following properties are equivalent:

e ¢ satisfies the Strang-Fix conditions of order L — 1, i.e.

((%)qa(zm) =0, neZ\{0}, VYg=0,....L—1.

e Forallq=0,...,L —1, we can expand the polynomial ¢ according to
xqzz<xq,¢~5(x—k)>¢(x—k:), a.e.
keZ

The symbol of ¢ defined by (1.8) has the factorized form

e = (2 ),

where p (w) is a trigonometric polynomial.

The dual wavelet 1; has L vanishing moments, i.e.

/xqg/;(x)dx:() Vg=0,...,L—1.
R

There exists a constant C > 0 such that we have for any f € HL(R):

If = ijHHq(R) < 279 |f‘HL(R) ) Vg=0,...,.L -1

16



The proof can be found in [18]. Another important condition based on the regularity of
the scaling function can be found also in [18]:

Theorem 13. If ¢ is a L?-stable compactly supported refinable function in H*(R) for
L € Ny, then it satisfies the Strang-Fiz conditions of order L.

For the analysis of the regularity of the scaling function based on the explicitly know scaling
coefficients, we refer for example [38].

1.7 B-Splines

In this part we shortly introduce basic properties of B-splines which are frequently used as
primal scaling functions.

Definition 14. The B-spline By of degree N is defined by By(x) = ¢p(x) (the Haar

scaling function) and then recursively by the convolution:

Bu(z) = Bo(x) + By_1 () = /R Bo(t) By_1(x —t)dt, NeN.

The following theorem summarizes properties of B-splines.

Theorem 15. For N € N the functions By have the following properties:
e By is supported in [0, N + 1].
e By(z) >0  Vre(0,N+1).

N+1
2

N+1 N+1
BN(T+—:E>:BN(T++$) Vz € R.

Jo By (z)dz = 1.

o The function By is symmetric with respect to the point , G.€.

By (z) = %Z(—nk (N];”) (- kY  VreR,

where xY = (maz {0, z})V.

The set {By(2'x — k)},, generates the multiresolution spaces
Vi = {fELQ(R)ﬂCN_l(R)iﬂ[ﬁ,@] e Ily, Vk:eZ}.
277 27

By is L?-stable.

17



e By is a refinable function, i.e. it satisfies (1.2), and nonzero scaling coefficients are

given by
N +1
hn:Q‘N( +> Vn=0,.. N

n

The proof of statements of this theorem and other interesting properties of splines can be
found in [4, 16, 18, 43]. Now, we can define the primal scaling function as ¢y := By, this
function reproduces polynomials up to degree N. It has been shown in [21] that for each
N and any N €N, N > N, such that N + N is even, there exists a compactly supported
dual scaling function, which is exact of order N.

18



Chapter 2

Wavelets on the Bounded Interval

Wavelets on the real line are not usually suitable in applications which are defined on
bounded domains. Therefore it is necessary to adapt them first on the bounded interval.
The main idea is to retain most of the inner functions, i.e. the scaling functions and wa-
velets whose supports is contained in the interval, and to treat boundary scaling functions
and wavelets separately. In some cases it is possible to take restrictions of some of the
overlapping functions but in the most cases it is necessary to construct so called bound-
ary functions. During their construction the important properties of wavelets should be
preserved such as a Riesz basis property, a smoothness, a local support of basis functions
and a polynomial exactness of the wavelet basis. The main disadvantage of some existing
constructions is a large condition number of wavelet bases resulting in a bad numerical
stability and bad spectral properties of the corresponding stiffness matrices when solving
differential equations numerically. This chapter provides an introduction to wavelets on
the bounded interval and unlike the previous chapter we consider here wavelet systems
generated by many wavelets and by many scaling functions. Wavelets can be even differ-
ent at different decomposition levels. All these facts complicate not only notation but also
a theory.

2.1 Wavelet Basis

We start with a definition of a wavelet basis. We consider here families ¥ = {{\,\ € J} C
L*(0,1) of functions where J is an infinite index set and J = Jp U Jy, where J5 is a
finite set representing scaling functions living on the coarsest scale. Any index A € J is
of the form A\ = (j, k), where |A\| = j denotes a scale and k denotes spatial location. The
above notation enables us to write wavelet expansions as

dT\I/ = Z d)ﬂﬂ)\.

reJ
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Further, we will use the following shorthand notations for two collections of functions W,

U e L2(0,1):
<\P’\I]>L2(0,1) = (<w’1;>L2(0,1)>

Thus, the biorthogonality condition can be written as

<x1n1f> _T

Definition 16. The family ¥ = {¢y, A € J} C L?(0,1) is called a wavelet basis of H* for
some 7,7 > 0 and s € (—7,7), if

e e,

e VU normalized in H* is a Riesz basis of H®; it means that ¥ forms a basis of H* and
there exist constants ¢y, Cs > 0 such that for all b = {bx},.; € I* () holds

by
Cs ||b||l2(J) S ||,¢ | S Os ||b||l2([7) 5
AeJ Mims Hs
. . inf Cy .
where supc,, inf Cy are called Riesz bounds and cond (V) := is called the
sup ¢,

condition number of .
e The functions are local in the sense that diam (suppv,) <27 vA € 7.

e Functions ¢, A € Jy, have cancellation properties of order m, i.e.,

S22 lgmyy . Yo e H™(0,1).

/ u(e) () de

It means that integration against wavelets eliminates smooth parts of functions. It
is equivalent with vanishing wavelet moments of order m and with the polynomial
exactness of dual multiresolution analysis of order m — 1.

The wavelet system W is usually constructed with the assistance of a multiresolution anal-
ysis.

Definition 17. A sequence V = {V}, eN, of closed linear subspaces V; C H? is called a
0
multiresolution or multiscale analysis, if the subspaces are nested, i.e.,

VieCVjpn C...CV;CV;puC...CH®

and is dense in H, i.e.
—HS s
UjENjo V7 = H :
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We now assume that V; is spanned by set of scaling functions

(I)j = {¢j,k7 k' S I]},

where Z; is a finite index set. Furthermore, the collections ®; will always be assumed to

be uniformly stable, uniformly bounded and uniformly local in the sense that Vk € Z; and
Vo e (0,1)

diam (supp ¢;x) < 277 and # {k €7Z;, B(x, 277) N supp bjk F Q)} <1,

where B(x,277) is the ball with radius 277 centered at .
The nestedness of V and the uniform stability of the Riesz bases imply the existence of a

bounded linear operator M, = (m{’g such that

)ZEI]'.HJCEI]-
0
i = Y midirs.

lEZj+1
Viewing ®; as a column vector, above refinement relations can be expressed in a matrix
form as

T

As a consequence of uniform locality, the matrices M, are uniformly sparse i.e. the
number of entries per each row and column is uniformly bounded. Similarly as in the
previous chapter, the nestedness of ¥V further implies the existence of the complement
spaces W;. Let

U =A{tj, k € Tj}, Tj =L \Lj, J = Jo,
be a Riesz basis of W;. Functions in ¥; are called wavelets. Since ¥; C V41 and @,y
forms a Riesz basis of its span, we have a unique representation

— Ji1
Yk =) mixbie
lGIj+1
which can be again expressed in a matrix form as

v = M?:lq)j-‘rla (2.2)

where M ; is a bounded linear operator given by M, = (mj Further, we

J,1
( )ZGI]’+1J€€J]' ’
assume that collection ¥; is uniformly local and then M, ; is also uniformly sparse. The

refinement relations (2.1) and (2.2) lead to refinement equations in a matrix form

(I)j T
<\I’j> Rt

with a refinement matrix M, := (M, o, M;;). Matrices M; are invertible and let inverse
matrices be defined by
G.
-1 3,0
G‘%l
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Inverses of sparse matrices are not in the general case sparse. However, when we require
uniformly local dual wavelets then the inverses of these matrices have to be uniformly
sparse. In this case, wavelets are usually constructed by a method of stable completion
proposed in [6].

Definition 18. Any M;; € [I*(J;),[? (Z;41)] is called a stable completion of M;, if
R(M), s(M;1) = O (1), j— o0,
where Mj = (Mj,g, Mj71).

It is known that ®; U ¥; is uniformly stable if and only if M;; is a stable completion of
M, o, see [6]. However, it does not imply the Riesz stability over all levels.

2.2 Multiscale Transform

The multiscale basis of V; is given by
J—1
v =, U9, (2.3)
J=jo
Since the union of subspaces V; is dense in H?®, a multiscale basis of H* is given by
v=2o,u ]y,
J=Jjo
and we can split J into two index sets
\7¢>::{(.j0_17k)7k€1-j}7 jwz{(],k),ijo,k€$}

From (2.3) it follows that any v € V; has a single-scale representation

T
v=c;P= E CjkDjiks

kEZj
as well as a multiscale representation
J—1
v=cld, +d’v, +.. . +d7_ |V, = Cio kot + d; 1),
— Y0 *J0 jo = Jo T e J-1*J-1— Jo,k¥jok 5k gk
kely, Jj=jo keJ;

The corresponding vectors of the single-scale and multiscale representations are related by
the multiscale transformation Ty : 1 (Z;) — I* (Z;):

rdar,...ar ).

c; =T, (Cjo’ Jjo?
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From refinement relations (2.1) and (2.2), it follows that
C?q)j + d?\lfj = (ML()CJ' + Mdej)T (I)j—H = C?+1®j+1

and then the multiscale transform T, is given by:

M; 0
TJ:TJ,Jfl---TJ,joa where TJ,j: 0 L .

To determine the inverse multiscale transform le, note that

T _ T T & T T q — T T,

Thus, the inverse multiscale transform T;l can be obtained by applying inverses of the
matrices T ;; in the opposite order:

G, 0
T;' =T, ...T;},, where T} = ( 0] I) :

If refinement matrices M; and G; are uniformly sparse then both the multiscale transform
T ; and the inverse multiscale transform T}l can be performed in O (N;) operations, where
Nj is the dimension of the space V;. The next theorem shows a relation between properties
of the multiscale basis ¥ and the multiscale transform T';.

Theorem 19. Assume that ®; are uniformly stable. Then T; are well-conditioned or
stable in the sense of k(T;), k(T;') = O (1) if and only if V is a Riesz basis in a Hilbert
space H.

For further details, we refer to [23].

2.3 Riesz Bases in Sobolev Spaces

As was already mentioned in the previous chapter, any wavelet compression algorithm
based on removing small coefficients can be reasonable only when wavelets form a Riesz
basis. The following theorem from [40] gives useful characterization of Riesz bases.

Theorem 20. Let jo be the coarsest level and let
ViiCVi1 C...CH, Vi, CVinC...CH

be sequences of closed subspaces of H such that with dimV; = dim ‘7]», then the following
statements are equivalent:

o There exist uniform Riesz bases ®; and &% for V; and \7] such that <<I)j,&>j> 18
invertible and the inverses are uniformly bounded.

23



inf  inf sup 10| SU’UH > 0.
JEN0 0£BEV;) 45 0£vEV, 45 ||U|| ||U||

o There exist unique uniformly bounded projections P; : H — V; with Im(I — P;) = VjL
and these projections are given by

~ -1
o To any uniform Riesz basis for V; there exist a unique uniform biorthogonal Riesz
basis in V.

Let any of the above conditions be satisfied and moreover let the following minimum angle
condition hold

sup cos Z(Vjy+j, Wjo+j) <1 where cos Z(V;,W;) = sup | (w,v) | ’
7et0 ozvev;, 0zwew; ||[w]] [[v]]

then (I — Pj)|lw, : W; — VN \%L is invertible and the inverses are uniformly bounded.

The first part of the previous theorem enables to formulate prior results from [25] without
explicit knowledge of some biorthogonal bases while the second part was used in [40] to a
construction of biorthogonal wavelets on non-uniform meshes. In this construction both
primal and dual wavelets are known in explicit form, have a compact support and are
piecewise polynomials. The following two theorems state how Riesz bases for a range
of Sobolev spaces can be created. The first theorem describes the case, when we have
two mutually biorthogonal bases, while the second one describes the case, when a dual
biorthogonal basis in not known.

Theorem 21. Let jo be the coarsest level and let
Viy C Vigs1 C ... C L*0,1), Vi, CVjyy1 C ... C L*0,1)

be sequences of primal and dual spaces which_are mutually biorthogonal and which are
equipped uniform L?(0,1)—Riesz bases ®; and ®; for V; and V;, respectively. In addition,
for some 0 < v < d, let

inf flv —vjllz201) S 270l ey Yo € HY0,1),
viEV;

(Jackson or direct estimate) and
vl S 27 vjllz0y Vv €V, s €[0,7),
(Bernstein or inverse estimate) and let similar estimates be valid at the dual side with
Vi,d,v, H(0,1) reading as V;,d,7, H*(0,1). And let V; be uniform L*(0,1)—Riesz bases
for Wi ==V, .1 N ‘ZLLQ(O’D, then for s € (—7,7) the collection
q)jo U U 2—sj\11jo+j
J€No

is a Riesz basis for H*(0,1), where H*(0,1) := (H~*(0,1))" for s <0.
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This theorem is a consequence of results from [25, 40]. The following theorem from [29]
summarizes results from [23, 25]:

Theorem 22. Let jo be the coarsest level and let
Viy C Vigp1 C ... C L}0,1),  Viy C Vigrs C ... C L*(0,1)
be sequences of primal and dual spaces with
dim V; = dim V}

such that for uniform L*(0,1)— Riesz bases ®; and &)j for V; and \N/j, respectively,

~ -1
o, >
< 70 200

exists with a uniformly bounded spectral norm. In addition, for some 0 < v < d, let

inf [[o —vjllr201) S 27 vl lyao,y Vv € HUO,1),

vicVi

(Jackson or direct estimate) and (Bernstein or inverse estimate)

il 0,0y S 2°||vjll20y Yo € V5, s €(0,9),

where, for s € [0,d], H*(0,1) = [L*(0,1), H*(0,1) N Hg (0, 1)}8/(1, and let similar estimates
be valid at the dual side with V;,d,~v,H*(0,1) reading as ‘7},(7,?, ﬁs((), 1). And let U, be
uniform L*(0,1)— Riesz bases for W, := Vj4 ﬂ%LLz(O’l), then for s € (—7,~) the collection

o0 | 2705,

Jj€Ng
is a Riesz basis for H*(0,1), where H*(0,1) := (H*(0,1)) for s < 0.

Concerning validity of direct and inverse estimates, it is well-known [17] that a direct
estimate of order d is satisfied when all polynomials of order d satisfying possibly boundary
conditions are included in the space Vj,, while an inverse estimate of order 7 is known to
hold with v = r + % when spaces V; are spanned by piecewise smooth C”(0,1) functions
for some r € {—1,0,1,...}, where r = —1 means that no global continuity is satisfied.

Further generalization of previous works was proposed in [36]. It is useful especially in the

case when a proposed basis in not a Riesz basis of the space L*(0,1).

Theorem 23. Let jy be the coarsest level and let for some 0 < 7,

‘/jo C‘/jo+1 C‘/JO+2CCHS(O,1) VSE [0,’)/)
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be a sequence of primal spaces with uniformly local and uniformly stable bases ®; for V;
which is a Bessel sequence in H*(0,1), Vs € (0,7). In addition, for some v < d, let

inf H’U — /U]'HLQ(OJ) S 2_jd|”UHHd(O’1) Yu € Hd(O, 1)
v; €V

and let there exist a projection P;: Vi1 — V; and 0 < p < v such that
m s Pn_1 - m,n € N wi 0 S m < n.
P Py4|| < 2#mm) N with jo <

And let V; be uniform L*(0,1)—Riesz bases for W; := KerP;, then for s € (u,7) the
collection .
5 U [ 2770504,
Jj€No

is a Riesz basis for H*(0,1).

Some sufficient conditions for ®; to be a Bessel sequence are given in [35].

2.4 An Application of Riesz Basis Property

We show here that condition numbers of stiffness matrices arising from discretization of
elliptic partial differential equations by wavelets depend on Riesz constants of a wavelet
basis. Therefore it is necessary construct wavelet bases which are well-conditioned in the
sense that their Riesz condition number is as small as possible. We consider here the
following Dirichlet problem

. 0% _ J _

u— @:f in Q=(0,1) with u=0 on 0Q (2.4)

i=1 i
for given f € H~'(Q). A Riesz wavelet basis for H} (2) can be constructed by a tensor
product of univariate Riesz wavelet bases. Indeed, let ¥ = {iy, A € J} be after appropriate
normalization a Riesz wavelet basis for spaces L?(0,1) and Hj(0,1) then

®9_1¥x
U=y = = ,Aejd}
{ g H®§l:1¢>‘mHH1(Q)

is a Riesz basis for H} (2) (see [31]) with the Riesz constants (see [28])

2
min (co, ¢;) ¢4 ||by|§2(Jd) <1 bawa < max (Cy, Cy) C&1 ||b||§2(jd) (2.5)
Aegd Hl(Q)
Vb € I? (j d) , where constants ¢y, Cp, c¢1, C; are Riesz constants with respect to spaces L?
and H;, respectively, and the index set J¢ is defined by J¢ := {X = (A1,..., ), \s € T}
Writing
u=u'W .= Z uYx and f= (f(¢A))AEJd ’

Aegd
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then an equivalent formulation of (2.4) is

Au=f
with
A=D"?M®..aM+S®..aM+---+M®...®S)D 2,
— i d
where D = diag [H@Flw,\mHHl(Q)] N and

1 1
S = ( %% dx) and M = (/ (N dx)
0 8.17 8$ >\7M€~7 0 )\,Mej

are the one-dimensional stiffness and the mass matrices, respectively. Then (2.5) implies

max (Co, Cl) Ogil

-

cond (A) <

min (cg, ¢1) cg_

In general case, let us assume, that we have the following variational problem: for given

f € H find u € H such that
a(u,v) = f(v) Vv € H, (2.6)

where H is a Hilbert space and a is a continuous bilinear form. Then, we define the
operator A : H — H' by
A(u)(v) = a(u,v) Vv eH,

and then (2.6) is equivalent to
Au) = f.

If a is H—elliptic, then there exist positive constants c4, C4 such that
callvlly < AWy < Callvlly, Yo eH. (2.7)

Moreover, we will assume that we have a suitable wavelet basis ¥ of the space ‘H normalized
in H with Riesz constants ¢, C' and we define A = a (¥, W) and f = f (¥), then

A(u) = f = Au=f,

where u = u’' ¥, and
2
cond (A) < ¢ CA.

c2cy

Proof can be found in [3]. Thus we can conclude that the condition number of the stiffness
matrix A is bounded which favorably influences a number of iteration needed to solve a
system of equations resulting from a wavelet discretization of (2.6). And then it greatly
influences efficiency of adaptive wavelet methods. Therefore it is useful to develop well-
conditioned wavelet bases on the interval. Well-conditioned wavelet basis for different
types of wavelets and for different types of boundary conditions were already constructed
in 7, 8, 10, 11, 37].

27



Chapter 3

Selected Results

In the last chapter we present selected results published in the following four papers:

e Cernd, D.; Finek, V.; Najzar, K.: On the ezact values of coefficients of Coiflets, Cent.
Eur. J. Math. 6(1), (2008), pp. 159-170.

e Cernd, D.;: Finek, V.: Construction of optimally conditioned cubic spline wavelets on
the interval, Adv. Comput. Math. 34(2), (2011), pp. 219-252.

e Cernd, D.;: Finek, V.: Cubic Spline Wavelets with Complementary Boundary Condi-
tions, Appl. Math. Comput. 219, (2012), pp. 1853-1865.

e Cernd, D.; Finek, V.: Wavelet basis of cubic splines on the hypercube satisfying homo-
geneous boundary conditions, Int. J. Wavelets Multi. 13(3), (2015), pp. 1550014 /1-
21.

e Cernd, D.; Finek, V.: On a sparse representation of a n-dimensional Laplacian in
wavelet coordinates, Result. Math., DOI 10.1007/s00025-015-0488-5, (2015).

We shortly introduce here these papers and then we include them into this work.

3.1 On the Exact Values of Coeflicients of Coiflets

In 1989, R. Coifman suggested orthonormal wavelets in Ls(R) with vanishing moments
for both scaling and wavelet functions. In practical applications these wavelets are useful
due to their nearly linear phase and almost interpolating property. For more details we
refer to [34]. They were first constructed by I. Daubechies [26, 27] and she named them
coiflets. She created coiflets by setting an equal number N of vanishing wavelet moments
and vanishing scaling moments for even N and the length of support 3NV, see [26, 27]. It
was noticed in [1] that these coiflets has one additional vanishing scaling moment than
imposed. Another types of coiflets can be found in literature. For example C. S. Burrus
and J. E. Odegard [5] constructed coiflets with N vanishing moments for odd N and the
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length of support 3N + 1 which has two additional vanishing scaling moments. Another
approach proposed in [34] consists in a parametrization of coiflets by the first moment of
the scaling function. By allowing noninteger values for this parameter, the interpolation
and linear phase properties of coiflets can be further optimized.

In the paper “On the Exact Values of Coefficients of Coiflets” [14], we proposed a system
of necessary conditions which is redundant free and more simple than other known systems
due to elimination of some quadratic (orthonormality) conditions, thus a computation of
scaling coefficient of coiflets is substantially simplified and enables to find the exact values
of the scaling coefficients up to filters of the length 8 and two further with filters of the
length 12. For scaling coefficients of coiflets with filters of the length 14 we obtained two
quadratic equations, which can be transformed to polynomial of degree 4 and there is
an algebraic formula to solve them. For larger filters up to filters of the length 20, we
were able to find all possible solutions by employing a Grobner basis method. Finally, we
verified orthonormality by the sufficient Lawton criterion [32] and found that all solutions
correspond to an orthonormal wavelet. Obtained solutions are not of the same quality,
because also their smoothness and symmetry plays a role. For this reason, we also computed
their Sobolev exponents of smoothness by methods proposed in [30, 41].

There is a number of numerical methods which were used to find scaling coefficients of
coiflets but these methods enable to derive only one particular solution for each system
and the convergence and the obtained solution depends on the initial starting point, thus
it is difficult to find all possible solutions. Moreover, the coefficients for length greater than
16 are given with less precision due to the round-off error [27].

3.2 Construction of Optimally Conditioned Cubic
Spline Wavelets on the Interval

The first biorthogonal spline wavelet bases on the unit interval were constructed in [24].
In this construction both primal and dual bases functions are compactly supported. How-
ever in the most cases, these bases have relatively large condition numbers which causes
problems in practical applications. Many modifications improving condition numbers were
proposed. We mention only a construction proposed by M. Primbs [37] which seems to
outperform the previous constructions with respect to the Riesz bounds as well as spectral
properties of the corresponding stiffness matrices in the case of linear and quadratic spline
wavelets.

In the paper “Construction of Optimally Conditioned Cubic Spline Wavelets on the Inter-
val” [7], we focused on cubic spline wavelets and we constructed spline wavelet bases on
the interval with condition numbers which are close to condition numbers of spline wavelet
bases on the real line. In this sense, they are optimally conditioned because it is known that
a condition number of the wavelet basis on the interval can not be better then a condition
number of a wavelet basis on the real line [2]. From the viewpoint of numerical stability,
ideal wavelet bases are orthogonal wavelet bases. However, they are usually avoided in
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the numerical treatment of partial differential and integral equations, because they are not
usually known in a closed form, sufficiently smooth orthogonal wavelets typically have a
large support and it is not possible to increase a number of vanishing wavelet moments
independent from the order of accuracy.

Constructed wavelets have the following properties:

e Riesz basis property. Functions form a Riesz basis of the space L?(0,1).
e Locality. Basis functions are local.
e Biorthogonality. Primal and dual wavelet bases form a biorthogonal pair.

e Polynomial exactness. Primal multiresolution analysis has a polynomial exactness of
order N and the dual multiresolution analysis has a polynomial exactness of order
N. Asin [21], N + N has to be even and N > N.

e Smoothness. Certain smoothness for primal and dual wavelet basis functions.
e Closed form. Primal scaling functions and wavelets are known in the closed form.

o Well-conditioned bases. Constructed wavelet bases have improved condition numbers
in comparison with previous constructions of the same type.

The primal scaling functions are B-splines, which have been used also in [37]. Then we
constructed a dual multiresolution analysis which is generated by three types of scaling
functions. Inner scaling functions are the same as in [21] and there are two types of
boundary scaling functions. Scaling functions of the first type are defined to preserve
the prescribed polynomial exactness in the same way as in [22]. Scaling functions of the
second type are constructed to be as similar as possible to restrictions of inner scaling
functions. Consequently we computed refinement matrices and constructed wavelets by a
method of stable completion. The construction of initial stable completion is along the
lines of [24]. Furthermore, we showed that the constructed set of functions are indeed a
Riesz basis for the space L?(0,1) and for the Sobolev space H* (0,1) for a certain range
of s. Finally, we adapted primal bases to homogeneous Dirichlet boundary conditions of
the first order and we compared quantitative properties of the constructed bases and the
efficiency of an adaptive wavelet scheme for several spline wavelet bases to demonstrate a
superiority of our construction. Numerical examples were presented for one-dimensional
and two-dimensional Poisson equations where the solution has a steep gradient.

3.3 Cubic Spline Wavelets with Complementary
Boundary Conditions

In the paper “Cubic Spline Wavelets with Complementary Boundary Conditions” [8], we
constructed a new stable cubic spline wavelet basis on the interval satisfying complemen-
tary boundary conditions of the second order i.e. the primal wavelet basis is adapted to
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homogeneous Dirichlet boundary conditions of the second order, while the dual wavelet
basis preserves the full degree of polynomial exactness. Primal wavelets have six vanishing
moments. Moreover, we proposed further decomposition of the scaling basis at the coars-
est level. We decomposed the scaling basis ®, into the scaling basis ®3 and the wavelet
basis 3. These new wavelets from W3 have four vanishing moments while supports of new
boundary scaling functions from ®3 overlap in contrast to boundary scaling functions from
®,. This modification leads to improved Riesz condition numbers of the proposed basis.
The primal scaling functions are B-splines satisfying homogeneous Dirichlet boundary con-
ditions of the second order. Then in the similar way as in [7], we constructed a dual mul-
tiresolution analysis which is generated by three types of scaling functions. Inner scaling
functions are the same as in [21] and there are two types of boundary scaling functions.
Scaling functions of the first type are defined to preserve the prescribed polynomial exact-
ness while scaling functions of the second type are constructed to be as similar as possible
to restrictions of inner scaling functions. Consequently we computed refinement matrices
and constructed wavelets by a method of stable completion. We proposed a new con-
struction of the initial stable completion because the standard construction from [24] led
to singular matrices. Finally, we presented quantitative properties of the proposed basis
and we compared them with some other cubic spline wavelet bases to show superiority of
our construction. Numerical examples were presented for the two-dimensional biharmonic
equation where the solution has a steep gradient.

3.4 Wavelet Basis of Cubic Splines on the Hypercube
Satisfying Homogeneous Boundary Conditions

In the paper “Wavelet Basis of Cubic Splines on the Hypercube Satisfying Homogeneous
Boundary Conditions” [12], we constructed new cubic spline wavelet basis on the hypercube
that is well-conditioned, adapted to homogeneous Dirichlet boundary conditions and the
wavelets have two vanishing moments. Proposed wavelets have the same properties as
wavelets in the construction [7] with one exception. We do not require compact support
for dual functions which enables to construct primal functions with better properties. Dual
functions are not in fact used in some applications of wavelets such as numerical solution
of linear differential equations. The advantage of our construction in comparison with
similar cubic spline wavelets with local dual functions [7, 8, 24, 37] is that the support of
wavelets is shorter, Riesz condition numbers are smaller and another advantage is also a
simple construction. Then stiffness matrices arising from discretization of elliptic problems
using proposed wavelets have uniformly bounded condition numbers and these condition
numbers are small. It leads in combination with shorter support to more efficient numerical
solvers.

The primal scaling functions are B-splines, which have been used also in [7]. Then we
constructed a primal wavelet basis generated by one inner and two boundary wavelets.
Inner wavelets are generated by a single function supported in the interval [0, 5] and there
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are at each side two boundary wavelets. The first one is supported in the interval [0, 4]
and the second one is supported in the interval [0,3]. All three types of wavelet are
constructed to be orthogonal to continuous piecewise linear functions which are linear on
pieces [g, %] for k € N. A space generated by these continuous piecewise linear functions
forms a dual multiresolution space which is consequently used in the proof of the Riesz basis
property. Moreover from the construction immediately follows that constructed wavelets
have two vanishing wavelet moments. Finally, we presented quantitative properties of
the constructed basis and we also provided a numerical example to show an efficiency of

Galerkin method using constructed basis.

3.5 On a Sparse Representation of a n-dimensional
Laplacian in Wavelet Coordinates

A general concept for solving of operator equations by means of wavelets was proposed
by A. Cohen, W. Dahmen and R. DeVore in [19, 20]. It consists of the following steps:
transformation of the variational formulation into the well-conditioned infinite-dimensional
problem in the space [?, finding of the convergent iteration process for the {>— problem
and finally a derivation of its computable version. The aim is to find an approximation of
the unknown solution u which should correspond to the best N-term approximation, and
the associated computational work should be proportional to the number of unknowns.
Essential components to achieve this goal are well-conditioned wavelet stiffness matrices
and an efficient approximate multiplication of quasi-sparse wavelet stiffness matrices with
vectors.

In [19], authors exploited an off-diagonal decay of entries of the wavelet stiffness matrices
and designed a numerical routine APPLY which approximates the exact matrix-vector
product with the desired tolerance € and that has linear computational complexity, up to
sorting operations. The idea of APPLY is following: To truncate A in scale by zeroing
a;; whenever §(i,5) > k (0 represents the level difference of two functions in the wavelet
expansion) and denote resulting matrix by Ay. At the same time to sort vector entries v
with respect to the size of their absolute values. One obtains vy by retaining 2* biggest
coefficients in absolute values of v and setting all other equal to zero. The maximum
value of k£ should be determined to reach a desired accuracy of approximation. Then one
computes an approximation of Av by

w:=Axvo+ Ak 1(vi — Vo) + ...+ Ag(Vk — Vi_1) (3.1)

with the aim to balance both accuracy and computational complexity at the same time.
Improvements of this scheme were proposed in [9, 28, 39]. Although the APPLY routine
has optimal computational complexity, its application is relatively time consuming and
moreover it is not easy to implement it efficiently.

In the paper “On a Sparse Representation of a n-dimensional Laplacian in Wavelet Coor-
dinates” [13], we constructed a wavelet basis based on Hermite cubic splines with respect
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to which both the mass matrix and the stiffness matrix corresponding to one dimensional
Poisson equation are sparse. This means that the number of nonzero elements in any col-
umn is bounded independently of matrix size while stiffness matrices in wavelet coordinates
are usually only quasi sparse. Then, matrix-vector multiplication can be performed exactly
with linear complexity for any second order PDEs with constant coefficients. Moreover,
the proposed basis is very well-conditioned for low decomposition levels. Small condition
numbers for low decomposition levels and a sparse structure of stiffness matrices are kept
for any second order PDEs with constant coefficients, which are well-conditioned in the
sense of (2.7), and moreover they are independent of the space dimension. Wavelets with
similar properties were already proposed in [29]. Our wavelets generate the same multires-
olution spaces as wavelets from [29] but have improved condition numbers. In comparison
with wavelets from [29], we constructed two new wavelets (the first two wavelets are the
same) and we also modified boundary scaling functions at the coarsest level as well as
wavelets at the coarsest level.

Our construction proceeded in this way. First, we constructed four wavelets in such a way
that wavelets from the space W,, ., are orthogonal to the scaling functions from the space
V,, for n > 1. This property ensures that both the mass and stiffness matrices corresponding
to the one-dimensional Laplacian have at most three wavelet blocks of nonzero elements in
any column and, consequently, the number of nonzero elements in any column is bounded
independently of matrix size. The first two wavelets have supports in [—1,1]. They are
uniquely determined by their orthogonality to cubic polynomials and by imposing that
the first one is odd and the second one is even. The other two wavelets have supports in
[—2,2]. We impose on them the above orthogonality condition again, which will be ensured
by requiring that they are orthogonal to cubic polynomials on intervals [—2,0] and [0, 2],
respectively. Again, the first of them should be odd, and the second one even. There
remains several free parameters. To obtain a more sparse stiffness matrix and a better
conditioned wavelet basis, we use these free parameters to prescribe the orthogonality of
the first derivative of constructed wavelets to the first derivative of the first two wavelets. In
the next step, we modified boundary scaling functions at the coarsest level and also wavelets
at the coarsest level to further improve condition numbers of the constructed wavelet basis
and to preserve or improve a sparse structure of the stiffness matrix corresponding to the
one-dimensional Laplacian, and a sparser structure of the mass matrix, respectively. A
span of these new functions will be the same as the span of the original functions. In [13],
we proved that the constructed basis is a Riesz basis and computed condition numbers for
model problems and compared them with condition numbers for a similar wavelet basis
proposed in [29].
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Abstract: In 1989, R. Coifman suggested the design of orthonormal wavelet systems with
vanishing moments for both the scaling and the wavelet functions. They were first constructed
by I. Daubechies [16, 15] and she named them coiflets. In this paper, we propose a system
of necessary conditions which is redundant free and more simple than the known system due
to elimination of some quadratic conditions, thus a construction of coiflets is simplified and
enables us to find the exact values of the scaling coeflicients of coiflets up to length 8 and two
further with length 12. Furthermore for scaling coefficients of coiflets up to length 14 we obtain
two quadratic equations, which can be transformed to polynomial of degree 4 and there is an
algebraic formula to solve them.
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1 Introduction

Approximation properties of multiresolution analysis and the smoothness of wavelet and
the scaling function depend on the number of vanishing wavelet moments. In [14]
Daubechies constructed orthonormal wavelets with arbitrary number N of vanishing
wavelet moments and the minimal length of support 2N — 1. The filter coefficients
were computed there by an analytical method and exact values could be found only for
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filters up to length 6. In [26] Shann and Yen calculated the exact values of filter coef-
ficients of Daubechies wavelets of length 8 and 10. Other approaches for constructing
Daubechies wavelets which enables to find exact values of some coefficients can be found
in [9, 10, 23, 24].

In addition to the orthogonality, compact support and vanishing wavelet moments,
Coifman has suggested that also requiring vanishing scaling moments has some advan-
tages. In practical applications these wavelets are useful due to their 'nearly linear phase’
and ’almost interpolating property’, see [22]. Daubechies created coiflets by setting an
equal number N of vanishing wavelet moments and vanishing scaling moments for even
N and the length of support 3N, see [16, 15]. It was noticed in [4] that these coiflets has
one additional vanishing scaling moment than is imposed. Tian constructed coiflets with
N vanishing moments for odd N and the length of support 3N — 1 in [27, 29]. Burrus
and Odegard constructed coiflets with N vanishing moments for odd N and the length
of support 3N + 1 which has two additional vanishing scaling moments, see [7]. In this
paper the computation of exact values of filter coefficients of coiflets up to filter length
14 is presented.

There exist a number of coiflet filter design methods, such as Newton’s method [16, 25]
or iterative numerical optimization [7]. These methods enable to derive one particular
solution for each system and the convergence and the obtained solution depends on the
initial starting point, thus it is difficult to find all possible solutions. Moreover, the
coefficients for length greater than 16 are given with less precision due to the roundoff
error [15]. As an alternative one can use Grobner basis method [1, 6, 21]. This method
is geared toward solving a polynomial system of equations with finite solutions. The idea
consists of finding a new set of equations equivalent to the original set, which can be
solved more easily. The advantage of such an approach is that solutions can be computed
to arbitrary precision and that in some cases it gives all possible solutions for a given
system of polynomial equations. In this paper we derive a redundant free and simplified
system of equations and then aplly Grobner basis method. By this approach we are able
to find some exact values of filter coefficients and to find all possible solutions for filters
up to length 20.

2 Preliminaries

The scaling function ¢, which generates a coiflet, is constructed as the solution of scaling
equation

=2 hpp(2- —Fk), (1)

keZ

where scaling coefficients {h} are determined so that the corresponding scaling functions
and wavelets have required properties.
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Definition 2.1. An orthonormal wavelet 1 with compact support is called a coiflet of
order N, if the following conditions are satisfied:

z)/ ") (x)de =0 for n=0,...N —1,

zz)/ "¢ (x)dr =46, for n=0,...N —1,

where ¢ is scaling function corresponding to ¢ and d,, is Kronecker delta, i.e. o = 1 and
0n = 0 for n # 0.

Since also a length of support plays a role, it is common to consider a wavelet satisfying
i) and 4i) which has the minimal length of support. The existence of coiflet for an arbitrary
order N is still an open question. We rewrite this definition in terms of filter coefficients
{ht}. Tt is known that for orthonormal wavelet with compact support a number of filter
coefficients is even number, we denote it by 2M.

Lemma 2.2. Let {hk};iviNl be the real coefficients, Ny = N;+2M —1. If the orthonormal
wavelet corresponding to the scaling function ¢(-) = 2 S0 N, e #(2 - —k) is a coiflet of

order N, then the following three conditions are satisfied:
NQ—Nl—Qm
Z) 5m =2 Z hN1+th1+2m+j for 0 S m S M — 1,

J=0

N3

it) > hpk" =6, for 0<n<N-1,
k=N,
N2

iii) Yy (1) k" =0 for 0<n<N-1.
k=N,

Condition i) is necessary but not sufficient for wavelet to be orthonormal. Conditions
i1) and 4i7) are equivalent to vanishing wavelet and vanishing scaling function moments,
respectively. In summary, conditions in Lemma 2.2 are only necessary. It is known
that they are not sufficient to generate a coiflet system. There exist functions given
by (1) with filter coefficients satisfying i) — 4i7) from Lemma 2.2 which are very rough.
Hence after finding coefficients satisfying i) — i7i) orthonormality should be verified, for
example using Cohen [11] or Lawton [20] condition. There are typically more than one
wavelet satisfying these conditions and some of them, despite zero wavelet moments, are
very rough. Likewise, in spite of zero scaling function moments, some are not at all
symmetric. In practical applications the most regular wavelet or the wavelet with the
most symetrical scaling function is typically chosen.

3 Construction

It is well known that coiflets have more vanishing scaling moments than required in
above definition. This was first noted by G. Beylkin at al. in [4]. In this paper, we derive
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redundant free and simpler definition of coiflets. The key component of our approach is

formed by the following Theorem:

Theorem 3.1. Let Ny = N; +2M — 1 then
No—2m

5m:22hjhj+2m for OSWSM—I

Jj=MN1

is equivalent to

2n
1 2n )
5 5n = E ( . >(—1)Z(aia2n_i + binn—i) for 0 <n< M — 1,

where

=
L
g
—

a; = Z (Nl + Qk)ith+2k and
k=0

S
S
I
bl
I

0
Proof. Since the condition (2) is equivalent to condition

m (W) [* + m (w+m) [ =1,
where

Na
m(w) = Z hye” ™

k=N

we can repeat the proof of Theorem 3.1 in [19] with some obvious changes.

(Nl —|— Qk —|— 1)ith+2k+1.

d

Due to Theorem 3.1 we are now able to impose necessary conditions on filter coeffi-

cients to generate a coiflet which are equivalent to conditions from Lemma 2.2 and the

arising system is without redundant conditions.

Corollary 3.2. Let {hk}kNiNl be the real coefficients, Ny = Ny + 2M — 1 and let a; and
b; be defined by (4). Then conditions i) — #i) from Lemma 2.2 are equivalent to the

following conditions:

2n
2 )
Z*) 0= Z < n> (—1)’(aia2n,i + bibgn,i) for N S n S M — 1,

1=0

~

—_

Z’L*) aozb():i,
itix) a, =b,=0 for 1<n<N-1,

Wx) Gop +bg, =0 for N <2n < 2N —2.
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Proof. It is clear that 7i) and iii) are equivalent to iix) and 7iix). The rest follows from
Theorem 3.1. a

The consequence of this Corollary is that the minimal length of support of coiflet
of order N is 3N for even N and 3N — 1 for odd N and that some coiflets have more
vanishing moments than is imposed. Thus, we have three classes of coiflets, see Table 1.

Table 1 The length of filter 2M, the number of vanishing scaling and wavelet moments for
coiflet of order N

N 2M | number of vanishing | number of vanishing
scaling moments wavelet moments
set actual set actual
even | 3N N N+1 N N
odd | 3N-1 N N N N
odd | 3N+1 | N+1 N-+2 N N

Now we further simplify the system by replacing some quadratic conditions by linear

ones.

Lemma 3.3. Let a;, b; be defined by (4). Then a; for i > M is linear combination of
ag, . .. ap—1 and b; for ¢ > M is linear combination of by, ... by—1.

Proof. Coefficients hn,, by, t2, .. . hn,+20—2 are solution of the system of linear algebraic
equations (4). Since the matrix of this system is regular, the solution exists and is unique.
a; is a linear combination of hn,, hn, 2, ... An,1onm—2 and thus a; for « > M is a linear
combination of a; for 0 <¢ < M — 1:

a; = CipQp + C;1Q1 + ... Cipr—1Ap—1,

where the coefficients of this linear combinations are given by

1 Ny N? . NM Cio Ni

1 N +2 (N +2)2 ... (N +2)M! ci (Ny +2)

1N, +2M -2 (N1+2M—2)2 <N1+2M—2)M71 CiM—1 (N1+2M—2)2
The situation for b; is similar. O

Now we summarize the procedure of construction which enables us to find exact values
of coefficients of coiflets up to length of support 14:
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1. For given N take the system of algebraic equations given by Corollary 3.2.

2. Replace ayy, ... asp—o by linear combinations of ag,...ap—1 and by, ...baps—o by
linear combinations of by, ...by_1.

3. Solve the arising system for ag,...ap—1,b0,...b37_1. For greater N use Grobner
basis method to simplify the system.

4. Compute filter coefficients hy,,...,hy, by solving the system of linear algebraic
equations (4).

4 Examples

At last we provide two examples to illustrate our approach based on Corollary 3.2.
Example 4.1. For N =4 and N; = —5, the following system will be obtained
1
CLOZbQ:§ and a1:a2:a3:b1:b2:63:0,

a4+b4:0 and a6+66:0, (6)
ag +bg + 14065 =0 and ajg + big + 840 by bg — 252(az + b2) = 0. (7)

Now ag, ag, aig, bg, bg, big are linear combinations of ag...as, by...bs. We find
these linear combinations and substitute them to (6) and (7). Then after simplification
we obtain system

—135+12b, + 802 =0, ay+ by =0,

75 — 10by + 4bs = 0, 32a2 + 12300b, — 28575 = 0.

In this case we can easily find both real solutions in closed form. See Table 2 and Table 3.

Example 4.2. For N =5 and N; = —5, the following system will be obtained
1
a0:b0:§ and a1:a2za3:a4:b1:b2:b3:b4:0,
aﬁ—i—bG:O and a8+b8:0, (8)

ar0+b1o—252(a+b3) =0 and ajo+bio— 1584 bs by — 1584 a5 az+924(az +b2) = 0. (9)

Now ay, ag, aig, a2, bg, bg, big, bia are linear combinations of ag...ag, b ... bs.
We find these linear combinations and substitute them to (8) and (9). Consequently we
simplify arising system and finally we compute its Grobner bases. The following system
is obtained:

11419648 bs + 246374400 b2 — 13765248000 b2 — 497539800000 by — 4303042734375 = 0,

298890000 a5 — 5709824 b2 + 3945600 b2 + 6931764000 bs + 94943559375 = 0,
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8ag + 64 b5 + 525 =0, —525 — 6405 + 8bs = 0.

Then by using an algebraic formula for the solution of polynomials of degree 4 we obtain
two different real roots:
15 (V156 — 4010u'/50'/* £ /15y/w)

b =
> 1115201/61/4 ’

where

u = 4854802096 + 369 v/15 v/66685436843043, v = 8475076 u'/3 + 697 u/3 — 3366028373,

w = 16950152 u/3 /v — 697 /o u?? + 3366028373 /v + 13383342756 v/15 \/u.

Once we have the values of b5, we simply find as, ag, and bg. And finally we transform
coefficients a; and b; to scaling coefficients h;.

5 Properties of coiflets

Let us now mention the properties of constructed wavelets. It is well-known that the
approximation properties depend on the number of vanishing wavelet moments. More
precisely, let P;f be an approximation of f € L* (R) on level j, i.e.

Pif =) {f.0ix) b (10)
keZ
and for J < j, it holds
j—1
Pif =Y {f,0ui) ban+ DD (f ) ik, (11)
keZ I=J keZ

where ¢ = 21/2¢ (21 . —k’), Y = 2L/24), (21 . —k:) for I,k € Z. Let us further denote
1), = supp ik, Jik = supp Y. Wavelet coeflicients satisfy

o) = [ (@) 2% (2 — ) da. (12)

k
and if f € C™(J;x), then expanding f about 5 by Taylor’s formula, it follows that for
all z € Jl,k,

E\ (K k fFO=D (L) ENYTN () N
(13)
where £ depends on x and belongs to the interval J;;. If ¢ has N vanishing moments,

i.e. condition 7) in Definition 2.1 is satisfied, then the first N terms don’t contribute and

oo N
(i) = ‘/ W (m — ;) 2% (2w — k) da| < C2T'NHR) 0 (14)

N
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where

e |
0 =" JN},f ) ™ ¢ (y) dy. (15)
: Jik

Thus, for [ large, the wavelet coefficients are small except these which are near singularities

of the function f or its derivatives. Small coefficients can be set to zero and the function
f can be represented by a small number of coefficients. This compression property of
wavelets has many applications. Most important are data compression, signal analysis
and efficient adaptive schemes for PDE’s. Note that more vanishing wavelet moments
implies a faster decay of wavelet coefficients and that only local smoothness of the function
f is involved in the above estimate. It was observed in [2] that also regularity of the scaling
function plays a role. We confirmed in our experiments that this is true for coiflets as
well. As an example, let us consider

f(x):x5 if 0<z<0.5,
=(1—-2) if 05<z<1,
=0 otherwise,

and its n-term approximation

fo@) = > (fio)eat D (frn) v, (16)

A=(L,k)EAD A=(Lk)EAT,

where A} C{\ = (J, k), k€ Z}, A} C{A=(Lk),J <I<jkeZ}and AjUA} is the
set of indexes of the n largest coefficients. In our case, the coarsest level is J = 3, the
finest level is 7 = 9 and the number of preserved coefficients is n = 50. The function
f has sharp derivative near the point z = 0.5 and the approximation is automatically
refined near this point. Errors of approximation for some of the constructed coiflets are
shown in Table 2. We can see that the most regular coiflet of prescribed order gives the
best result.

The significance of vanishing scaling moments highly depends on the type of appli-
cation. In [16], it is proved that all real orthonormal wavelets with compact support
are asymmetric. However, vanishing scaling moments result in ’almost symmetry’ of the
scaling function and filter. In image coding, more symmetry would result in greater com-
pressibility for the same perceptual error and it makes easier to deal with the boundaries
of the image. Vanishing scaling moments also causes 'nearly linear phase’, which is a de-
sired quality in many applications, e.g. transmission of audio and video signals, because
it doesn’t cause phase distortion. In numerical analysis, vanishing scaling moments are
important due to their ’almost interpolating property’. It means that any f € C}(R)

fi=272%f <2k]) Djk (17)

keZ

can be approximated by

and if the number of vanishing scaling and wavelet moments is IV then this approximation
satisfies the following estimate

If = fill < c277%, (18)
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where C' depends only on f and the scaling function ¢, see [28]. Due to this property,
some types of operators can be treated efficiently. Thus coiflets have some interesting
properties and for some applications are more suitable than orthonormal wavelets with
vanishing wavelet moments only. The price to pay is of course the length of support, which
can make the computation more expensive. We should also mention that we can obtain
symmetric wavelets by giving up orthonormality. Symmetric biorthogonal wavelets were
constructed in [12], and construction of biorthogonal coiflets can be found in [28, 29].
However, there are applications where orthogonality plays a role and the disadvantage of
biorthogonal wavelets is their bad stability when adapted to the interval, see [5, 13].

In literature, one can find coiflets which are the most symmetrical among all coiflets
of given order and given length of support, see [7, 15, 16, 27, 29]. As we could see above,
these coiflets needn’t be the best and other solutions of equations given in Corollarry 3.2
may be better suited for some type of applications. Typically the most regular coiflet
for given order N has the best compression property and due to almost interpolating
property and ability to generate a stable wavelet basis on bounded domain it seems to
be very well suited for some applications, e.g. numerical solution of PDE’s.

Table 2 Error of approximation of the function f by 50 coefficients for coiflets of order N, length
of support 2M and Sobolev exponent of smoothness «

N | 2M « L™ of error | L? norm of error | H' seminorm of error
x1076 x1077 x1074

1] 4 |0.604 743 1986 1358

1] 4 |0.050 2800 7332 5642

21 6 |0.041 402 978 706

2| 6 |1.232 44 116 46

21 6 |0.590 184 469 234

21 6 |1.022 83 200 87

3| 8 |0.147 103 225 137

3| 8 | L.775 2 6 1

3| 8 | 1422 20 31 13

31 8 10.936 44 97 33

31 8 | 1464 15 33 10

3| 8 | 1.773 3 5 1
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6 Conclusion

The arising system from the Corollary 3.2 is redundant-free, more simple (due to elimi-
nation of some quadratic conditions) and enables to find directly the exact values of the
scaling coefficients of coiflets up to length 8 and two further with length 12 in closed form.
The results are given in Table 3, Table 4 and Table 5. We verified orthonormality by Law-
ton criterion, all the results correspond to orthonormal scaling function. As mentioned
earlier, the solutions are not of the same quality, because also smoothness and symmetry
plays a role. For this reason the most symmetrical scaling function among all scaling
functions of order N is denoted in Tables and the Sobolev exponents of smoothness are
computed by method from [17, 31]. Furthermore for remaining coiflets up to length 14 we
obtain two quadratic equations of two variables, which can be transformed to polynomial
of degree 4 and there is an algebraic formula to find solutions in closed form. These
solutions we do not provide because of their length and complicated structure. Moreover,
one can use our approach to find all possible solutions to given system up to the length of
filter 20. For longer filters the computation failed, because the coefficients of polynomials
in Grobner basis were too large numbers.
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Table 3 Scaling coefficients of coiflets of order N, length of filter 2M and Sobolev exponent a

n hy, n hy,
_ _ 1 T+V7
N=12M=21]0 5 1 Jgﬁ
Haar wavelet 1 % 2 lﬁgﬁ
_ _ 3 V3 —3—V7
N=12M=4|-1 S % 3 5
a=0604 |0 |34+ | N=22M=6 |-2 17
1|1+ a=1022 |-1 547
2 é — g most symmetrical | 0 7J§%ﬁ
_ _ 3, V3 -7
N=12M=4|-1 st% 1 o
— 3 _ V3 1-V7
1_ /3 —3+V7
1) g—% 3 5
1, V3 _ _ 15 | 31495
2| 5+% N=32M=8 |-l 64 T “To64
N=22M=6|-1| %415 a = 0.147 0| £ — VoS
_ 13—/15 15 91495
a = 0.041 0 ) 1 51— et
3—V15 15 311495
1 16 2 128 + 832
3+/15 5 911495
2 +16 3 64 + 1664
3 1+v15 4 | 15 _ 31495
32 128 832
4 —3—/15 5 -3 _ 311495
32 64 1664
_ _ 9—/15 5 /1495
N=22M=6|-1 35 6 195 T ‘555
_ 13415 _ _ 15 311495
a=1.232 0 22 N=32M-=8 -1 51— Siea
1| 3415 a = 1775 0| 5%+ %
3—15 15 911495
2 16 1 64 + 1664
3 1-v15 2 15 3/1495
32 128 832
4 —34+V15 3 5 94/1495
32 64 1664
_ _ 147 15 31495
N=22M=6|-2 ’S—Q 4 —198s T T332
_ 5—V7 3 3/1495
o = 0590 -1 T30 5 ~ 64 + 1664
0| =4 6 5 /1495
16 128 832
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Table 4 Scaling coefficients of coiflets of order IV, length of filter 2M and Sobolev exponent «
_ _ 21 331 _ _ _1 VT

N =3,2M = 2| &6 350 N=32M=8 |-3 35 198
_ 51, 3v31 _ _ _ 3
a=1.422 -1 355 00 a=1.773 2 o8
257 | 9v31 ; 9 4 37
0 | &5+ 555 | most symmetrical | -1 35 T o8
1 | 47 _ 9v31 0 73
320 640 128
o | 63 _ 9v31 1 9 37
640 320 32~ 128
—47 | 9V31 9
3| 30 640 2 128
—21 | 3v/31 1 4 V7
4 B0 T 7320 3 37 T 128
9 _ 3v31 3
5 | 33 ~ odo 4 128
_ _ 21 33l _ _ 7 VBT \/336482V31
N =3,2M = -2 640 T 320 N=42M=12 | -5 1021 T 1024 2048
— 51 3V31 _ ) 7 _ 3V31
a = 0.936 -1 35 0 a=1.707 4 T
0 | 257 _ 9v31 3| 58 svaET 54/336+82v/31
640 320 1024 ~ 1024 2048
1 | 47 9v31 ) 39 1131
320 640 2048 2048
9 | 63 9v/31 1 151 |, /31 _ 54/336482V31
640 320 512 " 512 1024
3 | =47 _ 931 0 555 731
320 640 1024 ~ 1024
4| =2 _ 33l 1| 1L 4 VBT | 5V336482V31
640 320 512 T 512 1024
9 . 381 47 3v31
5 | 335 1 610 2 1024 T 1024
— — _1 7 53 3v/31 _ 51/336+82V31
N =3,2M = -3 33 1 128 3 1024 1024 1024
_ 3 51 V31
o = 1.464 -2 128 4 3048 T 2048
1 9 37 5 7 + V31 4 \/ 336+82/31
32 7 128 1024 ' 1024 1024
73 11 V31
0 128 6 72048 2048
9 3V7
L s+ s
9
2 28
1 VT
3 —33 13
4 3
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Table 5 Scaling coefficients of coiflets of order IV, length of filter 2M and Sobolev exponent «

n h,,
o o 7 V31 336+82v/31
N = 4’ 2M =12 -5 1024 + 1024 + 2048
_ 7 3V31
a=2174 -4 2048 2048
3| = 53 _ 3+/31 _ 5V 336+82V31
1024 1024 2048
9 39 11v/31
2048 2048
151 4 /31 | 51/336482V31
-1 512 + 512 + 1024
0 555 _ 7v/31
1024 1024
1| 18 4 VBT _ 5V/336+82v31
512 512 1024
92 v 3v31
1024 1024
3 | —-53 _ 33l + 54/336+82v/31
1024 1024 1024
4 51 V31
2048 2048
5 7 + V31l 336+82v31
1024 1024 1024
6 _ 11 /31
2048 2048
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1 Introduction

Wavelets are by now a widely accepted tool in signal and inpageessing as well as in numerical simulation. In
the field of numerical analysis, methods based on waveletsuacessfully used especially for preconditioning of
large systems arising from discretization of elliptic partlifferential equations, sparse representations ofesom
types of operators and adaptive solving of operator equstidbhe quantitative performance of such methods
strongly depends on the choice of the wavelet basis, inquéati on its condition number.

Wavelet bases on a bounded domain are usually constructed following way: Wavelets on the real line
are adapted to the interval and then by tensor product tqelrid then-dimensional cube. Finally by splitting
the domain into subdomains which are imageg0of)" under appropriate parametric mappings one can obtain
wavelet bases on a fairly general domain. Thus, the preseofithe employed wavelet basis on the interval are
crucial for the properties of the resulting bases on gertenatlain.
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Biorthogonal spline-wavelet bases on the unit intervalen@nstructed in [16]. The disadvantage of them
is their bad condition which causes problems in practicaliegtions. Some modifications which lead to better
conditioned bases were proposed in [2], [17], [24], and [3Ble recent construction by M. Primbs, see [12],
[24], or [25], seems to outperform the previous construngtiwith respect to the Riesz bounds as well as spectral
properties of the corresponding stiffness matrices in tee f linear and quadratic spline-wavelets. In this
paper, we focus on cubic spline wavelets and we construetvialt spline-wavelet bases with the condition
number which is close to the condition number of the splineel&t bases on the real line. It is known that the
condition number of the wavelet basis on the real line is tgssqual to the condition number of the interval
wavelet basis, where the inner functions are restrictidissaling functions and wavelets on the real line.

First of all, we summarize the desired properties:

— Riesz basis propertfhe functions form a Riesz basis of the spaé¢[0, 1]).

— Locality. The basis functions are local. Then the corresponding dposition and reconstruction algorithms
are simple and fast.

— Biorthogonality.The primal and dual wavelet bases form a biorthogonal pair.

— Polymial exactnes3.he primal MRA has polynomial exactness of ortleand the dual MRA has polynomial
exactness of orddy. As in [9], N+ N has to be even arfd > N.

— SmoothnessThe smoothness of primal and dual wavelet bases is anotseederoperty. It ensures the
validity of norm equivalences, for details see below.

— Closed formThe primal scaling functions and wavelets are known in tbeed form. It is desirable property
for the fast computation of integrals involving primal soglfunctions and wavelets.

— Well-conditioned base®ur objective is to construct wavelet bases with improveabidion number, espe-
cially for larger values oN andN.

From the viewpoint of numerical stability, ideal waveletba are orthogonal wavelet bases. However, they
are usually avoided in numerical treatment of partial défeial and integral equations, because they are not
accessible analytically, the complementary boundary itiend can not be satisfied and it is not possible to in-
crease the number of vanishing wavelet moments indepefrdemthe order of accuracy. Moreover, sufficiently
smooth orthogonal wavelets typically have a large support.

Biorthogonal wavelet bases on the unit interval derivedhf-splines were constructed also in [8] and [19]
and they were adapted to homogeneous Dirichlet boundaxitomms in [20]. These bases are well-conditioned,
but have globally supported dual basis functions. Anotleaistruction of spline-wavelets was proposed in [4],
but the corresponding dual bases are unknown so far. Wedsh{sd mention the construction of spline multi-
wavelets [15], [22], and [28], though the dual wavelets hal@wv Sobolev regularity.

The paper is organized as follows. Section 2 provides a $fimoduction to the concept of wavelet bases.
Section 3 is concerned with the construction of primal mestblution analysis on the interval. The primal scaling
functions are B-splines defined on the Schoenberg sequékoets, which have been used also in [4], [8], and
[24]. In Section 4 we construct dual multiresolution anay¥here are two types of boundary scaling functions.
The functions of the first type are defined in order to presémeefull degree of polynomial exactness as in
[1] and [10]. The construction of the scaling functions o ttecond type is a delicate task, because the low
condition number and nestedness of the multiresolutiomesphave to be preserved. Section 5 is concerned
with the computation of refinement matrices. In Section 6elets are constructed by the method of stable
completion proposed in [18]. The construction of initiadlse completion is along the lines of [16]. In Section
7 we show that the constructed set of functions is indeed azRiasis for the spade? ([0,1]) and for the
Sobolev spacéi®(]0,1]) for a certain range a$. In Section 8 we adapt the primal bases to the homogeneous
Dirichlet boundary conditions of the first order and the doades to the complementary boundary conditions.
Quantitative properties of the constructed bases are mezbén Section 9. Finally, in Section 10, we compare
the efficiency of adaptive wavelet scheme for several spliagelet bases and we show the superiority of our
construction. Numerical examples are presented for omemional and two-dimensional Poisson equations
where the solution has steep gradients.



2 Wavelet bases

This section provides a short introduction to the conceptanfelet bases. Let us introduce some notation. We use
N, Z, Q, andR to denote the set of positive integers, integers, rationallers, and real numbers, respectively.
LetNj, denote the set of integers which are greater than or eqyal to

We consider the domai® ¢ RY and the spack? (Q) with inner product(-,-) and induced norni-||. Let
7 be some index set and let each index _# take the formA = (j,k), where|A| = | € Z is scaleor level
Let12(_#) be a space of all sequendes: {b, }ae s such that

bl ) = ( >3 bA|2> <o, @)

Ac g
Definition 1. A family ¥ :={y, € 7} C L2(Q) is called awavelet basi®f L?(Q), if

i) Wis aRiesz basigor L?(Q), it means that the linear span @fis dense in.2 (Q) and there exist constants
¢,C € (0,) such that

clblly s <[ S batha| <Clbll, ) foral b={b},. , €*(.7). ()

A S

Constantsy := sup{c: ¢ satisfies(2) }, Cy :=inf {C : C satisfieg2)} are callecRiesz boundandcond¥ =
Cy/cy is called thecondition numbeof ¥.
ii) The functions aréocal in the sense that

diam(Q,) <c2 forall Ae g, ®3)

whereQ, is the support ofy,, and at a given levej the supports of only finitely many wavelets overlap in
any pointx € Q.

By the Riesz representation theorem, there exists a unmn'wr@ = {lll)\ A€ j} C L?(Q) biorthogonal

toW, i.e.
(Y Wjy) =8jdq, forall (ke 7, (j,))e 7. (4)

Here,4 ; denotes the Kronecker delta, id; := 1, § j := 0 fori # j. This family is also a Riesz basis fof (Q).
The basid¥ is calledprimal wavelet basisY is calleddual wavelet basis.

In many cases, the wavelet systéfris constructed with the aid of a multiresolution analysis.
Definition 2. A sequenc&= {S;}
multiscale analysisf

jeN; of closed linear subspac& C L?(Q) is called amultiresolutionor
0

Sip C Sjp+1C...CS CSy1C...L.2(Q) and <Uj€NjOSj> =L2(Q). (5)
The nestedness of the multiresolution analysis impliegxigtence of theomplement spaces;\Wuch that

where& denotes the direct product.
We now assume th&; andW are spanned by sets of basis functions

@ = {pke s}, Wi={yke 7}, ™

where.#j, #; are finite or at most countable index sets. We refes joasscaling functionsindy; x aswavelets

The multiscale basis is given by
jots—1

Yos = PjU U ¥ (8)

i=lo



and the overall wavelet basis bf (Q) is obtained by
Y =o,UJ ¥ 9)
i=io
The single-scale and the multiscale bases are interredgtétbwavelet transfornT j s : 12 (1j4s) — 12 (Ij4s),
LI"]ﬁ,s = Tj,sq)j+3v (10)
The dual wavelet systefl generates a dual multiresolution analySisith a dual scaling basi®.

Polynomial exactnessf orderN € N for the primal scaling basis and of ordire N for the dual scaling
basis is another desired property of wavelet bases. It nteahs

M-1(Q)CSj, My (2)CS, >, (11)

wherelln (Q) is the space of all algebraic polynomials @nof degree at most.

3 Primal Scaling Basis

The primal scaling bases will be the same as bases designétyand Quak in [8], because they are known
to be well-conditioned. A big advantage of this approachda it readily adapts to the bounded interval by
introducing multiple knots at the endpoints. Iébe the desired order of polynomial exactness of primal sgali

) i\ 2+N-1
basis and let! = (td)k Nt be aSchoenberg sequence of kndedined by
+

=0,  k=-N+1,...,0, (12)
] . _ ) _
=5 k=1...2-1

=1 k=2, 204+N-1
The corresponding-splines of order Nare defined by

Bl 00 = (than— 1) [th o] €=00", xe(0,), (13)
where(x), := max{0,x}. The symbol[ty,...tx.n] f is theN-th divided difference off which is recursively
defined as
et £ = [t steonca]

N — tk

[tk7~~-7tk+N] f= ti 7 tiens

fN) (¢t .
= N!(k) it t =t

with [ty] f = f (t). _
The set®; = { @, k= —N+1,...,2) — 1} of primal scaling functions is then simply defined by

=278, k=-N+1,..2 -1 j>o. (14)
15 k,N

Thus there arei2- N+ 1 inner scaling functions ard— 1 functions at each boundary. Figure 1 shows the primal
scaling functions foN = 4 andj = 3. Inner scaling functions are translations and dilatiohere functiong
which corresponds to the primal scaling function conseddty Cohen, Daubechies, Feauveau in [9]. In the
following, we considerp from [9] which is shifted so that its support[i N].

We define the primal multiresolution spaces by

Sj = span®;. (15)

Lemma 3. Under the above assumptions, the following holds:
i) For any jo € N the sequence” = {S; }j>j0 forms a multiresolution analysis of([0, 1)).
ii) The spaces Sare exact of order N, i.e.

My-1 ([Oa 1}) c SJa J >1 (16)
The proof can be found in [8], [24], [29].
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Fig. 1 Primal scaling functions foN = 4 andj = 3 without boundary conditions.

4 Dual Scaling Basis

The desired property of dual scaling badiss the biorthogonality tap and the polynomial exactness of order
N. Let @ be the dual scaling function which was designed by CohenbBehies, and Feauveau in [9] and which
is shifted so that @, @) = 0, i.e. its support i§—N +1,N+N — 1]. In this caseN > N andN + N has to be an
even number. Itis known that there exist sequerdte}, ., and{hy}kez such that the functiong andg satisfy
therefinement equations
P =3 ho(2x=K), @) =3 hp(2x-k), xeR. a7
KeZ keZ

The parameters, andhy are calledscaling coefficientsBy biorthogonality ofp and @, we have
2 Ezhzmkﬁk =dm MmMeZ (18)
Ke

Note that only coefficientso, ...,hn andh_g , ..,y g_1 may be nonzero.
In the sequel, we assume that
j > jo:= [log, (N+2N—3)] (19)
so that the supports of the boundary functions are contamg1]. We define inner scaling functions as trans-
lations and dilations of:

Bik=2"2p(2)-—k), k=N-1,....,2) =N-N+1. (20)

There will be two types of basis functions at each boundarthé following, it will be convenient to abbre-
viate the boundary and inner index sets by

It = {-N+1,....-N+R}, (21)
I = {-N+N+1,... . N-2}, (22)
S ={N-1,... 2 -N-N+1}, (23)
2= {2 -N-N+2.. 2 -RN-1}, (24)
s ={2-N,... 2 -1}, (25)
and
gh=st 0= {-N+1,. N-2), (26)
IR = ﬂjR’Zuij’lz{217N7N+2,...,2j71}, (27)

S = %L,luij,zujjouijzU]jR,l:{7N+1’m’2j,1}. (28)



Basis functions of the first type are defined to preserve mohial exactness by the same way as in [1], [10]

. N-2 .
6 = 2//? > o (Pan-1.@(=D) @2~y ke f,—"’17 (29)
|=—N—N+2

where{po,...,py_1} is a basis ofTg_; ([0,1]). In Lemma 6 we show that the resulting dual scaling func-
tions do not depend on the choice of the polynomial basisuircase py are the Bernstein polynomials defined

by

P (X) := b~ N2 (N )

The Bernstein polynomials were used also in [16]. On thereoyto [16], in our case the choice of polynomials
does not affect the resulting dual scaling baBisbut it has only the effect of stabilization of the compudati
for details see Lemma 6 and the discussion below.

The definition of basis functions of the second type is a d#ditask, because the low condition number
and the nestedness of the multiresolution spaces have teberped. This means that the relat@i C V; C
\7j+1, ke JJ-L*Z, should hold. Therefore we defirég , k € ij‘z, as linear combinations of functions which
are already ir\7,-+1. To obtain well-conditioned bases, we define functiég, k € JJ-L’Z, which are close to

qb}l?k = 21/2(2)(21 .—k), becausari)}l?k, ke JJ-L’z, are biorthogonal to the inner primal scaling functions &mel

)xk(b—x)’("l’k, k=0,...,.N-1, xeR. (30)

condition of{(ﬁﬁ(, ke ﬂjL’z U ﬂjo is the same as the condition of the set of inner dual basigiturs:
For this reason, we define the basis functions of the secqeddy
N+N-1

Bu=2t 3 WG 2k-1)|oy, kes 2 31)
|=N—1-2k

wherefy; are the scaling coefficients corresponding to the scalimgtfan ¢. Then Bk is close tO(;?ﬁ(\[o,l],
because by (17) we have

B CON#N-1
Filoy =22y RO —2k-1)|oy, ke (32)
k=—N-+1

Figure 2 shows the functior} x and¢fi for N = 4,N =6, andj = 4.
The boundary functions at the right boundary are defined &yhenetric with the left boundary functions:

Oik="6j2i(1-), kesf (33)
It is easy to see that
Oj 11k =226 (2), ke.gf (34)
for left boundary functions and
O 1k (1—) =220, (1-2), ke ] (35)

for right boundary functions.
Since the se®; := {6; .k € .#} } is not biorthogonal tap;, we derive a new set

@ = {Q ke 7} (36)

from ©; by biorthogonalization. Let
Qi = (@ 051))1c.sy - (37)

Then viewing®; and©; as column vectors we define

@j = QFT@]', (38)
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Fig. 2 The functionsf, andyy for N =4 andN = 6.

assuming tha®; is invertible, which is the case of all choicesifindN considered in our numerical examples
below.
Then®; is biorthogonal toP;j, because

(@1, ®)) = (0;,Q,70)) =QiQj* =145, (39)

where the symbol # denotes the cardinality of the setlgrdenotes the identity matrix of the simex m.

Lemma 4. i) Let @j, O be defined as above. Then the matrices
QiL = (@ 8i1))iesr and Qir=((01k:6i1))y e (40)
are independent of |, i.e. there are matrid@g, Qr such that

QjL=0QL, Qjr=0Qr. (41)

Moreover, the matriXQg results from the matriQ_ by reversing the ordering of rows and columns, which means
that

(Qr)k) = (QL)2i_n_k2in» KleIR (42)

i) The following holds:
Q) =0, ke, 1esl (43)

iif) The following holds:
Qi) =0, ke lesfusf (44)

Proof Due to (34) and by substitution we have fot € JJ-L

(@0:010) = (27" @iouc(27). 272 6101 (270) ) = (ke B ) - (45)

ThereforeQj L = Qj,.L = QL, i.e. the matrixQ; | is independent of. Due to (35)Qj r is independent of too.
The property (42) is a direct consequence of the reflectieariance (33).



The propertyii ) follows from the biorthogonality of ¢ (- —k)},., and {(ZJ(- — l)}|ez- It also implies (44)
forke .72, 1 € 7t U7* It remains to prove (44) fok € 0, | € 72U .#*%. By the definition of dual

scaling functions of the second type (31), refinement @tati.7) for the dual scaling functiop, and (18), we
have forke .7, 1 JJ-L’Z,

N+N-1
(@4, 01) = (@ —Kk), V2 he(2-—21 —m)|joq (46)
m=R—1-2k
N N+N-1
=2 %hnqo(2~72kfn)7 z hm@(2- =21 —m) |y (47)
= m=R—1-2k
N N+R-1 N+N-1 .
=2 % z hnhmkn214m =2 _Z ol _ 2+ mhm (48)
n=0m=N—1-2k m=N-1-2k
=25 hy_zkimhm=0. (49)
By (33), the relation (44) holds also flare .70, 1 € /%%
Thus, we can write
) QL T ol
;= QJ-_T@]' = I#]jo 0= I#Jjo 9, (50)
Qr Q'

Since the matriXQ is symmetric in the sense of (42), the properties (33), @d,(35) hold forti)j_k as well.

100

50

Pa,0

05 1 0 05 1 0 05 1 [¢] 0.5 1

Fig. 3 Boundary dual scaling functions fot = 4 andN = 6 without boundary conditions.

Remark 5. It is known that the scaling functiop has typically a low Sobolev regularity for smaller values of
N. Thus the function§; x have a low Sobolev regularity for smaller valueg\bftoo. Therefore, we do not obtain
the sufficiently accurate entries of the mat€x directly by classical quadratures. Fortunately, we areeats
compute the matriQ; precisely up to the round off errors. Forek/jL’l U JJ-L’Z, I e ij"l we have

N— N-1

(O b)= Y

2
y Cl,n<(')n7§0('7m)><(p('7k)7§’b('7m)>|_2(<0,1>)7 (51)
m=—N—R+2 n=
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with g, given by(63). Sinceg is a piecewise polynomial function amglis refinable, for ke J@jL"l U ﬂjL‘z,
S JJ-"‘l we can compute the entries@f by the method from [11]. By refinement relation we easily whitae
following relations for the computation of the remainingrés of Q'

N+R-1
<(pj,k79j¢|> = _Z hm<(R),k-,(P('_2k_m)>7 k:_N+177_1> I GJ]'L‘27
m=N—1-2|
N+N-1 . .
=2 Y hacaimhm, k=0,....N-2 1 €2
m=N—1-2|

Since the submatri®r is obtained from a matriQ, by reversing the ordering of rows and columns, the matrix
Qj can be indeed computed precisely up to the round off errors.

Now we show that the resulting dual scaling badisloes not depend on the choice of polynomial basis of
the spacdTy ([0, 1]) in the formula (29).

Lemma 6. We suppose that’P= {pé,...,plﬂfl}, P2 = {p%,...,pﬁlfl} are two different bases of the space

2l-1

Mg ([0,1]) and for i= 1,2 we define the se@} = { J' k}k - by
") k=—N+
. o N-2 ) o L
eJ!sk =2/ Z~ <pL+N717(P('—|)>(P(2' : _l) ‘[O$1]7 ke UJJ -,
I=—N—RN+2
J!,k = GJ!‘ijka, ke <7jR‘17
ej,k = GJ"k7 ke %L’ZU,]J-OU,]]R’Z,
Furthermore, we define
Qij:<(Dj,@Ji>, @}:(QE)*T@L i=12, (52)

and we assume th' is nonsingular. Thed; = @2,

Proof SinceP* andP? are both bases of the spaidg ([0,1]), there exists a regular matrB_ such thatP? =
B_PL. The consequence is that
02=B;0, (53)

BL
Bj= ( I#Jjo ) ) (54)
Br

whereBg results from a matriB._ by reversing the ordering of rows and columns, which meaais th

(Br)k1 = (BL)ai_n_k2i-n-1» KlE ij"l- (55)

with

Therefore, we have

= (Q) "ef = Q) B 'Bi0f = &} (56)

Although the choice of polynomial basis does not influenegésulting dual scaling basis, it has an influence
on the stability of the computation and the precisenessefalults, because some choices of the polynomial
bases leads to the critical values of the condition nhumbehefbiorthogonalization matrix. We present the

condition numbers of the matri@_ for the monomial basi{l, x,%2,...xN-11 and Bernstein polynomials (30)
with the parameters = 4 andb = 10 in Table 4. In our numerical experiments in Section 9 weoshb = 10.

Remark 7. In the case of linear primal basis, i.e.N2, there are no boundary dual functions of the second type.
In [24] the primal scaling functions and the inner dual seajifunctions are the same as ours. The boundary
dual functions before biorthogonalizations are defineda8) (vith the same choice of polynomialg p., pg_1

as in [10]. Due to the Lemma 6, for N 2 the wavelet basis in [24] is identical to the wavelet basisstaucted

in this section.
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For the proof of Theorem 9 below and also for deriving of refieat matrices we will need the following
lemma.

Lemma 8. For the left boundary functions of the first type there exéinement coefficientspig k € ij’l,
ne. s tusd 2= {N-1,... 30 +N-5} suchthat
-N+N 3N+N-5

Ojx = MakBj4+1,n+ Z MkBj+1n, ke «ﬂjL’l~ (57)
n=—N+1 n=N-1

Proof Let 00 = {ejﬁmk € Jﬁ} ando;"" = {ejrflkoq ke yju} be defined by

. N-2 ‘ .
eﬁkonzzJ/z Z <(')'7§0('_|)>(P(2J‘_|)|[0,1]7 ke]jl"l_ (58)
|=—N—N+2
Then
L,1,mon mom T @!_41,mon
o™= MmN it ). (59)
j+1
1 mon _ on i i
where the refinement matri ™" = { K }ne,}’jL’lu,if.ke,ﬂjL‘l is given by
on_ Lok y_nnestt (60)
Kk — 72 ) — 1 < ] )
1 N2 keN—1 r L1 3
- S (N e(—a) ez kesftne s, (61)
2 q:[n—N—N+11
=0, otherwise (62)
For deriving ofMM"see [16]. It is known that the coefficients of Bernstein polyrals in a monomial basis are
given by
an= (0 (M ) (T it nz (63)
=0, otherwise (64)
Hence, the matrixC = {Q,n}fﬁ,ﬂw is an upper triangular matrix with nonzero entries on thgalieal which

implies thatC is invertible. We denot@]* = {ej‘k, ke /jL’l} and we obtain

L,1mon -1 L1
ot - cotm—coumy (G4 ) ccowm (G0) (). e
j+1 j+1

Table 1 Condition numbers of the matric€x.

N N  mon. b=4 b=10 N N  mon. b=4 b=10

2 2 6.68e+00 9.94e+00 3.16e+01 4 4  2.46e+04 6.75e+02 1.33e+0
2 4 4.66e+02 1.94e+01 9.48e+02 4 6  1.30e+07 2.94e+04  7.34e+0
2 6  140e+05 1.00e+02 4.47e+03 4 8  1.24e+10 6.24e+06 9.42e+0
2 8 1.03e+08 852e+03 5.8le+03 4 10 1.92e+13 2.26e+09 H2de+
2 10 1.48e+l1l1 1.67e+06 1.58e+03 5 5  5.34e+06 3.29e+04 1D36e+
3 3 218e+02 1.07e+02 1.00e+03 5 7  5.62e+09 6.91e+06 3.33e+0
3 5 373e+t04 1.88e+02 1.05e+04 5 9  9.39e+12 2.57e+09 3.B87e+0
3 7 1.64e+07 1.20e+04 2.26e+04 6 6  1.20e+09 3.68e+06 6.Ble+0
3 9 154e+10 2.90e+06 1.33e+04 6 8  2.97e+12 1.92e+09 1.8le+0
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Therefore, the refinement mati& = {my .} is given by

nestusdkes )t

-T
M= <c0 ?) MmencT, (66)

We define the dual multiresolution spaces by
§; := spand;. (67)

Theorem 9. Under the above assumptions, the following holds
i) The sequence” = {S; }j>].0 forms a multiresolution analysis ofL]0,1)).
i) The space§~j are exact of ordeN, i.e.

My 1 (0,1)CS, > jo (68)
Proof To provei) we have to show the nestedness of the spSge. S ¢ Sj.1. Note that
§j = span®; = span®;. (69)

Therefore, it is sufficient to prove that any function fra@ can be written as a linear combination of the
functions from@;, 1. For the left boundary functions of the first type it is a cansence of Lemma 8. By
definition (31) it holds also for the left boundary functiooisthe second type. Since the inner basis functions
are just translated and dilated scaling functiarthey obviously satisfy the refinement relation. Finallght
boundary scaling functions are derived by reflection froml#it boundary scaling functions and therefore, they
satisfy the refinement relation, too. It remains to prové tha

US§ =¥, (70)
i>io

whereM denotes the closure of the gdtin L2([0,1]). It is known [26] that for the spaces generated by inner
functions

§]-)Z:{9j7k,k€ fjo} (71)
we have _
U & =L(0,1). (72)
i=jo

Hence, (70) holds independently of the choice of boundam;ztfuns.~
To prove ii) we recall that the scaling functignis exact of ordeN, i.e.

21(r+1/2)yr Ezak‘rzi/%(zix— k), xcRae,r=0,...,N-1, (73)
Ke
where
ae = (), @(=1). (74)
It implies that forr = 0,...,N —1,x € (0,1), the following holds
) N-2 o 2i - N—Ri+1 o
2J(r+1/2)xr|<011> _ z akﬁr2’/2(p(2'x—k) \<o,1>+ z akﬁrzl/Z(p(le_k) |<o,1>
k=—N—R+2 k=N-1
2i4+N-2 o
+ z ak‘rZJ/Z(p(ZJx— k) ‘(041>~
k=21 -N—N+2

By (29), (33), and (69), we immediately have

My 1([0,1]) © span{(ﬁj,h ke fi"’luﬂjoufﬂjR’l} c§. (75)
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5 Refinement Matrices

Due to the length of support of primal scaling functions, tnement matrisM; o corresponding tep has the
following structure:

Mj,o: T Aj . (76)

MRr

whereM, Mg are blocks(2N —2) x (N —1) andAj is a (211 — N +2) x (2/ — N +2) matrix given by

1
(Aj)m’n - ﬁhmfzn, O S m— 2I’1 S N (77)
Since the matriM _ is given by
@i, —N+1 @i+1,-N+1
@i —N+2 1| Gri-Nt2
. =M L . ) (78)
@ -1 Oj+r1N-1
it could be computed by solving the system
P1=M[P,, (79)
where
®-N+1(0) @, -N+1(1) ... @-N+2(2N—3)
®-N+2(0) @ -nN+2(1) ... @-N+2(2N-3)
P = ) . (80)
®w-1(0  @-1(1) ... @-1(2N-3)
and

@, -N+1(0) @, -N1 (D) ... @ N1 (2N=3)

@, -N+2(0) @ -N12(1) ... @ -N12(2N-3)

P,= (81)

en-1(0) @n-1(D) ... @n-1(2N-3)
The solution of system (79) exists and is unique if and onyh& matrixP, is nonsingular. The proof of
nonsingularity ofP» can be found [35].
To compute the refinement matrix corresponding to the dwirgrfunctions, we need to identify first the
structure of refinement matricMs?O corresponding t®.

Mm@ ]
M= A, ) (82)

MR

“whereM? andMg are blocks(2N + 3N —5) x (N+ N — 2) andA | is a matrix of the siz¢2)*1 — N — 2N + 3) x
(21 =N —2N+3) given by

(Aj)mm:ﬁhm,zﬂ, 0<m-2n<N+N-2 (83)
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The receipt for the computation of the refinement coefficgdot the left boundary functions of the first type is
the proof of Lemma 8. The refinement coefficients for the lefifary functions of the second type are given
by definition (31). The matriM & can be computed by the similar way.

Since we have

~ T T ~
& =Q;Te=Q;" (M f{o) 01 =Q;” <M ﬁ()) QL1®j.1, (84)
the refinement matri j,0 corresponding to the dual scaling baépis given by
Mjo=QjM$Q; ™. (85)

0 10 20 30 0 10 20
nz =181 nz = 584

Fig. 4 Nonzero pattern of the matricéss o andMs g for N = 4 andN = 6, nzis the number of nonzero entries.

6 Wavelets

Our next goal is to determine the corresponding waveletshades is directly connected to the task of deter-
mining an appropriate matricé; 1 andM j 1. Thus, the problem has been transferred from functiondysisa
to linear algebra. We follow a general principle calitdble completiomvhich was proposed in [6].

Definition 10. Any M 1:12(Jj) — l2(lj11) is called astable completionf M o, if
HM;H,HM;lHZO(l), j 5 o, (86)

whereM := (Mjo,Mj1).

The idea is to determine first an initial stable completiod #ren to project it to the desired complement
spaceV; determined b){\7j }jZio' This is summarized in the following theorem [6].
Theorem 11. Let ®; and ®; be primal and dual scaling basis, respectively. Meto and M o be refinement
matrices corresponding to these bases. Supposd\]l'}gtis some stable completion dfj o and éj = I\7IJ-*1.
Then

Mj1:=(1-MjoM]o)Mj1 (87)

is also a stable completion ar@; = M j’l has the form

T
G =« J>°) ) 88
j (ijl (88)
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Moreover, the collections . L
W=M[1®1, #i=G];P1 (89)

form biorthogonal systems B B B
(W.9) =1, (o, %) = (Y, ) =0. (90)

We found the initial stable completion by the method from][168] with some small changes. The differ-
ence is only in the dimensions of the involved matrices arttiérdefinion of the matri¥;. Recall thatA is the

interior block in the matrixM j o of the form

hp 0 ... 0
hi O
hs hg
1
A= L 7 01
V2 | b hneo : ®b)
0 hno1 0
0 hy ho
0 hn

wherehg, ..., hy are scaling coefficients corresponding@oBy a suitable elimination we will successively
reduce the upper and lower bands frémsuch that after steps we obtain

0 0 0
o o by
. o
ALL
[3]+1
. h(i)q
. 2
Al = : : . A=A (92)
ho i
N*OEJ
O]
SR
0 2]
0 0
In [16], it was proved for B-spline scaling functions that
(i) -
h[i/z":"'vthU/ZJ#(l i=1,...,N. (93)
Therefore, the ellimination is always possible. The eliation matrices are of the form
H? ™Y = diag(li-1,Uzi-1,...,Uz-1,IN-1), (94)
H®) = diag(In-i,La,.... L2 li-1), (95)

J

where

h{D 1 0
1 _ iz 0
Uiy 1= h({li>/21+1 » Liyat=1 h;\Hi/zj 1] (96)
0 1 h;\l—{i/zj—l
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It is easy to see that indeed _ o
A(_|) _ H(_|)A(_|—l). (97)

After N elimination steps we obtain the matméN) which looks as follows

00 o\
S }m
00
bo
(N) 90 (N) &)
Aj" =HjA;j=|0b , where Hj:=H;"...H", (98)
‘0
b
0
: }L%J
o o
with b = 0. We define
0...0b1t0 0 o0... 0
1 0...0 0 Obto... 0
B = (A]) "= ) (99)
b-10...0
N—— N——
k3 %]
and
00
e }[';]—1
00
10
00
Fi=]01 ‘ (100)
S0
1
0
| Juars
0
Then, we have
BjFj =0. (101)

After these preparations we define extended versions of tigaasH j, Aj, AEN), andBj by

In-1 - IN-1
H; . AN = AN , (102)
In-1 In_1
R In-1 A In-1
Aj = A ,  B]:= B] ) (103)
In-1 In-1

N)

I
.”.

Note thatH, Aj, AgN), andB; are all matrices of the sizg.#j 1) x (#.7;). Hence, the completion aﬁﬁf
has to be d#.7j1) x 2. On the contrary to the construction in [16], we define an exjea version oFj asin
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[5], because it leads to a more natural formulation, when the entries of both the refinement matrices belong
to v/2Q. The difference is in multiplication by/2.

© IN-1
472
Fi=v2|— | F/ || (104)
'1%)
o) IN-1

The above findings can be summarized as follows.

Lemma 12. The following relations hold:
ATlij:|2j (105)

and
BiFj=0, FTAM =0 (106)

Mjo=PjA; =P;A; AN (107)
with
ML
Pii=| | b | |- (108)
Mr

Now we are able to define the initial stable completions ofréfmement matrice®! j o.

Lemma 13. Under the above assumptions, the matrices
Mj1:=PiA Y, > o, (109)

are uniformly stable completions of the matridégo. Moreover, the inverse

L Sio
Gi= “L) 110
. (Gj,l (110)
of Mj = (Mjo,Mj1) is given by
~ 50 > Lat~
Gjo=BjAPjY, Gja=SF/HP™ (111)

The proof of this lemma is straightforward and similar to fiveof in [16]. Then using the initial stable
completionM j ; we are already able to contruct wavelets according to therEne 11.
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7 Norm equivalences

In this section, we prove norm equivalences and we show#hend ¥ are Riesz bases for the spacg[0,1]).
Furthermore, we show thg2S*/y, A € #} is a Riesz basis for Sobolev spad#([0, 1]) for somes specified
below. The proofs are based on the theory developed in [XB[6].

Let us define

y:=sup{s: 9 HS(R)}, y:=sup{s:@ecH3R)}. (112)
1

It is known thaty = N — 5. The Sobolev exponent of smoothnéssan be computed by method from [21]. The
functions in®; and¥,, j > jo, have the Sobolev regularity at legstbecause the primal scaling functions are
B-splines and the primal wavelets are finite linear comtamat of the primal scaling functions. Similarly, the

functions inCT)j and@lj, j > jo, have the Sobolev regularity at ledst

Theorem 14. 1) The sets{®; } := {®;} ., and{®;} := {®;}., are uniformly stable, i.e.
clbll, () < || > be@ik| <Clbll, () forallb={bcc,; €12(5). i > jo- (113)
ke .7

i) For all j > jo, the Jackson inequalities hold, i.e.

: v —Sj s
V:r;fsj [v=vi|| S27|Vllus(o,y) forallveHS([0,1]) and s< N, (114)
and
inf [[v—vj|| < 27° IVllus(oyy forallveH3([0,1]) and s< N. (115)
vj€eS; ’
iii) Forall j > jo, the Bernstein inequalities hold, i.e.
] =1 q
Villusoay < 27 [lvi| - forallvj e Sjand s<y, (116)
and
Villusoay < 2| forallvj e §jand s< . (117)
0.5
Ya0
0
-0.5
) 0.5 1
2
1 a3
0
-1
-2
<% 0.5 1 0 0.5 1 0 0.5 1

Fig. 5 Some primal wavelets foX = 4 andN = 6 without boundary conditions.
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Proof i) Due to Lemma 2.1 in [16], the collections®?; } := { ®;}
stable, if®; and®; are biorthogonal,

i>io and{®} := {‘i’j}jzjo are uniformly

ol vllonl <1 kesi, i> o, (118)
and®; and®; are locally finite, i.e.

#{K e 7:QunQjx#0} <1, forallke .7, j > jo, (119)

and
#{K e g QunQjx#£0} <1, forallke 7, j> jo, (120)

whereQj i := suppg; and£:2j$k = supp(}lﬁk.

By (39) the setsp; and @; are biorthogonal. The properties (118), (119), and (12)viofrom (14), (20),
and (34).

ii) By Lemma 2.1 in [16], the Jackson inequalities are thessmuences of i) and the polynomial exactness
(16) and (68).

iii) The Bernstein inequalities follow from i) and the regtity of basis functions, for details see [14].

The following fact follows from [13].

Corollary 1. We have the norm equivalences

2 2
VIEs ~ 22011 S (V@i @ok|| + 3 2| S (v Wik - (121)
ke 7] i=lo ke _7j
where ve H3([0,1]) and se (—V,y).
The norm equivalence fa= 0, Theorem 11, and Lemma 13, imply that
Y=o ,UuJ¥ and ¥:=d,uJ¥ (122)

i=io i=io

are biorthogonal Riesz bases of the spiacg0, 1]). Let us define
. A 3
D:(DM)MEJ, D, =8;2", Ade 7. (123)

The relation (121) implies th& ¥ is a Riesz basis of the Sobolev sp&t¥([0,1]) forse (—V,y).

8 Adaptation to Complementary Boundary Conditions

In this section, we introduce a construction of well-coimied spline-wavelet bases on the interval satisfying
complementary boundary conditions of the first order. Thens that the primal wavelet basis is adapted to
homogeneous Dirichlet boundary conditions of the first gnaereas the dual wavelet basis preserves the full
degree of polynomial exactness. This construction is bagetthe spline-wavelet bases constructed above. As
already mentioned in Remark 7, in the linear case N.e: 2, our bases are identical to the bases constructed
in [24]. The adaptation of these bases to complementarydsryrconditions can be found in [24]. Thus, we
consider only the cade > 3.

Let @ = {@ . k=—N+1,....2) —1} be defined as above. Note that the functignsy1, @, iy are the
only two functions which do not vanish at zero. Therefordiniieg

(D;:omp: {¢],k7k: 7N <|>27 72J *2} (124)

we obtain primal scaling bases satisfying complementaantiary conditions of the first order.
On the dual side, we also need to omit one scaling functioaet boundary, because the number of primal
scaling functions must be the same as the number of duahgdalictions. Le®; = {6,k € .7} } be the dual
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scaling basis on level before biorthogonalization from Section 4. There are bampdunctions of two types.
Recall that functions; _n.+1, ..., 8; _n,q are left boundary functions of the first type which are defited
preserve polynomial exactness of the OIﬂeFunctionsej,_NmH, ..., 8; j_o are left boundary functions of the
second type. The right boundary scaling functions are tleeived by reflection of the left boundary functions.
Since we want to preserve the full degree of polynomial exesd, we omit one function of the second type at
each boundary. Thus, we define

Op "= 6k 1, k=-N+2.. —N+N+1
O " =0k,  k=-N+N+2.. 2 -N-2
Op "= 6k1, k=20-N-1..2-2

Since the se®""P:= {jSﬁmp: k=-N+2,...,2— 2} is not biorthogonal tab;, we derive a new seb{°"""

2i-2 "
from ©{°™P by biorthogonalization. LeQ{*"P = (<<P,zk., ejcfmp>)kl \p' hen viewing®*"Pand©;°"" as
, I——N+
column vectors we define

. =T
(chomp:: <Q(j:0m p) @JFOT“ P (125)

Our next goal is to determine the corresponding wavelts"”: = {([Jﬁimp,kz 0,...,21 - 1}, Lijmp:z
{tl/ﬁ‘f(mp, k=0,...,21 - 1}. It can be done by the method of stable completion as in Se6tio

9 Quantitative Properties of Constructed Bases

In this section the condition numbers of scaling bases, ittidesscale wavelet bases and the multiscale wavelet
bases are computed. As in [24] it can be improved byLtheormalization on the primal side. It will be shown
that in the case of cubic spline wavelets bases the constnymesented in this thesis yields optirh&}stability,
which is not the case of constructions in [16] and [24]. Theditton numbers of scaling bases and wavelet bases
satisfying the complementary boundary conditions of tret érder are presented as well. The other criteria for
the effectiveness of wavelet bases is the condition numitheaorresponding preconditioned stiffness matrix.
To improve it further we apply orthogonal transformatiorttie scaling basis on the coarsest level and then we
use a diagonal matrix for preconditioning.

Itis known that Riesz bounds (2) of bagg can be computed by

c= \/Amin(Gj)7 C= \/Amax(Gj)7 (126)

1.5¢

0.5

00 0.5 1

Fig. 6 Primal scaling basis faX = 4 andj = 3 satisfying complementary boundary conditions of the firdear
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whereGj is the Gram matrix, i.6Gj = ({(@; x, @}, >)k<|e.ﬂ,-v andAmin(Gj), Amax(Gj) denote the smallest and the

largest eigenvalue @&j, respectively. The Riesz boundsti’]‘, Y, andlpj are computed in a similar way.
The condition of constructed bases is presented in Table 2mprove it further we provide a diagonal
rescaling in the following way:

qﬂk:"’”>, M= G/ (Boax), ke, i>io (127)

A L7 PN = T/ (Wi Wik), KE 71, | > Jo. (128)
\/<Wj,k:w17k>

Then the new primal scaling and wavelet bases are normalitedespect to th&?-norm. As already mentioned
in Remark 7, the resulting bases fér= 2 are the same as those designed in [24] and [25]. For quadpine-
wavelet bases, i.&N = 3, the condition of our bases is comparable to the conditidghebases from [24] and
[25]. In [3], it was shown that for any spline wavelet basiaderN on the real line, the condition is bounded
below by 21, This result readily carries over to the case of spline wetviehses on the interval. Now, the
constructions from [24], [25] yields wavelet bases whosesRibounds are nearly optimal, i.e. cdﬂH A~ N1
for N = 2 andN = 3. Unfortunately, thé 2-stability gets considerably worse fdr> 4. As can be seen in Table
2, the column HUJN the presented construction seems to yield the optlriaitability also forN = 4. Note that
the caseN = 4, N = 4 is not included in Table 2. It was shown in [9] that the copresling scaling functions
and wavelets do not belong to the spaée .

In Table 3 the condition of the multiscale wavelet baggs = @, U U}f’:j?le is presented.

It is known that the condition number of the original basistloa real line from [9] is less than or equal to
the condition number of the interval wavelet basis wherdrther functions are identical to the basis functions
from [9]. Therefore, we use the condition number of the watlvbhses from [9] as benchmark. In Table 4, we
compare the condition number of our wavelet bases and wehades from [9], [24].

The condition of single-scale bases adapted to complemygmandary condition of the first order are listed
in Table 5. We improve the condition of constructed basels?ayormalization. FoN = 4 the condition number
of bases constructed in this contribution is again signifigebetter than the condition of bases from [24].

The other criteria for the effectiveness of wavelet bas#isondition number of the corresponding stiffness
matrix. Here, let us consider the stiffness matrix for thesBan equation:

! !
AjO'S: (<<w100kmp> 7(w|(fg‘mp> >> comp , comp,_,comp’ (129)
Wik Wm <¥ps

0 0.5 1 0 0.5 1 0 0.5 1

Fig. 7 Some primal wavelets foX = 4 andN = 6 satisfying the complementary boundary conditions of thedirger.
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where WP — @My U‘°+S_ WP denotes the multiscale basis adapted to complementarydagun

0 Jo
conditions. It is well-known that the condition numberAf, s increases quadratically with the matrix size. To
remedy this, we use the diagonal matrix for preconditioning

Dj:ﬁSAjo.’SDj::S? D, <~ diag (< (wcomp> (wcomp> >l/2)

rec

prec
AJo S

(130)

wcom Pe Wcom p

To improve further the condition number af s we apply the orthogonal transformation to the scaling basis
on the coarsest level as in [7] and then we use the diagonaikrf@t preconditioning. We denote the obtained
matrix byA‘]’ng. Condition numbers of resulting matrices are listed in &bl

10 Adaptive wavelet methods

In recent years adaptive wavelet methods have been sugltessfed for solving partial differential as well as
integral equations, both linear and nonlinear. It has b&éews that these methods converge and that they are
asymptotically optimal in the sense that storage and numb#oating point operations, needed to resolve the
problem with desired accuracy, remain proportional to ttblem size when the resolution of the discretization
is refined. Thus, the computational complexity for all stepthe algorithm is controlled.

The effectiveness of adaptive wavelet methods is stronglyénced by the choice of a wavelet basis, in
particular by the condition of the basis. In this sectiom, iotention is to compare the quantitative behaviour of
the adaptive wavelet method for cubic spline wavelet basastaucted in this paper and cubic spline wavelet
bases from [24].

Table 2 The condition of single-scale scaling and wavelet bases

N N j o o ¢ Ny yNooog N
2 2 10 200 173 230 1.97 2.00 2.00 2.02 2.00
2 4 10 200 173 209 1.80 2.00 2.00 2.04 2.00
2 6 10 200 173 226 2.03 2.00 2.00 2.30 2.26
2 8 10 200 173 290 2.78 2.34 2.22 3.14 3.81
3 3 10 325 276 7.8 6.37 4.49 4.00 7.07 4.27
3 5 10 325 276 3.93 3.49 4.63 4.00 5.55 4.05
3 7 10 325 276 353 3.11 4.55 4.00 5.13 4.01
3 9 10 325 276 375 3.32 4.44 4.00 5.51 4.23
4 6 10 5.18 442 10.88 9.07 14.02 8.00 24.36 9.23
4 8 10 5.18 442 6.69 5.88 13.96 8.00 16.98 8.20
4 10 10 5.18 442 583 5.16 13.82 8.00 15.27 8.00
5 9 10 8.32 7.13 29.87 2523 67.74 27.44 169.76 68.90

Table 3 The condition of the multiscale wavelet bases
NN o WE o W Yis YR Ws Yh1 YR Ws Yha ¥is
2 2 2 1.98 2.27 2.52 2.65 2.76 2.20 2.42 2.65 2.78 2.87
2 4 3 2.13 2.25 2.30 2.33 2.34 2.15 2.26 2.31 2.33 2.35
2 6 4 2.47 2.71 2.84 2.92 2.99 2.60 2.78 2.88 2.94 3.00
2 8 4 3.71 4.77 5.35 5.68 5.89 4.44 5.17 5.57 5.82 5.98
3 3 3 492 6.01 7.15 7.87 8.50 7.25 8.54 9.50 10.08 10.48
3 5 4 451 4.82 5.01 5.10 5.14 4.63 4.98 5.11 5.15 5.16
3 7 4 419 4.38 4.44 4.46 4.48 4.24 4.39 4.45 4.48 4.49
3 9 5 4.44 4.55 4.61 4.64 4.65 4.48 4.58 4.62 4.64 4.66
4 6 4 9.55 1090 1188 1250 1290 10.88 1290 13.35 1348 8135
4 8 5 8.01 8.31 8.54 8.68 8.76 8.23 8.60 8.73 8.79 8.81
4 10 5 7.89 8.02 8.09 8.12 8.13 7.93 8.05 8.11 8.13 8.14
5 9 5 30.22 64.60 75.17 81.03 84.81 7234 83.19 87.93 90.112791.
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Table 4 The condition number of our multiscale wavelet bdﬂkﬁ% andlpj’;“5 and multiscale wavelet bases from [9] and [24]

Z
s
"

CDF Primbs N CDF Primbs N
e TR

N jo:5 jo:5 jo5 jo:5

3 3 3 5 6.68 6.25 8.50 8.52 8.17 10.48
3 5 4 5 4.36 5.31 5.14 4.37 5.36 5.16
3 7 4 5 4.04 8.57 4.48 4.04 8.63 4.49
3 9 5 5 4.00 25.40 4.65 4.00 25.76 4.66
4 6 4 5 9.89 141.95 1290 10.43 160.54 13.58
4 8 5 5 8.27 257.41 8.76 8.27 258.56 8.81
4 10 5 5 8.04 917.10 8.13 8.04 935.38 8.14
4 12 5 5 8.01 3971.65 8.44 8.01 399229 8.45

Example 15. We consider one-dimensional Poisson equation with homsmeDirichlet boundary conditions

—-u"=f, in Q=(0,1), u(0)=u(l)=0, (131)
whose solutionu is given by
e -1 e -1
U(X):4e‘50—1 <17 §0_1)+X(1’X)’ Xe Q. (132)

The solution exhibits steep gradient near the boundany-ggee 8.
Let us define the diagonal matrix

D= diag((tllf}k? w;,k>1/2> - o)

and operators
A=D1 (W @)D f=D1(f,W¥). (134)

Then the variational formulation of (131) is equivalent to

AU =f (135)

Table 5 The condition of scaling bases and single-scale waveletshsatisfying complementary boundary conditions of the first
order

N

Pz

ol oN @ ®N ¥, wNo g N

10 274 274 449 4.34 400 4.00 4.13 4.00
10 274 274 494 4.58 400 4.00 6.68 6.27
10 274 274 861 8.33 484 427 1211 16.05
10 274 274 1794 1778 816 6.25 2517 46.10
10 453 431 790 6.83 9.47 8.00 16.46 8.00
10 453 431 1116 1004 846 803 2540 1532
453 431 1790 1697 839 842 37.78 3593

ARADMOWWWW
P 00O O~NOWw

o
=
o

Table 6 The condition number of the stiffness matri S e A?r; of the sizeM x M

N N j s M AP A N R j s M APZE A

3 3 3 1 16 1224 378 4 4 4 1 33 47.02 1538
4 128 1282 505 4 259 5001 1813
7 1024 1286 537 7 2049 5028  18.91

3 5 4 1 32 5297 420 4 6 4 1 33 48.98  15.25
4 256 55.09 841 4 259 5161 16.15
7 2048 55.24 9.47 7 2049 5028  16.31

3 7 4 1 32 7107 1074 4 8 5 1 65 20556  15.92
4 256 7190 3352 4 513  208.88 26.80
7 2048 7191 38.66 7 4097 209.31 27.69
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Fig. 8 The exact solution and the right hand side of (131).

and the solutioru is given byu = UD~1¥. We solve the infinite dimensional problem (135) by the iretxa
damped Richardson iterations. This algorithm was origyraioposed by Cohen, Dahmen and DeVore in [10].
Here, we use its modified version from [30].

Figure 9 shows a convergence history for the spline-wabeses designed in this contribution with= 4
andN = 6 denoted by CF and the spline-wavelet bases with the sargeqolal exactness from [24]. We use
also the algorithm with the stiffness matie™ which has lower condition number, see Table 6. Its convergen
history is denoted by CFort. Note that the relative errohiménergy norm for an adaptive scheme with our bases
is significantly smaller even though the number of involvadib functions is about half compared with bases in
[24].

10

200 10
-e-CF -e-CF -e-CF
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o *o e 3 ¥ [ e Tl
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= L % ey 9] ~+ £ 10 Y =

k) *, ® R = - = o el o

° 5 100 bt S * o
£ * © @ Pie £ o
» o, - = 3 * oo
2 %ag 3 - e~ 510 N oy
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Fig. 9 Convergence history for 1d example, comparison of our wabelees with and without orthogonalization and wavelet bases
from [24].

Example 16. We consider two-dimensional Poisson equation

—Au=f, in Q=(0,1% 9Q=0, (136)

with the solutioru given by
u(xy)=uXxu(y), ((xyeQ, (137)

whereu(x), u(y) are given by (137). We use the adaptive wavelet scheme wéttcabic wavelet basis
adapted to homogeneous Dirichlet boundary conditionsadfitbt order. The convergence history for our wavelet
bases with and without orthogonalization and wavelet bises[24] is shown in Figure 10.
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Cubic spline wavelets with complementary boundary
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Abstract

We propose a new construction of a stable cubic spline-wavelet basis on the
interval satisfying complementary boundary conditions of the second order.
It means that the primal wavelet basis is adapted to homogeneous Dirich-
let boundary conditions of the second order, while the dual wavelet basis
preserves the full degree of polynomial exactness. We present quantitative
properties of the constructed bases and we show superiority of our construc-
tion in comparison to some other known spline wavelet bases in an adaptive
wavelet method for the partial differential equation with the biharmonic ope-
rator.
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1. Introduction

In recent years wavelets have been successfully used for solving partial dif-
ferential equations [2, 11, 12, 16, 27| as well as integral equations [22, 24, 25],
both linear and nonlinear. Wavelet bases are useful in the numerical treat-
ment of operator equations, because they are stable, enable high order-
approximation, functions from Besov spaces have sparse representation in
wavelet bases, condition numbers of stiffness matrices are uniformly bounded
and matrices representing operators are typically sparse or quasi-sparse. The
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quantitative properties of wavelet methods strongly depend on the choice of
a wavelet basis, in particular on its condition number. Therefore, a construc-
tion of a wavelet basis is always an important issue.

Wavelet bases on a bounded domain are usually constructed in the fol-
lowing way: Wavelets on the real line are adapted to the interval and then by
tensor product technique to the n-dimensional cube. Finally by splitting the
domain into overlapping or non-overlapping subdomains which are images of
a unit cube under appropriate parametric mappings one can obtain a wavelet
basis or a wavelet frame on a fairly general domain. Thus, the properties of
the employed wavelet basis on the interval are crucial for the properties of
the resulting bases or frames on a general domain.

In this paper, we propose a construction of cubic spline wavelet basis
on the interval that is adapted to homogeneous Dirichlet boundary condi-
tions of the second order on the primal side and preserves the full degree of
polynomial exactness on the dual side. Such boundary conditions are called
complementary boundary conditions [18]. We compare properties of wavelet
bases such as the condition number of the basis and the condition number of
the corresponding stiffness matrix. Finally, quantitative behaviour of adap-
tive wavelet method for several boundary-adapted cubic spline wavelet bases
is studied.

First of all, we summarize the desired properties of a constructed basis:

- Polymial exactness. Since the primal basis functions are cubic B-
splines, the primal multiresolution analysis has polynomial exactness of
order four. The dual multiresolution analysis has polynomial exactness
of order six. As a consequence, the primal wavelets have six vanishing
moments.

- Riesz basis property. The functions form a Riesz basis of the space
L?(]0,1]) and if scaled properly they form a Riesz basis of the space
H; ([0, 1)).

- Locality. The primal and dual basis functions are local, see definition
of locality below. Then the corresponding decomposition and recon-
struction algorithms are simple and fast.

- Biorthogonality. The primal and dual wavelet bases form a biorthogo-
nal pair.

- Smoothness. The smoothness of primal and dual wavelet bases is an-
other desired property. It ensures the validity of norm equivalences.

- Closed form. The primal scaling functions and wavelets are known in

2



the closed form. It is a desirable property for the fast computation of
integrals involving primal scaling functions and wavelets.

- Complementary boundary conditions. Our wavelet basis satisfy com-
plementary boundary conditions of the second order.

- Well-conditioned bases. Our objective is to construct a well conditioned
wavelet, basis.

Many constructions of cubic spline wavelet or multiwavelet bases on the
interval have been proposed in recent years. In [5, 17, 26] cubic spline wavelets
on the interval were constructed. In [14] cubic spline multiwavelet bases were
designed and they were adapted to complementary boundary conditions of
the second order in [28]. In this case dual functions are known and are lo-
cal. Cubic spline wavelet bases were also constructed in [1, 9, 20, 21]. A
construction of cubic spline multiwavelet basis was proposed in [19] and this
basis was already used for solving differential equations in [8, 23]. How-
ever, in these cases duals are not known or are not local. Locality of duals
are important in some methods and theory, let us mention construction of
wavelet bases on general domain [18], adaptive wavelet methods especially
for nonlinear equations, data analysis, signal and image processing. A gen-
eral method of adaptation of biorthogonal wavelet bases to complementary
boundary conditions was presented in [18], but this method often leads to
very badly conditioned bases.

This paper is organized as follows: In Section 2 we briefly review the
concept of wavelet bases. In Section 3 we propose a construction of primal
and dual scaling bases. The refinement matrices are computed in Section 4
and in Section 5 primal and dual wavelets are constructed. Quantitative
properties of constructed bases and other known cubic spline wavelet and
multiwavelet bases are studied in Section 6. In Section 7 we compare the
number of basis functions and the number of iterations needed to resolve the
problem with desired accuracy for our bases and bases from [28]. A numerical
example is presented for an equation with the biharmonic operator in two
dimensions.

2. Wavelet bases

This section provides a short introduction to the concept of wavelet bases
in Sobolev spaces. We consider the domain Q C R? and the Sobolev space
or its subspace H C H* () for nonnegative integer s with an inner product



(,) g, anorm ||-|| ; and a seminorm |-| ;. In case s = 0 we consider the space
L? () and we denote by (-,-) and [|-|| the L?-inner product and the L?-norm,
respectively. Let J be some index set and let each index A € J take the
form A = (4, k), where [A| := j € Z is a scale or a level. Let

lz(j)::{vzj—HR,Z]VA]Z<oo}. (1)
reJ
A family U := {\, A € J} is called a wavelet basis of H, if

i) U is a Riesz basis for H, i.e. the closure of the span of ¥ is H and
there exist constants ¢, C' € (0, 00) such that

Z bax

AeT

<C ||b||l2(j) , b= {b/\},\ej el (7). (2)
H

C||b||z2(j) <

Constants ¢, := sup {c : ¢ satisfies (2)}, Cy := inf {C : C satisfies (2)}
are called Riesz bounds and cond ¥ = Cy/c, is called the condition
number of W.

ii) The functions are local in the sense that diam (Qy) < €27 for all
A € J, where 2, is the support of 1, and at a given level j the
supports of only finitely many wavelets overlap at any point x € Q.

By the Riesz representation theorem, there exists a unique family ¥ =
{1[),\, A€ j} C H biorthogonal to ¥, i.e.

<¢,-)k, @,»H = 0i;0, forall (k) eJ, (.l)eJ. (3)

This family is also a Riesz basis for H. The basis ¥ is called a primal wavelet
basis, while U is called a dual wavelet basis.

In many cases, the wavelet system W is constructed with the aid of a
multiresolution analysis. A sequence V = {V;} j>jo» Of closed linear subspaces
V; C H is called a multiresolution or multiscale analysis, if

VieCVips1 C...CV;CV;uC...H (4)

and U;>;,Vj; is complete in H.



The nestedness and the closedness of the multiresolution analysis implies
the existence of the complement spaces W; such that Vj, =V; @ W.
We now assume that V; and W; are spanned by sets of basis functions

;= {djr, k €L;}, V;:={vjx k€ T}, (5)

where Z; and J; are finite or at most countable index sets. We refer to ¢;
as scaling functions and v, as wavelets. The multiscale basis is given by
Vs = P50 U Uj‘;j_l V¥, and the wavelet basis of H is obtained by ¥ =
®j, UU;5 , ¥j- The dual wavelet system U generates a dual multiresolution
analysis V with a dual scaling basis CTDjO.

Polynomial exactness of order N € N for the primal scaling basis and of
order N € N for the dual scaling basis is another desired property of wavelet

bases. It means that
Pyvo1(Q) CV; Py (Q)CVi, j=> o, (6)

where P, (2) is the space of all algebraic polynomials on € of degree less or
equal to m.

By Taylor theorem, the polynomial exactness of order N on the dual side
is equivalent to N vanishing wavelet moments on the primal side, i.e.

/QP(x)i/J,\ (x)dz =0, PePy,, vae ], (7)

Jj=Jo
3. Construction of Scaling Functions

We propose a new cubic spline wavelet basis with six vanishing wavelet mo-
ments satisfying homogeneous Dirichlet boundary conditions of order two.
Six vanishing wavelet moments on the primal side is equivalent to the poly-
nomial exactness of order six on the dual side. We choose polynomial exact-
ness of this order, because the dual scaling function of order four does not
belong to L? (R) and the polynomial exactness of order greater than six leads
to a larger support of primal wavelets which makes the computation more
expensive.

The first step is the construction of primal scaling functions on the unit
interval. Primal scaling basis is formed by cubic B-splines on the knots ti
defined by
k

th=—, k=1,...20 —1, (8)

t]_Q == tj_l = O, t[]) = 2],

2j+1’



20t — 1

_4J
27+1 =t

J —
, ot by =1

Jo._
by = 2741

The corresponding cubic B-splines are defined by

B (z) = (t]y—t]) [t ... th],t—2)%, ze€(0,1],

where (7), := max{0,x} and [t;,...ty], f is the N-th divided difference
of f. The set ®; := {¢;r, k = —2,...,2/ — 2} of primal scaling functions is

simply given by
bin=22Bl k=-2...,22-2 j>0. (9)

Thus there are 2/ — 5 inner scaling functions and 3 boundary functions at
each edge. The inner functions are translations and dilations of a function
¢ which corresponds to the primal scaling function constructed by Cohen,
Daubechies, and Feauveau in [10]. Note that the primal scaling basis differs
from the primal scaling basis constructed in [4, 5, 17, 26], because there are

ce L1 2J+1_1q
additional knots 57 and 5.

27

05

Figure 1: Primal scaling functions for the scale j = 4.

The desired property of a dual scaling basis ® is the biorthogonality to ®
and the polynomial exactness of order six. Let q~5 be the dual scaling function
which was designed by Cohen, Daubechies, and Feauveau in [10] and which
is shifted so that qg is orthogonal to ¢, i.e. its support is [—5,9]. It is known
that there exist sequences {hk}izo and {hy}}__. such that the functions ¢
and ¢ satisfy the refinement equations

o)=Y Md@u—k), d(a)=> hoe—k), zeR  (10)

k=-—5



The parameters h; and hy, are called scaling coefficients.
In the sequel, we assume that j > jo := 4. We define inner scaling
functions as translations and dilations of ¢:

00 = 2725 (2- k), k=52 -9 (11)

There will be two types of basis functions at each boundary. In the
following, it will be convenient to abbreviate the boundary and inner index
sets by

I = {23}, IV ={4}, TV={5....27 -9}, (12)
I = {2 -8}, I ={2-7,...,2 -2},

and

L L,1 L2
Iy = I, UIL” ={-2,...,4}, (13)
R R,2 R1 j j
it = I,°UI, _{2]—8,...,2]—2},
L,1 L,2 R,2 R1 1
1, = I,7UT; uzfuzj UL ={-2,...,2 —2}.

Basis functions of the first type are defined to preserve polynomial ex-
actness and the nestedness of multiresolution spaces by the same way as in
[17]:

4
O (1) =27 " (prya, ¢ (- = 1)) ¢ (P2 —1), keI, zel0,1], (14)

=-8

where {py, . .., ps} is a monomial basis of P5 ([0, 1]), i.e. p; () = 2z, x € [0, 1],
1=0,...,5.

The definition of basis functions of the second type is a delicate task,
because the low condition number and the nestedness of the multiresolution
spaces have to be preserved. This means that the relation 0,4 € f/] - ‘7j+1
should hold. Therefore we define 0; 4 as linear combinations of functions that
are already in ‘7j+1. To obtain well-conditioned basis, we define a function
0;4 which is close to ¢, := 2//2¢ (2 - —4), because ¢%, is biorthogonal to

the inner primal scaling functions and the condition of {(]354, ke IjL 2y If}

1s close to the condition of the set of inner dual basis functions.



For this reason, we define the basis function of the second type by

9
O (x) =27 g (2w -8 1), zel01], (15)

1=-3

where h; are the scaling coefficients corresponding to the scaling function qg
Then 64 is close to ¢}, restricted to the interval [0, 1], because by (10) we
have

9
Gra () = 272 Z o (27 x —8—1), x€[0,1]. (16)

l=—5

Figure 2 shows the functions 644 and &54.

40 40
30 30
20 oy 20 014
10 10
0 0
-10 -10
-20 -20
30 0.2 0.4 0.6 0.8 1 -0 0.2 04 06 0.8 1

Figure 2: The functions qg]}fA and 6y 4.

The boundary functions at the right boundary are defined to be symmet-
ric with the left boundary functions:

Ojk () = 0014 p (L—2x), x€[0,1], keIl (17)
It is easy to see that
O (x) = V20, (2x), z€[0,1], keIl (18)
for left boundary functions and
O (1 —2) =V20;,(1—22), x€(0,1], keIl (19)

for right boundary functions.
Since the set ©; := {0;x, k € Z;} is not biorthogonal to ®;, we derive a
new set

- {gm, ke Ij} (20)

8



from ©; by biorthogonalization. Let
Qj = (<¢j,k’ ej,l>)k7161j : (21)

We verify numerically that Q; is invertible. Viewing i)j and ©; as column
vectors we define

8- Q"0 (22)

Then ff?j is biorthogonal to ®;, because
<<1>j7 i’j> =(9;,Q;70;) = Q,Q; " =Ty, (23)

where the symbol # denotes the cardinality of the set and I,, denotes the
identity matrix of the size m x m.

Remark 1. General approach of adapting wavelet bases to the unit interval
was proposed in [18]. The idea is to remove certain boundary scaling func-
tions to achieve homogeneous boundary conditions on the primal side. Then
it is necessary to have the same number of basis functions on the dual side.
Therefore an appropriate number of inner dual functions is used for the def-
inition of boundary dual generators in formula (14). Applying this approach
to cubic spline basis constructed in [5] and basis constructed in [26] we obtain
the same resulting basis, because these constructions differs in the definition
of some functions which are discarded during adaptation to complementary
boundary conditions of the second order. Unfortunately, this basis has large
condition number, although the starting basis in [5] is well conditioned. Its
quantitative properties are presented in Section 6.

4. Refinement matrices

From the nestedness and the closedness of multiresolution spaces it follows
that there exist refinement matrices Mo and M;; such that

®; = MjT,oq’ij ci)j = Mfl‘i’ﬂr (24)



Due to the length of support of primal scaling functions, the refinement
matrix M, o has the following structure:

M,
ijo = Aj . (25)

Mg
where A; is a (277! — 5) x (27 — 5) matrix given by

hm+172n i
A, = DmilEn 2 =5, 0<m+1-2n<4, (26
( ])m,n \/i ( )

= 0, otherwise,

where h,, are primal scaling coefficients (10), and M, My are given by

. Mp =M. (27)

O O O O RIEoINRIE
O O Bw oo lw o= O
o= SBon © © O

The symbol M* denotes a matrix that results from a matrix M by reversing
the ordering of rows and columns. To compute the refinement matrix corre-
sponding to the dual scaling functions, we need to identify first the structure
of refinement matrices Mfo corresponding to O:

M7
Mg?o = A; , (28)

10



where M§ and M are blocks 21x7 and A ; is a matrix of the size (271 — 13)x
(27 — 13) given by

N Ry o ,
(A]—> = Dmeecd 2013, 1< m—2n <13, (29)
= 0, otherwise,

where h,, are dual scaling coefficients (10). The refinement coefficients for
the left boundary functions of the first type are computed according to the
proof of Lemma 3.1 in [17]. The refinement coefficients for the left boundary
functions of the second type are given by definition (15). The matrix M9
can be computed by the similar way. Since

P =Q; T@j =Q; ’ (M?,o) 011 =Q; ’ (M?,o) jT+1‘I>j+17 (30)
the refinement matrix 1\~/Ij,o corresponding to the dual scaling basis (fj is given

by
Mo = Q1 M5Q; . (31)

5. Construction of wavelets

Our next goal is to determine the corresponding single-scale wavelet bases
;. It is directly connected to the task of determining an appropriate matri-
ces M, ; such that

;=M D). (32)

We follow a general principle called stable completion which was proposed in
[3]. This approach was already used in [5, 17, 26]. In our case, however, the
initial stable completion can not be found by the same way, because it leads
to singular matrices.

Definition 1. Any M, ; : I*(J;) — [* (Z41) is called a stable completion of

Mj70’ if

O(1), j— oo,
(33)

M 2, O (1), [IM;,

Zit1)=1(Zi4) (Zj+1)=2(Zj41)

where M, := (Mo, M, ).

The idea is to determine first an initial stable completion and then to
project it to the desired complement space W;. This is summarized in the
following theorem [3].

11



Theorem 2. Let ®; and tiDj be a primal and a dual scaling basis, respectively.
Let Mo and Mo be refinement matrices corresponding to these bases. Sup-
pose that M, is some stable completion of M;o and G; = Mj_l. Then

M]'J = (I — Mj70M§:O> 1\7_[]‘71 (34)

is also a stable completion and G; = M;l has the form

M7
G, = [290) . 35
= (&) (35)
Moreover, the collections
\I’j = nglq)j-l-l) ‘i/j = Gj71éj+1, (36)

form biorthogonal systems

To find the initial stable completion we use a factorization M, = H,;C;,
where

H,
H, = H! , (38)
Hg
025 0 0 0 0
0875 1 8 0 0
025 6 1 0 0
H, = 0 48 0 1 0 |, Hzp:=H}, (39)
0 12 0 18125 2
0 0 0 125 1
0 0 0 03125 0

Matrix (HI) has the size (2771 —7) x (27*! —9). Its elements are given by:

(H;)mn = 1, 1<n<2™—9 nodd,m=n+1 (40)
= himfnﬁ, 1<n<2t -9 neven,—1<m—n <3,
= 0, otherwise,

12



where hi, = i, =0.25, hl, = hl, =1, hi; = 1.5 and

Cy 100
_ 1 I 10 é 0
Ci= C! CC=| g5 | @y
2
c 00 2
0 0 0
0 0
b 0
+ 0 0 7
Cr:=Cy, CJI-:: 0 b ; b::§. (42)
0
b
0
0 0

The factorization corresponding to inner and boundary blocks is not the same
as the factorization in [15]. Therefore by our approach we obtain new inner
and boundary wavelets. We define

B, |
1000
B, — 2 B! Br=[ 0800 | ,By=Bl (13
0002
[ Br
00br0 0 0. 0
, 00 0 0b" 0 .. 0
B; = ’ (44)
bt 0 0
and
Fr
F = F! : (45)
Fr

13
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SANNTIN
FLZOO,FR:1,FI:01 (46)
01 0 ()
1
The above findings can be summarized as follows.
Lemma 3. The following relations hold:
B,C, =14, F/F;=1, B;F;=0 F C;=0. (47)

Now we are able to define the initial stable completions of the refinement
matrices Mj .

Lemma 4. Under the above assumptions, the matrices

Mj,l = H]:FJ7 ] Z jo, (48)

are uniformly stable completions of the matrices M; . Moreover, the inverse

o Gjo
¢ -(g") (19)

Of Mj = (Mj70, M]‘J) 18 given by Gj,O = BjH}l, G]J = F?H;l

The proof of this lemma is straightforward and similar to the proof in
[17]. Then using the initial stable completion M, we are already able to
contruct wavelets according to the Theorem 2. Left boundary wavelets are
displayed at the Figure 5.

5.1. Decomposition of a scaling basis on a coarse scale

In the previous sections we assumed that the supports of the left and right
boundary functions do not overlap and therefore the coarsest level was four.
It might be too restrictive, especially in higher dimensions, because then
there are many scaling functions. Here we decompose scaling basis ®, into
two parts ®3 and W3. It also improves the condition number of the basis.
We construct wavelets on the level three to have four vanishing moments.
Note that wavelets on other levels have six vanishing moments, but there the
vanishing moments guaranties the smoothness of dual functions [10], and four

14



Figure 3: Left boundary wavelets for the scale j = 4.

vanishing moments for wavelets are sufficient in the most of the applications.
Scaling functions in ®3 are defined by (9) for j = 3. Functions in U3 are
defined by

8Y(4) (4
v () = B @

= k=1,...,8 z€|0,1], 50

where Bfk is a B-spline of order eight on the sequence of knots t;, and
denotes the fourth derivative. The sequences of knots t; are given by:

t, = [0,0,1/32,1/16,1/8,2/8,3/8,4/8,5/3]; (51)
ta = [0,1/32,1/16,1/8,3/16,2/8,3/8,4/8,5/8];

ty = [1/32,1/16,1/8,2/8,5/16,3/8,4/8,5/8,6/8];

t, = [1/16,1/8,2/8,3/8,7/16,4/8,5/8,6/8,7/8];

ts = [1/8,2/8,3/8,4/8,9/16,5/8,6/8,7/8,15/16];

te = [2/8,3/8,4/8,5/8,11/16,6/8,7/8,15/16,31/32];

t; = [3/8,4/8,5/8,6/8,13/16,7/8,15/16,31/32, 1];

ts = [3/8,4/8,5/8,6/8,7/8,15/16,31/32,1,1];

Lemma 5. Functions from the set ®3 U W3 generate the same space as
functions from the set @4, i.e. span ®3 U W3 = span ®,. Functions s,
k=1,....8, have four vanishing wavelet moments.

15



Proof. Since ®4 is a basis of the space of all cubic splines on the knots
t =10,0,1/32,1/16,2/16,...,15/16,31/32,1,1]. Functions in ®5 are cubic
splines on the subsets of these knots. Functions in W3 are also cubic splines,
because they are fourth derivative of the spline of order eight, and they are
defined on the subsets of knots t*. Therefore ®3 U U3 C span ®,.

Functions in ®3 are linearly independent. Function 15, cannot be written
as linear combination of functions from ®5U W3\ {¢3,}, because it is a cubic
spline on sequence of the knots ¢; containing an additional knot. Hence,
V3 U P3 is a linearly independent subset of span &4, which proves the first
assertion.

To prove that the functions 5, k = 1,...,8, have four vanishing mo-
ments, we use the integration by parts. We obtain for n = 0,...,3:

[ B e = o (52)" )

1

—/O nz" (Bfk)(g) (x)dz. (52)

0

Since (Bfk) ™ is the spline of order 8 —n on the knots of multiplicity at most
two in points 0 and 1, we have

) 0) = (B)™ (1) =0, n=0,...4, (53)

and thus

/ I(Bfk)(‘*) (z) dz = 0 (54)

Using (53) and the integration by parts three times, we obtain:

1
n n (4=n) (4=n)

[ e @as = o [(82) )= () )] <0, (56)

forn =1,...,3, which proves the assertion. [

Remark 2. In some constructions, the condition number of the wavelet ba-
sis is improved by orthogonalization of boundary wavelets or by the orthog-
onalization of scaling functions on the coarsest level. In our case, the im-
provement was insignificant.
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5.2. Norm equivalences

It remains to prove that ¥ and ¥ are Riesz bases for the space L? ([0, 1])
and that properly normalized basis ¥ is a Riesz basis for Sobolev space
H* ([0,1]) for some s specified below. The proofs are based on the theory
developed in [13] and [17].

For a function f defined on the real line a Sobolev exponent of smoothness
is defined as sup {s: f € H*(R)}. It is known that primal scaling functions
extended to the real line by zero have the Sobolev regularity at least v = g
and that dual scaling functions extended to the real line by zero have the
Sobolev regularity at least 4 = 0.344.

Theorem 6. i) The sets {®;} := {®;},., and {i)]} = {ij} are uni-
- Jjzjo

formly stable, i.e.

cllBllyyry < || kik|| < Clblly,y  for allb={bi}yer, € P(T;), 5> o
kGIj
(57)
ii) For all j > jo, the Jackson inequalities hold, i.e.

ing v — ;|| <27 vl geoayy  for allv € H*([0,1]) and s <N, (58)

vj €S,
and

inf [jv— v, <27 [0l oo,y for allv € H*([0,1]) and s < N. (59)

v; €55

iii) For all j > jo, the Bernstein inequalities hold, i.e.

03 ll s o) < 2% ||lv;||  for all v; € S; and s < 7, (60)

and

[|lv;] Ho([0,1]) S 2% ||lv;||  for all v; € S; and s < 7. (61)
Proof. i) Due to Lemma 2.1 in [17], the collections {®;} := {®;},., and
{é]} = {Ci)]} are uniformly stable, if ®; and <i>j are biorthogonal,

J=jo

il S 1,5

B

~ )

k teﬂ ijO) (62)
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and ®; and éj are locally finite, i.e.
#A{K €L - QN 0} <1, forall k€ Z;, j> jo, (63)

and
# {k’ €L Qw N Qx # ®} Sl forallkeZ;, j > jo, (64)

where €2 = supp ¢, and Qch = supp (;Ej’k. By (23) the sets ®; and @j
are biorthogonal. The properties (62), (63), and (64) follow from (9), (11),
and (18).
ii) By Lemma 2.1 in [17], the Jackson inequalities are the consequences of
i) and the polynomial exactness of primal and dual multiresolution analyses.
iii) The Bernstein inequalities follow from i) and the regularity of basis
functions, for details see [17].

O
The following fact follows from [13].
Corollary 1. We have the norm equivalences
2 2
o2 ~ 22590 | 5™ (o, B ) | + 3022 | S (0,850 ) | (65)
k€L, J=jo keT;

where v € H® ([0,1]) and s € (—7,7).

The norm equivalence for s = 0, Theorem 2, and Lemma 4, imply that

0, (66)

—

U= (I)jo U U \Ifj and \ij = i)]'o U

J=Jo J

J0

are biorthogonal Riesz bases of the space L? ([0,1]). Let us define

D= (D,;) D, =652 A \e J. (67)

AAeT

The relation (65) implies that D=*W is a Riesz basis of the Sobolev space
12 ([0,1]) for s € (=7,7).
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6. Quantitative properties of constructed bases

In this section, we compare quantitative properties of bases constructed in
this paper, cubic spline-wavelet basis from [26] and cubic spline multiwavelet
basis recently adapted to homogeneous boundary conditions in [28]. The
condition of multi-scale wavelet bases is shown in Table 1. Our wavelet basis
is denoted by CF, a basis from [28] is denoted by Schneider and a basis from
[26] adapted to complementary boundary conditions by method from [18] is
denoted by Primbs. The last basis is the same as the basis from [5] adapted
to complementary boundary conditions by method from [18], see Remark 1.

Other criteria for the effectiveness of wavelet bases is the condition num-
ber of a corresponding stiffness matrix. Here, let us consider the stiffness
matrix:

Ajo,s = (<w;/,k’ llfm>)¢j,k,¢hmg\1/j0’s : (68)

It is well-known that the condition number of A, ; increases quadratically
with the matrix size. To remedy this, we use a diagonal matrix for precon-
ditioning

T —1 —1
A:?O»e: = Djo,sAjoasDjo,s7 (69)

where o
jos g < e Uik M (70)

In [7] the anisotropic wavelet basis were used for solving fourth-order prob-
lems. Here, we use isotropic wavelet basis, i.e. we define multiscale wavelet
basis on the unit square by

v = e3P ul JurP, (71)

J=3

Table 1: The condition numbers of wavelet bases and stiffness matrices, jo = 3 for CF and
Schneider, jo = 4 for Primbs.

\Ijjoyj A%’ejc
j| CF Schneider Primbs | CF Schneider Primbs
1] 83 1.9 14.9 | 64.8 472.0 1111.0
31125 2.4 45.9 | 66.5 569.5 1116.9
51 15.3 2.6 69.8 | 66.6 640.8 1117.0
71 18.0 2.7 85.8 | 66.7 693.0 1117.0
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where
PP =030P;, VIP=0,0 ;U 03;UT,; RV, (72)

The symbol ® denotes the tensor product. The preconditioned stiffness ma-
trix *PAP for the biharmonic equation defined on the unit square is similar
to the one dimensional case. Condition numbers of the stiffness matrices are
listed in Table 1 and Table 2. The condition number of the stiffness matrix
corresponding to wavelet basis by Primbs exceeds 10* already for number of
levels j = 3. Wavelet basis from [17] adapted to complementary boundary
conditions by method from [18] is very badly conditioned, its quantitative

properties can be found in [28].

7. Numerical example

Now, we compare the quantitative behaviour of the adaptive wavelet
method with our bases and bases from [28]. Both bases are formed by cubic
splines and have local duals. We consider the equation

ou

A*u=f in Q, u:a—n:() on 0, (73)

for Q = (0,1)?, where the solution u is given by

w(z,y) =v(@)v(y), vl(z):=a? (1—%}:)2. (74)

Note that the solution exhibits a sharp gradient near the point [1,1]. We
solve the problem by the method designed in [12] with the approximate

Table 2: The condition of numbers of stiffness matrices of the size N x N for j levels.

j N CF N Schneider
1 289 128.05 900 484.35
2 1089 141.28 3844 583.41
3 4225 212.01 15876 626.91
4 16641 257.56 64516 653.45
5
6
7

66049 281.21 260100 673.19
263169 297.23 1044484 689.43
1050625 306.12 4186116 703.42
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Figure 4: The convergence history for adaptive wavelet scheme with various wavelet bases.

multiplication of the stiffness matrix with a vector proposed in [6]. We use
wavelets up to the scale |A] < 10. The convergence history is shown in
Figure 4. In our experiments, the convergence rate, i.e. the slope of the
curve, is similar for both bases. However, they significantly differ in the
number of basis functions and number of iterations needed to resolve the
problem with desired accuracy. The number of basis functions was about
10* for an error in L>®-norm about 10~7. The number of all basis functions
for full grid, i.e. basis functions on the level ten or less, is about 108, therefore
by using an adaptive method the significant compression was achieved. It
can seem that the number of iterations is quite large, but one could take
into account that in the beginning the iterations were done for much smaller
vector and the size of the vector increases successively. The algorithm is
asymptotically optimal, i.e. the computational time depends linearly on the
number of basis functions, see [12].
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In the paper, we propose a construction of a new cubic spline-wavelet basis on the
hypercube satisfying homogeneous Dirichlet boundary conditions. Wavelets have two
vanishing moments. Stiffness matrices arising from discretization of elliptic problems
using a constructed wavelet basis have uniformly bounded condition numbers and we
show that these condition numbers are small. We present quantitative properties of the
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1. Introduction

In this paper, we propose a construction of a new cubic spline wavelet basis on the
hypercube that is well-conditioned, adapted to homogeneous Dirichlet boundary
conditions and the wavelets have two vanishing moments. The wavelet basis of the
space Hi (Q), where Q = (0, l)d and d € N, is then obtained by a tensor product
and a proper normalization.

First of all, we summarize the desired properties of a constructed basis:

- Riesz basis property. We construct Riesz basis of the space L? (Q) that, when
normalized with respect to H'-seminorm, is also a Riesz basis of the space
H} (Q).

*Corresponding author
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- Polymial exactness. Since the primal basis functions are cubic B-splines, the
primal multiresolution analysis has polynomial exactness of order four. It means
that all polynomials of degree less than four belong to the span of scaling
functions at the given level.

- Vanishing moments. The wavelets have two vanishing moments.

- Locality. The primal basis functions are local in the sense of Definition 1.1
below.

- Smoothness. Primal basis functions belong to C? () and dual basis functions
belong to C (£2), where C () is the space of continuous functions on domain
Q and C™ () is the space of functions on domain € that have continuous
derivatives up to order n € N.

- Closed form. The primal scaling functions and wavelets are known in the closed
form.

- Homogeneous Dirichlet boundary conditions. Constructed wavelet basis satisfies
homogeneous Dirichlet boundary conditions.

- Well-conditioned bases. Our objective is to construct a wavelet basis that is well
conditioned with respect to the Ls-norm and is well conditioned with respect
to the H'-seminorm, when normalized appropriately.

We denote the Sobolev space or its subspace by H C H?® () for nonnegative
integer s and the corresponding inner product by (-,-),, a norm by ||-||; and a
seminorm by |-| ;. In case s = 0 we consider the space L? (2) and we denote by (-, -)
and ||-|| the L2-inner product and the L2-norm, respectively. Let .J be some index
set and let each index A € J take the form A = (j, k), where |A| := j € Z is a scale.

Let
IVly == [D> 3, for v={va},es v €R, (1.1)
AeT
and

P(T)={v:v={n}cr>m R V], <oo}. (1.2)
Our aim is to construct a wavelet basis in the sence of the following definition.

Definition 1.1. A family ¥ := {¢Yx,\ € T} is called a (primal) wavelet basis of
H, if

i) U is a Riesz basis for H, i.e. the closure of the span of ¥ is H and there exist
constants ¢, C € (0,00) such that

> batn

reJ

c|blly < <C|blly, forall b:= {b%})\ej e l? (7). (1.3)

H
Constants cy = sup{c: c satisfies (1.3)}, Cy := inf{C : C satisfies (1.3)} are
called Riesz bounds and cond W = Cy/cy is called the condition number of W.
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ii) The functions are local in the sense that diam(Qy) < C2-P for all X € 7,
where Qy is the support of ¥, and at a given level j the supports of only
finitely many wavelets overlap at any point x € ).

For the two countable sets of functions I', 2 C H , the symbol (I', Q) ; denotes
the matrix

<F7Q>H = {<%W>H}»yer,weQ’ (1.4)

Remark 1.1. It is known that the constants ¢y and Cy from Definition 1.1 satisfy:

o =/ dmin (¥, V) ), Cv =1/ Mnaz (U, ¥) 1), (1.5)

where Apin ((U, @) ) and Apeq ((U, ¥) ;) are the smallest and the largest eigen-
values of the matrix (¥, ¥) ,, respectively.

Many constructions of spline wavelet or multiwavelet bases on the interval have
been proposed in recent years.® 4 15:18,19.21 Ty Ref, 1, 2, 11, 17 cubic spline wavelets
on the interval were constructed. In these cases dual functions are known and
are local. Spline wavelet or multiwavelet bases where duals are not local are also
known.% 12715 The advantage of our construction in comparison with cubic spline
biorthogonal wavelets with local duals’2 1117 i that the support of wavelets is
shorter, condition numbers of the corressponding stiffness matrices are smaller and

the advantage is also a simple construction.

2. Construction of scaling functions

A primal scaling basis is the same as a scaling basis in Ref. 1, 17. It is generated from
functions ¢, ¢p1 and ¢pa. Let ¢ be a cubic B-spline defined on knots {0,1,2,3,4}.
It can be written explicitly as:

3

o @ € [0,1],
7%3 + 222 — 22+ 2, € [1,2],
[

$) =1 & —da? 410z — 2,z € [2,3], (2.1)
3
%’ x e [374]7
0, otherwise.

Then ¢ satisfies a scaling equation'7 :

¢(w):¢(8?9€)+¢>(2$2—1)+3¢(QZ—2)+¢(2m2—3)+¢(22—4). (2.2)

Let ¢p1 be a cubic B-spline defined on knots {0,0,0,1,2} and ¢p2 be a cubic
B-spline defined on knots {0, 0, 1,2, 3}, i.e.,

9zt 43y 2 e0,1],

Pu1 () = G peq,2] (2.3)

0, otherwise,
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and
_1%';3 +%7 Z’E[O,l},
7z® 2, 9z _ 3
2 3+ 2 -2 xell,2,
bpa(x) = { 12 2 2 2.4
o) G’ aefp3, 24
0, otherwise.
Then ¢, and ¢pa satisfy scaling equations:* 17
o1 (27)  3¢p (22) 3¢ (22)
= 2.
Pu1 () sttt (2.5)
_ e (22)  114(2x) ¢(2z-1)  ¢(22-2)
For j €N, j > 3 and z € [0,1] we set
bjn(x) =220 x — k), k=3,...20 -1, (2.6)
1 () = 2200 (D), 0541 (2) = 2200 (2 (1 - ),
G2 (1) = 212¢0(202),  Gjai (x) = 29/ 2a(27 (1 — ).
(2.7)
Furthermore, we define
;= {djn/llojnll . k=1,...,27 +1} and V; =span®;. (2.8)

The sets ®; are uniform Riesz bases of the space Vj. It means that the sets ®;
are Riesz bases of the space V; with Riesz bounds independent on j. The proof can
be found in Ref. 1. The graphs of the functions ¢; ; on the coarsest level j = 3 are
displayed in Figure 1.

1.5¢

0.5

Fig. 1. Functions ¢3 1, k=1,...,9.
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3. Construction of wavelets

In some applications such as adaptive wavelet methods,%” vanishing moments of
wavelets are needed. In our case, we construct wavelets with two vanishing moments,
i.e.

/oo aFp(x)dr =0, k=0,1. (3.1)

We set V; as the space of continuous piecewise linear function:

201

- kok+1

Vj:C(OJ)ﬂkl_IPl (27 5 ) (3.2)
=0

where Pj (a,b) is the space of all algebraic polynomials on (a,b) of degree less or
equal to 1. Clearly, with this choice the dimension of V} is 27 +1 that is the same as

the dimension of V;. We construct wavelets ¢ 5, k = 1,... , 27 such that Yik € Viq
and

<'€Z)j,k7 <l~5> =0 (3.3)

for all functions ¢ € V;, because then (3.1) will be satisfied.
Since we want ;1 € V41, we define a generator wavelet ¢ as

6
(@) = 3 ge2e — k), (3.4)
k=0

and

-1 7 -119 . =119 7 -1
[go,...,gG]:{——ili—— (3.5)

1847467 184 777 184 '46° 184
The coefficients gy are computed such that (¢, w) = 0 for all functions w that are
continuous and are linear on intervals [k, k + 1], k € Z. Then for

Yin(r) =220 —k+2), k=3,..,20 =2, jEN, j >3, (3.6)

the condition (3.3) is satisfied and the functions ¢ and ; have two vanishing
wavelet moments. The support of the wavelet 1 is [0, 5]. The graph of 1 is shown
in Figure 2.

We define boundary wavelets 1,1 and 12 by:

4
Vo1 (z) = g5 dn (22) + g} dua(22) + > g (20 — k +2), (3.7)
k=2
6
Yoa(z) = gb2dn (22) + g2 (22) + Y 922622 — k + 2),
k=2
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Fig. 2. Wavelets v, 11 and 1ps.

where
939 —393 6233
bl bl
e —| >~ “an ' Een 74 1 3‘8
[gOﬂ 794] |:707 20 75607 ’ ’ ( )
[ b2 bz]_ 2770661 256057 —493633 20761777 —76369591 7 _3
90796 17 1398560 457140° 76992 ° 1828560 ' 7314240 ' °|”

Then supp w1 = [0,3], supp¢pe = [0,4] and both boundary wavelets have two
vanishing moments.
For j € N, j > 3 and = € [0, 1] we define

%‘,1(95) = 2j/2¢b1(2j1‘)7 (Y (z) = 2j/2¢b1(2j(1 - 1)), (3.9)
bja(x) = 22 (20),  Pj01(x) = 2 (2 (1 — ).

and
U = {¢jn/ 10kl k=1,...,27}, W; =span ;. (3.10)
We denote
2+s oo
U =00 P, and =030 ]9, (3.11)
j=3 j=3

In the following, we prove that W is Riesz basis of the space Ly (0,1). The set
U? is a finite dimensional approximation of W.

Theorem 3.1. The sets V;, j > 3, are uniform Riesz bases of W;.

Proof. We computed the matrix

Fj=(¥;, ¥;) (3.12)
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using (3.4) and (3.7). For example, for j = 3 we obtained

1.000 0.128 0.103 0.003 0 0 0 0

0.128 1.000 0.432 —0.145 —0.014 0 0 0

0.103 0.432 1.000 —0.029 —0.077 0.001 0 0

F, — 0.003 —0.145 —0.029 1.000 —0.029 —0.077 —0.014 0 (3.13)

0 —0.014 —0.077 —0.029  1.000 —0.029 —0.145 0.003 |’ '
0 0 0.001 —0.077 —0.029 1.000 0.432 0.103
0 0 0 —0.014 —0.145 0.432 1.000 0.128
0 0 0 0 0.003 0.103 0.128 1.000

where the numbers are rounded to three decimal places. The matrix F; for j > 3
has the similar structure. The first two rows and columns and the last two rows and
columns corresponds to boundary wavelets and for k,l =3,...27 — 2:

1, k=1,
—0.029, |k — 1| =1,
(Fj), =3 —0.077, [k — 1| =2, (3.14)

—0.001, |k —1] =3,
0, otherwise.
It is easy to see that F; is banded and diagonally dominant. Estimates for the
smallest eigenvalue X’ . and the largest eigenvalue A, . of the matrix F; can be
computed using the Gershgorin circle theorem:

k=1
Npae < max ( Fil+> 0 |F, ) <18, (3.16)

(3.17)

where F ij are the entries of the matrix F;. With the help of Remark 1.1 the assertion
is proven. O

The proof that W is a Riesz basis is based on the following theorem.® 12

Theorem 3.2. Let J € N and let V; and f/j, j > J, be subspaces of Lo (0,1) such
that
V; CVipr, V;CVigr, dimV; =dimV; < oo, j>J. (3.18)

Let ®; be uniform Riesz bases of Vj, 'i)j be uniform Riesz bases oij, U; be uniform
Riesz bases of le NVjt1, where le is the orthogonal complement of V; with respect
to the L?-inner product, and let

U={p,reJ}=2,U ]V, (3.19)
j=J
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Furthermore, let the matrix
Gj = <@j, éj> (320)

be invertible and the spectral norm of Gj_l is bounded independently on j. In addi-
tion, for some positive constants C, v and d, v < d, let

inf o~ ;]| € C27 ol ugo 0 0 € HE(0,1), (3.21)
Vi€V ’
and for 0 < s <y let

losllgaon < €2 sl v; € Vs, (3.22)

and let similar estimates (3.21) and (3.22) hold for 5 and d on the dual side. Then
there exist constants k and K, 0 < k < K < oo, such that

> a2 Moy,

AeT

kbl < <K|bly, bi={h}es€’(J) (323

H#(0,1)

holds for s € (—4,7).

Theorem 3.3. The set ¥ is a wavelet basis of the space Ly (0,1).

Proof. We consider the set
;= {¢jp,k=1,...,27} (3.24)
that is a Riesz basis of the space V;. Recall that f/] is defined by (3.2). Let
x+1,z€[-1,0],
p(z)=¢ 11—z, 2€]0,1], (3.25)

0, otherwise,

and for x € [0, 1] we define

bik(x) =220 (Ve —k) k=1,...,27 — 1, (3.26)
Gjp (x) =20FD/2¢ (290 — ) [k = 0,27, (3.27)

Then
b = {&jyk,kzo,...,?} (3.28)

are uniform Riesz basis of the space Vj.l
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The matrix G; = <<T>j, CTJJ-> has the structure

17 11 11

EE%OOOO 0

19 9 17 11

20 20 s0 130 0 0 0 0

1 13 11 13 1

5 60 20 0 20 0 O 0
1 0

01 13 11 13

120 60 20 60 12
sz 0 0 . . .ol . (3.29)

113 1138 1
120 60 20 60 120

113 11 13 1

120 60 20 60 60

11 17 9 19

120 80 20 120

uouo1r

80 40 40

(=}

It is easy to verify that the matrix G; is banded and strictly diagonally dominant.
Therefore, it is invertible and the spectral norm of G;l is bounded independently
on j. It is known® that when ~ is the Sobolev exponent of smoothness of the basis
functions and d is the polynomial exactness of V; than (3.21) and (3.22) are satisfied.
In our case, the Sobolev exponent of smoothness is v = 3.5 and the polynomial
exactness of V; is d = 4. On the dual side, 7 = 1.5 and d=2. Therefore, due to
Theorem 3.2, the norm equivalence (3.23) is satisfied for s € (—1.5,3.5). Since we
proved that (3.23) holds for s = 0, the set ¥ is indeed a wavelet basis of the space
Lo (0, ].) O

It remains to prove that when the wavelet basis ¥ is normalized in the H'-
seminorm, then it is a wavelet basis of the space H{ (0,1). We denote
Z; :={0,1,...,8} and J;:={1,...,27}. (3.30)
Theorem 3.4. The set
{¢3,k/ |93kl 113 0,1)  F € I3} u {T/Jj,k/ 5kl 3 0,1)9 = 3k € %} (3.31)
is a wavelet basis of the space Hi (0,1).
Proof. We follow the Proof of Theorem 2 in Ref. 3. From the proof of Theorem 3.3,
we know that the relation (3.23) holds for s = 1. Therefore the set
{273 ¢3 sk € T3} U{2794j 1,5 > 3,k € J;} (3.32)

is a wavelet basis of the space H} (0,1). From (2.6), (3.6) and (3.9) there exist
nonzero constants Cy and Cy such that

12 < Wil a0y < Cy27, for j>3, keJj, (3.33)
and

0123 < |¢3xk|Hé(SZ) < 0223, fork € Zs. (334)
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Let b = {ass, kezg}u{ iked > 3, kzejj} be such that

~ 12 n
Hb”2 =Y @+ Y By<c (3.35)

kETs ke€T;,5>3
We define
asp = _ Pk g bip= 20k i3 keg,  (336)
2(0,1) |1/’j$k|H5(o,1)
and b = {as, k€ I3} U{bjr,j >3, k€ J;}. Then
B
[bll, < 712 < 0. (3.37)

Since (3.32) is a Riesz basis of H{ (0,1) there exist constants C3 and Cy such

that
Cslblly < |3 a2 0ss+ Do b2 k| <Cillbly. (339)
keTs keJ;,i=3 H}(0,1)
Therefore
Cy ||+ -3 —J
o [Bll, = Colbl > | > asi20si+ 30 b2l (3:39)
1 keZs keJ;,j=3 H}(0,1)
a b
o PNt DR
ez, 1?3kl (0,1) k€J;,i>3 3.k HE(0,1) HL(0,1)
and similarly
Cs |1e a b
53 O3k 4t y — 3 ik . (3.40)
> 4(0,1) kT3 oD H3(0,1) =

It is known' 16 that an orthogonalization of the scaling functions on the coarsest
level can lead to improved quantitative properties of the resulting wavelet basis.
Therefore, we define the set

g = {p3}, k€ I3} (3.41)
by
Pyt =K 13, K= (D3, P3). (3.42)
Then the set of scaling functions ®$™ is orthonormal and
gort .= o3t U U U, (3.43)
7j=3

is a wavelet basis of the space L? (0,1) and its appropriate rescaling is a wavelet
basis of the space Hg (0,1).
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4. Multivariate wavelets

We present two well-known constructions of multivariate wavelet bases on the unit
hypercube.?? They are both based on tensorizing univariate wavelet bases and pre-
serve Riesz basis property, locality of wavelets, vanishing moments and polynomial
exactness.

4.1. Anisotropic construction
For notational simplicity, we denote
Yo 1= qﬁgr,ﬁ, ke Jy:=1 (4.1)
and
T ={0,k), j =2 keJ}. (4.2)
Then we can write
U = {Yjx, 22, k€ T} ={vr, A€ T} (4.3)

Recall that for A = (4, k) we denote |\| = j. We use u®v to denote the tensor product
of functions u and v, i.e. (u ® v) (x1, z2) = u (x1) v (xz2). We define multivariate basis
functions as:

Ua=0L 0y, A=0,..., ) €ed, J=J'=T0...0J. (4.4)

Since ¥t is a Riesz basis of Ly (0,1) and ¥°" normalized with respect to H'-

seminorm is a Riesz basis of Hj (0, 1), the set

U= {ihx, X € I} (4.5)
is a Riesz basis of Ly (), 2 = (0,1)%, and its normalization
{w Ac J} (4.6)
|7/’>\|H1((0,1)d)
is a Riesz basis of H} (Q2). The set
Woml= L, A= (A1, .., M), [N <2+ s} (4.7)

is a finite-dimensional approximation of W™,

4.2. Isotropic construction
We define for j > 3 and k = (kq, ... kq) multivariate scaling functions:

Pix = Q1 0jik, (4.8)
and

10 = {1, k= (k... ka), ki €L, i=1,...,d}. (4.9)
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For e € {0,1} we define

¢j ky, €= 07
— 4.10
Vik {1ﬂj,k, e=1. ( )
We denote the index set:
Ij e=0
= ) ’ 4.11
i { Jj,e=1. (4.11)
For k = (k1,...kq) and e = (ey,...,eq) we define multivariate functions
1/)]'71(79 = ®g=1wj1ki75i (412)

and the set of wavelets on the level j as

Ui = {40 ki € Tje,, € € B}, where E = {0,1}*\ {0}. (4.13)
It is known that then the set
Vo = 050U Wi (4.14)
j=3

is a wavelet basis of Ly (Q) and its normalization with respect to the H' (£2)-
seminorm is a Riesz basis of H} (). The set

2+s
e =opeu | wie (4.15)
j=3

is a finite dimensional approximation of W#s°,

5. Quantitative properties

In this section, we present the condition numbers of the stiffness matrices for the
following elliptic problem:

—eAu+au=f on Q, u=0on0dN, (5.1)

where A is the Laplace operator, € and a are positive constants. The variational
formulation for an anisotropic wavelet basis is

Aaniuani — fa,m’ (52)
where
Aani — <vq/ani7 v\I/ani> +a <\I/ani7 \I/ani> , (53)
U= (uani)T \I,ani fam' — <f \I,ani> .

An advantage of discretization of elliptic equation (5.1) using a wavelet basis is that
the system (5.2) can be simply precondtioned by a diagonal preconditioner.'® Let
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D be a matrix of diagonal elements of the matrix A, i.e. Dy, = A ,0x ., Where
0, denotes Kronecker delta. Setting

Aani . (Dani)_1/2 Aani (Dani)_l/Q’ (5.4)
qant .— (Dani)1/2 i fani . (Dam)*l/? fpani
we obtain the preconditioned system Aoanigani — fani Tt is known'® that
cond A" < C' < oo. (5.5)
Let
AN = ¢ (VU TPty 4 (P gty (5.6)
= (ugm)"wen, g (f e

s

ani

Uy

and let D¢ be a matrix of diagonal elements of the matrix A¢™, i.e. (DI"), Ly =
(Agni)%lt 6>\’M‘ We set

Agni — (Dgni)_l/2 Agni (Dgni)_l/Q’ (57)

ﬁani = (D;znz) 1/2 uani7 f-;znz = (Dznz) -1/2 f;znz

s - s
and obtain preconditioned finite-dimensional system
Armiaint = £, (5.8)

Since Agm is a part of the matrix A" that is symmetric and positive definite, we
have also

cond A% < C. (5.9)
The preconditioned system for an isotropic wavelet basis

Alsogito — fiso (5.10)
is derived in a similar way. The stiffness matrix A% also satisfies

cond A%*° < C. (5.11)

The eigenvalues and condition numbers of the stiffness matrices for one-dimensional
problem are shown in Table 1. We denote the stiffness matrix for the bases ¥ and
Ut preconditioned as in (5.7) by A, and Ag"” ¢ respectively. The consequence
of Remark 1.1 is that the condition number with respect to the H'-seminorm of
the multiscale wavelet basis ¥, normalized with respect to the H!'-seminorm is
equal to the square root of the condition number of the stiffness matrix A,. The
eigenvalues and condition numbers of the stiffness matrices for two-dimensional and
three-dimensional problems are shown in Table 2 and Table 3. Table 1, Table 2 and
Table 3 correspond to the choice of parameters e = 1 and a = 0, i.e. for the Poisson
equation.

In Table 4 and Table 5 a dependence of the condition number on the parameter
€ is shown. It is computed for the two-dimensional problem and ¢ = 1. It can be
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Table 1. The maximal eigenvalues, the minimal eigenvalues and the condition numbers numbers
of the matrices A2"% and A, of the size N x N corresponding to the one-dimensional problem.

N oot oxort  condAS™ Npar Amin  condAg

S max min

1 17 4.03 5.56 2.89 19.83 T7.74 2.89
2 33 5.55  5.60 2.78 2135 7.79 2.78
3 65 6.85 5.61 2.78 2213 781 2.78
4 129 8.00 5.62 2.78 22.66 7.81 2.78
5 257  9.01 5.62 2.78 23.03 7.82 2.78
6 513 991 5.62 2.78 2330 7.82 2.78
7 1025 10.68 5.62 2.78 2349 782 2.78
8§ 2049 11.35 5.62 2.78 23.63 7.82 2.78

Table 2. The maximal eigenvalues, the minimal eigenvalues and the condition numbers of the
stiffness matrices A2 and A%%° of the size N x N corresponding to the two-dimensional problem.

N \eni ani COIldAZ’ni N\iso \iso COIldAi.SO

S max min max min

1 280 246 0.15 16.2 3.21  0.06 51.6
2 1089 267 0.14 19.2 3.27  0.06 58.4
3 4225 280 0.12 23.8 3.29 0.06 58.8
4 16 641  2.88 0.10 29.6 331 0.06 59.0
5 66 049 292 0.08 354 331 0.06 59.2
6 263 169 294 0.07 411 332 0.06 59.2
7 1058841 295 0.06 46.3  3.32  0.06 59.3
8§ 4231249 296 0.06 509  3.32  0.06 59.3

Table 3. The maximal eigenvalues, the minimal eigenvalues and the condition numbers of the
stiffness matrices A%™* and A%°° of the size N X N corresponding to the three-dimensional problem.

s N g and condA™  \iso Aise, cond A%°
1 4913 394 0.07 58.2  6.34 0.01 829.3
2 35937 447  0.05 88.0 6.47 0.01 8714
3 274 625  4.77  0.04 1254  6.52  0.01 879.5
4 2146689 5.01 0.03 181.2  6.56  0.01 883.0
5 16974593 5.12  0.02 250.7  6.56  0.01 885.0

seen that if € increases the condition number become close to the condtion number
of the stiffness matrix for the Poisson problem and if ¢ decreases than the condition
number become close to the condition number of Grammian matrix with respect
to the L2-inner product, i.e. the case ¢ = 0 and a = 1. The condition numbers are
even significantly lower than condition numbers for one-dimensional problem and
periodized biorthogonal wavelets, see Tables in Ref. 22.
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Table 4. Condition numbers of the stiffness matrices A%5° of the size N X N for various values of
e corresponding to the two-dimensional problem .

s N =10 e=1 e=10"% e=10"" €=0
1 289 51.6  51.6 145.3 393.1 393.1
2 1 089 584 584 146.7 4478 4478
3 4225 58.8  58.8 146.8 471.3 4714
4 16 641 59.0  59.0 146.8 484.0 484.0
5 66 049 59.2  59.2 146.8 491.1 491.1
6 263 169 59.2  59.2 146.8 494.8 494.9
7 1058 841 59.3  59.3 146.8 496.8 496.9
8 4231249 59.3  59.3 146.8 497.8 497.9

Table 5. Condition numbers of the stiffness matrices A%"¢ of the size N x N for various values of
€ corresponding to the two-dimensional problem .

s N €=10° e=1 e=10"% e=10"7 €=0
1 289 16.2  16.2 15.1 16.2  16.2
2 1 089 19.2 19.2 19.0 30.8 308
3 4225 23.8 238 23.5 46.9  46.9
4 16 641 296  29.6 29.4 63.9 63.9
5 66 049 35.6 355 35.4 81.2 81.3
6 263 169 413 411 41.1 98.0 98.1
7 1058 841 46.4  46.3 46.3 113.6 113.9
8 4231249 51.0 51.0 51.0 127.2  128.9

6. Numerical example

The constructed wavelet basis can be used for solving various types of problems.
Let us mention for example solving partial differential and integral equations by
adaptive wavelet method.%” In this section we use constructed wavelet basis in
wavelet-Galerkin method. We consider the problem (5.1) with Q = (0, )% e=1
and a = 0. The right-hand side f is such that the solution u is given by:

u(z,y)=v(@)v(y), v@) =z(l-e"7). (6.1)

We discretize the equation using Galerkin method and the isotropic wavelet basis
constructed in this paper and we obtain discrete problem Ai*°u, = fi%°. We solve
it by conjugate gradient method using a simple multilevel approach:

1. Compute A% and fi*°, choose v of the length 92.

2. For j =0,...,s find the solution u; of the system A;s"ﬁj = f'}s" by conjugate
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gradient method with initial vector v; defined for j > 1 by

N 1~lj,1,i:].,...,kj7
(Vﬂ)_{ 0, i=Fkj ... ki1, (6:2)

where k; = (2j+2 + 1)2.

A criterion ||r;|| < €;, wherer; := Aésoﬁj—f}'s", is used for terminating iterations
of conjugate gradient (CG) method at level j. It is possible to choose smaller ¢;
on coarser levels,’® but in our case we choose €; constant for all levels, because
other choices of €; did not lead to significantly smaller number of iterations in our
experiments. The method for anisotropic wavelet basis is similar.

We denote the number of iterations on the level j as M. It is known?? that one
CG iteration requires O (N) floating-point operations, where N x N is the size of the
matrix. Therefore the number of operations needed to compute one CG iteration
on the level j requires about one quarter of operations needed to compute one CG
iteration on the level j + 1, we compute the total number of iterations by

s
M;
D 0: s (6.3)
i

The results are listed in Table 6 and Table 7. The residuum is denoted rg, u is the
exact solution of the given problem and ug is an approximate solution obtained by
multilevel Galerkin method with s levels of wavelets. It can be seen that the number
of conjugate gradient iterations is quite small and that

lus —ulloe  Mus —ull 1 (6.4)

lussr —ulloe ™ lluses —ul ~ 16

i.e. that order of convergence is 4. It confirms the theory.

Table 6. Number of iterations and error estimates for multilevel conjugate gradient method for
isotropic wavelet basis.

s N M sl flus —ullo llus —ull
1 280 17.00  1.00e-6 1.02¢-5  2.95¢-6
2 1089 17.06  1.51e-7 6.95e-7  2.49e-7
3 4225 1675  1.29¢-8 4.83¢-8  1.61e-8
4 16641 1531  1.78e9 2.87¢-9  9.92-10
5
6
7

66 049 14.48 1.59e-10 1.79¢-10  6.18e-11
263 169 12.77 3.21e-11 1.12e-11  3.77e-12
1058 841 12.16 3.1le-12 1.38e-12  6.45e-13
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Table 7. Number of iterations and error estimates for multilevel conjugate gradient method for
anisotropic wavelet basis.

s N M el lus —ully  [lus —uf
1 289 9.25 8.15e-6 1.03e-5 2.97e-6
2 1089 11.13 1.16e-6 7.10e-7 2.49e-7
3 4225 1142 1.33e-7 4.91e-8 1.62e-8
4 16 641 12.05 1.32e-8 2.90e-9  9.93e-10
5 66 049 12.14 1.31e-9 1.76e-10  6.20e-11
6 263 169 11.95 1.32e-10 1.14e-11  3.78e-12
7 1058841 11.98 1.46e-11 1.24e-12  6.01e-13
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1 Introduction

A general concept for solving of operator equations by means of wavelets was
proposed by A. Cohen, W. Dahmen and R. DeVore in [8,9]. It consists of the
following steps: transformation of the variational formulation into the well con-
ditioned infinite-dimensional problem in the space 12, finding of the convergent
iteration process for the I2— problem and finally a derivation of its computable
version. The aim is to find an approximation of the unknown solution u which
should correspond to the best N-term approximation, and the associated com-
putational work should be proportional to the number of unknowns. Essential
components to achieve this goal are well conditioned wavelet stiffness matrices
and an efficient approximate multiplication of quasi-sparse wavelet stiffness
matrices with vectors.

In [8], authors exploited an off-diagonal decay of entries of the wavelet stiff-
ness matrices and designed a numerical routine APPLY which approximates
the exact matrix-vector product with the desired tolerance ¢ and that has lin-
ear computational complexity, up to sorting operations. The idea of APPLY
is following: To truncate A in scale by zeroing a; ; whenever 6(i,j) > k (¢
represents the level difference of two functions in the wavelet expansion) and
denote resulting matrix by Ag. At the same time to sort vector entries v with
respect to the size of their absolute values. One obtains vy by retaining 2*
biggest coefficients in absolute values of v and setting all other equal to zero.
The maximum value of k£ should be determined to reach a desired accuracy of
approximation. Then one computes an approximation of Av by

W= AkV0+Ak_1(V1 —v0)+...+A0(vk—vk_1) (1)

with the aim to balance both accuracy and computational complexity at the
same time. In [16], binning and approximate sorting strategy was used to
eliminate these sorting costs and then an asymptotically optimal algorithm
was obtained. The idea is following: Reorder the elements of v into the sets
Vo, ..., Vg, where vy € V; if and only if

21 [IV][2 < v < 271 V], 0<i<yg.

Eventual remaining elements are put into the set V. And subsequently to
generate vectors vy by stccessively extracting 2F elements from U, V4, starting
from V{ and when it is empty continuing with V; and so forth. Finally the
scheme (1) is applied. Further improvements of this scheme were proposed in
[4,12]. Although the APPLY routine has optimal computational complexity,
its application is relatively time consuming and moreover it is not easy to
implement it efficiently.

It is well known, that condition numbers of stiffness matrices in wavelet
coordinates depend on Riesz constants of a wavelet basis. Before we explain
it in more detail, we start with a definition of a wavelet basis. We consider
here families ¥ = {¢x, A € J} C L2(0,1) of functions (wavelets) where J is
an infinite index set and J = J¢ U Jy, where Jg is a finite set representing
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scaling functions living on the coarsest scale. Any index A € J is of the form
A = (4, k), where |A| = j denotes a scale and k denotes spatial location. The
above notation enables us to write wavelet expansions as

AW =" daia.

reJ

At last, for s > 0 the space H® will denote a closed subspace of the Sobolev
space H*® (0, 1), defined e.g. by imposing homogeneous boundary conditions at
one or both endpoints, and for s < 0 the space H® will denote the dual space
H?® := (H~*)". ||.|| g will denote the corresponding norm. Further lo(7) will
denote the space consisting of the power summable sequences and ||. |, (7, will
denote the corresponding norm.

A family ¥ = {4y, A € T} C La(0,1) is called a wavelet basis of H® for
some 7,7 > 0 and s € (—7,7), if

— ¥ normalized in H* is a Riesz basis of H*, that means ¥ forms a basis of H*
and there exist constants cs, Cs > 0 such that for all b = {bx},.; € l2 ()

holds bathy
Cs ”b”lz(J) = Z oAl <C; Hb”lQ(J)’ 2)
reJ MiHs Hs
inf Cs .
where sup ¢,, inf Cy are called Riesz bounds and cond (¥) := = is
sup ¢

called the condition number of ¥.

— Functions are local in the sense that diam (supp ) < C2~1M forall A € 7,
where C' is a constant independent of \.

— Functions ¥y, A € Jy, have cancellation properties of order m, i.e.

/ () (@) da

<27 M ol gy, Vo€ H™(0,1).

It means that integration against wavelets eliminates smooth parts of func-
tions and it is equivalent with vanishing wavelet moments of order m.

We consider here the following Dirichlet problem

d
0%u

I
Ox?

i=1

=f in 2=(0,1)¢ with u=0 on 90 (3)

for given f € H~1 (£2). A Riesz wavelet basis for H} (£2) can be constructed by
a tensor product of univariate Riesz wavelet bases. Indeed, let W = {\, A € T}
be after appropriate normalization a Riesz wavelet basis for spaces L2(0, 1) and
H}(0,1) then

d
o= {w = EmP jd} (4)

B ||®?:1%m H(2)
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is a Riesz basis for Hg (£2) (see [14]) with the Riesz constants (see [12])

2
min (co, e1) ¢ Bl[7 gy < || D batha < max (Cy, C1) C§ |67, 7o
Aegd Hl(Q)

(5)
Vb €l (J d) , where constants cg, Cy, ¢1, C are Riesz constants with respect
to spaces Lo and Hi, respectively. Writing

u=uTW = Z uxx  and  f = [f(¥a)]aegas

Aegd

then an equivalent formulation of (3) is
Au=f (6)
with
A=D"'"M®..oM+S®..M+--+M®...®8),

where D = diag [H®?=1¢M Hl(Q)L\eJ‘i » and
1 1
g { 9P O dm} and M= {/ Ux dx} @
; 9z O e 0 ANueT

are the one-dimensional stiffness and the mass matrices, respectively. Then (5)
implies
max (Cp, C1) C41

d—1

cond (A) < —
min (¢g, ¢1) €5

In general case, let us assume, that we have the following variational prob-
lem: for given f € H’ find u € H such that

a(u,v) = f(v) Yv e H, (8)

where H is a Hilbert space and a is a continuous bilinear form. Then, we define
the operator A: H — H' by

A(u)(v) = a(u,v) Vv € H,

and then (8) is equivalent to
A(u) = f. 9)

If a is H—elliptic, then there exist positive constants c4, C4 such that
calvlly <A@ < Callvlly  YveH. (10)

Moreover, we will assume that we have a suitable wavelet basis ¥ of the space
‘H normalized in H with Riesz constants ¢, C' and we define A = a (¥, ¥) and
f=f(¥), then

Alu) = f — Au=f,
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where v = uT ¥, and
C?Cy

cond (A) < ey

Proof can be found in [1].

Thus we can conclude that it is useful to develop well conditioned wavelet
bases on the interval. Well conditioned wavelet basis for different types of
wavelets and for different types of boundary conditions were already con-
structed in [2,3,5,6,15]. In this paper, we construct a wavelet basis based
on Hermite cubic splines with respect to which both the mass matrix and
the stiffness matrix corresponding to one dimensional Poisson equation are
sparse. This means that the number of nonzero elements in any column is
bounded independently of matrix size while stiffness matrices in wavelet coor-
dinates are usually only quasi sparse. Then, matrix-vector multiplication can
be performed exactly with linear complexity for any second order PDEs with
constant coefficients. Moreover, the proposed basis is very well conditioned
for low decomposition levels. Small condition numbers for low decomposition
levels and a sparse structure of stiffness matrices are kept for any second or-
der PDEs with constant coefficients, which are well conditioned in the sense
of (10), and moreover they are independent of the space dimension. Wavelets
with similar properties were already proposed in [13]. Our wavelets generate
the same multiresolution spaces as wavelets from [13] but have improved con-
dition numbers.

The paper is organized as follows: in the second section, we describe our
construction, in the third section, we prove that the constructed basis is a
Riesz basis and in the last section, we present condition numbers for model
problems and compare them with condition numbers for a similar wavelet basis
proposed in [13].

2 Cubic Hermite multiwavelets

We start with Hermite cubic splines as the primal scaling bases on interval.
They are defined by

(x+1)2(1-22) —-1<2<0 (x+1)2%z -1<2<0
dr(r) =< (1—-2)2Rr+1) 0<z<1 |, go(x)=¢ (1—-2)22x 0<z<1
0 otherwise 0 otherwise

or as a solutions of following scaling equations:

61(x) = 56122 + 1)+ 61(20) + 2128 — 1) + 56222 + 1) — Sha(2 1),

ba(x) = fé¢1(2x P4 é¢1(2x _1)- é¢2(2x+ 1)+ %@(23:) - é¢2(2m _1).
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x x

Fig. 1 The Hermite cubic splines ¢; and ¢2.

Forn > 1, let V,, be the space of piecewise cubic splines v € C1(0,1)NC|[0, 1]
for which v(0) = v(1) = 0. The dimension of V,, is 2"*! and the set

én = {¢1(2nx 7]) : .7 = 17"'72n - 1} U {(252(2’"’5(j 7j)|[0,1] : .] = 0’7271}

is a basis for V,,. Let W,, be the complement space of V,, in V;,41 then we have
the following decomposition of space Hg(0,1)

HY0,)=ViaoW, e Wa®d W@ ....

We construct four wavelets in such a way that wavelets from the space
W41 are orthogonal to the scaling functions from the space V;, for n > 1. This
property ensures that both the mass and stiffness matrices corresponding to
the one-dimensional Laplacian have at most three wavelet blocks of nonzero
elements in any column and then the number of nonzero elements in any
column is bounded independently of matrix size. The first two wavelets have
supports in [—1, 1] and are uniquely determined by their orthogonality to cubic
polynomials and by imposing that the first one is odd and the second one is
even:

V(@) = 61(22+ 1) — (22— 1) + 379(;52(2x+ 1)+ g@m) + ?@(Qx 1),

() = —%¢1(2$+ 1) + 1 (20) %qﬁl(Qaj Sy %(ﬁg(?x )4 1745@(% ~1).

The second two wavelets have supports in [—2,2]. And we impose on them
again the above orthogonality condition which will be ensured by requiring
that they are orthogonal to cubic polynomials on intervals [—2,0] and [0, 2],
respectively. Again one of them should be odd and the second one even. There
remains several free parameters. To obtain a more sparse stiffness matrix and
a better conditioned wavelet basis, we use these free parameters to prescribe
the orthogonality of the first derivative of constructed wavelets to the first
derivative of the first two wavelets. We obtain these two wavelets:
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-1 -05 0 05 1 -1 -05 ) 05 1
x

Fig. 2 The first two wavelets 11 and 2.

Vs(z) = f%m@x +3) 4 §¢1(2x +2) - %obl@x +1) + 61 (22)
7%@(% 1)+ §¢1(2:c _9) - %@m _3)
f%@@x 34 %qﬁg@x +2) - 1252541 (22 + 1)
+%¢2(2x Sy %@(gx o)+ %@m _3),

Uala) = 01 (24 3) — 2 (204 2) + gy (24 1)
163 19 7
—%%(21' -1+ %%(295 -2) - Eqbl(Q:v -3)
%252(2z +3) - %@(% +2)+ 3—5¢2(2x +1) + 5¢a(22)

33 25 12
+7¢2(2$ —-1) - E(ZSZ(QQJ —-2)+ 7(252(2% -3),

2 -15 -1 -05 0 05 1 15 2 -2 -15 -1 -05 ) 05 1 15 2
x

Fig. 3 The second two wavelets ¥3 and 4.
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Then a basis of the space W, is defined by

v, = {2
ntl n . . n—1

u{2 P2 —2j): j=1,...,2 —1}

ntl n . . n—
u{2 F (2 — 20 G =0, .02 1}.

n+1

Tahy (2" — 25 — 1), 2" hy(2hw —2j — 1)1 j=0,.., 2" — 1}

Now, we would like to improve condition numbers of the constructed wave-
let basis and to preserve or improve a sparse structure of the stiffness matrix
corresponding to the one-dimensional Laplacian and a sparser structure of
the mass matrix, respectively. We modify boundary scaling functions at the
coarsest level and also wavelets at the coarsest level. A span of new functions
will be the same as a span of original functions. First, we modify both boundary
scaling functions ¢o(21)[[0,1] and ¢2(22z —2)|[0,1] at the coarsest level in such a
way that new boundary functions will be orthogonal to functions ¢ (2z — 1)
and ¢2(2x — 1), and moreover they also will be also mutually orthogonal. And
we obtain

4

p3(x) = §¢2($ + Dlj=1,1 + ¢2(z) + g@(w = Dl=1,1,

¢4(.I‘) = 712(;52(.1‘ + 1)|[,171] + ¢1(.73) + 12(]52(.1‘ - 1)|[,171].

-1 -05 0 05 1 -1 -05 ) 05 1

Fig. 4 The modified boundary scaling functions ¢3 and ¢4.

Now a basis of the space V; is defined by
By = {6122 — 1), 6a(22 — 1), 0322 — 1), 6u(22 — 1)}

To further improve condition numbers of the constructed basis, we con-
struct new basis functions for the space Wi. The first two wavelets will be
orthogonal to scaling functions from the space Vi, will not depend on the
boundary scaling functions from the space V5 and one of them will be odd and
the second one even. We obtain these two wavelets:

8793

Ys(2) = 1 Q-+ 1)~ 61 (20) 41 22— 1)+ S (204 1)~

331 662

(;52(225—1),
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Yol(w) = ~61(20+1) 461 (20— 1) = 22 02+ 1) = 2 62(20) = - P a (20 1),

-1 -05 o 05 1 -1 -05 [ 05 1

Fig. 5 The first two modified wavelets ¢5 and 1g.

The second two wavelets will be again orthogonal to scaling functions from
the space V7 and moreover will be orthogonal to the first two newly constructed
wavelets. Again one of them will be odd and the second one even. Then we
obtain:

Yr(e) = 12w +1) = 6122 — 1) — 26500 + 9|1y — S a(20 4 1)

21
68 275 144

_ 6947 o1(22) 2137
Pg(z) = 39022 (#1224 1)+ ¢1 (22 — 1)) + w03 6(22 + 2)|_1 1
925327 95327 9137
_mﬁbz(% +1)+ 14232¢2(29c -1+ 593 G222 — 2)[[—113,

-1 -05 0 05 1 -1 -05 0 05 1

Fig. 6 The second two modified wavelets 7 and 1)g.

Now a basis of the space W is defined by
Uy = {5 (22 — 1), P6(22 — 1), (2 — 1), (22 — 1)}
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and a basis of the space H{(0,1) is defined by

oo
=30t ;. (11)
Jj=2
A sparsity patterns for the mass matrix M and for the one dimensional stiffness

matrix S, respectively, defined in (7) can be seen in Figure 2. In the next
section, we prove that it is a wavelet basis.

20
nz = 760

Fig. 7 Nonzero elements of the mass matrix M and the stiffness matrix S.

3 Properties of the constructed basis

To proof that the constructed basis forms a Riesz basis of the space H}(0,1),
we use the following theorem from [13] which summarizes results from [10,11]:

Theorem 1 Let jy be the coarsest level and let
Viy CVjor1 C ... C Lo(0,1),  Vjy C Vjyr1 C ... C Ly(0,1)
be sequences of primal and dual spaces with
dimVj = dimﬁj

such that for uniform L(0,1)—Riesz bases @ and ;ﬁj for Vi and \7]-, respec-

tively,
ively o
<@j’¢j>L2(o,1)

exists with a uniformly bounded spectral norm. In addition, for some 0 < vy < d,
let (Jackson or direct estimate)

inf [|v—v;llr,001) S 277 [0]|3a00,1) vu e 74(0,1),
v; €V

and (Bernstein or inverse estimate)

vl 0.) S 2°Wv5lla0) Vo5 € V5, s €[0,7),
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where, for s € [0,d], H*(0,1) = [Lg(O,l),Hd(O,l)ﬂH&(OJ)L/d, and let
similar estimates be walid at the dual side with Vj,d,v,H*(0,1) reading as
Vi, d,7,H?(0,1). And let ¥; be uniform Ls(0,1)—Riesz bases for W; := V1N
7 LL2(0.1)

; , then for s € (—7,7) the collection

b5, U | 2799054,
JjeEN

is a Riesz basis for H*(0,1), where H*(0,1) := (H°(0,1))" for s < 0.

C' < D means that C' can be bounded by a multiple of D independently
of parameters on which they may depend. Let V; := V; and let the basis for
both spaces be

o, = {\/ﬁgﬁ)l@x —1),V105 ¢ (22 — 1), V135 ¢3(22 — 1), ¢4 (2 — 1)} .

Then
1000

~ = 0100
<¢17¢1>L2(0,1) 10010
0001

And for 7 > 1, let ‘7] be the space of piecewise cubic functions on inter-

vals [k2791 (k+1)279%1] for k = 0,...,277! — 1. Then dimension of ‘73 is

apparently 277! and from the construction immediately follows that W; =

Viei N XZJ‘LQ(O’D. Now, we construct uniform L3 (0, 1)—Riesz bases ¢; and {5]-
—1

for spaces V;, and I7j, respectively, such that <Q5j, 5j> o exists with a uni-
L(0,1

formly bounded spectral norm. It means that Riesz bounds are independent
of j.

Theorem 2 There exists uniform Lo(0,1)— Riesz bases @ and 4:)]- for'Vj and

~ -1
Vi, respectively, such that <©j, 45j>L o exists with a uniformly bounded spec-
2 )

tral norm.

Proof. We start with functions ¢;(2x), ¢2(2z), ¢1(22 — 1), and ¢o(22 — 1)
which span the space of C*(0,1) cubic splines on the interval [0, 1] and with
functions 51() = (2—1/2)"|jp,1) for i = 0,1,2, 3 which span the space of piece-
wise cubic functions on [0, 1]. Further we apply a number of transformation at
the both bases to obtain a sparse and strictly diagonally dominant matrices

<€I>j7 §]> . We keep the functions
L(0,1)

a1(2e — 1) == 1 (22 — 1) and ag(2x — 1) := 6¢2(22 — 1)

which are supported in the interval [0, 1].
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-1 -05 0 05 1 -1 -05 ) 05 1
x

Fig. 8 The first two primal basis functions a1 and aa.

In the second step, we construct the first two dual basis functions in a
such a way that these new dual basis functions are orthogonal to the first
two primal basis functions. Moreover the first new dual function is a linear
combination of even polynomials while the second one is a linear combination
of odd polynomials. After appropriate normalization, we obtain

Bu(x) = <3 — 30 (x - ;>2>

[0,1]

and

-4

TR R
L S S S T SR

-6
0 02 0.4 06 08 1 0 02 04 06 08 1

Fig. 9 The first two dual basis functions 81 and Sa.

In the third step, we construct the second two new primal basis functions as
a linear combination of functions ¢, (2x), ¢2(2x), ¢1(22—1), ¢2(22—1), ¢1 (22—
2), and ¢2(2x — 2) in such a way that these new primal basis functions are
orthogonal to dual functions g1 (), B2(x), f1(z — 1), and Ba(z —1). Moreover,
we require that the first new primal basis function is even with respect to the
point x = 1, and the second one is odd with respect to the point x = 1. We
obtain

a3(2z) == ¢1(22) + 41 (20 — 1) + $1 (22 — 2)
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and 16
ay(2x) = ¢o(22) + gqﬁg(Qx — 1)+ ¢2(22 — 2).

-1 05 0 05 1 15 2 25 3 -1 05 ) 05 1 15 2 25 3

Fig. 10 The second two primal basis functions a3 and ay.

In the fourth step, we construct the second two new dual basis functions as
a linear combination of functions ¢;(z) and ¢;(x + 1) for i = 0,1,2,3 in such
a way that these functions are orthogonal to functions ay (22 — 1), a2z — 1),
a1(2z 4+ 1), and as(22 4+ 1). Moreover, we require that the first new dual basis
function is orthogonal to functions ay(2z — 1), ay(2z + 1), and ay(22 + 3)
and the second one is orthogonal to functions as(2z — 1), ag(2z + 1), and
as(2x + 3). After appropriate normalization, we obtain

1 1 1\? 1\*
ﬁg(l‘),—14 (1+10< 5)—30(x+§> —140<x+2>>‘
[~1,0]
1 1\? 1\
= (1= B - - 14 -
4( :c ) 30(9@ 2> + 0(;1: 2))
[0.1]

—5 1+5 30 ~+12 105 +13
T 28 ? 2 Y Ty
[~1,0]
1 1\? 1\
1 —-) -1 -
( + 2)+30<x 2) 05(35 2>>

Then for j > 1, we define collections of functions

- {\/2171044(2%: +1)|pa), V2T (22 — 1), V2T Tan (22 — 1),
V2i-lag(27z — 1), V2i—lay(27x — 1), V2i~1a; (272 — 3),
V2i-lay (272 — 3),...,V2i~1ay (202 — 27 4 1),

V2iTon(2a — 27 +1),V2iLay(2z — 2 + 1)|[0,1]} :

and

[\

L3
T o8

(0,1]
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-1 -05 0 05 1 =1 -05 ) 05 1

Fig. 11 The second two dual basis functions 83 and B4.

and

;= {\/F (2| VRITIB(T ), VRTTTB(2 ),

V2i=183(20 e — 1), V2i=13,(27 e — 1), V2i-15, (27 1o — 1),
V2I=18y(2 7 e —1),...,V2I—16 (2071w — 2771 4 1),
[0,11}'

V2185 (207 g — 2971 1), V20158, (207 gy — 2971
From the construction directly follows that span ¢; C V;, and span 5]- C
V;, respectively and we can check that #&; = dimV;, #&; = dimV}. Fur-
thermore from the local supports and the normalization of the basis func-
tions, one can easily verify that spectral radii of matrices (®;,®;)

L2(0,1) and

<5j7 5j>L o are bounded uniformly in j and then we have for any vector c;
2(0,1

of the appropriate size HC_jTSijLQ(O,l) < |lejlli, and HCJ-TQPJ-HLQ(OJ) S leilli,-

-
o
(=)
o

<¢2’52>L2<0,1> -

=
=
;‘Loo»—t ooo;“
o
=

Fig. 12

From the regular structure of matrices <¢j,5j> o (see Figure 12 and
Lo(0,1
13) immediately follows that their eigenvalues are contained in the interval
[% — ﬁ, 1+ %] = [%, %} and then inverse matrices exist with a uniformly
bounded spectral norm.
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1000 57000 0000 0000

0100 0000 0000 0000

0010 0000 0000 0000

0001 0005 0000 0000

000 1000 $£000 0000

0000 0100 0000 0000

0000 0010 0000 0000

=~ 0005 0001 0005 0000
<¢37¢3>L2(0,1)_ 000104;—41000 100161;—41000
0000 0000 0100 0000

0000 0000 0010 0000

0000 0005 0001 0000

0000 0000 $£000 1 005

0000 0000 0000 0100

0000 0000 0000 0010

0000 0000 0000 T£00 3

Fig. 13

From this property and from HC?@jHLz(OJ) < llejlli,, we have from [13]
that

,, ¢,7§.> <,
<CJ < 3 Pj L2(0,1)Cj>l2

Gl S ||(2.8;) &l = sup
[1€51le2 H D7 pa01) ! I, ©#0 I les
Ty =TH
T c,.©v>
- < i B L2(0,1) < ~T 5 . |‘cf¢J‘ |L2(071)
= sup S I€j @5l La0,0) sup ——F——=———
o0 el eto Il

S 1€ D511, 0,1)

and similarly from HﬁféﬁjHLQ(OJ) < €], we have ||cjll, S ||CJ.T§Z5]'||L2(071).

Thus, we constructed uniform L (0,1)—Riesz bases &; and 5]- for spaces Vj,

~ -1
and V}, respectively, such that <¢j, q§j> ( exists with a uniformly bounded
L(0,1

spectral norm. 0

It remains to prove that constructed wavelets form uniform L (0, 1)—Riesz

= 1 Ls(0,1
bases for W; :=V; N Vj712( ),

Theorem 3 Collections of functions @1 and ¥; for j > 1 form uniform
L2 (0, 1)—Riesz bases for the space W1 and Wj, respectively.

Proof. Due to the orthogonality of functions from @1, they apparently form
uniform Ly (0, 1)—Riesz bases for W;. For j > 1, we can numerically check
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that matrix

107179 264659 —1756 19 —=37501 84241
137200 617400 5145 140 137200 617400
264659 38971 =620 53 —84241 578
617400 154350 3087 630 617400 8575

—1756 —620 704 0 1756 —620
<W W> ) R 5145 3087 343 5145 3087
Jr I L (2797 1,279) 19 5 138 19 —53 ’
140 630 28 140 630
—37501 —84241 1756 19 107179 —264659

137200 617400 5145 140 137200 617400

84241 578 —620 —53 —264659 38971
617400 8575 3087 630 617400 154350

which includes only wavelets with nonzero support in the interval (Q’j “lo-d ),
is positive definite. The same matrix will be obtained in any interval in the form
(k27771 (k+1)277 ") fork=1,...,27" —2 For k=l and k =271 — 1, we
obtain similar matrix, where the first row and column will be deleted for k = 1
and the fifth row and column for k& = 277! — 1. These smaller matrices are
also positive definite. Consequently any matrix (¥;, ¥;) L2(0,1) €A1 be composed
from these small matrices and its the smallest eigenvalue can be bounded by
the smallest eigenvalue of the small matrix and the largest eigenvalue can
be bounded by double of the largest eigenvalue of the small matrix. Then
by using the same arguments as in the last paragraph of the previous proof,
we can conclude that collections of functions ¥; form uniform Ly (0, 1)—Riesz
bases for the spaces W; for j > 1. (]

Now, we can apply Theorem 1. It is well-known [7] that a direct estimate of
order d is satisfied when all polynomials of order d satisfying possibly boundary
conditions are included in the space Vj,, while an inverse estimate of order ~y
is known to hold with v = r + % when spaces V; are spanned by piecewise
smooth C"(0,1) functions for some r € {—1,0,1,...}, where » = —1 means
that no global continuity is satisfied. For constructed basis, we have d = d= 4,
v = g, and ¥ = % Then Theorems 1, 2, 3 imply the following results.

/a7 for s € [0,4]

Theorem 4 Let H*(0,1) = [LQ(O7 1), H4(0,1) N HL(0, 1)}5
%, %), the collection

and H*(0,1) := (15(0,1))" for s < 0. Then for s € (—
Oy U275 UjZ227%W; is a Riesz basis for H*(0,1).

Especially, the constructed basis, when normalized in Lo (0, 1) or H'(0,1),
forms a Riesz basis for Ly(0,1) and H'(0, 1), respectively.

4 Condition numbers

In this section, we provide condition numbers of one-dimensional stiffness ma-
trices S and condition numbers of mass matrices M (see (7)) for different
decomposition levels. Basis functions are normalized in L2 (0, 1) or in H1(0,1),
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respectively:
TN ! dx
S — 0 9z Oz and M = f() 1/))\ wu

W}/\|H1(0,1) |¢;L‘H1(o,1) HU)/\HLQ(O,I)H¢M||L2(0,1)

A pedg \ued

And we compare condition numbers with condition numbers for a similar
wavelet basis proposed in [13]. Results are summarized in Table 1.

DS NEW
n COND L, CONDH! COND L, COND H!
4 7.0 1.7 1.0 2.6
8 15.2 4.4 1.0 2.9
16 24.3 5.5 6.3 3.7
32 32.0 5.8 12.7 4.4
64 37.3 6.2 18.8 4.8
128 41.2 6.6 24.4 5.1
256 44.1 6.8 29.3 5.3
512 46.3 6.9 33.6 5.4
1024 48.1 7.0 37.2 5.5
2048 49.5 7.1 40.4 5.5
4096 50.7 7.1 43.1 5.5

Table 1 Condition numbers of matrices M and S.

Further, we consider here the following Dirichlet problem
d_ 92
_287121:]( in £2=(0,1) with w =0 on 91
i=1 O;

for given f € H™1 (£2) in two and three dimensions. A Riesz wavelet basis for
H} () can be constructed by a tensor product of univariate Riesz wavelet
bases. We consider here two options: an isotropic and an anisotropic tensor
product. Isotropic wavelets arise as a tensor product of univariate wavelets
and scaling functions from the same decomposition level. Then e.g. in two
dimensions, we have these three types of wavelets

Gik DY, ik @b, ik @Y,

where ¢; 1, is a scaling function on the level j and 1);; is a wavelet on the same
level. For a definition in arbitrary dimensions, we refer to [17]. Anisotropic
wavelets were already introduced in (4). Then e.g. in two dimensions, wavelets
will be of the form

wj,k ® wl,mv

where ;1 and vy, are wavelets generally on different levels. Therefore their
supports can be arbitrarily anisotropic. In all cases, we use a normalization of
basis functions in H'— seminorm. In Tables 2 and 3, we summarize condition
numbers of stiffness matrices in two and three dimensions. We again compare
them with condition numbers for a similar wavelet basis proposed in [13].
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DS NEW

n isotropic  anisotropic  isotropic  anisotropic
16 11.7 11.7 2.6 2.6
64 57.8 57.8 2.9 2.9
256 82.8 103.9 28.4 16.7
1024 90.2 144.0 49.8 43.4
4096 94.0 180.4 59.8 68.5
16384 95.4 213.4 66.1 92.9
65536 95.9 239.2 69.8 117.1
262144 96.1 259.6 72.2 138.7
1048576 96.2 281.0 73.7 158.1

Table 2 Condition numbers of stiffness matrices for d = 2.

In all tables, n represents the number of basis functions, NEW denotes
new wavelets, and finally DS denotes wavelets proposed in [13]. Obtained re-
sults confirm that condition numbers of stiffness matrices are on the first two
decomposition levels small and independent of the spatial dimension.

DS NEW
n isotropic  anisotropic  isotropic  anisotropic
64 81.7 81.7 2.6 2.6
512 812.0 812.0 2.9 2.9
4096 1383.0 2329.0 366.7 100.3
32768 1537.5 4297.5 764.3 517.8
262144 1595.8 6147.1 1022.0 1212.6
2097152 1611.3 7994.3 1159.2 2125.2

Table 3 Condition numbers of stiffness matrices for d = 3.
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