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Abstract

Graphs are a formalism well suited to model many types of relations and
processes from various areas – from road networks to computer programs
to complex biological systems. Having a graph as a model, we would natu-
rally like to solve problem like finding a shortest path between two vertices
in the case of the road networks. For many of these problems, like the short-
est path, there are indeed well-known efficient algorithms. However, many
other problems on graphs are NP-hard or worse.

One way to obtain efficient algorithms for such problems is to restrict
the class of input graphs. Graph width measures, the best known example
being treewidth, provide us with just such a restriction. The famous result
of Courcelle states that every property expressible in monadic second-order
logic is decidable in linear time on graphs of bounded treewidth. Results
like Courcelle’s theorem are called often algorithmic meta-theorems, as they
can quickly tell us that a problem can be solved efficiently.

In this thesis I describe some of my contributions to the area of algo-
rithmic meta-theorems and graph width measures. Each algorithmic meta-
theorem has two ingredients: a logic and a class of structures. The logics
we are interested in this thesis are the well known first-order and monadic
second-order logics. As for the input structures, the research included in this
thesis branches into two directions. The first one is the area of width mea-
sures, where one of my main goals has been to find a good width measure
for directed graphs. Parity games, which can be viewed as labelled directed
graphs and are closely related to yet another logic, modal µ-calculus, are
also discussed. The other branch of research is concerned with obtaining ef-
ficient results for dense graphs, i.e. graphs with “many” edges. Unlike for
sparse graphs (and graphs of bounded treewidth are sparse), not much is
known about dense graph model checking.

The thesis is structured as a collection of published articles with a com-
mentary. This commentary serves multiple purposes. It briefly introduces
the research area, places our results in context of earlier (or, where appro-
priate, later) works, and summarizes my contribution.
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1 Introduction

In mathematics, graph theory considers graphs to be relational structures
consisting of objects, called vertices, any two of which may be in some sense
pairwise “related” (this relationship is modelled by putting an edge between
two such vertices). Graphs come in many forms and flavours, depending
on the kind of relationship we intend to model – they can be directed or
undirected, edge or vertex labelled etc. Over the time graphs proved to be an
ideal formalism to model many types of relations and processes in various
fields, including computer science, biology, chemistry, social sciences, and
electrical engineering.

To give just a few examples, in chemistry graphs can naturally model
molecules, where atoms are vertices and edges the bonds between them.
In sociology, graphs are used to model and study social networks. In chip
design graphs model the different components of a chip and the signal
paths between them, whereas in travel graphs can describe road or flight
networks.

But modelling and description is only the first part. Once we have the
model, we would like to know answers to questions like “what is the fastest a
combination of at most three connecting flights which will get me from Brno,
Czech Republic, to Huntsville, Alabama?” Finding efficient algorithms to
answer such questions is one of the primary goals of computer science.

For many problems definable on graphs we know elegant and efficient
algorithms, which perform well in practice. Among the well-known algo-
rithms of this kind are, e.g., the algorithms for finding the minimum span-
ning tree (Borůvka’s algorithm from 1926 [12] can be made to run in time
𝒪(m · log n), where n is the number of vertices and m the number of edges),
or algorithms for finding single source shortest paths (Dijkstra’s algorithm
can be made to run in time 𝒪(m + n · log n)). See, e.g., [18] for a reference.

Unfortunately, many other graph problems turn out to be NP-hard [43].
Some of the better known problems in this category are problems like
Longest Path (finding a simple path of maximum length), Vertex Cover
(finding a set of vertices such that each edge is incident to at least one vertex
in this set), Dominating Set (finding a set of vertices such that each vertex
not in this set is adjacent to a vertex in the set) or Hamiltonian Path (find-
ing a path which visits each vertex exactly once), itself a special case of the
well known Travelling Salesman Problem. Their NP-hardness suggests that
most likely there are no efficient algorithms for these problems.
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1. Introduction

Fortunately, the situation is not so bleak. If, instead of all graphs, one
restricts the input instances to just trees, many of these problems become
trivially solvable in polynomial time. This intuition was generalized in the
very successful concept of graph treewidth, which was introduced in the con-
text of the Graph Minors project by Robertson and Seymour [86, 87]. Almost
immediately after its introduction, treewidth turned out to be very useful
for efficiently solving many graph problems (including NP-hard ones). In a
nutshell, treewidth measures tree-likeness of a graph. Trees themselves, for
example, have treewidth one and series-parallel graphs have treewidth two.
Many graphs occurring in practical applications have small treewidth. This
comes as no big surprise as one often deals with hierarchical structures that
are inherently similar to trees. Examples include problems in VLSI design,
evolution theory, interval routing, and the control-flow graphs of structured
programs. See [8, 10, 11, 51] for surveys. Following on the heels of treewidth
came many other “width measures” for undirected graphs, the most suc-
cessful ones probably being clique-width [20, 22] and rank-width [83].

While treewidth has been very successful, it is a property of undirected
graphs. What about directed graphs, which often occur in practice? One
can, of course, just forget the orientation of edges and apply the concept of
treewidth directly to digraphs. However, with this simplistic approach we
seem to ignore too much. For example, in directed acyclic graphs (DAGs) it is
easy to find a longest path. Nevertheless, DAGs have unbounded treewidth
if we forget the edge directions.

In the search for a “truly directed” width measure inspired by treewidth
several suggestions have been made, starting with directed treewidth [55],
and being complemented few years later by several new approaches includ-
ing directed path-width [3], entanglement [6], D-width [88], DAG-width [81,
4, 5](defined by the author of this thesis) and Kelly-width [52].

Among the many problems which one may want to solve on a class of
graphs the model checking problem, which asks whether a logical formula
holds true on a given graph, holds a special place as a fundamental problem
in computer science. The reason is that finding an efficient algorithm for the
model checking problem automatically establishes efficient solvability for
whole class of problems – those expressible in the given logic. Results of this
kind are nowadays called algorithmic meta-theorems – see [64] for a survey.

For the well-known first-order logic (FO) the model checking problem
is known to be PSPACE-complete when the formula is part of the input,
and polynomial-time solvable when the formula is fixed in advance. How-
ever, once restricted to graphs of bounded treewidth, the situation changes
dramatically. Famous theorem of Courcelle [19] states that every property
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1. Introduction

definable in monadic second-order (MSO) logic (which subsumes FO) can
be checked in linear time on graphs of bounded treewidth. Another well-
known result, by Courcelle, Makowski and Rotics [21], asserts that the same
conclusion holds for graphs of bounded clique-width when quantification
is restricted to vertices and their subsets.

The question is for which graph classes (or, more generally, classes of
input structures) can we obtain similarly efficient algorithms as in the two
cases above? Both these algorithms run in time f (|ϕ|) · nc, where ϕ is the
input formula and c is a constant independent of the formula. We call such
algorithms fixed-parameter tractable (FPT). (See [26] for a thorough treatment
of parameterized complexity.) Over the past decade this line of research
has been very active and led to several important results on (mainly) undi-
rected graphs, which culminated in the recent result of Grohe, Kreutzer and
Siebertz [49] stating that FO model checking is fixed-parameter tractable on
all nowhere dense classes of graphs, the most general known class of sparse
graphs.

On the other hand not much is known about the complexity of the FO
model checking problems on dense classes of graphs. However, with the
completion of the sparse graphs project by [49], this field has recently started
to attract the attention of researchers [40, 41, 13, 36, 34, 35].

In addition to the model checking problem for FO and MSO, another
problem has a special place in this thesis – the problem of solving (finding
the winner) parity games. These are infinite, two player games played on
a directed graph labelled by natural numbers. See Section 2.5 or [80, 46] for
more detail. There are several reasons why parity games deserve their place.
First, the problem of solving parity games is equivalent to the µ-calculus
model checking problem. µ-calculus is one of the most important logics in
systems verification, subsuming most of the other logics used for this pur-
pose. Moreover µ-calculus is the bisimulation-invariant fragment of MSO.
Second reason is the intriguing complexity-theoretic status of the problem.
We know that solving parity games is in NP∩co-NP, but membership in P
is unknown. This has been a long-standing important open problem in the
area. Thirdly, parity games are played on labelled digraphs, and therefore
the task of finding a winner is a natural digraph problem. The fourth reason
is that this problem was instrumental to stimulating research into digraph
width measures – the introduction of both DAG-width [81, 4, 5] and Kelly-
width [52] was motivated by the need to find a large class of digraphs on
which parity games can be solved in polynomial time. The final reason for
including the problem of solving parity games in this thesis is a personal
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1. Introduction

one: it was this problem which gradually made me switch to doing research
in the areas described in this thesis.

Thesis organization and my contribution We start with Chapter 2 which
introduces basic concepts and terminology of graphs and logic required in
the rest of the thesis. In Chapter 3 we introduce the undirected width mea-
sures of treewidth and clique-width, including our results on lower-bounds
for MSO1 model checking [42]. A polynomial algorithm for parity games on
graphs of bounded treewidth [79] is also presented there.

Next we turn our attention to width measures for directed graphs. Chap-
ter 4 discusses the most important digraph width measures, with a focus on
my notion of DAG-width [81, 5]. Also the hardness of MSO1 model check-
ing on directed graphs [38] is discussed here, together with an algorithm for
parity games on graphs of bounded (directed) clique-width [82]. Since nei-
ther DAG-width nor other digraph width measures have all the nice proper-
ties of treewidth, in Chapter 5, recounting results from [39], we investigate
whether any such measure can actually exist.

Finally in Chapter 6 we discuss the current state in the FO model check-
ing of dense graphs, showing the existence of FPT algorithms for inter-
val graphs, partially ordered sets, and graphs interpretable in the class of
graphs of bounded degree. This chapter contains our recent results for in-
terval graphs [41], partially ordered sets [36, 34] and graphs interpretable in
graphs of bounded degree [35].
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2 Preliminaries

2.1 Graphs

We use standard graph theoretic notation (see, e.g., [25]). The graphs (both
undirected and directed) that we consider in this thesis are simple, i.e. they
do not contain loops and parallel edges. Given a graph G, we let V(G) de-
note its vertex set and E(G) denote its edge set, if G is undirected. We usually
denote a directed graph (digraph) by D and its arc set by A(D). Given a di-
rected graph D, the underlying undirected graph U(D) of D is an undirected
graph on the vertex set V(D) and {u, v} is an edge of U(D) if and only if
either (u, v) ∈ A(D) or (v, u) ∈ A(D). A digraph D is an orientation of an
undirected graph G if U(D) = G. If H is a sub(di)graph of G, then we denote
this fact by writing H ⊆ G.

For a vertex pair u, v of a digraph D, a sequence P = (u = x0, . . . , xr = v)
is called directed (u, v)-path of length r > 0 in D if the vertices x0, . . . , xr are
pairwise distinct and (xi, xi+1) ∈ A(G) for every 0 ≤ i < r. A directed cycle
is defined analogously with the modification that x0 = xr. A digraph D is
acyclic (DAG) if D contains no directed cycle.

2.2 Logics on graphs

In this section we informally introduce the logics we will consider in this
thesis. For a more thorough and formal treatment we refer the reader to,
e.g., [28].

In order to express graph properties using logic, we shall view graphs
as finite relational structures (i.e. without functional symbols) consisting of
a finite set, the domain, and of a collection of relations over the domain. A
simple graph G can be represented as a relational structure in two major
ways; either as the domain V(G) with the binary adjacency relation between
its vertices, or with the domain formed by a disjoint union of V(G) and E(G)
and the binary relation being the incidence between vertices and edges. For
the logics FO and MSO1 we will consider the former, while the latter will be
useful in the context of the MSO2 logic.

We start by defining the first-order logic (FO) of undirected graphs first.

Definition 2.1 (FO language). The language of FO on graphs contains the logical
expressions that are built from the following elements:

∙ variables x, y, x1, . . . , xk for elements (vertices)
∙ the adjacency predicate adj(x, y),
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2. Preliminaries

∙ equality for variables, the connectives ∧,∨,¬,→,
∙ vertex quantification ∀x, ∃x .

Notice that FO can deal width both graphs and digraphs, simply depend-
ing on whether the adjacency relation is symmetric or not. For clarity, we
replace the relational symbol adj(u, v) with arc(u, v) when dealing explicitly
with digraphs.

The set of well-formed FO formulas and the semantics are given in the
usual way. A decision graph property 𝒫 is FO-definable if there exists an FO
formula ϕ such that 𝒫 holds for an arbitrary graph G if and only if G |= ϕ,
i.e., ϕ holds on G.

Example 2.2. For undirected graphs, the property of each vertex having a degree
at most two can be expressed by the following closed FO formula

∀x, y1, y2, y3. adj(x, y1)∧ adj(x, y2)∧ adj(x, y3) =⇒ y1 = y2 ∨ y2 = y3 ∨ y3 = y1

An example of a graph property which is not FO-definable is the prop-
erty of being 3-colourable. To increase the expressive power, we introduce
a restricted version of second-order quantification – over the subsets of the
domain. This way we obtain so called monadic second-order (MSO) logic. De-
pending on the domain, there are two variants of this logic: MSO1 and
MSO2.

We start with the logic MSO1 first. This logic extends the FO logic by
allowing quantification over the sets of vertices, in addition to quantification
over vertices (and therefore also edges) already present in FO.

Definition 2.3 (MSO1 language). The language of MSO1 on graphs contains the
logical expressions that are built from the following elements:

∙ variables x, y, x1, . . . , xk for elements (vertices)
∙ variables X, Y, X1, . . . , Xk for sets of vertices
∙ the predicates adj(x, y) and x ∈ X,
∙ equality for variables, the connectives ∧,∨,¬,→,
∙ vertex quantification ∀x, ∃x and vertex set quantification ∀X, ∃X.

The semantics and other notions are again defined in the usual way. The
greater expressive power of MSO1 allows us to define properties which are
not FO-definable:

Example 2.4. For undirected graphs, the property of being 3-colourable can be ex-
pressed by the MSO1 formula

∃V1, V2, V3
[
∀v (v ∈ V1 ∨ v ∈ V2 ∨ v ∈ V3) ∧

∧
i=1,2,3

∀v, w (v ̸∈ Vi ∨w ̸∈ Vi ∨¬ adj(v, w))
]
.
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2. Preliminaries

The most general extension of FO we consider is the MSO2 logic. Here
we allow quantification not only over sets of vertices, but also over sets of
edges. To do so, we must extend our domain to also contain the edges (as
discussed above). In addition, we swap the predicate adj(x, y), expressing
that two vertices are adjacent, for the incidence relation predicate inc(x, e):

Definition 2.5 (MSO2 language). The language of MSO2 on graphs contains the
logical expressions that are built from the following elements:

∙ variables x, y, x1, . . . , xk, e, e1, . . . , el for elements (vertices and edges)
∙ variables X, Y, X1, . . . , Xk for sets of vertices and edges
∙ the predicates inc(x, e) and x ∈ X,
∙ equality for variables, the connectives ∧,∨,¬,→,
∙ element quantification ∀x, ∃x and set quantification ∀X, ∃X.

As an example of a property not expressible in MSO1, but expressible
in MSO2, is existence of a Hamiltonian path. (The basic idea behind the for-
mula expressing Hamiltonicity is stating that there exists a set of edges form-
ing a path and visiting each vertex exactly once.)

Logics with labels Sometimes it is useful to consider graphs equipped
with labels (sometimes called colours) from some finite set Γ. (The labels can
be attached to vertices and/or edges.) In logic these labels can be naturally
modelled by unary predicates. We use the notation MSO2-Γ to denote such
an extension of the logic MSO2.

2.3 Model checking and parameterized complexity

Since we can use logic to express graph properties, the obvious problem is
whether we can algorithmically check whether a graph satisfies given for-
mula. I.e., given a graph G and a formula ϕ, we would like to determine
whether G |= ϕ. Here G |= ϕ is read as “G models ϕ” or “ϕ holds on G”,
and the process of testing this statement is called model checking.

Definition 2.6 (The model checking problem). The model checking problem
for a logic ℒ and a class of structures 𝒞 is the following decision problem: Given a
formula ϕ of ℒ and a graph G ∈ 𝒞, decide whether G |= ϕ. We denote this problem
MC(ℒ, 𝒞). If 𝒞 is the class of all graphs, we write just MC(ℒ).

Most of the research on algorithms for FO model checking has focused
on graphs. For general graphs there is a naive brute-force algorithm that

9



2. Preliminaries

takes as an input an n-vertex graph G and a formula ϕ and determines
whether G |= ϕ in time nO(|ϕ|) by enumerating all the possible ways to
instantiate the variables of ϕ. On the other hand, the problem is PSPACE-
complete (see e.g. [45]) and encodes the Clique problem1. Therefore the
problem admits no algorithm with running time f (ϕ)no(|ϕ|) for any function
f [71], assuming the Exponential Time Hypothesis [53] (ETH). Thus, assum-
ing the ETH, the naive algorithm is the best possible, up to constants in the
exponent. Furthermore, FO model checking remains PSPACE-complete on
any fixed graph containing at least two vertices (again, see [45]). Hence, it
is futile to look for restricted classes of graphs in which FO model checking
can be done in polynomial time without restricting ϕ.

For that reason research has focused on obtaining algorithms with run-
ning time f (ϕ)nO(1) on restricted classes of graphs (and other structures).
While such algorithms are not polynomial-time algorithms, due to unlim-
ited f , they nevertheless significantly outperform brute-force. To capture
these differences in running times it is handy to make use of the framework
of parameterized complexity.

Parameterized complexity Following Downey–Fellows [26], a parameter-
ized problem 𝒬 is defined as a subset of Σ×N0, where Σ is a finite alphabet
and N0 = N ∪ {0}. The following is folklore:

Definition 2.7 (parameterized tractability, [26]). A parameterized problem 𝒬
is fixed-parameter tractable if there is an algorithm that given ⟨x, k⟩ ∈ Σ × N0

decides whether ⟨x, k⟩ is a yes-instance of 𝒬 in time f (k) · p(|x|), where f is some
computable function of the parameter k alone, p is a polynomial and |x| is the size
measure of the input. The class of fixed-parameter tractable problems is denoted by
FPT.

Furthermore, let XP denote the class of parameterized problems 𝒬 that admit
an algorithm running in time 𝒪(|x| f (k)) for some computable function f , i.e. with
polynomial run-time for every fixed value of the parameter k. We refer to such an
algorithm for 𝒬 as to an XP-time algorithm with respect to k.

Looking back at the FO model checking problem, in the parameterized
setting it can be expressed as follows:

MC(FO, 𝒞) Parameter: |ϕ|
Input: A first-order sentence ϕ and a graph G ∈ 𝒞.
Question: Is it true that G |= ϕ, i.e., is G a model of ϕ?

1. To determine, given a graph G and k ∈ N, whether G contains a clique of size k.

10
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For a logic ℒ and a graph class 𝒞 the problem MC(ℒ, 𝒞) is

a) in FPT if there is an algorithm that for G ∈ 𝒞 decides whether G |= ϕ in
time f (|ϕ|) · nc, where n = |G| and c is a constant independent of ϕ, or

b) in XP if such algorithm runs in time 𝒪(n f (|ϕ|)).

2.4 LinEMSO optimization problems

The model checking problem is a decision problem – given a graph G and
a formula ϕ, we ask whether G |= ϕ. However, in practice the problems
we want to solve are actually optimization problems (e.g. computing maxi-
mum dominating set). With a bit of extra work, logic can be used to describe
such problems. Using the logic MSO, one obtains e.g. the class of LinEMSO
optimization problems [2, 21]. Here we present the simpler definition of
LinEMSO1 as given in [21], while the LinEMSO2 is defined along the same
lines. Consider any MSO1 formula ψ(X1, . . . , Xp)with free set variables, and
state the following problem on an input (di)graph G:

opt
{

flin(W1, . . . , Wp) : W1, . . . , Wp ⊆ V(G), G |= ψ(W1, . . . , Wp)
}

,

where opt can be min or max, and flin is a linear evaluation function. It is

flin(W1, . . . , Wp) =
p

∑
i=1

m

∑
j=1

(
ai,j · ∑

x∈Wi

f j(x)

)
(2.1)

where m and ai,j are (integer) constants and f j are (integer) weight functions
on the vertices of G. Typically flin is just the cardinality function.

Example 2.8. The Maximum Independent Set problem can be expressed as

ψ(X) ≡ ∀v, w
(
v ̸∈ X ∨ w ̸∈ X ∨ ¬ edge(v, w)

)
with flin(X) = max(|X|).

Example 2.9. The Minimum Directed Dominating Set problem can be expressed
as

ψ(X) ≡ ∀z
(
z ∈ X ∨ ∃x ∈ X. arc(x, z)

)
with flin(X) = min(|X|).

11



2. Preliminaries

2.5 Modal µ-calculus and parity games

Modal µ-calculus, introduced by Kozen [63], is an extension of propositional
modal logic with least fixpoint operator µ and greatest fixpoint operator
ν. (We do not give a full definition here and refer the reader to [46] for a
thorough treatment.) It is used to describe properties of labelled transition
systems2 (e.g. safety, liveness or termination) and can therefore be used in
modelling and verification of both software and hardware systems. Its im-
portance is further signified by the fact that it subsumes most of the the
other temporal logics used for these purposes – e.g. CTL* and its fragments
LTL and CTL (see, e.g., [17, 46]). Modal µ-calculus can also be evaluated on
graphs, using the well known Kripke semantics. As to its expressive power,
it has been shown that µ-calculus is the bisimulation-invariant fragment of
MSO [54].

Example 2.10. The formula ϕ below is true in every vertex (state) s.t. all paths
starting at this vertex contain a vertex labelled p:

µZ.p ∨�Z

The problem of determining, given a system 𝒜 and a µ-calculus formula
ϕ, whether or not 𝒜 satisfies ϕ can be turned into a parity game – see e.g. [46,
80] (the converse is also true). Parity game is an infinite two-player game
played on a directed graph where the vertices are labelled by priorities (from
the set N). The players take turns pushing a token along edges of the graph.
The winner is determined by the parity of the least priority occurring in-
finitely often in this infinite play. We refer the reader to author’s thesis [80]
or [46] for a thorough treatment of parity games.

The exact complexity of solving parity games is an open problem that
has received a large amount of attention. It is known [29] that the problem
is in NP ∩ co-NP (even UP ∩ co-UP [56]), but no polynomial-time algorithm
is known. The early algorithms, e.g. [74], had an exponential run-time de-
pendence on the number of priorities. There were several improvements
(e.g. [57]), but it was only in 2003 when the first truly sub-exponential al-
gorithm appeared – the randomized algorithm by Björklund et al. [7], with
the complexity bounded by 2𝒪(

√
n log n). In 2006 Jurdziński et al. [58] came

with a very simple deterministic sub-exponential algorithm of complexity
roughly matching the upper bound of the randomized algorithm. Lacking

2. Labelled transition systems are basically directed graph with edges labelled by a finite
set of labels. One way to think about them is consider them as graph with multiple edge
relations, one per each label.
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any substantial progress research in this area focused on various subclasses
of game graphs (see, e.g., our contribution in [79, 5, 82]). A very recent signif-
icant progress is the first known FPT (when parameterized by the number
of priorities) algorithm for parity games by Calude et al. [15]. However the
existence of a polynomial-time algorithm is still open.
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3 Undirected graph width measures

3.1 Treewidth

If one looks for graph classes where MSO model checking can be done effi-
ciently, it is perhaps natural to start with the class of all trees (for which the
efficient algorithm is straightforward). The next step is to consider “tree-like”
graphs, i.e. graphs which are sufficiently close to being a tree to allow for effi-
cient model checking. The parameter of treewidth, introduced in the context
of the Graph Minors project by Robertson and Seymour [86, 87], turned out
to be just such a concept.

Definition 3.1 (treewidth, [86]). A tree-decomposition of a graph G is a pair
(T,𝒳 ), where T is a tree and 𝒳 = (Xt)t∈V(T) is a family of subsets of V (called
“bags”) such that

∙
⋃

d∈V(D) Xd = V.
∙ for each edge e = uv ∈ E(G), there is t ∈ V(T) such that {u, v} ⊆ Xt,
∙ if t ∈ V(T), and if t′, t′′ ∈ V(T) are two nodes in distinct components of

T − t, then Xt′ ∩ Xt′′ ⊆ Xt (“interpolation”),

The width of (T,𝒳 ) is defined as max{|Xt| − 1 | t ∈ V(T)}. The smallest width
over all tree-decompositions of the graph G is the treewidth tw(G) of G.

It is not hard to check that the class of graphs of treewidth 1 is the class
of all forests, and the class of graphs of treewidth 2 is the well known class
of series-parallel graphs. To generalize this intuition, we can say the lower
the treewidth, the closer is a graph to being a tree.

We say that class of graphs 𝒞 has bounded treewidth, if there is a k ∈ N

such that for all G ∈ 𝒞 we have tw(G) ≤ k (we will implicitly assume a
similar definition for all other measures). Bodlaender proved in [9] that the
treewidth of a graph (and the witnessing tree-decompositions) can be com-
puted in FPT time.

Theorem 3.2 ([9]). There is an algorithm which, given a graph G, constructs a
tree-decomposition of k = tw(G) in time

2𝒪(k2) · |G|

One of the big reasons behind the popularity of treewidth is the fact,
that the MSO2 model checking problem can be solved efficiently on graphs
of bounded treewidth – the famous Courcelle’s MSO2 theorem:
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3. Undirected graph width measures

Theorem 3.3 (Courcelle’s MSO2 Theorem, [19]). The MSO2 model checking
problem is fixed parameter tractable when parameterized by the length of formula
and the treewidth of the input graph. I.e. given a graph G of width k and an MSO2

formula ϕ, the problem can be solved time f (|ϕ|, k) · |G|, where f is a computable
function.

The proof of Courcelle’s theorem involves a construction of bottom-up
tree automaton, which runs on the tree-decomposition of the graph.

Practical significance of Courcelle’s theorem Even though Theorem 3.3
seems to give us efficient algorithms for all problems expressible in MSO2,
in practice this is not really so. The catch here is the function f . As shown by
Frick and Grohe [33], this is not even an elementary function in the rank of
the formula ϕ. Therefore Theorem 3.3 is more often used to ascertain that an
FPT algorithm for a given problem exists, and a specific algorithm is then
designed by hand to solve the problem. Nevertheless, there have been sur-
prisingly successful attempts to implement Courcelle’s algorithm, most no-
tably [70].

Note that LinEMSO2 optimization problems can also be efficiently solved
on graphs of bounded treewidth:

Theorem 3.4 ([2]). For every integer t and MSO2 formula ψ, every ψ-LinEMSO2

optimization problem is fixed-parameter tractable on digraphs of treewidth t, with
the parameters t and |ψ|.

3.1.1 Game characterization of treewidth

One of the nice features of treewidth is its alternative characterization in
terms of a cops-and-robber game. This proved to be very useful, often sig-
nificantly simplifying some of the proofs. The characterization is possible
thanks to nice structural properties of treewidth.

The original cops-and-robber game was introduced in [90]. In this game
the robber stands on a vertex of the graph, and can at any time run at a great
speed to any other vertex along a path of the graph. He is not permitted to
run through a cop, however. There are k cops, each of whom at any time ei-
ther stands on a vertex or is in a helicopter. The goal of the player controlling
the cops is to land a cop via a helicopter onto a vertex currently occupied by
the robber, and the robber’s objective is to elude capture. (The point of the
helicopter is that cops can move anywhere in the graph but, while moving,
they do not interfere with the robber.) The robber can see the helicopter land-
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3. Undirected graph width measures

ing and may run to a new vertex before it actually lands. See e.g. [39] for a
formal definition.

The following theorem (often called the treewidth duality theorem) relates
cops-and-robber games and treewidth:

Theorem 3.5 ([90]). Graph G has treewidth k iff the minimum number of cops
required to win the cops-and-robber game is k + 1.

3.2 Clique-width and Rank-width

As we have seen, for tree-like graphs, which are well captured by the notion
of treewidth, we can efficiently decide the MSO2 model checking problem.
Can we possibly get a similar result for a much richer class of graphs? Notice
that graphs of bounded treewidth are, by definition, sparse (i.e., they contain
relatively few edges compared to the number of vertices). This suggest we
should turn our attention to classes which contain cliques, the ultimate non-
sparse graphs. For cliques the model checking problem is trivial, since all
vertices are exactly the same. Building upon this intuition is the notion of
clique-width, introduced by Courcelle, Engelfriet and Rozenberg [20] (even
though the name “clique-width” itself was first used only later in [22]).1

Definition 3.6 (clique-width, [22]). Let k be a positive integer. A pair (G, γ) is a
k-labelled graph if G is a simple graph and γ : V(G)→{1, 2, . . . , k} is a mapping.
A k-expression is a well formed expression t built using the four operators defined
below. Let 1 ≤ i, j ≤ k. Then

∙ [i] is a nullary operator which represents a graph with a single vertex labelled
i,

∙ ηi,j, for i ̸= j, is a unary operator which adds edges between all pairs of vertices
where one is labelled i and the other is labelled j,

∙ ρi→j is a unary operator which changes the labels of all vertices labelled i to j,
and

∙ ⊕ is a binary operator which represents disjoint union of two k-labelled
graphs.

Each k-expression t naturally generates a k-labelled simple graph G = G[t]. The
smallest k such that there exists a k-expression generating G is the clique-width of
G.

1. Independently, Wanke [91] developed the notion of NLC-width, which is within a factor
of 2 of clique-width.
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It is not hard to show that cliques and complete bipartite graphs have
clique-width 2 (as indeed do all cographs). With some degree of vagueness
one can argue that clique-width measures how close a graph is to being a
complete bipartite graph. Moreover, while cliques can have arbitrarily high
treewidth, bounding treewidth also bounds clique-width, as witnessed by
the following theorem:

Theorem 3.7 ([22, 91]). Every graph of treewidth at most k has clique-width at
most 2k+1 + 1.

As for the model checking, Courcelle, Makowski and Rotics [21] proved
the following

Theorem 3.8 ([21]). The MSO1 model checking problem is fixed parameter
tractable on (any class of) graphs of bounded clique-width.

Notice that, compared to Theorem 3.3, we use less expressive logic,
MSO1, instead of MSO2. This is no accident. As was proved already in [21]
(see also [69] for an alternative proof), having an efficient algorithm for
MSO2 model checking on graphs of bounded clique-width is not possible
under standard complexity-theoretic assumptions.

Theorem 3.9 ([21], [69]). The MSO2 model checking problem on cliques is not in
XP, unless EXP = NEXP.

Similarly to treewidth, the MSO1 model checking result can be extended
to LinEMSO1 optimization problems:

Theorem 3.10 ([21]). For every integer t and MSO1 formula ψ, every ψ-
LinEMSO1 optimization problem is fixed-parameter tractable on digraphs of clique-
width t, with the parameters t and |ψ|.

Rank-width One of the drawbacks of clique-width is that it cannot be ef-
ficiently computed for a given graph (there is no clique-width counterpart
of Theorem 3.2.) Fortunately, there is the related notion of rank-width, de-
fined by Oum and Seymour [83], which keeps many desirable properties of
clique-width, while not suffering from this drawback.

It turns out that for graphs of bounded rank-width the decomposition
can be computed efficiently.

Theorem 3.11 ([50]). For every parameter t there is an O(n3)-time FPT algorithm
that, for a given n-vertex graph G, either finds a rank-decomposition of G of width
at most t, or confirms that the rank-width of G is more than t.
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As established already in the original rank-width paper [83], the rank-
width of a graph is bounded if, and only if, its clique-width is bounded.

Theorem 3.12 ([83]). Let G be a graph. Then

rw(G) ≤ cw(G) ≤ 2rw(G)+1 − 1

This theorem also, in fact, proves the existence of an efficient MSO1
model checking algorithm for graphs of bounded rank-width – via clique-
width and Theorem 3.8.

3.3 MSO lower bounds

As we have seen, Courcelle’s theorem (Theorem 3.3) is a fast and relatively
easy way of establishing that a problem can be solved efficiently on graphs
of bounded treewidth. However, one may ask how far this result could be
generalized. That is, is there another reasonable graph class of unbounded
treewidth such that MSO2 model checking remains tractable on this class?
In the previous section (Theorem 3.9) we have seen that the class of graphs of
bounded clique-width is already too rich for this to work. So we are looking
for a graph class strictly between treewidth and clique-width.

3.3.1 MSO2 lower bounds

The first “lower bound” to Courcelle’s theorem, by Makowski and Mariño,
appeared in [73]. In that paper the authors show that if a class of graphs has
unbounded treewidth and is closed under topological minors, then model
checking for MSO2 is not fixed-parameter tractable unless P = NP. More
recently, a stronger lower bound result by Kreutzer—not requiring the class
to be closed under minors—appeared in [65]. In that paper, Kreutzer used
the following version of “unbounding” the treewidth of a graph class:

Definition 3.13 (Kreutzer and Tazari [65, 66]). The treewidth of a class 𝒞 of
graphs is strongly unbounded by a function f : N→N if there is ε < 1 and
a polynomial p(x) s.t. for all n ∈ N there is a graph Gn ∈ 𝒞 with the following
properties:

i) the treewidth of Gn is between n and p(n) and is greater than f (|Gn|), and

ii) given n, the graph Gn can be constructed in time 2nε .

The degree of the polynomial p is called the gap-degree of 𝒞 (with respect to f ).
The treewidth of 𝒞 is strongly unbounded poly-logarithmically if it is strongly
unbounded by logc n, for all c ≥ 1.
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In other words, saying that treewidth of 𝒞 is strongly unbounded means
that

(i) there are no big gaps between the treewidth of witness graphs (those
certifying that the treewidth of n-vertex graphs in 𝒞 is greater than
f (n)), and

(ii) we can compute such witnesses effectively—in sub-exponential time
w.r.t. n.

The main result of [65] is the following theorem:

Theorem 3.14 (Kreutzer [65]). Let Γ be a fixed set of (at least two) colours, and
𝒞 be a class of graphs such that

(1) the treewidth of 𝒞 is strongly unbounded poly-logarithmically;

(2) 𝒞 is closed under Γ-colourings (i.e., if G ∈ 𝒞 and G′ is obtained from G by
colouring some vertices or edges by colours from Γ, then G′ ∈ 𝒞); and,

(3) 𝒞 is constructible (i.e., given a witness graph in 𝒞, a certain substructure can
be computed in polynomial time).

Then MC(MSO2-Γ), the MSO2 model checking problem on all Γ-coloured graphs
from 𝒞, is not in XP (and hence not in FPT), unless all problems in the polynomial-
time hierarchy can be solved in sub-exponential time.

This would, of course, mean that the Exponential Time Hypothesis
(ETH) [53] fails. The results of [65] have been improved by Kreutzer and
Tazari in [67], where the constructability requirement (3) was dropped. A
further improvement by the same authors appeared in [66]. The main result
in [66] can be stated as follows:

Theorem 3.15 (Kreutzer and Tazari [66]). Let 𝒞 be a class of graphs such that

(1) the treewidth of 𝒞 is strongly unbounded poly-logarithmically; and

(2′) 𝒞 is closed under taking subgraphs, i.e. G ∈ 𝒞 and H ⊆ G implies H ∈ 𝒞.

Then MC(MSO2), the MSO2 model checking problem on 𝒞, is not in XP unless all
problems in the polynomial-time hierarchy can be solved in sub-exponential time.

Note that (2′), to be closed under subgraphs, is a strictly weaker condi-
tion than previous (2), to be closed under Γ-colourings (of edges, too).
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3.3.2 MSO1 lower bounds

While Kreutzer and Tazari settled the extents of tractability for the MSO2

logic, the issue still remained open for the weaker logic MSO1. We therefore
decided to investigate this issue for MSO1 logic with a fixed set of vertex
labels [42]. The role of vertex labels in our paper is similar to that of colours
in [65, 67], but weaker in the sense that the labels are not assigned to edges.2
In contrast to the work by Kreutzer and Tazari, we assumed a different set of
problems—those expressible by MSO1-L on graphs with vertex labels from
a fixed finite set L —to be efficiently solvable on a graph class in order to
derive an analogous conclusion. Note that there exist classes 𝒞 of L-labelled
graphs of unbounded treewidth on which MC(MSO1-L), the MSO model
checking problem on 𝒞, is polynomial time solvable, e.g. classes of bounded
clique-width or rank-width (see Section 3.2). But it is important to realize
that these classes are not closed under taking subgraphs. The main result
of [42] is the following theorem:

Theorem 3.16 ([42]). Assume a (suitable but fixed) finite label set L, and a graph
class 𝒢 satisfying the following two properties:

a) 𝒢 is closed under taking subgraphs and under L-vertex-labelings,

b) the treewidth of 𝒢 is densely unbounded poly-logarithmically

Then MC(MSO1-L,𝒢), the MSO1-L model checking problem on all L-vertex-
labelled graphs from 𝒢, is not in XP unless the non-uniform Exponential Time
Hypothesis fails.

Densely unbounded treewidth The theorem above uses a different defi-
nition of unbounding than [65, 66]:

Definition 3.17 (Densely unbounded treewidth [42]). For a graph class 𝒢, we
say that the treewidth of 𝒢 is densely unbounded by a function g if there is a
constant γ > 1 such that, for every m ∈ N, there exists a graph G ∈ 𝒢 whose
treewidth is tw(G) ≥ m and |V(G)| < 𝒪

(
g−1(mγ)

)
. The constant γ is called the

gap-degree of this property.

Remark 3.18. Compared to Definition 3.13 one can easily check that if the treewidth
of a class 𝒢 is strongly unbounded by a function g, then the treewidth is densely

2. The reason we used the term labels, and not colours, is to be able to clearly distinguish
between vertex-labelled graphs and the coloured graphs used in [65, 67], where colours are
assigned to edges and vertices.
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unbounded by g with the same gap-degree, and the witnessing graphs G of Defini-
tion 3.17 can be computed for all m efficiently—in sub-exponential time w.r.t. m.
Hence the notion of being densely unbounded is weaker in this respect.

The use of of a different “unbounding” definition allowed us to simplify
the proofs, for the cost of using a stronger complexity-theoretic assumption,
namely the non-uniform ETH instead of the ordinary ETH.

Also our result applies to MSO1-L model checking on L-vertex-labelled
graphs, while the result of [66] applies to MSO2 over unlabelled graphs.
There are problems that can be expressed in MSO1-L and not in MSO2

and vice versa (take Red-Blue Dominating Set vs. Hamiltonian Cycle, for
instance). If, however, the set of labels L is fixed for both, MSO1-L has
much weaker expressive power than MSO2-L due to missing edge-set quan-
tifications. In particular, note that the efficient model checking results for
treewidth and clique-width (Theorems 3.3 and 3.8) that deal with MSO-
definable properties handle unlabelled as well as (vertex-)labelled inputs
with equal ease.

Moreover, if we assume that the label set L is potentially unbounded,
then we obtain a stronger result (getting us even closer to [66]):

Theorem 3.19 ([42]). MSO1-L model checking with vertex labels L (L depend-
ing on the formula size) is not tractable for a graph class satisfying (a) and (b)
of Theorem 3.16 unless every problem in the polynomial-time hierarchy is in
DTIME(2o(n))/SubEXP.

3.4 Undirected width as a measure of directed graphs

Even though the measures described in the previous sections were designed
as width measures of undirected graphs, there is nothing which prohibits us
from using them also on digraphs – we can just forget the orientation of the
edges. In the case of treewidth this works exactly as intended. E.g. to solve
the directed Hamiltonian path on graphs of bounded treewidth one can use
basically the same algorithm as for undirected graphs. The only modifica-
tion would be to check the orientation of each considered arc. Similarly Cour-
celle’s MSO2 theorem (Theorem 3.3) would hold for the oriented variant of
the MSO2 logic. (Which is obtained by replacing the predicate adj with arc.)

Parity games on graphs of bounded treewidth A good example of a prob-
lem where using an undirected width measure allows us to efficiently solve
a problem which is otherwise difficult to solve on general graphs is the prob-
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lem of finding a winner in a parity game (see Section 2.5 for definitions and
the relationship between parity games and modal µ-calculus).

To solve parity games (which are played on directed graphs) one may
be tempted to devise the following approach: Define the winner using an
MSO formula, and then apply Courcelle’s theorem [19] to this formula and
the input graph. The problem with this approach is that [19] considers the
formula to be fixed, whereas in parity games the size of the formula describ-
ing the winning condition depends on the number of priorities, which can
be as high as the number of vertices. Coupled with the non-elementary de-
pendence of the algorithm presented in [19] on the size of the formula (see
Section 3.1), we do not get an FPT algorithm.

Fortunately, this does not mean we cannot get an efficient algorithm by
other means. Using standard dynamic programming approach, in [79] I
was able to devise an FPT algorithm for solving parity games on graphs
of bounded treewidth:

Theorem 3.20 ([79]). Let 𝒢 be a parity game and 𝒯 a tree decomposition of 𝒢 of
width k. Then we can find the winner of the parity game 𝒢 in time 𝒪(n · (k + 1)2 ·
d2(k+1)2

), where n is the number of vertices of 𝒢 and d ≤ n the number of priorities.

My algorithm was many years later improved by Fearnley and
Schewe [30] to run in time 𝒪(n · kk+5 · (d + 1)3k+5).

For some measures forgetting edge orientation does not help Unlike the
case of treewidth discussed above, bounding the undirected clique-width or
rank-width of the underlying undirected graph does not generally help us
to solve directed graph problems.

Proposition 3.21. If P ̸= NP, then there exist MSO1-definable digraph properties
that have no XP-time algorithms with respect to undirected clique-width or rank-
width.

This follows from the observation that there exist directed problems
which are NP-complete even on tournaments (orientations of complete
graphs), i.e. on digraphs of undirected clique-width 2 and rank-width 1. If
such a problem had an XP-time algorithm, then this would immediately im-
ply P = NP. An example of this phenomenon is the problem of partitioning
a tournament into two acyclic subtournaments [16]: that problem is both
MSO1-definable and is NP-complete.

Proposition 3.21 is therefore in sharp contrast to the situation with
treewidth, where bounding the treewidth of the underlying undirected
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graph allows all the algorithmic machinery to work also on digraphs. A brief
informal explanation of this antagonism lies in the fact that a “bag” in a tree-
decomposition has bounded size and so there is only a bounded number of
possible orientations of the edges in it, while a single ηi,j (edge-addition) op-
eration in a clique-width expression creates a bipartite clique of an arbitrary
size which admits an unbounded number of possible orientations.
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4 Directed graph width measures

Despite treewidth being very successful, from both algorithmic and graph-
theoretic standpoint, width measure for undirected graphs, in early 2000’s
the situation was significantly different for directed graphs – there were
hardly any “useful” measures for these graphs. In this chapter I describe
our contribution to defining a good width measure for digraphs.

4.1 Early cops-and-robber based measures

Directed treewidth The first digraph width measure to be defined as a
directed counterpart of treewidth was the directed treewidth [55] of Johnson,
Robertson, Seymour and Thomas. This measure is defined so that directed
acyclic digraphs have width 0. The game characterization is the same as for
treewidth, with two important differences:

1. the robber must follow the direction of edges

2. the robber must stay in the same (cop-free) strongly connected compo-
nent

The formal definition of directed treewidth is somewhat unwieldy and
we therefore do not include it here and refer the reader to [55]. However we
include the (slightly loose) relationship between the number of cops needed
to catch the robber and the directed treewidth of a graph.

Theorem 4.1 ([55]). Let G be a graph. Then the directed treewidth of G (dtw(G)),
and the number of cops needed to catch the robber on G are within a factor of 3 of
each other.

On the algorithmic side the authors of [55] showed that on graphs of
bounded directed treewidth problems like Hamiltonian Path can be solved
in XP time.

Other early measures In 2004–2005 several new directed measures ap-
peared: directed pathwidth [3] (a direct counterpart to pathwidth of undi-
rected graphs), entanglement [6] and D-width [88]. These measures, for var-
ious reasons, never gained sufficient traction and we will not discuss them
in the rest of this thesis. Interested reader can find more information, e.g.,
in the thesis of Rabinovich [85].
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4.2 DAG-width

Trying to use directed treewidth to efficiently solve parity games (see Sec-
tion 2.5), I realized that this measure is, compared to (undirected) treewidth
too cumbersome to use. DAG-width, first published in [81], was my attempt
to fix some of the issues of directed treewidth. Independently, Berwanger,
Dawar, Hunter and Kreutzer came with exactly the same notion, which they
published in [4] just a few months after [81]. Not to further duplicate our ef-
forts we decided to produced the journal version of the paper together as [5],
and this version is now the authoritative reference.

One of the guiding ideas behind DAG-width was to design a measure
whose variant of directed cops-and-robber game most closely corresponds
to the (undirected) game for treewidth: The robber is visible to the cops, and
can move infinitely fast.

The definition of the DAG-width mirrors that of treewidth (cf. Defini-
tion 3.1).

Definition 4.2 (DAG-decomposition [5]). A DAG-decomposition of a graph
G is a pair (D,𝒳 ) where D is a DAG and 𝒳 = (Xd)d∈V(D) is a family of subsets
of V such that

(D1)
⋃

d∈V(D) Xd = V.

(D2) For all vertices d ⪯D d′ ⪯D d′′, Xd ∩ Xd′′ ⊆ Xd′ .

(D3) For all edges (d, d′) ∈ E(D), Xd ∩Xd′ guards X⪰d′ rXd , where X⪰d′ stands
for
⋃

d′⪯Dd′′ Xd′′ . For any root d, X⪰d is guarded by ∅.

The width of a DAG-decomposition (D,𝒳 ) is defined as max{|Xd| | d ∈ V(D)}.
The DAG-width of a digraph G, dagw(G), is defined as the minimal width of any
of its DAG-decompositions.

The new concept here is that of guarding.

Definition 4.3. Let G = (V, E) be a digraph and W, V ′ ⊆ V. Then W guards
V ′ if for all (u, v) ∈ E it is true that u ∈ V ′ implies v ∈ V ′ ∪ W.

This is directed counterpart of the following property enjoyed by
treewidth: given a node t, the removal of vertices in the bag Xt disconnects
the graph G according to the tree-decomposition. In the directed case this
disconnection works only in one way: “bottom-up”.

The game characterization of DAG-width is precise. Moreover, the mono-
tone and non-monotone cop strategies are in this case equivalent. (The cops
play monotonely if they never revisit a vertex they have already left.)
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Theorem 4.4 ([5]). For any digraph G, there is a DAG-decomposition of G of width
at most k if, and only if, k cops have a (monotone) winning strategy in the cops-and-
robber game on G.

Computing a DAG-decompositions for a graph of bounded DAG-width
essentially corresponds to computing monotone winning strategies in the
monotone cops-and-robber game, which gives us the following:

Proposition 4.5 ([5]). Given a digraph G of DAG-width at most k, a DAG-
decomposition of G of width at most k can be computed in time 𝒪(|G|𝒪(k)).

On the other hand, a recent result [1] shows that computing the DAG-
width is surprisingly hard, unlike for treewidth.

Theorem 4.6 ([1]). Let G be a graph and k ∈ N. The problem of deciding whether
dagw(G) ≤ k is PSpace-complete.

Additionally the authors of [1] also managed to prove that there are
graphs G such that the optimal DAG-decomposition contains a super-
polynomial number of bags.

Solving parity games On the algorithmic side, using DAG-width as pa-
rameter one can efficiently solve the same problems which were shown
in [55] to be efficiently solvable for directed treewidth. Other problems can
be solved as well. Actually the main motivation of both [81] and [4] was to
come up with a directed width measure which can help us to efficiently solve
parity games. (See Section 2.5.) The need for a directed measure was already
pointed out in [79]: while it is trivial to efficiently solve parity games on di-
rected acyclic graphs, these graphs can have arbitrarily high treewidth. That
means that the bounds provided by Theorem 3.20 are far from optimal.

In [5] we presented an algorithm similar in spirit to our algorithm for
treewidth [79]. That algorithm relies on the fact that in a tree decomposi-
tion (of the underlying undirected graph), the set of k vertices in any bag
of the decomposition guards all entries and exits to the part of the graph
below this bag. In the case of a DAG decomposition, while the k-element
set guards all exits from the subgraph below it, there may be an unlimited
number of edges going into this subgraph. This is the main challenge that
our algorithm for DAG-width addresses. Our result is summarized by the
following theorem:

Theorem 4.7 ([5]). For each k, there is a polynomial p and an algorithm running
in time 𝒪(p(n)) which determines the winner of parity games on all digraphs of n
vertices with DAG-width at most k.
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4.3 Kelly-width – an improvement on DAG-width

The discussion of DAG-width would not be complete without mentioning
Kelly-width, which was introduced by Hunter and Kreutzer in [52]. It was
intended to improve upon DAG-width by reducing the size of the decompo-
sitions. The original definition is through the elimination ordering, which is
modelled after the elimination ordering used to give an alternative charac-
terization of treewidth.

The game characterization of Kelly-width is the same as for DAG-width,
with the following two changes

1. the robber is invisible to the cops, and

2. the robber is lazy – he does not move until a helicopter is about to land
on the vertex occupied by him.

Similarly to the case of DAG-width, monotone and non-monotone strate-
gies are equivalent:

Theorem 4.8. For any digraph G, the Kelly-width of G, kellyw(G), is ≤ k is if,
and only if, k cops have a (monotone) winning strategy in the cops-and-robber game
on G, where the robber is lazy an invisible.

Unlike DAG-width, the Kelly-width can be computed efficiently. The
main reason is the fact that the size of the elimination ordering is small (lin-
ear).

Theorem 4.9. The Kelly-width of a graph with n vertices can be determined in time
𝒪*(2n) and space 𝒪*(2n), or in time 𝒪*(4n) and polynomial space.

Here the 𝒪* notation hides polynomial factors.

Remark 4.10 (Common properties of DAG-width and Kelly-width). In addi-
tion to being characterized by games, both DAG- and Kelly-width share some other
common properties:

∙ Acyclic digraphs (DAGs) have DAG-width 0 and Kelly-width 1 (cf. Proposi-
tion 4.11).

∙ If we replace each edge of a graph of treewidth k by a pair of opposite arcs, then
the resulting digraph has DAG-width k and Kelly-width k + 1.

Relations between widths

1. dagw(G) ≤ k =⇒ dtw(G) ≤ 3k + 1 [5]
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2. kellyw(G) ≤ k =⇒ dtw(G) ≤ 6k − 2 [52]

3. kellyw(G) = k + 1 =⇒ dagw(G) ≤ 72k2 + 42k + 18 [1]

On the other hand, bounding directed treewidth does not bound any
of the other measures. The last open question is whether bounding DAG-
width bounds Kelly-width or not. For a complete overview of the relation-
ship among various digraph width measures see [1].

4.4 Hardness of MSO1 model checking

While MSO model checking is FPT for treewidth and clique-width, the
situation is markedly different in the directed case. Indeed for all the di-
graph width measures introduced in the previous section—including di-
rected treewidth [55], DAG-width [5], and Kelly-width [52]—there is likely
no FPT algorithm. The following is folklore:

Proposition 4.11 ([39]). Assume a digraph width measure δ achieving only
bounded values on the class of all directed acyclic graphs, and let 𝒞 be a class of
of graphs of bounded δ-width, If P ̸= NP, then MC(MSO1, 𝒞) is not in XP.

Proof. Let 𝒫 be any NP-complete MSO1-definable property of undirected
graphs, say, 3-colourability. We construct the digraph property 𝒫 ′ by replac-
ing every occurrence of the predicate adj(x, y) in 𝒫 by

(
arc(x, y)∨ arc(y, x)

)
.

Clearly, an undirected graph has the property 𝒫 if and only if any digraph D
that is an orientation of G has the property 𝒫 ′. If we could solve the model
checking problem in XP time, then property 𝒫 ′ would be decidable on all
DAGs in polynomial time. Hence for any input graph G, we could decide
whether G |= 𝒫 in polynomial time by first constructing an acyclic orienta-
tion D of G, and then deciding whether D |= 𝒫 ′ (in polynomial time). This
would imply that P = NP.

In our quest for a “good” directed counterpart to treewidth we tried to
find out how “bad” the situation really is. It turns out that the theorem above
can be made even stronger, by replacing directed acyclic graphs with an even
more restricted class of graphs. In [38] we defined and examined two such
restrictions. The first one is called DAG-depth, and was inspired by the well
known notion of tree-depth – see the book [77] of Nešetřil and Ossona de
Mendez. Our definition of DAG-depth is based upon the alternative induc-
tive definition of tree-depth from their paper [76, Lemma 2.2]:
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Definition 4.12 (DAG-depth [38]). The DAG-depth ddp(G) of a digraph G is
inductively defined as follows: If |V(G)| = 1, then ddp(G) = 1. If G has
a single reachable fragment, then ddp(G) = 1 + min{ ddp(G − v) | v ∈
V(G) }. Otherwise, ddp(G) equals the maximum over the DAG-depth of the
reachable fragments of G.

Among the various properties of DAG-depth (see [38, Corollary 3.12])
we know that DAG-depth of a graph is at least the logarithm of the length
of its longest directed path. What that means is there are DAGs of arbitrary
DAG-depth.

The second measure, called K-width (not to be confused with Kelly-
width), is, in a sense, complementary to DAG-width. While DAG-depth at-
tempts, among other things, to bound the length of the longest directed path
in a graph, K-width bounds the number of distinct paths:

Definition 4.13 (K-width [38]). The K-width of a digraph G is the maximum
number of distinct (not necessarily disjoint) directed s–t paths in G over all pairs of
distinct vertices s, t ∈ V(G).

Similarly to DAG-depth, K-width can be arbitrarily large on DAGs. To get
an intuition how these measures interact, check the series of simple exam-
ples demonstrating differences between the measures in Table 4.1.

We can now strengthen the statement of Proposition 4.11.

Theorem 4.14 ([38]). There exists an MSO1 sentence ϕ such that the MC(MSO1)
problem is NP-hard even on DAGs that are of K-width 1 and DAG-depth 2.

4.5 Measures with efficient MSO1 model checking

Directed clique-width Theorem 4.11 suggests that if we want to have a
digraph with measure with an efficient MSO1 model checking, we need to
look beyond the game-based measures (as DAGs can be easily searched by a
few cops). A natural candidate for such a measure would be directed clique-
width. While clique-width was originally defined for undirected graphs [22],
the Definition 3.6 the definition readily extends to digraphs; simply replace
the operator ηi,j creating undirected edges by the operator αi,j creating di-
rected edges (arcs) from each vertex with label i to each vertex with label
j.

Indeed, the MSO1 model checking can be done efficiently for graphs of
bounded directed clique-width. In full generality one gets the following (cf.
Theorem 3.8):
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Graph family DAG-depth K-width DAG-width

. . . ∞ 1 1

. . . 3 ∞ 1

. . . ∞ ∞ 1

. . . 3 1 2

. . . ∞ 1 2

. . . . . . 3 ∞ 2

. . . ∞ 1 3

. . . ∞ ∞ 3

Table 4.1: Families of graphs demonstrating various possible combinations
of the listed width measures being bounded and unbounded. Adapted
from [38].

Theorem 4.15 ([21] for the undirected case). For every integer t and MSO1
formula ψ, every ψ-LinEMSO1 optimization problem is fixed-parameter tractable
on digraphs of clique-width t, with the parameters t and |ψ|.

While the original proof of the undirected version by Courcelle,
Makowsky, and Rotics [21] has been followed by at least two different pub-
lished proofs in [37, 62], none of these published proofs explicitly includes
the directed case. Nevertheless, a formal proof of the directed case is a sim-
ple translation of any one of these previously published arguments into di-
graph terms. In [38] we provide a short alternative proof of Theorem 4.15
via a reduction of the directed version into the undirected one with vertex
labels [21].

Parity games and directed clique-width Being already able to solve par-
ity games on graphs of bounded treewidth [79] and DAG-width [5], my at-
tention turned to directed clique-width. This choice is natural, as there are
DAGs of arbitrarily high clique-width and digraphs of fixed clique-width
but arbitrarily high DAG-width. The (positive) algorithmic result for parity
games and directed clique-width was presented in [82].
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As is the case of treewidth (see Section 3.4), the result is not a conse-
quence of the general result saying that MSO logic is decidable in linear
time on graphs of bounded clique-width (Theorem 3.8). The reasons are the
same as for treewidth (cf. Section 3.4).

The algorithm described in [82] is, in spirit, similar to the one for graphs
of bounded treewidth and bounded DAG-width. However there are many
conceptual differences, as there is no small set of vertices forming an in-
terface between the already processed subgraph and the rest of the graph.
To the contrary, in one step one can connect an unbounded number of
edges. Unfortunately, keeping the results for all the individual vertices of
one colour would take too much space. This is the main obstacle which
needed to be dealt with in [82]. The result is then summarized by the fol-
lowing theorem:

Theorem 4.16 ([82]). Let 𝒢 be a parity game of directed clique-width k and t the
associated k-expression corresponding to 𝒢. Then there is an algorithm which solves
the parity game 𝒢 in time polynomial in n.

Bi-rank-width While the definition of clique-width works “as is” also on
digraphs, in the case of rank-width slightly more work needs to be done to
translate it to the realm of directed graphs. The right notion is that of bi-rank-
width, defined by Kanté in [59, 60].

Bi-rank-width is related to directed clique-width in the sense that one
is bounded on a directed graph class if and only if the other is (cf. Theo-
rem 3.12). This of means that the MSO1 model checking algorithm for di-
rected clique-width (Theorem 4.15) can be used for bi-rank-width. Finally,
as in the case of (undirected) rank-width, the decompositions can be com-
puted efficiently.
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5 Existence of powerful digraph width measures

Game-based measures As we have seen in the previous chapter, the most
important directed graph measures fall into two separate groups. The first
group consists of “game-based” measures like DAG-width and Kelly-width.
These measures share some nice structural properties and are closely related
to treewidth of undirected graphs. However, for these measures we have no
efficient model checking algorithms for the MSO logic. In the words of [39],
they are not powerful.

Powerful measures In the other group are the, mutually closely re-
lated, measures of directed clique-width and bi-rank-width. From Propo-
sitions 4.11 and 4.15, it seems that directed clique-width and bi-rank-width
are more suitable candidates for a good digraph width measure, since MSO1
model checking can be done efficiently on classes of graphs where one
of these parameters is bounded. Unfortunately, clique-width and bi-rank-
width do not possess the nice structural properties common to the various
treewidth-like measures, such as being subgraph- or contraction-monotone.
This is due to symmetric orientations of complete graphs all having clique-
width two, while their subdigraphs include all digraphs, even those with
arbitrarily high clique-width. This seems to be a drawback and a possible
reason why clique-width- and rank-width-like measures are not so widely
accepted.

Can we take the better of each of the two worlds? To us this seemed as
the ultimate natural question and we therefore decided to investigate it in
a greater detail. Unfortunately, the answer to this question, as published
in [39] and summarized by Theorems 5.5 and 5.6, is negative.

5.1 Characterizing game definable measures

Introducing directed minors. In the realm of undirected graphs, charac-
terizability by a cops-and-robber game is closely related to monotonicity un-
der taking minors. Recall that a graph H is a minor of a graph G if it can be
obtained by a sequence of applications of three operations: vertex deletion,
edge deletion and edge contraction. (See e.g. [25].) A measure is monotone
under taking minors if the measure of a minor is never larger than the mea-
sure of the graph itself. Note that treewidth is monotone under taking mi-
nors. The relationship between cops-and-robber games and taking a minor
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of a graph should now be obvious: taking a subgraph can never improve
robber’s chances of evading k cops and, since the robber can move infinitely
fast and cops use helicopters, neither can edge contraction.

It is therefore only natural to expect that a “good” digraph-width mea-
sure, characterizable by a directed cops-and-robber game, should also be (at
least nearly) monotone under some notion of a directed minor. However, at
the time of writing [39], there was no definition of a directed minor which
would be useful for our purposes. We therefore came up with a definition
of directed topological minor which seems to fit the bill:

Definition 5.1 ([39]). A digraph H is a directed topological minor of D if there
exists a sequence of digraphs D0, . . . , Dr such that D0 ⊆ D and Dr ∼= H, and for
all 0 ≤ i ≤ r − 1, one can obtain Di+1 from Di by contracting a 2-contractible arc.

(Arc is 2-contractible if its contraction does not result in the creation of a
new directed path between vertices of degree at least 3.) Robustness of the
definition is justified by the following proposition:

Proposition 5.2 ([39]). Given a digraph D, let D′ be obtained from D by a se-
quence of vertex deletions, arc deletions and contractions of 2-contractible arcs (in
any order). Then D′ is a directed topological minor of D.

Monotonicity of the measures. We can now argue that the property of
being closed under taking directed topological minors is indeed a natural
requirement for any cops-and-robber based digraph width measure.

Theorem 5.3. [39] Let D be a digraph such that in the DAG-width (Kelly-width)
game, k ≥ 1 cops are enough to catch the robber. Let H be a directed topological
minor of D. Then at most k + 2 cops are needed to catch the robber on H in that
same game.

(We actually believe that a bound of k + 1 cops is enough in Theorem 5.3,
and perhaps even a bound of k cops is sufficient if k ≥ 3.)

A digraph width measure δ is closed under taking directed topological minors
if there is an absolute constant c such that, for each digraph D, the δ-width of
any directed topological minor of D is at most δ(D) + c. By Theorem 5.3 this
is indeed so for the major existing measures. We moreover give the following
relaxed definition to make our negative results slightly stronger:

Definition 5.4. A digraph width measure δ is weakly closed under taking di-
rected topological minors if there exists a computable function w such that, for each
digraph D, the δ-width of any directed topological minor of D is at most w

(
δ(D)

)
.
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5.2 Non-existence of ideal measures

To state the main result of [39], we need to define two essential properties a
“ideal” digraph width measure should possess:

Not treewidth-bounding Good measure should not be comparable to the
treewidth of the underlying undirected graph. To be more precise, we do not
want the width measure δ to upper-bound the treewidth of the underlying
undirected graph. Such δ would not help solve any more inputs than what
we already can do with traditional undirected measures.

Efficiently directable Good measure should not “keep computationally
excessive” information in the orientation of edges. A digraph width mea-
sure δ is efficiently directable if, given any undirected graph G, one can orient
its edges in time polynomial in |G| to obtain a digraph with near-optimal δ-
width. DAG-width, Kelly-width, digraph clique-width, and bi-rank-width
are all efficiently directable.

The main results of [39] can now be stated as follows:

Theorem 5.5 ([39]). Let δ be a digraph width measure with the following properties
a) δ is not treewidth-bounding;
b) δ is weakly closed under taking directed topological minors;
c) δ is efficiently directable.

Then δ is not powerful unless P = NP.

This can be further strengthened by removing the assumption of efficient
directability as follows.

Theorem 5.6 ([39]). Let δ be a digraph width measure with the following properties
a) δ is not treewidth-bounding;
b) δ is weakly closed under taking directed topological minors.

Then δ is not powerful unless NP ⊆ P/poly.

A small price to pay for the stronger formulation of Theorem 5.6 is the
need for a stronger complexity assumption, namely that NP ̸⊆ P/poly in-
stead of NP ̸= P. Recall that P/poly denotes the polynomial-time com-
plexity class with a polynomially-bounded advice function, i.e. the class of lan-
guages that have polynomial-size circuits. By the Karp-Lipton theorem [61],
NP ⊆ P/poly would imply that the polynomial hierarchy collapsed to the
level ΣP

2 (which is not considered likely).
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5.3 From topological minors to subdigraphs

The results of the previous section can be strengthened even further. Our
results about the lower bounds for MSO1 from [42], which we have already
discussed in Section 3.3.2, can, without too much effort, be extended to the
directed case [42]. The result of [42] differs from Theorem 5.6 in several as-
pects:

1. it requires directed width measure to be closed under subdigraphs and not
directed topological minors

2. relaxes unbounded treewidth by poly-logarithmically unbounded treewidth
3. uses MSO1-L instead of MSO1

The main result then reads:

Theorem 5.7 ([39]). Let L be a finite set of labels, |L| ≥ 47m and δ be a digraph
width measure with the following properties:

a) δ is monotone under taking subdigraphs;
b) there exists d ∈ N such that the treewidth of the undirected graph class {U(D) :

δ(D) ≤ d } is densely unbounded poly-logarithmically
c) for all L-vertex-labelled digraphs D and all sentences ϕ ∈ MSO1-L, the prob-

lem of deciding whether D |= ϕ is solvable in time 𝒪(|D| f (δ(D),|ϕ|)) for some
computable f .

unless non-uniform ETH fails.
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6 FO logic on dense graphs

As we have seen in Section 2.3, the FO model checking problem is PSPACE-
complete on general graphs and admits no algorithm with running time
f (ϕ)no(|ϕ|) for any function f , assuming the ETH. Therefore much research
has focused on graph classes where the FO model checking problem can be
solved more efficiently.
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Figure 6.1: The hierarchy of sparse graph classes. Picture courtesy of Felix
Reidl.

A great success story is the sequence of results for sparse graph classes.
(See Figure 6.1 for the hierarchy of sparse graph classes.) It all started with
the result of Seese [89], who in 1994, using Gaifman’s theorem (see [28]),

39



6. FO logic on dense graphs

showed that FO model checking is FPT on any class of graphs of bounded de-
gree. The use of Gaifman’s theorem is possible thanks to the fact that vertex
neighbourhoods are quite restricted when the degree is bounded. In the fol-
lowing years, Seese’s result was extended first to graphs of locally bounded
treewidth [32] and graphs excluding a minor [31], and then to graphs locally
excluding a minor [23]. Later, when the theory of sparse graphs was devel-
oped by Nešetřil and Ossona de Mendez (see [78]), results started appearing
also for the newly defined classes [24, 27, 48]. This line of research culmi-
nated in the result of Grohe, Kreutzer and Siebertz [49] for nowhere-dense
graph classes, which captures all subgraph-closed sparse graph classes on
which FO model checking is fixed parameter tractable.

Dense graph classes Unlike for sparse graphs, there were essentially no
known results for dense graphs classes. We decided to start filling this gap
and began identifying those (dense) graph classes for which the FO model
checking is also fixed parameter tractable. Since there is no established the-
ory of dense graph classes, the results we obtained do not follow a single
line of research, but rather span multiple areas and approaches.

6.1 Interval graphs

The first non-trivial results on dense graph classes we managed to obtain
were for the well known class of interval graphs [41]. These are the intersec-
tion graphs of intervals on the real line. I.e. a graph G is an interval graph, if
there exists a set ℐ of intervals of the real line such that V(G) = ℐ and E(G)
contains all pairs of intervals which have a non-empty intersection (see, e.g.,
[25]). If we restrict the length of intervals, we get the following definition:

Definition 6.1 (L-interval graphs). For a set L of reals, an interval graph is called
an L-interval graph if it is an intersection graph of intervals with lengths from L.
If, additionally all intervals are subintervals of [0, d) for some real d, we speak about
(L, d)-interval graphs.

Clique-width of interval graphs For example, the well-known (and stud-
ied) unit interval graphs are {1}-interval graphs. When restricted to unit in-
terval graphs, one can easily deduce the existence of a linear time algorithm
for testing FO properties. This follows from the result of Lozin [72] asserting
that every proper hereditary subclass of unit interval graphs, in particular,
the class of unit interval graphs with bounded radius, has bounded clique-
width. The result then follows from the results of Courcelle et al. [21] (see
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Theorem 3.8), using Gaifman’s theorem. This can be generalized to finite
sets L of rational numbers:

Proposition 6.2 ([41]). Let L be a finite set of positive rational numbers. For any
d > 0, the class of (L, d)-interval graphs has bounded clique-width.

From Proposition 6.2 and Gaifman’s theorem, one can approach the FO
model checking problem on L-interval graphs for finite sets L of rationals.
By Gaifman’s theorem, every FO model checking instance can be reduced
to model checking of basic local FO sentences, i.e. to FO model checking
on L-interval graphs with bounded radius. Since L-interval graphs with ra-
dius d are (L, (2d + 1)max L)-interval graphs and so have bounded clique-
width, the latter can be solved in linear time by [21]. Combining this with
the neighbourhood covering technique from [32], which can be adapted to
run in linear time in the case of L-interval graphs given with their interval
representation, we obtain the following.

Corollary 6.3 ([41]). Let L be a finite set of positive rational numbers and ϕ an
FO sentence. There exists a linear time algorithm that decides whether an L-interval
graph G satisfies ϕ if the input graph G is given by its L-representation with the
left end points of the intervals sorted.

However, Proposition 6.2 is just a fortunate special case, since aside of
rational lengths one can prove the following.

Proposition 6.4 ([41]). For any irrational q > 0 there is d such that the class of(
{1, q}, d

)
-interval graphs has unbounded clique-width.

This is an improvement on an earlier result of [44] which shows that the
class of all unit interval graphs has unbounded clique-width.

Algorithms for L-interval graphs The main algorithmic result of [41] says
that every fixed FO property can be tested in time O(n log n) for n-vertex
L-interval graphs when L is any fixed finite set of reals and an L-interval
representation is given on the input.

Theorem 6.5 ([41]). For every finite subset L of reals and every FO sentence ϕ,
there exists an algorithm running in time O(n log n) that decides whether an input
n-vertex L-interval graph G given by its L-representation satisfies ϕ.

To prove this result, we used a well-known characterization of FO prop-
erties by Ehrenfeucht-Fraïssé games. This allowed us to convert the input
graph into an L-interval graph and a representation of this graph such that
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every vertex of the new graph has at most K0 · ⌈max L⌉ neighbours. In par-
ticular, the maximum degree of the new graph is bounded. The final step
is applying the result of Seese [89] stating that every FO property can be
decided in linear time for graphs with bounded maximum degree.

Negative results The result of Theorem 6.5 cannot be pushed much fur-
ther. If L is an (infinite) set that is dense in some open set, then L-interval
graphs can be used to model arbitrary graphs [41]. Since the parameterized
FO model checking problem is AW[*]-complete 1 for general graphs, the fol-
lowing is straightforward.
Theorem 6.6 (Corollary 6.2 of [41]). If L is a subset of non-negative reals that
is efficiently dense in some non-empty open set, then FO model checking is AW[*]-
complete on L-interval graphs when parameterized by the formula size.

In addition, we showed that unit interval graphs allow an efficient poly-
nomially bounded MSO interpretation of all graphs and a successor FO in-
terpretation of all graphs. This means that Theorem 6.5 cannot be extended
to MSO1.
Corollary 6.7 ([41]). MSO1 model checking is para-NP-hard on unit interval
graphs.

Note that the aforementioned result of Lozin [72] states that every proper
hereditary subclass of unit interval graphs has bounded clique-width, and
hence MSO1 model checking on this class can be carried out in linear
time [21].

6.2 Posets and existential FO

So far in this thesis we have focused on one kind of algebraic structures: fi-
nite graphs. In his 2007 survey paper [47] Grohe noted that “it would also
be very interesting to study the complexity of model checking problems on finite
algebraic structures such as groups, rings, fields, lattices, et cetera”. From this per-
spective it is particularly interesting to investigate model checking problems
on partially ordered sets (posets), since posets can be seen both as dense graphs
and as algebraic structures. Motivated by Grohe’s survey [47], Bova, Ganian
and Szeider [13, 14] initiated the study of FO model checking on posets.
Definition 6.8. A poset 𝒫 is a pair (P,≤P) where P is a set and ≤P is a re-
flexive, antisymmetric, and transitive binary relation over P. The size of a poset
𝒫 = (P,≤P) is ‖𝒫‖ := |P|.

1. And therefore not FPT – see [26].
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Despite similarities between posets and graphs (e.g., in Hasse diagrams),
the existing FO model checking results from graphs do not seem to transfer
well to posets, perhaps due to lack of usable notions of “locality” and “spar-
sity” there (which makes it difficult to employ Gaifman’s theorem). This feel-
ing is supported by several negative results in [13], too.

The main result of Bova et al. [13] then is that the model checking prob-
lem for the existential fragment of FO (∃-FO) can be efficiently solved when
parameterized by the width of the poset, i.e. the size of its largest antichain.

Theorem 6.9 ([13]). Let 𝒫 = (P,≤P) be a poset and ϕ a formula. Then the ∃-FO
model checking problem is solvable in time f (|ϕ|) · ng(w) where n = |P| is the size
of a poset and w its width.

In the language of parameterized complexity, this means that the prob-
lem is FPT in the size of the formula, but only XP with respect to the width
of the poset. Note that this is not an easy result since, for instance, posets of
fixed width can have unbounded clique-width [13].

The proof in [13] goes by first showing that the model checking prob-
lem for the existential fragment of FO is equivalent to the embedding prob-
lem for posets (which can be thought as analogous to the induced subgraph
problem, see below), and then reducing the embedding problem to a suit-
able family of instances of the homomorphism problem of certain semilat-
tice structures.

Let 𝒬 = (Q,≤P) and 𝒫 = (P,≤P) be two posets. An embedding from
𝒬 to 𝒫 is an injective function e : Q → P such that, q ≤Q q′ if and only if
e(q) ≤P e(q′) for every q, q′ ∈ Q. The embedding problem for posets is thus
defined as:

Embedding Parameter: width(𝒫), ‖𝒬‖
Input: Two posets 𝒬 = (Q,≤Q) and 𝒫 = (P,≤P).
Question: Is there an embedding from 𝒬 into 𝒫?

Proposition 6.10 ([13]). Poset ∃-FO-Model Checking is fixed-parameter
tractable if and only if so is Embedding. Moreover, there is a polynomial param-
eter reduction from Embedding to Poset ∃-FO-Model Checking.

Improved algorithms for ∃-FO While the algorithm of [13] is FPT in the
size of the formula, its only XP with respect to the width of the poset. In [36],
we managed to significantly improve the running time of the model check-
ing algorithm – our algorithm is FPT in both the size of the formula and the
width of the poset:
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Theorem 6.11 ([36]). Poset ∃-FO-Model Checking is fixed-parameter tractable
in the formula size and the width of an input poset; precisely, solvable in time
h(|ϕ|, w) · O(n2) where n is the size of a poset and w its width.

We used the same reduction of existential FO model checking to the em-
bedding problem from [13], but our subsequent solution to embedding is
faster and, at the same time, much more straightforward and easier to fol-
low.

In fact we produced two different algorithms for the embedding prob-
lem. The first of these two algorithms is a natural, and easy to understand,
polynomial-time reduction to a CSP (Constraint Satisfaction Problem) in-
stance closed under min polymorphisms, giving an O(n4) dependence of
the running time on the size of the poset.

Theorem 6.12 ([36]). Let 𝒬 = (Q,≤Q) and 𝒫 = (P,≤P) be two posets. Then
the embedding problem from 𝒬 into 𝒫 is fixed-parameter tractable, more precisely,
it can be solved in time O

(
width(𝒫)|Q| · |Q|4 · |P|4

)
.

The second algorithm has even better, quadratic, time complexity and
works by reducing the embedding problem to a restricted variant of the
Multicoloured Clique problem, which is then efficiently solved.

Theorem 6.13 ([36]). Let 𝒬 = (Q,≤Q) and 𝒫 = (P,≤P) be two posets. Then
the embedding problem from 𝒬 into 𝒫 is fixed-parameter tractable, more precisely,
it can be solved in time O

(
width(𝒫)|Q| · |Q|3 · |P|2

)
.

It is this second theorem which, together with Theorem 6.10, gives us the
result of Theorem 6.11.

6.3 Posets FO

While the results for the existential fragment of FO logic were interesting,
the existence of an FPT algorithm for general FO model checking on posets
of bounded width remained open. In [34] we resolved this question in the
positive for coloured posets:

Theorem 6.14 ([34]). Let 𝒫 = (P,≤𝒫 ) be a poset of width w, with elements
coloured by λ : P→Λ where Λ is a finite set, and let ϕ be an FO sentence in
negation normal form. There is an algorithm which decides whether 𝒫 |= ϕ in FPT
time f (w, ϕ) · ‖𝒫‖2.

Our algorithm is based on a new locality lemma for posets. More con-
cretely, we show that for every poset 𝒫 and formula ϕ one can efficiently
iteratively construct a directed graph D such that
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(a) the vertex set of D are the elements of 𝒫 ,

(b) every element of 𝒫 has bounded out-degree in D, and

(c) it is possible to determine whether 𝒫 |= ϕ by checking whether ϕ holds
on sub-posets of 𝒫 induced by constant-radius balls in D.

The statement of our lemma sounds very similar to that of Gaifman’s
locality theorem, the crucial differences being that the digraph D is not the
Gaifman graph of 𝒫 and that D depends on the quantifier rank of ϕ. In-
deed, constant radius balls in the Gaifman graph of constant width posets
typically contain the entire poset. Thus a naive application of Gaifman’s the-
orem would reduce the problem of deciding whether 𝒫 is a model of ϕ to
itself. The crucial difficulty we have to overcome is that we have to make
the digraph D “dense enough” so that (c) holds, while keeping it “sparse
enough” so that the vertices in D still have bounded out-degree. The lat-
ter is necessary to ensure that constant radius balls in D have constant size,
making it feasible to use the naive model checking algorithm for determin-
ing whether ϕ holds on sub-posets of 𝒫 induced by constant-radius balls
in D. The construction of the graph D and the proof that it indeed has the
desired properties relies on a delicate inductive argument thoroughly ex-
ploiting properties of posets of bounded width.

Application to interval graphs The power of Theorem 6.14 can be demon-
strated by applying it to interval graphs, obtaining the alternative proof of
Theorem 6.5 for L-interval graphs.

Theorem 6.15 ([34]). Let ϕ be a graph FO sentence. Assume G is an interval
graph given along with its k-fold proper interval representation ℐ . Then the FO
model checking problem G |= ϕ, parameterized by k and ϕ, is FPT.

This theorem allows us to match the result of [41], except for the precise
runtime. On the other hand, the formulation of Theorem 6.15 is more gen-
eral than [41]. We can, for instance, in the same way derive fixed-parameter
tractability also for FO model checking of well-studied k-proper interval
graphs, introduced in [84] as those having an interval representation such
that no interval is properly contained in more than k other intervals.

6.4 Interpreting dense graph classes

While the results of previous sections were encouraging, they did not show
a way to systematically study dense graph classes for which the FO model
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checking problem is efficiently solvable. The question was if there is a nat-
ural way to arrive at new graph classes admitting FPT algorithms for FO
model checking. The notion of graph interpretation seems to provide us with
a way to achieve this goal.

In a simplified setting – given a graph G and an FO formula ψ(x, y) with
two free variables, we can define a graph H = Iψ(G) on the same vertex set
as G and the edge set determined by ψ(x, y): a pair of distinct vertices u, v is
an edge of H iff G |= ψ(u, v) or G |= ψ(v, u). We then say that H is interpreted
in G using ψ. A graph class 𝒟 is interpretable in a graph class 𝒞 if there exists
an FO formula ψ(x, y) such that every member of 𝒟 is interpreted in some
member of 𝒞 using ψ.

In this context we ask the following question:

Question 6.16. Let 𝒞 be a graph class admitting an FPT algorithm for FO model
checking, and 𝒟 be a graph class interpretable in 𝒞. Does there exist an FPT algo-
rithm for FO model checking on 𝒟?

It might seem that a definite easy answer is ‘yes’, based on the follow-
ing natural property of interpretations: if H ∈ 𝒟 is interpreted in G ∈ 𝒞
using formula ψ(x, y), and our question is to decide whether H |= ϕ, it is a
standard routine to construct a sentence ϕ′ such that H |= ϕ if and only if
G |= ϕ′. Then G |= ϕ′ is decided by the FPT algorithm given for 𝒞. However,
the difficulty lies in the fact that our inputs come from 𝒟, without any refer-
ence to the respective members of 𝒞 in which they are interpreted. Even if
the interpretation formula ψ(x, y) is fixed and known beforehand, we have
generally no efficient way of obtaining the respective member G ∈ 𝒞 for an
input H ∈ 𝒟. Thus, Question 6.16 can be reduced to the following:

Question 6.17. Let 𝒞,𝒟 be graph classes such that 𝒟 is interpretable in 𝒞. Does
there exist an integer s and a polynomial-time algorithm 𝒜 such that; given H ∈ 𝒟
as input, 𝒜 outputs G ∈ 𝒞 and an FO formula ψ(x, y) of size at most s such that
H is interpreted in G using ψ ?

An answer to Question 6.17 is far from being obvious. Take, for example,
the following particular FO interpretation: A graph H is the square of a graph
G if the edges of H are those pairs of vertices which are at distance at most 2
in G. Then the problem; given H find G such that H is the square of G, is NP-
hard [75]. This shows that it is important to choose a suitable interpretation
formula ψ (avoiding the hard cases) in an answer to Question 6.17.

The results We answered both Questions 6.16 and 6.17 in the positive for
the case when 𝒞 is a class of graphs of bounded degree. The results are based
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on a new notion of near-k-twin relation, which generalizes the folklore twin-
vertex relation, and is related also to the neighbourhood diversity parameter
of [68].

Definition 6.18 (near-k-twin [35]). For a graph G and k ∈ N, the near-k-
twin relation of G is the relation ρk on V(G) defined by (u, v) ∈ ρk ⇐⇒
|N(u)△ N(v)| ≤ k .

Considering, e.g., k a small parameter and G a large graph then, in-
tuitively, two vertices of G are near-k-twins if they have “almost the
same” neighbourhood. Now if the near-k-twin relation is an equivalence of
bounded index, then we can use it to decompose the vertex set of the graph
G and efficiently find an interpretation of G in a graph of bounded degree.

Definition 6.19 (near-uniform [35]). A graph G is (k0, p)-near-uniform if there
exists k ≤ k0 for which near-k-twin relation of H is an equivalence of index at
most p.
A graph class 𝒟 is (k0, p)-near-uniform if every member of 𝒟 is (k0, p)-near-
uniform, and 𝒟 is near-uniform if there exist integers k0, p such that 𝒟 is (k0, p)-
near-uniform.

We then give an efficient FO model checking algorithm for the near-
uniform graph classes.

Theorem 6.20 ([35]). Let 𝒟 be a (k0, p)-near-uniform graph class for some
k0, p ∈ N. Then the FO model checking problem in 𝒟 is fixed-parameter tractable
when parameterized by the formula size, i.e., solvable in time f (|ϕ|) · |V(G)|𝒪(1)

for a computable function f and input G, ϕ.

This algorithm is based upon the above idea of interpretation; briefly,
given a graph H we use the near-k-twin relation for a suitable value of
k to partition the vertex set of H and to find a bounded degree graph G,
such that H is interpreted in G using a universal formula ψ depending only
on the class in question. Then we employ the aforementioned algorithm of
Seese [89].

In addition to the algorithm of Theorem 6.20, it turns out that the con-
cept of near-uniform graph classes is robust and sufficiently rich in content:
the near-uniform graph classes are exactly the classes which are FO inter-
pretable in graphs of bounded degree.

Theorem 6.21 ([35]). Let 𝒢d be the class of (finite) graphs with maximum degree
at most d and let ψ(x, y) be an FO formula with two free variables. Then there exist
k0 and p, depending on d and ψ, such that for every H ∈ Iψ(𝒢d) there exists k ≤ k0

for which the near-k-twin relation of H is an equivalence of index at most p.
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Note that, for different graphs H, we may need different values of k (in
particular, there may not be a universal value of k which would work for the
whole class Iψ(𝒢d)).
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