Chemistry

Chemistry is a powerful charm

Submit an application

Přijímací řízení do doktorských programů - akad.rok 2020/2021 (zahájení: jaro 2021)
Submission deadline until midnight 30 Nov 2020

What will you learn?

The doctoral study program of Chemistry aims at training highly skilled specialists in five specialization fields of study - analytical, inorganic, physical, materials, and organic chemistry. Training of doctoral students is carried out at the Department of Chemistry, Faculty of Science and is based on scientific research and independent creative activity in selected fields and areas of research or development. Major research topics in individual specialization fields are:

Analytical Chemistry

Development of methodology and instrumentation in the field of spectrometry and analytical

Instrumental analysis of inorganic, organic and biological samples.

Analytical applications and characterization of nanomaterials.

Inorganic Chemistry

Synthesis and characteriazation of metal complexes and coordination polymers

Synthesis of organometallic compounds and studies of their structure and properties

Synthesis of molecular compounds as precursors to new materials

Physical Chemistry

Physical-chemical characterization of compounds and materials - studies of their properties by modern research methods

Application of quantum chemical methods to problems in structure, reactivity, and molecular spectroscopy

Characterization and study of biomolecules by modern spectral and electrochemical methods

Materials Chemistry

Chemical synthesis of nanoparticles of metals and oxides

Phase equilibria and transformations of materials

Quantum chemistry computations in materials chemistry

Organic Chemistry

Modern approaches in synthetic and medicinal chemistry directed toward the preparation of novel organic compounds with targeted biological activity

Mechanistic organic chemistry and photochemistry

Synthesis of macrocyclic compounds and investigation of their supramolecular properties

The work of doctoral students under supervision of their tutors is focused either on independent and creative experimental activity or theoretical pursuits. The study is based on a thorough theoretical knowledge of the whole discipline of chemistry. The student acquires this knowledge by completing compulsory optional courses, which are supplemented by the latest information in the given area, and through optional courses gaining experimental technique skills, as well as learning new methods. In addition, the programme contributes to developing the abilities of students to critically evaluate findings gained from literature and pass on these as well as their own findings to the public by means of seminars. Teaching experience is gained by assisting in selected courses for students of bachelor and master programs. An important goal of doctoral studies is also gaining broad scientific view of the discipline, international experience and language skills, which is facilitated by research stays at domestic and foreing partner institutions and by active participation at national and international scientific conferences. During their studies student will learn to prepare manuscripts in English. The ultimate goal of this study is to obtain significant scientific results that can be published in prestigious journals and finally summarize them in a doctoral dissertation thesis. Graduates of this program will be primarily prepared to pursue scientific carries in academic institutions, but they also could be employed in research and development departments of various companies, in medical establishments, and in government institutions.

Practical training

A minimum stay abroad must last at least for one month.

A one-semester stay at a foreign research institution is recommended in this programme.

Further information

http://ustavchemie.sci.muni.cz/

Career opportunities

Graduates of the Chemistry program according to their specialization field find employment at university departments, at institutes of Academy of Sciences, at various research institutes and control laboratories in private firms and government institutions. Further opportunities are found in chemical, pharmaceutical, electronic, and food industries, laboratories in the fields of environmental protection, health care, agriculture and biotechnology. They also find employment in areas of development and production of instrumentation and also in qualified sale and service. Graduates are flexible and easily adapt to various requirements of chemistry oriented companies and they are trained not only for professional careers in their specialization, but their wide-ranging education allows them to adjust easily for careers in other fields as well. By their work in research teams and by their educational work in bachelor and master degree programs, the doctoral students also cultivate their ability to lead younger colleagues. By that they acquire further essential experience for their expected professional role as the executives. Language skills, international contacts, and study stays abroad allows graduates to find employment also at foreign leading institutions.

Admission requirements

Data from the previous admission procedure (1 Jan – 30 Apr 2020)

The entrance examination is graded and the candidate must obtain 120 points out of 200 for admission: 1. Expert knowledge - 60 points out of 100 2. Language skills - English - 60 points out of 100

Application guide

Deadlines

1 Aug – 30 Nov 2020

Submit your application during this period

Submit an application

Study options

Single-subject studies with specialization

In the single-subject studies, the student deepens knowledge in the concrete focus of the degree programme and chooses one specialization. The specialization is stated in the university diploma.

Supervisors and dissertation topics

Supervisors

Dissertation topics

Specialization: Analytical Chemistry

Acoustic Spectroscopy of Laser-Induced Plasma

Supervisor: doc. Mgr. Karel Novotný, Ph.D.

The acoustic signal associated with the plasma formation during the Laser-Induced Breakdown Spectroscopy (LIBS) will be studied. Investigation of the frequency spectrum of the acoustic signal during ablation of various materials as well as study concerning the shot-to-shot evolution of the laser-induced crater morphology and plasma emission lines will be the main topic of this work. The previous results confirm that the acoustic signal is well correlated with the target hardness/density and also can be used as an ablation rate indicator. Acoustic signal provides new information relative to the ablation process that is independent of the LIBS spectrum.

Application of nanoparticles in analytical chemistry

Supervisor: prof. RNDr. Přemysl Lubal, Ph.D.

OBJECTIVES: Nanoparticles are widely employed in all branches of Chemistry. The project will be focused on the synthesis of some tailored nanoparticles and their application in development of new analytical techniques for sensitive determination of biologically important molecules.

EXAMPLES of doctoral projects:
* Surface enhanced molecular spectroscopy (e.g. Raman/fluorescence/CD spectroscopy) of NP’s modified for determination of chosen analytes
* Development of new optical sensors and sensor arrays based on NP’s
Applications of nanoparticles in mass spectrometry

Supervisor: prof. Mgr. Jan Preisler, Ph.D.

OBJECTIVES: Use metal nanoparticles as labels for sensitive mass spectrometry detection. The method allows detection of a single molecule on a tissue section or another suitable substrate.

EXAMPLES of doctoral projects:

- Development of sample preparation protocol for specific detection of selected markers on sections of 3D cell aggregates, other tissues and substrates.

- Optimization of specific labelling with nanoparticles. The specificity will be based on antibody-antigen and avidin-biotin interactions, aptamer bindings, nucleic acid pairing etc.

- Development of nanoparticle detection schemes using inductively coupled plasma (ICP) and laser desorption/ionization (LDI) techniques.

- Study of nanoparticle transport efficiency in ICP MS. Confocal fluorescence or electron microscopy will be used as a reference method.

MORE INFORMATION: bart.chemi.muni.cz
Biorecognition tools for imaging of specific proteins in soft tissues

Supervisor: Mgr. Tomáš Vaculovič, Ph.D.

Development of methods based on:

a) labelling of antibodies by nanoparticles
b) preparation of molecularly imprinted polymers (MIP)

and their application for imaging of proteins in soft tissues.

Development of laser-induced plasma spectroscopy methods for detection of nanoparticle-tagged biomolecules

Supervisor: doc. Mgr. Karel Novotný, Ph.D.

Vývoj technik umožňující selektivní detekci biomolekul značených kovovými nanočásticemi pomocí spektroskopie laserem buzeného plazmatu. Vývoj metod pro rychlou detekci biomolekul s vysokým prostorovým rozlišením a citlivostí.

High separation efficiency + high sensitivity = CE-ICP-MS

Supervisor: Mgr. Tomáš Vaculovič, Ph.D.

Development of conection of capillary electrophoresis with ICP. Application for analysis of nanoparticles.

Laser induced brekdown spectroscopy - development of fast elemental mapping methods

Supervisor: doc. Mgr. Karel Novotný, Ph.D.

Vývoj metod pro sledování prostorové distribuce prvků v různých materiálech na principu spektroskopie laserem buzeného plazmatu. Vývoj a optimalizace konfigurace a experimentálních parametrů sestavy na signál. Použití pokročilých chemmometrických postupů pro vyhodnocení naměřených dat.

Mass spectrometry imaging

Supervisor: prof. Mgr. Jan Preisler, Ph.D.

OBJECTIVES: The dissertation projects focus on matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI MSI) for visualization of spatial distribution of biologically important compounds without chemical labelling.

EXAMPLES of doctoral projects:

- Development of sample preparation protocols for MALDI MSI. Samples may include 3D cell aggregates or other biological tissues.

- MALDI MSI of perifosine and other antitumor agents in 3D cell aggregates.

- Optimization of reactions on tissue sections. The aim will be, e.g., determination of double bond position in fatty acid chains in lipids.

MORE INFORMATION: bart.chemi.muni.cz
Metal complexes of macrocyclic ligands

Supervisor: prof. RNDr. Přemysl Lubal, Ph.D.

OBJECTIVES: These complexes are widely used in medicinal chemistry for diagnostic and therapeutic purposes (e.g. PET/SPECT, MRI, radiotherapy, etc.) and therefore they should exhibit high thermodynamic stability and kinetic inertness for possible in vivo utilization. Some newly prepared macrocyclic ligands and their metal complexes are studied from thermodynamic, kinetic and spectroscopic point of view in order to optimize the structural design of ligands for given purposes. The research is carried out in framework of COST CA18202 Action (2019-2023).

EXAMPLES of doctoral projects:
* Thermodynamic and kinetic study of new macrocyclic ligands with chosen metal ions as models for radioisotope labelling
* Metal complexes mimicking enzyme activity
* Metal complexes as chemical sensors
* Development of new analytical methods for analysis of new chelating ligands and their metal complexes - collaboration with industrial partners
Pavel Kubáň - Developments and applications of novel microextraction techniques in analyses of complex samples

Supervisor: RNDr. Pavel Kubáň, DSc.

Experimentální část práce bude zahrnovat vývoj nových mikroextrakčních technik, které jsou založeny na selektivních přechodech analytů přes semi-permeabilní fázová rozhraní [1,2]. Při přechodu analytů bude využito difuze [1] nebo bude přechod urychlen účinkem elektrického pole [2]. Výsledné mikroextrakční techniky budou spojeny off-line nebo in-line s vhodnými analytickými metodami (primárně s kapilární elektroforézou) a adekvátnost takového spojení bude demonstrována analýzami biologicky, klinicky a toxikologicky významných analytů v reálných komplexních vzorcích jako je moč, krevní sérum/plasma a plná krev. [1] Kubáň, P., Boček, P., J. Chromatogr. A 1234 (2012) 2-8. [2] Kubáň, P., Šlampová, A., Boček, P., Electrophoresis 31 (2010) 768-785.

Use of LA-ICP-MS for analysis of geological sampples.

Supervisor: Mgr. Markéta Holá, Ph.D.

Práce se týká následujích témat:

  • bodová lokální analýza minerálů
  • plošné mapování vzorků pro zjištění distribuce prvků
  • datování minerálů
  • využití instrumentace LA 193 nm a 213 nm, kvadrupólový ICP-MS a sektorový ICP-MS

Specialization: Inorganic Chemistry

Functional metal organic frameworks and supramolecular assemblies

Supervisor: doc. Mgr. Marek Nečas, Ph.D.

The research is focused on the synthesis of new polytopic ligands and their utilization in the construction of functional coordination polymers (porous, luminescent). The attention is given to robust architectures of MOFs, which can be exploited as matrices for crystallization of small molecules (crystalline sponges). Another line of research includes the search for a functional connection between metal complexes and organic macrocycles and molecular clips. Using a rotating anode dual-wavelength X-ray diffractometer, we are able to determine structures even of very tiny crystals and of very complex systems with large unit cells.

Ruthenium and platinum coordination compounds for novel antitumor therapies

Supervisor: prof. RNDr. Radek Marek, Ph.D.

Many transition-metal complexes are known to be biologically active. This applies particularly to coordination compounds containing platinum represented by clinical drugs cisplatin, carboplatin, and oxaliplatin. Highly promising compounds with antimetastatic potential contain ruthenium active core. We are working on the development of novel ruthenium and platinum coordination compounds containing anchors designed for binding with macrocyclic carriers from the family of cyclodextrins, cucurbiturils or calixarenes.
This project includes the synthesis of a series of mono and multinuclear, homo and heteroleptic metallocomplexes containing mono or polydentate ligands possessing hard or soft donor atoms. The molecular and supramolecular structures of compounds are characterized by using modern methods of NMR spectroscopy, ESI-MS, and ITC. Automatic crystallization robotics together with advanced crystallization techniques are employed to grow monocrystals and to reveal further structural details of complexes in the solid state by X-ray diffraction.
References:
1) Sojka, M.; Fojtu, M.; Fialova, J.; Masarik, M.; Necas, M.; Marek, R. Locked and Loaded: Ruthenium(II)-Capped Cucurbit[n]Uril-Based Rotaxanes with Antimetastatic Properties. Inorg. Chem. 2019, 58 (16), 10861-10870. https://doi.org/10.1021/acs.inorgchem.9b01203.
2) Chyba, J.; Novák, M.; Munzarová, P.; Novotný, J.; Marek, R. Through-Space Paramagnetic NMR Effects in Host-Guest Complexes: Potential Ruthenium(III) Metallodrugs with Macrocyclic Carriers. Inorg. Chem. 2018, 57 (15), 8735-8747. https://doi.org/10.1021/acs.inorgchem.7b03233.
3) Szymański, M.; Wierzbicki, M.; Gilski, M.; Jędrzejewska, H.; Sztylko, M.; Cmoch, P.; Shkurenko, A.; Jaskólski, M.; Szumna, A. Mechanochemical Encapsulation of Fullerenes in Peptidic Containers Prepared by Dynamic Chiral Self-Sorting and Self-Assembly. Chemistry - A European Journal 2016, 22 (9), 3148-3155. https://doi.org/10.1002/chem.201504451.
Synthesis of new molecular systems

Supervisor: prof. RNDr. Jiří Pinkas, Ph.D.

OBJECTIVES: These dissertation projects will focus on the synthesis of new homometallic and heterometallic molecular and polymeric phosphonate complexes, their structural characterization, investigation of their magnetic properties, and reactivity. Also alumazene reactivity will be examined in addition and substitution reactions.

EXAMPLES of potential student doctoral projects:

- Synthesis of polynuclear molecular precursors of metal phosphates and silicates

- Synthesis of metallophosphonate molecular and polymeric complexes of 3d and 4f metals

- Studies of alumazene addition and substitution reactions

PLEASE NOTE: before initiating the formal application process to doctoral studies, all interested candidates are required to contact Prof. Jiri Pinkas (jpinkas@chemi.muni.cz) for informal discussion.

Specialization: Materials Chemistry

Experimental and theoretical study of advanced functional metal materials

Supervisor: doc. RNDr. Pavel Brož, Ph.D.

OBJECTIVES: The work will be aimed at research in the field of advanced metal materials in various key areas such as thermoelectrics, hard and heat resistant alloys, lead free solders, nanoparticles, nanostructures and others. Experimental work will include preparation, characterisation and investigation of the materials properties as e.g. structure, thermal and phase properties, phase transformations etc. As the main methods, thermal analysis and Knudsen effusion mass spectrometry will be used. As complementary tools, methods of optical and electron microscopy will be utilized. Theoretical work will concern phase equilibria and phase diagram calculations based on semiempirical CALPHAD method, connected closely with the use of available ab-initio calculated energies of formation of phases.

EXAMPLES of possible research student projects:

  • Experimental and theoretical study of systems for perspective thermoelectric materials
  • Study of model systems for hard and heat resistant materials and thermodynamic description of phase equilibria
  • Study of thermodynamic behaviour and thermal stability of metal nanoparticles
  • Experimental and theoretical study of lead free-solder systems for high temperature application
  • OTHER useful information:

  • Laboratory of thermal analysis and KEMS
  • Research group of thermodynamic modelling of materials
  • PLEASE NOTE: before initiating the formal application process to doctoral studies, all interested candidates are required to contact doc. Pavel Broz (broz@chemi.muni.cz) for informal discussion.
    Investigation of advanced and nanostructured materials

    Supervisor: prof. RNDr. Jiří Sopoušek, CSc.

    OBJECTIVES: The aim of the research is experimental and theoretical study of nanostructured materials as nanoparticles, nanocomposites, etc. The main issue is laboratory preparation of promising materials complemented by their characterization and application studies. Important is also the studies of phase diagrams and phase transformations. The experiment can be connected with thermodynamic modelling of equilibrium states (CALPHAD method) and simulation of diffusion-controlled processes in materials. Materials under view are prepared mainly by methods of chemical synthesis. The aim is to synthesize new materials with high utility properties, functionalised nanostructures, and nanoparticles with properties enabling the introducing of new technologies (thermoelectrics, catalysis, sensors, diagnostics...).

    EXAMPLES of student doctoral projects:

  • Thermodynamic assessment of the M-X-… chalcogenide system suitable for thermoelectric applications
  • Diffusion controlled phase transformations occurred in bimetallic M-N core-shell nanoparticles and their use in catalysis
  • The study of phase transformations of Me-X NPs by simultaneous thermal analysis.
  • Phase diagram calculations of M-X nanoparticles applied for hydrogen evolution.
  • Solvothermal synthesis of M-N Janus alloy nanoparticles
  • Microemulsion synthesis of sulphides of transition metals
  • The selection of materials to explore depends on the current grant support. However, a doctoral candidate proposal may be taken into account if the proposal is of significant scientific or application benefit and its realization is ensured.

    More about research can be found on the websites:

  • Laboratory of nanoparticle synthesis
  • Laboratory of thermal analysis and KEMS
  • Research group of thermodynamic modelling of materials
  • PLEASE NOTE: before initiating the formal application process to doctoral studies, all interested candidates are required to contact prof. Jiri Sopousek (sopousek@mail.muni.cz) for informal discussion.
    Porous metallosilicates (M = Al, Sn, Zr, Ta) and their catalytic activity

    Supervisor: Mgr. Aleš Stýskalík, Ph.D.

    OBJECTIVES: These dissertation projects will explore new routes to porous materials based on metallosilicates. The synthetic procedures will be based on non-hydrolytic sol-gel reactions. Developed procedures will be optimized with respect to maximizing surface area and pore volume and controlling chemical composition and catalytic activity in topical catalytic reactions (e.g. ethanol dehydration, ethanol to butadiene conversion, etc.).
    EXAMPLES of potential student doctoral projects:

    • Synthesis of aluminosilicates for ethanol dehydration
    • Synthesis of metallosilicates for conversion of ethanol to 1,3-butadiene
    • Synthesis of metal nanoparticles deposited on porous supports for ethanol dehydrogenation
    • Synthesis of silicophosphates for ethanol dehydration


    Further information at:
    https://matchem.sci.muni.cz/laboratore/laborator-syntezy-materialu-a-jejich-prekurzoru-lamps

    Quantum-mechanical and/or thermodynamic modelling in metallic materials

    Supervisor: doc. Mgr. Jana Pavlů, Ph.D.

    Jedním z možných předmětů práce je počítačové modelování elektronové struktury a stability vybraných fází pomocí metody FLAPW (Full-potential Linearized Augmented Plane Wave) nebo pseudopotenciálového kódu VASP (Vienna Ab initio Simulation Package). Získané informace o elektronové struktuře, energetických, magnetických a mechanických vlastnostech studovaného materiálu budou následně rozšířeny o studium poruch krystalové mříže a jejich vlivu na stabilitu a vlastnosti materiálů. Aktuálně řešené problémy se týkají stability nanokompozitů, hranic zrn a fázových rozhraní.

    Kromě kvantově mechanického modelování je též možné se zabývat semiempirickým termodynamickým modelování fázových rovnovah a fázových diagramů pomocí metody CALPHAD (Computer Coupling of Phase Diagrams and Thermochemistry). Toto studium je zaměřeno na systémy obsahující intermetalické fáze, neboť tyto struktury vykazují specifické vlastnosti, které významným způsobem ovlivňují chování technologicky významných materiálů. Na základě znalosti stability intermetalických fází v závislosti na teplotě a složení bude možné předvídat chování studovaných systémů.

    Informace o tvorných teplech vybraných fází vzhledem k standardním stavům čistých složek potřebné pro modelování pomocí metody CALPHAD je možné získat z kvantově-mechanických výpočtů, a proto je možné se v disertační práci věnovat oběma typům výpočtů.

    Pro studium bude vybrána modelová kovová soustava.
    Synthesis of porous materials by non-hydrolytic sol-gel methods

    Supervisor: prof. RNDr. Jiří Pinkas, Ph.D.

    OBJECTIVES: These dissertation projects will explore new routes to porous materials based on metal oxides, silicates, phosphates and phosphonates, as well as hybrid inorganic-organic materials. The synthetic procedures will be based on non-hydrolytic sol-gel reactions. Developed procedures will be optimized with respect to maximizing surface area and pore volume and controlling chemical composition, surface functionalities, and pore size. The reactions will be also directed towards obtaining aerogels by specific drying techniques.

    EXAMPLES of potential student doctoral projects:

    - Synthesis of aluminophosphates and phosphonates by non-hydrolytic sol-gel methods

    - Synthesis of inorganic porous matrices

    - Synthesis of hybrid materials with high porosity

    - Preparation of calcium phosphates by nonhydrolytic methods

    - Synthesis of inorganic materials by electrospinning

    Further information at:

    https://matchem.sci.muni.cz/laboratore/laborator-syntezy-materialu-a-jejich-prekurzoru-lamps

    PLEASE NOTE: before initiating the formal application process to doctoral studies, all interested candidates are required to contact Prof. Jiri Pinkas (jpinkas@chemi.muni.cz) for informal discussion.

    Specialization: Organic Chemistry

    Development of Smart Molecular Capsules

    Supervisor: prof. RNDr. Radek Marek, Ph.D.

    Low solubility, biostability, and inefficient targeting of otherwise highly promising active pharmaceutical ingredients are often the limiting factors for their final approval for clinical use. We are developing a methodology to suppress these deficiencies by introducing a novel family of biocompatible macrocyclic carriers. The work consists of three main tasks: 1) the synthesis of covalent molecular capsules, 2) using these in analytical studies of their supramolecular host-guest interactions with selected drug candidates, and 3) carrying out further synthetic modifications of the capsules in order to fine-tune their affinity, activity, targeting, and release of drugs, which are based on results of complementary biological studies.

    Identification of inhibitors of selected protein kinases

    Supervisor: doc. Mgr. Kamil Paruch, Ph.D.

    Student navrhne a provede syntézu nových organických sloučenin - potenciálních inhibitorů vybraných proteinových kináz. Nově připravené sloučeniny budou následně testovány ve spolupráci s interními a externími biologickými pracovišti.

    Photochemical tools for targeted release and diagnostics of biologically relevant molecules

    Supervisor: prof. RNDr. Petr Klán, Ph.D.

    Our group focuses on the development and photophysical studies of novel photochemically active compounds and fluorophores, emphasizing the use of photochemistry to solve some interdisciplinary problems in chemistry, biology, physics, and environmental sciences. The prospective student will use organic synthesis and physico-chemical tools in the course of his/her studies. The (photo)reaction mechanisms will be investigated using state-of-the-art techniques, such as nanosecond laser flash or femtosecond pump-and-probe spectroscopies.

    Web page: https://photochem.sci.muni.cz/

    Synthesis of macrocyclic anion receptors and their applications in supramolecular chemistry

    Supervisor: prof. Ing. Vladimír Šindelář, Ph.D.

    In 2010, our group discovered a new family of macrocyclic receptors, bambusurils. These macrocycles are priced for their ability to bind inorganic and organic anions in water and organic solvents. The PhD topic are aimed to develop synthesis of more complex bambusuril derivatives which can be used for applications including anion sensing, anion transmembrane transport, and development of molecular machine. More about research of our group can be found on the group website: Supramolecular chemistry group

    Specialization: Physical Chemistry

    A Quantum Chemical Study of Diels-Alder Reactions

    Supervisor: doc. Mgr. Markéta Munzarová, Dr. rer. nat.

    Úkolem doktoranda bude prozkoumat povrch potenciální energie vybraných organických elektrocyklizačních reakcí metodou funkcionálu hustoty. Konečným cílem tohoto tématu je - na základě strutur a energií nalezených lokálních minim a tranzitních stavů - pochopit vlivy substituentů na stereochemické chování Diels-Alderových reakcí, vedoucích ke vzniku vybraných enedionů. Téma bude vedeno ve spolupráci s experimentální skupinou organické syntézy na Ústavu chemie PřF (Doc. Kamil Paruch, Dr. Jakub Švenda a Dr. Lukáš Maier).

    Coupling of thermal analysis and Knudsen effusion mass spectrometry for study of solid matters

    Supervisor: doc. RNDr. Pavel Brož, Ph.D.

    OBJECTIVES: The work will be aimed at research in the field of solid matters, such as e.g. metals, alloys, nanoparticles, nanostructured materials and others via combination of thermal analysis and Knudsen effusion mass spectrometry. The research will include study of thermodynamic properties and study of phase equilibria, such as phase transformation temperatures, heats of sublimation, thermal stability etc. As the properties are closely related to a phase structure of a given system under study, a complementary experimental and theoretical study of phase properties and phase equilibria via methods of electron microscopy and CALPHAD approach for phase equilibria and phase diagram calculations will be conducted.

    EXAMPLES of possible research student projects:

  • Study of thermodynamic properties of selected solid systems
  • Study of heat of sublimation of selected solid systems
  • Study of thermal stability and surface effects on nanoparticles
  • Study of catalytic properties of selected nanoparticles
  • OTHER useful information:

  • Laboratory of thermal analysis and KEMS
  • Laboratory of nanoparticle synthesis
  • Research group of thermodynamic modelling of materials
  • PLEASE NOTE: before initiating the formal application process to doctoral studies, all interested candidates are required to contact doc. Pavel Broz (broz@chemi.muni.cz) for informal discussion.
    Molecular electrochemistry of biologically important substances

    Supervisor: prof. RNDr. Libuše Trnková, CSc.

    Understanding the chemistry of nitrogen bases, nucleosides and their phosphates, oligo- and polynucleotides (or even nucleic acids or regions thereof) is crucial for a number of important applications ranging from diagnostics to targeted drug development. Within the scope of the presented topic, systematic research of structural series of these compounds will be performed by electrochemical methods (voltammetry, RDE,EIS) in combination with independent approaches - spectrometric (UV-VIS, EPR, NMR, spectro-electrochemistry) and theoretical methods (quantum mechanical calculations – cooperation with Prague, JH Institute of Physical Chemistry). In particular, the aim is to understand (and model) the reaction mechanisms of the compounds and to determine the relationship between structure, redox properties and biological effect.

    EXAMPLES of possible research student projects:

  • development of cheap unmodified and modified sensors (pencil graphite leads, compact disc - trodes, screen printed electrodes);
  • development of perspective electroanalytical methods, e.g., elimination voltammetry;
  • determination of proteins (e.g., insulin, trombin) by electro-catalyzing metal nanoparticles;
  • study of the structure-electrochemical activity of biomolecules (effect of methylation).
  • OTHER useful information: LABIFEL - Laboratoře biofyzikální chemie a elektrochemie - https://www.sci.muni.cz/labifel/

    Paramagnetic NMR spectroscopy assisted by DFT calculations: Supramolecular metallocomplexes

    Supervisor: prof. RNDr. Radek Marek, Ph.D.

    Development of novel coordination compounds of transition metals is stimulated by their broad applications in chemical catalysis, material science, and medical treatment or diagnosis. Understanding their chemical properties (stability, reactivity, formation of host-guest complexes) requires their molecular and electronic structure to be known. We use modern methods of NMR spectroscopy to investigate the above-mentioned systems in detail.
    The presence of heavy metal atoms, open-shell character, conformational flexibility, and supramolecular interactions with binding partner must be carefully considered. Thus, the interpretation of NMR experiments requires synergy with various computational tools of quantum chemistry and molecular modelling. The general goal of this study is to apply developed methodology for the structure characterization of new metallocomplexes associated with various cavitands.
    Selected references:
    1) Novotny, J; Sojka, M; Komorovsky, S; Necas, M; Marek, R, 2016: Interpreting the Paramagnetic NMR Spectra of Potential Ru(III) Metallodrugs: Synergy between Experiment and Relativistic DFT Calculations. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 138(27), p. 8432-8445, DOI: 10.1021/jacs.6b02749.
    2) Chyba, J; Novak, M; Munzarova, P; Novotny, J; Marek, R, 2018: Through-Space Paramagnetic NMR Effects in Host-Guest Complexes: Potential Ruthenium(III) Metallodrugs with Macrocyclic Carriers. INORGANIC CHEMISTRY 57(15), p. 8735-8747, DOI: 10.1021/acs.inorgchem.7b03233.
    3) Novotny, J; Prichystal, D; Sojka, M; Komorovsky, S; Necas, M; Marek, R, 2018: Hyperfine Effects in Ligand NMR: Paramagnetic Ru(III) Complexes with 3-Substituted Pyridines. INORGANIC CHEMISTRY 57(2), p. 641-652, DOI: 10.1021/acs.inorgchem.7b02440.
    4) Jeremias, L; Novotny, J; Repisky, M; Komorovsky, S; Marek, R, 2018: Interplay of Through-Bond Hyperfine and Substituent Effects on the NMR Chemical Shifts in Ru(III) Complexes. INORGANIC CHEMISTRY 57(15), p. 8748-8759, DOI: 10.1021/acs.inorgchem.8b00073.
    5) Bora, PL; Novotny, J; Ruud, K; Komorovsky, S; Marek, R, 2019: Electron-Spin Structure and Metal-Ligand Bonding in Open-Shell Systems from Relativistic EPR and NMR: A Case Study of Square-Planar Iridium Catalysts. JOURNAL OF CHEMICAL THEORY AND COMPUTATION 15(1), p. 201-214, DOI: 10.1021/acs.jctc.8b00914.
    Quantum-mechanical and/or thermodynamic modelling in metallic materials

    Supervisor: doc. Mgr. Jana Pavlů, Ph.D.

    Jedním z možných předmětů práce je počítačové modelování elektronové struktury a stability vybraných fází pomocí metody FLAPW (Full-potential Linearized Augmented Plane Wave) nebo pseudopotenciálového kódu VASP (Vienna Ab initio Simulation Package). Získané informace o elektronové struktuře, energetických, magnetických a mechanických vlastnostech studovaného materiálu budou následně rozšířeny o studium poruch krystalové mříže a jejich vlivu na stabilitu a vlastnosti materiálů. Aktuálně řešené problémy se týkají stability nanokompozitů, hranic zrn a fázových rozhraní.

    Kromě kvantově mechanického modelování je též možné se zabývat semiempirickým termodynamickým modelování fázových rovnovah a fázových diagramů pomocí metody CALPHAD (Computer Coupling of Phase Diagrams and Thermochemistry). Toto studium je zaměřeno na systémy obsahující intermetalické fáze, neboť tyto struktury vykazují specifické vlastnosti, které významným způsobem ovlivňují chování technologicky významných materiálů. Na základě znalosti stability intermetalických fází v závislosti na teplotě a složení bude možné předvídat chování studovaných systémů.

    Informace o tvorných teplech vybraných fází vzhledem k standardním stavům čistých složek potřebné pro modelování pomocí metody CALPHAD je možné získat z kvantově-mechanických výpočtů, a proto je možné se v disertační práci věnovat oběma typům výpočtů.

    Pro studium bude vybrána modelová kovová soustava.
    The Spectroscopy and Microscopy of Chemical Compounds in Ice within the Environmental and Pharmaceutical Domains

    Supervisor: doc. Mgr. Dominik Heger, Ph.D.

    Compounds on ice: Ice and snow, the solid forms of water, are very interesting reaction media. Organic compounds are mostly expelled from the inside to the surface of ice and to the veins between ice crystals. We study the compounds in these compartments by absorption, emission, microscopy, and reactivity. These compartments differ from the original solution: the concentration of impurities increases, and the amount of available protons changes. Electrical potential is created on the interface between ice and the solution during freezing. The above facts strongly affect the frozen compounds, whether in natural or human-induced freezing. We investigate the spectroscopy, speciation and compartmentation of compounds on ice to describe ice - compounds interactions.

    Study information

    Provided by Faculty of Science
    Type of studies Doctoral
    Mode full-time Yes
    combined Yes
    Study options single-subject studies No
    single-subject studies with specialization Yes
    major/minor studies No
    Standard length of studies 4 years
    Language of instruction Czech
    Collaborating institutions
    • The Czech Academy of Sciences
    • Ústav analytické chemie AV ČR
    Doctoral board and doctoral committees

    Do you have any questions?
    Send us an e-mail

    prof. RNDr. Jiří Pinkas, Ph.D.

    Consultant

    E‑mail: