Submit your application during this period
International applicants for doctoral study (Czech and Slovak Republics applicants NOT included)
Doctoral degree in full-time or combined form. The language of instruction is Czech.
The programme can be studied only as a single subject.
Application deadline depending on the admission procedure chosen (midnight 30 November 2023 or 15 December 2023)
The program is product of fusion of former independent Molecular and Cellular Biology with General and Molecular Genetics. We propose the fusion to reflect modern holistic approaches dominating in both fields that converge them to close proximity and bringing benefits to both of them. The aim of the program is providing excellent scientific education in the field of molecular and cell biology and genetics. The graduates thus should be proficient to accomplish research of living phenomena on molecular, cellular, tissue or organismal levels. To achieve this aim, students are systematically guided to advance their theoretical knowledge in the field and master practical skills in applications of modern methods of molecular and cellular biology, genetics and other related fields. The key themes include study of genes and genomes and their expression in microorganisms, plants, animals and humans. Special attention is paid to their relations to pathological conditions. Research performed on microorganisms is focused preferentially on molecular diagnosis and genomics of selected pathogenic and clinically significant bacterial strains and their interactions with bacteriophages. Research of plants is concentrated mainly on genes of model plants and plants used in agriculture. In animals and humans, research is focused on genetical structure of populations, molecular diagnosis of prenatal and postnatal pathogenic situations, genetics of tumors, study of signalling processes connected with deregulation of proliferation, differentiation and programmed cell death in tumor cells and detection of genetical factors associated with certain polygenic diseases. Students are free to perform independent research in well-equipped laboratories and experienced supervisors are nominated to guide them in this effort. Students are continuously confronted with progress in the field by discussions in regular laboratory meetings, institutional seminars or conferences. Students successfully presenting their results in conferences or written articles can be awarded by special scholarships for excellent representation of the Deparmtent of Experimental Biology and following activities:
1. Successfull presentation record resulting from reaching aims of Ph.D. thesis projects, such as:
The scholarship can be used for partial covering of travel/accomodation expenses or conference fees.
The essential condition for awarding the scholarship is correct affiliation of the presentations (both papers and conference abstracts) to the Deparment of Experimental Biology, Faculty of Science, Masaryk University.
2. Participation in teaching younger students of Master programmes how to perform experimental methods and interprete the results obtained.
3. Participation in grant projects. Long-lasting participation and significant contribution to accomplishing the projects aims can be awarded by getting part-time job or contract for certain period.
“Windows of the living cell universe wide-opened.”
The students who are interested in applied research can collaborate with companies as Repromeda (assisted reproduction), MB Pharma (devising phage preparations) or to participate in grant projects funded by TACR leading to applied outcomes. We aim to further support contractual research with applied potential, search for suitable partners and provide them with option to collaborate with students interested in this kind of research.
Additional information can be found in following addresses:
http://www.sci.muni.cz/cz/DoktorskeStudium/Prehled-programu-a-oboru
http://www.sci.muni.cz/cz/UEB
The Office for Doctoral Studies, Quality, Academic Affairs and Internationalization takes care of doctoral students SCI MU
https://www.sci.muni.cz/en/students/phd
On the department's website, you can find the following information:
but also office hours, contacts, news, information on skills development and scholarships.
Detailed information on stays abroad can be found on this website:
https://www.sci.muni.cz/en/students/phd/develop-your-skills/stay-abroad
Graduates find positions in various research institutes, universities, hospitals and other medical facilities and laboratories oriented to virology, microbiology, genetics, biochemistry, immunology, pharmacology, pathology, etc. They are ready to perform independent research, draft scientific projects, create grant applications, design experimental work itself, interprete results rigorously and present them in oral as well as written forms. They are also educated to act as teachers. Graduates from this program are sought-after by employers and many of them currently work on positions of leading researchers, university teachers, top managers and directors in various research and education institutions in Brno, Prague, Ostrava, České Budějovice, Olomouc, etc. Many graduates leaves for postdoctoral stays abroad, especially to west-european countries, USA, Canada, Japan, Australia. They often become highly-appreciated members of research teams there.
More information about admission process for international applicants in general can be found here.
Date of the entrance exam
The applicants will receive information about the entrance exam by e-mail usually at least 10 days before the exam.
Please, always check your e-mails, including spam folders.
Conditions of admission
To be admitted, a candidate must obtain a total of 70 out of 100 points in the expert knowledge part and 60 out of 100 points in the language part.
Successful applicants are informed of their acceptance by e-mail and subsequently receive an invitation to the enrolment.
Programme capacity
The capacity of a given programme is not fixed; students are admitted based on a decision by the Doctoral Board after assessing their aptitude for study and motivation.
More information about admission process for international applicants in general can be found here.
Date of the entrance exam
The applicants will receive information about the entrance exam by e-mail usually at least 10 days before the exam.
Please, always check your e-mails, including spam folders.
Conditions of admission
To be admitted, a candidate must obtain a total of 70 out of 100 points in the expert knowledge part and 60 out of 100 points in the language part.
Successful applicants are informed of their acceptance by e-mail and subsequently receive an invitation to the enrolment.
Programme capacity
The capacity of a given programme is not fixed; students are admitted based on a decision by the Doctoral Board after assessing their aptitude for study and motivation.
International applicants for doctoral study (Czech and Slovak Republics applicants NOT included)
Admission to Doctoral degree programmes in 2023/2024 (beginning: Spring 2024)
Zubní pulpa představuje cévní a nervové zásobení zubu obklopené jeho tvrdými komponentami. Jedná se o unikátní tkáň, která je klíčová pro vitalitu zubu, současně náchylná na působení zevních vlivů a vykazující omezenou míru regenerace. Kmenové buňky, které byly identifikovány v zubní pulpě, jsou proto atraktivním předmětem biomedicínského výzkumu. Obecně je známo, že výskyt kmenových buněk je asociován s vaskularizací a inervací tkání, většina poznatků ke kmenovým buňkám zubní pulpy však pochází z in vitro analýz. Cílem vědecko-výzkumné činnosti bude výzkum molekulárních faktorů týkajících se těchto asociací, a to v kontextu in vivo. Projekt zahrnuje zejména histologické a imunohistochemické metody, PCR techniky, statistickou analýzu dat a experimentální práci na myším modelu. K pozici je možné získat částečný úvazek na běžícím GAČR projektu. Kandidát na tuto pozici by měl samostatně pracovat s odbornou literaturou a být všeobecně orientován v oboru molekulární biologie. Znalost výše uvedených technik není nutná.
This project will be supervised by dr. Eva Švandová, Ph.D upon approval by Scientific Board of the Faculty of Science.
Genome sequencing brings a huge amount of information regarding the genetic basis of life. While this information provides a foundation for our understanding of biology, it has become clear that the DNA code alone does not hold all the answers. Epigenetic modifications and higher order DNA structures beyond the double helix contribute to basic biological processes and maintaining cellular stability. Local alternative DNA structures are known to exist in all organisms. Negative supercoiling induces in vitro local nucleotide sequence-dependent DNA structures such as cruciforms, left-handed DNA, triplex and quadruplex structures etc. The formation of cruciforms requires perfect or imperfect inverted repeats of 6 or more nucleotides in the DNA sequence. Inverted repeats are distributed nonrandomly in the vicinity of breakpoint junctions, promoter regions, and at sites of replication initiation. Cruciform structures could for example affect the degree of DNA supercoiling, the positioning of nucleosomes in vivo, and the formation of other secondary structures of DNA. The three-dimensional molecular structure of DNA, specifically the shape of the backbone and grooves of genomic DNA, can be dramatically affected by nucleotide changes, which can cause differences in protein-binding affinity and phenotype. The recognition of cruciform DNA seems to be critical not only for the stability of the genome, but also for numerous, basic biological processes. As such, it is not surprising that many proteins have been shown to exhibit cruciform structure-specific binding properties or G-quadruplex binding properties. Contemporary we have developed easy accessible web tools for analyses of inverted repeats and G-quadruplexes and we have analyzed the presence of inverted repeats and G-quadruplexes in various genomic datasets, such as all sequences mitochondrial genomes, all bacterial genomes, in S.cerevisiae, in human genome etc. A deeper understanding of the processes related to the formation and function of alternative DNA structures will be an important component to consider in the post-genomic era.
Supervisor:
Doc. Mgr. Václav Brázda, PhD.; Biofyzikální ústav AVČR, Královopolská 135, 612 65 Brno, tel. 541517231, fax 541211293, e-mail: vaclav@ibp.cz
https://www.ibp.cz/en/research/departments/biophysical-chemistry-and-molecular-oncology/staff/5
DNA double-strand breaks (DSBs) are abrasions caused in both strands of the DNA duplex following exposure to both exogenous and endogenous conditions. Such abrasions have deleterious effects on cells leading to genome rearrangements and cell death [1]. Several repair systems, including homologous recombination (HR) and non-homologous end-joining (NHEJ), have been evolved to minimize the fatal effects of these lesions in the cell. Growing amounts of evidence suggest that different types of RNAs can, independently from their protein-coding properties, directly affect chromatin conformation, transcription, and splicing, as well as promote the activation of the DNA damage response (DDR) and DNA repair. Therefore, transcription paradoxically functions to both threaten and safeguard genome integrity [2,3]. Non-coding RNAs (ncRNAs) and several protein factors involved in the RNAi pathway are well-known master chromatin regulators, while only recent reports show their involvement in DDR.
The Ph.D. candidate would focus on improving used methods and developing a novel for detecting selected ncRNAs within various cell lines using specific DNA probes. The methodology would be mainly built upon experiences with in situ hybridization within Dr. Bártová research group. The goal of the Ph.D. thesis would also be to determine changes in the localization of tested ncRNAs within normal and cancer cell lines after UV irradiation as well as detection of ncRNAs colocalization with DNA damage repair markers, such as y-H2AX, 53BP1, RIF1 or R-loop and others, together with protein-DNA and protein-RNA interactions using advanced methods of confocal microscopy. The Ph.D. candidate will also participate in the day-to-day running of the laboratory as well as in teaching activities.
Dvojřetězcové zlomy DNA (DSB) vznikají u obou vláknech duplexu DNA po vystavení exogenním i endogenním podmínkám. Poškození DNA má na buňky škodlivé účinky, které vedou k přestavbě genomu a buněčné smrti [1]. K minimaliaci fatálních účinků těchto lézí v buňce bylo vyvinuto několik opravných mechanizmů, včetně homologní rekombinace (HR) a nehomologního spojování konců (NHEJ). Rostoucí množství důkazů naznačuje, že různé typy RNA mohou nezávisle na svých vlastnostech (kódování proteinů) přímo ovlivňovat konformaci chromatinu, transkripci a sestřih a také podporovat aktivaci odpovědi na poškození DNA (DDR) a opravu DNA. Transkripce tedy paradoxně funguje tak, že ohrožuje i chrání integritu genomu [2,3]. Nekódující RNA (ncRNA) a několik proteinových faktorů zapojených do dráhy RNAi jsou dobře známými hlavními regulátory chromatinu, zatímco teprve nedávné studie ukazují jejich zapojení do DDR.
Doktorand by se zaměřil na zdokonalení používaných metod a vývoj nových, pro detekci vybraných ncRNA v různých buněčných liniích pomocí specifických DNA sond. Metodika by byla postavena především na zkušenostech s in situ hybridizací v rámci výzkumné skupiny Dr. Bártové. Cílem doktorské práce by bylo také stanovení změn v lokalizaci testovaných ncRNA v rámci normálních a nádorových buněčných linií po ozáření UV zářením a detekce kolokalizace ncRNA s markery reparace poškození DNA, jako jsou y-H2AX, 53BP1, RIF1 nebo R-loop a další, spolu s interakcemi protein-DNA a protein-RNA pomocí pokročilých metod konfokální mikroskopie. Doktorand se bude rovněž podílet na každodenním chodu laboratoře a na výuce.
1. Dianatpour, A.; Ghafouri-Fard, S. The Role of Long Non-Coding RNAs in the Repair of DNA Double-Strand Breaks. Int J Mol Cell Med 2017, 6, 1-12. 2. Sharma, V.; Misteli, T. Non-coding RNAs in DNA damage and repair. FEBS Lett 2013, 587, 1832-1839, doi:10.1016/j.febslet.2013.05.006. 3. Francia, S. Non-Coding RNA: Sequence-Specific Guide for Chromatin Modification and DNA Damage Signaling. Front Genet 2015, 6, 320, doi:10.3389/fgene.2015.00320.
Provided by | Faculty of Science | |
---|---|---|
Type of studies | Doctoral | |
Mode | full-time | Yes |
combined | Yes | |
distance | No | |
Study options | single-subject studies | Yes |
single-subject studies with specialization | No | |
major/minor studies | No | |
Standard length of studies | 4 years | |
Language of instruction | Czech | |
Collaborating institutions |
|
|
Doctoral board and doctoral committees |
Consultant
E‑mail: |
---|