Publication details

Cardamine hirsuta: a versatile genetic system for comparative studies

Authors

HAY Angela S. PIEPER Bjorn COOKE Elizabeth MANDÁKOVÁ Terezie CARTOLANO Maria TATTERSALL Alexander D. IOIO Raffaele D. MCGOWAN Simon J. BARKOULAS Michalis GALINHA Carla RAST Madlen I. HOFHUIS Hugo THEN Christiane PLIESKE Jörg GANAL Martin MOTT Richard MARTINEZ- GARCIA Jaime F. CARINE Mark A. SCOTLAND Robert W. GAN Xiangchao FILATOV Dmitry A. LYSÁK Martin TSIANTIS Miltos

Year of publication 2014
Type Article in Periodical
Magazine / Source The Plant Journal
MU Faculty or unit

Central European Institute of Technology

Citation
Web http://onlinelibrary.wiley.com/doi/10.1111/tpj.12447/abstract
Doi http://dx.doi.org/10.1111/tpj.12447
Field Genetics and molecular biology
Keywords ARABIDOPSIS-THALIANA; SHADE AVOIDANCE; ARABIS-ALPINA; GENOME SIZE; BRASSICACEAE; EVOLUTION; DIVERSITY; EXPRESSION; DROSOPHILA; PATTERNS
Description A major goal in biology is to identify the genetic basis for phenotypic diversity. This goal underpins research in areas as diverse as evolutionary biology, plant breeding and human genetics. A limitation for this research is no longer the availability of sequence information but the development of functional genetic tools to understand the link between changes in sequence and phenotype. Here we describe Cardamine hirsuta, a close relative of the reference plant Arabidopsis thaliana, as an experimental system in which genetic and transgenic approaches can be deployed effectively for comparative studies. We present high-resolution genetic and cytogenetic maps for C.hirsuta and show that the genome structure of C.hirsuta closely resembles the eight chromosomes of the ancestral crucifer karyotype and provides a good reference point for comparative genome studies across the Brassicaceae. We compared morphological and physiological traits between C.hirsuta and A.thaliana and analysed natural variation in stamen number in which lateral stamen loss is a species characteristic of C.hirsuta. We constructed a set of recombinant inbred lines and detected eight quantitative trait loci that can explain stamen number variation in this population. We found clear phylogeographic structure to the genetic variation in C.hirsuta, thus providing a context within which to address questions about evolutionary changes that link genotype with phenotype and the environment.
Related projects: