Publication details

Non-Enzymatic Oligomerization of 3 ', 5 ' Cyclic AMP

Authors

COSTANZO Giovanna PINO Samanta TIMPERIO Anna Maria ŠPONEROVÁ Judit ŠPONER Jiří NOVAKOVA Olga ŠEDO Ondrej ZDRÁHAL Zbyněk DI MAURO Ernesto

Type Article in Periodical
Magazine / Source Plos one
MU Faculty or unit

Central European Institute of Technology

Citation
Web http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0165723
Doi http://dx.doi.org/10.1371/journal.pone.0165723
Field Biochemistry
Keywords TEMPLATE-DIRECTED SYNTHESIS; NUCLEOSIDE PHOSPHORYLATION; MONTMORILLONITE CATALYSIS; MOLECULAR-STRUCTURE; RIBOZYME ACTIVITY; RNA; OLIGONUCLEOTIDES; POLYMERIZATION; GMP; DNA
Description Recent studies illustrate that short oligonucleotide sequences can be easily produced from nucleotide precursors in a template-free non-enzymatic way under dehydrating conditions, i.e. using essentially dry materials. Here we report that 3',5' cyclic AMP may also serve as a substrate of the reaction, which proceeds under moderate conditions yet with a lower efficiency than the previously reported oligomerization of 3',5' cyclic GMP. Optimally the oligomerization requires (i) a temperature of 80 degrees C, (ii) a neutral to alkaline environment and (iii) a time on the order of weeks. Differences in the yield and required reaction conditions of the oligomerizations utilizing 3', 5' cGMP and cAMP are discussed in terms of the crystal structures of the compounds. Polymerization of 3',5' cyclic nucleotides, whose paramount relevance in a prebiotic chemistry context has been widely accepted for decades, supports the possibility that the origin of extant genetic materials might have followed a direct uninterrupted path since its very beginning, starting from non-elaborately pre-activated monomer compounds and simple reactions.
Related projects: