Publication details

Comparative Electrochemical and Spectroscopic Studies of I-motif forming DNA Nonamers

Authors

TRNKOVÁ Libuše TŘÍSKOVÁ Iveta VORLÍČKOVÁ Michaela KEJNOVSKÁ Iva DVOŘÁKOVÁ Zuzana PIVOŇKOVÁ Hana FIALA Radovan

Year of publication 2019
Type Article in Periodical
Magazine / Source Electroanalysis
MU Faculty or unit

Faculty of Science

Citation
Web https://onlinelibrary.wiley.com/doi/epdf/10.1002/elan.201900323
Doi http://dx.doi.org/10.1002/elan.201900323
Keywords i-motif; (C)-rich DNA nonamers; linear sweep voltammetry; elimination voltammetry with linear scan; CD spectra; NMR spectra; native PAGE
Description The paper shows the structural diversity of cytosine (C)-rich oligodeoxynucleotides (ODNs) arising from their detail nucleotide sequence and experimental conditions. In slightly acidic solutions, the ODN nonamers with different adenine (A) and cytosine (C) sequences can adopt non-canonical structures involving protonated bases. A distinct secondary structure formed in (C)-rich sequences, called i-motif (iM), consists of hemiprotonated and intercalated cytosine base pairs (C.C+). Folding and unfolding of particular structures in solutions were monitored by H-1 NMR and CD spectroscopies and native polyacrylamide gel electrophoresis (PAGE), which are capable to determine their structural characteristics. Effects of sequences and their proclivity to formation of the iM on electrochemical behaviour of the ODN nonamers were studied by electrochemical methods. The LSV signals of A and C obtained from the reductive dissolution of ODN adsorption layers on a hanging mercury drop electrode were processed by elimination voltammetry with linear scan (EVLS), which revealed complex effects of the nonamer properties (namely their primary and secondary structure confirmed in solution) on their adsorption and reduction activity.
Related projects: