Publication details

Structure of Open Clusters - Gaia DR2 and its limitations

Authors

PIECKA Martin PAUNZEN Ernst

Year of publication 2022
Type Article in Periodical
Magazine / Source Bulgarian Astronomical Journal
MU Faculty or unit

Faculty of Science

Citation
Web https://astro.bas.bg/AIJ/issues/n36/MPiecka.pdf
Keywords open clusters; astrometry; galactic structure; gaia; satellite mission
Description Very precise observational data are needed for studying the stellar cluster parameters (distance, reddening, age, metallicity) and cluster internal kinematics. In turn, these give us an insight into the properties of our Galaxy, for example, by giving us the ability to trace Galactic spiral structure, star formation rates and metallicity gradients. We investigated the available Gaia DR2 catalogue of 1229 open clusters and studied cluster distances, sizes and membership distributions in the 3D space. An appropriate analysis of the parallax to-distance transformation problem is presented in the context of getting distances toward open clusters and estimating their sizes. Based on our investigation of the Gaia DR2 data we argue that, within 2 kpc, the inverse-parallax method gives comparable results (distances and sizes) as the Bayesian approach based on the exponentially decreasing volume density prior. Both of these methods show very similar dependence of the line-of-sight elongation of clusters (needle-like shapes resulting from the parallax uncertainties) on the distance. We also looked at a measure of elongations of the studied clusters and find the maximum distance of 665 pc at which a spherical fit still contains about half of the stellar population of a cluster. It follows from these results that the 3D structure of an open cluster cannot be properly studied beyond similar to 500 pc when using any of the mentioned standard transformations of parallaxes to distances.

You are running an old browser version. We recommend updating your browser to its latest version.

More info