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Abstract

Hardware and software verification is a mature technology, which has been
adopted in many areas where correctness of behaviour is critical. In con-
trast, its younger probabilistic sibling still struggles at many basic points:
the properties of interest are often hard to specify, verification engines do
not scale well with the size of the system, and the products of the process
are difficult to use. We show how machine learning, automata theory, and
revisiting established concepts may help to address these issues, based on
recent results.

Shrnutí
Hardwarová a softwarová verifikace se již etablovala v řade oblastí, kde je
správné fungování systémů zcela klíčové. Naproti tomu její mladší, prav-
děpodobnostní odrůda stále zápolí se základními požadavky: není vždy
jednoduché vyjádřit požadovanou vlastnost systému, použitelnost trpí pří-
lišnou závislostí na velikosti systému a forma výsledků neodpovídá prak-
tické potřebě. Tato habilitační práce ukazuje některé nedávno otevřené mož-
nosti, jak strojové učení, teorie automatů a přehodnocení některých zaběh-
nutých pojmů a postupů můze v těchto ohledech pomoci.
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Chapter 1

Introduction

In this chapter, we introduce the general topic of the thesis and outline its
structure. While the subsequent chapters can be read independently, they
all refer to the notions introduced in this chapter.

1.1 Probabilistic verification

Probabilistic systems are abundant in many areas ranging from telecommu-
nication (randomized protocols), transportation (automotive, aerospace),
operations research (queuing networks), biology (signalling pathways), to
daily-life appliances (embedded software controllers), to name just a few.

Since many of the systems are safety-critical, we need to ensure their
proper behaviour. To this end, we construct models of these systems and
then analyze them with respect to, e.g., low consumption for resource-limited
systems, high mean time to failure for dependable systems, or to gain un-
derstanding of complex behaviour of natural processes.

The process of model checking follows the general pattern depicted in
Figure 1.1. The are two inputs to the procedure: a system and a property.

Firstly, the systems where probabilistic features are essential can be for-
malized in various ways, depending on further present features. In this the-
sis, we deal with the most fundamental models, namely

Markov chains (MC) [Mar06, Nor98] for fully stochastic systems,

Markov decision processes (MDP) [Bel57, Put94] capturing both stochas-
ticity and non-determinism, either controllable or uncontrollable,

stochastic games (SG) [Sha53, Con90] with all the three present.

3



1. INTRODUCTION

System with probabilistic behaviour
expressed as a

Probabilistic model M

Property
expressed as a

Formula ϕ

Model checking M
?

|= ϕ

• Yes/No/How much

• Witness/Counterexample

Chp. 4

Chp. 3

Chp. 2

Figure 1.1: The general scheme of probabilistic model checking and the fo-
cus of the subsequent chapters

Besides, many richer formalism are defined in terms of MC and MDP, such
as e.g. stochastic timed automata (STA) [BBB+14] or probabilistic timed au-
tomata (PTA) [NPS13], designed to cope with additional timing issues. We
will mostly focus on the basic models, such as MDP.

Secondly, the properties of interest range from the simplest properties
of the system, e.g. reachability of a given state, to more complex proper-
ties defined by a quantitative structure over the system, e.g. long-run aver-
age reward [How60, Gil57], by a temporal formula, e.g. of linear temporal
logic (LTL) [Pnu77], or by comparison to another system, e.g. bisimulation
[Par81, LS89] or distance [CHR10]. Consequently, the property is usually
formalized declaratively by a formula in a suitable logic or operationally
by a behaviour of another system. We will mostly focus on the former.

As indicated in Figure 1.1, the model checking procedure combines and
analyzes the input pair, yielding an answer to the question whether the

4



1. INTRODUCTION

Table 1.1: Examples of properties of interest. The classic notions (line 1) have
been extended to the probabilistic setting (line 2) and further generalized to
more robust notions of quantitative probabilistic properties (line 3). Here P
denotes probability, E expectation, Ri the reward obtained in the ith step,
and L(S) the language recognized by S.

LTL average reward (mean payoff) trace equivalence
classic formula ϕ MP := lim infn→∞

1
n

∑n
i=1Ri L(S1) = L(S2)

probabilistic P[ϕ] = 1 E[MP] ≥ t ∀L : P1[L] = P2[L]

quantitative pr. P[ϕ] ≥ p P[MP ≥ t] ≥ p ∀L : |P1[L]− P2[L]| < d

model satisfies the formula. However, for probabilistic systems, the Boolean
notions of satisfaction and equivalence are not always useful. Rather we
need to refine the notions into truly quantitative ones, such as the extent of
satisfaction, e.g. “with 95% chance the long-run average reward is between
0 and 42”. For instance, even highly safety-critical systems such as nuclear
plants, with each hardware component failing with certain probability, do
not satisfy the safety properties, but with some (preferably high) proba-
bility. Computing this probability is the task of quantitative probabilistic
model checking. Similarly, the probabilities of failures of the components
are only empirically estimated and the slightest imprecision in the estimate
may result in systems being or not being equivalent. Instead, we prefer to
measure how much they differ. This can be captured by the quantitative
notion of distance. Several examples of popular properties are depicted in
Table 1.1.

Further, the answer may be documented by a witness, e.g. a motion-
planning strategy to be implemented, or a counterexample, e.g. schedul-
ing leading to violation of mutual exclusion. This is crucial for the practical
applicability of model checking and the core point of controller synthesis.

The approach to the analysis depends not only on the already discussed
types of the two inputs and of the output, but also on

the granted knowledge of the model ranging from

• full quantitative information, white-box models (assumed in
most of the literature) to

• qualitative one (without the exact quantities) to

• black-box models, which can only be simulated and their be-
haviour observed in runtime, and

the required guarantee on the result ranging from

5



1. INTRODUCTION

• precise/optimal to

• ε-precise/ε-optimal (for a known or given error bound ε)

• to confidence intervals typical in statistical model checking [YS02,
ISOLA’16] and probably approximately correct results (PAC)
typical in learning [Val84, SLW+06] to,

• best effort, which is mostly out of scope of the thesis.

1.2 Focus and structure of the thesis

The thesis reports on recent(∗) progress in making probabilistic verification
more efficient, in particular more scalable despite the state-space-explosion
problem, and more usable in that (i) the input formula reflects the desired
property more accurately, and (ii) the output artefact (counterexample or
the produced controller) are easier to understand, debug or implement.

The content can be classified into three streams and we outline it in the
order we explained Figure 1.1:

• Chapter 2 discusses how inexact approaches based on simulations
and machine learning may improve both exact analysis and the qual-
ity of its output.

• Chapter 3 focuses on LTL and how to transform its formulae into
different types of automata, allowing for their efficient analysis for
each particular setting.

• Chapter 4 handles more complex properties and their extensions,
combinations, and alternative interpretations.

The main novel aspects are thus

• bridging some of the gaps between formal and practically used meth-
ods,

• innovations in automata theory, leading to practical improvements,
and

• identification of new specification concepts and their verification
procedures, respectively.

The second part then lists some of the papers on which the discussed
results are based.

(∗). I.e., since obtaining the second Ph.D. in mid-2014.
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Chapter 2

Learning to Control

In this chapter, we explain how imprecise techniques based on simulations
and machine learning can enhance traditional verification and controller-
synthesis techniques in several ways:

• improving scalability without compromising the result,

• improving scalability for relaxed statistical guarantees, particularly
for black-box systems where stronger guarantees are not possible
anyway,

• improving structure and size of the produced results.

.

2.1 State of the art

Verification offers a range of methods for solving various classes of proba-
bilistic verification problems.

2.1.1 Numerical verification

For finite systems, graph algorithms are quite efficient, e.g. [CY95] for MC
and MDP, but only work for purely qualitative questions. In the generally
quantitative case (quantitative interpretation in line 2 of Table 1.1, or quan-
titative objectives such as mean payoff in the middle column), numerical
methods are usually used, most notably

(i) dynamic programming [Put94], such as value iteration (VI), used
in the most used probabilistic model checker PRISM [KNP02], or
policy/strategy iteration (SI), or

7



2. LEARNING TO CONTROL

(ii) linear programming (LP) as used in e.g. DiVinE [BBC+08].

On the one hand, LP provides precise results. On the other hand, it is slow
for MDP and not applicable to SG. Since the repetitive evaluation of strate-
gies in SI is often slow in practice, VI is usually preferred. For instance,
the most used probabilistic model checker PRISM [KNP02] and its branch
PRISM-Games [CFK+13] use VI for MDP and SG as the default option,
respectively. However, while SI is in principle a precise method, VI is an
approximative method, which converges only in the limit. Unfortunately,
there was no known stopping criterion for VI. Consequently, there were no
guarantees on the results returned in finite time. Therefore, current tools
stop when the difference between the two most recent approximations is
low, and thus may return arbitrarily imprecise results [HM14]. A stopping
criterion has been developed in [HM14] and published in parallel with our
[ATVA’14a], for details see Section 2.2.1.

Continuous systems are often transformed into finite systems. The meth-
ods typically include either some form of discretization with derived er-
ror bounds, as in e.g. MRMC [KZH+11] for continuous-time MDPs, or use
more structured finite abstractions, such as regions and zones for (proba-
bilistic extensions of) timed automata, as in e.g. Uppaal [BDL+06, DLL+15]
or PRISM [KNP02].

All of these methods provide guarantees on the results. However, the
price to pay for that is non-trivial complexity with respect to the size of the
system and the property. Furthermore, due to the curse of dimensionality
the systems grow exponentially with respect to the number of variables
and components involved. Consequently, the real systems mostly cannot
be treated directly. This issue is under a heavy attack of many techniques:

• Firstly, there are symbolic techniques avoiding explicit treatment of
the whole state space, e.g. [CHJS11, BKH99, ZSF12], and combina-
tions of explicit and symbolic techniques [WBB+10, BBR14].

• Secondly, there are model-transformation techniques:

– Compositional techniques aim to analyse parts of the systems
separately and combine the results to infer properties of the
whole, e.g. [CDL+10, DH11, BKW14, CCD15] or our [HKK13].

– Abstraction techniques merge states, factoring out information
irrelevant for the satisfaction of the particular property [KKNP10,
HWZ08, HHWZ10] or our [SKC+15].

8



2. LEARNING TO CONTROL

– Dual to abstractions, there are reduction techniques, delimiting
and analysing only subsystems, thus considering only some
behaviours. An example of a safe technique is the partial or-
der (or symmetry) reduction [BGC04, GDF09]. Unfortunately,
there are not too many safe reduction techniques. In contrast,
non-safe reduction techniques are extensively used in practice.
For instance, stochastic simulation is a very useful debugging
technique. It can disprove properties and find deficiencies of
the system. However, it cannot be simply used to prove prop-
erties and assure the system correctness.

2.1.2 Statistical model checking

Verification of MC, MDP, and related systems traditionally relies on numer-
ical approaches. However, numerical analysis of the whole system is often
inapplicable in practice:

(i) when the system is too large due to state space explosion, or

(ii) when the exact transitions are unknown (black-box systems).

In such cases, statistical approaches and simulation form a powerful alter-
native. The statistical approach typically consists in

1. observing (finitely many finitely long) simulation runs,

2. analysis of each run,

3. inferring properties of the system from statistics on the results of the
analysis.

Since simulations can often be done very fast, this approach often scales
very well. The increased performance, however, comes at a cost of provid-
ing only probabilistic guarantees on the result, i.e., the result of the analysis
is correct only with probability 1 − ε for a user-given ε. In many contexts
this is no limitation since ε can be very small as the algorithms scale well,
so that the uncertainty is negligible. This may be particularly the case when
the model itself is validated with respect to the real system only with some
certainty.

Statistical model checking (SMC) [YS02] has been successfully applied
to various biological [JCL+09, PGL+13], hybrid [ZPC10, DDL+12, EGF12,
Lar12] or cyber-physical [BBB+10, CZ11, DDL+13] systems and there is a
substantial tool support available [JLS12, BDL+12b, BCLS13, BHH12].

9



2. LEARNING TO CONTROL

2.1.2.1 Statistical model checking for MCs

Statistical model checking (SMC) [YS02] of Markov chains refers to algo-
rithms with the following specification:

Specification of Markov chains statistical model checking

Input:

• a finite black-box MC M (i.e., access to any desired finite
number of sampled simulation paths of any desired finite
lengths)

• a linear property ϕ

• a threshold probability p

• an indifference region ε > 0

• two error bounds α, β > 0

• possibly some characteristics ofM from Table 2.1

Output: if P[M |= ϕ] ≥ p+ε, return YES with probability at least 1−α;
if P[M |= ϕ] ≤ p− ε, return NO with probability at least 1− β.

Bounded and Unbounded Properties Most of the previous efforts in SMC
has focused on the analysis of properties with bounded horizon [YS02,
SVA04, YKNP06, JCL+09, JLS12, BDL+12b]. For such bounded properties
(e.g. state r is reached with probability at most 0.5 in the first 1000 steps),
statistical guarantees can be obtained in a completely black-box setting,
where execution runs of the system can be observed, but no other informa-
tion is available. Unbounded properties (e.g. state r is reached with proba-
bility at most 0.5 in any number of steps) are significantly more difficult, as
a stopping criterion is needed when generating a potentially infinite execu-
tion run, and some information about the system is necessary for providing
statistical guarantees. Table 2.1 presents an overview of the assumptions for
the statistical analysis of unbounded properties, detailed below.

SMC of unbounded properties, usually “unbounded until” properties,
was first considered in [HLMP04] and the first approach was proposed in
[SVA05], but observed incorrect in [HJB+10]. Notably, in [YCZ10] two ap-
proaches are described. The first approach proposes to terminate sampled
paths at every step with some probability pterm and re-weight the result ac-
cordingly. In order to guarantee the asymptotic convergence of this method,

10



2. LEARNING TO CONTROL

Table 2.1: Statistical approaches organised by (i) the class of verified linear
properties, and (ii) by the required information about the Markov chain,
where pmin is the minimal transition probability, |S| is the number of states,
and λ is the second largest eigenvalue of the chain. Further, ♦ denotes the
(unbounded) reachability and U the (unbounded) until of LTL.

property no info pmin |S|, pmin λ topology
bounded e.g. [YS02, SVA04]
♦,U × [TACAS’16] [ATVA’14a] [YCZ10] [YCZ10, HJB+10]
LTL, MP × [TACAS’16] [ATVA’14a]

the second eigenvalue λ of the chain must be computed, which is as hard as
the verification problem itself. It should be noted that the method provides
only asymptotic guarantees as the width of the confidence interval con-
verges to zero. The correctness of [LP08] relies on the knowledge of the sec-
ond eigenvalue λ, too. The second approach of [YCZ10] requires the qual-
itative knowledge, i.e. the chain’s topology, which is used to transform the
chain so that all potentially infinite paths are eliminated. In [HJB+10], a sim-
ilar transformation is performed, again requiring knowledge of the topol-
ogy. The (pre)processing of the state space required by the topology-aware
methods, as well as by traditional numerical methods for Markov chain
analysis, is a major practical hurdle for large (or unknown) state spaces. An-
other approach, limited to ergodic Markov chains, is taken in [RP09], based
on coupling methods. There are also extensions of SMC to timed systems
[DLL+15].

2.1.2.2 Statistical model checking for MDPs

The development of statistical model checking techniques for probabilistic
models with nondeterminism, such as MDPs, has only been treated quite
recently. In [BFHH11], properties are analysed for MDPs with spurious
non-determinism, where the way it is resolved does not affect the desired
property. In the case with general non-determinism, one approach is to give
the non-determinism a probabilistic semantics, e.g., using a uniform dis-
tribution instead, as for timed automata in [DLL+11a, DLL+11b, Lar13].
Others [LP12, HMZ+12, ATVA’14a] aim to quantify over all strategies and
produce an ε-optimal strategy. The works of [HMZ+12] and [LP12] deal
with the problem in the setting of bounded and discounted (and for the
purposes of approximation thus bounded) properties, respectively. In the
former work, candidates for optimal strategies are generated and gradu-

11



2. LEARNING TO CONTROL

ally improved, but “at any given point we cannot quantify how close to op-
timal the candidate scheduler is” (cited from [HMZ+12]) and the algorithm
“does not in general converge to the true optimum” (cited from [LST14]).
Further, [LST14] randomly samples (compact representation of) strategies,
but again focuses only on (time-)bounded properties.

There are also various practically efficient heuristics that, however, pro-
vide none or very weak guarantees, often based on some form of learning
[BT00, LL08, WT16, TT16, AY17, BBS08]. Even for MDP, the first PAC algo-
rithm (limited to discounted reward) has been given in [SLW+06].

2.1.3 Strategy Representation

For systems with non-determinism, both counterexamples as well as wit-
nesses are given as strategies, resolving the non-determinism. Representing
the resulting strategy compactly is important in both cases since either (i) it
needs to be implemented as a controller and must be simple enough, or
(ii) it is a counterexample when trying to prove a property for all strategies
and then the corresponding bug needs to be understood and fixed. There
are several different classes of data structures and algorithms to represent
strategies.

Firstly, in artificial intelligence, compact (factored) representations of MDP
structure have been developed using dynamic Bayesian networks [BDG95,
KK99], probabilistic STRIPS [KHW94], algebraic decision diagrams [HSAHB99],
and also decision trees [BDG95]. Formalisms used to represent MDPs can,
in principle, be used to represent values and strategies as well. In particular,
variants of decision trees are probably the most used [BDG95, CK91, KP99].
For a detailed survey of compact representations see [BDH99].

Secondly, in the context of verification, MDPs are often represented us-
ing variants of (MT)BDDs [dAKN+00, HKN+03, MP04], and strategies by
BDDs [WBB+10].

Thirdly, [AL09] uses a directed on-the-fly search to compute sets of most
probable diagnostic paths. The notion of paths encoded as AND/OR trees
has also been studied in [LL13] to represent probabilistic counter-examples
visually as fault trees, and then derive causal relationship between events.
Further, [WJV+13, DJW+14] compute a smallest set of guarded commands
(of a PRISM-like language) inducing a violating subsystem, but, unlike other
methods, does not provide a compact representation of actual decisions
needed to reach an erroneous state; moreover, there is not always a command-
based counterexample.

Finally, decision trees have been used in connection with real-time dy-

12



2. LEARNING TO CONTROL

namic programming and reinforcement learning to represent the learned
approximation of the value function [BD96, Pye03]. Learning a compact
decision tree representation of a strategy has been investigated in [SLT10]
for the case of body sensor networks with discounted objectives.

2.2 Contributions

2.2.1 Numerical verification

In this section, we employ simulations and reinforcement learning to speed
up dynamic-programming techniques, such as VI. The structure of the ap-
proach is as follows. Firstly, while VI traditionally approximates the value
from below, we show how to modify it so that it approximates the value
from above, too. Consequently, we obtain a stopping criterion for VI: when
the difference between the under- and over-approximation is smaller than
the desired precision, we can stop. Secondly, we show how the lower and
upper bounds can be utilized to derive guarantees on generally unreliable
methods based on simulation and learning, resulting in an efficient reduc-
tion technique.

Stopping criterion for VI Deriving over-approximating VI sequence con-
verging to the value is non-trivial already for MDP with the reachability
objective. The reason is that the greatest fixpoint of the VI operator (the
greatest solution to Bellman equations) can be strictly greater than the ac-
tual value. This is illustrated in Figure 2.1.

In [ATVA’14a] we show that when so-called end components (EC) [DA97]
are abstracted into a single state then there is only a single fixpoint of the VI
operator. Hence both sequences converge to the same value. Consequently,
the over-approximating sequence on such modified system induces an over-
approximating sequence on the original system that converges to the actual
original value. This has been independently discovered also in [HM14] a
few months after the first submission of [ATVA’14a].

In [CAV’18b] we extend this approach to SG. Here end components can-
not be abstracted into single states since the values of the individual states
are different. Instead, we consider varying temporary abstractions depend-
ing on the current approximations. This is illustrated in Figure 2.2.

In [CAV’17] we extend the stopping criterion for MDP with reachability
of [ATVA’14a] to MDP with long-run average reward.

Asynchronous value iteration There are variants of VI, where we apply
the VI operator “asynchronously”, i.e. with varying frequencies for differ-
ent states. For such asynchronous methods, nothing is known about the

13
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Figure 2.1: Example illustrating the iterations of lower (L) and upper (U )
bounds for maximum reachability of the double circled 1. Left: An MDP (as
special case of SG) where the greatest fixpoint limi→∞ Ui(t) = 1 is differ-
ent from the value (12 ) due to the grayed EC {s, t}. This is due to the fact
that Ui(t) depends on Ui(s) and vice versa and, intuitively, s and t mutu-
ally suggest the possibility of the value being up to 1 although this illusion
is not based on real paths to the target of this measure. Right: The same
MDP where the EC is “collapsed” into a single state, ensuring the conver-
gence limi→∞ Ui({s, t}) = 1

2 . Bottom: The approximations illustrating the
non/convergence in the first few steps.

speed of convergence. Yet, since we can guarantee rigorous lower and up-
per bounds, we know the current precision of the approximations. There-
fore, we can apply techniques from reinforcement learning (Q-learning)
[Wat89] or probabilistic planning (bounded real-time dynamic program-
ming, BRTDP) [MLG05] and still obtain results with guaranteed precision.

Moreover, since the frequencies can be arbitrary, the result is often out-
put without ever examining some states. This is illustrated in Figure 2.3.
Altogether, this approach allows us to focus on the most important part of
the system and ignore the rest. Since the former can be orders of magnitude
smaller, this reduction technique is a useful tool to fight the state space ex-
plosion problem, for illustration see Figure 2.3. For examples of reductions
in the size of the considered part of the state space, see Table 2.2.
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Figure 2.2: Left: Example of SG where states of an EC have different values.
The Greek letters on the leaving arrows denote the values of the actions.
Round and square states belong to the maximizer and minimizer, respec-
tively. Right three figures: Correct collapsing in cases where α < β, α > β,
and α = β, respectively. In contrast to MDP, some actions of the EC leaving
the collapsed part have to be removed.

Table 2.2: Reductions in the considered part of the state space on examples
from the PRISM Benchmark Suite [KNP12]. The two columns display the
size of the whole state space and the size of the part explored by our ap-
proach in order to approximate the value with precision 10−6.

Example
Number of states visited by

PRISM [KNP02] our [ATVA’14a]

zeroconf 4,427,159 977
wlan 5,007,548 1,995
firewire 19,213,802 32,214
mer 26,583,064 1,950

We provide and experimentally test this approach for MDP with reach-
ability and LTL in [ATVA’14a], for MDP with long-run average reward in
[CAV’17] and an SI variant in [ATVA’17], and for SG with reachability in
[CAV’18b]. We extend the approach to continuous time in [ATVA’18b]. We
also consider a hybrid approach combining BRTDP and Monte Carlo tree
search in [ISOLA’18].

The basic algorithm of [HM14] is implemented in PRISM [BKL+17] and
the learning approach of [ATVA’14a] in STORM [DJKV17] and together with
the extensions in our distribution of PRISM(∗). The extension for SG where
the interleaving of players is severely limited (every EC belongs to one
player only) is discussed in [Ujm15].

(∗). Accessible at https://gitlab.lrz.de/i7/prism
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init
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t 1

up

1

down 0.01

0.99

b

0.5

0.5

a 1

c

1

down 0.01

0.99

b

0.5

0.5

c

1

Figure 2.3: Example of an MDP where the parts of the system in the clouds
can be ignored if the required precision is 0.005. Choosing the thick actions
is guaranteed to result in an 0.005-optimal strategy, no matter how other
non-determinism is resolved.

2.2.2 Statistical model checking

In this section, we employ simulations and reinforcement learning to ana-
lyze (partially) unknown systems.

2.2.2.1 Statistical model checking for MC

We present SMC algorithms for unbounded properties that, however, do
not require much knowledge of the system. They are based on detecting
that a simulation run reached a so-called bottom strongly connected com-
ponent (BSCC), i.e. an EC of the MC regarded as an MDP. Then and only
then we can deduce what the rest of the infinite run will be like and can thus
terminate the run. Moreover, this also implies that such algorithms can be
applied not only to reachability and unbounded-until properties, but can
also be easily extended to LTL or mean payoff.

In [ATVA’14a] a priori bounds for the length of execution runs are cal-
culated from the minimum transition probability pmin and the number of
states |S| only. After a long enough trace, we can deduce we are in a BSCC
with very high probability. The length of the trace can be bounded (for
a given confidence) by |S| and pmin. Indeed, if there is a way out of the BSCC
it is sufficient to take a path of length S, which has probability at least p|S|min.

16



2. LEARNING TO CONTROL
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Figure 2.4: Example of a Markov chain with non-trivial BSCC detection

However, without taking execution information into account, these bounds
are exponential in the number of states and highly impractical, as illustrated
in the example below.

In [TACAS’16] we further improve on this idea and declare that we have
reached a BSCC if the same states are repeated for long enough time. Since
we observe the visited states we do not need the size of the state space |S|
as a bound, but only pmin. This is the first SMC algorithm that uses informa-
tion obtained from execution prefixes. We illustrate and compare the two
approaches on the following example.

Example. Consider the property of reaching state r in the Markov chain
depicted in Figure 2.4. While the execution runs reaching r satisfy the prop-
erty and can be stopped without ever entering any vi, the finite execution
paths without r, such as stuttutuut, are inconclusive. In other words, ob-
serving this path does not rule out the existence of a transition from, e.g., u
to r, which, if existing, would eventually be taken with probability 1. This
transition could have arbitrarily low probability, rendering its detection ar-
bitrarily unlikely, yet its presence would change the probability of satisfy-
ing the property from 0.5 to 1. However, knowing that if there exists such
a transition leaving the set, its transition probability is at least pmin = 0.01,
we can estimate the probability that the system is stuck in the set {t, u} of
states. Indeed, if existing, the exit transition was missed at least four times
during the execution above, no matter whether it exits t or u. Consequently,
the probability that there is no such transition and {t, u} is a BSCC is at least
1− (1− pmin)

4.
This means that in the approach of [TACAS’16], in order to get 99% con-

fidence that {t, u} is a BSCC, we only need to see both t and u around 500

times on a run, since 1− (1− pmin)
500 = 1− 0.99500 ≈ 0.993. This is in stark

contrast to a priori bounds that provide the same level of confidence, such
as the (1/pmin)

|S| = 100O(m) runs required by [ATVA’14a], which is infeasi-
ble for large m of our example. In contrast, the performance of the method
[TACAS’16] is independent of m. 4

Consequently, many execution runs can be stopped quickly. Moreover,
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since the number of execution runs necessary for a required confidence
level is independent of the size of the state space, it is not very large even
for highly confident results (think of opinion polls). Altogether, it efficiently
fights the state space explosion for systems where strongly connected com-
ponents are not too large.

2.2.2.2 Statistical model checking for MDP

Further, [ATVA’14a] is also the first to consider SMC for MDP with un-
bounded properties. It explores (similarly to [HMZ+12]) the opportunities
offered by learning-based methods, as used in fields such as planning or
reinforcement learning. The algorithm assumes information limited to |S|
and pmin and is based on delayed Q-learning (DQL) [SLW+06]. Like in the
numeric algorithm above, it maintains both lower and upper bounds on the
result and gradually improves them. Contrary to the numeric algorithm,
these bounds are not guaranteed to be correct, but only probably approxi-
mately correct (PAC) since there is a non-zero probability that the empirical
estimates of the behaviour are significantly incorrect. However, this proba-
bility can be set arbitrarily close to 0.

The crucial steps of [ATVA’14a] are (1) modifying the DQL algorithm
with PAC guarantees of [SLW+06] from the discounted setting to the undis-
counted setting, but where terminating states are reached almost surely,
and (2) lifting this to general MDPs with ECs, where terminating states may
not be reached. This relies on simulations and the detection of end compo-
nents on the fly. This technique extends also to LTL objectives and thus also
to both maximum and minimum probabilities.

Further, we consider MDP with qualitative knowledge only and treat a
combination of ω-regular objectives and long-run average reward in [CONCUR’18a].

2.2.3 Strategy representation

In this section, we employ simulations and decision-tree learning to post-
process strategies so that they are (i) more understandable and (ii) more
resource-efficient with respect to memory and time, i.e. smaller and faster
to run. We stipulate that the size is the basic measure and can serve as a
proxy for the others: simplicity and execution speed.

In [CAV’15a], we propose three steps to obtain smaller strategy represen-
tation. Each of them has a positive effect on the resulting size.

1. Obtaining a (possibly partially defined and non-deterministic) ε-
optimal strategy. The ε-optimal strategies produced by standard meth-
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ods, such as VI of PRISM [KP13], may be too large to compute and
overly specific. Firstly, as argued in [ATVA’14a], typically only a
small fraction of the system needs to be explored in order to find
an ε-optimal strategy, whereas most states are reached with only a
very small probability. Without much loss, the strategy may not be
defined there. For example, in the MDP depicted in Figure 2.3, the
decision in s (and the clouds) are almost irrelevant for the overall
probability of reaching 1 from init. Such a partially defined strategy
can be obtained using [ATVA’14a].

2. Identifying important parts of the strategy. Given a strategy, we de-
fine a concept of importance of a state s for reaching goal is defined
by P[♦s | ♦goal ]. Let us shed some light on this definition. Observe
that only a fraction of states can be reached while following the strat-
egy, and thus have positive importance. On the unreachable states,
with zero importance, the definition of the strategy is useless. For
instance, in the previous example, also the upper cloud was par-
tially explored in order to find out whether it is better to take action
up or down. However, if the resulting strategy is to use down and
b, the information what to do in the upper cloud is useless. In ad-
dition, we consider the lower cloud to be of zero importance, too,
since its states are never reached on the way to target and thus can-
not be utilized. Furthermore, apart from ignoring states with zero
importance, it is desirable to partially ignore decisions that are un-
likely to be made (in less important states such as s), and in con-
trast, stress more the decisions in important states likely to be vis-
ited (such as init). The crucial notion of importance is obviously not
computed, but only estimated statistically by simulating the system
under the given strategy.

3. Data structures for compact representation of strategies. The explicit
representation of a strategy by a table of pairs (state, action to play)
results in a huge amount of data since the systems often have mil-
lions of states. Therefore, a symbolic representation by binary deci-
sion diagrams (BDD) looks as a reasonable option. However, there
are several drawbacks of using BDDs. Firstly, due to the bit-level
representation of the state-action pairs, the resulting BDD is not very
readable. Secondly, it is often still too large to be understood by hu-
man, for instance due to a bad ordering of the variables. Thirdly,
it cannot quantitatively reflect the differences in the importance of
states. Of course, we can store decisions in states with importance
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Table 2.3: Representation of strategies for several examples of PRISM
Benchmark Suite [KNP12]. On the left, we display the size of the state space
and the maximum reachability probability. On the right, we display the
sizes of the representations using explicit listings of sets, BDD, decision
trees, and the relative precision of the strategy induced by the generated
tree. The trees are pruned as much as possible to still keep this error below
1%. On the mer benchmark, PRISM mems out while outputting the strat-
egy. The line below shows the case with a partial strategy computed by our
method [BCC+14] discussed above, for precision 10−6.

Example States Value Explicit BDD DT Rel.err(DT) %
firewire 481,136 1.0 479,834 4233 1 0.0
investor 35,893 0.958 28,151 783 27 0.886
mer 1,773,664 0.200016 ——— MEM-OUT ———

1887 619 13 0.00014
zeroconf 89,586 0.00863 60,463 409 7 0.106

above a certain threshold. However, we obtain much smaller repre-
sentations and solve all the three issues if we allow more variabil-
ity and reflect the whole quantitative information by decision-tree
learning, using entropy.

We demonstrate the efficiency of the approach for MDP in [CAV’15a], see
Table 2.3. We also give examples how reasons for present bugs can be read
off from the decision trees.

Further, we modify the approach for non-stochastic games in [TACAS’18].
Interestingly, when applied to parametrized examples, the strategies for
different values of the parameters are sometimes so similar that a generic
solution can be read off. This suggests a potential of this technique for
parametrized synthesis.

2.3 Contributed papers and activities

[ATVA’14a] Tomáš Brázdil, Krishnendu Chatterjee, Martin Chmelík, Vo-
jtěch Forejt, Jan Křetínský, Marta Z. Kwiatkowska, David
Parker, and Mateusz Ujma. Verification of Markov decision
processes using learning algorithms. In ATVA, volume 8837
of LNCS, pages 98–114. Springer, 2014.
Attached in Part 2 of the thesis.
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[CAV’15a] Tomáš Brázdil, Krishnendu Chatterjee, Martin Chmelík, An-
dreas Fellner, and Jan Křetínský. Counterexample explanation
by learning small strategies in Markov decision processes. In
CAV (1), volume 9206 of LNCS, pages 158–177. Springer, 2015.
Attached in Part 2 of the thesis.

[TACAS’16] Przemyslaw Daca, Thomas A. Henzinger, Jan Křetínský, and
Tatjana Petrov. Faster statistical model checking for unbounded
temporal properties. In TACAS, volume 9636 of LNCS, pages
112–129. Springer, 2016.
Journal version published in ACM Transaction on Computa-
tional Logic, 18(2):12:1–12:25, 2017.
Attached in Part 2 of the thesis.

[ISOLA’16] Jan Křetínský. Survey of statistical verification of linear un-
bounded properties: Model checking and distances. In ISoLA
(1), volume 9952 of LNCS, pages 27–45, 2016.

[CAV’17] Pranav Ashok, Krishnendu Chatterjee, Przemyslaw Daca, Jan
Křetínský, and Tobias Meggendorfer. Value iteration for long-
run average reward in Markov decision processes. In CAV (1),
volume 10426 of LNCS, pages 201–221. Springer, 2017.

[ATVA’17] Jan Křetínský and Tobias Meggendorfer. Efficient strategy iter-
ation for mean payoff in Markov decision processes. In ATVA,
volume 10482 of LNCS, pages 380–399. Springer, 2017.

[TACAS’18] Tomás Brázdil, Krishnendu Chatterjee, Jan Křetínský, and Vik-
tor Toman. Strategy representation by decision trees in reactive
synthesis. In TACAS (1), volume 10805 of LNCS, pages 385–
407. Springer, 2018.

[CAV’18b] Edon Kelmendi, Julia Krämer, Jan Křetínský, and Maximilian
Weininger. Value iteration for simple stochastic games: Stop-
ping criterion and learning algorithm. In CAV (1), volume
10981 of LNCS, pages 623–642. Springer, 2018.
Attached in Part 2 of the thesis.

[DAGSTUHL’18] Nils Jansen, Joost-Pieter Katoen, Pushmeet Kohli, and Jan
Křetinsky (eds.). Machine learning and model checking join
forces (Dagstuhl seminar 18121). Dagstuhl Reports, 8(3):74–93,
2018.
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[CONCUR’18a] Jan Křetínský, Guillermo A. Pérez, and Jean-François
Raskin. Learning-based mean-payoff optimization in an un-
known MDP under ω-regular constraints. In CONCUR, vol-
ume 118 of LIPIcs, pages 32:1–32:16. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2018.

[ATVA’18b] Pranav Ashok, Yuliya Butkova, Holger Hermanns, and Jan
Křetínský. Continuous-time Markov decisions based on partial
exploration. In ATVA, volume 11138 of LNCS, pages 317–334.
Springer, 2018.

[ISOLA’18] Pranav Ashok, Tomáš Brázdil, Jan Křetínský, and Ondřej
Slámečka. Monte Carlo tree search for verifying reachability
in Markov decision processes. In ISoLA. To appear, 2018.

Activities Combining learning and formal methods is currently a hot topic,
discussed at venues for establishing new directions, such as Dagstuhl sem-
inars. The author has co-organized one on this topic [DAGSTUHL’18] and
presented it in five other Dagstuhl seminars.

In 2018, the author has given invited talks on the topic at Logic and
Learning workshop at the Alan Turing Institute, FNRS seminar at Brus-
sels Free University, University of Twente, or FOPSS summer school Logic
and Learning at FLoC in Oxford.

On this topic, the author has obtained a German Research Foundation
grant Statistical Unbounded Verification in 2017 and twice passed to the
second round of ERC Starting Grant application (scoring A and B).
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Chapter 3

From LTL to Automata

In this chapter, we explain how automata theory can improve scalability of
model checking for complex properties.

3.1 State of the art

Automata-theoretic approach [VW86] is a key technique for verification
and synthesis of systems with linear-time specifications, such as formulae
of linear temporal logic (LTL) [Pnu77]. It proceeds in two steps: first, the
formula is translated into a corresponding automaton; second, the prod-
uct of the system and the automaton is further analyzed. For an instanti-
ation of the framework, see Figure 3.2. The size of the automaton is im-
portant as it directly affects the size of the product and thus largely also
the analysis time, particularly for deterministic automata and probabilis-
tic model checking in a very direct proportion. For verification of non-
deterministic systems, mostly non-deterministic Büchi automata (NBA) are
used [Cou99, DGV99, EH00, SB00, GO01, GL02, Fri03, BKŘS12, DLLF+16]
since they are typically very small and easy to produce.

In contrast to verification of non-deterministic systems, verification of
probabilistic systems, such as Markov decision processes (MDP), or syn-
thesis require either more involved techniques, e.g. [KPV06], restrictions to
logical fragments, e.g. [AT04, BJP+12], or other types of automata than NBA
as detailed below.

Probabilistic LTL model checking cannot profit directly from NBA. Even
the qualitative question, whether a formula holds with probability 0 or 1,
requires automata with at least a restricted form of determinism. The prime
example are the limit-deterministic (also called semi-deterministic) Büchi
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e.g. PEPA models or text
→ PRISM lang. (→ MTBDD)

MDP M

e.g. specification patterns
or text → formula

LTL formula ϕ

Non-deterministic
Büchi automaton Bϕ

Deterministic
Rabin automaton Rϕ

Product M × Rϕ

to be analysed

exponential blow up

exponential blow up

MEC collapse

Prmax[M |= ϕ]

order, parallel computation, BRTDP etc.

MEC decomposition & evaluation

reachability – by LP, VI, SI etc., enhanced by topological

Figure 3.1: Traditional probabilistic LTL model checking for MDP, as imple-
mented in e.g. PRISM

automata (LDBA) [CY88]. However, for the general quantitative questions,
where the probability of satisfaction is computed, general limit-determinism
is not sufficient. Instead, deterministic Rabin automata (DRA) have been
mostly used [KNP02], see Figure 3.1. In principle, all standard types of de-
terministic automata are applicable here except for deterministic Büchi au-
tomata (DBA), which are not as expressive as LTL. However, other types of
automata, such as deterministic Muller and deterministic parity automata
(DPA) are typically larger than DGRA in terms of acceptance condition or
the state space, respectively. Indeed, note that every DGRA can be written
as a Muller automaton on the same state space with an exponentially-sized
acceptance condition, and DPA are a special case of DRA and thus DGRA.
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Recently, specific LDBA were also proved applicable to the quantitative set-
ting [HLS+15].

LTL synthesis can also be solved using the automata-theoretic approach.
Although DRA and DGRA transformed into games can be used here, the
algorithms for the resulting Rabin games [PP06] are not very efficient in
practice. In contrast, DPA may be larger, but in this setting they are the
automata of choice due to the good practical performance of parity-game
solvers [FL09, ML16, JBB+17, MSL18].

Types of translations. The translations of LTL to NBA, e.g., [VW86], are
typically “semantic” in the sense that each state is given by a set of logi-
cal formulae and the language of the state can be captured in terms of se-
mantics of these formulae. In contrast, the determinization of Safra [Saf88]
or its improvements [Pit06, Sch09, TD14, FL15] are not “semantic” in the
sense that they ignore the structure and produce trees as the new states
that, however, lack the logical interpretation. As a result, if we apply Safra’s
determinization on semantically created NBA, we obtain DRA that lack
the structure and, moreover, are unnecessarily large since the construc-
tion cannot utilize the original structure. In contrast, our previous work
[KE12, KLG13, EK14] as well as some follow-ups [KV15, KV17] provide
“semantic” constructions, often producing smaller automata.

3.2 Contributions

We provide direct semantic translations of LTL into deterministic automata
several semanticity-preservning transformation. The zoo of the main trans-
lations is depicted in Figure 3.2.

In [ATVA’14b] we implement our previous construction of D(G)RA [KE12]
and in [FMSD’16] we provide its logic-based presentation, a mechanized
Isabelle proof and fix a previous bug. In [CAV’16], we simplify the con-
struction and obtain LDBA of a particular kind that we prove applicable
to quantitative LTL model checking (in contrast to the general LDBA). In
[ATVA’16] we implement both the construction as well as the model check-
ing procedure. In [TACAS’17a, TACAS’17b] we provide two very different
approaches to obtain DPA, applicable to LTL synthesis. The former trans-
forms our LDBA, whereas the latter is a more efficient variation on the clas-
sical index appearance record. Both preserve the semantic description, al-
lowing for further optimizations of the resulting automata. In [LICS’18a],
we finally provide an asymptotically optimal and unified translation of LTL
into D(G)RA, LDBA and NBA, which is additionally simpler than the pre-
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LTL NBA

LDGBA LDBA

DGRA DRA

DPA
[VW86] etc.

[FMSD’16]

[CAV’16]
[TACAS’17a]

[TACAS’17b]

[Pit06, Sch09]

[Saf88]

[CY88]

[KE12]

Figure 3.2: Translations of LTL into different types of automata. Automata
names are strings of the form (N|D|LD)G?(B|R|P)A, where the meaning
of the symbols is non-deterministic, deterministic, limit-deterministic, gen-
eralized, Büchi, Rabin, parity, and automaton, respectively.
Translations implemented in Rabinizer 4 [CAV’18b] are indicated with
a solid line. The traditional approaches are depicted as dotted arrows. The
determinization of NBA to DRA is implemented in ltl2dstar [Kle], to
LDBA in Seminator [BDK+17] and to (mostly) DPA in spot [DLLF+16].
The light gray area denotes the types of automata applicable to probabilis-
tic LTL model checking, while the dark gray denotes applicability to LTL
synthesis.

vious translations and more systematic.
Moreover, we provide mature tool support for all these operations and

more. While Rabinizer 3 [ATVA’14b] implements only the translations
to DGRA and DRA, Rabinizer 4 [CAV’18a] implements all the transla-
tions depicted in Figure 3.2 with solid arrows. It improves all these trans-
lations, both algorithmically and implementation-wise, and moreover, fea-
tures the first implementation of the translation of a frequency extension of
LTL, for further details see Chapter 4. The tool outputs the automata in the
Hanoi omega-automata (HOA) format, which we established in [CAV’15b].

Further, in order to utilize the resulting automata for verification, Rabinizer
4 comes with our own distribution(∗) of the PRISM model checker [KNP02],
which allows for model checking MDP against LTL using not only DRA and

(∗). Our distribution additionally features optimized data structures and algorithms such
as the BRTDP family, discussed in Chapter 2.
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DGRA, but also using LDBA and against frequency LTL using so-called
DGRMA [LPAR’15], see Chapter 4. Finally, the tool can turn the produced
DPA into parity games between the players with input and output vari-
ables. Therefore, when linked to parity-game solvers, it can be also used for
LTL synthesis. Rabinizer 4 is freely available at http://rabinizer.
model.in.tum.de together with an on-line demo, visualization, usage in-
structions and examples.

Finally, the infrastructure of Rabinizer has been modularized and made
easily re-usable as a library Owl [ATVA’18a]. It has already demonstrated its
re-usability in several projects, also without the presence of the library au-
thors. For instance, our experience with Master students has demonstrated
that a tool for a complex translation, such as [BDK+17], can be easily im-
plemented using roughly 400 lines of code, achieving performance com-
parable to the original dedicated tool. We have also implemented Safra’s
determinization procedure from NBA to DPA. Although this procedure is
often described as tedious to implement, it required only 60 lines of code in
Owl for the algorithms and 60 lines of code for simple data structures and
integration into the pipeline of the tool.

Example. Consider the formulaϕ = Fa∨FG(b∨Fc). The classical approach
to construct a non-deterministic automaton would yield the NBA below,
which non-deterministically decides whether to wait for an a or not:

a

¬a tt
tt

b ∨ c tt

tt

c

Safra’s determinization transforms it into a deterministic automaton with
several dozens of states. The state-of-the-art tools ltl2dstar [Kle] with
ltl3ba [BKŘS12] or spot [DLLF+16], employing sophisticated simplifi-
cations, yield an automaton of around five states. In contrast, Rabinizer
yields an automaton with two states (the next one below) with a (transition-
based) Rabin acceptance condition, not using any simplifications.

The approaches of [KE12, LICS’18a] and [EK14, FMSD’16] perform this
construction as the product of the following automata. First, the master au-
tomaton monitors the satisfaction of Fa only:
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ϕ tt
a

¬a tttt

Secondly, the second disjunct FG(b∨Fc) is a prefix-independent property
and thus is monitored by a set of slave automata. In the former case of
[KE12, LICS’18a], this is an automaton for G(b ∨ Fc) (on the left), which
relays monitoring Fc to another automaton (on the right):

b ∨ Fc

tt

Fc

tt

b

¬b

c

tt

ff

tt

c

¬c

These slave automata have two special features. Firstly, both automata have
a “universal branching” in the initial state, meaning a “copy” of each au-
tomaton is started in each step and we monitor whether we accept with
all but finitely many copies (the left automaton for a G-formula) and with
infinitely many copies (the right automaton for an F-formula), respectively
Secondly, whether the state Fc (of the left slave) is accepting or not depends
on the runtime information provided by the slave on the right.

In the case of [EK14, FMSD’16], there is only one slave automaton for the
whole G(b ∨ Fc) in which Fc is treated directly:

b ∨ Fc

tt

Fc

tt

¬c

b

c

¬b

4
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3.3 Contributed papers and activities

[ATVA’14b] Zuzana Komárková and Jan Křetínský. Rabinizer 3: Safraless
translation of LTL to small deterministic automata. In ATVA,
volume 8837 of LNCS, pages 235–241. Springer, 2014.

[CAV’15b] Tomáš Babiak, Frantisek Blahoudek, Alexandre Duret-Lutz,
Joachim Klein, Jan Křetínský, David Müller, David Parker, and
Jan Strejček. The Hanoi omega-automata format. In CAV (1),
volume 9206 of LNCS, pages 479–486. Springer, 2015.

[CAV’16] Salomon Sickert, Javier Esparza, Stefan Jaax, and Jan Křetínský.
Limit-deterministic Büchi automata for linear temporal logic.
In CAV (2), volume 9780 of LNCS, pages 312–332. Springer,
2016.

[ATVA’16] Salomon Sickert and Jan Křetínský. Mochiba: Probabilistic LTL
model checking using limit-deterministic Büchi automata. In
ATVA, volume 9938 of LNCS, pages 130–137, 2016.

[FMSD’16] Javier Esparza, Jan Křetínský, and Salomon Sickert. From
LTL to deterministic automata - A safraless compositional ap-
proach. Formal Methods in System Design, 49(3):219–271, 2016.
Based on a conference paper, which is a part of one of the au-
thor’s PhD theses

[TACAS’17a] Javier Esparza, Jan Křetínský, Jean-François Raskin, and Sa-
lomon Sickert. From LTL and limit-deterministic Büchi au-
tomata to deterministic parity automata. In TACAS (1), volume
10205 of LNCS, pages 426–442, 2017.
Attached in Part 2 of the thesis.

[TACAS’17b] Jan Křetínský, Tobias Meggendorfer, Clara Waldmann, and
Maximilian Weininger. Index appearance record for transform-
ing rabin automata into parity automata. In TACAS (1), volume
10205 of LNCS, pages 443–460, 2017.

[LICS’18a] Javier Esparza, Jan Křetínský, and Salomon Sickert. One the-
orem to rule them all: A unified translation of LTL into ω-
automata. In LICS, pages 384–393. ACM, 2018.
Attached in Part 2 of the thesis.
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[CAV’18a] Jan Křetínský, Tobias Meggendorfer, Salomon Sickert, and
Christopher Ziegler. Rabinizer 4: From LTL to your favourite
deterministic automaton. In CAV (1), volume 10981 of LNCS,
pages 567–577. Springer, 2018.
Attached in Part 2 of the thesis.

[ATVA’18a] Jan Křetínský, Tobias Meggendorfer, and Salomon Sickert.
Owl: A library for ω-words, automata, and LTL. In ATVA, vol-
ume 11138 of LNCS, pages 543–550. Springer, 2018.

Activities The paper [FMSD’16] was originally invited to the Journal of
ACM and accepted for publication there. After acceptance, the authors dis-
covered a bug, withdrew the paper and fixed the bug later.

Merging the features of our PRISM distribution into the public release
of PRISM as well as linking the new version of Rabinizer is subject to cur-
rent collaboration with the authors of PRISM. So far, PRISM newly supports
only model checking using DGRA and linking to Rabinizer 3 [ATVA’14b]
or any tool producing D(G)RA in the HOA format [CAV’15b]. Strix [MSL18]
is a tool for LTL synthesis that uses SI to solve games produced by Rabinizer
4. The tool won all categories of the LTL/TLSF track at SyntComp 2018(†).
This shows that traditional explicit synthesis can be competitive once the
sizes of automata drop by orders of magnitude compared to those produced
by Safra-like constructions. This is possible due to the fundamentally dif-
ferent approach of Rabinizer 4.

The author has given an invited talk at Highlights’18 on the topic of
[LICS’18a]. In 2016, the author has obtained a German Research Founda-
tion grant Verified Model Checkers on this topic.

(†). For the results of the competition see http://www.syntcomp.org/
syntcomp-2018-results/
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Chapter 4

From Reachability and Expecta-
tion to Complex and Group-by
Objectives

In Chapter 2 we have dealt with basic objectives such as reachability prob-
ability or expected long-run average reward. In Chapter 3 we have shown
how the automata-theoretic methods can be used to extend the results to
linear temporal logic by reduction to reachability. Each of the objectives
is defined by a payoff function on runs of the system, e.g. long-run aver-
age reward, and then the results for each of the runs are combined into a
single number using an “aggregate” operator, in the previous cases by the
expectation operator. In this chapter, we discuss (1) more complex payoff
functions and (2) more complex aggregate operators.

4.1 State of the art

4.1.1 Logical and behavioural specifications

There are two fundamentally different approaches to specifying and verify-
ing properties of systems. Firstly, the logical approach makes use of specifi-
cations given as formulae of temporal or modal logics. Secondly, the be-
havioural approach exploits various equivalence or refinement checking
methods, provided the specifications are given in the same formalism as
implementations.

Probabilistic CTL Temporal logics are a convenient and useful formalism
to describe behaviour of dynamical systems. In Chapter 3, we considered
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a probabilistic interpretation of LTL, which allows us to quantify the prob-
ability of runs satisfying a given LTL formula. Similarly, probabilistic CTL
(PCTL) [HS86, HJ94] is the probabilistic extension of the branching-time
logic CTL [EH82], obtained by replacing the existential and universal path
quantifiers with the probabilistic operators, which allow us to quantify the
probability of runs satisfying a given path formula. At first, the probabil-
ities used were only 0 and 1 [HS86], giving rise to the qualitative PCTL
(qPCTL). This has been extended to any values from [0, 1] in [HJ94], yield-
ing the (quantitative) PCTL (PCTL). A simple example of a PCTL formula
is okU=1(X≥0.9finish), which says that on almost all runs we reach a state
where there is 90% chance to finish in the next step and up to this state ok

holds true. Like with probabilistic LTL, PCTL formulae are interpreted over
Markov chains where each state is assigned a subset of atomic propositions
that are valid in a given state.

The PCTL model checking problem problem has been studied both for
finite and infinite Markov chains and decision processes, see e.g. [CY95,
HK97, EY09, EKM06, BKS05]. Beside the model checking problem, it is in-
teresting to study the satisfiability problem, asking whether a given for-
mula has a model, i.e. whether there is a Markov chain satisfying it. If a
model does exist, we also want to construct it. Apart from being a funda-
mental problem, it is a possible tool for checking consistency of specifica-
tions or for reactive synthesis. Indeed, the underspecified system together
with the specification can be encoded in a formula; the model of such a
formula yields a controller for the original system that satisfies the speci-
fication. The problem has been shown EXPTIME-complete for qualitative
PCTL in the setting where we quantify over finite models (finite satisfia-
bility) [HS86, BFKK08] as well as over generally countable models (infinite
satisfiability) in our [BFKK08]. The problem for (the general quantitative)
PCTL remains open for decades.

The satisfiability problem for qPCTL and qPCTL∗ was investigated al-
ready in the early 80’s [LS83, KL83, HS86], together with the existence of
sound and complete axiomatic systems. The decidability for qPCTL over
countable models also follows from these general results for qPCTL∗, but
the complexity was not examined until [BFKK08], showing it is also EXPTIME-
complete, both for finite and infinite satisfiability.

As for the non-probabilistic predecessors of PCTL, the satisfiability prob-
lem is known to be EXPTIME-complete for CTL [EH82], the same holds for
the more general modal µ-calculus [BB87, FL79]. The complexity of the sat-
isfiability problems has been investigated also for fragments of CTL [KV00]
and the modal µ-calculus [HKM06].
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The PCTL strategy synthesis problem asks whether the non-determinism
in a given Markov decision process can be resolved so that the resulting
Markov chain satisfies the formula [BGL+04, KS08, BBFK06].

Frequency LTL Many properties specifying the desired behaviour, such as
“the system is always responsive” can be easily captured by LTL. This logic
is in its nature qualitative and cannot express quantitative linear-time prop-
erties such as “a given failure happens only rarely”. To overcome this lim-
itation, especially apparent for stochastic systems, extensions of LTL with
frequency operators have been recently studied [BDL12a, BMM14]. Such
extensions come at a cost, and for example the “frequency until” operator
can make the controller-synthesis problem undecidable already for non-
stochastic systems [BDL12a, BMM14]. It turns out [FK15, THY11, THHY12]
that a way of providing significant added expressive power while preserv-
ing tractability is to extend LTL only by the “frequency globally” formulae
G≥fϕ. Such a formula is satisfied if the long-run frequency of satisfying ϕ
on an infinite path is at least f . The respective logic is called frequency LTL
(fLTL). MDP controller synthesis for fLTL has been shown decidable for the
fragment containing only the operator G≥1 [FK15].

Frequency LTL was studied in another variant in [BDL12a, BMM14] where
a frequency until operator is introduced in two different LTL-like logics,
and undecidability is proved for related problems. The work [BDL12a] also
yields decidability with restricted nesting of the frequency until operator;
as the decidable fragment in [BDL12a] does not contain frequency-globally
operator, it is not possible to express many useful properties expressible in
our logic. A logic that speaks about frequencies on a finite interval was in-
troduced in [THY11], but the paper provides algorithms only for Markov
chains and a bounded fragment of the logic.

As we see in Section 4.2.1, this is related to combining LTL and the mean-
payoff objective. There are several works that combine mean-payoff objec-
tives with e.g. logics or parity objectives, but in most cases only simple
atomic propositions can be used to define the payoff [BCHJ09, BCHK11,
CD11]. The work [BKKW14] extends LTL with another form of quantita-
tive operators, allowing accumulated weight constraint expressed using au-
tomata, again not allowing quantification over complex formulas. Further,
[ABK14] introduces a variant of LTL with a discounted-future operator.

Linear Distances The distance between processes s and t is typically for-
malized as supp∈C |p(s) − p(t)| where C is a class of properties of interest
and p(s) is a quantitative value of the property p in process s [DGJP99].
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This notion has been introduced in [DGJP99] for Markov chains and further
developed in various settings, such as Markov decision processes [FPP04],
quantitative transition systems [dAMRS07], or concurrent games [dAFS04].

Several kinds of distances have been investigated for Markov chains.
On the one hand, [Aba13, DGJP99, vBW06, vBSW07, BBLM13c, BBLM13b,
BBLM13a, GP11], lift the equivalence given by the probabilistic bisimula-
tion of Larsen and Skou [LS89] into branching distances. On the other hand,
there are linear distances. They are particularly appropriate when (i) we are
interested in linear-time properties, and/or (ii) we want to estimate the dis-
tance based only on simulation runs of the system, i.e. in a black-box setting.
(Recall that for branching distances, the underlying probabilistic bisimula-
tion corresponds to testing equivalence where not only runs from the ini-
tial state can be observed, but also the current state of the system can be
dumped at any moment and system copies restarted from that state [LS89].

There are two main linear distances traditionally considered for Markov
chains: total variation distance and trace distance. Algorithms have been
proposed for both of them in the case when the Markov chains are known
(white-box setting).

Firstly, for the total variation distance in the white-box setting, [CK14]
shows that deciding whether it is 1 can be done in polynomial time, but
computing it is NP-hard and not known to be decidable, however, it can
be approximated; [BBLM15b] considers this distance more generally for
semi-Markov processes, provides a different approximation algorithm, and
shows it coincides with distances based on (i) metric temporal logic, and
(ii) timed automata languages.

Secondly, trace distance is based on the notion of trace equivalence, which
can be decided in polynomial time [DHR08] (however, trace refinement
on Markov decision processes is already undecidable [FKS16]). Variants of
trace distance are considered in [JMLM14] where it is taken as a limit of
finite-trace distances, possibly using discounting or averaging. In [BBLM15a]
the finite-trace distance is shown to coincide with distances based on (i) LTL
and (ii) LTL without U-operator, i.e., only using X-operator and Boolean
connectives; it is also shown NP-hard and not known to be decidable, sim-
ilarly to the total variation distance; finally, an approximation algorithm is
shown (again in the white-box setting), where the over-approximants are
branching-time distances, showing a nice connection between the branch-
ing and linear distances.
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4.1.2 Group-by aggregate operators

The fundamental problem for MDP is to design a strategy resolving the
non-deterministic choices so that the systems’ behaviour is optimized with
respect to a given objective function, or, in the case of multi-objective opti-
mization, to obtain the desired trade-off. The classic objective function (in
the optimization phrasing) or the query (in the decision-problem phrasing)
consists of two parts. First, a payoff is a measurable function assigning an
outcome to each run of the system. It can be real-valued, such as the long-
run average reward (also called mean payoff ), or a two-valued predicate,
such as reachability. Second, the payoffs for single runs are combined into
an overall outcome of the strategy, typically in terms of expectation. The re-
sulting objective function is then for instance the expected long-run average
reward, or the probability to reach a given target state.

In this chapter, firstly, we discuss different ways how to aggregate the
results on single runs than a single expectation. The motivation to do so is
mainly to have a more fine-grained control over the resulting performance,
in particular with respect to infrequent (“tail”) behaviour and/or more as-
pects (multiple objectives) at once. Secondly, we discuss how to connect the
two parts yet tighter in order to control expectation and other aggregates
at each time point. The motivation to do so is most apparent in population
systems such as many biological systems. We try to unify the philosophy of
the two extensions as a “group-by” objective in the contributions section.

Risk-averse control aims to overcome one of the main disadvantages of
the expectation operator, namely its ignorance towards the incurred risks,
intuitively phrased as a question “How bad are the bad cases?” While the
standard deviation (or variance) quantifies the spread of the distribution, it
does not focus on the bad cases and thus fails to capture the risk. There are
a number of quantities used to deal with this issue:

• The worst-case analysis (in the financial context known as discounted
maximum loss) looks at the payoff of the worst possible run. While
this makes sense in a fully non-deterministic environment and lies at
the heart of verification, in the probabilistic setting it is typically un-
reasonably pessimistic, taking into account events happening with
probability 0, e.g., never tossing head on a fair coin.

Risk-averse approaches optimizing the worst case together with ex-
pectation have been considered in beyond-worst-case and beyond-
almost-sure analysis investigated in both the single-dimensional [BFRR17]
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and in the multi-dimensional [CR15] setup.

• The value-at-risk (VaR) describes the value in the worst p-quantile
for some p ∈ [0, 1]. For instance, the value at the 0.5-quantile is the
median, for the 0.05-quantile (the ventile) it is the value of the best
run among the 5% worst ones. See Figure 4.1 for an example of VaR
for two given probability density functions. As such it captures the
“reasonably possible” worst-case. There has been an extensive effort
spent recently on the analysis of MDP with respect to VaR and the
re-formulated notions of quantiles, percentiles, thresholds, satisfac-
tion view etc., see below. Although VaR is more realistic, it tends
to ignore the outliers too much, as seen in Figure 4.1 on the right.
VaR has been characterized as “seductive, but dangerous” and “not
sufficient to control risk” [Bed95].

The decision problem related to VaR has been phrased in probabilis-
tic verification mostly in the form “Is the probability that the payoff
is higher than a given value threshold more than a given probabil-
ity threshold?”, the so-called satisfaction semantics [BBC+14] as op-
posed to the expectation semantics. The total reward gained atten-
tion both in the verification community [UB13, HK15, BKKW17] and
recently in the AI community [GWX17, LZB17]. Multi-dimensional
percentile queries are considered for various objectives, such as mean-
payoff, limsup, liminf, shortest path in [RRS17]; for the specifics of
two-dimensional case and their interplay, see [BDD+14]; for reach-
ability and LTL, see [EKVY08]. Percentile queries for more com-
plex constraints have also been considered, namely their conjunc-
tions [FKR95, BBC+14] or generally Boolean expressions [HKL17].
Some of these approaches have already been practically applied and
found useful by domain experts [BDK+14b, BDK14a].

• The conditional value-at-risk (CVaR a.k.a. average value-at-risk, ex-
pected shortfall, expected tail loss) answers the question “What can
I expect if things go wrong?” It is defined as the expectation over the
whole worst p-quantile, see Figure 4.1. As such it describes the lossy
tail, taking outliers into account, but with the respective weight. In
the degenerate cases, CVaR for p = 1 is the expectation and for p = 0

the worst case. It is an established risk metric in finance, optimiza-
tion and operations research, e.g. [ADEH99, RU00], and “is consid-
ered to be a more consistent measure of risk than VaR” [RU00]. Re-
cently, it started permeating to areas closer to verification, such as
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robotics [CCP16].

There is a body of work that optimizes CVaR in MDP. However, to
the best of our knowledge, all the approaches (1) focus on the single-
dimensional case, (2) disregard the expectation, and (3) treat neither
reachability nor long-run average reward. They focus on the dis-
counted [BO11], total [CCP16], or immediate [KFKT11] reward, as
well as extend the results to continuous-time models [HG16, MY17].
This work comes from the area of optimization and operations re-
search, with the notable exception of [CCP16], which focuses on the
total reward, generalizing weighted reachability [CCP16]. However,
it provides only an approximation solution for the one-dimensional
case, neglecting expectation and the respective trade-offs. Further,
CVaR is a topic of high interest in finance, e.g., [RU00, Bed95]. The
central difference is that they consider variations of portfolios (i.e.,
the objective functions) while leaving the underlying random pro-
cess (the market) unchanged. This is dual to our problem, since we
fix the objective function and now search for an optimal random
process (or the respective strategy).

Distribution transformers Recently, there has been interest in regarding
probabilistic systems as deterministic transformers of probability distribu-
tions rather than individual stochastic processes. In the standard semantics
of probabilistic systems, when a probabilistic step from a state to a distri-
bution is taken, the random choice is resolved and we continue from one
of the successor states. In contrast, under the distribution semantics the
choice is not resolved and we continue from the distribution over the suc-
cessors. Thus, instead of the current state the transition changes the cur-
rent distribution over the states. This semantics is adequate in many ap-
plications, such as systems biology, sensor networks, robot planning, etc.
[Hen12, BBMR08, HMW09].

In [KVAK10] model checking MDP under this semantics is shown un-
decidable and a decidable subclass identified. Approximative approaches
to model checking MC are considered in [AAGT15]. A simpler problem
of synchronization in MDP under the distribution semantics is solved in
[DMS14a, DMS14b].

This semantics has been reflected in the study of bisimulations. The the-
ory of bisimulations is a well-established and elegant framework to de-
scribe equivalence between processes based on their behaviour. The orig-
inal definition was given for non-deterministic processes [Par81] and was
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further extended to finite probabilistic systems in [LS89]. Since then many
variants of bisimulations have been proposed and investigated, in particu-
lar an extension to non-deterministic probabilistic systems [SL94]. The dis-
tribution semantics has been considered for finite MC [DHR08], finite MDP
[FZ14], and finite Markov automata (continuous-time systems) [SZG12].
Further, [CR11, Hen12, Cat05] consider standard bisimulations lifted to dis-
tributions, coinciding with the standard bisimulation when projected to
Dirac distributions. Similarly, [EHZ10, EHK+13, DH13] consider lifting that,
however, differs from the state-based bisimulation in the weak case.

4.2 Contributions

4.2.1 Logical and behavioural specifications

Probabilistic CTL In [CONCUR’18b], we address the satisfiability prob-
lem on fragments of PCTL. In order to get a better understanding of this
ultimate problem, we answer the problem for several fragments of PCTL
that are

• quantitative, i.e. involving also probabilistic quantification over ar-
bitrary rational numbers (not just 0 and 1),

• step unbounded, i.e. not imposing any horizon for the temporal op-
erators.

Besides, we consider models with unbounded size, i.e. countable models
or finite models, but with no a priori restriction on the size of the state
space. These are the three distinguishing features, compared to other works.
Firstly, solutions for the qualitative PCTL have been given in [HS86, BFKK08]
and for a more general qualitative logic PCTL∗ in [LS83, KL83]. Secondly,
[CK16] shows decidability for bounded PCTL where the scope of the op-
erators is restricted by a step bound to a given time horizon. Thirdly, the
bounded satisfiability problem is to determine, whether there exists a model
of a given size for a given formula. This problem has been solved by encod-
ing it into an SMT problem [BFS12].

In particular, we show decidability of the satisfiability problem for sev-
eral quantitative unbounded fragments of PCTL, focusing on future- and
globally-operators (F,G), and discuss both finite and infinite satisfiability.
Further, we identify a “smallest elegant” fragment where the problem re-
mains open and the solution requires additional techniques.
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Frequency LTL In [LPAR’15] we make a step towards the ultimate goal
of a model checking procedure for the whole fLTL. We address the general
quantitative setting with arbitrary frequency bounds p and consider the
fragment LTL\GU, which is obtained from frequency LTL by preventing
the U operator from occurring inside G or G≥f formulas (but still allow-
ing the F operator to occur anywhere in the formula). The approach we
take is completely different from [FK15] where ad hoc product MDP con-
struction is used, heavily relying on existence of certain types of strategies
in the f = 1 case. In this paper we provide, to the best of our knowledge,
the first translation of a quantitative logic to equivalent deterministic au-
tomata. This allows us to take the standard automata-theoretic approach to
verification [VW86]: after obtaining the finite automaton, we do not deal
with the structure of the formula originally given, and we solve a synthesis
problem on a product of the single automaton with the MDP.

To our best knowledge, this paper gives the first decidability result for
probabilistic verification against linear-time temporal logics extended by
quantitative frequency operators with complex nested subformulas of the
logic.

It works in two steps, keeping the same time complexity as for ordinary
LTL. In the first step, a LTL\GU formula gets translated to an equivalent de-
terministic generalized Rabin automaton extended with mean-payoff ob-
jectives. This step is inspired by our previous work [KLG13], but the ex-
tension with auxiliary automata for G≥f requires a different construction.
The second step is the analysis of MDPs against conjunction of limit inferior
mean-payoff, limit superior mean-payoff, and generalized Rabin objectives.
This result is obtained by adapting and combining several existing involved
proof techniques of [BCFK13] and our [LICS’15]..

Although our algorithm does not allow us to handle the extension of the
whole LTL, the considered fragment LTL\GU contains a large class of for-
mulas and offers significant expressive power. It subsumes the GR(1) frag-
ment of LTL [BJP+12], which has found use in synthesis for hardware de-
signs. The U operator, although not allowed within a scope of a G operator,
can still be used for example to distinguish paths based on their prefixes.

Example. As an example synthesis problem expressible in this fragment,
consider a cluster of servers where each server plays either a role of a load-
balancer or a worker. On startup, each server listens for a message speci-
fying its role. A load-balancer forwards each request and only waits for a
confirmation whereas a worker processes the requests itself. A specification
for a single server in the cluster can require, for example, that the following

39



4. FROM REACHABILITY AND EXPECTATION TO COMPLEX AND GROUP-BY OBJECTIVES

formula (with propositions explained above) holds with probability at least
0.95:((

l U b
)
→ G≥0.99

(
r → X(f∧Fc)

))
∧
((

l U w
)
→ G≥0.85

(
r → (Xp∨XXp)

))
4

Previous work [THHY12] offered only translation of a similar logic to
non-deterministic “mean-payoff Büchi automata” noting that it is difficult
to give an analogous reduction to deterministic “mean-payoff Rabin au-
tomata”. The reason is that the non-determinism is inherently present in
the form of guessing whether the subformulas of G≥f are satisfied on a
suffix. Our construction overcomes this difficulty and offers equivalent de-
terministic automata, utilizing our [KE12, KLG13, LICS’15].

Linear distances In [CONCUR’16], we introduce a simple framework for
linear distances between Markov chains by the formula supp∈C |p(s)− p(t)|
above. Here p(s) is the probability of satisfying p when starting a simula-
tion run in state s. In other words, when p is seen as a language it is the
probability to generate a trace belonging to p.

We consider estimating distances only from simulating the systems, i.e.
the black-box setting. One of the main difficulties is that the class C typically
includes properties with arbitrarily long horizon or even infinite-horizon
properties, whereas every simulation run is necessarily finite. Note that we
do not want employ here any simplifications such as imposed fixed hori-
zon or discounting, typically used for obtaining efficient algorithms, e.g.,
[DGJP99, vBW06, BBLM13b], and the undiscounted setting is fundamen-
tally more complex [vBSW07]. Since even simpler tasks are impossible for
unbounded horizon in the black-box setting without any further knowl-
edge, it is assumed we know an upper bound on the size of the state space
|S| and a lower bound on the minimum transition probability pmin, similarly
to Section 2.2.2.

Depending on the class C, we obtain various interesting instantiations of
our framework:

Example. One extreme choice is to consider all measurable languages, re-
sulting in the total variation distance. The other extreme choices are to con-
sider (1) only the generators of the σ-algebra, i.e. the cones, resulting in
the finite-trace distance ; or (2) only the elementary events, resulting in the
infinite-trace distance. There are many possible choices for L between the
two extremes above, such as classes of the Borel hierarchy, long-run average
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reward criteria, ω-regular languages, classes of automata or sets of tempo-
ral formulae of certain form (the class of ω-regular languages can also be
given by the monadic second-order logic or ω-automata) etc. 4

We can now use statistics on finite simulation runs to (i) deduce informa-
tion on the whole infinite runs and (ii) estimate the distance of the systems.
For a particular distance function DL, the goal is to construct an algorithm
with the following specification:

Specification of L-distance estimation

Input:

• two finite black-box MCs M1,M2 (i.e., access to any de-
sired finite number of sampled simulation paths of any de-
sired finite lengths)

• confidence α ∈ (0, 1)

• interval width δ ∈ (0, 1)

Output: interval I such that |I| ≤ δ and P[DL(M1,M2) ∈ I] ≥ 1− α

In short, we show that the total variation distance cannot be estimated by
simulating the systems, and that the finite-trace distance can be estimated.
The former result is further exploited to show that the inestimability result
holds also already for clopen sets, Rabin automata, and LTL (even without
the Until-operator). However, it is also shown that infinite-trace distance
and distances for some fragments of LTL are estimable. Moreover, restrict-
ing the size of automata also yields estimability. Furthermore, assuming
finite precision of transition probabilities, e.g. they are given by at most two
decimal digits, even the total variation distance can be estimated, exploit-
ing the white-box algorithms. Under this assumption, trace equivalence can
also be decided correctly with arbitrarily high probability.

4.2.2 Group-by aggregate operators

Risk-averse control A more focused view on differences among possible
behaviours of a system can be taken by aggregating similar behaviours, tai-
loring an abstract view. We draw an analogy with database queries. Instead
of looking at all data points, we can aggregate the data by functions such as
AVG, corresponding to the expectation semantics, but also MIN when the
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worst-case/sure-winning view is taken, or MAX in the analogous situation.
Beyond that, we can aggregate in a more sophisticated manner. A query

select count(*) from runs
where value = true //alternatively, value≥threshold

corresponds to the satisfaction semantics. A slight variation

select value, count(*) from runs
group by value

corresponds more closely to the quantile analysis and CVaR analysis. One
can even think of the distribution semantics as grouping according to the
state at a particular moment:

select state[t], count(*) from runs
group by state[t]

In [LICS’15], we unified the expectation semantics and the satisfaction se-
mantics for long-run average reward as follows. Intuitively, the problem we
consider asks to optimize the expectation while ensuring the satisfaction.
Formally, consider an MDP with n reward functions, a probability thresh-
old vector p (or threshold p for the so-called joint interpretation [BBC+14]),
and a reward threshold vector r. We consider the set of satisfaction strate-
gies that ensure the satisfaction semantics, i.e., they ensure with probability
at least p (or respective probabilitites of p) that runs have long-run aver-
age reward value vector at least r. Then the optimization of the expectation
is considered with respect to the satisfaction strategies. Note that if p is 0

(assuming non-negative rewards here for simplicity), then the satisfaction
strategies is the set of all strategies and we obtain the traditional expecta-
tion semantics as a special case. We investigate the questions of algorithmic
complexity, strategy complexity (in terms of memory and randomization),
and trade-offs in the sense of a Pareto curve.

Example. We list a few examples, illustrating the use of such combinations:

• For simple risk aversion, consider a single reward function mod-
elling investment. Positive reward stands for profit, negative for loss.
We aim at maximizing the expected long-run average while guaran-
teeing that it is non-negative with at least 95%. This is an instance
with n = 1, p = 0.95, r = 0.

• For more dimensions, consider the example [Put94, Problems 6.1,
8.17]. A vendor assigns to each customer either a low or a high rank.

42



4. FROM REACHABILITY AND EXPECTATION TO COMPLEX AND GROUP-BY OBJECTIVES

Further, there is a decision the vendor makes each year either to in-
vest money into sending a catalogue to the customer or not. Depend-
ing on the rank and on receiving a catalogue, the customer spends
different amounts for vendor’s products and the rank can change.
The aim is to maximize the expected profit provided the catalogue
is almost surely sent with frequency at most f . Further, one can ex-
tend this example to only require that the catalogue frequency does
not exceeded f with 95% probability, but 5% best customers may
still receive catalogues very often.

• A gratis service for downloading is offered as well as a premium
one. For each we model the throughput as rewards r1, r2. For the
gratis service, expected throughput 1Mbps is guaranteed as well
as 60% connections running on at least 0.8Mbps. For the premium
service, not only have we a higher expectation of 10Mbps, but also
95% of the connections are guaranteed to run on at least 5Mbps and
80% on even 8Mbps (satisfaction constraints). In order to keep this
guarantee, we may need to temporarily hire resources from a cloud,
whose cost is modelled as a reward r3. While satisfying the guaran-
tee, we want to maximize the expectation of q2 · r2 − q3 · r3 where q2
is the price per Mb at which the premium service is sold and q3 is
the price at which additional servers can be hired. 4

In [LICS’18a], we investigate optimization of MDP with respect to CVaR
as well as the respective trade-offs with expectation and VaR. We study it
for the first time with the payoff functions of reachability and mean payoff,
which are fundamental in verification. Moreover, we cover both the single-
dimensional and the multi-dimensional case and combinations of E, VaR
and CVaR.

More specifically, we define CVaR for MDP and show the peculiarities
of the concept. Then we study again the computational complexity and the
strategy complexity for various settings. Note that CVaR features some sur-
prising behaviour, preventing us to trivially adapt the solutions to the ex-
pectation and VaR problems. For instance, compared to expectation and
VaR, CVaR does not behave linearly when considering stochastic combina-
tion of strategies. Further, already conjunctions of CVaR constraints alone
induce an NP-hard problem since we can force a strategy to play determin-
istically.

Distribution transformers In [CONCUR’14], we consider the distribution
semantics of MDP with general state spaces and give a natural definition of
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Figure 4.1: Illustration of VaR and CVaR. Given the depicted probability
density functions f of a continuous real variable X and a risk probability
p ∈ [0, 1], we have CVaRp(X) =

∫ VaRp(X)
−∞ x · f(x) dx.

the respective notions of bisimulation. It arises as an unusual, but very sim-
ple instantiation of the standard coalgebraic framework for bisimulations
[SR11]. Despite its simplicity, the resulting notion is surprisingly fruitful
for two reasons.

Firstly, it is more precise than other equivalences when applied to sys-
tems with the distribution semantics such as large-population models where
different parts of the population act differently [M+74]. Indeed, as argued
in [GA12], some equivalent states are not identified in the standard proba-
bilistic bisimulations and too many are identified in the recent distribution
based bisimulations [DHR08, FZ14]. Our approach allows for a bisimula-
tion identifying precisely the desired states [GA12].

Secondly, our bisimulation over distributions induces a novel behavioural
equivalence on states. This equivalence is useful, for it identifies states that
are behaviourally indistinguishable in many settings, but were unneces-
sarily distinguished by standard bisimulations. We document this in sev-
eral applications: ranging from partially observed systems control [SPK13]
where the controller only has a probabilistic belief where the system is,
over distributed scheduler synthesis [GDF09], to continuous-time systems
where random waiting times are sampled, but are not observed before they
elapse [DK05]. We illustrate the latter in the following intriguing example
from the continuous-time area due to [BDH].

Example. Consider the following two stochastic automata [DK05]. They
have “kitchen timers” x and y, which get a random exponentially distributed
value when a state with a corresponding assignment is entered. Then the
time elapses and the values of the timers decrease until the first one reaches
0. Then a transition to the next state is taken and the other timers keep on
running.
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x:=Exp(1),
y:=Exp(2)

y:=Exp(2) x:=Exp(1)

ax = 0 b y = 0

by = 0 a x = 0

If we observe the times when transitions occur (the timer rings), the two
systems above behave the same. Indeed, due to the memoryless property
of the exponential distributions, there is no way to distinguish them. Yet ex-
isting notions of bisimulations and behavioural equivalences in the litera-
ture fail to capture this. The distributional view, which we take, is necessary
here. Indeed, as u′ cannot be matched by any u with a particular remaining
time on the timer, but can be matched by an appropriate distribution over
u’s with all possible remaining times. 4

Nevertheless, the key idea to work with distributions instead of single
states also bears disadvantages. The main difficulty is that even for finite
systems the space of distributions is uncountable, thus bisimulation is dif-
ficult to compute. However, we show that it admits a concise representa-
tion using methods of linear algebra and we give algorithms to compute it.
Namely, we give the first algorithm to compute distributional bisimulation
on finite non-deterministic probabilistic systems and, further, an algorithm
deciding bisimilarity on several classes of uncountable (continuous-time)
systems. In order to cover e.g. continuous-time systems, we need to han-
dle both uncountably many states (that store the sampled time) and labels
(real time durations). Fortunately, there is an elegant way to do so using the
standard coalgebra framework.

4.3 Contributed papers and activities

[CONCUR’14] Holger Hermanns, Jan Krčál, and Jan Křetínský. Probabilis-
tic bisimulation: Naturally on distributions. In CONCUR, vol-
ume 8704 of LNCS, pages 249–265. Springer, 2014.
Attached in Part 2 of the thesis.

[LICS’15] Krishnendu Chatterjee, Zuzana Komárková, and Jan Křetín-
ský. Unifying two views on multiple mean-payoff objectives
in Markov decision processes. In LICS, pages 244–256. IEEE
Computer Society, 2015.
Journal version published in Logical Methods in Computer
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Science, 13(2), 2017.
Attached in Part 2 of the thesis.

[LPAR’15] Vojtěch Forejt, Jan Krčál, and Jan Křetínský. Controller synthe-
sis for MDPs and frequency LTL\GU. In LPAR, volume 9450 of
LNCS, pages 162–177. Springer, 2015.

[CONCUR’16] Przemyslaw Daca, Thomas A. Henzinger, Jan Křetínský,
and Tatjana Petrov. Linear distances between Markov chains.
In CONCUR, volume 59 of LIPIcs, pages 20:1–20:15. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

[LICS’18b] Jan Křetínský and Tobias Meggendorfer. Conditional value-at-
risk for reachability and mean payoff in Markov decision pro-
cesses. In LICS, pages 609–618. ACM, 2018.
Attached in Part 2 of the thesis.

[CONCUR’18b] Jan Křetínský and Alexej Rotar. The satisfiability prob-
lem for unbounded fragments of probabilistic CTL. In CON-
CUR, volume 118 of LIPIcs, pages 8:1–8:18. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2018.

Activities On this topic, the author has submitted a German Research
Foundation grant Group-by Objectives in Probabilistic Verification in 2018.

This strand of research is the most recent to be systematically investi-
gated. However, the citations of e.g. [CONCUR’14] from areas as diverse
as refinement of probabilistic processes, algebras, quantum computation or
logic, show the potential for further use and the need for further explo-
ration.
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Chapter 5

Conclusion

We have reviewed our work since obtaining the second PhD in mid-2014 in
three areas connected to quantitative verification. While the LTL strand has
just reached its most important result, the other two strands on utilizing
machine learning and revisiting traditional objectives span many options
for further work. This also corresponds to the grant proposals in prepara-
tion.

Both PhD theses at the Technical University of Munich in 2013 and at
Masaryk University in 2014 used previous work of the LTL strand. While
the thesis in 2013 is more connected to probabilistic verification, the one in
2014 focuses on modal transition system. This strand has not been entirely
left since then, as documented on the relevant publications listed below.

Papers on modal transition systems

[FACS’14] Ulrich Fahrenberg, Jan Křetínský, Axel Legay, and Louis-Marie
Traonouez. Compositionality for quantitative specifications. In
FACS, volume 8997 of LNCS, pages 306–324. Springer, 2014.
Journal version published in Soft Computing, 22(4):1139–
1158, 2018.

[CBSE’15] Nikola Beneš, Przemyslaw Daca, Thomas A. Henzinger, and
Jan Křetínský. Complete composition operators for IOCO-
testing theory. In CBSE, pages 101–110. ACM, 2015.

[ACTA’15] Nikola Beneš, Jan Křetínský, Kim G. Larsen, Mikael H. Møller,
Salomon Sickert, and Jiří Srba. Refinement checking on para-
metric modal transition systems. Acta Informatica, 52(2-3):269–
297, 2015.

47



5. CONCLUSION

Based on two conference papers, which are part of one of the
author’s PhD theses

[BIRTHDAY’17] Jan Křetínský. 30 years of modal transition systems: Survey
of extensions and analysis. In Models, Algorithms, Logics and
Tools, volume 10460 of LNCS, pages 36–74. Springer, 2017.
Based on one of the author’s PhD theses
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A Note on Contribution: Explanation of Assumptions

According to the MU Directive on Habilitation Procedures and Professor
Appointment Procedures No.7/2017, we list the quantitative and qualita-
tive (content-wise) contribution of the author. We interpret the qualitative
contribution as the collection of the aspects listed in Table 5.1, considering
these to be commonly accepted parts of the process of creating a paper in
computer science. Respecting the tradition, we do not list, for instance, the
aspect of acquiring funding to perform the given research, despite its scien-
tific character and paramount effect on the existence of the paper.

In contrast, since a contribution can only be evaluated quantitatively un-
der a given metric and the above-mentioned directive suggests no such
metric and within tradition there is no agreement on it, we consider this
task not well defined. Due to the lack of generally more acceptable cri-
teria, we take the liberty of defining the contribution of an author within
the scope of a paper with the alphabetical ordering as the reciprocal of the
number of co-authors, due to the seeming canonicity of the formula and its
exceptional blandness and insipidity.
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Abstract. In contrast to the usual understanding of probabilistic sys-
tems as stochastic processes, recently these systems have also been re-
garded as transformers of probabilities. In this paper, we give a natural
definition of strong bisimulation for probabilistic systems corresponding
to this view that treats probability distributions as first-class citizens.
Our definition applies in the same way to discrete systems as well as
to systems with uncountable state and action spaces. Several examples
demonstrate that our definition refines the understanding of behavioural
equivalences of probabilistic systems. In particular, it solves a longstand-
ing open problem concerning the representation of memoryless contin-
uous time by memoryfull continuous time. Finally, we give algorithms
for computing this bisimulation not only for finite but also for classes of
uncountably infinite systems.

1 Introduction

Continuous time concurrency phenomena can be addressed in two principal man-
ners: On the one hand, timed automata (TA) extend interleaving concurrency
with real-valued clocks [2]. On the other hand, time can be represented by memo-
ryless stochastic time, as in continuous time Markov chains (CTMC) and exten-
sions, where time is represented in the form of exponentially distributed random
delays [33,30,6,23]. TA and CTMC variations have both been applied to very
many intriguing cases, and are supported by powerful real-time, respectively
stochastic time model checkers [3,37] with growing user bases. The models are
incomparable in expressiveness, but if one extends timed automata with the pos-
sibility to sample from exponential distributions [5,10,28], there appears to be
a natural bridge from CTMC to TA. This kind of stochastic semantics of timed

? This work is supported by the EU 7th Framework Programme under grant agree-
ments 295261 (MEALS) and 318490 (SENSATION), European Research Council
(ERC) under grant agreement 267989 (QUAREM), Austrian Science Fund (FWF)
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AVACS, and by the CAS/SAFEA International Partnership Program for Creative
Research Teams. Jan Křet́ınský is currently on leave from Faculty of Informatics,
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automata has recently gained considerable popularity by the statistical model
checking approach to TA analysis [14,13].

Still there is a disturbing difference, and this difference is the original moti-
vation [12] of the work presented in this paper. The obvious translation of an
exponentially distributed delay into a clock expiration sampled from the very
same exponential probability distribution fails in the presence of concurrency.
This is because the translation is not fully compatible with the natural inter-
leaving concurrency semantics for TA respectively CTMC. This is illustrated by
the following example, which in the middle displays two small CTMC, which are
supposed to run independently and concurrently.

q

u v

r

x:=Exp(1),
y:=Exp(2)

ax = 0 b y = 0

by = 0 a x = 0

1 2

q′

u′ v′

r′

x:=Exp(1),
y:=Exp(2)

y:=Exp(2) x:=Exp(1)

ax = 0 b y = 0

by = 0 a x = 0

On the left and right we see two stochastic automata (a variation of timed
automata formally defined in Section 3). They have clocks x and y which are
initialized by sampling from exponential distributions, and then each run down
to 0. The first one reaching 0 triggers a transition and the other clock keeps
on running unless resampled, which happens on the right, but not on the left.
The left model is obtained by first translating the respective CTMC, and then
applying the natural TA interleaving semantics, while the right model is ob-
tained by first applying the equally natural CTMC interleaving semantics prior
to translation.

The two models have subtly different semantics in terms of their underlying
dense probabilistic timed transition systems. This can superficially be linked
to the memoryless property of exponential distributions, yet there is no formal
basis for proving equivalence. Our paper closes this gap, which has been open for
at least 15 years, by introducing a natural continuous-space distribution-based
bisimulation. Our result is embedded in several further intriguing application
contexts and algorithmic achievements for this novel bisimulation.

The theory of bisimulations is a well-established and elegant framework to
describe equivalence between processes based on their behaviour. In the stan-
dard semantics of probabilistic systems [38,45], when a probabilistic step from
a state to a distribution is taken, the random choice is resolved and we instead
continue from one of the successor states. Recently, there has been considerable
interest in instead regarding probabilistic systems as deterministic transform-
ers of probability distributions [36,1,20], where the choice is not resolved and
we continue from the distribution over successors. Thus, instead of the current
state the transition changes the current distribution over the states. Although
the distribution semantics is very natural in many contexts [29], it has been only
partially reflected in the study of bisimulations [29,19,24,23].
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Our definition arises as an unusual, but very simple instantiation of the stan-
dard coalgebraic framework for bisimulations [42]. (No knowledge of coalgebra
is required from the reader though.) Despite its simplicity, the resulting notion
is surprisingly fruitful, not only because it indeed solves the longstanding corre-
spondence problem between CTMC and TA with stochastic semantics.

Firstly, it is more adequate than other equivalences when applied to systems
with distribution semantics, including large-population models where different
parts of the population act differently [39]. Indeed, as argued in [26], some equiv-
alent states are not identified in the standard probabilistic bisimulations and too
many are identified in the recent distribution based bisimulations [19,24]. Our
approach allows for a bisimulation identifying precisely the desired states [26].

Secondly, our bisimulation over distributions induces an equivalence on states,
and this relation equates behaviourally indistinguishable states which in many
settings are unnecessarily distinguished by standard bisimulations. We shall dis-
cuss this phenomenon in the context of several applications. Nevertheless, the
key idea to work with distributions instead of single states also bears disadvan-
tages. The main difficulty is that even for finite systems the space of distributions
is uncountable, thus bisimulation is difficult to compute. However, we show that
it admits a concise representation using methods of linear algebra and we provide
an algorithm for computing it. Further, in order to cover e.g. continuous-time
systems, we need to handle both uncountably many states (that store the sam-
pled time) and labels (real time durations). Fortunately, there is an elegant way
to do so using the standard coalgebra framework. Moreover, it can easily be
further generalized, e.g. adding rewards to the generic definition is a trivial task.
Our contribution is the following:

– We give a natural definition of bisimulation from the distribution perspective
for systems with generally uncountable spaces of states and labels.

– We argue by means of several applications that the definition can be consid-
ered more useful than the classical notions of probabilistic bisimulation.

– We provide an algorithm to compute this distributional bisimulation on finite
non-deterministic probabilistic systems, and present a decision algorithm for
uncountable continuous-time systems induced by the stochastic automata
mentioned above.

A full version of this paper is available [31].

2 Probabilistic bisimulation on distributions

A (potentially uncountable) set S is a measurable space if it is equipped with a σ-
algebra, denoted by Σ(S). The elements of Σ(S) are called measurable sets. For
a measurable space S, let D(S) denote the set of probability measures (or prob-
ability distributions) over S. The following definition is similar to the treatment
of [52].

Definition 1. A non-deterministic labelled Markov process (NLMP) is a tuple
P = (S ,L, {τa | a ∈ L}) where S is a measurable space of states, L is a measur-
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able space of labels, and τa : S → Σ(D(S )) assigns to each state s a measurable
set of probability measures τa(s) available in s under a.(1)

When in a state s ∈ S , NLMP reads a label a ∈ L and non-deterministically
chooses a successor distribution µ ∈ D(S ) that is in the set of convex combina-
tions(2) over τa(s), denoted by s

a−→µ. If there is no such distribution, the pro-
cess halts. Otherwise, it moves into a successor state according to µ. Considering
convex combinations is necessary as it gives more power than pure resolution of
non-determinism [43].

Example 1. If all sets are finite, we obtain probabilistic automata (PA) defined
[43] as a triple (S ,L,−→) where −→ ⊆ S ×L×D(S ) is a probabilistic transition
relation with (s, a, µ) ∈ −→ if µ ∈ τa(s).

Example 2. In the continuous setting, consider a random number generator that
also remembers the previous number. We set L = [0, 1], S = [0, 1] × [0, 1] and
τx(〈new, last〉) = {µx} for x = new and ∅ otherwise, where µx is the uniform
distribution on [0, 1] × {x}. If we start with a uniform distribution over S, the
measure of successors under any x ∈ L is 0. Thus in order to get any information
of the system we have to consider successors under sets of labels, e.g. intervals.

For a measurable set A ⊆ L of labels, we write s
A−→µ if s

a−→µ for some a ∈
A, and denote by SA := {s | ∃µ : s

A−→µ} the set of states having some outgoing
label from A. Further, we can lift this to probability distributions by setting
µ

A−→ ν if µ(SA) > 0 and ν = 1
µ(SA)

∫
s∈SA

νs µ(d s) for some measurable function

assigning to each state s ∈ SA a measure νs such that s
A−→ νs. Intuitively, in µ we

restrict to states that do not halt under A and consider all possible combinations
of their transitions; we scale up by 1

µ(SA) to obtain a distribution again.

Example 3. In the previous example, let υ be the uniform distribution. Due to
the independence of the random generator on previous values, we get υ

[0,1]−→ υ.

Similarly, υ
[0.1,0.2]−−−−−→ υ[0.1,0.2] where υ[0.1,0.2] is uniform on [0, 1] in the first com-

ponent and uniform on [0.1, 0.2] in the second component, with no correlation.

Using this notation, a non-deterministic and probabilistic system such as
NLMP can be regarded as a non-probabilistic, thus solely non-deterministic, la-
belled transition system over the uncountable space of probability distributions.
The natural bisimulation from this distribution perspective is as follows.

Definition 2. Let (S ,L, {τa | a ∈ L}) be a NLMP and R ⊆ D(S ) × D(S ) be a
symmetric relation. We say that R is a (strong) probabilistic bisimulation if for
each µRν and measurable A ⊆ L

(1) We further require that for each s ∈ S we have {(a, µ)|µ ∈ τa(s)} ∈ Σ(L)⊗Σ(D(S))
and for each A ∈ Σ(L) and Y ∈ Σ(D(S)) we have {s ∈ S | ∃a ∈ A.τa(s)∩ Y 6= ∅} ∈
Σ(S). Here Σ(D(S)) is the Giry σ-algebra [27] over D(X).

(2) A distribution µ ∈ D(S) is a convex combination of a set M ∈ Σ(D(S)) of distribu-
tions if there is a measure ν on D(S) such that ν(M) = 1 and µ =

∫
µ′∈D(S)

µ′ν(dµ′).
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1. µ(SA) = ν(SA), and
2. for each µ

A−→µ′ there is a ν
A−→ ν′ such that µ′Rν′.

We set µ ∼ ν if there is a probabilistic bisimulation R such that µRν.

Example 4. Considering Example 2, states {x}× [0, 1] form a class of ∼ for each
x ∈ [0, 1] as the old value does not affect the behaviour. More precisely, µ ∼ ν
iff marginals of their first component are the same.

Naturalness. Our definition of bisimulation is not created ad-hoc as it often
appears for relational definitions, but is actually an instantiation of the standard
bisimulation for a particular coalgebra. Although this aspect is not necessary for
understanding the paper, it is another argument for naturalness of our defini-
tion. For reader’s convenience, we present a short introduction to coalgebras and
the formal definitions in [31]. Here we only provide an intuitive explanation by
example.

Non-deterministic labelled transition systems are essentially given by the
transition function S → P(S )L; given a state s ∈ S and a label a ∈ L, we can
obtain the set of the successors {s′ ∈ S | s a−→s′}. The transition function corre-
sponds to a coalgebra, which induces a bisimulation coinciding with the classical
one of Park and Milner [40]. Similarly, PA are given by the transition function
S → P(D(S ))L; instead of successors there are distributions over successors.
Again, the corresponding coalgebraic bisimulation coincides with the classical
ones of Larsen and Skou [38] and Segala and Lynch [44].

In contrast, our definition can be obtained by considering states S ′ to be
distributions in D(S) over the original state space and defining the transition
function to be S ′ → ([0, 1] × P(S ′))Σ(L). The difference to the standard non-
probabilistic case is twofold: firstly, we consider all measurable sets of labels,
i.e. all elements of Σ(L); secondly, for each label set we consider the mass, i.e.
element of [0, 1], of the current state distribution that does not deadlock, i.e. can
perform some of the labels. These two aspects form the crux of our approach
and distinguish it from other approaches.

3 Applications

We now argue by some concrete application domains that the distribution view
on bisimulation yields a fruitful notion.

Memoryless vs. memoryfull continuous time. First, we reconsider the mo-
tivating discussion from Section 1 revolving around the difference between con-
tinuous time represented by real-valued clocks, respectively memoryless stochas-
tic time. For this we introduce a simple model of stochastic automata [10].

Definition 3. A stochastic automaton (SA) is a tuple S = (Q, C,A,→, κ, F )
where Q is a set of locations, C is a set of clocks, A is a set of actions, → ⊆
Q×A× 2C ×Q is a set of edges, κ : Q → 2C is a clock setting function, and F
assigns to each clock its distribution over R≥0.

5



Avoiding technical details, S has the following NLMP semantics PS with state
space S = Q×RC , assuming it is initialized in some location q0: When a location
q is entered, for each clock c ∈ κ(q) a positive value is chosen randomly according
to the distribution F (c) and stored in the state space. Intuitively, the automaton
idles in location q with all clock values decreasing at the same speed until some
edge (q, a,X, q′) becomes enabled, i.e. all clocks from X have value ≤ 0. After
this idling time t, the action a is taken and the automaton enters the next
location q′. If an edge is enabled on entering a location, it is taken immediately,
i.e. t = 0. If more than one edge become enabled simultaneously, one of them is
chosen non-deterministically. Its formal definition is given in [31]. We now are
in the position to harvest Definition 2, to arrive at the novel bisimulation for
stochastic automata.

Definition 4. We say that locations q1, q2 of an SA S are probabilistic bisim-
ilar, denoted q1 ∼ q2, if µq1 ∼ µq2 in PS where µq denotes a distribution over
the state space of PS given by the location being q, every c 6∈ κ(q) being 0, and
every c ∈ κ(q) being independently set to a random value according to F (c).

This bisimulation identifies q and q′ from Section 1 unlike any previous bisim-
ulation on SA [10]. In Section 4 we discuss how to compute this bisimulation,
despite being continuous-space. Recall that the model initialized by q is obtained
by first translating two simple CTMC, and then applying the natural interleav-
ing semantics, while the model, of q′ is obtained by first applying the equally
natural CTMC interleaving semantics prior to translation. The bisimilarity of
these two models generalizes to the whole universe of CTMC and SA:

Theorem 1. Let SA(C) denote the stochastic automaton corresponding to a
CTMC C. For any CTMC C1, C2, we have

SA(C1) ‖SA SA(C1) ∼ SA(C1 ‖CT C1).

Here, ‖CT and ‖SA denotes the interleaving parallel composition of SA [11] (echo-
ing TA parallel composition) and CTMC [33,30] (Kronecker sum of their matrix
representations), respectively.

Bisimulation for partial-observation MDP (POMDP). A POMDP is a
quadruple M = (S ,A, δ,O) where (as in an MDP) S is a set of states, A is
a set of actions, and δ : S × A → D(S ) is a transition function. Furthermore,
O ⊆ 2S partitions the state space. The choice of actions is resolved by a policy
yielding a Markov chain. Unlike in an MDP, such choice is not based on the
knowledge of the current state, only on knowing that the current state belongs
into an observation o ∈ O. POMDPs have a wide range of applications in robotic
control, automated planning, dialogue systems, medical diagnosis, and many
other areas [46].

In the analysis of POMDP, the distributions over states, called beliefs, arise
naturally and bisimulations over beliefs have already been considered [7,34].
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However, to the best of our knowledge, no algorithms for computing belief bisim-
ilation for POMDP exist. We fill this gap by our algorithm for computing dis-
tribution bisimulation for PA in Section 4. Indeed, two beliefs µ, ν in POMDP
M are belief bisimilar in the spirit of [7] iff µ and ν are distribution bisimilar
in the induced PA DM = (S ,O ×A,−→) where (s, (o, a), µ) ∈−→ if s ∈ o and
δ(s, a) = µ.(3)

Further applications. Probabilistic automata are especially apt for compo-
sitional modelling of distributed systems. The only information a component in
a distributed system has about the current state of another component stems
from their mutual communication. Therefore, each component can be also viewed
from the outside as a partial-observation system. Thus, also in this context, dis-
tribution bisimulation is a natural concept. While ∼ is not a congruence w.r.t.
standard parallel composition, it is apt for compositional modelling of distributed
systems where only distributed schedulers are considered. For details, see [31,49].

Furthermore we can understand a PA as a description, in the sense of [25,39],
of a representative agent in a large homogeneous population. The distribution
view then naturally represents the ratios of agents being currently in the individ-
ual states and labels given to this large population of PAs correspond to global
control actions [25]. For more details on applications, see [31].

4 Algorithms

In this section, we discuss computational aspects of deciding our bisimulation.
Since ∼ is a relation over distributions over the system’s state space, it is un-
countably infinite even for simple finite systems, which makes it in principle
intricate to decide. Fortunately, the bisimulation relation has a linear structure,
and this allows us to employ methods of linear algebra to work with it effectively.
Moreover, important classes of continuous-space systems can be dealt with, since
their structure can be exploited. We exemplify this on a subset of deterministic
stochastic automata, for which we are able to provide an algorithm to decide
bisimilarity.

Finite systems – greatest fixpoints. Let us fix a PA (S ,L,−→). We apply
the standard approach by starting with D(S ) × D(S ) and pruning the relation
until we reach the fixpoint ∼. In order to represent ∼ using linear algebra, we
identify a distribution µ with a vector (µ(s1), . . . , µ(s|S |)) ∈ R|S |.

Although the space of distributions is uncountable, we construct an implicit
representation of ∼ by a system of equations written as columns in a matrix E.

Definition 5. A matrix E with |S | rows is a bisimulation matrix if for some
bisimulation R, for any distributions µ, ν

µR ν iff (µ− ν)E = 0.

For a bisimulation matrix E, an equivalence class of µ is then the set (µ + {ρ |
ρE = 0}) ∩ D(S ), the set of distributions that are equal modulo E.

(3) Note that [7] also considers rewards that can be easily added to ∼ and our algorithm.
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Example 5. The bisimulation matrix E below encodes that several conditions
must hold for two distributions µ, ν to be bisimilar. Among others, if we multiply
µ − ν with e.g. the second column, we must get 0. This translates to (µ(v) −
ν(v)) · 1 = 0, i.e. µ(v) = ν(v). Hence for bisimilar distributions, the measure
of v has to be the same. This proves that u 6∼ v (here we identify states and
their Dirac distributions). Similarly, we can prove that t ∼ 1

2 t
′ + 1

2 t
′′. Indeed,

if we multiply the corresponding difference vector (0, 0, 1,− 1
2 ,−

1
2 , 0, 0) with any

column of the matrix, we obtain 0.

s t

u

v

a
½
a

½

b

c s′
t′

t′′

a

½

½

a

a

s :
s′ :
t :
t′ :
t′′ :
u :
v :



1 0 0 0 0
1 0 0 0 0
1 0 0 ½ ½
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0


Note that the unit matrix is always a bisimulation matrix, not relating any-

thing with anything but itself. For which bisimulations do there exist bisimula-
tion matrices? We say a relation R over distributions is convex if µRν and µ′Rν′

imply
(
pµ+ (1− p)µ′

)
R
(
pν + (1− p)ν′

)
for any p ∈ [0, 1].

Lemma 1. Every convex bisimulation has a corresponding bisimulation matrix.

Since ∼ is convex (see [31]), there is a bisimulation matrix corresponding to
∼. It is a least restrictive bisimulation matrix E (note that all bisimulation
matrices with the least possible dimension have identical solution space), we
call it minimal bisimulation matrix. We show that the necessary and sufficient
condition for E to be a bisimulation matrix is stability with respect to transitions.

Definition 6. For a |S | × |S | matrix P , we say that a matrix E with |S | rows
is P -stable if for every ρ ∈ R|S |,

ρE = 0 =⇒ ρPE = 0 (1)

We first briefly explain the stability in a simpler setting.

Action-deterministic systems. Let us consider PA where in each state, there is
at most one transition. For each a ∈ L, we let Pa = (pij) denote the transition
matrix such that for all i, j, if there is (unique) transition si

a−→µ we set pij to
µ(sj), otherwise to 0. Then µ evolves under a into µPa. Denote 1 = (1, . . . , 1)>.

Proposition 1. In an action-deterministic PA, E containing 1 is a bisimula-
tion matrix iff it is Pa-stable for all a ∈ L.

To get a minimal bisimulation matrix E, we start with a single vector 1 which
stands for an equation saying that the overall probability mass in bisimilar dis-
tributions is the same. Then we repetitively multiply all vectors we have by all
the matrices Pa and add each resulting vector to the collection if it is linearly
independent of the current collection, until there are no changes. In Example 5,
the second column of E is obtained as Pc1, the fourth one as Pa(Pc1) and so on.
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The set of all columns of E is thus given by the described iteration

{Pa | a ∈ L}∗1

modulo linear dependency. Since Pa have |S | rows, the fixpoint is reached within
|S | iterations yielding 1 ≤ d ≤ |S | equations. Each class then forms an (|S | − d)-
dimensional affine subspace intersected with the set of probability distributions
D(S ). This is also the principle idea behind the algorithm of [51] and [19].

Non-deterministic systems. In general, for transitions under A, we have to con-
sider cAi non-deterministic choices in each si among all the outgoing transitions

under some a ∈ A. We use variables wji denoting the probability that j-th tran-

sition, say (si, a
j
i , µ

j
i ), is taken by the scheduler/player(4) in si. We sum up the

choices into a “non-deterministic” transition matrix PWA with parameters W

whose ith row equals
∑cAi
j=1 w

j
iµ
j
i . It describes where the probability mass moves

from si under A depending on the collection W of the probabilities the player
gives each choice. By WA we denote the set of all such W .

A simple generalization of the approach above would be to consider {PWA |
A ⊆ L,W ∈ WA}∗1. However, firstly, the set of these matrices is uncountable
whenever there are at least two transitions to choose from. Secondly, not all PWA
may be used as the following example shows.

Example 6. In each bisimulation class in the following example, the probabilities
of s1 + s2, s3, and s4 are constant, as can also be seen from the bisimulation
matrix E, similarly to Example 5. Further, E can be obtained as (1 Pc1 Pb1).
Observe that E is PW{a}-stable for W that maximizes the probability of going

into the “class” s3 (both s1 and s2 go to s3, i.e. w1
1 = w1

2 = 1); similarly for the
“class” s4.

s1

s2

s3

s4

a

a

a

a

b

c
PW{a} =


0 0 w1

1 w
2
2

0 0 w1
2 w

2
2

0 0 0 0
0 0 0 0

 E =


1 0 0
1 0 0
1 0 1
1 1 0



However, for W with w1
1 6= w1

2, e.g. s1 goes to s3 and s2 goes with equal

probability to s3 and s4 (w1
1 = 1, w1

2 = w2
2 = 1

2 ), we obtain from PW{a}E a new

independent vector (0, 0.5, 0, 0)> enforcing a partition finer than ∼. This does
not mean that Spoiler wins the game when choosing such mixed W in some µ,
it only means that Duplicator needs to choose a different W in a bisimilar ν in

order to have µPWA ∼ νPWA for the successors.

(4) We use the standard notion of Spoiler-Duplicator bisimulation game (see e.g. [42])
where in {µ0, µ1} Spoiler chooses i ∈ {0, 1}, A ⊆ L, and µi

A−→µ′i, Duplicator has
to reply with µ1−i

A−→µ′1−i such that µi(SA) = µi−1(SA), and the game continues in
{µ′0, µ′1}. Spoiler wins iff at some point Duplicator cannot reply.
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A fundamental observation is that we get the correct bisimulation when
Spoiler is restricted to finitely many “extremal” choices and Duplicator is re-
stricted for such extremal W to respond only with the very same W . (∗)

To this end, consider MW
A = PWA E where E is the current matrix with each

of e columns representing an equation. Intuitively, the ith row of MW
A describes

how much of si is moved to various classes when a step is taken. Denote the linear
forms in MW

A over W by mij . Since the players can randomize and mix choices
which transition to take, the set of vectors {(mi1(w1

i , . . . , w
ci
i ), . . . ,mib(w

1
i , . . . , w

ci
i )) |

w1
i , . . . , w

ci
i ≥ 0,

∑ci
j=1 w

j
i = 1} forms a convex polytope denoted by Ci. Each

vector in Ci is thus the ith row of the matrix MW
A where some concrete weights

wji are “plugged in”. This way Ci describes all the possible choices in si and
their effect on where the probability mass is moved.

Denote vertices (extremal points) of a convex polytope P by E(P ). Then
E(Ci) correspond to pure (non-randomizing) choices that are “extremal” w.r.t. E.
Note that now if sj ∼ sk then Cj = Ck, or equivalently E(Cj) = E(Ck). Indeed,
for every choice in sj there needs to be a matching choice in sk and vice versa.
However, since we consider bisimulation between generally non-Dirac distribu-
tions, we need to combine these extremal choices. For an arbitrary distribution

µ ∈ D(S ), we say that a tuple c ∈
∏|S |
i=1 E(Ci) is extremal in µ if µ ·c> is a vertex

of the polytope {µ · c′> | c′ ∈
∏|S |
i=1 Ci}. Note that each extremal c corresponds

to particular pure choices, denoted by W (c). Unfortunately, for choices W (c) of
Spoiler extremal in some distribution, Duplicator may in another distribution
need to make different choices. Indeed, in Example ?? the tuple corresponding to
W is extremal in the Dirac distribution of state s1. Therefore, we define E(C) to
be the set of tuples c extremal in the uniform distribution. Interestingly, tuples
extremal in the uniform distribution are (1) extremal in all distributions and
(2) reflect all extremal choices, i.e. for every c extremal in some µ, there is a
c′ extremal in the uniform distribution such that c′ is also extremal in µ and
µ · c = µ · c′. As a result, the fundamental property (∗) is guaranteed.

Proposition 2. Let E be a matrix containing 1. It is a bisimulation matrix iff

it is P
W (c)
A -stable for all A ⊆ L and c ∈ E(C).

Theorem 2. Algorithm 1 computes a minimal bisimulation matrix.

The running time is exponential. We leave the question whether linear pro-
gramming or other methods [32] can yield E in polynomial time open. The
algorithm can easily be turned into one computing other bisimulation notions
from the literature, for which there were no algorithms so far, see Section 5.

Continuous-time systems - least fixpoints. Turning our attention to con-
tinuous systems, we finally sketch an algorithm for deciding bisimulation ∼ over
a subclass of stochastic automata, this constitutes the first algorithm to compute
a bisimulation on the uncountably large semantical object.

We need to adopt two restrictions. First, we consider only deterministic SA,
where the probability that two edges become enabled at the same time is zero
(when initiated in any location). Second, to simplify the exposition, we restrict all
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Input : Probabilistic automaton (S , L,−→)
Output : A minimal bisimulation matrix E

foreach A ⊆ L do
compute PWA // non-deterministic transition matrix

E ← (1)
repeat

foreach A ⊆ L do
MW
A ← PWA E // polytope of all choices

compute E(C) from MW
A // vertices, i.e. extremal choices

foreach c ∈ E(C) do

M
W (c)
A ←MW

A with values W (c) plugged in

Enew ← columns of M
W (c)
A linearly independent of columns of E

E ← (E Enew)

until E does not change

Algorithm 1: Bisimulation on probabilistic automata

distributions occurring to exponential distributions. Notably, even for this class,
our bisimulation is strictly coarser than the one induced by standard bisimula-
tions [33,30,6] for continuous-time Markov chains. At the end of the section we
discuss possibilities for extending the class of supported distributions. Both the
restrictions can be effectively checked on SA.

Theorem 3. Let S = (Q, C,A,→, κ, F ) be a deterministic SA over exponential
distributions. There is an algorithm to decide in time polynomial in |S| and
exponential in |C| whether q1 ∼ q2 for any locations q1, q2.

The rest of the section deals with the proof. We fix S = (Q, C,A,→, κ, F ) and
q1, q2 ∈ Q. First, we straightforwardly abstract the NLMP semantics PS over
state space S = Q× RC by a NLMP P̂ over state space Ŝ = Q× (R≥0 ∪ {−})C
where all negative values of clocks are expressed by −. Let ξ denote the obvious
mapping of distributions D(S) onto D(Ŝ ). Then ξ preserves bisimulation since
two states s1, s2 that differ only in negative values satisfy ξ(τa(s1)) = ξ(τa(s2))
for all a ∈ L.

Lemma 2. For any distributions µ, ν on S we have µ ∼ ν iff ξ(µ) ∼ ξ(ν).

Second, similarly to an embedded Markov chain of a CTMC, we further
abstract the NLMP P̂ by a finite deterministic PA D̄ = (S̄,A,−→) such that
each state of D̄ is a distribution over the uncountable state space Ŝ .

– The set S̄ is the set of states reachable via the transitions relation defined be-
low from the distributions µq1 , µq2 corresponding to q1, q2 (see Definition 4).

– Let us fix a state µ ∈ S̄ (note that µ ∈ D(Ŝ )) and an action a ∈ A
such that in the NLMP P̂ an a-transition occurs with positive probabil-
ity, i.e. µ

Aa−→ ν for some ν and for Aa = {a} × R≥0. Thanks to restrict-

ing to deterministic SA, P̂ is also deterministic and such a distribution ν

11



is uniquely defined. We set (µ, a,M) ∈ −→ where M is the discrete dis-
tribution that assigns probability pq,f to state νq,f for each q ∈ Q and

f : C → {−,+} where pq,f = ν(Ŝq,f ), νq,f is the conditional distribu-

tion νq(X) := ν(X ∩ Ŝq,f )/ν(Ŝq,f ) for any measurable X ⊆ Ŝ , and Ŝq,f =

{(q′, v) ∈ Ŝ | q′ = q, v(c) ≥ 0 iff f(c) = + for each c ∈ C} the set of states
with location q and where the sign of clock values matches f .

For exponential distributions all the reachable states ν ∈ S̄ correspond to some
location q where the subset X ⊆ C is newly sampled, hence we obtain:

Lemma 3. For a deterministic SA over exponential distributions, |S̄| ≤ |Q| ·
2|C|.

Instead of a greatest fixpoint computation as employed for the discrete algo-
rithm, we take a complementary approach and prove or disprove bisimilarity by
a least fixpoint procedure. We start with the initial pair of distributions (states
in D̄) which generates further requirements that we impose on the relation and
try to satisfy them. We work with a tableau, a rooted tree where each node is
either an inner node with a pair of discrete probability distributions over states
of D̄ as a label, a repeated node with a label that already appears somewhere
between the node and the root, or a failure node denoted by �, and the children
of each inner node are obtained by one rule from {Step,Lin}. A tableau not
containing � is successful.

Step For a node µ ∼ ν where µ and ν have compatible timing, we add for
each label a ∈ L one child node µa ∼ νa where µa and νa are the unique
distributions such that µ

a−→µa and ν
a−→ νa. Otherwise, we add one failure

node. We say that µ and ν have compatible timing if for all actions a ∈ A
we have that Ta[µ] is equivalent to Ta[ν]. Here Ta[ρ] is a measure over R≥0
such that Ta[ρ](I) := ρ(Ŝ{a}×I), i.e. the measure of states moving after time
in I with action a.

Lin For a node µ ∼ ν linearly dependent on the set of remaining nodes in the
tableau, we add one child (repeat) node µ ∼ ν. Here, we understand each
node µ ∼ ν as a vector µ− ν in the |SS |-dimensional vector space.

Note that compatibility of timing is easy to check. Furthermore, the set of rules
is correct and complete w.r.t. bisimulation in P̂.

Lemma 4. There is a successful tableau from µ ∼ ν iff µ ∼ ν in P̂. Moreover,
the set of nodes of a successful tableau is a subset of a bisimulation.

We get Theorem 3 since q1 ∼ q2 iff ξ(µq1) ∼ ξ(µq2) in P̂ and since, thanks to
Lin:

Lemma 5. There is a successful tableau from µ ∼ ν iff there is a finite successful
tableau from µ ∼ ν of size polynomial in |S̄|.

Example 7. Let us demonstrate the rules by a simple example. Consider the
following stochastic automaton S on the left.

12



q u v

x := Exp(1/2)
y := Exp(1/2) x := Exp(1) x := Exp(1)

x = 0

a
a

y = 0
x = 0

a

x = 0

a µq µu µv
a

0.5

0.5 a a

Thanks to the exponential distributions, D̄ on the right has also only three
states where µq = q ⊗ Exp(1/2) ⊗ Exp(1/2) is the product of two exponential
distributions with rate 1/2, µu = u ⊗ Exp(1), and µv = v ⊗ Exp(1). Note that
for both clocks x and y, the probability of getting to zero first is 0.5.

1 · µu ∼ 1 · µv
Step

1 · µu ∼ 1 · µv

1 · µq + 0 · µu ∼ 1 · µv
1
2 · µq + 1

2 · µu ∼ 1 · µv
1
4 · µq + 3

4 · µu ∼ 1 · µv

· · ·

Step

Step

Step

The finite tableau on the left is successful since it ends in a repeated node, thus it
proves u ∼ v. The infinite tableau on the right is also successful and proves q ∼ v.
When using only the rule Step, it is necessarily infinite as no node ever repeats.
The rule Lin provides the means to truncate such infinite sequences. Observe
that the third node in the tableau on the right above is linearly dependent on
its ancestors.

Remark 1. Our approach can be turned into a complete proof system for bisim-
ulation on models with expolynomial distributions (5). For them, the states of
the discrete transition system D̄ can be expressed symbolically. In fact, we con-
jecture that the resulting semi-algorithm can be twisted to a decision algorithm
for this expressive class of models. This is however out of the scope of this paper.

5 Related work and discussion

For an overview of coalgebraic work on probabilistic bisimulations we refer
to a survey [47]. A considerable effort has been spent to extend this work to
continuous-space systems: the solution of [15] (unfortunately not applicable to
R), the construction of [21] (described by [42] as “ingenious and intricate”), so-
phisticated measurable selection techniques in [18], and further approaches of
[17] or [52]. In contrast to this standard setting where relations between states
and their successor distributions must be handled, our work uses directly rela-
tions on distributions which simplifies the setting. The coalgebraic approach has
also been applied to trace semantics of uncountable systems [35]. The topic is
still very lively, e.g. in the recent [41] a different coalgebraic description of the
classical probabilistic bisimulation is given.

Recently, distribution-based bisimulations have been studied. In [19], a bisim-
ulation is defined in the context of language equivalence of Rabin’s deterministic

(5) With density that is positive on an interval [`, u) for ` ∈ N0, u ∈ N ∪ {∞} given
piecewise by expressions of the form

∑I
i=0

∑J
j=0 aijx

ie−λijx for aij , λij ∈ R ∪ {∞}.
This class contains many important distributions such as exponential, or uniform,
and enables efficient approximation of others.
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probabilistic automata and also an algorithm to compute the bisimulation on
them. However, only finite systems with no non-determinism are considered.
The most related to our notion are the very recent independently developed
[24] and [49]. However, none of them is applicable in the continuous setting and
for neither of the two any algorithm has previously been given. Nevertheless,
since they are close to our definition, our algorithm with only small changes can
actually compute them. Although the bisimulation of [24] in a rather complex
way extends [19] to the non-deterministic case reusing their notions, it can be
equivalently rephrased as our Definition 2 only considering singleton sets A ⊆ L.
Therefore, it is sufficient to only consider matrices PWA for singletons A in our
algorithm. Apart from being a weak relation, the bisimulation of [49] differs in
the definition of µ

A−→ν: instead of restricting to the states of the support that
can perform some action of A, it considers those states that can perform exactly
actions of A. Here each ith row of each transition matrix PWA needs to be set to
zero if the set of labels from si is different from A.

There are also bisimulation relations over distributions defined over finite
[9,29] or uncountable [8] state spaces. They, however, coincide with the clas-
sical [38] on Dirac distributions and are only directly lifted to non-Dirac dis-
tributions. Thus they fail to address the motivating correspondence problem
from Section 1. Moreover, no algorithms were given. Further, weak bisimula-
tions [23,22,16] (coarser than usual state based analogues) applied to models
without internal transitions also coincide with lifting [29] of the classical bisim-
ulation [38] while our bisimulation is coarser.

There are other bisimulations that identify more states than the classical [38]
such as [48] and [4] designed to match a specific logic. Another approach to obtain
coarser equivalences on probabilistic automata is via testing scenarios [50].

6 Conclusion

We have introduced a general and natural notion of a distribution-based prob-
abilistic bisimulation, have shown its applications in different settings and have
provide algorithms to compute it for finite and some classes of infinite systems.
As to future work, the precise complexity of the finite case is certainly of interest.
Further, the tableaux decision method opens the arena for investigating wider
classes of continuous-time systems where the new bisimulation is decidable.
Acknowledgement We would like to thank Pedro D’Argenio, Filippo Bonchi,
Daniel Gebler, and Matteo Mio for valuable feedback and discussions.
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Abstract. We present a general framework for applying machine-learning algo-
rithms to the verification of Markov decision processes (MDPs). The primary
goal of these techniques is to improve performance by avoiding an exhaustive ex-
ploration of the state space. Our framework focuses on probabilistic reachability,
which is a core property for verification, and is illustrated through two distinct
instantiations. The first assumes that full knowledge of the MDP is available,
and performs a heuristic-driven partial exploration of the model, yielding pre-
cise lower and upper bounds on the required probability. The second tackles the
case where we may only sample the MDP, and yields probabilistic guarantees,
again in terms of both the lower and upper bounds, which provides efficient stop-
ping criteria for the approximation. The latter is the first extension of statistical
model checking for unbounded properties in MDPs. In contrast with other related
techniques, our approach is not restricted to time-bounded (finite-horizon) or dis-
counted properties, nor does it assume any particular properties of the MDP. We
also show how our methods extend to LTL objectives. We present experimental
results showing the performance of our framework on several examples.

1 Introduction

Markov decision processes (MDPs) are a widely used model for the formal verification
of systems that exhibit stochastic behaviour. This may arise due to the possibility of
failures (e.g. of physical system components), unpredictable events (e.g. messages sent
across a lossy medium), or uncertainty about the environment (e.g. unreliable sensors in
a robot). It may also stem from the explicit use of randomisation, such as probabilistic
routing in gossip protocols or random back-off in wireless communication protocols.

Verification of MDPs against temporal logics such as PCTL and LTL typically re-
duces to the computation of optimal (minimum or maximum) reachability probabilities,
either on the MDP itself or its product with some deterministic ω-automaton. Optimal
reachability probabilities (and a corresponding optimal strategy for the MDP) can be
computed in polynomial time through a reduction to linear programming, although in
? This research was funded in part by the European Research Council (ERC) under grant
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practice verification tools often use dynamic programming techniques, such as value it-
eration which approximates the values up to some pre-specified convergence criterion.

The efficiency or feasibility of verification is often limited by excessive time or
space requirements, caused by the need to store a full model in memory. Common ap-
proaches to tackling this include: symbolic model checking, which uses efficient data
structures to construct and manipulate a compact representation of the model; abstrac-
tion refinement, which constructs a sequence of increasingly precise approximations,
bypassing construction of the full model using decision procedures such as SAT or
SMT; and statistical model checking [37,19], which uses Monte Carlo simulation to
generate approximate results of verification that hold with high probability.

In this paper, we explore the opportunities offered by learning-based methods, as
used in fields such as planning or reinforcement learning [36]. In particular, we focus on
algorithms that explore an MDP by generating trajectories through it and, whilst doing
so, produce increasingly precise approximations for some property of interest (in this
case, reachability probabilities). The approximate values, along with other information,
are used as heuristics to guide the model exploration so as to minimise the solution time
and the portion of the model that needs to be considered.

We present a general framework for applying such algorithms to the verification
of MDPs. Then, we consider two distinct instantiations that operate under different as-
sumptions concerning the availability of knowledge about the MDP, and produce differ-
ent classes of results. We distinguish between complete information, where full knowl-
edge of the MDP is available (but not necessarily generated and stored), and limited
information, where (in simple terms) we can only sample trajectories of the MDP.

The first algorithm assumes complete information and is based on real-time dy-
namic programming (RTDP) [3]. In its basic form, this only generates approximations
in the form of lower bounds (on maximum reachability probabilities). While this may
suffice in some scenarios (e.g. planning), in the context of verification we typically re-
quire more precise guarantees. So we consider bounded RTDP (BRTDP) [30], which
supplements this with an additional upper bound. The second algorithm assumes lim-
ited information and is based on delayed Q-learning (DQL) [35]. Again, we produce
both lower and upper bounds but, in contrast to BRTDP, where these are guaranteed
to be correct, DQL offers probably approximately correct (PAC) results, i.e., there is a
non-zero probability that the bounds are incorrect.

Typically, MDP solution methods based on learning or heuristics make assumptions
about the structure of the model. For example, the presence of end components [15]
(subsets of states where it is possible to remain indefinitely with probability 1) can result
in convergence to incorrect values. Our techniques are applicable to arbitrary MDPs.
We first handle the case of MDPs that contain no end components (except for trivial
designated goal or sink states). Then, we adapt this to the general case by means of on-
the-fly detection of end components, which is one of the main technical contributions
of the paper. We also show how our techniques extend to LTL objectives and thus also
to minimum reachability probabilities.

Our DQL-based method, which yields PAC results, can be seen as an instance of
statistical model checking [37,19], a technique that has received considerable attention.
Until recently, most work in this area focused on purely probabilistic models, without
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nondeterminism, but several approaches have now been presented for statistical model
checking of nondeterministic models [13,14,27,4,28,18,29]. However, these methods
all consider either time-bounded properties or use discounting to ensure convergence
(see below for a summary). The techniques in this paper are the first for statistical
model checking of unbounded properties on MDPs.

We have implemented our framework within the PRISM tool [25]. This paper con-
cludes with experimental results for an implementation of our BRTDP-based approach
that demonstrate considerable speed-ups over the fastest methods in PRISM.

Detailed proofs omitted due to lack of space are available in [7].

1.1 Related Work

In fields such as planning and artificial intelligence, many learning-based and heuristic-
driven solution methods for MDPs have been developed. In the complete information
setting, examples include RTDP [3] and BRTDP [30], as discussed above, which gen-
erate lower and lower/upper bounds on values, respectively. Most algorithms make
certain assumptions in order to ensure convergence, for example through the use of
a discount factor or by restricting to so-called Stochastic Shortest Path (SSP) problems,
whereas we target arbitrary MDPs without discounting. More recently, an approach
called FRET [24] was proposed for a generalisation of SSP, but this gives only a one-
sided (lower) bound. We are not aware of any attempts to apply or adapt such methods
in the context of probabilistic verification. A related paper is [1], which applies heuristic
search methods to MDPs, but for generating probabilistic counterexamples.

As mentioned above, in the limited information setting, our algorithm based on
delayed Q-learning (DQL) yields PAC results, similar to those obtained from statis-
tical model checking [37,19,34]. This is an active area of research with a variety of
tools [21,8,6,5]. In contrast with our work, most techniques focus on time-bounded
properties, e.g., using bounded LTL, rather than unbounded properties. Several ap-
proaches have been proposed to transform checking of unbounded properties into test-
ing of bounded properties, for example, [38,17,33,32]. However, these focus on purely
probabilistic models, without nondeterminism, and do not apply to MDPs. In [4], un-
bounded properties are analysed for MDPs with spurious nondeterminism, where the
way it is resolved does not affect the desired property.

More generally, the development of statistical model checking techniques for prob-
abilistic models with nondeterminism, such as MDPs, is an important topic, treated in
several recent papers. One approach is to give the nondeterminism a probabilistic se-
mantics, e.g., using a uniform distribution instead, as for timed automata in [13,14,27].
Others [28,18], like this paper, aim to quantify over all strategies and produce an ε-
optimal strategy. The work in [28] and [18] deals with the problem in the setting of
discounted (and for the purposes of approximation thus bounded) or bounded proper-
ties, respectively. In the latter work, candidates for optimal schedulers are generated and
gradually improved, but “at any given point we cannot quantify how close to optimal
the candidate scheduler is” and “the algorithm does not estimate the maximum proba-
bility of the property” (cited from [29]). Further, [29] considers compact representation
of schedulers, but again focuses only on (time) bounded properties.

Since statistical model checking is simulation-based, one of the most important dif-
ficulties is the analysis of rare events. This issue is, of course, also relevant for our
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approach; see the section on experimental results. Rare events have been addressed us-
ing methods such as importance sampling [17,20] and importance splitting [22].

End components in MDPs can be collapsed either for algorithmic correctness [15]
or efficiency [11] (where only lower bounds on maximum reachability probabilities are
considered). Asymptotically efficient ways to detect them are given in [10,9].

2 Basics about MDPs and Learning Algorithms

We begin with basic background material on MDPs and some fundamental definitions
for our learning framework. We use N, Q, and R to denote the sets of all non-negative
integers, rational numbers and real numbers respectively. Dist(X) is the set of all
rational probability distributions over a finite or countable set X , i.e., the functions
f : X → [0, 1] ∩Q such that

∑
x∈X f(x) = 1, and supp(f) denotes the support of f .

2.1 Markov Decision Processes

We work with Markov decision processes (MDPs), a widely used model to capture both
nondeterminism (e.g., for control or concurrency) and probability.

Definition 1. An MDP is a tuple M = 〈S, s,A,E,∆〉, where S is a finite set of states,
s ∈ S is an initial state, A is a finite set of actions, E : S → 2A assigns non-empty sets
of enabled actions to all states, and ∆ : S×A → Dist(S) is a (partial) probabilistic
transition function defined for all s and a where a ∈ E(s).

Remark 1. For simplicity of presentation we assume w.l.o.g. that, for every action a ∈
A, there is at most one state s such that a ∈ E(s), i.e., E(s) ∩ E(s′) = ∅ for s 6= s′. If
there are states s, s′ such that a ∈ E(s) ∩ E(s′), we can always rename the actions as
(s, a) ∈ E(s), and (s′, a) ∈ E(s′), so that the MDP satisfies our assumption.

An infinite path of an MDP M is an infinite sequence ω = s0a0s1a1 . . . such that
ai ∈ E(si) and ∆(si, ai)(si+1) > 0 for every i ∈ N. A finite path is a finite prefix of
an infinite path ending in a state. We use last(ω) to denote the last state of a finite path
ω. We denote by IPath (resp. FPath) the set of all infinite (resp. finite) paths, and by
IPaths (resp. FPaths) the set of infinite (resp. finite) paths starting in a state s.

A state s is terminal if all actions a ∈ E(s) satisfy ∆(s, a)(s) = 1. An end compo-
nent (EC) of M is a pair (S′, A′) where S′ ⊆ S and A′ ⊆

⋃
s∈S′ E(s) such that: (1) if

∆(s, a)(s′) > 0 for some s ∈ S′ and a ∈ A′, then s′ ∈ S′; and (2) for all s, s′ ∈ S′
there is a path ω = s0a0 . . . sn such that s0 = s, sn = s′ and for all 0 ≤ i < n we
have ai ∈ A′. A maximal end component (MEC) is an EC that is maximal with respect
to the point-wise subset ordering.

Strategies. A strategy of MDP M is a function σ : FPath → Dist(A) satisfying
supp(σ(ω)) ⊆ E(last(ω)) for every ω ∈ FPath . Intuitively, the strategy resolves the
choices of actions in each finite path by choosing (possibly at random) an action enabled
in the last state of the path. We write ΣM for the set of all strategies in M. In standard
fashion [23], a strategy σ induces, for any initial state s, a probability measure PrσM,s
over IPaths. A strategy σ is memoryless if σ(ω) depends only on last(ω).
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Objectives and values. Given a set F ⊆ S of target states, bounded reachability for
step k, denoted by ♦≤kF , refers to the set of all infinite paths that reach a state in
F within k steps, and unbounded reachability, denoted by ♦F , refers to the set of all
infinite paths that reach a state in F . Note that ♦F =

⋃
k≥0 ♦

≤kF . We consider the
reachability probability PrσM,s(♦F ), and strategies that maximise this probability. We
denote by V (s) the value in s, defined by supσ∈ΣM

PrσM,s(♦F ). Given ε ≥ 0, we
say that a strategy σ is ε-optimal in s if PrσM,s(♦F ) + ε ≥ V (s), and we call a 0-
optimal strategy optimal. It is known [31] that, for every MDP and set F , there is a
memoryless optimal strategy for ♦F . We are interested in strategies that approximate
the value function, i.e., ε-optimal strategies for some ε > 0.

2.2 Learning Algorithms for MDPs

In this paper, we study a class of learning-based algorithms that stochastically ap-
proximate the value function of an MDP. Let us fix, for this section, an MDP M =
〈S, s,A,E,∆〉 and target states F ⊆ S. We denote by V : S × A → [0, 1] the value
function for state-action pairs of M, defined for all (s, a) where s ∈ S and a ∈ E(s):

V (s, a) :=
∑

s′∈S
∆(s, a)(s′) · V (s′).

Intuitively, V (s, a) is the value in s assuming that the first action performed is a. A
learning algorithm A simulates executions of M, and iteratively updates upper and
lower approximations U : S × A→ [0, 1] and L : S × A→ [0, 1], respectively, of the
value function V : S ×A→ [0, 1].

The functions U and L are initialised to appropriate values so that L(s, a) ≤
V (s, a) ≤ U(s, a) for all s ∈ S and a ∈ A. During the computation of A, simulated
executions start in the initial state s and move from state to state according to choices
made by the algorithm. The values of U(s, a) and L(s, a) are updated for the states
s visited by the simulated execution. Since maxa∈E(s) U(s, a) and maxa∈E(s) L(s, a)
represent upper and lower bound on V (s), a learning algorithm A terminates when
maxa∈E(s) U(s, a) − maxa∈E(s) L(s, a) < ε where the precision ε > 0 is given to
the algorithm as an argument. Note that, because U and L are possibly updated based
on the simulations, the computation of the learning algorithm may be randomised and
even give incorrect results with some probability.

Definition 2. Denote by A(ε) the instance of learning algorithm A with precision ε.
We say thatA converges surely (resp. almost surely) if, for every ε > 0, the computation
ofA(ε) surely (resp. almost surely) terminates, and L(s, a) ≤ V (s, a) ≤ U(s, a) holds
upon termination.

In some cases, almost-sure convergence cannot be guaranteed, so we demand that the
computation terminates correctly with sufficiently high probability. In such cases, we
assume the algorithm is also given a confidence δ > 0 as an argument.

Definition 3. Denote by A(ε, δ) the instance of learning algorithm A with precision ε
and confidence δ. We say that A is probably approximately correct (PAC) if, for every
ε > 0 and every δ > 0, with probability at least 1 − δ, the computation of A(ε, δ)
terminates with L(s, a) ≤ V (s, a) ≤ U(s, a).
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The function U defines a memoryless strategy σU which in every state s chooses all
actions a maximising the value U(s, a) over E(s) uniformly at random. The strategy
σU is used in some of the algorithms and also contributes to the output.

Remark 2. If the value function is defined as the infimum over strategies (as in [30]),
then the strategy chooses actions to minimise the lower value. Since we consider the
dual case of supremum over strategies, the choice of σU is to maximise the upper value.

We also need to specify what knowledge about the MDP M is available to the learn-
ing algorithm. We distinguish the following two distinct cases.

Definition 4. A learning algorithm has limited information about M if it knows only
the initial state s, a number K ≥ |S|, a number Em ≥ maxs∈S |E(s)|, a number 0 <
q ≤ pmin, where pmin = min{∆(s, a)(s′) | s ∈ S, a ∈ E(s), s′ ∈ supp(∆(s, a))},
and the function E (more precisely, given a state s, the learning procedure can ask an
oracle forE(s)). We assume that the algorithm may simulate an execution of M starting
with s and choosing enabled actions in individual steps.

Definition 5. A learning algorithm has complete information about M if it knows the
complete MDP M.

Note that the MDPs we consider are “fully observable”, so even in the limited informa-
tion case strategies can make decisions based on the precise state of the system.

3 MDPs without End Components

We first present algorithms for MDPs without ECs, which considerably simplifies the
adaptation of BRTDP and DQL to unbounded reachability objectives. Later, in Sec-
tion 4, we extend our methods to deal with arbitrary MDPs (with ECs). Let us fix an
MDP M = 〈S, s,A,E,∆〉 and a target set F . Formally, we assume the following.

Assumption-EC. MDP M has no ECs, except two trivial ones containing distinguished
terminal states 1 and 0, respectively, with F = {1}, V (1) = 1 and V (0) = 0.

3.1 Our framework

We start by formalising a general framework for learning algorithms, as outlined in the
previous section. We then instantiate this and obtain two learning algorithms: BRTDP
and DQL. Our framework is presented as Algorithm 1, and works as follows. Recall that
functions U and L store the current upper and lower bounds on the value function V .
Each iteration of the outer loop is divided into two phases: EXPLORE and UPDATE. In
the EXPLORE phase (lines 5 - 10), the algorithm samples a finite path ω in M from s to a
state in {1, 0} by always randomly choosing one of the enabled actions that maximises
the U value, and sampling the successor state using the probabilistic transition function.
In the UPDATE phase (lines 11 - 16), the algorithm updates U and L on the state-action
pairs along the path in a backward manner. Here, the function pop pops and returns the
last letter of the given sequence.
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Algorithm 1 Learning algorithm (for MDPs with no ECs)
1: Inputs: An EC-free MDP M
2: U(·, ·)← 1, L(·, ·)← 0
3: L(1, ·)← 1, U(0, ·)← 0 . INITIALISE

4: repeat
5: ω ← s /* EXPLORE phase */
6: repeat
7: a← sampled uniformly from arg maxa∈E(last(ω)) U(last(ω), a)
8: s← sampled according to ∆(last(ω), a) . GETSUCC(ω, a)
9: ω ← ω a s

10: until s ∈ {1, 0} . TERMINATEPATH(ω)
11: repeat /* UPDATE phase */
12: s′ ← pop(ω)
13: a← pop(ω)
14: s← last(ω)
15: UPDATE((s, a), s′)
16: until ω = s
17: until maxa∈E(s) U(s, a)−maxa∈E(s) L(s, a) < ε . TERMINATE

3.2 Instantiations: BRTDP and DQL

Our two algorithm instantiations, BRTDP and DQL, differ in the definition of UPDATE.

Unbounded reachability with BRTDP. We obtain BRTDP by instantiating UPDATE
with Algorithm 2, which requires complete information about the MDP. Intuitively,
UPDATE computes new values of U(s, a) and L(s, a) by taking the weighted average
of the corresponding U and L values, respectively, over all successors of s via action a.
Formally, denote U(s) = maxa∈E(s) U(s, a) and L(s) = maxa∈E(s) L(s, a).

Algorithm 2 BRTDP instantiation of Algorithm 1
1: procedure UPDATE((s, a), ·)
2: U(s, a) :=

∑
s′∈S ∆(s, a)(s′)U(s′)

3: L(s, a) :=
∑

s′∈S ∆(s, a)(s′)L(s′)

The following theorem says that BRTDP satisfies the conditions of Definition 2 and
never returns incorrect results.

Theorem 1. The algorithm BRTDP converges almost surely under Assumption-EC.

Remark 3. Note that, in the EXPLORE phase, an action maximising the value of U is
chosen and the successor is sampled according to the probabilistic transition function
of M. However, we can consider various modifications. Actions and successors may
be chosen in different ways (e.g., for GETSUCC), for instance, uniformly at random,
in a round-robin fashion, or assigning various probabilities (bounded from below by
some fixed p > 0) to all possibilities in any biased way. In order to guarantee almost-
sure convergence, some conditions have to be satisfied. Intuitively we require, that the
state-action pairs used by ε-optimal strategies have to be chosen enough times. If this
condition is satisfied then the almost-sure convergence is preserved and the practical
running times may significantly improve. For details, see Section 5.
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Remark 4. The previous BRTDP algorithm is only applicable if the transition proba-
bilities are known. However, if complete information is not known, but ∆(s, a) can
be repeatedly sampled for any s and a, then a variant of BRTDP can be shown to be
probably approximately correct.

Unbounded reachability with DQL. Often, complete information about the MDP is
unavailable, repeated sampling is not possible, and we have to deal with only limited
information about M (see Definition 4). For this scenario, we use DQL, which can be
obtained by instantiating UPDATE with Algorithm 3.

Algorithm 3 DQL (delay m, estimator precision ε̄) instantiation of Algorithm 1
1: procedure UPDATE((s, a), s′)
2: if c(s, a) = m and LEARN(s, a) then
3: if accumU

m(s, a)/m < U(s, a)− 2ε̄ then
4: U(s, a)← accumU

m(s, a)/m+ ε̄
5: accumU

m(s, a) = 0

6: if accumL
m(s, a)/m > L(s, a) + 2ε̄ then

7: L(s, a)← accumL
m(s, a)/m− ε̄

8: accumL
m(s, a) = 0

9: c(s, a) = 0
10: else
11: accumU

m(s, a)← accumU
m(s, a) + U(s′)

12: accumL
m(s, a)← accumL

m(s, a) + L(s′)
13: c(s, a)← c(s, a) + 1

Macro LEARN(s, a) is true in the kth call of UPDATE((s, a), ·) if, since the (k − 2m)th call
of UPDATE((s, a), ·), line 4 was not executed in any call of UPDATE(·, ·).

The main idea behind DQL is as follows. As the probabilistic transition func-
tion is not known, we cannot update U(s, a) and L(s, a) with the actual values∑
s′∈S ∆(s, a)(s′)U(s′) and

∑
s′∈S ∆(s, a)(s′)L(s′), respectively. However, we can

instead use simulations executed in the EXPLORE phase of Algorithm 1 to estimate
these values. Namely, we use accumU

m(s, a)/m to estimate
∑
s′∈S ∆(s, a)(s′)U(s′)

where accumU
m(s, a) is the sum of the U values of the last m immediate successors

of (s, a) seen during the EXPLORE phase. Note that the delay m must be chosen large
enough for the estimates to be sufficiently close, i.e., ε̄-close, to the real values.

So, in addition to U(s, a) and L(s, a), the algorithm uses new variables
accumU

m(s, a) and accumL
m(s, a) to accumulate U(s, a) and L(s, a) values, respec-

tively, and a counter c(s, a) recording the number of invocations of a in s since the
last update (all these variables are initialised to 0 at the beginning of computation).
Assume that a has been invoked in s during the EXPLORE phase of Algorithm 1,
which means that UPDATE((s, a), s′) is eventually called in the UPDATE phase of Al-
gorithm 1 with the corresponding successor s′ of (s, a). If c(s, a) = m at that time,
a has been invoked in s precisely m times since the last update concerning (s, a) and
the procedure UPDATE((s, a), s′) updates U(s, a) with accumU

m(s, a)/m plus an ap-
propriate constant ε̄ (unless LEARN is false). Here, the purpose of adding ε̄ is to make
U(s, a) stay above the real value V (s, a) with high probability. If c(s, a) < m, then
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Fig. 1. MDP M with an EC (left), MDP M{m1,m2} constructed from M in on-the-fly BRTDP
(centre), and MDP M′ obtained from M by collapsing C = ({m1,m2}, {a, b}) (right).

UPDATE((s, a), s′) simply accumulates U(s′) into accumU
m(s, a) and increases the

counter c(s, a). The L(s, a) values are estimated by accumL
m(s, a)/m in a similar way,

just subtracting ε̄ from accumL
m(s, a). The procedure requires m and ε̄ as inputs, and

they are chosen depending on ε and δ; more precisely, we choose ε̄ = ε·(pmin/Em)|S|

12|S|

and m =
ln(6|S||A|(1+

|S||A|
ε̄ )/δ)

2ε̄2 and establish that DQL is probably approximately cor-
rect. The parametersm and ε̄ can be conservatively approximated using only the limited
information about the MDP (i.e. using K, Em and q). Even though the algorithm has
limited information about M, we still establish the following theorem.

Theorem 2. DQL is probably approximately correct under Assumption-EC.

Bounded reachability. Algorithm 1 can be trivially adapted to handle bounded reach-
ability properties by preprocessing the input MDP in standard fashion. Namely, every
state is equipped with a bounded counter with values ranging from 0 to k where k is the
step bound, the current value denoting the number of steps taken so far. All target states
remain targets for all counter values, and every non-target state with counter value k
becomes rejecting. Then, to determine the k-step reachability in the original MDP, we
compute the (unbounded) reachability in the new MDP. Although this means that the
number of states is multiplied by k + 1, in practice the size of the explored part of the
model can be small.

4 Unrestricted MDPs

We first illustrate with an example that the algorithms BRTDP and DQL as presented
in Section 3 may not converge when there are ECs in the MDP.

Example 1. Consider the MDP M in Fig. 1 (left) with EC ({m1,m2}, {a, b}). The
values in statesm1,m2 are V (m1) = V (m2) = 0.5 but the upper bounds are U(m1) =
U(m2) = 1 for every iteration. This is because U(m1, a) = U(m2, b) = 1 and both
algorithms greedily choose the action with the highest upper bound. Thus, in every
iteration t of the algorithm, the error for the initial state m1 is U(m1) − V (m1) = 1

2
and the algorithm does not converge. In general, any state in an EC has upper bound 1
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since, by definition, there are actions that guarantee the next state is in the EC, i.e., is
a state with upper bound 1. This argument holds even for standard value iteration with
values initialised to 1.

One way of dealing with general MDPs is to preprocess them to identify all
MECs [10,9] and “collapse” them into single states (see e.g. [15,11]). These algorithms
require that the graph model is known and explore the whole state space, but this may
not be possible either due to limited information (see Definition 4) or because the model
is too large. Hence, we propose a modification to the algorithms from the previous sec-
tions that allows us to deal with ECs “on-the-fly”. We first describe the collapsing of a
set of states and then present a crucial lemma that allows us to identify ECs to collapse.

Collapsing states. In the following, we say that an MDP M′ = 〈S′, s′, A′, E′, ∆′〉 is
obtained from M = 〈S, s,A,E,∆〉 by collapsing a tuple (R,B), where R ⊆ S and
B ⊆ A with B ⊆

⋃
s∈RE(s) if:

– S′ = (S \R) ∪ {s(R,B)},
– s′ is either s(R,B) or s, depending on whether s ∈ R or not,
– A′ = A \B,
– E′(s) = E(s), for s ∈ S \R; E′(s(R,B)) =

⋃
s∈RE(s) \B,

– ∆′ is defined for all s ∈ S′ and a ∈ E′(s) by:
• ∆′(s, a)(s′) = ∆(s, a)(s′) for s, s′ 6= s(R,B),
• ∆′(s, a)(s(R,B)) =

∑
s′∈R∆(s, a)(s′) for s 6= s(R,B),

• ∆′(s(R,B), a)(s′) = ∆(s, a)(s′) for s′ 6= s(R,B) and s the unique state with
a ∈ E(s) (see Remark 1),

• ∆′(s(R,B), a)(s(R,B)) =
∑
s′∈R∆(s, a)(s′) where s is the unique state with

a∈E(s).
We denote the above transformation, which creates M′ from M, as the COLLAPSE func-
tion, i.e., COLLAPSE(R,B). As a special case, given a state s and a terminal state s′ ∈
{0, 1}, we use MAKETERMINAL(s, s′) as shorthand for COLLAPSE({s, s′}, E(s)),
where the new state is renamed to s′. Intuitively, after MAKETERMINAL(s, s′), every
transition previously leading to state s will now lead to the terminal state s′.

For practical purposes, it is important to note that the collapsing does not need to
be implemented explicitly, but can be done by keeping a separate data structure which
stores information about the collapsed states.

Identifying ECs from simulations. Our modifications will identify ECs “on-the-fly”
through simulations that get stuck in them. The next lemma establishes the identification
principle. To this end, for a path ω, let us denote by Appear(ω, i) the tuple (Si, Ai) of
M such that s ∈ Si and a ∈ Ai(s) if and only if (s, a) occurs in ω more than i times.

Lemma 1. Let c = exp (− (pmin/Em)
κ
/ κ), where κ = KEm + 1, and let i ≥

κ. Assume that the EXPLORE phase in Algorithm 1 terminates with probability less
than 1. Then, provided the EXPLORE phase does not terminate within 3i3 iterations, the
conditional probability that Appear(ω, i) is an EC is at least 1− 2cii3 · (pmin/Em)

−κ.

The above lemma allows us to modify the EXPLORE phase of Algorithm 1 in such
a way that simulations will be used to identify ECs. The ECs discovered will subse-
quently be collapsed. We first present the overall skeleton (Algorithm 4) for treating
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ECs “on-the-fly”, which consists of two parts: (i) identification of ECs; and (ii) pro-
cessing them. The instantiations for BRTDP and DQL will differ in the identification
phase. Hence, before proceeding to the individual identification algorithms, we first
establish the correctness of the processing phase.

Algorithm 4 Extension for general MDPs
1: function ON-THE-FLY-EC
2: M← IDENTIFYECS . IDENTIFICATION OF ECS

3: for all (R,B) ∈M do . PROCESS ECS

4: COLLAPSE(R,B)
5: for all s ∈ R and a ∈ E(s) \B do
6: U(s(R,B), a)← U(s, a)
7: L(s(R,B), a)← L(s, a)

8: if R ∩ F 6= ∅ then
9: MAKETERMINAL(s(R,B), 1)

10: else if no actions enabled in s(R,B) then
11: MAKETERMINAL(s(R,B), 0)

Lemma 2. Assume (R,B) is an EC in MDP M, VM the value before the PROCESS ECS
procedure in Algorithm 4, and VM′ the value after the procedure, then:

– for i ∈ {0, 1} if MAKETERMINAL(s(R,B), i) is called, then ∀s ∈ R : VM(s) = i,
– ∀s ∈ S \R : VM(s) = VM′(s),
– ∀s ∈ R : VM(s) = VM′(s(R,B)).

Interpretation of collapsing. Intuitively, once an EC (R,B) is collapsed, the algorithm
in the EXPLORE phase can choose a state s ∈ R and action a ∈ E(s) \ B to leave
the EC. This is simulated in the EXPLORE phase by considering all actions of the EC
uniformly at random until s is reached, and then action a is chosen. Since (R,B) is an
EC, playing all actions of B uniformly at random ensures s is almost surely reached.
Note that the steps made inside a collapsed EC do not count towards the length of the
explored path.

Now, we present the on-the-fly versions of BRTDP and DQL. For each case, we de-
scribe: (i) modification of Algorithm 1; (ii) identification of ECs; and (iii) correctness.

4.1 Complete information (BRTDP)

Modification of Algorithm 1. To obtain BRTDP working with unrestricted MDPs, we
modify Algorithm 1 as follows: for iteration i of the EXPLORE phase, we insert a check
after line 9 such that, if the length of the path ω explored (i.e., the number of states) is ki
(see below), then we invoke the ON-THE-FLY-EC function for BRTDP. The ON-THE-
FLY-EC function possibly modifies the MDP by processing (collapsing) some ECs as
described in Algorithm 4. After the ON-THE-FLY-EC function terminates, we interrupt
the current EXPLORE phase, and start the EXPLORE phase for the i+1-th iteration (i.e.,
generating a new path again, starting from s in the modified MDP). To complete the
description we describe the choice of ki and identification of ECs.
Choice of ki. Because computing ECs can be expensive, we do not call ON-THE-FLY-
EC every time a new state is explored, but only after every ki steps of the repeat-until
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loop at lines 6–10 in iteration i. The specific value of ki can be decided experimentally
and change as the computation progresses. A theoretical bound for ki to ensure that
there is an EC with high probability can be obtained from Lemma 1.

Identification of ECs. Given the current explored path ω, let (T,G) be Appear(ω, 0),
that is, the set of states and actions explored in ω. To obtain the ECs from the set
T of explored states, we use Algorithm 5. This computes an auxiliary MDP MT =
〈T ′, s, A′, E′, ∆′〉 defined as follows:

– T ′ = T ∪ {t | ∃s ∈ T, a ∈ E(s) such that ∆(s, a)(t) > 0},
– A′ =

⋃
s∈T E(s) ∪ {⊥},

– E′(s) = E(s) if s ∈ T and E′(s) = {⊥} otherwise,
– ∆′(s, a) = ∆(s, a) if s ∈ T , and ∆′(s,⊥)(s) = 1 otherwise.

It then computes all MECs of MT that are contained in T and identifies them as ECs.
The following lemma states that each of these is indeed an EC in the original MDP.

Algorithm 5 Identification of ECs for BRTDP
1: function IDENTIFYECS(M, T )
2: compute MT

3: M′ ← MECs of MT

4: M← {(R,B) ∈M′ | R ⊆ T}

Lemma 3. Let M,MT be the MDPs from the construction above and T be the set of
explored states. Then every MEC (R,B) in MT such that R ⊆ T is an EC in M.

Finally, we establish that the modified algorithm, which we refer to as on-the-fly
BRTDP, almost surely converges; the proof is an extension of Theorem 1.

Theorem 3. On-the-fly BRTDP converges almost surely for all MDPs.

Example 2. Let us describe the execution of the on-the-fly BRTDP on the MDP M
from Fig. 1 (left). Choose ki ≥ 6 for all i. The loop at lines 6 to 10 of Algorithm 1
generates a path ω that contains some (possibly zero) number of loops m1 am2b fol-
lowed by m1 am2 cm3 d t where t ∈ {0, 1}. In the subsequent UPDATE phase, we
set U(m3, d) = L(m3, d) = 0.5 and then U(m2, c) = L(m2, c) = 0.5; none of
the other values change. In the second iteration of the loop at lines 6 to 10, the path
ω′ = m1 am2 bm1 am2 b . . . is being generated, and the newly inserted check for
ON-THE-FLY-EC will be triggered once ω achieves the length ki.

The algorithm now aims to identify ECs in the MDP based on the part of the MDP
explored so far. To do so, the MDP MT for the set T = {m1,m2} is constructed
and we depict it in Fig. 1 (centre). We then run MEC detection on MT , finding that
({m1,m2}, {a, b}) is an EC, and so it gets collapsed according to the COLLAPSE pro-
cedure. This gives the MDP M′ from Fig. 1 (right).

The execution then continues with M′. A new path is generated at lines 6 to 10
of Algorithm 1; suppose it is ω′′ = sCcm3d0. In the UPDATE phase we then update
the value U(sC , d) = L(sC , d) = 0.5, which makes the condition at the last line of
Algorithm 1 satisfied, and the algorithm finishes, having computed the correct value.
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4.2 Limited information (DQL)

Modification of Algorithm 1 and identification of ECs. The modification of Algo-
rithm 1 is done exactly as for the modification of BRDTP (i.e., we insert a check after
line 9 of EXPLORE, which invokes the ON-THE-FLY-EC function if the length of path
ω exceeds ki). In iteration i, we set ki as 3`3i , for some `i (to be described later). The
identification of the EC is as follows: we consider Appear(ω, `i), the set of states and
actions that have appeared more than `i times in the explored path ω, which is of length
3`3i , and identify the set as an EC; i.e.,M in line 2 of Algorithm 4 is defined as the set
containing the single tuple Appear(ω, `i). We refer to the algorithm as on-the-fly DQL.
Choice of `i and correctness. The choice of `i is as follows. Note that, in iteration i,
the error probability, obtained from Lemma 1, is at most 2c`i`3i · (pmin/Em)

−κ and we
choose `i such that 2c`i`3i · (pmin/Em)

−κ ≤ δ/2
2i , where δ is the confidence. Note that,

since c < 1, we have that c`i decreases exponentially, and hence for every i such `i
exists. It follows that the total error of the algorithm due to the on-the-fly EC collapsing
is at most δ/2. It follows from the proof of Theorem 2 that for on-the-fly DQL the
error is at most δ if we use the same ε̄ as for DQL, but now with DQL confidence δ/4,

i.e., with m =
ln(24|S||A|(1+

|S||A|
ε̄ )/δ)

2ε̄2 . As before, these numbers can be conservatively
approximated using the limited information.

Theorem 4. On-the-fly DQL is probably approximately correct for all MDPs.

Example 3. Let us now briefly explain the execution of on-the-fly DQL on the MDP
M from Fig. 1 (left). At first, paths of the same form as ω in Example 2 will be
generated and there will be no change to U and L, because in any call to UPDATE
(see Algorithm 3) for states s ∈ {m1,m2} with c(s, a) = m the values accumulated
in accumU

m(s, a)/m and accumL
m(s, a)/m are the same as the values already held,

namely 1 and 0, respectively.
At some point, we call UPDATE for the tuple (m3, d) with c(m3, d) = m, which

will result in the change of U(m3, d) and L(m3, d). Note, that at this point, the numbers
accumU

m(s, d)/m and accumL
m(s, d)/m are both equal to the proportion of generated

paths that visited the state 1. This number will, with high probability, be very close to
0.5, say 0.499. We thus set U(m3, d) = 0.499 + ε and L(m3, d) = 0.499− ε.

We then keep generating paths of the same form and at some point also update
U(m2, c) and L(m2, c) to precisely 0.499 + ε and 0.499 − ε, respectively. The subse-
quently generated path will be looping on m1 and m2, and once it is of length `i, we
identify ({m1,m2}, {a, b}) as an EC due to the definition of Appear(ω, `i). We then
get the MDP from Fig. 1 (right), which we use to generate new paths, until the upper
and lower bounds on value in the new initial state are within the required bound.

4.3 Extension to LTL
So far we have focused on reachability, but our techniques also extend to linear temporal
logic (LTL) objectives. By translating an LTL formula to an equivalent deterministic ω-
automaton, verifying MDPs with LTL objectives reduces to analysis of MDPs with ω-
regular conditions such as Rabin acceptance conditions. A Rabin acceptance condition
consists of a set {(M1,N1) . . . (Md,Nd)} of d pairs (Mi,Ni), where each Mi ⊆ S and
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Ni ⊆ S. The acceptance condition requires that, for some 1 ≤ i ≤ d, states in Mi are
visited infinitely often and states in Ni are visited finitely often.

Value computation for MDPs with Rabin objectives reduces to optimal reachability
of winning ECs, where an EC (R,B) is winning if R ∩Mi 6= ∅ and R ∩ Ni = ∅ for
some 1≤i≤d [12]. Thus, extending our results from reachability to Rabin objectives
requires processing of ECs for Rabin objectives (line 3-11 of Algorithm 4), which is
done as follows. Once an EC (R,B) is identified, we first obtain the EC in the original
MDP (i.e., obtain the set of states and actions corresponding to the EC in the original
MDP) as (R,B) and then determine if there is a sub-EC of (R,B) that is winning using
standard algorithms for MDPs with Rabin objectives [2]; and if so then we merge the
whole EC as in line 9 of Algorithm 4; if not, and, moreover, there is no action out of
the EC, we merge as in line 11 of Algorithm 4. This modified EC processing yields
on-the-fly BRTDP and DQL algorithms for MDPs with Rabin objectives.

5 Experimental Results

Implementation. We have developed an implementation of our learning-based frame-
work within the PRISM model checker [25], building upon its simulation engine for
generating trajectories and explicit probabilistic model checking engine for storing
visited states and U and L values. We focus on the complete-information case (i.e.,
BRTDP), for which we can perform a more meaningful comparison with PRISM. We
implement Algorithms 1 and 2, and the on-the-fly EC detection algorithm of Sec. 4,
with the optimisation of taking T as the set of all states explored so far.

We consider three distinct variants of the learning algorithm by modifying the GET-
SUCC function in Algorithm 1, which is the heuristic responsible for picking a successor
state s′ after choosing some action a in each state s of a trajectory. The first variant takes
the unmodified GETSUCC, selecting s′ at random according to the distribution ∆(s, a).
This behaviour follows the one of the original RTDP algorithm [3]. The second uses the
heuristic proposed for BRTDP in [30], selecting the successor s′ ∈ supp(∆(s, a)) that
maximises the difference U(s′)−L(s′) between bounds for those states (M-D). For the
third, we propose an alternative approach that systematically chooses all successors s′

in a round-robin (R-R) fashion, and guarantees termination with certainty.

Results. We evaluated our implementation on four existing benchmark models, using
a machine with a 2.8GHz Xeon processor and 32GB of RAM, running Fedora 14.
We use three models from the PRISM benchmark suite [26]: zeroconf, wlan, and
firewire impl dl; and a fourth one from [16]: mer. The first three use unbounded prob-
abilistic reachability properties; the fourth a time-bounded probabilistic reachability.
The latter is used to show differences between heuristics in the case of MDPs contain-
ing rare events, e.g., MDPs where failures occur with very low probability. All models,
properties and logs are available online at [39].

We run BRTDP and compare its performance to PRISM. We terminate it when the
bounds L and U differ by at most ε for the initial state of the MDP. We use ε = 10−6

in all cases except zeroconf, where ε = 10−8 is used since the actual values are very
small. For PRISM, we use its fastest engine, which is the “sparse” engine, running value
iteration. This is terminated when the values for all states in successive iterations differ
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Name
[param.s]

Param.
values

Num.
states

Time (s) Visited states
PRISM RTDP M-D R-R RTDP M-D R-R

zeroconf
[N,K]

20, 10 3,001,911 129.9 7.40 1.47 1.83 760 2007 2570
20, 14 4,427,159 218.2 12.4 2.18 2.26 977 3728 3028
20, 18 5,477,150 303.8 71.5 3.89 3.73 1411 5487 3704

wlan
[BOFF ]

4 345,000 7.35 0.53 0.48 0.54 2018 1377 1443
5 1,295,218 22.3 0.55 0.45 0.54 2053 1349 1542
6 5,007,548 82.9 0.50 0.43 0.49 1995 1313 1398

firewire impl dl
[delay,
deadline]

36, 200 6,719,773 63.8 2.85 2.62 2.26 26,508 28,474 22,038
36, 240 13,366,666 145.4 8.37 7.69 6.72 25,214 26,680 20,219
36, 280 19,213,802 245.4 9.29 7.90 7.39 32,214 28,463 25,565

mer
[N, q]

3000, 0.0001 17,722,564 158.5 67.0 2.42 4.44 1950 3116 3729
3000, 0.9999 17,722,564 157.7 10.9 2.82 6.80 2902 4643 4608
4500, 0.0001 26,583,064 250.7 67.3 2.41 4.42 1950 3118 3729
4500, 0.9999 26,583,064 246.6 10.9 2.84 6.79 2900 4644 4608

Table 1. Verification times using BRTDP (three different heuristics) and PRISM.

by at most ε. Strictly speaking, this is not guaranteed to produce an ε-optimal strategy
(e.g. in the case of very slow numerical convergence), but on all these examples it does.

The experimental results are summarised in Table 1. For each model, we give the
number of states in the full model, the time for PRISM (model construction, precom-
putation of zero/one states and value iteration) and time and number of visited states
for BRTDP with each of the three heuristics described earlier. Some heuristics perform
random exploration and therefore all results have been averaged over 20 runs.

We see that our method outperforms PRISM on all four benchmarks. The improve-
ments in execution time on these benchmarks are possible because the algorithm is able
to construct an ε-optimal policy whilst exploring only a portion of the state space. The
number of states visited by the algorithm is at least two orders of magnitude smaller
than the total size of the model (column ‘Num. states’). These numbers do not vary
greatly between heuristics.

The RTDP heuristic is generally the slowest of the three, and tends to be sensitive to
the probabilities in the model. In the mer example, changing the parameter q can mean
that some states, which are crucial for the convergence of the algorithm, are no longer
visited due to low probabilities on incoming transitions. This results in a considerable
slow-down, and is a potential problem for MDPs containing rare events. The M-D and
R-R heuristics perform very similarly, despite being quite different (one is randomised,
the other deterministic). Both perform consistently well on these examples.

6 Conclusions

We have presented a framework for verifying MDPs using learning algorithms. Build-
ing upon methods from the literature, we provide novel techniques to analyse un-
bounded probabilistic reachability properties of arbitrary MDPs, yielding either exact
bounds, in the case of complete information, or PAC bounds, in the case of limited
information. Given our general framework, one possible direction would be to explore
other learning algorithms in the context of verification. Another direction of future work
is to explore whether learning algorithms can be combined with symbolic methods for
probabilistic verification.

Acknowledgement. We thank Arnd Hartmanns and anonymous reviewers for careful
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Abstract. For deterministic systems, a counterexample to a property can simply
be an error trace, whereas counterexamples in probabilistic systems are necessarily
more complex. For instance, a set of erroneous traces with a sufficient cumulative
probability mass can be used. Since these are too large objects to understand
and manipulate, compact representations such as subchains have been considered.
In the case of probabilistic systems with non-determinism, the situation is even
more complex. While a subchain for a given strategy (or scheduler, resolving non-
determinism) is a straightforward choice, we take a different approach. Instead,
we focus on the strategy itself, and extract the most important decisions it makes,
and present its succinct representation.
The key tools we employ to achieve this are (1) introducing a concept of importance
of a state w.r.t. the strategy, and (2) learning using decision trees. There are three
main consequent advantages of our approach. Firstly, it exploits the quantitative
information on states, stressing the more important decisions. Secondly, it leads to
a greater variability and degree of freedom in representing the strategies. Thirdly,
the representation uses a self-explanatory data structure. In summary, our approach
produces more succinct and more explainable strategies, as opposed to e.g. binary
decision diagrams. Finally, our experimental results show that we can extract
several rules describing the strategy even for very large systems that do not fit in
memory, and based on the rules explain the erroneous behaviour.

1 Introduction

The standard models for dynamic stochastic systems with both probabilistic and non-
deterministic behaviour are Markov decision processes (MDPs) [How60,Put94,FV97].
They are widely used in verification of probabilistic systems [BK08,KNP11] in several
ways. Firstly, in concurrent probabilistic systems, such as communication protocols,
the nondeterminism arises from scheduling [CY95,Var85]. Secondly, in probabilistic
systems operating in open environments, such as various stochastic reactive systems,
nondeterminism arises from environmental inputs [Seg95,dA97]. Thirdly, for underspec-
ified probabilistic systems, a controller is synthesized, resolving the nondeterminism in
a way that optimizes some objective, such as energy consumption or time constraints in
embedded systems [BK08,KNP11].

In analysis of MDPs, the behaviour under all possible strategies (schedulers, con-
trollers, policies) is examined. For example, in the first two cases, the result of the
verification process is either a guarantee that a given property holds under all strategies,
or a counterexample strategy. In the third case, either a witness strategy guaranteeing



a given property is synthesized, or its non-existence is stated. In all settings, it is de-
sirable that the output strategies should be “small and understandable” apart from
correct. Intuitively, it is a strategy with a representation small enough for the human
debugger to read and understand where the bug is (in the verification setting), or for the
programmer to implement in the device (in the synthesis setting). In this paper, we focus
on the verification setting and illustrate our approach mainly on probabilistic protocols.
Nonetheless, our results immediately carry over to the synthesis setting.

Obtaining a small and simple strategy may be impossible if the strategy is required
to be optimal, i.e., in our setting reaching the error state with the highest possible proba-
bility. Therefore, there is a trade-off between simplicity and optimality of the strategies.
However, in order to debug a system, a simple counterexample or a series thereof is
more valuable than the most comprehensive, but incomprehensible counterexample. In
practice, a simple strategy reaching the error with probability smaller by a factor of ε,
e.g. one per cent, is a more valuable source of information than a huge description of an
optimal strategy. Similarly, controllers in embedded devices should strive for optimality,
but only as long as they are small enough to fit in the device. In summary, we are
interested in finding small and simple close-to-optimal (ε-optimal) strategies.

How can one obtain a small and simple strategy? This seems to require some
understanding of the particular system and the bug. How can we do something like
that automatically? The approaches have so far been limited to BDD representations
of the strategy, or generating subchains representing a subset of paths induced by the
strategy. While BDDs provide a succinct representation, they are not well readable and
understandable. Further, subchains do not focus on the decisions the strategy makes at
all. In contrast, a huge effort has been spent on methods to obtain “understanding” from
large sets of data, using machine learning methods. In this paper, we propose to extend
their use in verification, namely of reachability properties in MDPs, in several ways. Our
first aim of using these methods is to efficiently exploit the structure that is present in the
models, written in e.g. PRISM language with variables and commands. This structure
gets lost in the traditional numerical analysis of the MDPs generated from the PRISM
language description. The second aim is to distil more information from the generated
MDPs, namely the importance of each decision. Both lead to an improved understanding
of the strategy’s decisions.

Our approach. We propose three steps to obtain the desired strategies. Each of them
has a positive effect on the resulting size.
(1) Obtaining a (possibly partially defined and liberal) ε-optimal strategy. The ε-optimal
strategies produced by standard methods, such as value iteration of PRISM [KP13], may
be too large to compute and overly specific. Firstly, as argued in [BCC+14], typically
only a small fraction of the system needs to be explored in order to find an ε-optimal
strategy, whereas most states are reached with only a very small probability. Without
much loss, the strategy may not be defined there. For example, in the MDP M depicted
in Fig. 1, the decision in q (and vi’s) is almost irrelevant for the overall probability
of reaching t from s. Such a partially defined strategy can be obtained using learning
methods [BCC+14].

Secondly, while the usual strategies prescribe which action to play, liberal strate-
gies leave more choices open. There are several advantages of liberal strategies,
and similar notions of strategies called permissive strategies have been studied
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Fig. 1: An MDP M with reachability objective t

in [BJW02,BMOU11,DFK+14]. A liberal strategy, instead of choosing an action in
each state, chooses a set of actions to be played uniformly at every state. First, each
liberal strategy represents a set of strategies, and thus covers more behaviour. Second, in
counter-example guided abstraction-refinement (CEGAR) analysis, since liberal strate-
gies can represent sets of counter-examples, they accelerate the abstraction-refinement
loop by ruling out several counter-examples at once. Finally, they also allow for more
robust learning of smaller strategies in Step 3. We show that such strategies can be
obtained from standard value iteration as well as [BCC+14]. Further processing of the
strategies in Step 2 and 3 allows liberal strategies as input and preserves liberality in the
small representation of the strategy.

(2) Identifying important parts of the strategy. We define a concept of importance of a
state w.r.t. a strategy, corresponding to the probability of visiting the state by the strategy.
Observe that only a fraction of states can be reached while following the strategy, and
thus have positive importance. On the unreachable states, with zero importance, the
definition of the strategy is useless. For instance, in M , both states p and q must have
been explored when constructing the strategy in order to find out whether it is better to
take action a or b. However, if the resulting strategy is to use b and d, the information
what to do in ui’s is useless. In addition, we consider vi’s to be of zero importance, too,
since they are never reached on the way to target.

Furthermore, apart from ignoring states with zero importance, we want to partially
ignore decisions that are unlikely to be made (in less important states such as q), and
in contrast, stress more the decisions in important states likely to be visited (such as s).
Note that this is difficult to achieve in data structures that remember all the stored data
exactly, such as BDDs. Of course, we can store decisions in states with importance above
a certain threshold. However, we obtain much smaller representations if we allow more
variability and reflect the whole quantitative information, as shown in Step 3.

(3) Data structures for compact representation of strategies. The explicit representation
of a strategy by a table of pairs (state, action to play) results in a huge amount of data
since the systems often have millions of states. Therefore, a symbolic representation by
binary decision diagrams (BDD) looks as a reasonable option. However, there are several
drawbacks of using BDDs. Firstly, due to the bit-level representation of the state-action
pairs, the resulting BDD is not very readable. Secondly, it is often still too large to be
understood by human, for instance due to a bad ordering of the variables. Thirdly, it
cannot quantitatively reflect the differences in the importance of states.

Therefore, we propose to use decision trees instead , e.g. [Mit97], a structure similar
to BDDs, but with nodes labelled by various predicates over the system’s variables.
They have several advantages. Firstly, they yield an explanation of the decision, as
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opposed to e.g. neural networks, and thus provide an explanation how the strategy works.
Secondly, sophisticated algorithms for their construction, based on entropy, result in
smaller representation than BDD, where a good ordering of variables is known to be
notoriously difficult to find [BK08]. Thirdly, as suggested in Step 2, they allow for less
probable remembering of less stressed data if this sufficiently simplifies the tree and
decreases its size. Finally, the major drawback of decision trees in machine learning—
frequent overfitting of the training data—is not an issue in our setting since the tree is
not used for classification of test data, but only of the training data.

Summary of our contribution. In summary our contributions are as follows:
– We provide a method for obtaining succinct representation of ε-optimal strategies as

decision trees. The method is based on a new concept of importance measure and
on well-established machine learning techniques.

– Experimental data show that even for some systems larger than the available memory,
our method yields trees with only several dozens of nodes.

– We illustrate the understandability of the representation on several examples from
PRISM benchmarks [KNP12], reading off respective bug explanations.

Related work. In artificial intelligence, compact (factored) representations of MDP
structure have been developed using dynamic Bayesian networks [BDG95,KK99], prob-
abilistic STRIPS [KHW94], algebraic decision diagrams [HSaHB99], and also decision
trees [BDG95]. Formalisms used to represent MDPs can, in principle, be used to rep-
resent values and policies as well. In particular, variants of decision trees are probably
the most used [BDG95,CK91,KP99]. For a detailed survey of compact representations
see [BDH99]. In the context of verification, MDPs are often represented using variants
of (MT)BDDs [dAKN+00,HKN+03,MP04], and strategies by BDDs [WBB+10].

Decision trees have been used in connection with real-time dynamic programming
and reinforcement learning [BD96,Pye03]. Learning a compact decision tree repre-
sentation of a policy has been investigated in [SLT10] for the case of body sensor
networks, but the paper aims at a completely different application field (a simple model
of sensor networks as opposed to generic PRISM models), uses different objectives
(discounted rewards), and does not consider the importance of a state that, as we show,
may substantially decrease sizes of resulting policies.

Our results are related to the problem of computing minimal/small counterexamples
in probabilistic verification. Most papers concentrate on solving this problem for Markov
chains and linear-time properties [HKD09,ADvR08,WJÁ+14,JÁK+11], branching-time
properties [DHK08,FHPW10,AL10], and in the context of simulation [KPC12]. A cou-
ple of tools have been developed for probabilistic counterexample generation, namely
DiPro [ALFLS11] and COMICS [JÁV+12]. For a detailed survey see [ÁBD+14]. While
previous approaches focus on presenting diagnostic paths forming the counterexample,
our approach focuses on decisions made by the respective strategy.

Concerning MDPs, [WJÁ+14] uses mixed integer linear programming to compute
minimal critical sub-systems, i.e. whole sub-MDPs as opposed to a compact representa-
tion of “right” decisions computed by our methods. [AL09] uses a directed on-the-fly
search to compute sets of most probable diagnostic paths (which somehow resembles our
notion of importance), but the paths are encoded explicitly by AND/OR trees as opposed
to our use of decision trees. Neither of these papers takes advantage of an internal

4



structure of states and their methods substantially differ from ours. The notion of paths
encoded as AND/OR trees has also been studied in [LL13] to represent probabilistic
counter-examples visually as fault trees, and then derive causal (the cause and effect)
relationship between events. [KH09] develops abstraction-based framework for model-
checking MDPs based on games, which allows to trade compactness for precision, but
does not give a procedure for constructing (a compact representation of) counterexam-
ple strategies. [WJV+13,DJW+14] computes a smallest set of guarded commands (of
a PRISM-like language) that induce a critical subsystem, but, unlike our methods, does
not provide a compact representation of actual decisions needed to reach an erroneous
state; moreover, there is not always a command based counterexample.

Counter-examples play a crucial role in CEGAR analysis of MDPs, and have been
widely studied, such as, game-based abstraction refinement [KNP06]; non-compositional
CEGAR approach for reachability [HWZ08] and safe-pCTL [CV10]; compositional CE-
GAR approach for safe-pCTL and qualitative logics [KPC12,CCD14]; and abstraction-
refinement for quantitative properties [DJJL01,DJJL02]. All of these works only consider
a single strategy represented explicitly, whereas our approach considers a succinct repre-
sentation of a set of strategies, and can accelerate the abstraction-refinement loop.

2 Preliminaries

We use N, Q, and R to denote the sets of positive integers, rational and real numbers, re-
spectively. The set of all rational probability distributions over a finite setX is denoted by
Dist(X). Further, d ∈ Dist(X) is Dirac if d(x) = 1 for some x ∈ X . Given a function
f : X → R, we write arg maxx∈X f(x) = {x ∈ X | f(x) = maxx′∈X f(x′)}.
Markov chains. A Markov chain is a tuple M = (L,P, µ) where L is a finite set of
locations, P : L → Dist(L) is a probabilistic transition function, and µ ∈ Dist(L) is
the initial probability distribution. We denote the respective unique probability measure
for M by P.

Markov decision processes. A Markov decision process (MDP) is a tuple G =
(S,A,Act , δ, ŝ) where S is a finite set of states, A is a finite set of actions, Act :
S → 2A \ {∅} assigns to each state s the set Act(s) of actions enabled in s,
δ : S × A → Dist(S) is a probabilistic transition function that, given a state and an
action, gives a probability distribution over the successor states, and ŝ is the initial state.
A run in G is an infinite alternating sequence of states and actions ω = s1a1s2a2 · · ·
such that for all i ≥ 1, we have ai ∈ Act(si) and δ(si, ai)(si+1) > 0. A path of length k
in G is a finite prefix w = s1a1 · · · ak−1sk of a run in G.

Strategies and plays. Intuitively, a strategy (or a policy) in an MDP G is a “recipe” to
choose actions. Formally, a strategy is a function σ : S → Dist(A) that given the current
state of a play gives a probability distribution over the enabled actions.1 In general,
a strategy may randomize, i.e. return non-Dirac distributions. A strategy is deterministic
if it gives a Dirac distribution for every argument.

1 In general, a strategy may be history dependent. However, for objectives considered in this
paper, memoryless strategies (depending on the last state visited) are sufficient. Therefore, we
only consider memoryless strategies in this paper.
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A play of G determined by a strategy σ and a state s̄ ∈ S is a Markov chain Gσs̄
where the set of locations is S, the initial distribution µ is Dirac with µ(s̄) = 1 and

P (s)(s′) =
∑
a∈A

σ(s)(a) · δ(s, a)(s′) .

The induced probability measure is denoted by Pσs̄ and “almost surely” or “almost all
runs” refers to happening with probability 1 according to this measure. We usually write
Pσ instead of Pσŝ (here ŝ is the initial state of G).
Liberal strategies. A liberal strategy is a function ς : S → 2A such that for every s ∈ S
we have that ∅ 6= ς(s) ⊆ Act(s). Given a liberal strategy ς and a state s, an action
a ∈ Act(s) is good (in s w.r.t. ς) if a ∈ ς(s), and bad otherwise. Abusing notation, we
denote by ς the strategy that to every state s assigns the uniform distribution on ς(s)
(which, in particular, allows us to use Gςs, Pςs and apply the notion of ε-optimality to ς).
Reachability objectives. Given a set F ⊆ S of target states, we denote by ♦F the set
of all runs that visit a state of F . For a state s ∈ S, the maximal reachability probability
(or simply value) in s, is Val(s) := maxσ Pσs [♦F ]. Given ε ≥ 0, we say that a strategy
σ is ε-optimal if Pσ[♦F ] ≥ Val(ŝ)− ε, and we call a 0-optimal strategy optimal.2 To
avoid overly technical notation, we assume that states of F , subject to the reachability
objective, are absorbing, i.e. for all s ∈ F, a ∈ Act(s) we have δ(s, a)(s) = 1.
End components. A non-empty set S′ ⊆ S is an end component (EC) of G if there is
Act ′ : S′ → 2A \ {∅} such that (1) for all s ∈ S′ we have Act ′(s) ⊆ Act(s), (2) for
all s ∈ S′, we have a ∈ Act ′(s) iff δ(s, a) ∈ Dist(S′), and (3) for all s, t ∈ S′ there
is a path ω = s1a1 · · · ak−1sk such that s1 = s, sk = t, and si ∈ S′, ai ∈ Act ′(si)
for every i. An end component is a maximal end component (MEC) if it is maximal
with respect to the subset ordering. Given an MDP, the set of MECs is denoted by MEC.
Given a MEC, actions of Act ′(s) and Act(s) \Act ′(s) are called internal and external
(in state s), respectively.

3 Computing ε-optimal Strategies
There are many algorithms for solving quantitative reachability in MDPs, such as the
value iteration, the strategy improvement, linear programming based methods etc.,
see [Put94]. The main method implemented in PRISM is the value iteration, which suc-
cessively (under)approximates the value Val(s, a) =

∑
s′∈A δ(s, a)(s′) ·Val(s′) of ev-

ery state-action pair (s, a) by a value V (s, a), and stops when the approximation is good
enough. Denoting by V (s) := maxa∈Act(s) V (s, a), every step of the value iteration
improves the approximation V (s, a) by assigning V (s, a) :=

∑
s′∈S δ(s, a)(s′) · V (s′)

(we start with V such that V (s) = 1 if s ∈ F , and V (s) = 0 otherwise).
The disadvantage of the standard value iteration (and also most of the above men-

tioned traditional methods) is that it works with the whole state space of the MDP
(or at least with its reachable part). For instance, consider states ui, vi of Fig. 1. The
paper [BCC+14] adapts methods of bounded real-time dynamic programming (BRTDP,
see e.g. [MLG05]) to speed up the computation of the value iteration by improving
V (s, a) 3 only on “important” state-action pairs identified by simulations.

2 For every MDP, there is a memoryless deterministic optimal strategy, see e.g. [Put94].
3 Here we use V for the lower approximation denoted by VL in [BCC+14].
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Even though RTDP methods may substantially reduce the size of an ε-optimal
strategy, its explicit representation is usually large and difficult to understand. Thus we
develop succinct representations of strategies, based on decision trees, that will reduce
the size even further and also provide a human readable representation. Even though the
above methods are capable of yielding deterministic ε-optimal strategies, that can be
immediately fed into machine learning algorithms, we found it advantageous to give the
learning algorithm more freedom in the sense that if there are more ε-optimal strategies,
we let the algorithm choose (uniformly). This is especially useful within MECs where
many actions have the same value. Therefore, we extract liberal ε-optimal strategies
from the value approximation V , output either by the value iteration or BRTDP.

Computing liberal ε-optimal strategies. Let us show how to obtain a liberal strategy ς
from the value iteration, or BRTDP. For simplicity, we start with MDP without MECs.

MDP without end components. We say that V : S × A → [0, 1] is a valid ε-
underapproximation if the following conditions hold:
1. V (s, a) ≤ Val(s, a) for all s ∈ S and a ∈ A
2. Val(ŝ)− V (ŝ) ≤ ε
3. V (s, a) ≤

∑
s′∈S δ(s, a)(s′) · V (s′) for all s ∈ S and a ∈ Acts

The outputs V of both the value iteration, and BRTDP are valid ε-underapproximations.
We define a liberal strategy ςV by ςV (s) = arg maxa∈Act(s) V (s, a) for all s ∈ S.4

Lemma 1. For every ε > 0 and a valid ε-underapproximation V , ςV is ε-optimal. 5

General MDP. For MDPs with end components we have to extend the definition of
the valid ε-underapproximation. Given a MEC S′ ⊆ S, we say that (s, a) ∈ S × A is
maximal-external in S′ if s ∈ S′, a ∈ Act(s) is external and V (s, a) ≥ V (s′, a′) for
all s′ ∈ S′ and a′ ∈ Act(s′). A state s′ ∈ S′ is an exit (of S′) if (s, a) is maximal-
external in S′ for some a ∈ Act(s). We add the following condition to the valid
ε-underapproximation:
4. Each MEC S′ ⊆ S has at least one exit.

Now the definition of ςV is also more complicated:
– For every s ∈ S which is not in any MEC, we put ςV (s) =

arg maxa∈Act(s) V (s, a).
– For every s ∈ S which is in a MEC S′,
• if s is an exit, then ςV (s) = {a ∈ Act(s) | (s, a) is maximal-external in S′}
• otherwise, ςV (s) = {a ∈ Act(s) | a is internal}

Using these extended definitions, Lemma 1 remains valid. Further, note that ςV (s) is
defined even for states with trivial underapproximation V (s) = 0, for instance a state s
that was never subject to any value iteration improvement. Then the values ς(s) may
not be stored explicitly, but follow implicitly from not storing any V (s), thus assuming
V (s, ·) = 0.

4 Furthermore, one could consider liberal strategies playing also ε-optimal actions. However, our
experiments did not prove better performance.

5 Intuitively this means that randomizing among good actions of ε-optimal strategies preserves
ε-optimality in the reachability setting (in contrast to other settings, e.g. with parity objectives).
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4 Importance of Decisions
Note that once we have computed an ε-optimal liberal strategy ς , we may, in principle,
compute a compact representation of ς (using e.g. BDDs), and obtain a strategy with
possibly smaller representation than above.

However, we go one step further as follows. Given a liberal strategy ς and a state
s ∈ S, we define the importance of s by

Impς(s) := Pς [♦s | ♦F ]

the probability of visiting s conditioned on reaching F (afterwards). Intuitively, the
importance is high for states where a good decision can help to reach the target.6

Example 1. For the MDP of Fig. 1 with the objective ♦{t} and a strategy ς choosing
b, we have Impς(s) = 1 and Impς(q) = 5/995. Trivially, Impς(t) = 1. For all other
states, the importance is zero.

Obviously, decisions made in states of zero importance do not affect Pς [♦F ] since these
states never occur on paths from ŝ to F . However, note that many states of S may be
reachable in Gς with positive but negligibly small probability. Clearly, the value of
Pς [♦F ] depends only marginally on choices made in these states. Formally, let ς∆ be
a strategy obtained from ς by changing each ς(s) with Impς(s) ≤ ∆ to an arbitrary
subset of Act(s). We obtain the following obvious property:

Lemma 2. For every liberal strategy ς , we have lim
∆→0

Pς∆ [♦F ] = Pς [♦F ].

In fact, every ∆ < min({Impς(s) | s ∈ S} \ {0}) satisfies Pς∆ [♦F ] = Pς [♦F ]. But
often even larger ∆ may give Pς∆ [♦F ] sufficiently close to Pς [♦F ]. Such ∆ may be
found using e.g. trial and error approach.7

Most importantly, we can use the importance of a state to affect the probability
that decisions in this state are indeed remembered in the data structure. Data structures
with such a feature are used in various learning algorithms. In the next section, we
discuss decision trees. Due to this extra variability, which decisions to learn, the resulting
decision trees are smaller than BDDs for strictly defined ς∆.

5 Efficient Representations
Let G = (S,A,Act , δ, ŝ) be an MDP. In order to symbolically represent strategies
in G, we need to assume that states and actions have some internal structure. In-
spired by PRISM language [KNP11], we consider a set V = {v1, . . . , vn} of inte-
ger variables, each vi gets its values from a finite domain Dom(vi). We suppose that
S =

∏n
i=1 Dom(vi) ⊆ Zn, i.e. each state is a vector of integers. Further, we assume

that the MDP arises as a product of m modules, each of which can separately perform
non-synchronizing actions as well as synchronously with other modules perform a syn-
chronizing action. Therefore, we suppose A ⊆ Ā×{0, . . . ,m}, where Ā ⊆ N is a finite

6 Instead of the conditional probability of reaching s, we could consider the conditional expected
number of visits of s. We discuss the differences and compare the efficiency together with the
case of no conditioning on reaching the target in Section 6.

7 One may give a theoretical bound on convergence of Pς∆ [♦F ] to Pς [♦F ] as ∆→ 0, using e.g.
Lemma 5.1 of [BKK14]. However, for large MDPs the bound would be impractical.
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set and the second component determines the module performing the action (0 stands
for synchronizing actions).8

Since a liberal strategy is a function of the form ς : S → 2A, assigning to each state
its good actions, it can be explicitly represented as a list of state-action pairs, i.e., as
a subset of

S ×A =

n∏
i=1

Dom(vi)× Ā× {0, 1, . . . ,m} (1)

In addition, standard optimization algorithms implemented in PRISM use an explicit
“don’t-care” value −2 for action in each unreachable state, meaning the strategy is
not defined. However, one could simply not list these pairs at all. Thus a smaller list
is obtained, with only the states where ς is defined. Recall that one may also omit
states s satisfying Impς(s) = 0, thus ignoring reachable states with zero probability to
reach the target. Further optimization may be achieved by omitting states s satisfying
Impς(s) < ∆ for a suitable ∆ > 0.

5.1 BDD Representation
The explicit set representation can be encoded as a binary decision diagram (BDD). This
has been used in e.g. [WBB+10,EJPV12]. The principle of the BDD representation of
a set is that (1) each element is encoded as a string of bits and (2) an automaton, in the
form of a binary directed acyclic graph, is created so that (3) the accepted language is
exactly the set of the given bit strings. Although BDDs are quite efficient, see Section 6,
each of these three steps can be significantly improved:
1. Instead of a string of bits describing all variables, a string of integers (one per

variable) can be used. Branching is then done not on the value of each bit, but
according to an inequality comparing the variable to a constant. This significantly
improves the readability.

2. Instead of building the automaton according to a chosen order of bits, we let a heuris-
tic choose the order of the inequalities and the actual constants in the inequalities.

3. Instead of representing the language precisely, we allow the heuristic to choose
which data to represent and which not. The likelihood that each datum is represented
corresponds to its importance, which we provide as another input.

The latter two steps lead to significantly smaller graphs than BDDs. All this can be done
in an efficient way using decision trees learning.

5.2 Representation using Decision Trees
Decision trees. A decision tree for a domain

∏d
i=1Xi ⊆ Zd is a tuple T = (T, ρ, θ)

where T is a finite rooted binary (ordered) tree with a set of inner nodes N and a set
of leaves L, ρ assigns to every inner node a predicate of the form [xi ∼ const ] where
i ∈ {1, . . . , d}, xi ∈ Xi, const ∈ Z, ∼ ∈ {≤, <,≥, >,=}, and θ assigns to every leaf
a value good , or bad . 9

8 On the one hand, PRISM does not allow different modules to have local variables with the
same name, hence we do not distinguish which module does a variable belong to. On the other
hand, while PRISM declares no names for non-synchronizing actions, we want to exploit the
connection between the corresponding actions of different copies of the same module.

9 There exist many variants of decision trees in the literature allowing arbitrary branching,
arbitrary values in the leaves, etc., e.g. [Mit97]. For simplicity, we define only a special suitable
subclass.
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Similarly to BDDs, the language L(T ) ⊆ Nn of the tree is defined as follows. For
a vector x̄ = (x̄1, . . . , x̄n) ∈ Nn, we find a path p from the root to a leaf such that for
each inner node n on the path, the predicate ρ(n) is satisfied by substitution xi = x̄i iff
the first child of n is on p. Denote the leaf on this particular path by `. Then x̄ is in the
language L(T ) of T iff θ(`) = good .
Example 2. Consider dimension d = 1, domain X1 = {1, . . . , 7}. A tree representing
a set {1, 2, 3, 7} is depicted in Fig. 2. To depict the ordered tree clearly, we use unbroken
lines for the first child, corresponding to the satisfied predicate, and dashed line for the
second one, corresponding to the unsatisfied predicate.

x1 ≤ 3

x1 < 7

goodbad

good

Fig. 2: A decision tree for
{1, 2, 3, 7} ⊆ {1, . . . , 7}

In our setting, we use the domain S × A defined by
Equation (1) which is of the form

∏n+2
i=1 Xi where for each

1 ≤ i ≤ n we have Xi = Dom(vi), Xn+1 = Ā and
Xn+2 = {0, 1, . . . ,m}. Here the coordinates Dom(vi) are
considered “unbounded” and, consequently, the respective
predicates use inequalities. In contrast, we know the possi-
ble values of Ā×{0, 1, . . . ,m} in advance and they are not
too many. Therefore, these coordinates are considered “dis-
crete” and the respective predicates use equality. Examples
of such trees are given in Section 6 in Fig. 4 and 5. Now a
decision tree T for this domain determines a liberal strategy ς : S → 2A by a ∈ ς(s) iff
(s, a) ∈ L(T ).
Learning. We describe the process of learning a training set, which can also be un-
derstood as storing the input data. Given a training sequence (repetitions allowed!)
x1, . . . ,xk, with each xi = (xi1, . . . , x

i
n) ∈ Nd, partitioned into the positive and nega-

tive subsequence, the process of learning according to the algorithm ID3 [Qui86,Mit97]
proceeds as follows:
1. Start with a single node (root), and assign to it the whole training sequence.
2. Given a node n with a sequence τ ,

– if all training examples in τ are positive, set θ(n) = good and stop;
– if all training examples in τ are negative, set θ(n) = bad and stop;
– otherwise,
• choose a predicate with the “highest gain” (with lowest entropy, see

e.g. [Mit97, Sections 3.4.1, 3.7.2]),
• split τ into sequences satisfying and not satisfying the predicate, assign

them to the first and the second child, respectively,
• go to step 2 for each child.

Intuitively, the predicate with the highest gain splits the sequence so that it maximizes
the portion of positive data in the satisfying subsequence and the portion of negative data
in the non-satisfying subsequence.

In addition, the final tree can be pruned. This means that some leaves are merged,
resulting in a smaller tree at the cost of some imprecision of storing (the language of the
tree changes). The pruning phase is quite sophisticated, hence for the sake of simplicity
and brevity, we omit the details here. We use the standard C4.5 algorithm and refer
to [Qui93,Mit97]. In Section 6, we comment on effects of parameters used in pruning.

Learning a strategy. Assume that we already have a liberal strategy ς : S → 2A.
We show how we learn good and bad state-action pairs so that the language of the
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resulting tree is close to the set of good pairs. The training sequence will be composed
of state-action pairs where good pairs are positive examples, and bad pairs are negative
ones. Since our aim is to ensure that important states are learnt and not pruned away, we
repeat pairs with more important states in the training sequence more frequently.

Formally, for every s ∈ S and a ∈ Act(s), we put the pair (s, a) to the training
sequence repeat(s)-times, where

repeat(s) = c · Impς(s)

for some constant c ∈ N (note that Impς(s) ≤ 1). Since we want to avoid exact
computation of Impς(s), we estimate it using simulations. In practice, we thus run c
simulation runs that reach the target and set repeat(s) to be the number of runs where s
was also reached.

6 Experiments
In this section, we present the experimental evaluation of the presented methods, which
we have implemented within the probabilistic model checker PRISM [KNP11]. All
the results presented in this section were obtained on a single Intel(R) Xeon(R) CPU
(3.50GHz) with memory limited to 10GB.

First, we discuss several alternative options to construct the training data and to
learn them in a decision tree. Further, we compare decision trees to other data structures,
namely sets and BDDs, with respect to the sizes necessary for storing a strategy. Finally,
we illustrate how the decision trees can be used to gain insight into our benchmarks.

6.1 Decision Tree Learning

Generating Training Data. The strategies we work with come from two different
sources. Firstly, we consider strategies constructed by PRISM, which can be generated
using the explicit or sparse model checking engine. Secondly, we consider strategies
constructed by the BRTDP algorithm [BCC+14], which are defined on a part of the state
space only.

Recall that given a strategy, the training data for the decision trees is constructed
from c simulation runs according to the strategy. In our experiments, we found that
c = 10000 produces good results in all the examples we consider. Note that we stop
each simulation as soon as the target or a state with no path to the target state is reached.
Decision Tree Learning in Weka. The decision trees are constructed using the Weka
machine learning package [HFH+09]. The Weka suite offers various decision tree
classifiers. We use the J48 classifier, which is an implementation of the C4.5 algorithm
[Qui93]. The J48 classifier offers two parameters to control the pruning that affect the
size of the decision tree:

– The leaf size parameter M ∈ N determines that each leaf node with less than M
instances in the training data is merged with its siblings. Therefore, only values
smaller than the number of instances per classification class are reasonable, since
higher numbers always result in the trivial tree of size 1.

– The confidence factor C ∈ (0, 0.5] is used internally for determining the amount of
pruning during decision tree construction. Smaller values incur more pruning and
therefore smaller trees.

Detailed information and an empirical study of the parameters for J48 is available
in [DM12].
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Effects of the parameters. We illustrate the effects of the parameters C and M on the
resulting size of the decision tree on the mer benchmark. However, similar behaviour
appears in all the examples. Figures 3a and 3b show the resulting size of the decision
tree for several (random) executions. Each line in the plots corresponds to one decision
tree, learned with 15 different values of the parameter. The C parameter scales linearly
between 0.0001 and 0.5. The M parameter scales logarithmically between 1 and the
minimum number of instances per class in the respective training set. The plots in
Figure 3 show that M is an effective parameter in calibrating the resulting tree size,
whereas C plays less of a role. Hence, we use C = 10−4. Furthermore, since the tree
size is monotone in M , the parameter M can be used to retrieve a desired level of detail.

(a) fixed M = 2 (b) fixed C = 10−4 (c) Tree Size vs Error

Fig. 3: Decision tree Parameters

Figure 3c depicts the relation of the tree size to the relative error of the induced
strategy. It shows that there is a threshold size under which the tree is not able to capture
the strategy correctly anymore and the error rises quickly. Above the threshold size, the
error is around 1%, considered reasonable in order to extract reliable information. This
threshold behaviour is observed in all our examples. Therefore, it is sensible to perform
a binary search for the highest M ensuring the error at most 1%.

6.2 Results
First, we briefly introduce the four examples from the PRISM benchmark suite [KNP12],
which we tested our method on. Note that the majority of the states in the used bencham-
rks are non-deterministic, so the strategies are non-trivial in most states.

Table 2: Effects of various learning variants
on the tree size. Smallest trees computed
from PRISM or BRTDP and the average time
to compute one number are presented.

Example I♦PI∀PI♦EI∀EO♦ O∀ Avg Time

firewire 1 1 1 1 1 1 45s
investor 27 25 31 35 37 37 135s

mer 17M 17 33 17 29 19 none 314s
mer big 19 23 23 37 17 none 129s
zeroconf 7 7 7 7 7 17 141s

firewire models the Tree Identify Proto-
col of the IEEE 1394 High Performance
Serial Bus, which is used to transport
video and audio signals within a network
of multimedia devices. The reachability
objective is that one node gets the root
and the other one the child role.
investor models a market investor and
shares, which change their value prob-
abilistically over time. The reachability
objective is that the investor finishes a
trade at a time, when his shares are more
valuable than some threshold value.
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Table 1: Comparison of representation sizes for strategies obtained from PRISM and
from BRTDP computation. Sizes are presented as the number of states for explicit lists
of values, the number of nodes for BDDs, and the number of nodes for decision trees
(DT). For DT, we display the tree size obtained from the binary search described above.
DT Error reports the relative error of the strategy determined by the decision tree (on
the induced Markov chain) compared to the optimal value, obtained by model checking
with PRISM.

PRISM BRTDP
Example |S| Value Explicit BDD DT DT Error Explicit BDD DT DT Error

firewire 481,136 1.000 479,834 4,233 1 0.000% 766 4,763 1 1 0.000%
investor 35,893 0.958 28,151 783 27 0.886% 21,931 2,780 35 0.836%
mer 17M 1,773,664 0.200 Memory Out 1,887 619 17 0.000%
mer big 2 Approx. 1013 0.200 Memory Out 1,894 646 19 0.692%
zeroconf 89,586 0.009 60,463 409 7 0.106% 1,630 905 7 0.235%

1 Note that BDDs represent states in binary form. Therefore, one entry in the explicit state list
corresponds to several nodes in the BDD.

2 We did not measure the state size as the MDP does not fit in memory, but extrapolated it from the
linear dependence of model size and one of its parameters, which we could increase to 231 − 1.
The value is obtained from the BRTDP computation.

mer is a mutual exclusion protocol, that regulates the access of two users to two different
resources. The protocol should prohibit that both resources are accessed simultaneously.
zeroconf is a network protocol which allows users to choose their IP addresses au-
tonomously. The protocol should detected and prohibit IP address conflict.

For every example, Table 1 shows the size of the state space, the value of the optimal
strategy, and the sizes of strategies obtained from explicit model checking by PRISM
and by BRTDP, for each discussed data structure.
Learning variants. In order to justify our choice of the importance function Imp, we
compare it to several alternatives.
1. When constructing the training data, we can use the importance measure Imp, and

add states as often as is indicated by its importance (I), or neglect it and simply add
every visited state exactly once (O).

2. Further, states on the simulation are learned conditioned on the fact that the target
state is reached (♦). Another option is to consider all simulations (∀).

3. Finally, instead of the probability to visit the state (P), one can consider the expected
number of visits (E).

In Table 2, we report the sizes of the decision trees obtained for the all learning variants.
We conclude that our choice (I♦P) is the most useful one.

6.3 Understanding Decision Trees
We show how the constructed decision trees can help us to gain insight into the essential
features of the systems.
zeroconf example. In Figure 4 we present a decision tree that is a strategy for
zeroconf and shows how an unresolved IP address conflict can occur in the protocol.
First we present how to read the strategy represented in Figure 4. Next we show how
the strategy can explain the conflict in the protocol. Assume that we are classifying a
state-action pair (s, a), where action a is enabled in state s.
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1. No matter what the current state s is, the action rec is always classified as bad
according to the root of the tree. Therefore, the action rec should be played with
positive probability only if all other available actions in the current state are also
classified as bad .

2. If action a is different from rec, the right son of the root node is
reached. If action a is different from action l>0&b=1&ip mess=1 ->
b’=0&z’=0&n1’=min(n1+1,8)&ip mess’=0 (the whole PRISM command
is a single action), then a is classified as good in state s. Otherwise, the left son is
reached.

3. In node z ≤ 0 the classification of action a (that is the action that labels the parent
node) depends on the variable valuation of the current state. If the value of var. z is
greater than 0, then a is classified as good in state s, otherwise it is classified as bad .
Action rec stands for a network host receiving a reply to a broadcast message,

resulting in resolution of an IP address conflict if one is present, which clearly does
not help in constructing an unresolved conflict. The action labelling the right son of the
root represents the detection of an IP address conflict by an arbitrary network host. This
action is only good, if variable z, which is a clock variable, in the current state is greater
than 0. The combined meaning of the two nodes is that an unresolved IP address conflict
can occur if the conflict is detected too late.

action = [rec]

action =
[ l>0&b=1&ip mess=1 ->
b’=0&z’=0&n1’=min(n1+1,8)&ip mess’=0

]
bad

goodz ≤ 0

bad good

Fig. 4: A decision tree for zeroconf

firewire example. For firewire, we obtain a trivial tree with a single node, la-
belled good . Therefore, playing all available actions in each state guarantees reaching the
target almost surely. In contrast to other representations, we have automatically obtained
the information that the network always reaches the target configuration, regardless of
the individual behaviour of its components and their interleaving.

mer example. In the case of mer, there exists a strategy that violates the required
property that the two resources are not accessed simultaneously. The decision tree for
the mer strategy is depicted in Figure 5. In order to understand how a state is reached,
where both resources are accessed at the same time, it is necessary to determine which
user accesses which resource in that state.
1. The two tree nodes labelled by 1 explain what resource user 1 should access. The

root node labelled by action s1=0&r1=0 -> r1’=2 specifies that the request to
access resource 2 (variable r1 is set to 2) is classified as bad . The only remaining
action for user 1 is to request access to resource 1. This action is classified as good
by the right son of the root node.

2. Analogously, the tree nodes labelled by 2 specify that user 2 actions should request
access to resource 2 (follows from s2=0&r2=0 -> r2’=2). Once resource 2
is requested it should change its internal state s2 to 1 (follows from s2=0&r2=2
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-> s2’=1). It follows, that in the state violating the property, user 1 has access to
resource 1 and user 2 to resource 2.
The model is supposed to correctly handle such overlapping requests, but fails to do

so in a specific case. In order to further debug the model, one has to find the action of
the scheduler that causes this undesired behaviour. The lower part of the tree specifies
that u1 request comm is a candidate for such an action. Inspecting a snippet of the
code of u1 request comm from the PRISM source code (shown below) reveals that
in the given situation, the scheduler reacts inappropriately with some probability p.
[u1_request_comm] s=0 & commUser=0 & driveUser!=0 & k<n ->

(1-p):(s’=1) & (r’=driveUser) & (k’=k+1) +
p:(s’=-1) & (gc’=true) & (k’=k+1)

The remaining nodes of the tree that were not discussed are necessary to reset the
situation if the non-faulty part (with probability 1− p) of the u1 request comm com-
mand was executed. It should be noted that executing the faulty u1 request comm
action does not lead to the undesired state right away. The action only grants user 1
access rights in a situation, where he should not get these rights. Only a successive action
leads to user 1 accessing the resource and the undesired state being reached. This is
a common type of bug, where the command that triggered an error is not the cause of it.

action = [s1=0&r1=0->r1’=2]

action = [any action of user1]bad

k ≤ 0 good

action = [r!=0&driveUser=0->r’=0&gc’=true] good

action = [s2=0&r2=0->r2’=2]good

action = [s2=0&r2=2->s2’=1] good

action = [any synchronized action]good

action = [u1 request comm] bad

good bad

1

1

2

2

Fig. 5: A decision tree for mer

7 Conclusion
In this work we presented a new approach to represent strategies in MDPs in a succinct
and comprehensible way. We exploited machine learning methods to achieve our goals.
Interesting directions of future works are to investigate whether other machine learning
methods can be integrated with our approach, and to extend our approach from reacha-
bility objectives to other objectives (such as long-run average and discounted-sum).
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Abstract. We consider Markov decision processes (MDPs) with multiple limit-average
(or mean-payoff) objectives. There exist two different views: (i) the expectation semantics,
where the goal is to optimize the expected mean-payoff objective, and (ii) the satisfaction
semantics, where the goal is to maximize the probability of runs such that the mean-
payoff value stays above a given vector. We consider optimization with respect to both
objectives at once, thus unifying the existing semantics. Precisely, the goal is to optimize
the expectation while ensuring the satisfaction constraint. Our problem captures the
notion of optimization with respect to strategies that are risk-averse (i.e., ensure certain
probabilistic guarantee). Our main results are as follows: First, we present algorithms for
the decision problems, which are always polynomial in the size of the MDP. We also show
that an approximation of the Pareto curve can be computed in time polynomial in the size
of the MDP, and the approximation factor, but exponential in the number of dimensions.
Second, we present a complete characterization of the strategy complexity (in terms of
memory bounds and randomization) required to solve our problem.

1. Introduction

MDPs and mean-payoff objectives. The standard models for dynamic stochastic sys-
tems with both nondeterministic and probabilistic behaviours are Markov decision processes
(MDPs) [How60, Put94, FV97]. An MDP consists of a finite state space, and in every state
a controller can choose among several actions (the nondeterministic choices), and given the
current state and the chosen action the system evolves stochastically according to a proba-
bilistic transition function. Every action in an MDP is associated with a reward (or cost),
and the basic problem is to obtain a strategy (or policy) that resolves the choice of actions
in order to optimize the rewards obtained over the run of the system. An objective is a
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function that given a sequence of rewards over the run of the system combines them to a
single value. A classical and one of the most well-studied objectives in context of MDPs is
the limit-average (or long-run average or mean-payoff) objective that assigns to every run
the average of the rewards over the run.

Single vs. multiple objectives. MDPs with single mean-payoff objectives have been
widely studied (see, e.g., [Put94, FV97]), with many applications ranging from computa-
tional biology to analysis of security protocols, randomized algorithms, or robot planning,
to name a few [BK08, KNP02, DEKM98, KGFP09]. In verification of probabilistic sys-
tems, MDPs are widely used, for concurrent probabilistic systems [CY95, Var85], prob-
abilistic systems operating in open environments [Seg95, dA97], and applied in diverse
domains [BK08, KNP02]. However, in several application domains, there is not a single
optimization goal, but multiple, potentially dependent and conflicting goals. For example,
in designing a computer system, the goal is to maximize average performance while mini-
mizing average power consumption, or in an inventory management system, the goal is to
optimize several potentially dependent costs for maintaining each kind of product. These
motivate the study of MDPs with multiple mean-payoff objectives, which has also been
applied in several problems such as dynamic power management [FKP12].

Two views. There exist two views in the study of MDPs with mean-payoff objectives [BBC+14].
The traditional and classical view is the expectation semantics, where the goal is to maximize
(or minimize) the expectation of the mean-payoff objective. There are numerous applica-
tions of MDPs with the expectation semantics, such as in inventory control, planning, and
performance evaluation [Put94, FV97]. The alternative semantics is called the satisfaction
semantics, which, given a mean-payoff value threshold sat and a probability threshold pr ,
asks for a strategy to ensure that the mean-payoff value be at least sat with probability
at least pr . In the case with n reward functions, there are two possible interpretations.
Let sat and pr be two vectors of thresholds of dimension k, and 0 ≤ pr ≤ 1 be a single
threshold. The first interpretation (namely, the conjunctive interpretation) requires the sat-
isfaction semantics in each dimension 1 ≤ i ≤ n with thresholds sati and pri, respectively
(where vi is the i-th component of vector v). The sets of satisfying runs for each reward
may even be disjoint here. The second interpretation (namely, the joint interpretation)
requires the satisfaction semantics for all rewards at once. Precisely, it requires that, with
probability at least pr , the mean-payoff value vector be at least sat. The distinction of
the two views (expectation vs. satisfaction) and their applicability in analysis of problems
related to stochastic reactive systems has been discussed in details in [BBC+14]. While the
joint interpretation of satisfaction has already been introduced and studied in [BBC+14],
here we consider also the conjunctive interpretation, which was not considered in [BBC+14].
The conjunctive interpretation was considered in [FKR95], however, only a partial solution
was provided, and it was mentioned that a complete solution would be very useful.

Our problem. In this work we consider a new problem that unifies the two different
semantics. Intuitively, the problem we consider asks to optimize the expectation while
ensuring the satisfaction. Formally, consider an MDP with n reward functions, a prob-
ability threshold vector pr (or threshold pr for joint interpretation), and a mean-payoff
value threshold vector sat. We consider the set of satisfaction strategies that ensure the
satisfaction semantics. Then the optimization of the expectation is considered with respect
to the satisfaction strategies. Note that if pr is 0, then the satisfaction strategies is the
set of all strategies and we obtain the traditional expectation semantics as a special case.
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We also consider important special cases of our problem, depending on whether there is a
single reward (mono-reward) or multiple rewards (multi-reward), and whether the proba-
bility threshold is pr = 1 (qualitative criteria) or the general case (quantitative criteria).
Specifically, we consider four cases:

(1) Mono-qual: a single reward function and qualitative satisfaction semantics;
(2) Mono-quant: a single reward function and quantitative satisfaction semantics;
(3) Multi-qual: multiple reward functions and qualitative satisfaction semantics;
(4) Multi-quant: multiple reward functions and quantitative satisfaction semantics.

Note that for multi-qual and mono cases, the two interpretations (conjunctive and joint) of
the satisfaction semantics coincide, whereas in the multi-quant problem (which is the most
general problem) we consider both the conjunctive and the joint interpretations, separately
(multi-quant-conjunctive, multi-quant-joint) as well as at once (multi-quant-conjunctive-
joint).

Motivation. The motivation to study the problem we consider is twofold. Firstly, it
presents a unifying approach that combines the two existing semantics for MDPs. Secondly
and more importantly, it allows us to consider the problem of optimization along with risk
aversion. A risk-averse strategy must ensure certain probabilistic guarantee on the payoff
function. The notion of risk aversion is captured by the satisfaction semantics, and thus the
problem we consider captures the notion of optimization under risk-averse strategies that
provide probabilistic guarantee. The notion of strong risk-aversion where the probability is
treated as an adversary is considered in [BFRR14], whereas we consider probabilistic (both
qualitative and quantitative) guarantee for risk aversion. We now illustrate our problem
with several examples.

Illustrative examples:

• For simple risk aversion, consider a single reward function modelling investment.
Positive reward stands for profit, negative for loss. We aim at maximizing the
expected long-run average while guaranteeing that it is non-negative with at least
95%. This is an instance of mono-quant with pr = 0.95, sat = 0.
• For more dimensions, consider the example [Put94, Problems 6.1, 8.17]. A vendor

assigns to each customer either a low or a high rank. Further, there is a decision
the vendor makes each year either to invest money into sending a catalogue to the
customer or not. Depending on the rank and on receiving a catalogue, the customer
spends different amounts for vendor’s products and the rank can change. The aim
is to maximize the expected profit provided the catalogue is almost surely sent with
frequency at most f . This is an instance of multi-qual. Further, one can extend this
example to only require that the catalogue frequency does not exceed f with 95%
probability, but 5% best customers may still receive catalogues very often (instance
of multi-quant).
• The following is again an instance of multi-quant. A gratis service for downloading

is offered as well as a premium one. For each we model the throughput as rewards
r1, r2. For the gratis service, expected throughput 1Mbps is guaranteed as well
as 60% connections running on at least 0.8Mbps. For the premium service, not
only have we a higher expectation of 10Mbps, but also 95% of the connections
are guaranteed to run on at least 5Mbps and 80% on even 8Mbps (satisfaction
constraints). In order to keep this guarantee, we may need to temporarily hire
resources from a cloud, whose cost is modelled as a reward r3. While satisfying
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the guarantee, we want to maximize the expectation of p2 · r2 − p3 · r3 where p2 is
the price per Mb at which the premium service is sold and p3 is the price at which
additional servers can be hired. Note that since the percentages above are different,
the constraints cannot be encoded using the joint interpretation, and conjunctive
interpretation is necessary.

The basic computational questions. In MDPs with multiple mean-payoff objectives,
different strategies may produce incomparable solutions. Thus, there is no “best” solution
in general. Informally, the set of achievable solutions is the set of all vectors v such that
there is a strategy that ensures the satisfaction semantics and that the expected mean-
payoff value vector under the strategy is at least v. The “trade-offs” among the goals
represented by the individual mean-payoff objectives are formally captured by the Pareto
curve, which consists of all maximal tuples (with respect to component-wise ordering) that
are not strictly dominated by any achievable solution. Pareto optimality has been studied in
cooperative game theory [Owe95] and in multi-criterion optimization and decision making
in both economics and engineering [Kos88, YC03, SCK04].

We study the following fundamental questions related to the properties of strategies
and algorithmic aspects in MDPs:

• Algorithmic complexity: What is the complexity of deciding whether a given vector
represents an achievable solution, and if the answer is yes, then compute a witness
strategy?
• Strategy complexity: What type of strategies is sufficient (and necessary) for achiev-

able solutions?
• Pareto-curve computation: Is it possible to compute an approximation of the Pareto

curve?

Our contributions. We provide comprehensive answers to the above questions. The main
highlights of our contributions are:

• Algorithmic complexity. We present algorithms for deciding whether a given vector
is an achievable solution and constructing a witness strategy. All our algorithms
are polynomial in the size of the MDP. Moreover, they are polynomial even in the
number of dimensions, except for multi-quant with conjunctive interpretation where
it is exponential.
• Strategy complexity. It is known that for both expectation and satisfaction seman-

tics with single reward, deterministic memoryless(∗) strategies are sufficient [FV97,
BBE10, BBC+14]. We show this carries over in the mono-qual case only. In contrast,
we show that for mono-quant both randomization and memory is necessary. For
randomized strategies, they can be stochastic-update, where the memory is updated
probabilistically, or deterministic-update, where the memory update is determinis-
tic. We provide precise bounds on the memory size of stochastic-update strategies.
Further, we show that for both mono-quant and multi-qual, deterministic-update
strategies require memory size that is dependent on the MDP. Finally, we also show
that deterministic-update strategies are sufficient even for multi-quant, thus extend-
ing the results of [BBC+14].

(∗)A strategy is memoryless if it is independent of the history, but depends only on the current state. A
strategy that is not deterministic is called randomized.
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• Pareto-curve computation. We show that in all cases with multiple rewards an ε-
approximation of the Pareto curve can be achieved in time polynomial in the size of
the MDP, exponential in the number of dimensions, and polynomial in 1

ε , for ε > 0.

In summary, we unify the two existing semantics, present comprehensive results related to
algorithmic and strategy complexities for the unifying semantics, and improve results for
the existing semantics.

Technical contributions. In the study of MDPs (with single or multiple rewards), the so-
lution approach is often by characterizing the solution as a set of linear constraints. Similar
to the previous works [CMH06, EKVY08, FKN+11, BBC+14] we also obtain our results by
showing that the set of achievable solutions can be represented by a set of linear constraints,
and from the linear constraints witness strategies for achievable solutions can be constructed.
However, previous work on the satisfaction semantics [BBC+14, RRS15] reduces the prob-
lem to invoking linear-programming solution for each maximal end-component and a sepa-
rate linear program to combine the partial results together. In contrast, we unify the solution
approaches for expectation and satisfaction and provide one complete linear program for
the whole problem. This in turn allows us to optimize the expectation while guarantee-
ing satisfaction. Further, this approach immediately yields a linear program where both
conjunctive and joint interpretations are combined, and we can optimize any linear com-
bination of expectations. Finally, we can also optimize the probabilistic guarantees while
ensuring the required expectation. The technical device to obtain one linear program is to
split the standard variables into several, depending on which subsets of constraints they
help to achieve. This causes technical complications that have to be dealt with making use
of conditional probability methods.

Related work. The study of Markov decision processes with multiple expectation ob-
jectives has been initiated in the area of applied probability theory, where it is known
as constrained MDPs [Put94, Alt99]. The attention in the study of constrained MDPs
has been mainly focused on restricted classes of MDPs, such as unichain MDPs, where
all states are visited infinitely often under any strategy. Such a restriction guarantees
the existence of memoryless optimal strategies. The more general problem of MDPs with
multiple mean-payoff objectives was first considered in [Cha07] and a complete picture
was presented in [BBC+14]. The expectation and satisfaction semantics was considered
in [BBC+14], and our work unifies the two different semantics for MDPs. For general
MDPs, [CMH06, CFW13] studied multiple discounted reward functions. MDPs with mul-
tiple ω-regular specifications were studied in [EKVY08]. It was shown that the Pareto
curve can be approximated in polynomial time in the size of MDP and exponential in the
number of specifications; the algorithm reduces the problem to MDPs with multiple reach-
ability specifications, which can be solved by multi-objective linear programming [PY00].
In [FKN+11], the results of [EKVY08] were extended to combine ω-regular and expected
total reward objectives. The problem of conjunctive satisfaction was introduced in [FKR95].
They present solution for only stationary (memoryless) strategies, and explicitly mention
that such strategies are not sufficient and a solution to the general problem would be very
useful. They also mention that it is unlikely to be a simple extension of the single di-
mensional case. Our results not only present the general solution, but we also present
results that combine both the conjunctive and joint satisfaction semantics along with the
expectation semantics. The multiple percentile are currently considered for various objec-
tives, such as mean-payoff, limsup, liminf, shortest path in [RRS15]. However, [RRS15]
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does not consider optimizing the expectation, whereas we consider maximizing expectation
along with satisfaction semantics. The notion of risks has been considered in MDPs with
discounted objectives [WL99], where the goal is to maximize (resp., minimize) the proba-
bility (risk) that the expected total discounted reward (resp., cost) is above (resp., below)
a threshold. The notion of strong risk aversion, where for risk the probabilistic choices are
treated instead as an adversary was considered in [BFRR14]. In [BFRR14] the problem
was considered for single reward for mean-payoff and shortest path. In contrast, though
inspired by [BFRR14], we consider risk aversion for multiple reward functions with proba-
bilistic guarantee (instead of adversarial guarantee), which is natural for MDPs. Moreover,
[BFRR14] generalizes mean-payoff games, for which no polynomial-time solution is known,
whereas in our case, we present polynomial-time algorithms for the single reward case and
in several cases of multiple rewards (see the first item of our contributions). Further, an
independent work [CR15] extends [BFRR14] to multiple dimensions, and they also consider
“beyond almost-sure threshold problem”, which corresponds to the multi-qual problem,
which is a special case of our solution. Finally, a very different notion of risk has been
considered in [BCFK13], where the goal is to optimize the expectation while ensuring low
variance. The problem has been considered only for single dimension, and no polynomial-
time algorithm is known.

2. Preliminaries

2.1. Basic definitions. We mostly follow the basic definitions of [BBC+14] with only
minor deviations. We use N,Q,R to denote the sets of positive integers, rational and real
numbers, respectively. For n ∈ N, we denote [n] = {1, . . . , n}. For a sequence ω = `1`2 · · ·
and n ∈ N, we denote the n-th element by ω[n].

Given two vectors v,w ∈ Rk, where k ∈ N, we write v ≥ w iff vi ≥ wi for all 1 ≤ i ≤ k,
where vi denotes the i-th component of vector v. Further, 1 denotes (1, . . . , 1), and 1

denotes Kronecker’s delta, i.e., 1x(x) = 1 and 1x(y) = 0 for y 6= x.
Finally, the set of all distributions over a countable set X is denoted by Dist(X), and

d ∈ Dist(X) is Dirac if d(x) = 1 for some x ∈ X, i.e., d = 1x.

Markov chains. A Markov chain is a tuple M = (L,P, µ) where L is a countable set of
locations, P : L → Dist(L) is a probabilistic transition function, and µ ∈ Dist(L) is the
initial probability distribution.

A run in M is an infinite sequence ω = `1`2 · · · of locations, a path in M is a finite
prefix of a run. Each path w in M determines the set Cone(w) consisting of all runs that
start with w. To M we associate the probability space (Runs,F ,P), where Runs is the set
of all runs in M , F is the σ-field generated by all Cone(w), and P is the unique probability

measure such that P(Cone(`1 · · · `k)) = µ(`1) ·
∏k−1
i=1 P (`i)(`i+1).

Markov decision processes. A Markov decision process (MDP) is a tupleG = (S,A,Act , δ, s0)
where S is a finite set of states, A is a finite set of actions, Act : S → 2A \ {∅} assigns to
each state s the set Act(s) of actions enabled in s so that {Act(s) | s ∈ S} is a partitioning
of A, δ : A → Dist(S) is a probabilistic transition function that given an action a gives a
probability distribution over the successor states, and s0 is the initial state. Note that we
consider that every action is enabled in exactly one state.
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A run in G is an infinite alternating sequence of states and actions ω = s1a1s2a2 · · ·
such that for all i ≥ 1, we have ai ∈ Act(si) and δ(ai)(si+1) > 0. A path of length k in G
is a finite prefix w = s1a1 · · · ak−1sk of a run in G.

Strategies and plays. The semantics of MDPs is defined using the notion of strategies.
Intuitively, a strategy in an MDP G is a “recipe” to choose actions. Usually, a strategy is
formally defined as a function σ : (SA)∗S → Dist(A) that given a finite path w, representing
the history of a play, gives a probability distribution over the actions enabled in the last
state. In this paper, we adopt a slightly different (though equivalent—see [BBC+14, Section
6]) definition, which is more convenient for our setting. Let M be a countable set of memory
elements. A strategy is a triple σ = (σu, σn, α), where σu : A × S × M → Dist(M) and
σn : S ×M→ Dist(A) are memory update and next move functions, respectively, and α is
the initial distribution on memory elements. We require that, for all (s,m) ∈ S ×M, the
distribution σn(s,m) assigns a positive value only to actions enabled at s, i.e. σn(s,m) ∈
Dist(Act(s)).

A play of G determined by a strategy σ is a Markov chain Gσ = (S × M × A,P, µ),
where

µ(s,m, a) = 1s0(s) · α(m) · σn(s,m)(a)

P (s,m, a)(s′,m′, a′) = δ(a)(s′) · σu(a, s′,m)(m′) · σn(s′,m′)(a′) .

Hence, Gσ starts in a location chosen randomly according to α and σn. In a current location
(s,m, a), the next action to be performed is a, hence the probability of entering s′ is δ(a)(s′).
The probability of updating the memory to m′ is σu(a, s′,m)(m′), and the probability of
selecting a′ as the next action is σn(s′,m′)(a′). Note that these choices are independent, and
thus we obtain the product above. The induced probability measure is denoted by Pσ and
when the initial state s is not clear from the context, we use Pσs to denote Pσ corresponding
to the MDP where the initial state is set to s. “Almost surely” or “almost all runs” refers to
happening with probability 1 according to this measure. The respective expected value of a
random variable f : Runs→ R is Eσs [f ] =

∫
Runs f dP

σ
s or Eσ[f ] =

∫
Runs f dP

σ for short. For
t ∈ N, random variables St, At return s, a, respectively, where (s,m, a) is the t-th location
on the run.

Strategy types. In general, a strategy may use infinite memory M, and both σu and σn
may randomize. The strategy is

• deterministic-update, if α is Dirac and the memory update function gives a Dirac
distribution for every argument;
• stochastic-update, if it is not necessarily deterministic-update;
• deterministic, if it is deterministic-update and the next move function gives a Dirac

distribution for every argument;
• randomized, if it is not necessarily deterministic.

We also classify the strategies according to the size of memory they use. The important
subclasses of strategies are

• memoryless (or 1-memory) strategies, in which M is a singleton,
• n-memory strategies, in which M has exactly n elements,
• finite-memory strategies, in which M is finite, and
• Markov strategies, in which M = N and σu(·, ·, n)(n+ 1) = 1.

Markov strategies have a nice structure: they only need a counter and to know the current
state [FV97].
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End components. A set T ∪B with ∅ 6= T ⊆ S and B ⊆
⋃
t∈T Act(t) is an end component

of G if (1) for all a ∈ B, whenever δ(a)(s′) > 0 then s′ ∈ T ; and (2) for all s, t ∈ T there is a
path ω = s1a1 · · · ak−1sk such that s1 = s, sk = t, and all states and actions that appear in
ω belong to T and B, respectively. An end component T ∪B is a maximal end component
(MEC) if it is maximal with respect to the subset ordering. Given an MDP, the set of
MECs is denoted by MEC. Finally, if (S,A) is a MEC, we call the MDP strongly connected.

Remark 2.1. The maximal end component (MEC) decomposition of an MDP, i.e., the
computation of MEC, can be achieved in polynomial time [CY95]. For improved algorithms
for general MDPs and various special cases see [CH11, CH12, CH14, CL13].

Analogously, for a finite-memory strategy σ, a bottom strongly connected component
(BSCC) of Gσ is a subset of locations W ⊆ S ×M×A such that (i) for all `1 ∈ W and
`2 ∈ S ×M×A, if there is a path from `1 to `2 then `2 ∈ W , and (ii) for all `1, `2 ∈ W
we have a path from `1 to `2. Every BSCC W determines a unique end component {s, a |
(s,m, a) ∈ W} of G, and we sometimes do not strictly distinguish between W and its
associated end component.

For C ∈ MEC, let

ΩC = {ω ∈ Runs | ∃n0 : ∀n > n0 : ω[n] ∈ C}
denote the set of runs with a suffix in C. Similarly, we define ΩD for a BSCCD. Since almost
every run eventually remains in a MEC, e.g. [CY98, Proposition 3.1], {ΩC | C ∈ MEC}
“partitions” almost all runs. More precisely, for every strategy, each run belongs to exactly
one ΩC almost surely; i.e. a run never belongs to two ΩC ’s and for every σ, we have
Pσ
[⋃

C∈MEC ΩC

]
= 1. Therefore, actions that are not in any MEC are almost surely taken

only finitely many times.

2.2. Problem statement. In order to define our problem, we first briefly recall how long-
run average can be defined. Let G = (S,A,Act , δ, s0) be an MDP, n ∈ N and r : A→ Qn an
n-dimensional reward function. Since the random variable given by the limit-average func-
tion lr(r) = limT→∞

1
T

∑T
t=1 r(At) may be undefined for some runs, we consider maximizing

the respective point-wise limit inferior:

lrinf(r) = lim inf
T→∞

1

T

T∑
t=1

r(At)

i.e. for each i ∈ [n] and ω ∈ Runs, we have lrinf(r)(ω)i = lim infT→∞
1
T

∑T
t=1 r(At(ω))i.

Similarly, we could define lrsup(r) = lim supT→∞
1
T

∑T
t=1 r(At). However, maximizing limit

superior is less interesting, see [BBC+14]. Further, the respective minimizing problems can
be solved by maximization with opposite rewards.

This paper is concerned with the following tasks:
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Realizability (multi-quant-conjunctive): Given an MDP, n ∈ N, r : A → Qn,
exp ∈ Qn, sat ∈ Qn,pr ∈ ([0, 1] ∩Q)n, decide whether there is a strategy σ such that
∀i ∈ [n]

• Eσ[lrinf(r)i] ≥ expi , (EXP)

• Pσ[lrinf(r)i ≥ sati] ≥ pri . (conjunctive-SAT)

Witness strategy synthesis: If realizable, construct a strategy satisfying the require-
ments.

ε-witness strategy synthesis: If realizable, construct a strategy satisfying the re-
quirements with exp− ε · 1 and sat− ε · 1.

We are mostly interested in (multi-quant-conjunctive) as it is the core of all other
discussed problems. However, we also consider the following important special cases:

(multi-qual) : pr = 1 ,
(mono-quant): n = 1 ,
(mono-qual) : n = 1,pr = 1 .

Additionaly, we are also interested in variants of (multi-quant-conjunctive). Firstly,
in (multi-quant-joint), the constraint (conjunctive-SAT) is replaced by

Pσ[lrinf(r) ≥ sat] ≥ pr (joint-SAT)

for pr ∈ [0, 1]. Secondly, (multi-quant-conjunctive-joint) arises by adding (joint-SAT)

constraint Pσ
[
lrinf(r) ≥ s̃at

]
≥ p̃r for p̃r ∈ [0, 1] ∩ Q and s̃at ∈ Qn. The relationship

between the problems is depicted in Fig. 1.

(multi-quant-conjunctive-joint)

(multi-quant-conjunctive) (multi-quant-joint)

(multi-qual) (mono-quant)

(mono-qual)

Figure 1. Relationship of the defined problems with lower problems being
specializations of the higher ones

Furthermore, each of the three constraints (EXP), (conjunctive-SAT), and (joint-SAT)
defines the respective decision problem given solely by that constraint. Each of these three
problems is a special case of (multi-quant-conjunctive-joint) where the other constraints
are trivial (e.g. requiring the average reward be greater or equal to the minimum reward of
the MDP). Finally, apart from decision problems, one often considers optimization prob-
lems, where the task is to maximize the parameters so that the answer to the decision
problem is still positive. Observe that since optimization in multi-dimensional setting can-
not in general produce a single “best” solution, one can consider Pareto curves, which are
sets of all component-wise optimal and mutually incomparable solutions to the optimization
problem.
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Example 2.2 (Running example). We illustrate (multi-quant-conjunctive) with an
MDP of Fig. 2 with n = 2, rewards as depicted, and exp = (1.1, 0.5), sat = (0.5, 0.5),pr =
(0.8, 0.8). Observe that rewards of actions ` and r are irrelevant as these actions can almost
surely be taken only finitely many times.

s

u v w

`
0.5

a, r(a) = (4, 0)

0.5
r

b, r(b) = (1, 0)

c, r(c) = (0, 0)

d, r(d) = (0, 1)

e, r(e) = (0, 0)

Figure 2. An MDP with two-dimensional rewards

This instance is realizable and the witness strategy has the following properties. The
strategy plays three “kinds” of runs. Firstly, due to pr = (0.8, 0.8), with probability at least
0.8 + 0.8 − 1 = 0.6 runs have to jointly surpass both satisfaction thresholds (at the same
time), i.e. exceed the vector (0.5, 0.5). This is only possible in the right MEC by playing
each b and d half of the time and switching between them with a decreasing frequency, so
that the frequency of c, e is in the limit 0. Secondly, in order to ensure the expectation
of the first reward, we reach the left MEC with probability 0.2 and play a. Thirdly, with
probability 0.2 we reach again the right MEC but only play d with frequency 1, ensuring
the expectation of the second reward.

In order to play these three kinds of runs, in the first step in s we take ` with probability
0.4 (arriving to u with probability 0.2) and r with probability 0.6, and if we return back
to s we play r with probability 1. If we reach the MEC on the right, we toss a biased coin
and with probability 0.25 we go to w and play the third kind of runs, and with probability
0.75 play the first kind of runs.

Observe that although both the expectation and satisfaction value thresholds for the
second reward are 0.5, the only solution is not to play all runs with this reward, but some
with a lower one and some with a higher one. Also note that each of the three types of
runs must be present in any witness strategy. Most importantly, in the MEC at state w we
have to play in two different ways, depending on which subset of value thresholds we intend
to satisfy on each run. Also note that in order to do that, we use memory with stochastic
update. 4

3. Solution

In this section, we briefly recall a solution to a previously considered problem and show
our solution to the more general (multi-quant-conjunctive) realizability problem, along
with an overview of the correctness proof. The solution to the other variants is derived and
a detailed analysis of the special cases and the respective complexities is given in Section 6.
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3.1. Previous results.

3.1.1. Linear programming for expectation semantics. In [BBC+14], a solution to the (EXP)
constraint has been given. The existence of a witness strategy was shown equivalent to the
existence of a solution to the linear program in Fig. 3.

Requiring all variables ya, ys, xa for a ∈ A, s ∈ S be non-negative, the program is the
following:

(1) transient flow: for s ∈ S

1s0(s) +
∑
a∈A

ya · δ(a)(s) =
∑

a∈Act(s)

ya + ys

(2) almost-sure switching to recurrent behaviour:∑
s∈C∈MEC

ys = 1

(3) probability of switching in a MEC is the frequency of using its actions: for C ∈ MEC∑
s∈C

ys =
∑
a∈C

xa

(4) recurrent flow: for s ∈ S∑
a∈A

xa · δ(a)(s) =
∑

a∈Act(s)

xa

(5) expected rewards: ∑
a∈A

xa · r ≥ exp

Figure 3. Linear program of [BBC+14] for (EXP)

Intuitively, xa is the expected frequency of using a on the long run; Equation 4 thus
expresses the recurrent flow in MECs and Equation 5 the expected long-run average reward.
However, before we can play according to x-variables, we have to reach MECs and switch
from the transient behaviour to this recurrent behaviour. Equation 1 expresses the transient
flow before switching. Variables ya are the expected number of using a until we switch to
the recurrent behaviour in MECs and ys is the probability of this switch upon reaching s.
To relate y- and x-variables, Equation 3 states that the probability to switch within a given
MEC is the same whether viewed from the transient or recurrent flow perspective. Actually,
one could eliminate variables ys and use directly xa in Equation 1 and leave out Equation 3
completely, in the spirit of [Put94]. However, the form with explicit ys is more convenient
for correctness proofs. Finally, Equation 2 states that switching happens almost surely.
Note that summing Equation 1 over all s ∈ S yields

∑
s∈S ys = 1. Since ys can be shown

to equal 0 for state s not in MEC, Equation 2 is redundant, but again more convenient.
The solution above builds on the work [EKVY08], which studied MDPs with multiple

reachability and ω-regular specifications. It has inspired Equation 1 as well as computation
of the Pareto curve. It was shown that the Pareto curve can be approximated in polynomial
time in the size of MDP and exponential in the number of specifications; the algorithm



12 KRISHNENDU CHATTERJEE, ZUZANA KŘETÍNSKÁ, AND JAN KŘETÍNSKÝ

reduces the problem to MDPs with multiple reachability specifications, which can be solved
by multi-objective linear programming [PY00].

3.1.2. Linear programming for satisfaction semantics. Apart from considering (EXP) sep-
arately, [BBC+14] also considers the constraint (joint-SAT) separately. While the former
was solved using the linear program above, the latter required a reduction to one linear
program per each MEC and another one to combine the results. More precisely, for each
MEC we first decide whether there is a strategy exceeding the threshold. Second, we max-
imize the probability to reach these MECs. Similarly, in [RRS15], for each MEC we decide
for every subset of thresholds whether there is a strategy exceeding them. The results are
again combined in a linear program for reachability.

In contrast, we shall provide a single linear program for the (multi-quant-conjunctive)
problem, unifying the solution approaches for expectation and satisfaction problem. This
in turn allows us to optimize the expectation while guaranteeing satisfaction. Further, this
approach immediately yields a linear program where both conjunctive and joint interpreta-
tions are combined, and we can optimize any linear combination of expectations. Finally,
we can also optimize the probabilistic guarantees while ensuring the required expectation.
For greater detail, see Section 3.4.

3.2. Our unifying solution. There are two main tricks to incorporate the satisfaction
semantics. The first one is to ensure that a flow exceeds the value threshold. We first
explain it on the qualitative case.

3.2.1. Solution to (multi-qual). When the additional constraint (SAT) is added so that
almost all runs satisfy lrinf(r) ≥ sat, then the linear program of Fig. 3 shall be extended
with the following additional equation:

6. almost-sure satisfaction: for C ∈ MEC∑
a∈C

xa · r(a) ≥
∑
a∈C

xa · sat

Note that xa represents the absolute frequency of playing a (not relative within the
MEC). Intuitively, Equation 6 thus requires in each MEC the average reward be at least
sat. Here we rely on the non-trivial fact, that in a MEC, actions can be played on almost
all runs with the given frequencies for any flow, see Corollary 5.5.

The second trick ensures that each conjunct in the satisfaction constraint can be handled
separately and, consequently, that the probability threshold can be checked.

3.2.2. Solution to (multi-quant-conjunctive). When each value threshold sati comes
with a non-trivial probability threshold pri, some runs may and some may not have the
long-run average reward exceeding sati. In order to speak about each group, we split the
set of runs, for each reward, into parts which do and which do not exceed the threshold.

Technically, we keep Equations 1–5 as well as 6, but split xa into xa,N for N ⊆ [n],
where N describes the subset of exceeded thresholds; similarly for ys. The linear program
L then takes the form displayed in Fig. 4.

Intuitively, only the runs in the appropriate “N -classes” are required in Equation 6 to
have long-run average rewards exceeding the satisfaction value threshold. However, only
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Requiring all variables ya, ys,N , xa,N for a ∈ A, s ∈ S,N ⊆ [n] be non-negative, the
program is the following:

(1) transient flow: for s ∈ S

1s0(s) +
∑
a∈A

ya · δ(a)(s) =
∑

a∈Act(s)

ya +
∑
N⊆[n]

ys,N

(2) almost-sure switching to recurrent behaviour:∑
s∈C∈MEC
N⊆[n]

ys,N = 1

(3) probability of switching in a MEC is the frequency of using its actions: for
C ∈ MEC, N ⊆ [n] ∑

s∈C
ys,N =

∑
a∈C

xa,N

(4) recurrent flow: for s ∈ S,N ⊆ [n]∑
a∈A

xa,N · δ(a)(s) =
∑

a∈Act(s)

xa,N

(5) expected rewards: ∑
a∈A,
N⊆[n]

xa,N · r(a) ≥ exp

(6) commitment to satisfaction: for C ∈ MEC, N ⊆ [n], i ∈ N∑
a∈C

xa,N · r(a)i ≥
∑
a∈C

xa,N · sati

(7) satisfaction: for i ∈ [n] ∑
a∈A,

N⊆[n]:i∈N

xa,N ≥ pri

Figure 4. Linear program L for (multi-quant-conjunctive)

the appropriate “N -classes” are considered for surpassing the probabilistic threshold in
Equation 7.

Theorem 3.1. Given a (multi-quant-conjunctive) realizability problem, the respective
system L (in Fig. 4) satisfies the following:

(1) The system L is constructible and solvable in time polynomial in the size of G and
exponential in n.

(2) Every witness strategy induces a solution to L.
(3) Every solution to L effectively induces a witness strategy.

Example 3.2 (Running example). The linear program L for Example 2.2 is shown in
Appendix A. Here we spell out some useful points we need later: Equation 1 for state s

1 + 0.5y` = y` + yr + ys,∅ + ys,{1} + ys,{2} + ys,{1,2}
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expresses the Kirchhoff’s law for the flow through the initial state. Equation 6 for the MEC
C = {v, w, b, c, d, e}, N = {1, 2}, i = 1

xb,{1,2} · 1 ≥ (xb,{1,2} + xc,{1,2} + xd,{1,2} + xe,{1,2}) · 0.5
expresses that runs ending up in C and satisfying both satisfaction value thresholds have
to use action b at least half of the time. The same holds for d and thus actions c, e must
be played with zero frequency on these runs. Equation 7 for i = 1 sums up the gain of all
actions on runs that have committed to exceed the satisfaction value threshold either for
the first reward, or for the first and the second reward.

Moreover, we show later in Lemma 5.1, that variables x`,N , xr,N for any N ⊆ [n] can
be omitted from the system as they are zero for any solution. Intuitively, transient actions
cannot be used in the recurrent flows. 4

3.3. Proof overview. Here, we briefly describe the main ideas of the proof of Theorem 3.1.

The first point. The complexity follows immediately from the syntax of L and the exis-
tence of a polynomial-time algorithm for linear programming [Sch86].

The second point. Given a witness strategy σ, we construct values for variables so that
a valid solution is obtained. The technical details can be found in Section 4.

The proof of [BBC+14, Proposition 4.5], which inspires our proof, sets the values of xa
to be the expected frequency of using a by σ, i.e.

lim
T→∞

1

T

T∑
t=1

Pσ[At = a]

Since this Cesaro limit (expected frequency) may not be defined, a suitable value f(a)
between the limit inferior and superior has to be taken. In contrast to the approach of
[BBC+14], we need to distinguish among runs exceeding various subsets of the value thresh-
olds sati, i ∈ [n]. For N ⊆ [n], we call a run N -good if lrinf(r)i ≥ sati for exactly all i ∈ N .
N -good runs thus jointly satisfy the N -subset of the constraints. Now instead of using
frequencies f(a) of each action a, we use frequencies fN (a) of the action a on N -good runs
separately, for each N . This requires some careful conditional probability considerations,
in particular for Equations 1, 4, 6 and 7.

Example 3.3 (Running example). The strategy of Example 2.2 induces the following x-
values. For instance, action a is played with a frequency 1 on runs of measure 0.2, hence
xa,{1} = 0.2 and xa,∅ = xa,{2} = xa,{1,2} = 0. Action d is played with frequency 0.5 on runs
of measure 0.6 exceeding both value thresholds, and with frequency 1 on runs of measure
0.2 exceeding only the second value threshold. Consequently, xd,{1,2} = 0.5 · 0.6 = 0.3 and
xd,{2} = 0.2 whereas xd,∅ = xd,{1} = 0. 4

Values for y-variables are derived from the expected number of taking actions during the
“transient” behaviour of the strategy. Since the expectation may be infinite in general, an
equivalent strategy is constructed, which is memoryless in the transient part, but switches
to the recurrent behaviour in the same way. Then the expectations are finite and the result
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of [EKVY08] yields values satisfying the transient flow equation. Further, similarly as for x-
values, instead of simply switching to recurrent behaviour in a particular MEC, we consider
switching in a MEC and the set N for which the following recurrent behaviour is N -good.

Example 3.4 (Running example). The strategy of Example 2.2 plays in s for the first time
` with probability 0.4 and r with 0.6, and next time r with probability 1. This is equivalent
to a memoryless strategy playing ` with 1/3 and r with 2/3. Indeed, both ensure reaching
the left MEC with 0.2 and the right one with 0.8. Consequently, for instance for r, the
expected number of taking this action is

yr =
2

3
+

1

6
· 2

3
+

(
1

6

)2

· 2

3
+ · · · = 5

6
.

The values yu,{1} = 0.2, yv,{1,2} = 0.6, yv,{2} = 0.2 are given by the probability measures of
each “kind” of runs (see Example 2.2). 4

The third point. Given a solution to L, we construct a witness strategy σ, which has a
particular structure. The technical details can be found in Section 5. The general pattern
follows the proof method of [BBC+14, Proposition 4.5], but there are several important
differences.

First, a strategy is designed to behave in a MEC so that the frequencies of actions
match the x-values. The structure of the proof differs here and we focus on underpinning
the following key principle. Note that the flow described by x-variables has in general
several disconnected components within the MEC, and thus actions connecting them must
not be played with positive frequency. Yet there are strategies that on almost all runs
play actions of all components with exactly the given frequencies. The trick is to play the
“connecting” actions with an increasingly negligible frequency. As a result, the strategy
visits all the states of the MEC infinitely often, as opposed to strategies generated from the
linear program in Fig. 3 in [BBC+14], which is convenient for the analysis.

Second, the construction of the recurrent part of the strategy as well as switching to it
has to reflect again the different parts of L for different N , resulting in N -good behaviours.

Example 3.5 (Running example). A solution with xb,{1,2} = 0.3, xd,{1,2} = 0.3 induces two
disconnected flows. Each is an isolated loop, yet we can play a strategy that plays both
actions exactly half of the time. We achieve this by playing actions c, e with probability
1/2k in the k−th step. In Section 5 we discuss the construction of the strategy from the
solution in greater detail, necessary for later complexity discussion. 4

3.4. Important aspects of our approach and its consequences. We now explain
some important conceptual aspects of our result. The previous proof idea from [BBC+14]
is as follows: (1) The problem for expectation semantics is solved by a linear program.
(2) The problem for satisfaction semantics is solved as follows: each MEC is considered,
solved separately using a linear program, and then a reachability problem is solved using a
different linear program. In comparison, our proof has two conceptual steps. Since our goal
is to optimize the expectation (which intuitively requires a linear program), the first step is
to come up with a single linear program for satisfaction semantics. The second step is to
come up with a linear program that unifies the linear program for expectation semantics and
the linear program for satisfaction semantics, allowing us to maximize expectation while
ensuring satisfaction.
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Since our solution captures all the frequencies separately within one linear program, we
can work with all the flows at once. This has several consequences:

• While all the hard constraints are given as a part of the problem, we can easily find
maximal solution with respect to a weighted reward expectation, i.e. w · lrinf(r),
where w is the vector of weights for each reward dimension. Indeed, it can be ex-
pressed as the objective function w ·

∑
a,N xa,N ·r(a) of the linear program. Further,

it is also relevant for the construction of the Pareto curve.
• We can also optimize satisfaction guarantees for given expectation thresholds. For

more detail, see Section 8.
• We can easily add more satisfaction constraints (with different thresholds) on the

same resource as well as add joint constraints of the form Pσ
[∧

ki
lrinf(rki) ≥ pr

]
.

Both can be solved by adding a copy of Equation 7 for each subset N of all the
constraints.
• The number of variables used in the linear program immediately yields an upper

bound on the computational complexity of various subclasses of the general problem.
Several polynomial bounds are proven in Section 6. 4

4. Proof of Theorem 3.1: Witness strategy induces solution to L

Now we present the technical proof of Theorem 3.1. We start with the second point and
show how to construct a solution to L from a witness strategy.

Let σ be a strategy such that ∀i ∈ [n]

• Pσ[lrinf(r)i ≥ sati] ≥ pri
• Eσ[lrinf(r)i] ≥ expi

We construct a solution to the system L. The proof method roughly follows that of
[BBC+14, Proposition 4.5]. However, separate flows for “N -good” runs require some careful
conditional probability considerations, in particular for Equations 4, 6 and 7.

4.1. Recurrent behaviour and Equations 4–7. We start with constructing values for
variables xa,N , a ∈ A,N ⊆ [n].

In general, the frequencies of the actions may not be well defined, because the defining
limits may not exist. Further, it may be unavoidable to have different frequencies for several
sets of runs of positive measure. There are two tricks to overcome this difficulty. Firstly,
we partition the runs into several classes depending on which parts of the objective they
achieve. Secondly, within each class we pick suitable values lying between lrinf(r) and
lrsup(r) of these runs. In order to achieve the first point, we define for N ⊆ [n],

ΩN = {ω ∈ Runs | ∀i ∈ N : lrinf(r)(ω)i ≥ sati ∧ ∀i /∈ N : lrinf(r)(ω)i < sati}
Then ΩN , N ⊆ [n] form a partitioning of Runs. Further, observe that runs of ΩN are
the runs where joint satisfaction holds, for all rewards i ∈ N . This is important for the
algorithm for (multi-quant-joint) from Section 6.

In order to achieve the second point, we define fN (a), for every a, to be lying between

values lim infT→∞
1
T

∑T
t=1 Pσ[At = a ∩ ΩN ] and lim supT→∞

1
T

∑T
t=1 Pσ[At = a ∩ ΩN ], which

can be safely substituted for xa,N in L. Let A be written as {a1, a2, . . . , a|A|} and let us
first consider the case when Pσ[ΩN ] > 0. Since every bounded infinite sequence contains an
infinite convergent subsequence, there is an increasing sequence of indices, T 1

0 , T
1
1 , T

1
2 . . .,
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such that lim`→∞
1
T 1
`

∑T 1
`
t=1 Pσ[At = a1 | ΩN ] is well defined. Then we can choose a subse-

quence T 2
0 , T

2
1 , T

2
2 . . . of the sequence T 1

0 , T
1
1 , T

1
2 . . . so that lim`→∞

1
T 1
`

∑T 1
`
t=1 Pσ[At = a1 | ΩN ]

is well defined, too. We continue this process for all actions and finally define the sequence

T0, T1, T2 . . . to be T
|A|
0 , T

|A|
1 , T

|A|
2 . . .. Consequently, for each action a ∈ A, the following

limit exists

fN (a) := lim
`→∞

1

T`

T∑̀
t=1

Pσ[At = a | ΩN ] · Pσ[ΩN ]

and we set for all a ∈ A
xa,N := fN (a)

Finally, for N such that Pσ[ΩN ] = 0, we set xa,N := 0. Note that since actions not in MECs
are almost surely taken only finitely many times, we have

xa,N = 0 for a /∈
⋃

MEC, N ⊆ [n] (4.1)

We show that (in)equations 4–7 of L are satisfied.

Equation 4. For N ⊆ [n], t ∈ N, a ∈ A, s ∈ S, let

∆N
t (a)(s) := Pσ[St+1 = s | At = a, ΩN ]

denote the “transition probability” at time t restricted to runs in ΩN . In general, ∆N
i (a)(s)

may be different from δ(a)(s). However, we show that if we use the action a with positive
frequency then ∆N

i (a)(s) approximates δ(a)(s).

Example 4.1. Consider an action a with δ(a)(u) = 0.5. Therefore, we have Pσ[S2 = u | A1 = a] =
0.5. It may well be that for some set Ω ⊆ Runs we have Pσ[S2 = u | A1 = a, Ω] = 1, but
then Pσ[Ω] ≤ 0.5. Similarly, if Pσ[S2 = u | A1 = a, Ω] = Pσ[S3 = u | A2 = a, Ω] = 1 then
Pσ[Ω] ≤ 0.25, and so on. In general, whenever Pσ[Ω] > 0, the transition probabilities on Ω
cannot differ from the actual transition probabilities too much all the time. 4

u va, r(a) = 1

0.5 0.5

b, r(b) = 0

Figure 5. An MDP illustrating ∆

We first consider a simpler problem:

Lemma 4.2. Let (∆t)t∈N be i.i.d. Bernoulli variables with expectation δ = E[∆t]. Then
for any event Ω with P[Ω] > 0, we have lim

t→∞
EΩ[∆t] = δ.
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Proof. For a contradiction, let w.l.o.g. lim supt→∞ EΩ[∆t] = δ+3ε. (If lim supt→∞ EΩ[∆t] <
δ, we can consider the variables 1−∆t with this property). Moreover, we may safely assume
that EΩ[∆t] ≥ δ + 2ε for all t ∈ N, otherwise we consider the respective subsequence. Let

Highi ⊆ Ω be the set of runs of Ω such that 1
i

∑i
t=1 ∆t > δ + ε and similarly Normal i ⊆ Ω

be the set of runs of Ω such that 1
i

∑i
t=1 ∆t ≤ δ+ ε. Clearly, Ω = Highi]Normal i for every

i. Then

δ + 2ε ≤ 1

i

i∑
t=1

EΩ[∆t] =
1

i
EΩ

[
i∑
t=1

∆t

]

=
1
iEHighi [

∑i
t=1 ∆t] · P[Highi] + 1

iENormali [
∑i

t=1 ∆t] · P[Normal i]

P[Highi] + P[Normal i]

≤ 1 · P[Highi] + (δ + ε) · P[Normal i]

P[Highi] + P[Normal i]

Altogether, by comparing the first and the last expression, we get

P[Normal i] ≤
1− δ − 2ε

ε
· P[Highi] (4.2)

where the fraction is constant for all i. Since by the law of large numbers limi→∞ P[Highi] =
0, we obtain limi→∞ P[Normal i] = 0 and thus P[Ω] = 0, a contradiction.

Now we apply the preceding lemma to MDPs:

Lemma 4.3. Let N ⊆ [n] be such that Pσ[ΩN ] > 0. Then for every a ∈ A, s ∈ S, we have

lim
t→∞

Pσ[At = a | ΩN ] · |∆N
t (a)(s)− δ(a)(s)| = 0.

Proof plan. Note that if Pσ[At = a | ΩN ] = 1 for all t then the result follows directly
from the previous lemma where we set ∆t(ω) to 1 if St+1 = s and 0 otherwise. Indeed,
then E[∆t] = δ(a)(s) and EΩN [∆t] = ∆N

t (a)(s). Consequently, limt→∞ Pσ[At = a | ΩN ] ·
|∆N

t (a)(s)− δ(a)(s)| = 1 · 0.
In the general case, the probability of taking a on the runs can vary over time. In

order to cope with that, we consider sets I ⊂ N of positions where a is taken with high
enough probability (i.e., in “many” runs). The first step of the proof is thus to derive (4.3),
an analogue of (4.2), but now relativized to positions in I. In the previous lemma, the
second step consisted in applying the law of large numbers to conclude that probability of
overly high preference of some outcome has zero probability, causing a contradiction with
(4.2). In this proof, the second step will require more math to conclude that, due to the
relativization.

Proof. Suppose for a contradiction, that for some a ∈ A, s ∈ S there are infinitely many
t for which Pσ[At = a | ΩN ] · |∆N

t (a)(s) − δ(a)(s)| > ξ for some ξ > 0. Denote the set of
these t’s by T . Since both factors are bounded by 0 and 1, there are ζ > 0 and ε > 0 such
that for all t ∈ T we have Pσ[At = a | ΩN ] > ζ and w.l.o.g. ∆N

t (a)(s) > δ(a)(s) + 2ε (if
∆N
t (a)(s) < δ(a)(s) then there is another successor s′ of a with this property). Consequently,

for every t ∈ T , we have

Pσ[ΩN ∩At = a ∩ St+1 = s]

Pσ[ΩN ∩At = a]
> δ(a)(s) + 2ε
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First step. Now we derive (4.3), a version of (4.2) relativized to finite sets I ⊆ T . The
positive probability of taking a in these positions guarantees that overly high preference of
the outcome s is well defined.

Formally, similarly to the previous inequality for each t ∈ T , the same holds for the
average over any finite set of indices I ⊆ T :

δ(a)(s) + 2ε <

∑
t∈I Pσ[ΩN ∩At = a ∩ St+1 = s]∑
t∈I Pσ[ΩN ∩At = a]

= (∗)

Denoting

i-Tries-In-I = {ω ∈ ΩN | |{t ∈ I | At = a}| = i}
i-Successes-In-I = {ω ∈ ΩN | |{t ∈ I | At = a ∩ St+1 = s}| = i}

we can rewrite the term (∗) by grouping runs with same “frequencies” as

(∗) =

∑|I|
i=1 i · Pσ[i-Successes-In-I]∑|I|
i=1 i · Pσ[i-Tries-In-I]

= (∗∗)

Similarly to the previous lemma, we introduce runs with “success rate” higher and lower
than δ(a)(s) + ε, now relative to the indices of I. Formally,

HighIi = i-Tries-In-I ∩
⋃

k>i·
(
δ(a)(s)+ε

) k-Successes-In-I

Normal Ii = i-Tries-In-I ∩
⋃

k≤i·
(
δ(a)(s)+ε

) k-Successes-In-I

allows us to rewrite

(∗∗) =

∑|I|
i=1(i ·HighRatei) · Pσ

[
HighIi

]
+
∑|I|

i=1(i ·NormalRatei) · Pσ
[
Normal Ii

]∑|I|
i=1 i · Pσ

[
HighIi

]
+
∑|I|

i=1 i · Pσ
[
Normal Ii

] = (∗∗∗)

where each HighRatei ∈ (δ(a)(s) + ε, 1] and NormalRatei ∈ [0, δ(a)(s) + ε] are the average
portions of “successes” among the “tries” in the respective HighIi and Normal Ii . Hence we
can safely use the upper bounds to show

(∗∗∗) ≤
1 ·
∑|I|

i=1 i · Pσ
[
HighIi

]
+ (δ(a)(s) + ε) ·

∑|I|
i=1 i · Pσ

[
Normal Ii

]∑|I|
i=1 i · Pσ

[
HighIi

]
+
∑|I|

i=1 i · Pσ
[
Normal Ii

] = (∗∗∗∗)

Since (∗∗∗∗) ≥ (∗) ≥ δ(a)(s) + 2ε, we get by the same computation as for obtaining (4.2)

|I|∑
i=1

i · Pσ
[
Normal Ii

]
≤ 1− δ − 2ε

ε
·
|I|∑
i=1

i · Pσ
[
HighIi

]
(4.3)

for every finite I ⊆ T .

Second step. Now we consider particular I’s leading to a contradiction. Let T be writ-
ten as {t1, t2, . . .} so that t1 < t2 < · · · . For m < n, we consider finite subsets Inm =
{tm, tm+1, . . . , tn} of T and will prove that

lim
m→∞

lim
n→∞

|Inm|∑
i=1

i · Pσ
[
High

Inm
i

]
= 0 (4.4)
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As a consequence of (4.3) we obtain also limm→∞ limn→∞
∑|Inm|

i=1 i · Pσ
[
Normal

Inm
i

]
= 0 and

thus limm→∞ limn→∞
∑|Inm|

i=1 i·Pσ[i-Tries-In-Inm] = 0, i.e. with growing m the average number
of tries after m approaches 0, a contradiction with Pσ[At = a | ΩN ] > ζ for infinitely many
t and Pσ[ΩN ] > 0.

It remains to prove (4.4). Intuitively, we consider index sets that start later (at position
m→∞) to avoid initial potentially large elements. Summands with high i’s, i.e. runs with
many tries, below denoted by C, will be shown negligible by the central limit theorem (in
the previous lemma the law of large numbers was sufficient). Further, we will have to argue
that even summands with low i’s are small for high enough m. This is due to the fact that
either a is taken frequently enough on some runs (A) or for high enough indices not any
more on the other runs (B).

Formally, let Inf = ΩN ∩ {At = a for infinitely many t} and Fin≥k = ΩN ∩ {At =

a for only finitely many t}∩{At = a for some t ≥ k}. We split the sum
∑|Inm|

i=1 i·Pσ
[
High

Inm
i

]
into
middle(m)∑

i=1

i · Pσ
[
High

Inm
i ∩ Inf

]
︸ ︷︷ ︸

A

+

middle(m)∑
i=1

i · Pσ
[
High

Inm
i ∩ Fin≥m

]
︸ ︷︷ ︸

B

+

|Inm|∑
i=middle(m)+1

i · Pσ
[
High

Inm
i

]
︸ ︷︷ ︸

C

by defining an appropriate middle : N→ N. We show that each term approaches zero.

A: Observe that for every i and m, we have limn→∞ Pσ[i-Tries-In-Inm ∩ Inf ] = 0. Hence
also limn→∞A = 0 for every m and irrespective of the choice of middle(m), and
thus limm→∞ limn→∞A = 0.

B: We define middle(m) to be the largest number such that
∑middle(m)

i=1 i ·Pσ[Fin≥m] <
1/m. This trivially ensures limm→∞ B ≤ limm→∞ 1/m = 0.

C: Since limm→∞ Pσ[Fin≥m] = 0, we obtain by the definition of middle that for m→∞
also middle(m)→∞. Consequently, it is sufficient to prove that

lim
n→∞

|Inm|∑
i=k

i · Pσ
[
High

Inm
i

]
→ 0 for k →∞ uniformly for all m. (4.5)

Fix an arbitrary m. Let Xj denote the indicator random variable of the event that
jth use of action a, when looking only at time points tm, tm+1, tm+2 . . ., resulted in
the successor s. Precisely, let Tj be an auxiliary random variable with value t` such
that |{q | m ≤ q ≤ `, Atq = a}| = j and Atq = a; then Xj is 1 if STj+1 = s and 0
otherwise. Due to the Markov property, Xj are Bernoulli i.i.d. with mean δ(a)(s).
Further,

High
Inm
i ⊆

{∑i
j=1Xj

i
> δ(a)(s) + ε

}
Therefore, by central limit theorem

Pσ
[
HighIi

]
/ Φ(−

√
i · ε̂)

where ε̂ = ε/
√
δ(a)(s) · (1− δ(a)(s)) and Φ is the cumulative distribution function

of the standard normal distribution and / denotes that the inequality ≤ holds “only
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for large i”, i.e. in the limit. Consequently, for large k, we have

lim
n→∞

|Inm|∑
i=k

i · Pσ
[
High

Inm
i

]
/
∞∑
i=k

i · Φ(−
√
i · ε̂)

where the right-hand side does not depend on m and is thus a uniform bound for
all m. Further, since Φ(−

√
i · ε̂) decreases exponentially in

√
i, the right-hand side

approaches 0 as k → 0 (independently of m) and (4.5) follows.

Now we show, that Equation 4 is satisfied. For all s ∈ S and N ⊆ [n] such that
Pσ[ΩN ] = 0, we have trivially∑

a∈A
xa,N · δ(a)(s) =

∑
a∈Act(s)

xa,N

and whenever Pσ[ΩN ] > 0 we have

1

Pσ[ΩN ]

∑
a∈A

fN (a) · δ(a)(s)

=
1

Pσ[ΩN ]

∑
a∈A

lim
`→∞

1

T`

T∑̀
t=1

Pσ[At = a | ΩN ] · Pσ[ΩN ] · δ(a)(s) (definition of fN )

=
∑
a∈A

lim
`→∞

1

T`

T∑̀
t=1

Pσ[At = a | ΩN ] · δ(a)(s) (linearity of the limit)

=
∑
a∈A

lim
`→∞

1

T`

T∑̀
t=1

Pσ[At = a | ΩN ] ·∆N
t (a)(s) (Lemma 4.3)

= lim
`→∞

1

T`

T∑̀
t=1

∑
a∈A

Pσ[At = a | ΩN ] ·∆N
t (a)(s) (definition of T`)

= lim
`→∞

1

T`

T∑̀
t=1

Pσ[St+1 = s | ΩN ] (definition of ∆N
t )

= lim
`→∞

1

T`

T∑̀
t=1

Pσ[St = s | ΩN ] (reindexing and Cesaro limit)

= lim
`→∞

1

T`

T∑̀
t=1

∑
a∈Act(s)

Pσ[At = a | ΩN ] (s must be followed by a ∈ Act(s))

=
1

Pσ[ΩN ]

∑
a∈Act(s)

lim
`→∞

1

T`

T∑̀
t=1

Pσ[At = a | ΩN ] · Pσ[ΩN ] (linearity of the limit)

=
1

Pσ[ΩN ]

∑
a∈Act(s)

fN (a) . (definition of fN )
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Equation 5. For all i ∈ [n], we have∑
N⊆[n]

∑
a∈A

xa,N · ri(a) ≥ Eσ[lrinf(ri)] ≥ expi

where the second inequality is due to σ being a witness strategy and the first inequality
follows from the following:∑

N⊆[n]

∑
a∈A

xa,N · ri(a)

=
∑
N⊆[n]

Pσ[ΩN ]>0

∑
a∈A

fN (a) · ri(a) (definition of xa,N )

=
∑
N⊆[n]

Pσ[ΩN ]>0

∑
a∈A

ri(a) · lim
`→∞

1

T`

T∑̀
t=1

Pσ[At = a | ΩN ] · Pσ[ΩN ] (definition of fN )

=
∑
N⊆[n]

Pσ[ΩN ]>0

Pσ[ΩN ] · lim
`→∞

1

T`

T∑̀
t=1

∑
a∈A

ri(a) · Pσ[At = a | ΩN ] (linearity of the limit)

≥
∑
N⊆[n]

Pσ[ΩN ]>0

Pσ[ΩN ] · lim inf
T→∞

1

T

T∑
t=1

∑
a∈A

ri(a) · Pσ[At = a | ΩN ] (definition of lim inf)

=
∑
N⊆[n]

Pσ[ΩN ]>0

Pσ[ΩN ] · lim inf
T→∞

1

T

T∑
t=1

Eσ[ri(At) | ΩN ] (definition of the expectation)

≥
∑
N⊆[n]

Pσ[ΩN ]>0

Pσ[ΩN ] · Eσ[lrinf(ri) | ΩN ] (Fatou’s lemma)

= Eσ[lrinf(ri)] (ΩN ’s partition Runs)

Although Fatou’s lemma (see, e.g. [Roy88, Chapter 4, Section 3]) requires the function
ri(At) be non-negative, we can replace it with the non-negative function ri(At)−mina∈A ri(a)
and add the subtracted constant afterwards.

In order to show that Equations 6 and 7 hold, we prove the following lemma. This
lemma is further necessary when relating the x-variables to the transient flow in Equation
3 later.

Lemma 4.4. For N ⊆ [n] and C ∈ MEC, we have∑
a∈C

xa,N = Pσ[ΩN ∩ ΩC ] .

Proof. The proof is trivial for the case with Pσ[ΩN ] = 0. Let us now assume Pσ[ΩN ] > 0:∑
a∈C

xa,N
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= lim
`→∞

1

T`

T∑̀
t=1

∑
a∈C

Pσ[At = a | ΩN ] · Pσ[ΩN ] (definition of xa,N and T`)

= lim
`→∞

1

T`

T∑̀
t=1

∑
a∈C

(
Pσ[At = a | ΩN ∩ ΩC ] · P

σ[ΩN ∩ ΩC ]

Pσ[ΩN ]
+

Pσ[At = a | ΩN \ ΩC ] · P
σ[ΩN \ ΩC ]

Pσ[ΩN ]

)
· Pσ[ΩN ] (partitioning of Runs)

= lim
`→∞

1

T`

T∑̀
t=1

∑
a∈C

Pσ[At = a | ΩN ∩ ΩC ] · Pσ[ΩN ∩ ΩC ]

( lim
T→∞

1

T

T∑
t=1

Pσ[At = a | ΩN \ ΩC ] = 0 for a ∈ C)

= Pσ[ΩN ∩ ΩC ] · lim
`→∞

1

T`

T∑̀
t=1

∑
a∈C

Pσ[At = a | ΩN ∩ ΩC ] (linearity of the limit)

= Pσ[ΩN ∩ ΩC ] · lim
`→∞

1

T`

T∑̀
t=1

Pσ[At ∈ C | ΩN ∩ ΩC ]

(taking two different actions at time t are disjoint events)

= Pσ[ΩN ∩ ΩC ] (since At ∈ C for all but finitely many t on ΩC , see below)

It remains to prove that the last limit is equal to 1. We have

1 ≥ lim
`→∞

1

T`

T∑̀
t=1

Pσ[At ∈ C | ΩN ∩ ΩC ] = lim
`→∞

1

T`

T∑̀
t=1

Eσ
[∑
a∈C

1a(At) | ΩN ∩ ΩC

]
which is by dominated convergence theorem equal to

Eσ
[

lim
`→∞

1

T`

T∑̀
t=1

∑
a∈C

1a(At) | ΩN ∩ ΩC

]
= Eσ[1] = 1

by definition of ΩC .

Equation 6. For all C ∈ MEC, N ⊆ [n], i ∈ N∑
a∈C

xa,N · ri(a) ≥
∑
a∈C

xa,N · sati

follows trivially for Pσ[ΩN ] = 0, and whenever Pσ[ΩN ] > 0 we have∑
a∈C

xa,N · ri(a)

≥ lim inf
T→∞

1

T

T∑
t=1

∑
a∈C

ri(a) · Pσ[At = a | ΩN ] · Pσ[ΩN ]

(as above for Eq. 5, by def. of xa,N , fN , linearity of lim, def. of lim inf)
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= lim inf
T→∞

1

T

T∑
t=1

∑
a∈C

ri(a) · Pσ[At = a | ΩN ∩ ΩC ] · Pσ[ΩN ∩ ΩC ]

(as above in Lemma 4.4, by partitioning Runs, now with additional factor ri(a))

≥ Pσ[ΩN ∩ ΩC ] · Eσ[lrinf(ri) | ΩN ∩ ΩC ]
(as above for Eq. 5, by def. of expectation and Fatou’s lemma)

≥ Pσ[ΩN ∩ ΩC ] · sati (by definition of ΩN and i ∈ N)

=
∑
a∈C

xa,N · sati (by Lemma 4.4)

Equation 7. For every i ∈ [n], by assumption on the strategy σ∑
N⊆[n]:i∈N

Pσ[ΩN ] = Pσ[ω ∈ Runs | lrinf(r)(ω)i ≥ sati] ≥ pri

and the first term actually equals∑
N⊆[n]:i∈N

∑
a∈A

xa,N =
∑

N⊆[n]:i∈N

∑
C∈MEC

∑
a∈C

xa,N (by (4.1))

=
∑

N⊆[n]:i∈N

∑
C∈MEC

Pσ[ΩN ∩ ΩC ] (by Lemma 4.4)

=
∑

N⊆[n]:i∈N

Pσ[ΩN ] (ΩC ’s partition almost all Runs)

4.2. Transient behaviour and Equations 1–3. Now we set the values for yχ, χ ∈
A ∪ (S × 2[n]), and prove that they satisfy Equations 1–3 of L when the values fN (a) are
assigned to xa,N . One could obtain the values yχ using the methods of [Put94, Theorem
9.3.8], which requires the machinery of deviation matrices. Instead, we can first simplify
the behaviour of σ in the transient part to memoryless using [BBC+14] and then obtain yχ
directly, like in [EKVY08], as expected numbers of taking actions. To this end, for a state
s we define ♦s to be the set of runs that contain s.

Similarly to [BBC+14, Proposition 4.2 and 4.5], we modify the MDP G into another
MDP G as follows: For each s ∈ S,N ⊆ [n], we add a new absorbing state fs,N . The only
available action for fs,N leads back to fs,N with probability 1. We also add a new action as,N
to every s ∈ S for each N ⊆ [n]. The distribution associated with as,N assigns probability
1 to fs,N . Finally, we remove all unreachable states. The construction of [BBC+14] is the
same but with only a single value used for N . We denote the copy of each state s of G in
G by s.

Lemma 4.5. There is a strategy σ in G such that for every C ∈ MEC and N ⊆ [n],∑
s∈C

Pσs0 [♦fs,N ] = Pσs0 [ΩC ∩ ΩN ] .

Proof. First, we consider an MDP G′ created from G in the same way as G, but instead
of fs,N for each s ∈ S,N ⊆ [n], we only have a single fs; similarly for actions as. As in

[BBC+14, Lemma 4.6], we obtain a strategy σ′ in G′ such that
∑

s∈C Pσ′s′0 [♦fs] = Pσs0 [ΩC ].
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We modify σ′ into σ as follows. It behaves as σ′, but instead of taking action as with

probability p, we take each action as,N with probability p · P
σ
s0

[ΩC∩ΩN ]

Pσs0[ΩC ] . (For Pσs0 [ΩC ] = 0,

we define σ arbitrarily.) Then∑
s∈C

Pσs0 [♦fs,N ] =
∑
s∈C

Pσs0 [ΩC ∩ ΩN ]

Pσs0 [ΩC ]
· Pσ′s′0 [♦fs] = Pσs0 [ΩC ∩ ΩN ]

By [EKVY08, Theorem 3.2], there is a memoryless strategy σ satisfying the lemma
above such that

ya :=

∞∑
t=1

Pσs [At = a] (for actions a preserved in G)

ys,N := Pσs0 [♦fs,N ]

are finite values satisfying Equations 1 and 2, and, moreover,

ys,N ≥
∑
s∈C

Pσ[♦fs,N ] .

By Lemma 4.5 for each C ∈ MEC we thus have∑
s∈C

ys,N ≥ Pσ[ΩC ∩ ΩN ]

and summing up over all C and N we have∑
N⊆[n]

∑
s∈S

ys,N ≥
∑
N⊆[n]

Pσ[ΩN ]

where the first term is 1 by Equation 2, the second term is 1 by partitioning of Runs, hence
they are actually equal and thus∑

s∈C
ys,N = Pσ[ΩC ∩ ΩN ] =

∑
a∈C

xa,N

where the last equality follows by Lemma 4.4, yielding Equation 3.

5. Proof of Theorem 3.1: Solution to L induces witness strategy

Now we proceed to the proof of the third point of Theorem 3.1. Let xa,N , ya, ys,N , s ∈ S, a ∈
A,N ⊆ [n] be a solution to the system L. We show how it effectively induces a witness
strategy σ.

We start with the recurrent part. We prove that even if the flow of Equation 4 is
“disconnected” we may still play the actions with the exact frequencies xa,N on almost all
runs. To formalize the frequency of an action a on a run, recall 1a is the indicator function
of a, i.e. 1a(a) = 1 and 1a(b) = 0 for a 6= b ∈ A. Then Freqa = lrinf(1a) defines a vector
random variable, indexed by a ∈ A. For the moment, we focus on strongly connected
MDPs, i.e. the whole MDP is a MEC, and with N ⊆ [n] fixed.

Firstly, we construct a strategy for each “strongly connected” part of the solution xa,N
and connect the parts, thus averaging the frequencies. This happens at a cost of a small
error used for transiting between the strongly connected parts. Secondly, we eliminate this
error as we let the transiting happen with measure vanishing over time.
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5.1. x-values and recurrent behaviour. To begin with, we show that x-values describe
the recurrent behaviour only:

Lemma 5.1. Let xa,N , a ∈ A,N ⊆ [n] be a non-negative solution to Equation 4 of system
L. Then for any fixed N , XN := {s, a | xa,N > 0, a ∈ Act(s)} is a union of end components.

In particular, XN ⊆
⋃
MEC, and for every a ∈ A \

⋃
MEC and N ⊆ [n], we have

xa,N = 0.

Proof. Denoting xs,N :=
∑

a∈Act(s) xa,N =
∑

a∈A xa,N · δ(a)(s) for each s ∈ S, we can write

XN = {a | xa,N > 0} ∪ {s | xs,N > 0} .
Firstly, we need to show that for all a ∈ XN , whenever δ(a)(s′) > 0 then s′ ∈ XN . Since
xs′,N ≥ xa,N · δ(a)(s′) > 0, we have s′ ∈ XN .

Secondly, let there be a path from ŝ to t̂ in XN . We need to show that there is a path
from t̂ to ŝ in XN . Assume the contrary and denote T ⊆ XN the set of states with no
path to ŝ in XN ; we assume t̂ ∈ T . We write the path from ŝ to t̂ as ŝ · · · s′bt′ · · · t̂ where
s′ ∈ XN \ T and t′ ∈ T . Then b ∈ Act(s′) and δ(b)(t′) > 0. Consequently,∑
s∈XN\T

∑
a∈A

xa · δ(a)(s) =
∑

s∈XN\T

∑
a∈Act(s)

xa (by summming Equation 4 over s ∈ XN \ T )

=
∑

s∈XN\T

∑
a∈Act(s)

∑
s∈XN\T

xa · δ(a)(s) +
∑

s∈XN\T

∑
a∈Act(s)

∑
s∈T

xa · δ(a)(s)

(case split over target states)

>
∑

s∈XN\T

∑
a∈Act(s)

∑
s∈XN\T

xa · δ(a)(s) (by δ(b)(t′) > 0)

=
∑

s∈XN\T

∑
a∈Act(s):
s∈XN\T

xa · δ(a)(s) (rearranging)

=
∑

s∈XN\T

∑
a∈A

xa · δ(a)(s) (see below)

which is a contradiction. The last equality follows by definition of T : actions enabled in T
cannot lead to XN \ T since from XN \ T there is always a path to ŝ and from T there is
no path to ŝ.

We thus start with the construction of the recurrent behaviour from x-values. For the
moment, we restrict to strongly connected MDP and focus on Equation 4 for a particular
fixed N ⊆ [n]. Note that for a fixed N ⊆ [n] we have a system of equations equivalent to
the form ∑

a∈A
xa · δ(a)(s) =

∑
a∈Act(s)

xa for each s ∈ S. (5.1)

We set out to prove Corollary 5.5. This crucial observation states that even if the flow of
Equation 4 is “disconnected”, we may still play the actions with the exact frequencies xa,N
on almost all runs.

Firstly, we construct a strategy for each “strongly connected” part of the solution xa
(each end-component of XN of Lemma 5.1).
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Lemma 5.2. In a strongly connected MDP G, let xa,N , a ∈ A be a non-negative solution
to Equation 4 of system L for a fixed N ⊆ [n] and

∑
a∈A xa,N > 0. It induces a memoryless

strategy ζ such that for every BSCCs D of Gζ , every a ∈ D ∩ A, and almost all runs in D
holds

Freqa =
xa,N∑

a∈D∩A xa,N

i.e. Pζ
[
Freqa =

xa,N∑
a∈D∩A xa,N

| ΩD

]
= 1. Moreover, if all xa,N ’s are positive then Gζ is a

BSCC and Freqa is almost surely constant.

Proof. By [BBC+14, Lemma 4.3] applied to Equation (5.1), we get a memoryless strategy
ζ such that Eζ [Freqa | ΩD] = xa,N/

∑
a∈D∩A xa,N . Furthermore, by the ergodic theorem,

Freqa returns the same value for almost all runs in ΩD, hence is equal to Eζ [Freqa | ΩD].
Finally, if all xa,N ’s are positive then all actions of G are used. Consequently, since G is

strongly connected, Gζ is also strongly connected.

Secondly, we connect the parts (more end components of Lemma 5.1 within one MEC)
and thus average the frequencies. This happens at a cost of small error used for transiting
between the strongly connected parts.

Lemma 5.3. In a strongly connected MDP, let xa,N , a ∈ A be a non-negative solution to
Equation 4 of system L for a fixed N ⊆ [n] and

∑
a∈A xa,N > 0. For every ε > 0, there is a

memoryless strategy ζε such that for all a ∈ A almost surely

Freqa >
xa,N∑
a∈A xa,N

− ε

Proof. We obtain ζε by a suitable perturbation of the strategy ζ from previous lemma in
such a way that all actions get positive probabilities and the frequencies of actions change
only slightly, similarly as in [BBC+14, Proposition 5.1, Part 2].

There exists an arbitrarily small (strictly) positive solution x′a of Equation (5.1). Indeed,
it suffices to consider a strategy τ which always takes the uniform distribution over the
actions in every state and then assign Eτ [Freqa] /M to x′a for sufficiently large M . As
the system of Equations (5.1) is linear and homogeneous, assigning xa,N + x′a to xa,N also
solves this system (and thus Equation 4 as well) and all values are positive. Consequently,
Lemma 5.2 gives us a memoryless strategy ζε satisfying almost surely (with Pζε-probability
1)

Freqa =
(xa,N + x′a)∑

a′∈A
(
xa′,N + x′a′

) .
We may safely assume that

∑
a∈A x

′
a ≤ ε

1−ε ·
∑

a∈A xa,N . Then almost surely

Freqa =
xa,N + x′a∑

a∈A(xa,N + x′a)
(by Lemma 5.2)

>
xa,N∑

a∈A xa,N +
∑

a∈A x
′
a

(by x′a > 0)

≥
xa,N∑

a∈A xa,N + ε
1−ε ·

∑
a∈A xa,N

(by
∑

a∈A x
′
a ≤ ε

1−ε ·
∑

a∈A xa,N )

=
xa,N

1
1−ε ·

∑
a∈A xa,N

(rearranging)
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=
xa,N∑
a∈A xa,N

− ε ·
xa,N∑
a∈A xa,N

(rearranging)

≥
xa,N∑
a∈A xa,N

− ε (by
xa,N∑
a∈A xa,N

≤ 1)

Thirdly, we eliminate this error as we let the transiting (by x′a) happen with probability
vanishing over time.

Lemma 5.4. In a strongly connected MDP, let ξi be a sequence of strategies, each with
Freq = f i almost surely, and such that limi→∞ f i is well defined. Then there is Markov
strategy ξ such that almost surely

Freq = lim
i→∞

f i .

Proof. This proof very closely follows the computation in [BBC+14, Proposition 5.1, Part
“Moreover”], but for general ξi.

Given a ∈ A, let lf a := limi→∞ f ia. By definition of limit and the assumption that
Freqa = lrinf(1a) is almost surely equal to f ia for each ξi, there is a subsequence ξj of the

sequence ξi such that Pξj
[
lrinf(1a) ≥ lf a − 2−j−1

]
= 1. Note that for every j ∈ N there is

κj ∈ N such that for all a ∈ A and s ∈ S we get

Pξj
[

inf
T≥κj

1

T

T∑
t=0

1a(At) ≥ lf a − 2−j

]
≥ 1− 2−j .

Let us consider a sequence n0, n1, . . . of numbers where nj ≥ κj and∑
k<j nk

nj
≤ 2−j (5.2)

κj+1

nj
≤ 2−j (5.3)

We define ξ to behave as ξ1 for the first n1 steps, then as ξ2 for the next n2 steps, etc. In
general, denoting by Nj the sum

∑
k<j nk, the strategy ξ behaves as ξj between the Nj-th

step (inclusive) and Nj+1-th step (non-inclusive). Note that such strategy is a Markov
strategy.

Let us give some intuition behind ξ. The numbers in the sequence n0, n1, . . . grow
rapidly so that after ξj is simulated for nj steps, the part of the history when ξk for k < j
were simulated becomes relatively small and has only minor impact on the current average

reward (this is ensured by the condition
∑
k<j nk
nj

≤ 2−j). This gives us that almost every

run has infinitely many prefixes on which the average reward w.r.t. 1a is arbitrarily close
to lf a infinitely often. To get that lf a is also the long-run average reward, one only needs
to be careful when the strategy ξ ends behaving as ξj and starts behaving as ξj+1, because
then up to the κj+1 steps we have no guarantee that the average reward is close to lf a. This
part is taken care of by picking nj so large that the contribution (to the average reward)
of the nj steps according to ξj prevails over fluctuations introduced by the first κj+1 steps
according to ξj+1 (this is ensured by the condition

κj+1

nj
≤ 2−j).
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Let us now prove the correctness of the definition of ξ formally. We prove that almost
all runs ω of Gξ satisfy

lim inf
T→∞

1

T

T∑
t=0

1a(At(ω)) ≥ lf a .

Denote by Ek the set of all runs ω = s0a0s1a1 · · · of Gξ such that for some κk ≤ d ≤ nk we
have

1

d

Nj+d−1∑
j=Nj

1a(ak) < lf a − 2−k.

We have Pξ[Ej ] ≤ 2−j and thus
∑∞

j=1 Pξ[Ej ] = 1
2 <∞ holds. By Borel-Cantelli lemma [Roy88],

almost surely only finitely many of Ej take place. Thus, almost every run ω = s0a0s1a1 · · ·
of Gξ satisfies the following: there is ` such that for all j ≥ ` and all κj ≤ d ≤ nj we have
that

1

d

Nj+d−1∑
k=Nj

1a(ak) ≥ lf a − 2−j . (5.4)

Consider T ∈ N such that Nj ≤ T < Nj+1 where j > `. Below, we prove the following
inequality

1

T

T∑
t=0

1a(at) ≥ (lf a − 21−j)(1− 21−j) . (5.5)

Taking the limit of (5.5) where T (and thus also j) goes to ∞, we obtain

Freqa(ω) = lim inf
T→∞

1

T

T∑
t=0

1a(at) ≥ lim inf
j→∞

(lf a − 21−j)(1− 21−j) = lf a = lim
i→∞

f ia

yielding the lemma. It remains to prove (5.5). First, note that

1

T

T∑
t=0

1a(at) ≥ 1

T

Nj−1∑
t=Nj−1

1a(at) +
1

T

T∑
t=Nj

1a(at)

and that by (5.4)

1

T

Nj−1∑
t=Nj−1

1a(at) =
1

nj

Nj−1∑
t=Nj−1

1a(at) ·
nj
T
≥ (lf a − 21−j)

nj
T

which gives

1

T

T∑
t=0

1a(at) ≥ (lf a − 21−j)
nj
T

+
1

T

T∑
t=Nj

1a(at). (5.6)

Now, we distinguish two cases. First, if T −Nj ≤ κj+1, then

nj
T
≥ nj
Nj + κj+1

=
nj

Nj−1 + nj + κj+1
= 1− Nj−1 + κj+1

Nj−1 + nj + κj+1
≥ (1− 21−j)

by (5.2) and (5.3). Therefore, by (5.6),

1

T

T∑
t=0

1a(at) ≥ (lf a − 21−j)(1− 21−j).
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Second, if T −Nj ≥ κj+1, then

1

T

T∑
t=Nj

1a(at) =
1

T −Nj + 1

T∑
t=Nj

1a(at) ·
T −Nj + 1

T

≥ (lf a − 2−j)

(
1− Nj−1 + nj

T

)
(by (5.4))

≥ (lf a − 2−j)
(

1− 2−j − nj
T

)
(by (5.2))

and thus, by (5.6),

1

T

T∑
t=0

1a(at) ≥ (lf a − 21−j)
nj
T

+ (lf a − 2−j+1)
(

1− 2−j − nj
T

)
≥ (lf a − 21−j)

(nj
T

+
(

1− 2−j − nj
T

))
≥ (lf a − 21−j)(1− 21−j)

which finishes the proof of (5.5).

Now we know that strategies within an end component can be merged into a strategy
with frequencies corresponding to the solution of Equation 4 for each fixed N .

Corollary 5.5. For a strongly connected MDP, let xa,N , a ∈ A be a non-negative solution
to Equation 4 of system L for a fixed N ⊆ [n] and

∑
a∈A xa,N > 0. Then there is Markov

strategy ξN such that for each a ∈ A almost surely

Freqa =
xa,N∑
a∈A xa,N

.

Proof. The strategy ξN is constructed by Lemma 5.4 taking ξi to be ζ1/i from Lemma 5.3.

Remark 5.6. Note that using such strategy, all actions and states in the single MEC are
visited infinitely often. (This will be later useful for the strategy complexity analysis.)

Since the fraction is independent of the initial state of the MDP, the frequency is almost
surely the same also for all initial states. The reward of ξN is almost surely

lrinf(r)(ω) =

∑
a xa,N · r(a)∑

a xa,N
.

When the MDP is not strongly connected, we obtain such ξN in each MEC C with∑
a∈C xa,N > 0 and the respective reward of almost all runs in C is thus

EξN [lrinf(r) | ΩC ] =

∑
a∈C∩A xa,N · r(a)∑

a∈C∩A xa,N
. (5.7)

Moreover, the long-run average reward is the same for almost all runs, which is a stronger
property than in [BBC+14, Lemma 4.3], which does not hold for the induced strategy there.
We need this property here in order to combine the satisfaction requirements.

PξN
[
lrinf(r) =

∑
a∈C∩A xa,N · r(a)∑

a∈C∩A xa,N
| ΩC

]
= 1 . (5.8)
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5.2. y-values and transient behaviour. We now consider the transient part of the so-
lution that plays ξN ’s with various probabilities. Let “switch to ξN in C” denote the event
that a strategy updates its memory, while in C, into such an element that it starts playing
exactly as ξN . We can stitch all ξN ’s together as follows:

Lemma 5.7. Let ξN , N ⊆ [n] be strategies. Then every non-negative solution ya, ys,N ,
a ∈ A, s ∈ S,N ⊆ [n] to Equation 1 effectively induces a strategy σ such that

Pσ[switch to ξN in s] = ys,N

and σ is memoryless before the switch.

Proof. The idea is similar to [BBC+14, Proposition 4.2, Step 1]. However, instead of switch-
ing in s to ξ with some probability p, here we have to branch this decision and switch to
ξN with probability p · ys,N∑

N⊆[n] ys,N
.

Formally, for every MEC C of G, we denote the number
∑

s∈C
∑

N⊆[n] ys,N by yC .

According to the Lemma 4.4 of [BBC+14] we have a stochastic-update strategy ϑ which
stays eventually in each MEC C with probability yC .

Then the strategy σ works as follows. It plays according to ϑ until a BSCC of Gϑ is
reached. This means that every possible continuation of the path stays in the current MEC
C of G. Assume that C has states s1, . . . , sk. At this point, the strategy σ changes its
behaviour as follows: First, it strives to reach s1 with probability one. Upon reaching s1, it
chooses randomly with probability

ys1,N
yC

to behave as ξN forever, or otherwise to follow on

to s2. If the strategy σ chooses to go on to s2, it strives to reach s2 with probability one.
Upon reaching s2, it chooses with probability

ys2,N
yC−

∑
N⊆[n] ys1,N

to behave as ξN forever, or

to follow on to s3, and so on, till sk. That is, the probability of switching to ξN in si is
ysi,N

yC −
∑i−1

j=1

∑
N⊆[n] ysj ,N

.

Since ϑ stays in a MEC C with probability yC , the probability that the strategy σ
switches to ξN in si is equal to ysi,N . Further, as in [BBC+14] we can transform the part
of σ before switching to ξN to a memoryless strategy and thus get strategy σ.

Corollary 5.8. Let ξN , N ⊆ [n] be strategies. Then every non-negative solution
ya, ys,N , xa,N , a ∈ A, s ∈ S,N ⊆ [n] to Equations 1 and 3 effectively induces a strategy σ
such that for every MEC C

Pσ[switch to ξN in C] =
∑

a∈C∩A
xa,N

and σ is memoryless before the switch.

Proof. By Lemma 5.7 and Equation 3.

5.3. Proof of witnessing. We now prove that the strategy σ of Corollary 5.8 with ξN , N ⊆
[n] of Corollary 5.5 is indeed a witness strategy. Note that existence of ξN ’s depends on
the sums of x-values being positive. This follows by Equation 2 and 3. We evaluate the
strategy σ as follows:

Eσ[lrinf(r)]
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=
∑

C∈MEC

∑
N⊆[n]

Pσ[switch to ξN in C] · EξN [lrinf(r) | ΩC ]

(by Equation 2,
∑
N⊆[n]

Pσ[switch to ξN ] = 1)

=
∑

C∈MEC

∑
N⊆[n]

( ∑
a∈C∩A

xa,N

)
· EξN [lrinf(r) | ΩC ] (by Corollary 5.8)

=
∑

C∈MEC

∑
N⊆[n]:∑

a∈C∩A xa,N>0

( ∑
a∈C∩A

xa,N

)
·
( ∑
a∈C∩A

xa,N · r(a)/
∑

a∈C∩A
xa,N

)
(by (5.7))

=
∑
N⊆[n]

∑
C∈MEC

∑
a∈C∩A

xa,N · r(a)

=
∑
N⊆[n]

∑
a∈A∩

⋃
MEC

xa,N · r(a)

=
∑
N⊆[n]

∑
a∈A

xa,N · r(a) (by Lemma 5.1)

≥ exp (by Equation 5)

and for each i ∈ [n] we have

Pσ[lrinf(r)i ≥ sati] =∑
C∈MEC

∑
N⊆[n]

Pσ[switch to ξN in C] · PξN [lrinf(r)i ≥ sati | ΩC ]

(by Equation 2,
∑
N⊆[n]

Pσ[switch to ξN ] = 1)

=
∑

C∈MEC

∑
N⊆[n]

( ∑
a∈C∩A

xa,N

)
· PξN [lrinf(r)i ≥ sati | ΩC ] (by Corollary 5.8)

=
∑

C∈MEC

∑
N⊆[n]:∑

a∈C∩A xa,N>0

( ∑
a∈C∩A

xa,N

)
· PξN

[ ∑
a∈C∩A

xa,N · r(a)i
/ ∑
a∈C∩A

xa,N ≥ sati

]

(by (5.8))

≥
∑

C∈MEC

∑
i∈N⊆[n]:∑

a∈C∩A xa,N>0

( ∑
a∈C∩A

xa,N

)
· PξN

[ ∑
a∈C∩A

xa,N · sati/
∑

a∈C∩A
xa,N ≥ sati

]

(by Equation 6)

=
∑

i∈N⊆[n]

∑
C∈MEC

∑
a∈C∩A

xa,N

=
∑

i∈N⊆[n]

∑
a∈A∩

⋃
MEC

xa,N

=
∑

i∈N⊆[n]

∑
a∈A

xa,N (by Lemma 5.1)
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≥ pri (by Equation 7)

Remark 5.9. The proof of the corresponding claim for ε-witness strategies proceeds as
above. We get that the strategy σ of Corollary 5.8 with ζεN , N ⊆ [n] of Lemma 5.3 is an
ε-witness strategy. 4

6. Algorithmic complexity

In this section, we discuss the solutions to and complexity of all the introduced problems.

6.1. Solution to (multi-quant-conjunctive). As we have seen, there are O(|G| · n) · 2n
variables in the linear program L. By Theorem 3.1, the upper bound on the algorithmic time
complexity is polynomial in the number of variables in system L. Hence, the realizability
problem for (multi-quant-conjunctive) can be decided in time polynomial in |G| and
exponential in n.

6.2. Solution to (multi-quant-joint) and the special cases. In order to decide (multi-
quant-joint), the only subset of runs to exceed the probability threshold is the set of runs
with all long-run rewards exceeding their thresholds, i.e. Ω[n] (introduced in Section 4.1).
The remaining runs need not be partitioned and can be all considered to belong to Ω∅
without violating any constraint. Intuitively, each xa,∅ now stands for the original sum∑

N⊆[n]:N 6=[n] xa,N ; similarly for y-variables. Consequently, the only non-zero variables of

L indexed by N satisfy N = [n] or N = ∅. The remaining variables can be left out of the
system.

Requiring all variables ya, ys,N , xa,N for a ∈ A, s ∈ S,N ∈ {∅, [n]} be non-negative, the
program is the following:

(1) transient flow: for s ∈ S

1s0(s) +
∑
a∈A

ya · δ(a)(s) =
∑

a∈Act(s)

ya + ys,∅ + ys,[n]

(2) almost-sure switching to recurrent behaviour:∑
s∈C

ys,∅ + ys,[n] = 1

(3) probability of switching in a MEC is the frequency of using its actions: for C ∈ MEC∑
s∈C

ys,∅ =
∑
a∈C

xa,∅∑
s∈C

ys,[n] =
∑
a∈C

xa,[n]

(4) recurrent flow: for s ∈ S∑
a∈A

xa,∅ · δ(a)(s) =
∑

a∈Act(s)

xa,∅

∑
a∈A

xa,[n] · δ(a)(s) =
∑

a∈Act(s)

xa,[n]
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(5) expected rewards: ∑
a∈A

(
xa,∅ + xa,[n]

)
· r(a) ≥ exp

(6) commitment to satisfaction: for C ∈ MEC and i ∈ [n]∑
a∈C

xa,[n] · r(a)i ≥
∑
a∈C

xa,[n] · sati

(7) satisfaction: ∑
a∈A

xa,[n] ≥ pr

Since there are now O(|G| · n) variables, the problem as well as its special cases can be
decided in polynomial time.

Similarly, for (mono-quant) it is sufficient to consider N = [n] = {1} and N = ∅
only. Consequently, for (multi-qual) N = [n], and for (mono-qual) N = [n] = {1} are
sufficient, thus the index N can be removed completely.

Theorem 6.1. The (multi-quant-joint) realizability problem (and thus also all its special
cases) can be decided in time polynomial in |G| and n.

6.3. Solution to (multi-quant-conjunctive-joint). The linear program for this “com-
bined” problem can be easily derived from the program L in Fig. 4 as follows.

The first step consists in splitting the recurrent flow into two parts, yes and no Requiring
all variables be non-negative, the program is the following:

(1) transient flow: for s ∈ S

1s0(s) +
∑
a∈A

ya · δ(a)(s) =
∑

a∈Act(s)

ya +
∑
N⊆[n]

(ys,N,yes + ys,N,no)

(2) almost-sure switching to recurrent behaviour:∑
s∈C∈MEC
N⊆[n]

(ys,N,yes + ys,N,no) = 1

(3) probability of switching in a MEC is the frequency of using its actions: for C ∈
MEC, N ⊆ [n] ∑

s∈C
ys,N,yes =

∑
a∈C

xa,N,yes∑
s∈C

ys,N,no =
∑
a∈C

xa,N,no

(4) recurrent flow: for s ∈ S,N ⊆ [n]∑
a∈A

xa,N,yes · δ(a)(s) =
∑

a∈Act(s)

xa,N,yes

∑
a∈A

xa,N,no · δ(a)(s) =
∑

a∈Act(s)

xa,N,no
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(5) expected rewards: ∑
a∈A,
N⊆[n]

(xa,N,yes + xa,N,no) · r(a) ≥ exp

(6) commitment to satisfaction: for C ∈ MEC, N ⊆ [n], i ∈ N∑
a∈C

xa,N,yes · r(a)i ≥
∑
a∈C

xa,N,yes · sati∑
a∈C

xa,N,no · r(a)i ≥
∑
a∈C

xa,N,no · sati

(7) satisfaction: for i ∈ [n] ∑
a∈A,

N⊆[n]:i∈N

xa,N,yes + xa,N,no ≥ pri

Note that this program has the same set of solutions as the original program, considering
substitution αβ,N = αβ,N,yes + αβ,N,no .

The second step consists in using the “yes” part of the flow for ensuring satisfaction of
the (joint-SAT) constraint. Formally, we add the following additional equations (of type 6
and 7, respectively):

(6̃) ∑
a∈C

xa,N,yes · r(a)i ≥
∑
a∈C

xa,N,yes · s̃ati for i ∈ [n] and N ⊆ [n]

(7̃) ∑
a∈A
N⊆[n]

xa,N,yes ≥ p̃r

Note that the number of variables is double that for (multi-quant-conjunctive).
Therefore, the complexity remains essentially the same:

Corollary 6.2. The algorithmic complexity for the (multi-quant-conjuctive-joint) is
polynomial in the size of the MDP and exponential in n.

Remark 6.3. The strategies for the case of (multi-quant-conjunctive-joint) are very
similar to that of (multi-quant-conjunctive). Indeed, the structure of the constructed
(ε-)witness strategies is the same: the memoryless strategy for reaching the desired MECs
is followed by a stochastic-update switch to strategies for the recurrent behaviour. The only
difference is the following. (ε-)witness strategies for (multi-quant-conjunctive) switch
to strategies ξN (or ζεN ), each given by values of x-variables indexed by a fixed N ⊆ [n].
In contrast, strategies for (multi-quant-conjunctive-joint) switch to strategies ξN,b (or
ζεN,b), each given by values of x-variables indexed by a fixed N ⊆ [n] and b ∈ {yes,no}. 4

Furthermore, we can also allow multiple constraints, i.e. more (joint-SAT) constraints
or more (conjunctive-SAT), thus specifying probability thresholds for more value thresholds
for each reward. Then instead of subsets of [n] as so far, we consider subsets of the set of
all constraints. The number of variables is then exponential in the number of constraints
rather than just in the dimension of the rewards.
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6.4. Hardness. The (multi-quant-conjunctive-joint) problem is also of significant the-
oretical interest since we can also prove the following hardness result:

Theorem 6.4. The (multi-quant-conjunctive-joint) problem is NP-hard (even without
the (EXP) constraint).

Proof. We proceed by reduction from SAT. Let ϕ be a formula with the set of clauses
C = {c1, . . . , ck} over atomic propositions Ap = {a1, . . . , ap}. We denote Ap = {a1, . . . , ap}
the literals that are negations of the atomic propositions.

We define an MDP Gϕ = (S,A,Act , δ, s0) as follows:

• S = {si | i ∈ [p]},
• A = Ap ∪Ap,
• Act(si) = {ai, ai} for i ∈ [p],
• δ(ai)(si+1) = 1 and δ(ai)(si+1) = 1 (actions are assigned Dirac distributions),
• s0 = s1 = sp+1.

The constructed MDP is illustrated in Fig. 6. Intuitively, a run in Gϕ repetitively chooses
a valuation.

s1

s2

· · ·

sp

· · ·

...

a1

a1

a2

a2

ap

ap

ap−1

ap−1

Figure 6. MDP Gϕ

We define the dimension of the reward function to be n = k + 2p. We index the
components of vectors with this dimension by C ∪Ap∪Ap. The reward function is defined
for each ` ∈ A as follows:

• r(`)(ci) =

{
1 if ` |= ci

0 if ` 6|= ci

• r(`)(ai) = 1ai

• r(`)(ai) = 1ai

Intuitively, we get a positive reward for a clause when it is guaranteed to be satisfied by the
choice of a literal. The latter two items simply count the number of uses of a literal; thus
lrinf(r)a = Freqa.

The realizability problem instance Rϕ is then defined by a conjunction of the following
(conjunctive-SAT) and (joint-SAT) constraints:

Pσ
[
lrinf(r)` ≥

1

p

]
≥ 1

2
for each ` ∈ Ap ∪Ap (conjunctive-S)

Pσ
[∧
c∈C

lrinf(r)c ≥
1

p

]
≥ 1

2
(joint-S)
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Intuitively, (conjunctive-S) ensures that almost all runs choose, for each atomic proposition,
either the positive literal with frequency 1, or the negative literal with frequency 1; in other
words, it ensures that the choice of valuation is consistent within the run almost surely.
Indeed, since the choice between ai and ai happens every p steps, runs that mix both
with positive frequency cannot exceed the value threshold 1/p. Therefore, half of the runs
must use only ai, half must use only ai. Consequently, almost all runs choose one of them
consistently.

Further, (joint-S) on the top ensures that there is a (consistent) valuation that satisfies
all the clauses. Moreover, we require that this valuation is generated with probability at
least 1/2. Actually, we only need probability strictly greater than 0.

We now prove that ϕ is satisfiable if and only if the problem instance defined above on
MDP Gϕ is realizable.

“Only if part”: Let ν ⊆ Ap ∪ Ap be a satisfying valuation for ϕ. We define σ to have
initial distribution on memory elements m1,m2 with probability 1/2 each. With memory
m1 we always choose action from ν and with memory m2 from the “opposite valuation” ν
(where a is identified with a).

Therefore, each literal has frequency 1/p either in the first or the second kind of runs.
Further, the runs of the first kind (with memory m1) satisfy all clauses.

“If part”: Given a witness strategy σ for R(ϕ), we construct a satisfying valuation.
First, we focus on the property induced by the (conjunctive-S) constraint. We show that
almost all runs uniquely induce a valuation

νσ := {` ∈ Ap ∪Ap | Freq` > 0}
which follows from the following lemma:

Lemma 6.5. For every witness strategy σ satisfying the (conjunctive-S) constraint, and
for each a ∈ Ap, we have

Pσ
[
Freqa =

1

p
and Freqa = 0

]
+ Pσ

[
Freqa = 0 and Freqa =

1

p

]
= 1 .

Proof. Let a ∈ Ap be an arbitrary atomic proposition. To begin with, observe that due to
the circular shape of MDP Gϕ, we have

Freqa + Freqa ≤ 1/p (6.1)

for every run. Indeed, Freqa +Freqa = lim infT→∞
1
T

∑T
t=1 1a + lim infT→∞

1
T

∑T
t=1 1a ≤

lim infT→∞
1
T

∑T
t=1(1a + 1a) = 1/p.

Therefore, the two events Freqa ≥ 1/p and Freqa ≥ 1/p are disjoint. Due to the
(conjunctive-S) constraint, almost surely exactly one of the events occurs. Indeed,

1 ≥ Pσ
[
Freqa ≥

1

p
∪ Freqa ≥

1

p

]
= Pσ

[
Freqa ≥

1

p

]
+ Pσ

[
Freqa ≥

1

p

]
≥ 1

2
+

1

2
= 1

with the equality by disjointness of the events and the last inequality by (conjunctive-S).
Therefore, by (6.1), almost surely either Freqa = 1/p and Freqa = 0, or Freqa = 0

and Freqa = 1/p.



38 KRISHNENDU CHATTERJEE, ZUZANA KŘETÍNSKÁ, AND JAN KŘETÍNSKÝ

By the (joint-S) constraint, we have a set Ωsat , with non-zero measure, of runs satisfying
lrinf(r)c ≥ 1 for each c ∈ C. By the previous lemma, almost all runs of Ωsat induce unique
valuations. Since there are finitely many valuation, at least one of them is induced by a
set of non-zero measure. Let ω be one of the runs and ν the corresponding valuation. We
claim that ν is a satisfying valuation for ϕ.

Let c ∈ C be any clause, we show ν |= c. Since lrinf(r)(ω)c ≥ 1, there is an action `
such that

• Freq`(ω) > 0, and
• r(a)` ≥ 1.

The former inequality implies that ` ∈ ν and the latter that ` |= c. Altogether, ν |= c for
every c ∈ C, hence ν witnesses satisfiability of ϕ.

Theorem 6.4 contrasts Theorem 6.1: while extension of (joint-SAT) with (EXP) can
be solved in polynomial time, extending (joint-SAT) with (conjunctive-SAT) makes the
problem NP-hard. Intuitively, adding (conjunctive-SAT) enforces us to consider the subsets
of dimensions, and explains the exponential dependency on the number of dimensions in
Theorem 3.1 (though our lower bound does not work for (conjunctive-SAT) with (EXP)).

The results are summarized in Table 2 and contrasted to the previously known poly-
nomial bounds in Table 1.

7. Strategy complexity

First, we recall the structure of witness strategies generated from L in Section 5. In the
first phase, a memoryless strategy is applied to reach MECs and switch to the recurrent
strategies ξN . This switch is performed as a stochastic update, remembering the following
two pieces of information: (1) the binary decision to stay in the current MEC C forever, and
(2) the set N ⊆ [n], such that almost all the produced runs belong to ΩN . Each recurrent
strategy ξN is then an infinite-memory strategy, where the memory is simply a counter.
The counter determines which memoryless strategy ζεN is played.

7.1. Randomization and memory. Similarly to the traditional setting with the expec-
tation or the satisfaction semantics considered separately, the case with a single objective
is simpler.

Lemma 7.1. Deterministic memoryless strategies are sufficient for witness strategies for
(mono-qual).

Proof. For each MEC, there is a value, which is the maximal long-run average reward. This
is achievable for all runs in the MEC and using a memoryless strategy ξ. We prune the
MDP to remove MECs with values below the threshold sat. A witness strategy can be
chosen to maximize the single long-run expected average objective, and thus also to be
deterministic and memoryless [Put94]. Intuitively, in this case each MEC is either stayed
at almost surely, or left almost surely if the value of the outgoing action is higher.
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Further, both for the expectation and the satisfaction semantics, deterministic memo-
ryless strategies are sufficient for quantitative queries [FV97, BBE10] with single objective.
In contrast, we show that both randomization and memory is necessary in our combined
setting even for ε-witness strategies.

Example 7.2. Randomization and memory is necessary for (mono-quant) with sat =
1, exp = 3,pr = 0.55 and the MDP and r depicted in Fig. 7. We have to remain in
MEC {s, a} with probability p ∈ [0.1, 2/3], hence we need a randomized decision. Further,
memoryless strategies would either never leave {s, a} or would leave it eventually almost
surely. Finally, the argument applies to ε-witness strategies, since the interval for p contains
neither 0 nor 1 for sufficiently small ε.

s
t

u

a, r(a) = 2

0.5

0.5

b
c, r(c) = 0

d, r(d) = 10

Figure 7. An MDP with a single objective, where both randomization and
memory is necessary

4

In the rest of the section, we discuss bounds on the size of the memory and the degree
of randomization. Due to [BBC+14, Section 5], infinite memory is indeed necessary for
witnessing (joint-SAT) with pr = 1, hence also for (multi-qual).

7.2. Memory bounds for deterministic update. We prove that finite memory is suf-
ficient in several cases, namely for all ε-witness strategies and for (mono-quant) witness
strategies. Moreover, these results also hold for deterministic-update strategies. Indeed,
as one of our technical contributions, we prove that stochastic update at the moment of
switching is not necessary and deterministic update is sufficient, requiring only a finite blow
up in the memory size.

Lemma 7.3. Deterministic update is sufficient for witness strategies for (multi-quant-
conjuctive) and (multi-quant-joint). Moreover, finite memory is sufficient before switch-
ing to ξN ’s.

Proof idea. The stochastic decision during the switching in MEC C can be done as a de-
terministic update after a “toss”, a random choice between two actions in C in one of the
states of C. Such a toss does not affect the long-run average reward as it is only performed
finitely many times.

More interestingly, in MECs where no toss is possible, we can remember which states
were visited how many times and choose the respective probability of leaving or staying in
C.
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Proof. Let σ be a strategy induced by L. We modify it into a strategy % with the same
distribution of the long-run average rewards. The only stochastic update that σ performs
is in a MEC, switching to ξN with some probability. We modify σ into % in each MEC C
separately.

Tossing-MEC case First, we assume that there are toss, a, b ∈ C with a, b ∈ Act(toss).
Whenever σ should perform a step in s ∈ C and possibly make a stochastic-update, say
to m1 with probability p1 and m2 with probability p2, % performs a “toss” instead. A
(p1, p2)-toss consists of reaching toss with probability 1 (using a memoryless strategy),
taking a, b with probabilities p1, p2, respectively, and making a deterministic update based
on the result, in order to remember the result of the toss. After the toss, % returns back to
s with probability 1 (again using a memoryless strategy). Now as it already remembers the
result of the (p1, p2)-toss, it changes the memory to m1 or m2 accordingly, by a deterministic
update.

In general, since the stochastic-update probabilities depend on the action chosen and
the state to be entered, we have to perform the toss for each combination before returning
to s. Further, whenever there are more possible results for the memory update (e.g. various
N), we can use binary encoding of the choices, say with k bits, and repeat the toss with
the appropriate probabilities k-times before returning to s.

This can be implemented using finite memory. Indeed, since there are finitely many
states in a MEC and σ is memoryless, there are only finitely many combinations of tosses
to make and remember till the next simulated update of σ.

Tossfree-MEC case It remains to handle the case where, for each state s ∈ C, there is
only one action a ∈ Act(s) ∩ C. Then all strategies staying in C behave the same here,
call this memoryless deterministic strategy ξ. Therefore, the only stochastic update that
matters is to stay in C or not. The MEC C is left via each action a with the probability

leavea :=
∞∑
t=1

Pσ[St ∈ C and At = a and St+1 /∈ C]

and let {a | leavea > 0} = {a1, . . . , a`} be the leaving actions. The strategy % upon entering
C performs the following. First, it leaves C via a1 with probability leavea1 (see below how),

then via a2 with probability
leavea2

1−leavea1
, and so on via ai with probability

leaveai
1−

∑i−1
j=1 leaveaj

subsequently for each i ∈ [`]. After the last attempt with a`, if we are still in C, we update
memory to stay in C forever (playing ξ).

Leaving C via a with probability leave can be done as follows. Let rate =
∑

s/∈C δ(a)(s)
be the probability to actually leave C when taking a once. Then to achieve the overall
probability leave of leaving we can reach s with a ∈ Act(s) and play a with probability 1
and repeat this m times for some m ∈ N (if leave = 1 then m =∞) and finally reach s once
more and play a with probability p ∈ [0, 1] and an action staying in C with the remaining
probability. We now define m and p. If rate = 1 then m = 0 and p = leave. Assume
rate < 1. Then we must ensure that the probability not to leave via a be

1− leave = (1− rate)m ·
(
p(1− rate) + (1− p)

)
(7.1)
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Indeed, (1− rate)m stands for failing to leave m-times, and the last time we either choose
a and fail again or not choose a at all. This requirement is equivalent to

m =
ln(1− leave)− ln(1− p · rate)

ln(1− rate)

For p ∈ [0, 1] we have also ln(1−p·rate)
ln(1−rate) ∈ [0, 1]. Therfore, in order to choose m ∈ N, we

can simply set m := b ln(1−leave)
ln(1−rate) c, which also ensures that p ∈ [0, 1] for the respective

p := 1
rate (1− 1−leave

(1−rate)m ), obtained from (7.1).

In order to implement the strategy in MECs of this second type, for each action it is
sufficient to have a counter up to the respective m.

Remark 7.4. Moreover, our proof also shows, that finite memory is sufficient before switch-
ing to ξN ’s (as defined in Section 5) for deterministic-update witnessing (and ε-witnessing)
strategies. Therefore, finite memory deterministic update is sufficient for ε−witness strate-
gies, in particular also for (joint-SAT), which improves the strategy complexity known
from [BBC+14]. Note that in general, conversion of a stochastic-update strategy to a
deterministic-update strategy requires an infinite blow up in the memory [dAHK07]. 4

As a consequence, we obtain several bounds on memory size valid even for deterministic-
update strategies. Firstly, infinite memory is required only for witness strategies:

Lemma 7.5. Deterministic-update with finite memory is sufficient for ε-witness strategies
for (multi-quant-conjuctive) and (multi-quant-joint).

Proof. After switching, memoryless strategies ζεN can be played instead of the sequence of

ζ
1/2i

N .

Remark 7.6. The previous proof of sufficiency of deterministic-update finite memory for
ε-witness strategies applies also to (multi-quant-conjunctive-joint). Indeed, firstly,
Lemma 7.3 applies verbatim to (multi-quant-conjunctive-joint). Secondly, we switch
to only finitely many recurrent strategies due to Remark 6.3. 4

Secondly, infinite memory is required only for multiple objectives:

Lemma 7.7. Deterministic-update strategies with finite memory are sufficient witness
strategies for (mono-quant).

Proof. After switching in a MEC C, we can play the following memoryless strategy. In C,
there can be several components of the flow. We pick any with the largest long-run average
reward.

Further, the construction in the toss-free case gives us a hint for the respective lower
bound on memory, even for the single-objective case.

Example 7.8. For deterministic-update ε-witness strategies for (mono-quant) problem,
memory with size dependent on the transition probabilities is necessary. Indeed, con-
sider the same realizability problem as in Example 7.2, but with a slightly modified MDP
parametrized by λ, depicted in Fig. 8. Again, we have to remain in MEC {s, a} with prob-
ability p ∈ [0.1, 2/3]. For ε-witness strategies the interval is slightly wider; let ` > 0 denote
the minimal probability with which any (ε-)witness strategy has to leave the MEC and all
(ε-)witness strategies have to stay in the MEC with positive probability. We show that at
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least d `λe-memory is necessary. Observe that this setting also applies to the (EXP) setting
of [BBC+14], e.g. exp = (0.5, 0.5) and the MDP of Fig. 9. Therefore, we provide a lower
bound also for this simpler case (no MDP-dependent lower bound is provided in [BBC+14]).

s
t

u

a, r(a) = 2

λ
2

λ
2

1− λ

b
c, r(c) = 0

d, r(d) = 10

Figure 8. An MDP family with a single objective, where memory with size
dependent on transition probabilities is necessary for deterministic-update
strategies

s t

a, r(a) = (1, 0)

λ

1− λ

b
c, r(c) = (0, 1)

Figure 9. An MDP family, where memory with size dependent on tran-
sition probabilities is necessary for deterministic-update strategies even for
(EXP) studied in [BBC+14]

For a contradiction, assume there are less than d `λe memory elements. Then, by the

pigeonhole principle, in the first d `λ − 1e visits of s, some memory element m appears twice.
Note that due to the deterministic updating, each run generates the same play, thus the
same sequence of memory elements. Let p be the probability to eventually leave s provided
we are in s with memory m.

If p = 0 then the probability to leave s at the start is less than d `λ − 2e · λ < `, a

contradiction. Indeed, we have at most d `λ − 2e tries to leave s before obtaining memory m
and with every try we leave s with probability at most λ; we conclude by the union bound.

Let p > 0. Due to the deterministic updates, all runs staying in s use memory m
infinitely often. Since p > 0, there is a finite number of steps such that (1) during these steps
the overall probability to leave s is at least p/2 and (2) we are using m again. Consequently,
the probability of the runs staying in s is 0, a contradiction. 4

7.3. Memory bounds for stochastic update. Although we have shown that stochastic
update is not necessary, it may be helpful when memory is small.

Lemma 7.9. Stochastic-update 2-memory strategies are sufficient for witness strategies for
(mono-quant).
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Proof. The strategy σ of Section 5, which reaches the MECs and stays in them with given
probability, is memoryless up to the point of switch by Corollary 5.8. Further, we can
achieve the optimal value in each MEC using a memoryless strategy as in Lemma 7.7.

Theorem 7.10. Upper bounds on memory size for stochastic-update ε-witness strategies
are as follows:

• (multi-qual) 2 memory elements,
• (multi-quant-joint) 3 memory elements,
• (multi-quant-conjunctive) 2n + 1 memory elements,
• (multi-quant-conjunctive-joint) 2n+1 + 1 memory elements.

Proof. The structure of ε-witness strategies is described in Remark 5.9. Let us recall from
Corollary 5.8 that strategy σ is memoryless before the switch. For (multi-qual), (multi-
quant-joint) and (multi-quant-conjunctive), we perform the stochastic-update switch
to different memory elements corresponding to the different strategies ζεN . From Lemma
5.3 we have that every such strategy ζεN is also memoryless. From Lemma 5.7 we have
that we switch only to such ζεN for N ⊆ [n], which correspond to possible nonzero variables
ys,N . Therefore, the number of memory elements needed is the number of possible nonzero
variables ys,N for N ⊆ [n] and additionally one element for the strategy σ before the switch.

Altogether, we get the following upper bounds on memory size of ε-witness strategies.
For (multi-quant-conjunctive), 2n+1 memory elements are sufficient, since all of the ys,N
for N ⊆ [n] can be positive. For (multi-quant-joint), 3 memory elements are sufficient,
because we use only ys,[n] and ys,∅ as discussed in 6.2. Finally for (multi-qual), 2 memory
elements are sufficient, because we use only ys as in 3.2.1.

Due to Remark 6.3, the bound on the number of recurrent strategies for (multi-quant-
conjunctive-joint) is twice as large as for (multi-quant-conjunctive), i.e., 2n+1. The
upper bound on the size of memory for ε-witness strategies for (multi-quant-conjunctive-
joint) is thus 1 + 2n+1, compared to 1 + 2n for (multi-quant-conjunctive).

Example 7.11. For (multi-quant-joint), ε-witness strategies may require memory with
at least 3 elements. Consider an MDP with two states s and t with transitions and rewards
as depicted in Fig. 10. Further, let sat = (1, 0, 0), pr = 1

2 and exp = (0, 1, 1).

s t

a1, r(a1) = (1, 0, 0)

b

a2, r(a2) = (0, 4, 0)

a3, r(a3) = (0, 0, 4)

Figure 10. An MDP where 3-memory is necessary for (multi-quant-joint)

Suppose 2 memory elements are sufficient. In state s for each memory element we can
either stay in s or go with some positive probability to state t. Therefore we have three
cases on the behaviour in s regarding the transition to t:

(1) for each memory element we have positive probability p1 and p2 respectively, to go
to state t,
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(2) for both memory elements we have zero probability to go to t and
(3) for one memory element, say memory element 1, we have zero probability and for

the other one, say memory element 2, we have positive probability p to go to t.

In the first case, we go to t eventually almost surely. Indeed, in each step we enter t
with probability at least min(p1, p2) and cannot return back. Therefore, we stay in t forever
and thus we cannot satisfy the satisfaction constraint.

In the second case, we never enter state t. Hence, we cannot satisfy the expectation
constraint, because r(a1)3 = r(a2)3 = 0.

In the third case, we firstly assume that we switch from memory 1 to 2 with some
positive probability p1. Then in each step we have at least probability p1 · p to enter t.
Therefore, we end up in state t almost surely, not satisfying constraints, as shown above.
Secondly, suppose we cannot switch from memory 1 to 2. Then we almost surely end up in
state s with memory 1 or in state t. In state s with memory 1 we can either play action
a1 with probability 1 or with smaller potentially zero probability q. In the former case,
lr(r2) = 0, thus violating the expectation constraint. In the latter case, for almost every
run lr(r1) ≤ 1− q, contradicting the satisfaction constraint.

Note that a witnessing strategy exists, which uses only 3 memory elements. On half
of the runs, we play only action a1 to satisfy the satisfaction constraint. So we define
σn(s, 1)(a1) = 1. To satisfy the expectation constraint for r2 we define σn(s, 2)(a2) = 1.
With the last memory element we want to satisfy the expectation constraint for r3 and
thus we define σn(s, 3)(b) = 1 and σn(t, 3)(a3) = 1. We define the initial distribution by
α(1) = 1

2 , α(2) = 1
4 and α(3) = 1

4 and therefore the memory update function not to change

memory. Consequently, the achieved expectation is (1
2 · 1,

1
4 · 4,

1
4 · 4) ≥ exp. 4

However, even with stochastic update, the size of the finite memory cannot be bounded
by a constant for (multi-quant-conjunctive).

Example 7.12. Even ε-witness strategy for (multi-quant-conjunctive) may require
memory with at least n memory elements. Consider an MDP with a single state s and
self-loop ai with reward ri(aj) equal to 1 for i = j and 0 otherwise, for each i ∈ [n]. Fig. 11
illustrates the case with n = 3. Further, let sat = 1 and pr = 1/n · 1.

s

a1, r(a1) = (1, 0, 0)

a2, r(a2) = (0, 1, 0)

a3, r(a3) = (0, 0, 1)

Figure 11. An MDP where n-memory is necessary, depicted for n = 3

The only way to ε-satisfy the constraints is that for each i, 1/n runs take only ai, but
for a negligible portion of time. Since these constraints are mutually incompatible for a
single run, n different decisions have to be repetitively taken at s, showing the memory
requirement. 4

We summarize the upper and lower bounds for witness and ε-witness strategies in
Table 3 and Table 4, respectively.
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8. Pareto curve approximation and complexity summary

For a single objective, no Pareto curve is required and we can compute the optimal value
of expectation in polynomial time by the linear program L with the objective function
max

∑
a∈A(xa,∅ + xa,{1}) · r(a). For multiple objectives we obtain the following:

Theorem 8.1. For ε > 0, an ε-approximation of the Pareto curve for (multi-quant-
conjunctive-joint) can be constructed in time polynomial in |G| and 1

ε and exponential
in n.

Proof. We replace exp in Equation 5 of L by a vector v of variables. Maximizing with
respect to v is a multi-objective linear program. By [PY00], we can ε-approximate the
Pareto curve in time polynomial in the size of the program and 1

ε , and exponential in the
number of objectives (dimension of v).

The proof of Theorem 8.1 shows that we can obtain a Pareto-curve approximation also
for possible values of the sat or pr vectors for a given exp vector. We simply replace these
vectors by vectors of variables, obtaining a multi-objective linear program. If we want the
complete Pareto-curve approximation for all the parameters sat, pr, and exp, the number
of objectives rises from n to 3 · n. The complexity is thus still polynomial in the size of the
MDP and 1/ε, and exponential in n.

In particular, for the single-objective case, we can compute also the optimal pr given
exp and sat, or the optimal sat given pr and exp.

The complexity results are summarized in the following theorem:

Theorem 8.2. The algorithmic complexities are shown in Table 2. The bounds on the
complexity of the witness and ε-witness strategies are as shown in Table 3 and Table 4,
respectively.

Comments on the tables. U: denotes upper bounds (which suffice for all MDPs) and L:
lower bounds (which are required in general for some MDPs). Results without reference
are induced by the specialization or generalization relation depicted in Fig. 1 and for Ta-
ble 3 and 4 by ε−witness strategies being a weaker notion than witness strategies. The
abbreviations stoch.-up., det.-up., rand., det., inf., fin., and X-mem. stand for stochastic
update, deterministic update, randomizing, deterministic, infinite-, finite- and X-memory
strategies, respectively. Here n is the dimension of reward function and p = 1/pmin where
pmin is the smallest positive probability in the MDP. Note that inf. actually means that the
strategy is in form of a Markov strategy, see Section 5.

Remark 8.3. For a comparison, the results on previously studied subcases of our problems
are depicted in Table 1. 4
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Table 1. Previous results on algorithmic and strategy complexities. The
abbreviations alg., strat., and c. stand for algorithmic, strategy, and com-
plexity, respectively. Cases multiple and single refer to the number of ob-
jectives. Results for single-objective MDPs are based on classical literature,
e.g. [Put94, Thm.9.1.8]. Results for MDPs with multiple objectives are due
to [BBC+14].

Case Alg. c. Witness strat. c. ε-witness strat. c.
multiple poly(|G|, n) U: det.-up. inf. U: stoch.-up. 2-mem.
(joint-SAT) L: rand. inf. L: rand. 2-mem.
multiple poly(|G|, n) U: det.-up. inf. U: stoch.-up. 2-mem., det.-up. fin.
(EXP) L: rand. inf. L: rand. 2-mem.
single poly(|G|) U=L: det. 1-mem. U=L: det. 1-mem.
(joint-SAT)
single poly(|G|) U=L: det. 1-mem. U=L: det. 1-mem.
(EXP)

Table 2. Algorithmic complexity results for each of the discussed cases.

Case Algorithmic complexity
(multi-quant-conj.-joint) poly(|G|, 2n) [Cor.6.2], NP-hard [Thm. 6.4]
(multi-quant-conj.) poly(|G|, 2n) [Thm.3.1]
(multi-quant-joint) poly(|G|, n) [Thm.6.1]
(multi-qual) poly(|G|, n)
(mono-quant) poly(|G|)
(mono-qual) poly(|G|)

Table 3. Witness strategy complexity bounds for each of the discussed cases.

Case Witness strategy complexity
(multi-quant-conj.-joint) U: det.-up. [Rem.7.6] inf.

L: rand. inf.
(multi-quant-conj.) U: det.-up. [Lem.7.3] inf.

L: rand. inf.
(multi-quant-joint) U: det.-up. inf.

L: rand. inf.
(multi-qual) U: det.-up. inf.

L: rand. inf. [BBC+14, Sec.5]
(mono-quant) U: stoch.-up. 2-mem. [Lem.7.9], det.-up. fin. [Lem.7.7]

L: rand. 2-mem., for det.-up. p-mem.
(mono-qual) U: (trivially also L: ) det. 1-mem. [Lem.7.1]

9. Conclusion

We have presented a unifying solution framework to the expectation and satisfaction opti-
mization of Markov decision processes with multiple objectives. This allows us to synthesize
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Table 4. ε-witness strategy complexity bounds for each of the discussed cases.

Case ε-witness strategy complexity
(multi-quant- U: stoch.-up. (2n+1 + 1)-mem. [Thm.7.10], det.-up. fin. [Rem.7.6]

conj.-joint) L: rand. n-mem. [Ex.7.12], for det.-up. p-mem.
(multi-quant- U: stoch.-up. (2n + 1)-mem. [Thm.7.10], det.-up. fin. [Lem.7.5]

conj.) L: rand. n-mem. [Ex.7.12], for det.-up. p-mem.
(multi-quant- U: stoch.-up. 3-mem. [Thm.7.10], det.-up. fin.

joint) L: rand. 3-mem. [Ex.7.11]
(multi-qual) U: stoch.-up. 2-mem. [Thm.7.10], det.-up. fin.

L: rand. mem. [BBC+14, Sec.3]
(mono-quant) U: stoch.-up. 2-mem., det.-up. fin.

L: rand. [Ex.7.2] 2-mem. [Ex.7.2], for det.-up. p-mem. [Ex.7.8]
(mono-qual) U: (trivially also L: ) det. 1-mem.

optimal and ε-optimal risk-averse strategies. We have considered several possible combina-
tions of the two semantics and provided algorithms for their solution as well as the complete
picture of the complexities for all these cases.

Regarding the algorithmic complexity, we have shown that (multi-quant-joint) and all
its special cases can be solved in polynomial time. For both (multi-quant-conjunctive)
and (multi-quant-conjunctive-joint), we have presented an algorithm that works in
time polynomial in the size of MDP, but exponential in the dimension of reward function.
However, the exponential in the dimension of reward function is not a limitation for most
of practical purposes since the dimension is typically low. For the latter case we have
also proved that the problem is NP-hard. The complexity of (multi-quant-conjunctive)
remains an interesting open question. Moreover, our algorithms for Pareto-curve approx-
imation work in time polynomial in the size of MDPs and exponential in the dimension
of reward function. However, note that even for the special case of expectation seman-
tics the current best known algorithms depend exponentially on the dimension of reward
function [BBC+14].

We have also provided comprehensive results on strategy complexities. It is known
that for both expectation and satisfaction semantics with single objective, deterministic
memoryless strategies are sufficient [FV97, BBE10, BBC+14]. We have shown this carries
over in the (mono-qual) case only. In contrast, for (mono-quant) both randomization
and memory is necessary. However, we have also shown that only a restricted form of
randomization (deterministic update) is necessary even for (multi-quant), thus improving
the upper bound for ε−witness strategies for the satisfaction problem of [BBC+14] to finite-
memory deterministic update. Furthemore, we have established that with deterministic
update the memory size is dependent on the MDP; the result also applies to the expectation
problem of [BBC+14], where no MDP-dependent lower bound was given. We have presented
upper bounds on stochastic update ε−witness strategies, which are constant for (multi-
qual) and (multi-quant-joint), and exponentially dependent on the dimension of reward
function for (multi-quant-conjunctive) and (multi-quant-conjunctive-joint). The
question whether there are polynomially dependent upper bounds for the latter two cases
stays open.
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[BBE10] T. Brázdil, V. Brožek, and K. Etessami. One-counter stochastic games. In FSTTCS, pages 108–
119, 2010.

[BCFK13] T. Brázdil, K. Chatterjee, V. Forejt, and A. Kučera. Trading performance for stability in Markov
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Appendix A. Limear program for the running example

(1) 1 + 0.5y` = y` + yr + ys,∅ + ys,{1} + ys,{2} + ys,{1,2}
0.5y` + ya = ya + yu,∅ + yu,{1} + yu,{2} + yu,{1,2}
yr + yb + ye = yb + yc + yv,∅ + yv,{1} + yv,{2} + yv,{1,2}
yc + yd = yd + ye + yw,∅ + yw,{1} + yw,{2} + yw,{1,2}

(2) yu,∅+yu,{1}+yu,{2}+yu,{1,2}+yv,∅+yv,{1}+yv,{2}+yv,{1,2}+yw,∅+yw,{1}+yw,{2}+
yw,{1,2} = 1

(3) yu,∅ = xa,∅
yu,{1} = xa,{1}
yu,{2} = xa,{2}
yu,{1,2} = xa,{1,2}

yv,∅ + yw,∅ = xb,∅ + xc,∅ + xd,∅ + xe,∅
yv,{1} + yw,{1} = xb,{1} + xc,{1} + xd,{1} + xe,{1}
yv,{2} + yw,{2} = xb,{2} + xc,{2} + xd,{2} + xe,{2}
yv,{1,2} + yw,{1,2} = xb,{1,2} + xc,{1,2} + xd,{1,2} + xe,{1,2}

(4) 0.5x`,∅ = x`,∅ + xr,∅
0.5x`,{1} = x`,{1} + xr,{1}
0.5x`,{2} = x`,{2} + xr,{2}
0.5x`,{1,2} = x`,{1,2} + xr,{1,2}

0.5x`,∅ + xa,∅ = xa,∅
0.5x`,{1} + xa,{1} = xa,{1}
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0.5x`,{2} + xa,{2} = xa,{2}
0.5x`,{1,2} + xa,{1,2} = xa,{1,2}

xr,∅ + xb,∅ + xe,∅ = xb,∅ + xc,∅
xr,{1} + xb,{1} + xe,{1} = xb,{1} + xc,{1}
xr,{2} + xb,{2} + xe,{2} = xb,{2} + xc,{2}
xr,{1,2} + xb,{1,2} + xe,{1,2} = xb,{1,2} + xc,{1,2}

xc,∅ + xd,∅ = xd,∅ + xe,∅
xc,{1} + xd,{1} = xd,{1} + xe,{1}
xc,{2} + xd,{2} = xd,{2} + xe,{2}
xc,{1,2} + xd,{1,2} = xd,{1,2} + xe,{1,2}

(5) r(`)x`,∅ + r(`)x`,{1} + r(`)x`,{2} + r(`)x`,{1,2} + r(r)xr,∅ + r(r)xr,{1} + r(r)xr,{2} +
r(r)xr,{1,2}+(4, 0)xa,∅+(4, 0)xa,{1}+(4, 0)xa,{2}+(4, 0)xa,{1,2}+(1, 0)xb,∅+(1, 0)xb,{1}+
(1, 0)xb,{2} + (1, 0)xb,{1,2} + (0, 0)xc,∅ + (0, 0)xc,{1} + (0, 0)xc,{2} + (0, 0)xc,{1,2} +
(0, 1)xd,∅+(0, 1)xd,{1}+(0, 1)xd,{2}+(0, 1)xd,{1,2}+(0, 0)xe,∅+(0, 0)xe,{1}+(0, 0)xe,{2}+
(0, 0)xe,{1,2} ≥ (1.1, 0.5)

(6) 4xa,{1} ≥ 0.5xa,{1}
0 ≥ 0.5xa,{2}
4xa,{1,2} ≥ 0.5xa,{1,2}
0 ≥ 0.5xa,{1,2}

xb,{1} ≥ 0.5xb,{1} + 0.5xc,{1} + 0.5xd,{1} + 0.5xe,{1}
xd,{2} ≥ 0.5xb,{2} + 0.5xc,{2} + 0.5xd,{2} + 0.5xe,{2}
xb,{1,2} ≥ 0.5xb,{1,2} + 0.5xc,{1,2} + 0.5xd,{1,2} + 0.5xe,{1,2}
xd,{1,2} ≥ 0.5xb,{1,2} + 0.5xc,{1,2} + 0.5xd,{1,2} + 0.5xe,{1,2}

(7) x`,{1}+x`,{1,2}+xr,{1}+xr,{1,2}+xa,{1}+xa,{1,2}+xb,{1}+xb,{1,2}+xc,{1}+xc,{1,2}+
xd,{1} + xd,{1,2} + xe,{1} + xe,{1,2} ≥ 0.8

x`,{2}+x`,{1,2}+xr,{2}+xr,{1,2}+xa,{2}+xa,{1,2}+xb,{2}+xb,{1,2}+xc,{2}+xc,{1,2}+
xd,{2} + xd,{1,2} + xe,{2} + xe,{1,2} ≥ 0.8
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1. INTRODUCTION
Traditional numerical algorithms for the verification of Markov chains may be compu-
tationally intense or inapplicable, when facing a large state space or limited knowledge
of the chain. To this end, statistical algorithms are used as a powerful alternative. Sta-
tistical model checking (SMC) typically refers to approaches where (i) finite paths of
the Markov chain are sampled a finite number of times, (ii) the property of interest
is verified for each sampled path (e.g. state r is reached), and (iii) hypothesis testing
or statistical estimation is used to infer conclusions (e.g. state r is reached with prob-
ability at most 0.5) and give statistical guarantees (e.g. the conclusion is valid with
99% confidence). SMC approaches differ in (a) the class of properties they can verify
(e.g. bounded or unbounded properties), (b) the strength of statistical guarantees they
provide (e.g. confidence bounds, only asymptotic convergence of the method towards
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Table I. SMC approaches to Markov chain verification, organised by (i) the class of verifiable properties, and (ii)
by the required information about the Markov chain, where pmin is the minimum transition probability, |S| is the
number of states, and λ is the second largest eigenvalue of the chain.

LTL, mean payoff × here [Brázdil et al. 2014](LTL)

3,U × here —"— [Younes et al. 2010] [He et al. 2010]
[Younes et al. 2010]

bounded [Younes and Simmons 2002]
[Sen et al. 2004]

no info pmin |S|, pmin λ topology

the correct value, or none), and (c) the amount of information they require about the
Markov chain (e.g. the topology of the graph). In this paper, we provide an algorithm
for SMC of unbounded properties, with confidence bounds, in the setting where only
the minimum transition probability of the chain is known. Such an algorithm is par-
ticularly desirable in scenarios when the system is not known (“black box”), but also
when it is too large to construct or fit into memory.

Most of the previous efforts in SMC have focused on the analysis of properties with
bounded horizon [Younes and Simmons 2002; Sen et al. 2004; Younes et al. 2006;
Younes and Simmons 2006; Jha et al. 2009; Jégourel et al. 2012; Bulychev et al. 2012].
For bounded properties (e.g. state r is reached with probability at most 0.5 in the first
1000 steps) statistical guarantees can be obtained in a completely black-box setting,
where execution runs of the Markov chain can be observed, but no other information
about the chain is available. Unbounded properties (e.g. state r is reached with proba-
bility at most 0.5 in any number of steps) are significantly more difficult, as a stopping
criterion is needed when generating a potentially infinite execution run, and some in-
formation about the Markov chain is necessary for providing statistical guarantees (for
an overview, see Table I). On the one hand, some approaches require the knowledge
of the full topology in order to preprocess the Markov chain. On the other hand, when
the topology is not accessible, there are approaches where the correctness of the statis-
tics relies on information ranging from the second eigenvalue λ of the Markov chain,
to knowledge of both the number |S| of states and the minimum transition probabil-
ity pmin.

Our contribution is a new SMC algorithm for full linear temporal logic (LTL), as
well as for unbounded quantitative properties (mean payoff), which provides strong
guarantees in the form of confidence bounds. Our algorithm uses less information
about the Markov chain than previous algorithms that provide confidence bounds for
unbounded properties—we need to know only the minimum transition probability pmin

of the chain, and not the number of states nor the topology. Yet, experimentally, our al-
gorithm performs in many cases better than these previous approaches (see Section 5).
Our main idea is to monitor each execution run on the fly in order to build statistical
hypotheses about the structure of the Markov chain. In particular, if from observing
the current prefix of an execution run we can stipulate that with high probability a
bottom strongly connected component (BSCC) of the chain has been entered and ex-
plored, then we can terminate the current execution run. The information obtained
from execution prefixes allows us to terminate executions as soon as the property is
decided with the required confidence, which is usually much earlier than any bounds
that can be computed a priori. As far as we know, this is the first SMC algorithm that
uses information obtained from execution prefixes.

Finding pmin is a light assumption in many realistic scenarios and often does not
depend on the size of the chain – e.g. bounds on the rates for reaction kinetics in
chemical reaction systems are typically known; alternatively, from a PRISM language
model they can be easily inferred without constructing the respective state space.

2
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Fig. 1. A Markov chain.

Example 1.1. Consider the property of reaching state r in the Markov chain de-
picted in Figure 1. While the execution runs reaching r satisfy the property and can
be stopped without ever entering any vi, the finite execution paths without r, such as
stuttutuut, are inconclusive. In other words, observing this path does not rule out the
existence of a transition from, e.g., u to r, which, if existing, would eventually be taken
with probability 1. This transition could have arbitrarily low probability, rendering its
detection arbitrarily unlikely, yet its presence would change the probability of satisfy-
ing the property from 0.5 to 1. However, knowing that if there exists such a transition
leaving the set, its transition probability is at least pmin = 0.01, we can estimate the
probability that the system is stuck in the set {t, u} of states. Indeed, if existing, the
exit transition was missed at least four times, no matter whether it exits t or u. Conse-
quently, the probability that there is no such transition and {t, u} is a BSCC is at least
1− (1− pmin)

4.
This means that, in order to get 99% confidence that {t, u} is a BSCC, we only need

to see both t and u around 500 times1 on a run. This is in stark contrast to a priori
bounds that provide the same level of confidence, such as the (1/pmin)

|S| = 100O(m)

runs required by [Brázdil et al. 2014], which is infeasible for large m. In contrast, our
method’s performance is independent of m. 4

Monitoring execution prefixes allows us to design an SMC algorithm for complex un-
bounded properties such as full LTL. More precisely, we present a new SMC algorithm
for LTL over Markov chains, specified as follows.

Input2:

— we can sample finite runs of arbitrary length from an unknown finite-state discrete-
time Markov chainM according to the initial distribution3,

— we are given a lower bound pmin > 0 on the transition probabilities inM,
— an LTL formula ϕ,
— a threshold probability p,
— an indifference region ε > 0,
— two error bounds α, β > 0.

Output:

— if P[ϕ] ≥ p+ ε, return YES with probability at least 1− α, and
— if P[ϕ] ≤ p− ε, return NO with probability at least 1− β.

In addition, we present the first SMC algorithm for computing the mean payoff of
Markov chains whose states are labelled with rewards.

11− (1− pmin)
500 = 1− 0.99500 ≈ 0.993

2Except for the transition probability bound pmin, all inputs are standard, as used in the literature,
e.g. [Younes and Simmons 2002].
3We have a black-box system in the sense of [Sen et al. 2004], different from e.g. [Younes and Simmons 2002]
or [Rabih and Pekergin 2009], where simulations can be run from any state.
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Related work. Most of the effort in statistical model checking methods has focused
on the analysis of properties with bounded horizon, e.g., [Younes and Simmons 2002;
Sen et al. 2004; Younes et al. 2006; Younes and Simmons 2006; Jégourel et al. 2012;
Bulychev et al. 2012]. These are properties whose satisfaction on a run can be decided
based on its prefix of a fixed length. The unbounded properties are often investigated
under the name “unbounded until” [He et al. 2010; Younes et al. 2010], which is only a
slight generalisation of reachability.

SMC of unbounded properties was first considered in [Hérault et al. 2004]. It was
suggested to try longer and longer simulations, but no bounds when to stop this pro-
cess were given. The first solution was proposed in [Sen et al. 2005]. A simulation
is to be stopped whenever we reach a point from which the goal state r cannot be
reached at all. To this end, another set of simulations is run from such potential point
to determine if there is any path to r. In order to avoid infinite simulations here, the
simulations are stopped in each step with some “termination probability” pterm. This
transforms the hypothesis testing task to one where simulations are almost surely fi-
nite. It was observed in [Younes and Simmons 2006] that this transformation works
only on Markov chains that do not contain loops.

In [Lassaigne and Peyronnet 2008] the probability of unbounded property is approx-
imated by a bounded variant that is sufficiently long. The correctness of this approach
requires the second eigenvalue to be computed, which is as hard as the verification
problem itself. A completely different approach is taken in [Rabih and Pekergin 2009].
Using coupling methods one can estimate the stationary distribution. However, the
method is limited to ergodic Markov chains. In such a case all states of the system will
be reached almost surely (and infinitely often).

Notably, in [Younes et al. 2010] two approaches are described. The first approach
proposes to terminate sampled paths at every step with some probability pterm. In order
to guarantee the asymptotic convergence of this method the second eigenvalue λ of the
chain must be known, similar to [Lassaigne and Peyronnet 2008]. It should be noted
that their method provides only asymptotic guarantees as the width of the confidence
interval converges to zero. The second approach of [Younes et al. 2010] requires the
knowledge of the chain’s topology, which is used to transform the chain so that all
potentially infinite paths are eliminated.

In [He et al. 2010] another transformation is performed, again requiring knowledge
of the topology. This transformation assigns equal probability to all transitions leaving
from a state, which effectively reduces checking of an unbounded until to a bounded
variant. This method can only be used to check whether a property holds with a posi-
tive probability, but does not allow one to estimate the probability.

The (pre)processing of the state space required by the topology-aware methods, as
well as by traditional numerical methods for Markov chain analysis, is a major practi-
cal hurdle for large (or unknown) state spaces. In [Brázdil et al. 2014] a priori bounds
for the length of execution runs are calculated from the minimum transition proba-
bility and the number of states. However, without taking execution information into
account, these bounds are exponential in the number of states and highly impractical,
as illustrated in the example above.

There are also extensions of SMC to timed systems [David et al. 2015]. Our approach
is also related to [Grosu and Smolka 2005; Oudinet et al. 2011], where the product of
a non-deterministic system and Büchi automaton is explored for accepting lassos. We
are not aware of any method for detecting BSCCs by observing a single run, employing
no directed search of the state space.

To the best of our knowledge, we present the first SMC algorithm that provides con-
fidence bounds for unbounded qualitative properties with access to only the minimum
probability of the chain pmin, and the first SMC algorithm for quantitative properties.

4



Experimental evaluation. Our idea of inferring the structure of the Markov chain
on the fly, while generating execution runs, allows for their early termination. In Sec-
tion 5 we will see that for many chains arising in practice, such as the concurrent
probabilistic protocols from the PRISM benchmark suite [Kwiatkowska et al. 2012],
the BSCCs are reached quickly and, even more importantly, can be small even for very
large systems. Consequently, many execution runs can be stopped quickly. Moreover,
the number of execution runs necessary for a required precision and confidence is in-
dependent of the size of the state space, therefore this number can be small even for
highly confident results (a good analogy is that of the opinion polls: the precision and
confidence of opinion polls is regulated by the sample size and is independent of the
size of the population). It is therefore not surprising that, experimentally, in most cases
from the benchmark suite, our method outperforms previous methods (often even the
numerical methods) despite requiring much less knowledge of the Markov chain, and
despite providing strong guarantees in the form of confidence bounds. In Section 6,
we also provide theoretical bounds on the running time of our algorithm for classes of
Markov chains on which it performs particularly well.

Outline. The paper is organised as follows. Preliminaries are in Section 2. In Sec-
tion 3 we describe our SMC method for unbounded reachability, and Section 4 presents
extensions to linear temporal logic and mean payoff. Section 5 describes experimental
evaluation of our method. In Section 6 we give a theoretical bound on the expected
running time of our algorithms, and in Section 7 we present conclusions.

2. PRELIMINARIES
2.1. Markov chains

Definition 2.1 (Markov chain). A Markov chain (MC) is a tuple M = (S,P, µ),
where

— S is a finite set of states,
— P : S × S → [0, 1] is the transition probability matrix, such that for every s ∈ S it

holds
∑
s′∈S P(s, s′) = 1,

— µ is a probability distribution over S.

We let pmin := min({P(s, s′) > 0 | s, s′ ∈ S}) denote the smallest positive transition
probability in M. A run of M is an infinite sequence ρ = s0s1 · · · of states, such that
for all i ≥ 0, P(si, si+1) > 0; we let ρ[i] denote the state si. A path π in M is a finite
prefix of a run of M. We denote the empty path by λ and concatenation of paths π1
and π2 by π1 · π2. Each path π in M determines the set of runs Cone(π) consisting of
all runs that start with π. ToM we assign the probability space (Runs,F ,PM), where
Runs is the set of all runs inM, F is the σ-algebra generated by all Cone(π), and PM is
the unique probability measure such that

PM[Cone(s0s1 · · · sk)] = µ(s0) ·
k∏
i=1

P(si−1, si),

where the empty product equals 1. We write P instead of PM if the Markov chain is
clear from the context. The elements of F are called events. The respective expected
value of a random variable f : Runs→ R is E[f ] =

∫
Runs

f dP.
A non-empty set C ⊆ S of states is strongly connected (SC) if for every s, s′ ∈ C

there is a path from s to s′. A set of states C ⊆ S is a bottom strongly connected
component (BSCC) of M, if it is a maximal SC, and for each s ∈ C and s′ ∈ S \ C we
have P(s, s′) = 0. The sets of all SCs and BSCCs in M are denoted by SC and BSCC,
respectively. Note that with probability 1, the set of states that appear infinitely many
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times on a run forms a BSCC. From now on, we use the standard notions of SC and
BSCC for directed graphs as well.

2.2. Hypothesis Testing
Let X be a random variable, and suppose we are interested whether the expected
value E[X] is larger or smaller than some threshold p. We formulate this question as a
hypothesis testing problem, where we decide between the null hypothesis H0 and the
alternative hypothesis H1:

H0 : E[X] ≥ p+ ε H1 : E[X] < p− ε. (1)

The indifference region ε ≥ 0 describes the interval [p− ε, p+ ε) were both hypothesis
are acceptable.

Two types of errors are used to evaluate precision of a solution. A type I error is the
probability of accepting H1 when H0 holds. Similarly, a type II error is the probability
of choosing H0 when H1 holds. The test strength (α, β) is a pair of values that bound the
maximum probabilities of making type I and type II errors, respectively. In general, it
is not possible to obtain low values of α and β at the same time when the indifference
region ε is zero, since the probability E[X] may be arbitrary close to the threshold from
either side, making type I or II error very likely.

Sequential probability ratio test. The sequential probability ratio test (SPRT) is a
popular statistical procedure for hypothesis testing [Wald 1945; Younes 2004]. In the
SPRT the number of samples is not fixed, but sampling continues until the observa-
tions give strong evidence in favor of H0 or H1. The SPRT gives no guarantee on the
maximal number of samples; in practice, however, it often terminates quickly.

The SPRT works as follows. Suppose X is Bernoulli random variable, i.e. only values
0 and 1 are possible. After observing samples x = x1, . . . , xn from X the following ratio
is computed:

P(x|p1)
P(x|p0)

=

n∏
i=1

P(X = xi | E[X] = p1)

P(X = xi | E[X] = p0)
=

pdn1 (1− p1)n−dn

pdn1 (1− p0)n−dn
,

where dn =
∑n
i=1 xi, p0 = p + ε, and p1 = p − ε. The decision rule for accepting a

hypothesis is:

accept H0 if
P(x|p1)
P(x|p0)

≤ B accept H1 if
P(x|p1)
P(x|p0)

≥ A. (2)

Finding the values of A,B such the test has the required strength is a difficult task. In
practice, values A = (1 − β)/α and B = β/(1 − α) are used, since they result in a test
whose strength is close to (α, β) [Younes 2004].

3. SOLUTION FOR REACHABILITY
A fundamental problem in Markov chain verification is computing the probability that
a certain set of goal states is reached. For the rest of the paper, letM = (S,P, µ) be a
Markov chain and G ⊆ S be the set of the goal states inM. We let

3G := {ρ ∈ Runs | ∃i ≥ 0 : ρ[i] ∈ G}

denote the event that “eventually a state in G is reached.” The event 3G is measurable
and its probability P[3G] can be computed numerically or estimated using statistical
algorithms. Since no bound on the number of steps for reaching G is given, the major
difficulty for any statistical approach is to decide how long each sampled path should
be. We can stop extending the path either when we reach G, or when no more new
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states can be reached anyways. The latter happens if and only if we are in a BSCC and
we have seen all of its states.

In this section, we first show how to monitor each simulation run on the fly, in order
to detect quickly if a BSCC has been entered with high probability. Then, we show how
to use hypothesis testing in order to estimate P[3G].

3.1. BSCC detection
We start with an example illustrating how to measure probability of reaching a BSCC
from one path observation.

Example 3.1. Recall Example 1 and Figure 1. Now, consider an execution path
stuttutu. Intuitively, does {t, u} look as a good “candidate” for being a BSCC ofM? We
visited both t and u three times; we have taken a transition from each t and u at least
twice without leaving {t, u}. By the same reasoning as in Example 1, we could have
missed some outgoing transition with probability at most (1 − pmin)

2. The structure
of the system that can be deduced from this path is in Figure 2 and is correct with
probability at least 1− (1− pmin)

2. 4
Now we formalise our intuition. Given a finite or infinite sequence ρ = s0s1 · · · , the

support of ρ is the set ρ = {s0, s1, . . .}. Further, the graph of ρ is given by vertices ρ and
edges {(si, si+1) | i = 0, 1, . . .}.

s t u

Fig. 2. The graph of a path stuttutu.

Definition 3.2 (Candidate). If a path π has a suffix κ such that κ is a BSCC of the
graph of π, we call κ the candidate of π. Moreover, for k ∈ N, we call it a k-candidate
(of π) if each s ∈ κ has at least k occurrences in κ and the last element of κ has at least
k + 1 occurrences. A k-candidate of a run ρ is a k-candidate of some prefix of ρ.

Note that for each path there is at most one candidate. Therefore, we write K(π) to
denote the candidate of π if there is one, and K(π) = ⊥, otherwise. Observe that each
K(π) 6= ⊥ is strongly connected inM.

Example 3.3. Consider a path π = stuttutu, then K(π) = {t, u}. Observe that {t}
is not a candidate as it is not maximal. Further, K(π) is a 2-candidate (and as such
also a 1-candidate), but not a 3-candidate. Intuitively, the reason is that we only took
a transition from u (to the candidate) twice, cf. Example 3.1. 4

Intuitively, the higher the k the more it looks as if the k-candidate is indeed a
BSCC. Denoting by Candk(K) the random predicate of K being a k-candidate on a
run, the probability of “unluckily” detecting any specific non-BSCC set of states K as
a k-candidate, can be bounded as follows.

LEMMA 3.4. For every K ⊆ S such that K /∈ BSCC, and every s ∈ K, k ∈ N,

P[Candk(K) | 3s] ≤ (1− pmin)
k .

PROOF. Since K is not a BSCC, there is a state t ∈ K with a transition to t′ /∈ K.
The set of states K is a k-candidate of a run, only if t is visited at least k times by
the path and was never followed by t′ (indeed, even if t is the last state in the path,
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by definition of a k-candidate, there are also at least k previous occurrences of t in
the path). Further, since the transition from t to t′ has probability at least pmin, the
probability of not taking the transition k times is at most (1− pmin)

k.

�

Example 3.5. We illustrate how candidates “evolve over time” along a run. Con-
sider a run ρ = s0s0s1s0 · · · of the Markov chain in Figure 3. The empty and one-
letter prefix do not have the candidate defined, s0s0 has a candidate {s0}, then again
K(s0s0s1) = ⊥, and K(s0s0s1s0) = {s0, s1}. One can observe that subsequent candi-
dates are either disjoint or contain some of the previous candidates. Consequently,
there are at most 2|S| − 1 candidates on every run, which is in our setting an unknown
bound. 4

s0 s1 s2 · · · sn−1 sn
0.5 0.5 0.5 0.5 0.5

0.5 0.5 0.5
0.5 1

Fig. 3. A family (for n ∈ N) of Markov chains with large eigenvalues.

While we have bounded the probability of detecting any specific non-BSCC set K as
a k-candidate, we need to bound the overall error for detecting a candidate that is not
a BSCC. Since there can be many false candidates on a run before the real BSCC (e.g.
Figure 3), we need to bound the error of reporting any of them.

In the following, we first formalise the process of discovering candidates along the
run. Second, we bound the error that any of the non-BSCC candidates becomes a k-
candidate. Third, we bound the overall error of not detecting the real BSCC by increas-
ing k every time a different candidate is found.

We start with discovering the sequence of candidates on a run. For a run ρ = s0s1 · · · ,
consider the sequence of random variables defined by K(s0 . . . sj) for j ≥ 0, and let
(Ki)i≥1 be the subsequence without undefined elements and with no repetition of con-
secutive elements. For example, for a run ρ = s0s1s1s1s0s1s2s2 · · · , we have K1 = {s1},
K2 = {s0, s1}, K3 = {s2}, etc. Let Kj be the last element of this sequence, called the
final candidate. Additionally, we define K` := Kj for all ` > j. We describe the lifetime
of a candidate. Given a non-final Ki, we write ρ = αiβibiγidiδi so that αi ∩ Ki = ∅,
βibiγi = Ki, di /∈ Ki, and K(αiβi) 6= Ki, K(αiβibi) = Ki. Intuitively, we start ex-
ploring Ki in βi; Ki becomes a candidate in bi, the birthday of the ith candidate; it
remains to be a candidate until di, the death of the ith candidate. For example, for the
run ρ = s0s1s1s1s0s1s2s2 · · · and i = 1, α1 = s0, β1 = s1, b1 = s1, γ1 = s1, d1 = s0,
δ1 = s1s2s2ρ[8]ρ[9] · · · . Note that the final candidate is almost surely a BSCC ofM and
would thus have γj infinite.

Now, we proceed to bounding errors for each candidate. Since there is an unknown
number of candidates on a run, we will need a slightly stronger definition. First, ob-
serve that Candk(Ki) iff Ki is a k-candidate of βibiγi. We say Ki is a strong k-candidate,
written SCandk(Ki), if it is a k-candidate of biγi. Intuitively, it becomes a k-candidate
even not counting the discovery phase. As a result, even if we already assume there
exists an ith candidate, its strong k-candidacy gives the guarantees on being a BSCC
as above in Lemma 3.4.

8



LEMMA 3.6. For every i, k ∈ N, we have

P[SCandk(Ki) | Ki /∈ BSCC] ≤ (1− pmin)
k .

PROOF.

P[SCandk(Ki) | Ki /∈ BSCC]

=
1

P[Ki /∈ BSCC]

∑
C∈SC\BSCC

s∈C

P[Ki = C, bi = s] · P[SCandk(C) | Ki = C, bi = s]

=
1

P[Ki /∈ BSCC]

∑
C∈SC\BSCC

s∈C

P[Ki = C, bi = s] · P[Candk(C) | 3s] (by Markov property)

≤ 1

P[Ki /∈ BSCC]

∑
C∈SC\BSCC

s∈C

P[Ki = C, bi = s] · (1− pmin)
k (by Lemma 3.4)

= (1− pmin)
k . (by P[Ki ∈ SC, bi ∈ Ki] = 1)

�

Since the number of candidates can only be bounded with some knowledge of the
state space, e.g. its size, we assume no bounds and provide a method to bound the
error even for an unbounded number of candidates on a run.

LEMMA 3.7. For (ki)
∞
i=1 ∈ NN, let Err be the set of runs such that for some i ∈ N, we

have SCandki(Ki) despite Ki /∈ BSCC. Then

P[Err ] <
∞∑
i=1

(1− pmin)
ki .

PROOF.

P[Err ] = P

[ ∞⋃
i=1

(
SCandki(Ki) ∩Ki /∈ BSCC

)]

≤
∞∑
i=1

P[SCandki(Ki) ∩Ki /∈ BSCC] (by the union bound)

=

∞∑
i=1

P[SCandki(Ki) | Ki /∈ BSCC] · P[Ki /∈ BSCC]

≤
∞∑
i=1

P[SCandki(Ki) | Ki /∈ BSCC]

=

∞∑
i=1

(1− pmin)
ki . (by Lemma 3.6)

�

In Algorithm 1 we present a procedure for deciding whether a BSCC inferred from
a path π is indeed a BSCC with confidence greater than 1 − δ. We use notation
SCANDki(K,π) to denote the function deciding whether K is a strong ki-candidate
on π. The overall error bound is obtained by setting ki = i−log δ

− log(1−pmin)
.
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Algorithm 1 REACHEDBSCC
Input: path π = s0s1 · · · sn, pmin, δ ∈ (0, 1]
Output: Yes iff K(π) ∈ BSCC
C ← ⊥, i← 0
for j = 0 to n do

if K(s0 · · · sj) 6= ⊥ and K(s0 · · · sj) 6= C then
C ← K(s0 · · · sj)
i← i+ 1

ki ← i−log δ
− log(1−pmin)

if i ≥ 1 and SCANDki(K(π), π) then return Yes
else return No

THEOREM 3.8. For every δ > 0, Algorithm 1 is correct with error probability at
most δ.

PROOF. Since M is finite, the Algorithm 1 terminates almost surely. The probability
to return an incorrect result can be bounded by returning incorrect result for one of
the non-final candidates, which by Lemma 3.7 is as follows:

∞∑
i=1

(1− pmin)
ki =

∞∑
i=1

(1− pmin)
−i+log δ

log(1−pmin) =

∞∑
i=1

2−i+log δ =

∞∑
i=1

δ/2i = δ .

�

We have shown how to detect a BSCC of a single path with desired confidence. In
Algorithm 2, we show how to use our BSCC detection method to decide whether a given
path reaches the set G with confidence 1− δ. The function NextState(π) randomly picks
a state according to the initial distribution µ if the path is empty (π = λ); otherwise,
if ` is the last state of π, it randomly chooses its successor according to P(`, ·). The
algorithm returns Yes when π reaches a state in G, and No when for some i, the ith
candidate is a strong ki-candidate. In the latter case, with probability at least 1− δ, π
has reached a BSCC not containingG. Hence, with probability at most δ, the algorithm
returns No for a path that could reach a goal.

Algorithm 2 SINGLEPATHREACH

Input: goal states G ofM, pmin, δ ∈ (0, 1]
Output: Yes iff a run reaches G
π ← λ
repeat

s← NextState(π)
π ← π · s
if s ∈ G then return Yes . We have provably reached G

until REACHEDBSCC(π, pmin, δ)
return No . By Theorem 3.8, P[K(π) ∈ BSCC] ≥ 1− δ

3.2. Hypothesis testing with bounded error
In the following, we show how to estimate the probability of reaching a set of goal
states, by combining the BSCC detection and hypothesis testing. More specifically,
we sample many paths of a Markov chain, decide for each whether it reaches the goal
states (Algorithm 2), and then use hypothesis testing to estimate the event probability.
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The hypothesis testing is adapted to the fact that testing reachability on a single path
may report false negatives.

Let Xδ
3 be a Bernoulli random variable, such that Xδ

3 = 1 if and only if SIN-
GLEPATHREACH(G, pmin, δ) = Yes, describing the outcome of Algorithm 2. The fol-
lowing theorem establishes that Xδ

3 estimates P[3G] with a bias bounded by δ.

THEOREM 3.9. For every δ > 0, we have P[3G]− δ ≤ E[Xδ
3] ≤ P[3G].

PROOF. Since the event 3G is necessary for Xδ
3 = 1, we have P[3G | Xδ

3 = 1] = 1. It
follows that E[Xδ

3] = P[Xδ
3 = 1] = P[3G,Xδ

3 = 1] ≤ P[3G], hence the upper bound. As
for the lower bound:

E[Xδ
3] = P[Xδ

3 = 1] = P[3G,Xδ
3 = 1] 3G is necessary for Xδ

3 = 1

= P[3G]− P[3G,Xδ
3 = 0]

≥ P[3G]− δ . by Theorem 3.8

�

In order to conclude on the value P[3G], the standard statistical model checking
approach via hypothesis testing (cf. Section 2.2) decides between the hypothesis

H0 : P(3G) ≥ p+ ε H1 : P(3G) < p− ε .
where ε is a desired indifference region. As we do not have precise observations on
each path, we reduce this problem to a hypothesis testing on the variable Xδ

3 with a
narrower indifference region:

H ′0 : E[Xδ
3] ≥ p+ (ε− δ) H ′1 : E[Xδ

3] < p− ε,
for some δ < ε.

We define the reduction simply as follows. Given a statistical test T ′ for H ′0, H ′1 we
define a test T that acceptsH0 if T ′ acceptsH ′0, andH1 otherwise. The following lemma
shows that T has the same strength as T ′.

LEMMA 3.10. Suppose the test T ′ decides between H ′0 and H ′1 with strength (α, β).
Then the test T decides between H0 with H1 with strength (α, β).

PROOF. Consider type I error of T . Assume that H0 holds, which means P[3G] ≥
p + ε. By Theorem 3.9 it follows that P[Xδ

3 = 1] ≥ P[3G] − δ ≥ p + (ε − δ), thus H ′0
also holds. By assumption the test T ′ accepts H ′1 with probability at most α, thus, by
the reduction, T also accepts H1 with probability ≤ α. The proof for type II error is
analogous.

�

Lemma 3.10 gives us the following algorithm to decide between H0 and H1. We gen-
erate samples x0, x1, · · · , xn ∼ Xδ

3 from SINGLEPATHREACH(G, pmin, δ), and apply a
statistical test to decide between H ′0 and H ′1. Finally, we accept H0 if H ′0 was accepted
by the test, and H1 otherwise.

4. EXTENSIONS
In this section, we present how the on-the-fly BSCC detection can be used for verifying
LTL and quantitative properties (mean payoff).

4.1. Linear temporal logic
We show how our method extends to properties expressible by linear temporal logic
(LTL) [Pnueli 1977] and, in the same manner, to all ω-regular properties. Given
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a finite set Ap of atomic propositions, a labelled Markov chain (LMC) is a tuple
M = (S,P, µ, L), where (S,P, µ) is a MC and L : S → 2Ap is a labelling function.
The formulae of LTL are given by the following syntax:

ϕ ::= a | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ

for a ∈ Ap. The semantics is defined with respect to a word w ∈ (2Ap)ω. The ith letter of
w is denoted by w[i], i.e. w = w[0]w[1] · · · and we write wi for the suffix w[i]w[i+ 1] · · · .
We define

w |= a ⇐⇒ a ∈ w[0]
w |= ¬ϕ ⇐⇒ not w |= ϕ
w |= ϕ ∧ ψ ⇐⇒ w |= ϕ and w |= ψ
w |= Xϕ ⇐⇒ w1 |= ϕ
w |= ϕUψ ⇐⇒ ∃ k ∈ N : (wk |= ψ and ∀ 0 ≤ j < k : wj |= ϕ ).

The set {w ∈ (2Ap)ω | w |= ϕ} is denoted by L(ϕ). Given a labelled Markov chain M
and an LTL formula ϕ, we are interested in the measure

PM[ϕ] := PM[{ρ ∈ Runs | L(ρ) |= ϕ}],
where L is naturally extended to runs by L(ρ)[i] = L(ρ[i]) for all i.

For every LTL formula ϕ, one can construct a deterministic Rabin automaton that
accepts all runs that satisfy ϕ.

Definition 4.1 (Deterministic Rabin automaton). A deterministic Rabin automaton
(DRA) is a tuple A = (Q, 2Ap, γ, qo, Acc), where

— Q is a finite set of states,
— γ : Q× 2Ap → Q is the transition function,
— qo ∈ Q is the initial state, and
— Acc ⊆ 2Q × 2Q is the acceptance condition.

A word w ∈ (2Ap)ω induces an infinite sequence A(w) = s0s1 · · · ∈ Qω, such that s0 =
q0 and γ(si, w[i]) = si+1 for i ≥ 0. We write Inf(w) for the set of states that occur
infinitely often in A(w). Word w is accepted, if there exists a pair (E,F ) ∈ Acc, such
that E ∩ Inf(w) = ∅ and F ∩ Inf(w) 6= ∅. The language L(A) of A is the set of all words
accepted by A. The following is a well known result, see e.g. [Baier and Katoen 2008].

LEMMA 4.2. For every LTL formula ϕ, a DRA Aϕ can be effectively constructed such
that L(Aϕ) = L(ϕ).

The product of a MC and DRA is defined in the following way.

Definition 4.3 (Product of a MC and DRA). The product of a Markov chain M =
(S,P, µ) and deterministic Rabin automaton A = (Q, 2Ap, γ, qo, Acc) is the Markov
chainM⊗A = (S ×Q,P′, µ′), where

— P′((s, q), (s′, q′)) = P(s, s′) if q′ = γ(q, L(s′)) and P′((s, q), (s′, q′)) = 0 otherwise,
— µ′(s, q) = µ(s) if γ(qo, L(s)) = q and µ′(s, q) = 0 otherwise.

Note thatM⊗A has the same smallest transition probability pmin asM.
The crux of LTL probabilistic model checking relies on the fact that the probability of

satisfying an LTL property ϕ in a Markov chainM equals the probability of reaching
an accepting BSCC in the Markov chain M⊗Aϕ. Formally, a BSCC C of M⊗Aϕ is
accepting if for some (E,F ) ∈ Acc we have C ∩ (S × E) = ∅ and C ∩ (S × F ) 6= ∅.
Let AccBSCC denote the union of all accepting BSCCs inM⊗Aϕ. Then we obtain the
following well-known fact [Baier and Katoen 2008]:
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LEMMA 4.4. For every labelled Markov chain M and LTL formula ϕ, we have
PM[ϕ] = PM⊗Aϕ [3AccBSCC].

Algorithm 3 SINGLEPATHLTL
Input: DRA A = (Q, 2Ap, γ, qo, Acc), pmin, δ ∈ (0, 1]
Output: Yes iff the final candidate is an accepting BSCC
q ← qo, π ← λ
repeat

s← NextState(π)
q ← γ(q, L(s))
π ← π · (s, q)

until REACHEDBSCC(π, pmin, δ) . P[K(π) ∈ BSCC] ≥ 1− δ
return ∃(E,F ) ∈ Acc : K(π) ∩ (S × E) = ∅ ∧K(π) ∩ (S × F ) 6= ∅

4.2. Hypothesis testing with bounded error
Since the input used is a Rabin automaton, the method applies to all ω-regular prop-
erties. Let Xδ

ϕ be a Bernoulli random variable, such that Xδ
ϕ = 1 if and only if SIN-

GLEPATHLTL(Aϕ, pmin, δ) = Yes. Since the BSCC must be reached and fully explored
to classify it correctly, the error of the algorithm can now be both-sided.

THEOREM 4.5. For every δ > 0, P[ϕ]− δ ≤ E[Xδ
ϕ] ≤ P[ϕ] + δ.

Further, like in Section 3.2, we can reduce the hypothesis testing problem for

H0 : P[ϕ] ≥ p+ ε and H1 : P[ϕ] ≤ p− ε

for any δ < ε to the following hypothesis testing problem on the observable Xδ
ϕ

H ′0 : E[Xδ
ϕ] ≥ p+ (ε− δ) and H ′1 : E[Xδ

ϕ] ≤ p− (ε− δ) .

4.3. Mean payoff
We show that our method extends also to quantitative properties, such as mean payoff
(also called long-run average reward). Let M = (S,P, µ) be a Markov chain and r :
S → [0, 1] be a reward function. Denoting by Si the random variable returning the i-th
state on a run, the aim is to compute

MP := lim
n→∞

E

[
1

n

n∑
i=1

r(Si)

]
.

This limit exists (see, e.g. [Norris 1998]), and equals
∑
C∈BSCC P[3C] ·MPC ,where MPC

is the mean payoff of runs ending in C. Note that MPC can be computed from r and
transition probabilities in C [Norris 1998]. We have already shown how our method
estimates P[3C]. Now we show how it extends to estimating transition probabilities in
BSCCs and thus the mean payoff.

First, we focus on a single path π that has reached a BSCC C = K(π) and show
how to estimate the transition probabilities P(s, s′) for each s, s′ ∈ C. Let Xs,s′ be the
random variable denoting the event that NextState(s) = s′. Xs,s′ is a Bernoulli vari-
able with parameter P(s, s′), so we use the obvious estimator P̂(s, s′) = #ss′(π)/#s(π),
where #α(π) is the number of occurrences of α in π. If π is long enough so that #s(π)
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is large enough, the estimation is guaranteed to have desired precision ξ with desired
confidence (1− δs,s′). Indeed, using Höffding’s inequality, we obtain

P[P̂(s, s′)−P(s, s′)| > ξ] ≤ δs,s′ = 2e−2#s(π)·ξ
2

. (3)

Hence, we can extend the path π with candidate C until it is long enough so that
we have a 1 − δC confidence that all the transition probabilities in C are in the ξ-
neighbourhood of our estimates, by ensuring that

∑
s,s′∈C δs,s′ < δC . These estimated

transition probabilities P̂ induce an estimated mean payoff M̂PC . The following theo-
rem relates the estimated and exact mean payoff.

THEOREM 4.6. Let C be a BSCC in a Markov chainM with rewards in the range
[0, 1], MPC be the mean payoff of C, and M̂PC be the estimated mean payoff of C. Then

|M̂PC −MPC | ≤ ζ :=

(
1 +

ξ

pmin

)2·|C|

− 1 . (4)

PROOF. Consider a Markov chain C with a reward function r : S → [0, 1], such that
C is a single BSCC. The discounted sum MDλ for a state s of C is defined as:

MDλ(s) := lim
n→∞

E
[∑n

i=1 r(Si)λ
i∑n

i=1 λ
i

]
,

where λ > 0 is a discount factor. We say that a Markov chain Ĉ is ξ-close to C if

(1) Ĉ is over the same states as C,
(2) ∀s, s′ ∈ C : |PC(s, s′)−PĈ(s, s

′)| ≤ ξ,
(3) ∀s, s′ ∈ C : PC(s, s

′) > 0 ⇐⇒ PĈ(s, s
′) > 0.

We write M̂D
λ

for the discounted sum computed for Ĉ. By [Chatterjee 2012](Theorem
4) it holds that for every discount factor 0 < λ < 1, every MC Ĉ that is ξ-close to C, and
every state s:

|M̂D
λ
(s)−MDλ(s)| ≤

(
1 +

ξ

pmin

)2·|C|

− 1 , (5)

where pmin is the minimum transition probability inM. By [Solan 2003] we know that
the discounted sum converges to mean payoff:

lim
λ→1

MDλ(s) = MPC lim
λ→1

M̂D
λ
(s) = M̂PC ,

where MPC and M̂PC are the mean payoff for C and Ĉ, respectively. We obtain the
result by taking the limit λ→ 1 in (5).

�

Note that by Taylor’s expansion, for small ξ, we have ζ ≈ 2|C|ξ.
Algorithm 4 extends Algorithm 2 as follows. It divides the confidence parameters δ

into δBSCC (used as in Algorithm 2 to detect the BSCC) and δC (the total confidence
for the estimates on transition probabilities). For simplicity, we set δBSCC = δC = δ/2.
First, we compute the bound ξ required for ζ-precision (by Eq. 4). Subsequently, we
compute the required strength k of the candidate guaranteeing δC-confidence on P̂
(from Eq. 3). The path is prolonged until the candidate is strong enough; in such a case
M̂PC is ζ-approximated with 1 − δC confidence. If the candidate of the path changes,
all values are computed from scratch for the new candidate.
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Algorithm 4 SINGLEPATHMP
Input: reward function r, pmin, ζ, δ ∈ (0, 1],
Output: M̂PC such that |M̂PC −MPC | < ζ where C is the BSCC of the generated run
π ← λ
repeat

π ← π .NextState(π)
if K(π) 6= ⊥ then

ξ = pmin((1 + ζ)1/2|K(π)| − 1) . By Equation (4)
k ← ln(2|K(π)|2)−ln(δ/2)

2ξ2 . By Equation (3)
until REACHEDBSCC(π, pmin, δ/2) and SCANDk(K(π), π)

return M̂PK(π) computed from P̂ and r

THEOREM 4.7. For every δ > 0, the Algorithm 4 terminates correctly with probabil-
ity at least 1− δ.

PROOF. From Eq. 3, by the union bound, we are guaranteed that the probability
that none of the estimates P̂s,s′ is outside of the ζ-neighbourhood doesn’t exceed the
sum of all respective estimation errors, that is, δC =

∑
s,s′∈C δs,s′ . Next, from Eq. 4 and

from the fact that C is subject to Theorem 3.8 with confidence δBSCC ,

P (|MPC(r)− M̂PC(r)| > ζ) =

=P (C ∈ BSCC)P (|MP(r)− M̂P(r)| > ζ | C ∈ BSCC)+

P (C /∈ BSCC)P (|MP(r)− M̂P(r)| > ζ | C /∈ BSCC)

≤1 · δC + δBSCC · 1 = δC + δBSCC ≤ δ.

�

4.4. Hypothesis testing with bounded error

Let random variable Xζ,δ
MP denote the value SINGLEPATHMP(r, pmin, ζ, δ). The following

theorem establishes relation between the mean-payoff MP and the expected value of
Xζ,δ

MP.

THEOREM 4.8. For every δ, ζ > 0, MP− ζ − δ ≤ E[Xζ,δ
MP] ≤ MP+ ζ + δ.

PROOF. Let us write Xζ,δ
MP as an expression of random variables Y,W,Z

Xζ,δ
MP = Y (1−W ) +WZ,

where 1) W is a Bernoulli random variable, such that W = 0 iff the algorithm correctly
detected the BSCC and estimated transition probabilities within bounds, 2) Y is the
value computed by the algorithm if W = 0, and the real mean payoff MP when W = 1,
and 3) Z is any random variable with the range [0, 1]. The interpretation is as follows:
when W = 0 we observe the result Y , which has bounded error ζ, and when W = 1 we
observe arbitrary Z. We note that Y,W,Z are not necessarily independent. By Theorem
4.7 E[W ] ≤ δ and by linearity of expectation: E[Xζ,δ

MP] = E[Y ]−E[YW ] +E[WZ]. For the
upper bound, observe that E[Y ] ≤ MP + ζ, E[YW ] is non-negative and E[WZ] ≤ δ. As
for the lower bound, note that E[Y ] ≥ MP− ζ, E[YW ] ≤ δ and E[WZ] is non-negative.

�
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As a consequence of Theorem 4.8, if we establish that with (1 − α) confidence Xζ,δ
MP

belongs to the interval [a, b], then we can conclude with (1 − α) confidence that MP
belongs to the interval [a− ζ− δ, b+ ζ+ δ]. Standard statistical methods can be applied
to find the confidence bound for Xζ,δ

MP [Bickel and Doksum 2000].

5. EXPERIMENTAL EVALUATION
We implemented our algorithms in the probabilistic model checker PRISM
[Kwiatkowska et al. 2011], and evaluated them on the DTMC examples from the
PRISM benchmark suite [Kwiatkowska et al. 2012]. The benchmarks model commu-
nication and security protocols, distributed algorithms, and fault-tolerant systems. To
demonstrate how our method performs depending on the topology of Markov chains,
we also performed experiments on the generic DTMCs shown in Figure 3 and Fig-
ure 4, as well as on two CTMCs from the literature that have large BSCCs: “tandem”
[Hermanns et al. 1999] and “gridworld” [Younes et al. 2006].

All benchmarks are parametrised by one or more values, which influence their size
and complexity, e.g. the number of modelled components. We have made minor modi-
fications to the benchmarks that could not be handled directly by the SMC component
of PRISM, by adding self-loops to deadlock states and fixing one initial state instead of
multiple.

Our tool can be downloaded at [Daca 2016]. Experiments were done on a Linux 64-
bit machine running an AMD Opteron 6134 CPU with a time limit of 15 minutes and
a memory limit of 5GB. To increase performance of our tool, we check whether a can-
didate has been found every 1000 steps; this optimization does not violate correctness
of our analysis. See the appendix for a discussion on this bound.

s u1t1 · · · uN BSCC· · ·tNBSCC
0.50.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

Fig. 4. A Markov chain with two transient parts consisting of N strongly connected singletons, leading to
BSCCs with the ring topology of M states.

Reachability. The experimental results for unbounded reachability are shown in Ta-
ble II. The PRISM benchmarks were checked against their standard properties, when
available. We directly compare our method to another topology-agnostic method of
[Younes et al. 2010] (SimTermination), where at every step the sampled path is termi-
nated with probability pterm. The approach of [Brázdil et al. 2014] with a priori bounds
is not included, since it times out even on the smallest benchmarks. In addition, we
performed experiments on two methods that are topology-aware: sampling with reach-
ability analysis of [Younes et al. 2010] (SimAnalysis) and the numerical model-checking
algorithm of PRISM (MC). The appendix contains detailed experimental evaluation of
these methods.

The table shows the size of every example, its minimum probability, the number of
BSCCs, and the size of the largest BSCC. Column “time” reports the total wall time for
the respective algorithm, and “analysis” shows the time for symbolic reachability anal-
ysis in the SimAnalysis method. Highlights show the best result among the topology-
agnostic methods. All statistical methods were used with the SPRT test for choosing
between the hypothesis, and their results were averaged over five runs.
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Table II. Experimental results for unbounded reachability.

Example BSCC SimAdaptive SimTermination[Younes et al. 2010] SimAnalysis[Younes et al. 2010] MC
name size pmin no., max. size time time time analysis time

bluetooth(4) 149K 7.8 · 10−3 3K, 1 2.6s 16.4s 83.2s 80.4s 78.2s
bluetooth(7) 569K 7.8 · 10−3 5.8K, 1 3.8s 50.2s 284.4s 281.1s 261.2s

bluetooth(10) >569K 7.8 · 10−3 >5.8K, 1 5.0s 109.2s TO - TO
brp(500,500) 4.5M 0.01 1.5K, 1 7.6s 13.8s 35.6s 30.7s 103.0s
brp(2K,2K) 40M 0.01 4.5K, 1 20.4s 17.2s 824.4s 789.9s TO

brp(10K,10K) >40M 0.01 >4.5K, 1 89.2s 15.8s TO - TO
crowds(6,15) 7.3M 0.066 >3K, 1 3.6s 253.2s 2.0s 0.7s 19.4s
crowds(7,20) 17M 0.05 >3K, 1 4.0s 283.8s 2.6s 1.1s 347.8s
crowds(8,20) 68M 0.05 >3K, 1 5.6s 340.0s 4.0s 1.9s TO

eql(15,10) 616G 0.5 1, 1 16.2s TO 151.8s 145.1s 110.4s
eql(20,15) 1279T 0.5 1, 1 28.8s TO 762.6s 745.4s 606.6s
eql(20,20) 1719T 0.5 1, 1 31.4s TO TO - TO

herman(17) 129M 7.6 · 10−6 1, 34 23.0s 33.6s 21.6s 0.1s 1.2s
herman(19) 1162M 1.9 · 10−6 1, 38 96.8s 134.0s 86.2s 0.1s 1.2s
herman(21) 10G 4.7 · 10−7 1, 42 570.0s TO 505.2s 0.1s 1.4s
leader(6,6) 280K 2.1 · 10−5 1, 1 5.0s 5.4s 536.6s 530.3s 491.4s
leader(6,8) >280K 3.8 · 10−6 1, 1 23.0s 26.0s MO - MO

leader(6,11) >280K 5.6 · 10−7 1, 1 153.0s 174.8s MO - MO
nand(50,3) 11M 0.02 51, 1 7.0s 231.2s 36.2s 31.0s 272.0s
nand(60,4) 29M 0.02 61, 1 6.0s 275.2s 60.2s 56.3s TO
nand(70,5) 67M 0.02 71, 1 6.8s 370.2s 148.2s 144.2s TO

tandem(500) >1.7M 2.4 · 10−5 1, >501K 2.4s 6.4s 4.6s 3.0s 3.4s
tandem(1K) 1.7M 9.9 · 10−5 1, 501K 2.6s 19.2s 17.0s 12.7s 13.0s
tandem(2K) >1.7M 4.9 · 10−5 1, >501K 3.4s 72.4s 62.4s 59.8s 59.4s

gridworld(300) 162M 1 · 10−3 598, 89K 8.2s 81.6s MO - MO
gridworld(400) 384M 1 · 10−3 798, 160K 8.4s 100.6s MO - MO
gridworld(500) 750M 1 · 10−3 998, 250K 5.8s 109.4s MO - MO

Fig.3(16) 37 0.5 1, 1 58.6s TO 23.4s 0.4s 2.0s
Fig.3(18) 39 0.5 1, 1 TO TO 74.8.0s 1.8s 2.0s
Fig.3(20) 41 0.5 1, 1 TO TO 513.6s 11.3s 2.0s

Fig.4(1K,5) 4022 0.5 2, 5 7.8s 218.2s 3.2s 0.5s 1.2s
Fig.4(1K,50) 4202 0.5 2, 50 12.4s 211.8s 3.6s 0.7s 1.0s
Fig.4(1K,500) 6002 0.5 2, 500, 431.0s 218.6s 3.6s 1.0s 1.2s
Fig.4(10K,5) 40K 0.5 2, 5 52.2s TO 42.2s 25.4s 25.6s
Fig.4(100K,5) 400K 0.5 2, 5 604.2s 5.4s TO - TO

Note. Simulation parameters: α = β = ε = 0.01, δ = 0.001, pterm = 0.0001. TO means time-out, and MO means memory-out. Our approach is denoted by
SimAdaptive here. Highlights show the best result the among topology-agnostic methods.
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Finding the optimal termination probability pterm for the SimTermination method is a
non-trivial task. If the probability is too high, the method might never reach the target
states, thus give an incorrect result, and if the value is too low, then it might sample
unnecessarily long traces that never reach the target. For instance, to ensure a correct
answer on the Markov chain in Figure 3, pterm has to decrease exponentially with the
number of states. By experimenting we found that the probability pterm = 0.0001 is low
enough to ensure correct results. See the appendix for experiments with other values
of pterm.

On most examples our method scales better than the SimTermination method. Our
method performs well even on examples with large BSCCs, such as “tandem” and
“gridworld,” due to early termination when a goal state is reached. For instance, on
the “gridworld” example, most BSCCs do not contain a goal state, thus have to be fully
explored, however the probability of reaching such BSCC is low, and as a consequence
full BSCC exploration rarely occurs. The SimTermination method performs well when
the target states are unreachable or can be reached by short paths. When long paths
are necessary to reach the target, the probability that an individual path reaches the
target is small, hence many samples are necessary to estimate the real probability
with high confidence.

Moreover, it turns out that our method compares well even with methods that have
access to the topology of the system. In many cases, the running time of the numer-
ical algorithm MC increases dramatically with the size of the system, while remain-
ing almost constant in our method. The bottleneck of the SimAnalysis algorithm is the
reachability analysis of states that cannot reach the target, which in practice can be
as difficult as numerical model checking.

LTL and mean payoff. In the second experiment, we compared our algorithm for
checking LTL properties and estimating the mean payoff with the numerical methods
of PRISM; the results are shown in Table III and IV. We compare against PRISM, since
we are not aware of any SMC-based or topology-agnostic approach for mean payoff,
or full LTL. For mean payoff, we computed 95%-confidence bound of size 0.22 with
parameters δ = 0.011, ζ = 0.08, and for LTL we used the same parameters as for
reachability. We report results only on a single model of each type, where either method
did not time out. In general our method scales better when BSCCs are fairly small and
are discovered quickly.

Table III. Experimental results for LTL properties.

Example LTL
name property SimAdaptive time MC time

bluetooth(10) 23 8.0s TO
brp(10K,10K) 32 90.0s TO
crowds(8,20) 32 9.0s TO

eql(20,20) 23 7.0s MO
herman(21) 23 TO 2.0s
leader(6,5) 23 277.0s 117.0s
nand(70,5) 23 4.0s TO
tandem(2K) 23 TO 221.0s

gridworld(100) 23→ 32 TO 110.4s
Fig.3(20) 23→ 23 TO

Fig.4(100K,5) 23 348.0s TO
Fig.4(1K,500) 23 827.0s 2.0s

Note. Simulation parameters for LTL: α = β = ε = 0.01, δ = 0.001.
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Table IV. Experimental results for mean-payoff properties.

Example Mean payoff
name SimAdaptive time MC time

bluetooth(10) 3.0s TO
brp(10K,10K) 6.6s TO
crowds(8,20) 2.0s TO

eql(20,20) 2.6s TO
herman(21) MO 3.0s
leader(6,6) 48.5 576.0
nand(70,5) 2.0s 294.0s

tandem(500) TO 191.0s
gridworld(50) TO 58.1s

Fig.3(20) TO 1.8s
Fig.4(100K,5) 79.6s TO
Fig.4(1K,500) TO 2.0s

Note. For mean-payoff we computed a 95%-confidence
interval of size 0.22 with δ = 0.011, ζ = 0.08.

6. DISCUSSION
As demonstrated by the experimental results, our method is fast on systems that are
(1) shallow, and (2) with small BSCCs. In such systems, the BSCC is reached quickly
and the candidate is built-up quickly. Further, recall that the BSCC is reported when
a k-candidate is found, and that k is increased with each candidate along the path.
Hence, when there are many strongly connected sets, and thus many candidates, the
BSCC is detected by a k-candidate for a large k. However, since k grows linearly in the
number of candidates, the most important and limiting factor is the size of BSCCs.

We state the dependency on the depth of the system and BSCC sizes formally. We
pick δ := ε

2 and let

sim =
− log β

1−α log 1−β
α

log p−ε+δ
p+ε−δ log

1−p−ε+δ
1−p+ε−δ

and ki =
i− log δ

− log(1− pmin)

denote the a priori upper bound on the number of simulations necessary for the SPRT
(cf. Section 2.2) and the strength of candidates as in Algorithm 2, respectively.

THEOREM 6.1. Let R denote the expected number of steps before reaching a BSCC
and B the maximum size of a BSCC. Further, let

T := max
C∈BSCC;s,s′∈C

E[time to reach s′ from s] .

In particular, T ∈ O(B/pBmin). Then the expected running time of Algorithms 2 and 3 is
at most

O(sim · kR+B ·B · T ) .
PROOF. We show that the expected running time of each simulation is at most kR+B ·

B · T . Since the expected number of states visited is bounded by R + B, the expected
number of candidates on a run is less than 2(R+B)− 1. Since ki grows linearly in i it
is sufficient to prove that the expected time to visit each state of a BSCC once (when
starting in BSCC) is at most B ·T . We order the states of a BSCC as s1, . . . , sb, then the
time is at most

∑b
i=1 T , where b ≤ B. This yields the result since R ∈ O(kR+B ·B · T ).

It remains to prove that T ≤ B/pBmin. Let s be a state of a BSCC of size at most B.
Then, for any state s′ from the same BSCC, the shortest path from s to s′ has length at
most B and probability at least pBmin. Consequently, if starting at s, we haven’t reached
s′ after B steps with probability at most 1 − pBmin, and we are instead in some state
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s′′ 6= s′, from which, again, the probability to reach s′ within B steps at least pBmin.
Hence, the expected time to reach s′ from s is at most

∞∑
i=1

B · i(1− pBmin)
i−1pBmin,

where i indicates the number of times a sequence of B steps is observed. The series
can be summed by differentiating a geometric series. As a result, we obtain a bound
B/pB .

�

Systems that have large deep BSCCs require longer time to reach for the required
level of confidence. However, such systems are often difficult to handle also for other
methods agnostic of the topology. For instance, correctness of [Younes et al. 2010] on
the example in Figure 3 relies on the termination probability pterm being at most 1− λ,
which is less than 2−n here. Larger values lead to incorrect results and smaller values
to paths of exponential length. Nevertheless, our procedure usually runs faster than
the bound suggest; for detailed discussion see the appendix.

7. CONCLUSION
To the best of our knowledge, we propose the first statistical model-checking method
that exploits the information provided by each simulation run on the fly, in order to
detect quickly a potential BSCC, and verify LTL properties with the desired confidence.
This is also the first application of SMC to quantitative properties such as mean payoff.
We note that for our method to work correctly, the precise value of pmin is not necessary,
but a lower bound is sufficient. This lower bound can come from domain knowledge,
or can be inferred directly from description of white-box systems, such as the PRISM
benchmark.

The approach we present is not meant to replace the other methods, but rather to
be an addition to the repertoire of available approaches. Our method is particularly
valuable for models that have small BSCCs and huge state space, such as many of the
PRISM benchmarks.

In future work, we plan to investigate the applicability of our method to Markov
decision processes, and to deciding language equivalence between two Markov chains.
The idea of guessing BSCCs by simulation has already been re-used in order to esti-
mate distances between Markov chains [Daca et al. 2016b]

APPENDIX
A. DETAILED EXPERIMENTS
Table V shows detailed experimental result for unbounded reachability. Compared to
Table II we included: 1) experiments for the SimTermination method with two other
values of pterm, 2) we report the number of sampled paths as “samples,” and 3) we report
the average length of sampled paths as “path length.” Topology-agnostic methods, such
as SimAdaptive and SimTermination, cannot be compared directly with topology-aware
methods, such as SimAnalysis and MC, however for reader’s curiosity we highlighted in
the table the best results among all methods.

We observed that in the “herman” example the SMC algorithms work unusually
slow. This problem seems to be caused by a bug in the original sampling engine of
PRISM and it appears that all SMC algorithms suffer equally from this problem.
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Table V. Detailed experimental results for unbounded reachability.
Example SimAdaptive SimTermination, pterm = 10−3 SimTermination, pterm = 10−4 SimTermination, pterm = 10−5 SimAnalysis MC

name time samples path length time samples path length time samples path length time samples path length time samples path length analysis time
bluetooth(4) 2.6s 243 499 185.0s 43K 387 16.4s 3389 484 6.4s 463 495 83.2s 219 502 80.4s 78.2s
bluetooth(7) 3.8s 243 946 697.4s 106K 604 50.2s 6480 897 10.2s 792 931 284.4s 219 937 281.1s 261.2s
bluetooth(10) 5.0s 243 1391 TO - - 109.2s 9827 1292 15.0s 932 1380 TO - - - TO
brp(500,500) 7.6s 230 3999 3.2s 258 963 13.8s 258 9758 107.2s 258 104K 35.6s 207 3045 30.7s 103.0s
brp(2K,2K) 20.4s 230 13K 3.4s 258 1029 17.2s 258 9127 115.0s 258 98K 824.4s 207 12K 789.9s TO

brp(10K,10K) 89.2s 230 62K 3.6s 258 960 15.8s 258 10K 109.4s 258 96K TO - - - TO
crowds(6,15) 3.6s 395 879 29.2s 7947 878 253.2s 7477 8735 TO - - 2.0s 400 85 0.7s 19.4s
crowds(7,20) 4.0s 485 859 32.6s 9378 850 283.8s 8993 8464 TO - - 2.6s 473 98 1.1s 347.8s
crowds(8,20) 5.6s 830 824 38.2s 11K 821 340.0s 10K 8132 TO - - 4.0s 793 110 1.9s TO

eql(15,10) 16.2s 1149 652 303.2s 28K 628 TO - - TO - - 151.8s 1100 201 145.1s 110.4s
eql(20,15) 28.8s 1090 1299 612.8s 44K 723 TO - - TO - - 762.6s 999 347 745.4s 606.6s
eql(20,20) 31.4s 1071 1401 TO 11K 156 TO - - TO - - TO - - - TO

herman(17) 23.0s 243 30 257.6s 2101 30 33.6s 381 32 29.0s 279 31 21.6s 219 30 0.1s 1.2s
herman(19) 96.8s 243 40 TO - - 134.0s 355 38 254.4s 279 40 86.2s 219 38 0.1s 1.2s
herman(21) 570.0s 243 46 MO - - TO - - MO - - 505.2s 219 48 0.1s 1.4s
leader(6,6) 5.0s 243 7 7.6s 437 7 5.4s 258 7 5.0s 258 7 536.6s 219 7 530.3s 491.4s
leader(6,8) 23.0s 243 7 62.4s 560 7 26.0s 279 7 26.2s 258 7 MO - - - MO
leader(6,11) 153.0s 243 7 TO - - 174.8s 279 7 776.8s 258 7 MO - - - MO
nand(50,3) 7.0s 899 1627 570.6s 140K 846 231.2s 21K 4632 TO - - 36.2s 1002 1400 31.0s 272.0s
nand(60,4) 6.0s 522 2431 TO - - 275.2s 25K 4494 TO - - 60.2s 458 2160 56.3s TO
nand(70,5) 6.8s 391 3343 TO - - 370.2s 30K 4643 TO - - 148.2s 308 3080 144.2s TO

tandem(500) 2.4s 243 501 59.6s 43K 394 6.4s 3318 489 2.0s 412 500 4.6s 219 501 3.0s 3.4s
tandem(1K) 2.6s 243 1001 328.4s 114K 632 19.2s 6932 954 3.4s 858 995 17.0s 219 1001 12.7s 13.0s
tandem(2K) 3.4s 243 2001 TO - - 72.4s 14K 1811 6.6s 1093 1985 62.4s 219 2001 59.8s 59.4s

gridworld(300) 8.2s 1187 453 214.4s 46K 349 81.6s 18K 437 77.4s 16K 449 MO - - - MO
gridworld(400) 8.4s 1047 543 274.8s 53K 399 100.6s 18K 531 93.0s 16K 548 MO - - - MO
gridworld(500) 5.8s 480 637 277.4s 57K 431 109.4s 18K 605 104.4s 15K 627 MO - - - MO

Fig.3(16) 58.6s 128 140K TO - - TO - - TO - - 23.4s 115 141K 0.4s 2.0s
Fig.3(18) TO - - 2.8s 258 1015 TO - - TO - - 74.8s 115 537K 1.8s 2.0s
Fig.3(20) TO - - WRONG - - TO - - TO - - 513.6s 119 2M 11.3s 2.0s

Fig.4(1K,5) 7.8s 1109 2489 TO - - 218.2s 23K 5916 TO - - 3.2s 896 1027 0.5s 1.2s
Fig.4(1K,50) 12.4s 1115 4306 TO - - 211.8s 23K 5880 TO - - 3.6s 881 1037 0.7s 1.0s

Fig.4(1K,500) 431.0s 1002 177K TO - - 218.6s 23K 5903 TO - - 3.6s 968 1042 1.0s 1.2s
Fig.4(10K,5) 52.2s 1161 20K 2.6s 258 1072 TO - - TO - - 42.2s 1057 10K 25.4s 25.6s

Fig.4(100K,5) 604.2s 1331 200K 2.6s 258 981 5.4s 258 9939 TO - - TO - - - TO

Note. Simulation parameters: α = β = ε = 0.01, δ = 0.001. TO means a timeout or memory out, and WRONG means that the reported result was incorrect, due
to pterm being too large. Our approach is denoted by SimAdaptive here. Highlights show the best result among all methods.
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B. IMPLEMENTATION DETAILS
In our algorithms we frequently check whether the simulated path contains a candi-
date with the required strength. To reduce the time needed for this operation we use
two optimisation: 1) we record SCs visited on the path, 2) we check if a candidate has
been found every Cb ≥ 1 steps. Our data structure records the sequence of SCs that
have been encountered on the simulated path. The candidate of the path is then the
last SC in the sequence. We also record the number of times each state in the candi-
date has been encountered. By using this data structure we avoid traversing the entire
path every time we check if a strong k-candidate has been reached.

To further reduce the overhead, we update our data structure every Cb steps (in
our experiments Cb = 1000). Figures 5 and 6 show the impact of Cb on the running
time for two Markov chains. The optimal value of Cb varies among examples, however
experience shows that Cb ≈ 1000 is a reasonable choice.
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Fig. 5. Total running time and time for processing candidates for a Markov chain in Figure 3 depending on
the check bound Cb.

C. THEORETICAL VS. EMPIRICAL RUNNING TIME
In this section, we compare the theoretical upper bound on running time given in The-
orem 6.1 to empirical data. We omit the number of simulation runs (term sim in the
theorem), and report only the logarithm of average simulation length. Figures 7, 8 and
9 present the comparison for different topologies of Markov chains. In Figure 7 we
present the comparison for the worst-case Markov chain, which requires the longest
paths to discover the BSCCs as a k-candidate. This Markov chain is like the one in
Figure 3, but where the last state has a single outgoing transition to the initial state.
Figure 8 suggests that the theoretical bound can be a good predictor of running time
with respect to the depth of the system, however, Figure 9 shows that it is very conser-
vative with respect to the size of BSCCs.
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Fig. 6. Total running time and time for processing candidates for the “eql(20,20)” benchmark depending on
the check bound Cb.
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Fig. 7. Average length of simulations for a Markov chain like in Figure 3, but where the last state has a
single outgoing transition to the initial state.
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Fig. 8. Average length of simulations for the MC in Figure 4, where M = 5 and N varies.

0

2

4

6

8

10

10 15 20 25 30 35 40 45 50

lo
g(

si
m

.l
en

gt
h)

BSCC size

theoretical
experimental

Fig. 9. Average length of simulations for the MC in Figure 4, where N = 1000 and M varies.

24



REFERENCES
Christel Baier and Joost-Pieter Katoen. 2008. Principles of model checking. MIT Press.
P.J. Bickel and K.A. Doksum. 2000. Mathematical statistics: basic ideas and selected topics. Number Bd. 1

in Mathematical Statistics: Basic Ideas and Selected Topics. Prentice Hall. http://books.google.at/books?
id=8poZAQAAIAAJ

Tomáš Brázdil, Krishnendu Chatterjee, Martin Chmelík, Vojtěch Forejt, Jan Křetínský, Marta Z.
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Abstract. Controller synthesis for general linear temporal logic (LTL)
objectives is a challenging task. The standard approach involves trans-
lating the LTL objective into a deterministic parity automaton (DPA) by
means of the Safra-Piterman construction. One of the challenges is the
size of the DPA, which often grows very fast in practice, and can reach
double exponential size in the length of the LTL formula. In this pa-
per we describe a single exponential translation from limit-deterministic
Büchi automata (LDBA) to DPA, and show that it can be concatenated
with a recent efficient translation from LTL to LDBA to yield a double
exponential, “Safraless” LTL-to-DPA construction. We also report on an
implementation, a comparison with the SPOT library, and performance
on several sets of formulas, including instances from the 2016 SyntComp
competition.

1 Introduction

Limit-deterministic Büchi automata (LDBA, also known as semi-deterministic
Büchi automata) were introduced by Courcoubetis and Yannakakis (based on
previous work by Vardi) to solve the qualitative probabilistic model-checking
problem: Decide if the executions of a Markov chain or Markov Decision Pro-
cess satisfy a given LTL formula with probability 1 [Var85,VW86,CY95]. The
problem faced by these authors was that fully nondeterministic Büchi automata
(NBAs), which are as expressible as LTL, and more, cannot be used for prob-
abilistic model checking, and deterministic Büchi automata (DBA) are less ex-
pressive than LTL. The solution was to introduce LDBAs as a model in-between:
as expressive as NBAs, but deterministic enough.

After these papers, LDBAs received little attention. The alternative path of
translating the LTL formula into an equivalent fully deterministic Rabin automa-
ton using Safra’s construction [Saf88] was considered a better option, mostly be-
cause it also solves the quantitative probabilistic model-checking problem (com-
puting the probability of the executions that satisfy a formula). However, recent
papers have shown that LDBAs were unjustly forgotten. Blahoudek et al. have

? This work is partially funded by the DFG Research Training Group “PUMA:
Programm- und Modell-Analyse” (GRK 1480), DFG project “Verified Model Check-
ers”, the ERC Starting Grant (279499: inVEST), and the Czech Science Foundation,
grant No. P202/12/G061.



shown that LDBAs are easy to complement [BHS+16]. Kini and Viswanathan
have given a single exponential translation of LTL\GU to LDBA [KV15]. Finally,
Sickert et al. describe in [SEJK16] a double exponential translation for full LTL
that can also be applied to the quantitative case, and behaves better than Safra’s
construction in practice.

In this paper we add to this trend by showing that LDBAs are also at-
tractive for synthesis. The standard solution to the synthesis problem with LTL
objectives consists of translating the LTL formula into a deterministic parity au-
tomaton (DPA) with the help of the Safra-Piterman construction [Pit07]. While
limit-determinism is not “deterministic enough” for the synthesis problem, we in-
troduce a conceptually simple and worst-case optimal translation LDBA→DPA.
Our translation bears some similarities with that of [Fin15] where, however, a
Muller acceptance condition is used. This condition can also be phrased as a
Rabin condition, but not as a parity condition. Moreover, the way of tracking
all possible states and finite runs differs.

Together with the translation LTL→LDBA of [SEJK16], our construction
provides a “Safraless”, procedure to obtain a DPA from an LTL formula. How-
ever, the direct concatenation of the two constructions does not yield an algo-
rithm of optimal complexity: the LTL→LDBA translation is double exponential
(and there is a double-exponential lower bound), and so for the LTL→DPA trans-
lation we only obtain a triple exponential bound. In the second part of the paper
we solve this problem. We show that the LDBAs derived from LTL formulas sat-
isfy a special property, and prove that for such automata the concatenation of
the two constructions remains double exponential. To the best of our knowledge,
this is the first double exponential “Safraless” LTL→DPA procedure. (Another
asymptotically optimal “Safraless” procedure for determinization of Büchi au-
tomata with Rabin automata as target has been presented in [FKVW15].)

In the third and final part, we report on the performance of an implemen-
tation of our LTL→LDBA→DPA construction, and compare it with algorithms
implemented in the SPOT library [DLLF+16]. Note that it is not possible to
force SPOT to always produce DPA, sometimes it produces a deterministic gen-
eralized Büchi automaton (DGBA). The reason is that DGBA are often smaller
than DPA (if they exist) and game-solving algorithms for DGBA are not less
efficient than for DPA. Therefore, also our implementation may produce DGBA
in some cases. We show that our implementation outperforms SPOT for sev-
eral sets of parametric formulas and formulas used in synthesis examples taken
from the SyntComp 2016 competition, and remains competitive for randomly
generated formulas.

Structure of the paper Section 2 introduces the necessary preliminaries about
automata. Section 3 defines the translation LDBA→DPA. Section 4 shows how
to compose of LTL→LDBA and LDBA→DPA in such a way that the resulting
DPA is at most doubly exponential in the size of the LTL formula. Section 5
reports on the experimental evaluation of this worst-case optimal translation,
and Section 6 contains our conclusions. Several proofs and more details on the
implementation can be found in [EKRS17].
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Fig. 1: An LDBA for the LTL language FGa ∨ FGb. The behavior of A is
deterministic within the subset of states Qd = {2, 3, 4} which is a trap, the
set of accepting transitions are depicted in bold face and they are defined only
between states of Qd.

2 Preliminaries

Büchi automata A (nondeterministic) ω-word automaton A with Büchi ac-
ceptance condition (NBA) is a tuple (Q, q0, Σ, δ, α) where Q is a finite set of
states, q0 ∈ Q is the initial state, Σ is a finite alphabet, δ ⊆ Q × Σ × Q is
the transition relation, and α ⊆ δ is the set of accepting transitions3. W.l.o.g.
we assume that δ is total in the following sense: for all q ∈ Q, for all σ ∈ Σ,
there exists q′ ∈ Q such that (q, σ, q′) ∈ δ. A is deterministic if for all q ∈ Q,
for all σ ∈ Σ, there exists a unique q′ ∈ Q such that (q, σ, q′) ∈ δ. When δ is
deterministic and total, it can be equivalently seen as a function δ : Q×Σ → Q.
Given S ⊆ Q and σ ∈ Σ, let postσδ (S) = {q′ | ∃q ∈ S · (q, σ, q′) ∈ δ}.

A run of A on a ω-word w : N→ Σ is a ω-sequence of states ρ : N→ Q such
that ρ(0) = q0 and for all positions i ∈ N, we have that (ρ(i), w(i), ρ(i+ 1)) ∈ δ.
A run ρ is accepting if there are infinitely many positions i ∈ N such that
(ρ(i), w(i), ρ(i+ 1)) ∈ α. The language defined by A, denoted by L(A), is the set
of ω-words w for which A has an accepting run.

A limit-deterministic Büchi automaton (LDBA) is a Büchi automaton A =
(Q, q0, Σ, δ, α) such that there exists a subset Qd ⊆ Q satisfying the three fol-
lowing properties:

1. α ⊆ Qd ×Σ ×Qd, i.e. all accepting transitions are transitions within Qd;

2. ∀q ∈ Qd · ∀σ ∈ Σ · ∀q1, q2 ∈ Q · (q, σ, q1) ∈ δ ∧ (q, σ, q2) ∈ δ → q1 = q2, i.e.
the transition relation δ is deterministic within Qd

3. ∀q ∈ Qd · ∀σ ∈ Σ · ∀q′ ∈ Q · (q, σ, q′) ∈ δ → q′ ∈ Qd, i.e. Qd is a trap (when
Qd is entered it is never left).

W.l.o.g. we assume that q0 ∈ Q\Qd, and we denote Q\Qd by Qd. Courcoubetis
and Yannakakis show that for every ω-regular language L, there exists an LDBA
A such that L(A) = L [CY95]. That is, LDBAs are as expressive as NBAs. An
example of LDBA is given in Fig. 1. Note that the language accepted by this
LDBA cannot be recognized by a deterministic Büchi automaton.

3 Here, we consider automata on infinite words with acceptance conditions based on
transitions. It is well known that there are linear translations from automata with
acceptance conditions defined on transitions to automata with acceptance conditions
defined on states, and vice-versa.
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Parity automata A deterministic ω-word automaton A with parity acceptance
condition (DPA) is a tuple (Q, q0, Σ, δ, p), defined as for deterministic Büchi
automata with the exception of the acceptance condition p, which is now a
function assigning an integer in {1, 2, . . . , d}, called a color, to each transition in
the automaton. Colors are naturally ordered by the order on integers.

Given a run ρ over a word w, the infinite sequence of colors traversed by
the run ρ is noted p(ρ) and is equal to p(ρ(0), w(0), ρ(1)) p((ρ(1), w(1), ρ(2)) . . .
p(ρ(n), w(n), ρ(n+1)) . . . . A run ρ is accepting if the minimal color that appears
infinitely often along p(ρ) is even. The language defined by A, denoted by L(A)
is the set of ω-words w for which A has an accepting run.

While deterministic Büchi automata are not expressively complete for the
class of ω-regular languages, DPAs are complete for ω-regular languages: for
every ω-regular language L there exists a DPA A such that L(A) = L, see
e.g. [Pit07].

3 From LDBA to DPA

3.1 Run DAGs and their coloring

Run DAG A nondeterministic automaton A may have several (even an infinite
number of) runs on a given ω-word w. As in [KV01], we represent this set of
runs by means of a directed acyclic graph structure called the run DAG of A on
w. Given an LDBA A = (Q,Qd, q0, Σ, δ, α), this graph Gw = (V,E) has a set of
vertices V ⊆ Q× N and edges E ⊆ V × V defined as follows:

– V =
⋃
i∈N Vi, where the sets Vi are defined inductively:

• V0 = {(q0, 0)}, and for all i ≥ 1,
• Vi = {(q, i) | ∃(q′, i− 1) ∈ Vi−1 : (q′, w(i), q) ∈ δ};

– E = {((q, i), (q′, i+ 1)) ∈ Vi × Vi+1 | (q, w(i), q′) ∈ δ}.

We denote by V di the set Vi ∩ (Qd × {i}) that contains the subset of vertices of
layer i that are associated with states in Qd.

Observe that all the paths of Gw that start from (q0, 0) are runs of A on w,
and, conversely, each run ρ of A on w corresponds exactly to one path in Gw that
starts from (q0, 0). So, we call runs the paths in the run DAG Gw. In particular,
we say that an infinite path v0v1 . . . vn . . . of Gw is an accepting run if there
are infinitely many positions i ∈ N such that vi = (q, i), vi+1 = (q′, i + 1), and
(q, w(i), q′) ∈ α. Clearly, w is accepted by A if and only if there is an accepting
run in Gw. We denote by ρ(0..n) = v0v1 . . . vn the prefix of length n + 1 of the
run ρ.

Ordering of runs A function Ord : Q → {1, 2, . . . , |Qd|,+∞} is called an
ordering of the states of A w.r.t. Qd if Ord defines a strict total order on the
state from Qd, and maps each state q ∈ Qd to +∞, i.e.:

– for all q ∈ Qd, Ord(q) = +∞,
– for all q ∈ Qd, Ord(q) 6= +∞, and
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– for all q, q′ ∈ Qd, Ord(q) = Ord(q′) implies q = q′.

We extend Ord to vertices in Gw as follows: Ord((q, i)) = Ord(q).
Starting from Ord, we define the following pre-order on the set of run prefixes

of the run DAG Gw. Let ρ(0..n) = v0v1 . . . vn . . . and ρ′(0..n) = v′0v
′
1 . . . v

′
n . . .

be two run prefixes of length n + 1, we write ρ(0..n) v ρ′(0..n), if ρ(0..n) is
smaller than ρ′(0..n), which is defined as:

– for all i, 0 ≤ i ≤ n, Ord(ρ(i)) = Ord(ρ′(i)), or
– there exists i, 0 ≤ i ≤ n, such that:
• Ord(ρ(i)) < Ord(ρ′(i)), and
• for all j, 0 ≤ j < i, Ord(ρ(j)) = Ord(ρ′(j)).

This is extended to (infinite) runs as: ρ v ρ′ iff for all i ≥ 0 · Ord(ρ(0..i)) v
Ord(ρ′(0..i)).

Remark 1. If A accepts a word w, then A has a v-smallest accepting run for w.

We use the v-relation on run prefixes to order the vertices of Vi that belong
to Qd: for two different vertices v = (q, i) ∈ Vi and v′ = (q′, i) ∈ Vi, v is @i-
smaller than v′, if there is a run prefix of Gw that ends up in v which is v-smaller
than all the run prefixes that ends up in v′, which induces a total order among
the vertices of V di because the states in Qd are totally ordered by the function
Ord.

Lemma 1. For all i ≥ 0, for two different vertices v = (q, i), v′ = (q′, i) ∈ V di ,
then either v @i v′ or v′ @i v, i.e., @i is a total order on V di .

Indexing vertices The index of a vertex v = (q, i) ∈ Vi such that q ∈ Qd,
denoted by Indi(v), is a value in {1, 2, . . . , |Qd|} that denotes its order in V di
according to @i (the @i-smallest element has index 1). For i ≥ 0, we identify
two important sets of vertices:

– Dec(V di ) is the set of vertices v ∈ V di such that there exists a vertex v′ ∈ V di+1:
(v, v′) ∈ E and Indi+1(v′) < Indi(v), i.e. the set of vertices in V di whose
(unique) successor in V di+1 has a smaller index value.

– Acc(V di ) is the set of vertices v = (q, i) ∈ V di such that there exists v′ =
(q′, i + 1) ∈ V di+1: (v, v′) ∈ E and (q, w(i), q′) ∈ α, i.e. the set of vertices in
V di that are the source of an accepting transition on w(i).

Remark 2. Along a run, the index of vertices can only decrease. As the function
Ind(·) has a finite range, the index along a run has to eventually stabilize.

Assigning colors The set of colors that are used for coloring the levels of the
run DAG Gw is {1, 2, . . . , 2 · |Qd|+ 1}. We associate a color with each transition
from level i to level i+ 1 according to the following set of cases:

1. if Dec(V di ) = ∅ and Acc(V di ) 6= ∅, the color is 2 ·minv∈Acc(V di ) Indi(v).

2. if Dec(V di ) 6= ∅ and Acc(V di ) = ∅, the color is 2 ·minv∈Dec(V di ) Indi(v)− 1.
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3. if Dec(V di ) 6= ∅ and Acc(V di ) 6= ∅, the color is defined as the minimal color
among
– codd = 2 ·minv∈Dec(V di ) Indi(v)− 1, and

– ceven = 2 ·minv∈Acc(V di ) Indi(v).

4. if Dec(V di ) = Acc(V di ) = ∅, the color is 2 · |Qq|+ 1.

The intuition behind this coloring is as follows: the coloring tracks runs in Qd
(only those are potentially accepting as α ⊆ Qd ×Σ ×Qd) and tries to produce
an even color that corresponds to the smallest index of an accepting run. If in
level i the run DAG has an outgoing transition that is accepting, then this is a
positive event, as a consequence the color emitted is even and it is a function of
the smallest index of a vertex associated with an accepting transition from Vi to
Vi+1. Runs in Qd are deterministic but they can merge with smaller runs. When
this happens, this is considered as a negative event because the even colors that
have been emitted by the run that merges with the smaller run should not be
taken into account anymore. As a consequence an odd color is emitted in order
to cancel all the (good) even colors that were generated by the run that merges
with the smaller one. In that case the odd color is function of the smallest index
of a run vertex in Vi whose run merges with a smaller vertex in Vi+1. Those
two first cases are handled by cases 1 and 2 of the case study above. When
both situations happen at the same time, then the color is determined by the
minimum of the two colors assigned to the positive and the negative events. This
is handled by case 3 above. And finally, when there is no accepting transition
from Vi to Vi+1 and no merging, the largest odd color is emitted as indicated by
case 4 above.

According to this intuition, we define the color summary of the run DAG Gw
as the minimal color that appears infinitely often along the transitions between
its levels. Because of the deterministic behavior of the automaton in Qd, each
run can only merge at most |Qd| − 1 times with a smaller one (the size of the
range of the function Ind(·) minus one), and as a consequence of the definition of
the above coloring, we know that, on word accepted by A, the smallest accepting
run will eventually generate infinitely many (good) even colors that are never
trumped by smaller odd colors.

Example 1. The left part of Fig. 2 depicts the run DAG of the limit-deterministic
automaton of Fig. 1 on the word w = abb(ab)ω. Each path in this graph repre-
sents a run of the automaton on this word. The coloring of the run DAG follows
the coloring rules defined above. Between level 0 and level 1, the color is equal
to 7 = 2|Qd|+ 1, as no accepting edge is taken from level 0 to level 1 and no run
merges (within Qd). The color 7 is also emitted from level 1 to level 2 for the
same reason. The color 4 is emitted from level 2 to level 3 because the accepting
edge (3, b, 3) is taken and the index of state 3 in level 2 is equal to 2 (state 4 has
index 1 as it is the end point of the smallest run prefix within Qd). The color 3
is emitted from level 3 to level 4 because the run that goes from 3 to 4 merges
with the smaller run that goes from 4 to 4. In order to cancel the even colors
emitted by the run that goes from 3 to 4, color 3 is emitted. It cancels the even
color 4 emitted before by this run. Afterwards, colors 3 is emitted forever. The
color summary is 3 showing that there is no accepting run in the run DAG.
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Fig. 2: The run DAGs automaton of Fig. 1 on the word w = (ab)ω given on the
left, and on the word w = aabω given on the right, together with their colorings.

The right part of Fig. 2 depicts the run DAG of the limit deterministic
automaton of Fig. 1 on the word w = aabω. The coloring of the run DAG follows
the coloring rules defined above. Between levels 0 and 1, color 7 is emitted
because no accepting edge is crossed. To the next level, we see the accepting
edge (2, a, 2) and color 2 · 1 = 2 is emitted. Upon reading the first b, we see
again 7 since there is neither any accepting edge seen nor any merging takes
place. Afterwards, each b causes an accepting edge (3, b, 3) to be taken. While
the smallest run, which visits 4 forever, is not accepting, the second smallest
run that visits 3 forever is accepting. As 3 has index 2 in all the levels below
level 3, the color is forever equal to 4. The color summary of the run is thus
equal to 2 · 2 = 4 and this shows that word w = aabω is accepted by our limit
deterministic automaton of Fig. 1.

The following theorem tells us that the color summary (the minimal color
that appears infinitely often) can be used to identify run DAGs that contain
accepting runs. The proof can be found in [EKRS17, Appendix A].

Theorem 1. The color summary of the run DAG Gw is even if and only if
there is an accepting run in Gw.

3.2 Construction of the DPA

From an LDBA A = (Q,Qd, q0, Σ, δ, α) and an ordering function Ord : Q →
{1, 2, . . . , |Qd|,+∞} compatible with Qd, we construct a deterministic parity
automaton B = (QB , qB0 , Σ, δ

B , p) that, on a word w, constructs the levels of
the run DAG Gw and the coloring of previous section. Theorem 1 tells us that
such an automaton accepts the same language as A.

First, we need some notations. Given a finite set S, we note P(S) the set of its
subsets, and OP(S) the set of its totally ordered subsets. So if (s,<) ∈ OP(S)
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then s ⊆ S and < ⊆ s × s is a total strict order on s. For e ∈ s, we denote
by Ind(s,<)(e) the position of e ∈ s among the elements in s for the total strict
order <, with the convention that the index of the <-minimum element is equal
to 1. The deterministic parity automaton B = (QB , qB0 , Σ, δ

B , p) is defined as
follows.

States and initial state The set of states is QB = P(Qd) × OP(Qd), i.e. a
state of B is a pair (s, (t, <)) where s is a set of states outside Qd, and t is
an ordered subset of Qd. The ordering reflects the relative index of each state
within t. The initial state is qB0 = ({q0}, ({}, {})).

Transition function Let (s1, (t1, <1)) be a state in QB , and σ ∈ Σ. Then
δB((s1, (t1, <1))) = (s2, (t2, <2)) where:

– s2 = postσδ (s1) ∩Qd;
– t2 = postσδ (s1 ∪ t1) ∩Qd;
– <2 is defined from <1 and Ord as follows: ∀q1, q2 ∈ t2: q1 <2 q2 iff:

1. either, ¬∃q′1 ∈ t1 : q1 = δ(q′1, σ), and ¬∃q′2 ∈ t1 : q2 = δ(q′2, σ), and
Ord(q1) < Ord(q2),
i.e. none has a predecessor in Qd, then they are ordered using Ord;

2. or, ∃q′1 ∈ t1 : q1 = δ(q′1, σ), and ¬∃q′2 ∈ t1 : q2 = δ(q′2, σ),
i.e. q1 has a σ-predecessor in Qd, and q2 not;

3. or ∃q′1 ∈ t1 : q1 = δ(q′1, σ), and ∃q′2 ∈ t1 : q2 = δ(q′2, σ), and min<1
{q′1 ∈

t1 | q1 = δ(q′1, σ)} < min<1
{q′2 ∈ t1 | q2 = δ(q′2, σ)},

i.e. both have a predecessor in Qd, and they are ordered according to the
order of their minimal parents.

Coloring To define the coloring of edges in the deterministic automaton, we
need to identify the states q ∈ t1 in a transition (s1, (t1, <1))

σ→ (s2, (t2, <2))
whose indices decrease when going from t1 to t2. Those are defined as follows:

Dec(t1) = {q1 ∈ t1 | Ind(t2,<2)(δ(q1, σ)) < Ind(t1,<1)(q1)}.

Additionally, let Acc(t1) = {q | ∃q′ ∈ t2 : (q, σ, q′) ∈ α} denote the subset of
states in t1 that are the source of an accepting transition.

We assign a color to each transition (s1, (t1, <1))→σ (s2, (t2, <2)) as follows:

1. if Dec(t1) = ∅ and Acc(t1) 6= ∅, the color is 2 ·minq∈Acc(t1) Ind(t1,<1)(q).

2. if Dec(t1) 6= ∅ and Acc(t1) = ∅, the color is 2 ·minq∈Dec(t1) Ind(t1,<1)(q)− 1.

3. if Dec(t1) 6= ∅ and Acc(t1) 6= ∅, the color is defined as the minimal color
among

– codd = 2 ·minq∈Dec(t1) Ind(t1,<1)(q)− 1, and

– ceven = 2 ·minq∈Acc(t1) Ind(t1,<1)(q).

4. if Dec(t1) = Acc(t1) = ∅, the color is 2 · |Qq|+ 1.
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Fig. 3: Left: DPA that accepts the LTL language FGa∨FGb, edges are decorated
with a natural number that specifies its color. Right: A reduced DPA.

Example 2. The DPA of Fig. 3 is the automaton that is obtained by applying the
construction LDBA→DPA defined above to the LDBA of Fig. 1 that recognizes
the LTL language FGa∨FGb. The figure only shows the reachable states of this
construction. As specified in the construction above, states of DPA are labelled
with a subset of Qd and a ordered subset of Qd of the original NBA. As an
illustration of the definitions above, let us explain the color of edges from state
({1}, [4, 3]) to itself on letter b. When the NBA is in state 1, 3 or 4 and letter b
is read, then the next state of the automaton is again 1, 3 or 4. Note also that
there are no runs that are merging in that case. As a consequence, the color that
is emitted is even and equal to the index of the smallest state that is the target
of an accepting transition. In this case, this is state 3 and its index is 2. This
is the justification for the color 4 on the edge. On the other hand, if letter a is
read from state ({1}, [4, 3]), then the automaton moves to states ({1}, [4, 2]). The
state 3 is mapped to state 4 and there is a run merging which induces that the
color emitted is odd and equal to 3. This 3 trumps all the 4’s that were possibly
emitted from state ({1}, [4, 3]) before.

Theorem 2. The language defined by the deterministic parity automaton B
is equal to the language defined by the limit deterministic automaton A, i.e.
L(A) = L(B).

Proof. Let w ∈ Σω and Gw be the run DAG of A on w. It is easy to show
by induction that the sequence of colors that occur along Gw is equal to the
sequence of colors defined by the run of the automaton B on w. By Theorem 1,
the language of automaton B is thus equal to the language of automaton A. ut

3.3 Complexity Analysis

Upper bound Let n = |Q| be the size of the LDBA and let nd = |Qd| be the
size of the accepting component. We can bound the number of different orderings
using the series of reciprocals of factorials (with e being Euler’s number):

|OP(Qd)| =
nd∑
i=0

nd!

(nd − i)!
≤ nd · nd! ·

∞∑
i=0

1

i!
= e · nd · nd! ∈ O(2n·logn)

Thus the obtained DPA has O(2n ·2n·logn) = 2O(n·logn) states and O(n) colours.
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Lower bound We obtain a matching lower bound by strengthening Theorem 8
from [Löd99]:

Lemma 2. There exists a family (Ln)n≥2 of languages (Ln over an alphabet of
n letters) such that for every n the language Ln can be recognized by a limit-
deterministic Büchi automaton with 3n+ 2 states but can not be recognized by a
deterministic Parity automaton with less than n! states.

Proof. The proof of Theorem 8 from [Löd99] constructs a non-deterministic
Büchi automaton of exactly this size and which is in fact limit-deterministic.

Assume there exists a deterministic Parity automata for Ln with m < n!
states. Since parity automata are closed under complementation, we can obtain
a parity automaton and hence also a Rabin automaton of size m for Ln and
thus a Streett automaton of size m for Ln, a contradiction to Theorem 8 of
[Löd99]. ut

Corollary 1. Every translation from limit-deterministic Büchi automata of size
n to deterministic parity yields automata with 2Ω(n logn) states in the worst case.

4 From LTL to Parity in 22O(n)

In [SEJK16] we present a LTL→LDBA translation. Given a formula ϕ of size

n, the translation produces an asymptotically optimal LDBA with 22
O(n)

states.
The straightforward composition of this translation with the single exponen-
tial LDBA→DPA translation of the previous section is only guaranteed to be
triple exponential, while the Safra-Piterman construction produces a DPA of at
most doubly exponential size. In this section we describe a modified composition
that yields a double exponential DPA. To the best of our knowledge this is is
the first translation of the whole LTL to deterministic parity automata that is
asymptotically optimal and does not use Safra’s construction.

The section is divided into two parts. In the first part, we explain and illus-
trate a redundancy occurring in our LDBA→DPA translation, responsible for
the undesired extra exponential. We also describe an optimization that removes
this redundancy when the LDBA satisfies some conditions. In the second part,
we show these conditions are satisfied on the products of the LTL→LDBA trans-
lation, which in turn guarantees a doubly exponential LTL→DPA procedure.

4.1 An improved construction

We can view the second component of a state of the DPA as a sequence of states

of the LDBA, ordered by their indices. Since there are 22
O(n)

states of the LDBA
for an LTL formula of length n, the number of such sequences is

22
O(n)

! = 22
2O(n)
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If only the length of the sequences (the maximum index) were bounded by 2n,
the number of such sequences would be smaller than the number of functions

2n → 22
O(n)

which is

(22
O(n)

)2
n

= 22
O(n)·2n = 22

O(n)

Fix an LDBA with set of states Q. Assume the existence of an oracle: a list
of statements of the form L(q) ⊆

⋃
q′∈Qq L(q′) where q ∈ Q and Qq ⊆ Q. We use

the oracle to define a mapping that associates to each run DAG Gw a “reduced
DAG” G∗w, defined as the result of iteratively performing the following four-step
operation:

– Find the first Vi in the current DAG such that the sequence (v1, i) @ (v2, i) @
· · · @ (vni , i) of vertices of V di contains a vertex (vk, i) for which the oracle
ensures

L(vk) ⊆
⋃
j<k

L(vj) (∗)

We call (vk, i) a redundant vertex.
– Remove (vk, i) from the sequence, and otherwise keep the ordering vi un-

changed (thus decreasing the index of vertices (v, `) with ` > k).
– Redirect transitions leading from vertices in Vi−1 to (vk, i) so that they lead

to the smallest vertex (v1, i) of Vi.
– Remove any vertices (if any) that are no longer reachable from vertices of
V1.

We define the color summary ofG∗w in exactly the same way as the color summary
of Gw. The DAG G∗w satisfies the following crucial property, whose proof can be
found in [EKRS17, Appendix B]:

Proposition 1. The color summary of the run DAG G∗w is even if and only if
there is an accepting run in Gw.

The mapping on DAGs induces a reduced DPA as follows. The states are the
pairs (s, (t, <)) such that (t, <) does not contain redundant vertices. There is a

transition (s1, (t1, <))
a→ (s2, (t2, <)) with color c iff there is a word w and an

index i such that (s1, (t1, <)) and (s2, (t2, <)) correspond to the i-th and (i+1)-
th levels of G∗w, and a and c are the letter and color of the step between these
levels in G∗w. Observe that the set of transitions is independent of the words
chosen to define them.

The equivalence between the initial DPA A and the reduced DPA Ar follows
immediately from Proposition 1: A accepts w iff Gw contains an accepting run
iff the color summary of G∗w is even iff Ar accepts w.

Example 3. Consider the LDBA of Fig. 1 and an oracle given by L(4) = ∅,
ensuring L(4) ⊆

⋃
i∈I L(i) for any I ⊆ Q. Then 4 is always redundant and

merged, removing the two rightmost states of the DPA of Fig. 3 (left), resulting
in the DPA of Fig. 3 (right). However, for the sake of technical convenience, we
shall refrain from removing a redundant vertex when it is the smallest one (with
index 1).
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Since the construction of the reduced DPA is parametrized by an oracle, the
obvious question is how to obtain an oracle that does not involve applying an
expensive language inclusion test. Let us give a first example in which an oracle
can be easily obtained:

Example 4. Consider an LDBA where each state v = {s1, . . . , sk} arose from
some powerset construction on an NBA in such a way that L({s1, . . . , sk}) =
L(s1) ∪ · · · L(sk). An oracle can, for instance, allow us to merge whenever vk ⊆⋃
j<k vj , which is a sound syntactic approximation of language inclusion. This

motivates the following formal generalization.

Let LB = {Li | i ∈ B} be a finite set of languages, called base languages.
We call LC := {

⋃
L | L ⊆ LB} the join-semilattice of composed languages. We

shall assume an LDBA with some LB such that L(q) ∈ LC for every state q. We
say that such an LDBA has a base LB . In other words, every state recognizes
a union of some base languages. (Note that every automaton has a base of at
most linear size.) Whenever we have states vj recognizing

⋃
i∈Ij Li with Ij ⊆ B

for every j, the oracle allows us to merge vertices vk satisfying Ik ⊆
⋃
j<k Ij .

Intuitively, the oracle declares a vertex redundant whenever the simple syntactic
check on the indices allows for that.

Let V1 =
⋃
i∈I1 Li, · · ·Vj =

⋃
i∈Ij Li be a sequence of languages of LC where

the reduction has been applied and there are no more redundant vertices. The
maximum length of such a sequence is given already by the base LB and we
denote it width(LB).

Lemma 3. For any LB, we have width(LB) ≤ |LB |+ 1.

Proof. We provide an injective mapping of languages in the sequence (except for
V1) into B. Since I2 6⊆ I1, there is some i ∈ I2 \ I1 and we map V2 to this i. In

general, since Ik 6⊆
⋃k−1
j=1 Ij , we also have i ∈ Ik \

⋃k−1
j=1 Ij and we map Vk to this

i. ut

On the one hand, the transformation of LDBA to DPA without the reduction
yields 2O(|Q|·log |Q|) states. On the other hand, we can now show that the second
component of reduced LDBA with a base can be exponentially smaller. Further,
let us assume the LDBA is initial-deterministic, meaning that δ∩ (Qd×Σ×Qd)
is deterministic, thus not resulting in blowup in the first component.

Corollary 2. For every initial-deterministic LDBA with base of size m, there
is an equivalent DPA with 2O(m2) states.

Proof. The number of composed languages is LC = 2m. Therefore, the LDBA
has at most 2m (non-equivalent) states. Hence the construction produces at most

|LC | · |LC |O(width(LB)) = 2m · (2m)O(m) = 2O(m2)

states since the LDBA is initial-deterministic, causing no blowup in the first
component. ut
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4.2 Bases for LDBAs Obtained from LTL Formulas

We prove that the width for LDBA arising from the LTL transformation is only
singly exponential in the formula size. To this end, we need to recall a property
of the LTL→LDBA translation of [SEJK16]. Since partial evaluation of formulas
plays a major role in the translation, we introduce the following definition. Given
an LTL formula ϕ and sets T and F of LTL formulas, let ϕ[T, F ] denote the
result of substituting tt (true) for each occurrence of a formula of T in ϕ, and
similarly ff (false) for formulas of F . The following property of the translation
is proven in [EKRS17, Appendix C].

Proposition 2. For every LTL formula ϕ, every state s of the LDBA of [SEJK16]
is labelled by an LTL formula label(s) such that (i) L(s) = L(label(s)) and (ii)
label(s) is a Boolean combination of subformulas of ϕ[Ts, Fs] for some Ts and
Fs. Moreover, the LDBA is initial-deterministic.

As a consequence, we can bound the corresponding base:

Corollary 3. For every LTL formula ϕ, the LDBA of [SEJK16] for ϕ has a
base of size 2O(|ϕ|).

Proof. Firstly, we focus on states using the same ϕ[Ts, Fs]. The language of
each state can be defined by a Boolean formula over O(|ϕ|) atoms. Since every
Boolean formula can be expressed in the disjunctive normal form, its language
is a union of the conjuncts. The conjunctions thus form a base for these states.
There are exponentially many different conjunction in the number of atoms.
Hence the base is of singly exponential size 2O(|ϕ|) as well.

Secondly, observe that there are only 2O(|ϕ|) different formulas ϕ[Ts, Fs] and
thus only 2O(|ϕ|) different sets of atoms. Altogether, the size is bounded by

2O(|ϕ|) · 2O(|ϕ|) = 2O(|ϕ|) �

Theorem 3. For every LTL formula ϕ, there is a DPA with 22
O(|ϕ|)

states.

Proof. The LDBA for ϕ has base of singly exponential size 2O(|ϕ|) by Corollary 3
and is initial-deterministic by Proposition 2. Therefore, by Corollary 2, the size
of the DPA is doubly exponential, in fact

2(2
O(|ϕ|))

2

= 22
O(|ϕ|)

�

This matches the lower bound 22
Ω(n)

by [KR10] as well as the upper bound by the
Safra-Piterman approach. Finally, note that while the breakpoint constructions
in [SEJK16] is analogous to Safra’s vertical merging, the merging introduced
here is analogous to Safra’s horizontal merging.

5 Experimental Evaluation

We evaluate the performance of our construction on several datasets taken
from [BKS13,DWDMR08,SEJK16] and several Temporal Logic Synthesis For-
mat (TLSF) specifications [JBB+16] of the SyntComp 2016 competition.
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We use the size of the constructed deterministic automaton as an indicator for
the overall performance of the synthesis procedure. In [ST03] it is argued that the
degree of determinism of the automaton is a better predictor for performance in
model-checking problems; however, this parameter is not applicable for synthesis
problems, which require deterministic automata.

We compare two versions of our implementation (with and without opti-
mizations, see below) with the algorithms of Spot [DLLF+16]. Each tool is given
64GB of memory and 10 minutes. Increasing time to 10 hours does not change
the results. More precisely, we compare the following three setups:

S. (ltl2tgba, 2.1.1) - Spot [DLLF+16] implements a version of the Safra-
Piterman determinization procedure [Red12] with several optimizations.

L2P and L2P′. (ltl2dpa, 1.0.0) - L2P is the construction of this paper, avail-
able at www7.in.tum.de/~sickert/projects/ltl2dpa. L2P′ adds two opti-
mizations. First, the tool translates both the formula and its negation to DPAs
A1, A2, complements A2 to yield A2, and picks the smaller of A1, A2. Further, we
apply the simplification routines of Spot (ltlfilt and autfilt, respectively).

We consider three groups of benachmarks:

Parametric Formulas. 10 benchmarks from [BKS13,SEJK16]). In six cases S
and L2P′ produce identical results. The other four are

R(n) =
∧n
i=1(GFpi ∨ FGpi+1) G(n) = (

∧n
i=1 GFpi)→ (

∧n
i=1 GFqi)

θ(n) = ¬((
∧n
i=1 GFpi)→ G(q → Fr)) F (n) =

∧n
i=1(GFpi → GFqi)

for which the results are shown in (figure 4a). Additionally, we consider the “f”
formulas from [SEJK16] (table 1). Observe that L2P′ performs clearly better,
and the gap between the tools grows when the parameter increases.

Randomly Generated Formulas from [BKS13] (figure 4b).

Real Data. Formulas taken from case studies and synthesis competitions — the
intended domain of application of our approach. Figures 4c and 4d show results
for the real-world formulas of [BKS13] and the TLSF specifications contained in
the Acacia set of [JBB+16]. Table 1 shows results for LTL formulas expressing
properties of Szymanski’s protocol [DWDMR08], and for the generalised buffer
benchmark of Acacia.

Average Compression Ratios. The geometric average compression ratio for

a benchmark suite B is defined as
∏
ϕ∈B(nSϕ/n

L2P ′

ϕ )
1/|B|

, where nSϕ and nL2P
′

ϕ

denote the number of states of the automata produced by Spot and L2P′, respec-
tively. The ratios in our experiments (excluding benchmarks where Spot times
out) are: 1.14 for random formulas, 1.12 for the real-world formulas of [BKS13],
and 1.35 for the formulas of Acacia.

6 Conclusion

We have presented a simple, “Safraless”, and asymptotically optimal transla-
tion from LTL and LDBA to deterministic parity automata. Furthermore, the
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Fig. 4: Comparison of Spot and our implementation using the best configurations.
Timeouts are denoted by setting the size of the automaton to the maximum.

Table 1: Number of states and number of used colours in parenthesis for the
constructed automata. Timeouts are marked with t.

f(1, 0) f(1, 2) f(1, 4) f(2, 0) f(2, 2) zn zp1 zp2 zp3 Buffer

S 18(6) 141(8) 2062(8) 208(12) 883(12) t t t t t
L2P 12(8) 114(9) 332(15) 144(14) 4732(19) t t t t 1425(27)
L2P′ 12(8) 78(7) 271(11) 106(9) 1904(15) 32(6) 42(6) 111(12) 97(12) 435(4)

translation is suitable for an on-the-fly implementation. The resulting automata
are substantially smaller than those produced by the SPOT library for formulas
obtained from synthesis specifications, and have comparable or smaller size for
other benchmarks. In future work we want to investigate the performance of the
translation as part of a synthesis toolchain.

Acknowledgments. The authors want to thank Michael Luttenberger for helpful
discussions and the anonymous reviewers for constructive feedback.
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Abstract
We present a unified translation of LTL formulas into deterministic
Rabin automata, limit-deterministic Büchi automata, and nonde-
terministic Büchi automata. The translations yield automata of
asymptotically optimal size (double or single exponential, respec-
tively). All three translations are derived from one single Master
Theorem of purely logical nature. The Master Theorem decomposes
the language of a formula into a positive boolean combination of
languages that can be translated into ω-automata by elementary
means. In particular, Safra’s, ranking, and breakpoint constructions
used in other translations are not needed.

CCS Concepts • Theory of computation → Automata over
infinite objects;Modal and temporal logics;

Keywords Linear temporal logic, Automata over infinite words,
Deterministic automata, Non-deterministic automata

1 Introduction
Linear temporal logic (LTL) [32] is a prominent specification lan-
guage, used both for model checking and automatic synthesis of
systems. In the standard automata-theoretic approach [38] the in-
put formula is first translated into an ω-automaton, and then the
product of this automaton with the input system is further analyzed.
Since the size of the product is often the bottleneck of all the verifi-
cation algorithms, it is crucial that the ω-automaton is as small as
possible. Consequently, a lot of effort has been spent on translating
LTL into small automata, e.g. [4, 10–12, 17, 18, 20, 21, 36].

While non-deterministic Büchi automata (NBA) can be used
for model checking non-deterministic systems, other applications
such as model checking probabilistic systems or synthesis usually
require automata with a certain degree of determinism, such as de-
terministic parity automata (DPA) or deterministic Rabin automata
(DRA) [5], deterministic generalized Rabin automata (DGRA) [8],
limit-deterministic (or semi-deterministic) Büchi automata (LDBA)
[9, 22, 35, 37], unambiguous Büchi automata [6] etc. The usual
constructions that produce such automata are based on Safra’s de-
terminization and its variants [31, 33, 34]. However, they are known
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to be difficult to implement efficiently, and to be practically ineffi-
cient in many cases due to their generality. Therefore, a recent line
of work shows howDPA [14, 28], DRA and DGRA [13, 15, 26, 27], or
LDBA [23, 24, 35] can be produced directly from LTL, without the
intermediate step through a non-deterministic automaton. All these
works share the principle of describing each state by a collection
of formulas, as happens in the classical tableaux construction for
translation of LTL into NBA. This makes the approach particularly
apt for semantic-based state reductions, e.g., for merging states
corresponding to equivalent formulas. These reductions cannot be
applied to Safra-based constructions, where this semantic structure
gets lost.

In this paper, we provide a unified view of translations of LTL into
NBA, LDBA, and DRA enjoying the following properties, absent in
former translations:

Asymptotic Optimality. D(G)RA are the most compact among
the deterministic automata used in practice, in particular compared
to DPA. Previous translations to D(G)RA were either limited to
fragments of LTL [3, 26, 27], or only shown to be triply exponential
[13, 15]. Here we provide constructions for all mentioned types of
automata matching the optimal double exponential bound for DRA
and LDBA, and the optimal single exponential bound for NBA.

Symmetry. The first translations [26, 27] used auxiliary automata
to monitor each Future- and Globally-subformula. While this ap-
proach worked for fragments of LTL, subsequent constructions for
full LTL [13, 15, 35] could not preserve the symmetric treatment.
They only used auxiliary automata for G-subformulas, at the price
of more complex constructions. Our translation re-establishes the
symmetry of the first constructions. It treats F and G equally (actu-
ally, and more generally, it treats each operator and its dual equally),
which results into simpler auxiliary automata.

Independence of Syntax. Previous translations were quite sensi-
tive to the operators used in the syntax of LTL. In particular, the
only greatest-fixed-point operator they allowed was Globally. Since
formulas also had to be in negation normal form, pre-processing
of the input often led to unnecessarily large formulas. While our
translations still requires negation normal form, it allows for direct
treatment of Release,Weak until, and other operators.

Unified View. Our translations rely on a novel Master Theorem,
which decomposes the language of a formula into a positive boolean
combination of “simple” languages, in the sense that they are easy
to translate into automata. This approach is arguably simpler than
previous ones (it is certainly simpler than our previous papers
[15, 35]). Besides, it provides a unified treatment of DRA, NBA, and
LDBA, differing only in the translations of the “simple” languages.
The automaton for the formula is obtained from the automata for
the “simple” languages by means of standard operations for closure
under union and intersection.
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On top of its theoretical advantages, our translation is compara-
ble to previous DRA translations in practice, even without major
optimizations. Summarizing, we think this paper finally achieves
the goals formulated in [26], where the first translation of this
kind—valid only for what we would now call a small fragment of
LTL—was presented.

Structure of the Paper. Section 2 contains preliminaries about
LTL and ω-automata. Section 3 introduces some definitions and
results of [15, 35]. Section 4 shows how to use these notions to
translate four simple fragments of LTL into deterministic Büchi
and coBüchi automata; these translations are later used as building
blocks. Section 5 presents our main result, the Master Theorem.
Sections 6, 7, and 8 apply the Master Theorem to derive translations
of LTL into DRA, NBA, and LDBA, respectively. Section 9 compares
the paper to related work and puts the obtained results into context.
The appendix of the accompanying technical report [16] contains
the few omitted proofs and further related material.

2 Preliminaries
2.1 ω-Languages and ω-Automata
Let Σ be a finite alphabet. An ω-word w over Σ is an infinite
sequence of letters w[0]w[1]w[2] . . . . We denote the finite infix
w[i]w[i+1] · · ·w[j−1] bywi j , and the infinite suffixw[i]w[i+1] . . .
bywi . An ω-language is a set of ω-words.

For the sake of presentation, we introduce ω-automata with
accepting conditions defined on states. However, all results can be
restated with accepting conditions defined on transitions, more in
line with other recent papers and tools [2, 12, 25].

Let Σ be a finite alphabet. A nondeterministic pre-automaton
over Σ is a tuple P = (Q,∆,Q0) where Q is a finite set of states,
∆ : Q × Σ → 2Q is a transition function, and Q0 is a set of initial
states. A transition is a triple (q,a,q′) such that q′ ∈ ∆(q,a). A
pre-automaton P is deterministic if Q0 is a singleton and ∆(q,a) is
a singleton for every q ∈ Q and a ∈ Σ.

A run of P on an ω-word w is an infinite sequence of states
r = q0q1q2 . . . with qi+1 ∈ δ (qi ,w[i]) for all i and we denote by
inf (r ) the set of states occurring infinitely often in r . An accepting
condition is an expression over the syntax α ::= inf (S) | fin (S) |
α1 ∨ α2 | α1 ∧ α2 with S ⊆ Q . Accepting conditions are evaluated
on runs and the evaluation relation r |= α is defined as follows:

r |= inf (S) iff inf (r ) ∩ S , ∅

r |= fin (S) iff inf (r ) ∩ S = ∅

r |= α1 ∨ α2 iff r |= α1 or r |= α2
r |= α1 ∧ α2 iff r |= α1 and r |= α2

An accepting condition α is a

• Büchi condition if α = inf (S) for some set S of states.
• coBüchi condition if α = fin (S) for some set S of states.
• Rabin condition if α =

∨k
i=1(inf (Ii )∧fin (Fi )) for some k ≥ 1

and some sets I1, F1, . . . , Ik , Fk of states.

An ω-automaton over Σ is a tuple A = (Q,∆,Q0,α) where
(Q,∆,Q0) is a pre-automaton over Σ andα is an accepting condition.
A run r of A is accepting if r |= α . A word w is accepted by A

if some run of A on w is accepting. An ω-automaton is a Büchi
(coBüchi, Rabin) automaton if its accepting condition is a Büchi
(coBüchi, Rabin) condition.

Limit-Deterministic BüchiAutomata. Intuitively, a NBA is limit-
deterministic if it can be split into a non-deterministic component
without accepting states, and a deterministic component. The au-
tomaton can only accept by “jumping” from the non-deterministic
to the deterministic component, but after the jump it must stay
in the deterministic component forever. Formally, a NBA B =

(Q,∆,Q0,α) is limit-deterministic (LDBA) if Q can be partitioned
into two disjoint sets Q = QN ⊎QD , s.t.

1. ∆(q,ν ) ⊆ QD and |∆(q,ν )| = 1 for every q ∈ QD , ν ∈ Σ, and
2. S ⊆ QD for all S ∈ α .

2.2 Linear Temporal Logic
We work with a syntax for LTL in which formulas are written in
negation-normal form, i.e., negations only occur in front of atomic
propositions. For every temporal operator we also include in the
syntax its dual operator. On top of the next operator X, which is
self-dual, we introduce temporal operators F (eventually), U (until),
and W (weak until), and their duals G (always), R (release) andM
(strong release). The syntax may look redundant but as we shall see
it is essential to includeW andM and very convenient to include F
and G.

Syntax and semantics of LTL. A formula of LTL in negation
normal form over a set of atomic propositions (Ap) is given by the
syntax:

φ ::= tt | ff | a | ¬a | φ ∧ φ | φ ∨ φ | Xφ

| Fφ | Gφ | φUφ | φWφ | φMφ | φRφ

where a ∈ Ap. We denote sf (φ) the set of subformulas of φ. A
subformulaψ of φ is called proper if it is neither a conjunction nor
a disjunction, i,e., if the root of its syntax tree is labelled by either
a, ¬a, or a temporal operator. The satisfaction relation |= between
ω-words over the alphabet 2Ap and formulas is inductively defined
as follows:

w |= tt
w ̸ |= ff
w |= a iff a ∈ w[0]
w |= ¬a iff a < w[0]
w |= φ ∧ψ iff w |= φ andw |= ψ
w |= φ ∨ψ iff w |= φ orw |= ψ
w |= Xφ iff w1 |= φ
w |= Fφ iff ∃k .wk |= φ
w |= Gφ iff ∀k .wk |= φ
w |= φUψ iff ∃k .wk |= ψ and ∀j < k .w j |= φ
w |= φWψ iff w |= Gφ or w |= φUψ
w |= φMψ iff ∃k .wk |= φ and ∀j ≤ k .w j |= ψ
w |= φRψ iff w |= Gψ or w |= φMψ

Two formulas are equivalent if they are satisfied by the same words.
We also introduce the stronger notion of propositional equivalence:

Definition 2.1 (Propositional Equivalence). Given a formula φ, we
assign to it a propositional formula φP as follows: replace every
maximal proper subformulaψ by a propositional variable xψ . Two
formulas φ,ψ are propositionally equivalent, denoted φ ≡P ψ , iff φP
andψP are equivalent formulas of propositional logic. The set of
all formulas propositionally equivalent to φ is denoted by [φ]P .

Example 2.2. Let φ = Xb ∨ (G(a ∨ Xb) ∧ Xb) with ψ1 = Xb and
ψ2 = G(a ∨Xb). We have φP = xψ1 ∨ (xψ2 ∧ xψ1 ) ≡P xψ1 . Thus Xb
is propositionally equivalent to φ and Xb ∈ [φ]P . △

2
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Observe that propositional equivalence implies equivalence, but
the converse does not hold.

3 The “after” Function
We recall the definition of the“after function” af(φ,w), read “φ after
w” [13, 15]. The function assigns to a formula φ and a finite wordw
another formula such that, intuitively, φ holds forww ′ iff af(φ,w)

holds “after readingw”, that is, iffw ′ |= af(φ,w).1

Definition 3.1. Let φ be a formula and ν ∈ 2Ap a single letter. The
formula af(φ,ν ) is inductively defined as follows:

af(a,ν ) =

{
tt if a ∈ ν

ff if a < ν

af(¬a,ν ) =

{
ff if a ∈ ν

tt if a < ν

af(tt,ν ) = tt

af(ff,ν ) = ff

af(φ ∧ψ ,ν ) = af(φ,ν ) ∧ af(ψ ,ν )

af(φ ∨ψ ,ν ) = af(φ,ν ) ∨ af(ψ ,ν )

af(Xφ,ν ) = φ

af(Fφ,ν ) = af(φ,ν ) ∨ Fφ

af(Gφ,ν ) = af(φ,ν ) ∧ Gφ

af(φUψ ,ν ) = af(ψ ,ν ) ∨ (af(φ,ν ) ∧ φUψ )

af(φWψ ,ν ) = af(ψ ,ν ) ∨ (af(φ,ν ) ∧ φWψ )

af(φMψ ,ν ) = af(ψ ,ν ) ∧ (af(φ,ν ) ∨ φMψ )

af(φRψ ,ν ) = af(ψ ,ν ) ∧ (af(φ,ν ) ∨ φRψ )
Furthermore, we generalize the definition to finite words by setting
af(φ, ϵ) = φ and af(φ,νw) = af(af(φ,ν ),w) for every ν ∈ 2Ap and
every finite wordw . Finally, we define the set of formulas reachable
from φ as Reach(φ) = {[ψ ]P | ∃w . ψ = af(φ,w)}.

Example 3.2. Let φ = a ∨ (b U c). We then have af(φ, {a}) ≡P tt,
af(φ, {b}) ≡P (b U c), af(φ, {c}) ≡P tt, and af(φ, ∅) ≡P ff . △

The following lemma states the main properties of af, which are
easily proved by induction on the structure of φ. For convenience
we include the short proof in the appendix of [16].

Lemma 3.3. [15]
(1) For every formula φ, finite wordw ∈ (2Ap )∗, and infinite word

w ′ ∈ (2Ap )ω :ww ′ |= φ iffw ′ |= af(φ,w)

(2) For every formula φ and finite wordw ∈ (2Ap )∗: af(φ,w) is a
positive boolean combination of proper subformulas of φ.

(3) For every formula φ: If φ has n proper subformulas, then
Reach(φ) has at most size 22

n
.

It is easy to show by induction that φ ≡P ψ implies af(φ,w) ≡P
af(ψ ,w) for every finitewordw .We extend af to equivalence classes
by defining af([φ]P ,w) := [af(φ,w)]P . Sometimes we abuse lan-
guage and identify a formula and its equivalence class. For example,
we write “the states of the automaton are pairs of formulas” instead
of “pairs of equivalence classes of formulas”.

4 Constructing DRAs for Fragments of LTL
We show that the function af can be used to construct determinis-
tic Büchi and coBüchi automata for some fragments of LTL. The
constructions are very simple. Later, in Sections 6, 7, and 8 we use
these constructions as building blocks for the translation of general
LTL formulas. The fragments are:
1There is a conceptual correspondences to the derivatives of [7] and af directly connects
to the classical “LTL expansion laws” [5]. Furthermore, the yet to be introduced af ∨

relates to [1] in a similar way.

• The µ-fragment µLTL and the ν-fragment νLTL.
µLTL is the fragment of LTL restricted to temporal operators
F,U,M, on top of Boolean connectives (∧,∨), literals (a,¬a),
and the next operator (X). νLTL is defined analogously, but
with the operators G,W,R. In the literature µLTL is also
called syntactic co-safety and νLTL syntactic safety.

• The fragments GF(µLTL) and FG(νLTL).
These fragments contain the formulas of the form GFφ,
where φ ∈ µLTL, and FGφ, where φ ∈ νLTL.

The reason for the names µLTL and νLTL is that F,U,M are
least-fixed-point operators, in the sense that their semantics is
naturally formulated by least fixed points, e.g. in the µ-calculus,
while the semantics of G,W,R is naturally formulated by greatest
fixed points.

The following lemma characterizes the words w satisfying a
formula φ of these fragments in terms of the formulas af(φ,w).

Lemma 4.1. [15] Let φ ∈ µLTL and letw be a word. We have:
• w |= φ iff ∃i . af(φ,w0i ) ≡P tt.
• w |= GFφ iff ∀i . ∃j . af(Fφ,wi j ) ≡P tt.

Let φ ∈ νLTL and letw be a word. We have:
• w |= φ iff ∀i . af(φ,w0i ) .P ff .
• w |= FGφ iff ∃i .∀j . af(Gφ,wi j ) .P ff

The following proposition constructs DBAs or DCAs for the
fragments. The proof is an immediate consequence of the lemma.

Proposition 4.2. Let φ ∈ µLTL.
• The following DBA over the alphabet 2Ap recognizes L(φ):

A
φ
µ = (Reach(φ), af,φ, inf (tt))

• The following DBA over the alphabet 2Ap recognizes L(GFφ):

A
φ
GFµ = (Reach(Fφ), afFφ , Fφ, inf (tt))

afFφ (ψ ,ν ) =

{
Fφ ifψ ≡P tt
af(ψ ,ν ) otherwise.

Let φ ∈ νLTL.
• The following DCA over the alphabet 2Ap recognizes L(φ):

A
φ
ν = (Reach(φ), af,φ,fin (ff))

• The following DCA over the alphabet 2Ap recognizes L(FGφ):

A
φ
FGν = (Reach(Gφ), afGφ ,Gφ,fin (ff))

afGφ (ψ ,ν ) =

{
Gφ ifψ ≡P ff
af(ψ ,ν ) otherwise.

Example 4.3. Let φ = a ∧ X(b ∨ Fc) ∈ µLTL. The DBA A
φ
GFµ

recognizing L(GFφ) is depicted below. We use the abbreviations
α := {ν ∈ 2Ap | a ∈ ν }, β := {ν ∈ 2Ap | b ∈ ν }, and γ := {ν ∈

2Ap | c ∈ ν }. △

Fφ Fφ ∨ b ∨ Fc

Fφ ∨ Fc

tt

2Ap \ α

α

{a }

∅

β, γ

γ

{a }, {a, b }

∅, {b }

2Ap

3
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Example 4.4. Let φ = aWb ∨c ∈ νLTL. The DCAA
φ
FGν recogniz-

ing L(FGφ) is depicted below. We use the abbreviations of Example
4.3 again.

Gφ Gφ ∧ aWb ff

β, γ

{a }

∅

{a }, {a, c }

β

∅, {c }

2Ap

Now consider the formula φ = FG(aUb ∨ c). It does not belong to
any of the fragments due to the deeper alternation of the least- and
greatest-fixed-point operators: F−G−U. If we constructAφ

FGν we
obtain a DCA isomorphic to the one above, because af(ψ1Uψ2,ν )
and af(ψ1Wψ2,ν ) are defined in the same way. However, the DCA
does not recognize L(φ): For example, on the word {a}ω , it loops
on the middle state and accepts, even though {a}ω ̸ |= φ. The reason
is that Aφ

FGν checks that the greatest fixed point holds, and cannot
enforce satisfaction of the least-fixed-point formula aUb.

If only we were given a promise that aUb holds infinitely often,
then we could conclude that such a run is accepting.We can actually
get such promises: for NBA and LDBA via the non-determinism
of the automaton, and for DRA via the “non-determinism” of the
acceptance condition. In the next section, we investigate how to
utilize such promises (Section 5.3) and how to check whether the
promises are fulfilled or not (Section 5.4). △

5 The Master Theorem
Wepresent and prove theMaster Theorem: A characterization of the
words satisfying a given formula from which we can easily extract
deterministic, limit-deterministic, and nondeterministic automata
of asymptotically optimal size.

We first provide some intuition with the help of an example.
Consider the formulaφ = FG((aRb)∨(cUd)), which does not belong
to any of the fragments in the last section, and a wordw . Assume
we are promised that alongw the µ-subformula cUd holds infinitely
often (this is the case e.g. forw = (∅{d})ω ). In particular, we then
know thatd holds infinitely often, and so we can “reduce”w |=?φ to
w |=? FG((aRb)∨(cWd)), which belongs to the fragment FG(νLTL).

Assume now we are promised that cUd only holds finitely often
(for example, becausew = {d}4{c}ω ). Even more, we are promised
that along the suffixw5 the formula cUd never holds anymore. How
can we use this advice? First, w |=?φ reduces to w5 |=? af(φ,w05)
by the fundamental property of af, Lemma 3.3(1). Further, a little
computation shows that af(φ,w05) ≡P φ, and so that w |=? φ
reduces to w5 |=? φ. Finally, using that cUd never holds again,
we reduce w |=? φ to w5 |=? FG(aRb ∨ ff) ≡P FG(aRb) which
belongs to the fragment FG(νLTL).

This example suggests a general strategy for solvingw |=?φ:
• Guess the set of least-fixed-point subformulas of φ that hold
infinitely often, denoted by GFw , and the set of greatest-
fixed-point subformulas that hold almost always, denoted
by FGw .

• Guess a stabilization point after which the least-fixed-point
subformulas outside GFw do not hold any more, and the
greatest-fixed-point subformulas of FGw hold forever.

• Use these guesses to reducew |=?φ to problemsw |=?ψ for
formulasψ that belong to the fragments introduced in the
last section.

• Check that the guesses are correct.
In the rest of the section we develop this strategy. In Section

5.1 we introduce the terminology needed to formalize stabilization.
Section 5.2 shows how to use a guess X for GF or a guess Y for FG

to reducew |=?φ to a simpler problemw |=?φ[X ]ν orw |=?φ[Y ]µ ,
where φ[X ]ν and φ[Y ]µ are read as “φ with GF-advice X ” and “φ
with FG-advice Y ”, respectively. Section 5.3 shows how to use the
advice to decide w |=? φ. Section 5.4 shows how to check that
the advice is correct. The Master Theorem is stated and proved in
Section 5.5.

5.1 µ- and ν-stability.
Fix a formula φ. The set of subformulas of φ of the form Fψ ,ψ1Uψ2,
andψ1Mψ2 is denoted by µ(φ). So, loosely speaking, µ(φ) contains
the set of subformulas of φ with a least-fixed-point operator at the
top of their syntax tree. Given a wordw , we are interested in which
of these formulas hold infinitely often, and which ones hold at least
once, i.e., we are interested in the sets

GFw = {ψ | ψ ∈ µ(φ) ∧w |= GFψ }

Fw = {ψ | ψ ∈ µ(φ) ∧w |= Fψ }

Observe that GFw ⊆ Fw . We say thatw is µ-stable with respect to
φ if GFw = Fw .

Example 5.1. For φ = Ga ∨ bUc we have µ(φ) = {bUc}. Let
w = {a}ω and w ′ = {b}{c}{a}ω . We have Fw = ∅ = GFw and
GFw ′ = ∅ ⊂ {bUc} = Fw ′ . So w is µ-stable with respect to φ, but
w ′ is not. △

Dually, the set of subformulas of φ of the form Gψ ,ψ1Wψ2, and
ψ1Rψ2 is denoted by ν (φ). This time we are interested in whether
these formulas hold everywhere or almost everywhere, i.e., in the
sets

FGw = {ψ | ψ ∈ ν (φ) ∧w |= FGψ }

Gw = {ψ | ψ ∈ ν (φ) ∧w |= Gψ }

(Observe that the question whether a ν -formula like, say, Ga, holds
once or infinitely often makes no sense, because it holds once iff it
holds infnitely often.) We have FGw ⊇ Gw , and we say thatw is
ν-stable with respect to φ if FGw = Gw .

Example 5.2. Let φ,w andw ′ as in Example 5.1. We have ν (φ) =
{Ga}. The word w is ν-stable, but w ′ is not, because FGw ′ =

{Ga} ⊃ ∅ = Gw ′ . △

So not every word is µ-stable or ν -stable. However, as shown by
the following lemma, all but finitely many suffixes of a word are µ-
and ν-stable.

Lemma 5.3. For every wordw there exist indices i, j ≥ 0 such that
for every k ≥ 0 the suffix wi+k is µ-stable and the suffix w j+k is
ν -stable.

Proof. We only prove the µ-stability part; the proof of the other
part is similar. Since GFwi ⊆ Fwi for every i ≥ 0, it suffices to
exhibit an index i such that GFwi+k ⊇ Fwi+k for every k ≥ 0. If
GFw ⊇ Fw then we can choose i := 0. So assume Fw \ GFw , ∅.
By definition, everyψ ∈ Fw \ GFw holds only finitely often along
w . So for every ψ ∈ Fw \ GFw there exists an index iψ such that

4



A Unified Translation of LTL into ω-Automata LICS ’18, July 9–12, 2018, Oxford, United Kingdom

wiψ +k ̸ |= ψ for every k ≥ 0. Let i := max{iψ | ψ ∈ Fw }, which
exists because Fw is a finite set. It follows GFwi+k ⊇ Fwi+k for
every k ≥ 0, and so everywi+k is µ-stable. □

Example 5.4. Let againφ = Ga∨bUc . The wordw ′ = {b}{c}{a}ω

is neither µ-stable nor ν -stable, but all suffixesw ′
(2+k ) ofw

′ are both
µ-stable and ν-stable. △

5.2 The formulas φ[X ]ν and φ[Y ]µ .
We first introduce φ[X ]ν . Assume we have to determine if a wordw
satisfies φ, and we are told thatw is µ-stable. Further, we are given
the set X ⊆ µ(φ) such that GFw = X = Fw . We use this oracle
information to reduce the problemw |=? φ to a “simpler” problem
w |=? φ[X ]ν , where “simpler” means that φ[X ]ν is a formula of
νLTL, for which we already know how to construct automata. In
other words, we define a formula φ[X ]ν ∈ νLTL such that GFw =
X = Fw impliesw |= φ iffw |= φ[X ]ν . (Observe that X ⊆ µ(φ) but
φ[X ]ν ∈ νLTL, and so the latter, not the former, is the reason for
the ν-subscript in the notation φ[X ]ν .)

The definition of φ[X ]ν is purely syntactic, and the intuition
behind it is very simple. All the main ideas are illustrated by the
following examples, where we assume GFw = X = Fw :

• φ = Fa ∧ Gb and X = {Fa}. Then Fa ∈ GFw , which implies
in particular w |= Fa. So we can reduce w |=? Fa ∧ Gb to
w |=? Gb, and so φ[X ]ν := Gb.

• φ = Fa ∧ Gb and X = ∅. Then Fa < Fw , and so w ̸ |= Fa. So
we can reducew |=? Fa ∧ Gb to the trivial problemw |=? ff ,
and so φ[X ]ν := ff .

• φ = G(bUc) and X = {bUc}. Then bUc ∈ GFw , and so
w |= GF(bUc). This does not implyw |= bUc , but implies that
c will hold in the future. So we can reducew |=? G(bUc) to
w |=? G(bWc), a formula of νLTL, and so φ[X ]ν := G(bWc).

Definition 5.5. Let φ be a formula and let X ⊆ µ(φ). The formula
φ[X ]ν is inductively defined as follows:

• If φ = tt,ff,a,¬a, then φ[X ]ν = φ.
• If φ = op(ψ ) for op ∈ {X,G} then φ[X ]ν = op(ψ [X ]ν ).
• If φ = op(ψ1,ψ2) for op ∈ {∧,∨,W,R} then
φ[X ]ν = op(ψ1[X ]ν ,ψ2[X ]ν ).

• If φ = Fψ then φ[X ]ν =

{
tt if φ ∈ X

ff otherwise.

• Ifφ = ψ1Uψ2 thenφ[X ]ν =

{
(ψ1[X ]ν )W(ψ2[X ]ν ) if φ ∈ X

ff otherwise.

• Ifφ = ψ1Mψ2 thenφ[X ]ν =

{
(ψ1[X ]ν )R(ψ2[X ]ν ) if φ ∈ X

ff otherwise.

We now introduce, in a dual way, a formula φ[Y ]µ ∈ µLTL such
that FGw = Y = Gw impliesw |= φ iffw |= φ[Y ]µ .

Definition 5.6. Let φ be a formula and let Y ⊆ ν (φ). The formula
φ[Y ]µ is inductively defined as follows:

• If φ = tt,ff,a,¬a, then φ[Y ]µ = φ.
• If φ = op(ψ ) for op ∈ {X, F} then φ[Y ]µ = op(ψ [Y ]µ ).
• If φ = op(ψ1,ψ2) for op ∈ {∧,∨,U,M} then
φ[Y ]µ = op(ψ1[Y ]µ ,ψ2[Y ]µ ).

• If φ = Gψ then φ[Y ]µ =

{
tt if φ ∈ Y

ff otherwise.

• Ifφ = ψ1Wψ2 thenφ[Y ]µ =

{
tt if φ ∈ Y

(ψ1[Y ]µ )U(ψ2[Y ]µ ) otherwise.

• Ifφ = ψ1Rψ2 thenφ[Y ]µ =

{
tt if φ ∈ Y

(ψ1[Y ]µ )M(ψ2[Y ]µ ) otherwise.

Example 5.7. Let φ = ((aWb) ∧ Fc) ∨ aUd . We have:

φ[{Fc}]ν = ((aWb) ∧ tt) ∨ ff ≡P aWb
φ[{aUd}]ν = ((aWb) ∧ ff) ∨ aWd ≡P aWd
φ[∅]ν = ((aWb) ∧ ff) ∨ ff ≡P ff
φ[{aWb}]µ = (tt ∧ Fc) ∨ aUd ≡P Fc ∨ aUd
φ[∅]µ = (aUb ∧ Fc) ∨ aUd

△

5.3 Utilizing φ[X ]ν and φ[Y ]µ .
The following lemma states the fundamental properties of φ[X ]ν
and φ[Y ]µ . As announced above, for a µ-stable word w we can
reduce the problemw |=? φ tow |=? φ[X ]ν , and for a ν -stable word
tow |=? φ[Y ]µ . However, there is more: If we only knowX ⊆ GFw ,
then we can still inferw |= φ fromw |= φ[X ]ν , only the implication
in the other direction fails.

Lemma 5.8. Let φ be a formula and letw be a word.
For every X ⊆ µ(φ):
(a1) If Fw ⊆ X andw |= φ, thenw |= φ[X ]ν .
(a2) If X ⊆ GFw andw |= φ[X ]ν , thenw |= φ.

In particular:
(a3) If Fw = X = GFw thenw |= φ iffw |= φ[X ]ν .

For every Y ⊆ ν (φ):
(b1) If FGw ⊆ Y andw |= φ, thenw |= φ[Y ]µ .
(b2) If Y ⊆ Gw andw |= φ[Y ]µ , thenw |= φ.

In particular:
(b3) If FGw = Y = Gw thenw |= φ iffw |= φ[Y ]µ .

Proof. All parts are proved by a straightforward structural induction
on φ. We consider only (a1), and only two representative cases of
the induction. Representative cases for (a2), (b1), and (b2) can be
found in the appendix of [16].
(a1) Assume Fw ⊆ X . Then Fwi ⊆ X for all i ≥ 0. We prove the
following stronger statement via structural induction on φ:

∀i . ( (wi |= φ) → (wi |= φ[X ]ν ) )

We consider one representative of the “interesting” cases, and
one of the “straightforward” cases.
Case φ = ψ1Uψ2: Let i ≥ 0 arbitrary and assumewi |= ψ1Uψ2. Then
ψ1Uψ2 ∈ Fwi and so φ ∈ X . We provewi |= (ψ1Uψ2)[X ]ν :

wi |= ψ1Uψ2
=⇒ wi |= ψ1Wψ2
=⇒ ∀j . wi+j |= ψ1 ∨ ∃k ≤ j . wi+k |= ψ2
=⇒ ∀j . wi+j |= ψ1[X ]ν ∨ ∃k ≤ j . wi+k |= ψ2[X ]ν (I.H.)
=⇒ wi |= (ψ1[X ]ν )W(ψ2[X ]ν )

=⇒ wi |= (ψ1Uψ2)[X ]ν (φ ∈ X , Def. 5.5)

Case φ = ψ1 ∨ψ2: Let i ≥ 0 arbitrary and assumewi |= ψ1 ∨ψ2:

wi |= ψ1 ∨ψ2
=⇒ (wi |= ψ1) ∨ (wi |= ψ2)
=⇒ (wi |= ψ1[X ]ν ) ∨ (wi |= ψ2[X ]ν ) (I.H.)
=⇒ wi |= (ψ1 ∨ψ2)[X ]ν (Def. 5.5) □

5
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Lemma 5.8 suggests to decidew |=? φ by “trying out” all possible
sets X . Part (a2) shows that the strategy of checking for every set
X if both X ⊆ GFw andw |= φ[X ]ν hold is sound.

Example 5.9. Consider φ = GFa ∨ GF(b ∧ Gc). Since µ(φ) =
{Fa, F(b ∧ Gc)}, there are four possible X ’s to be tried out: ∅, {Fa},
{F(b ∧ Gc)}, and {Fa, F(b ∧ Gc)}. For X = ∅ we get φ[X ]ν = ff ,
indicating that if neither a nor b ∧ Gc hold infinitely often, then φ
cannot hold. For the other three possibilities (a holds infinitely often,
b ∧ Gc holds infinitely often, or both) there are words satisfying φ,
like aω , {b, c}ω , and {a,b, c}ω . △

However there are still two questions open. First, is this strategy
complete? Part (a3) shows that it is complete for µ-stable words:
Indeed, in this case there is a set X such that GFw = X = Fw , and
for this particular set w |= φ[X ]ν holds. For words that are not
µ-stable, we will use the existence of µ-stable suffixes: Instead of
checking w |= φ[X ]ν , we will check the existence of a suffix wi
such thatwi |= af(φ,w0i )[X ]ν . This will happen in Section 5.5. The
second open question is simply how to check X ⊆ GFw . We deal
with it in Section 5.4.

5.4 Checking X ⊆ GFw and Y ⊆ FGw .
Consider again the formula φ = GFa ∨ GF(b ∧ Gc) of Example
5.9. If X = {Fa}, then checking whether X is a correct advice (i.e.,
whether X ⊆ GFw holds) is easy, because GFFa ∈ GF(µLTL), see
Proposition 4.2. In contrast, forX = {F(b∧Gc)} this is not so. In this
case it would come handy if we had an advice Y = {Gc} promising
that Gc holds almost always, as is the case for e.g. ∅5({b, c}{c})ω .
Indeed, we could easily check correctness of this advice, because
FGGc ∈ FG(νLTL), and with its help checking GF(b ∧Gc) reduces
to checking GF(b ∧ tt) = GFb, which is also easy.

One of the main ingredients of our approach is that in order to
verify a promise X ⊆ GFw we can rely on a promise Y ⊆ FGw
about subformulas of X , and vice versa. There is no circularity in
this rely/guarantee reasoning because the subformula order is well
founded, and we eventually reach formulasψ such thatψ [X ]ν = ψ
orψ [Y ]µ = ψ . This argument is formalized in the next lemma. The
first part of the lemma states that mutually assuming correctness
of the other promise is correct. The second part states that, loosely
speaking, this rely/guarantee method is complete.

Lemma 5.10. Let φ be a formula and letw be a word.
(1.) For every X ⊆ µ(φ) and Y ⊆ ν (φ), if

∀ψ ∈ X . w |= GF(ψ [Y ]µ )
∀ψ ∈ Y . w |= FG(ψ [X ]ν )

then X ⊆ GFw and Y ⊆ FGw .
(2.) If X = GFw and Y = FGw then

∀ψ ∈ X . w |= GF(ψ [Y ]µ )
∀ψ ∈ Y . w |= FG(ψ [X ]ν )

Proof. (1.) Let X ⊆ µ(φ) and Y ⊆ ν (φ). Observe that X ∩Y = ∅. Let
n := |X ∪Y |. Letψ1, . . . ,ψn be an enumeration of X ∪Y compatible
with the subformula order, i.e., ifψi is a subformula ofψj , then i ≤ j .
Finally, let (X0,Y0), (X1,Y1), . . . , (Xn ,Yn ) be the unique sequence
of pairs satisfying:

• (X0,Y0) = (∅, ∅) and (Xn ,Yn ) = (X ,Y ).
• For every 0 < i ≤ n, if ψi ∈ X then Xi \ Xi−1 = {ψi } and
Yi = Yi−1, and ifψi ∈ Y , thenXi = Xi−1 andYi \Yi−1 = {ψi }.

We prove Xi ⊆ GFw and Yi ⊆ FGw for every 0 ≤ i ≤ n
by induction on i . For i = 0 the result follows immediately from
X0 = ∅ = Y0. For i > 0 we consider two cases:
Case 1:ψi ∈ Y , i.e., Xi = Xi−1 and Yi \ Yi−1 = {ψi }.

By induction hypothesis and Xi = Xi−1 we have Xi ⊆ GFw and
Yi−1 ⊆ FGw . We proveψi ∈ FGw , i.e.,w |= FGψi , in three steps.
Claim 1:ψi [X ]ν = ψi [Xi ]ν .
By the definition of the ·[·]ν mapping,ψi [X ]ν is completely deter-
mined by the µ-subformulas ofψi that belong toX . By the definition
of the sequence (X0,Y0), . . . , (Xn ,Yn ), a µ-subformula ofψi belongs
to X iff it belongs to Xi , and we are done.
Claim 2: Xi ⊆ GFwk for every k ≥ 0.
Follows immediately from Xi ⊆ GFw .
Proof of w |= FGψi . By the assumption of the lemma we have
w |= FG(ψi [X ]ν ), and so, by Claim 1, w |= FG(ψi [Xi ]ν ). So there
exists an index j such that w j+k |= ψi [Xi ]ν for every k ≥ 0. By
Claim 2 we further have Xi ⊆ GFw j+k for every j,k ≥ 0. So we
can apply part (a2) of Lemma 5.8 to Xi ,w j+k , andψi , which yields
w j+k |= ψi for every k ≥ 0. Sow |= FGψi .
Case 2:ψi ∈ X , i.e., Xi \ Xi−1 = {ψi } and Yi = Yi−1.
In this case Xi−1 ⊆ GFw and Yi ⊆ FGw . We proveψi ∈ GFw , i.e.,
w |= GFψi in three steps.
Claim 1:ψi [Y ]µ = ψi [Yi ]µ .
The claim is proved as in Case 1.
Claim 2: There is an j ≥ 0 such that Yi ⊆ Gwk for every k ≥ j.
Follows immediately from Yi ⊆ FGw .
Proof of w |= GFψi . By the assumption of the lemma we have
w |= GF(ψi [Y ]µ ). Let j be the index of Claim 2. By Claim 1 we have
w |= GF(ψi [Yi ]µ ), and so there exist infinitely many k ≥ j such
that wk |= ψi [Yi ]µ . By Claim 2 we further have Yi ⊆ Gwk . So we
can apply part (b2) of Lemma 5.8 to Yi , wk , and ψi , which yields
wk |= ψi for infinitely many k ≥ j. Sow |= GFψi .

(2.) Letψ ∈ GFw . We havew |= GFψ , and sowi |= ψ for infinitely
many i ≥ 0. Since FGwi = FGw for every i ≥ 0, part (b1) of
Lemma 5.8 can be applied to wi , FGwi , and ψ . This yields wi |=

ψ [FGw ]µ for infinitely many i ≥ 0 and thusw |= GF(ψ [FGw ]µ ).
Let ψ ∈ FGw . Since wi |= FGψ , there is an index j such that

w j+k |= ψ for every k ≥ 0. By Lemma 5.3 the index j can be
chosen so that it also satisfies GFw = Fw j+k = GFw j+k for every
k ≥ 0. So part (a1) of Lemma 5.8 can be applied to Fw j+k , w j+k ,
and ψ . This yields w j+k |= ψ [GFw ]ν for every k ≥ 0 and thus
w |= FG(ψ [GFw ]ν ). □

Example 5.11. Let φ = F(a ∧ G(b ∨ Fc)), X = {φ}, and Y =
{G(b ∨ Fc)}.

• The condition ∀ψ ∈ X . w |= GF(ψ [Y ]µ ) becomes

w |= GF
(
φ[Y ]µ

)
= GF(Fa) ≡ GFa

• The condition ∀ψ ∈ Y . w |= FG(ψ [X ]ν ) becomes

w |= FG (G(b ∨ Fc)[X ]ν ) = FG(Gb) ≡ FGb

By Lemma 5.10 (1) we then have that w |= GFa ∧ FGb implies
φ ∈ GFw and G(b ∨ Fc)) ∈ FGw . △

5.5 Putting the pieces together: The Master Theorem.
Putting together Lemma 5.8 and Lemma 5.10, we obtain the main
result of the paper, which we will use as “Master Theorem” for the
construction of automata.
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Theorem5.12 (Master Theorem). For every formulaφ and for every
wordw : w |= φ iff there exists X ⊆ µ(φ) and Y ⊆ ν (φ) satisfying

(1) ∃i . wi |= af(φ,w0i )[X ]ν

(2) ∀ψ ∈ X . w |= GF(ψ [Y ]µ )

(3) ∀ψ ∈ Y . w |= FG(ψ [X ]ν )

Observe that af(φ,w0i )[X ]ν , GF(ψ [Y ]µ ), and FG(ψ [X ]ν ) are for-
mulas of νLTL, GF(µLTL), and FG(νLTL), respectively, i.e., they all
belong to the fragments of Section 4.

Before proving the theorem, let us interpret it in informal terms.
The Master Theorem states that in order to decidew |=?φ we can
guess two sets X ⊆ µ(φ) and Y ⊆ ν (φ) and an index i , and then
proceed as follows: verifyY ⊆ FGw assuming thatX ⊆ GFw holds
(3), verify X ⊆ GFw assuming that Y ⊆ FGw holds (2), and verify
wi |= af(φ,w0i ) assuming that X ⊆ GFw holds (1). The procedure
is sound by Lemma 5.8 and Lemma 5.10, and complete because the
guess where X := GFw , Y := FGw , and i is a stabilization point of
w , is guaranteed to succeed.

Example 5.13. Let φ = F(a∧G(b∨Fc)) as in Example 5.11, and let
φ ′ = dUφ. For X = {φ,φ ′}, Y = {G(b ∨ Fc)}, and i = 0 the Master
Theorem yields thatw |= φ ′ is implied by

(1) w |= (dUφ)[X ]ν = dW(φ[X ]ν ) = dWtt ≡ tt,
(2) w |= GF(φ[Y ]µ ) ∧ GF(φ ′[Y ]µ ) = GFa ∧ GF(dU(Fa)), and
(3) w |= FG((G(b ∨ Fc)[X ]ν ) ≡ FGb.

For X = {φ}, Y = {G(b ∨ Fc)}, and i = 0, condition (1) is w |= ff ,
and we do not derive any useful information. △

Proof (of the Master Theorem).
(⇒): Assumew |= φ, and set X := GFw and Y := FGw . Properties
(2) and (3) follow from Lemma 5.10. For property (1), let i be an
index such that Fwi = GFwi ; this index exists by Lemma 5.3.
By Lemma 3.3 we have wi |= af(φ,w0i ), and by Lemma 5.8 (a1)
wi |= af(φ,w0i )[X ]ν .
(⇐): Assume that properties (1-3) hold for sets X ,Y and an index
i . By Lemma 5.10 (1.) we have X ⊆ GFw , and so X ⊆ GFwi . By
Lemma 5.8 (a2) we obtain wi |= af(φ,w0i )[X ]ν , and thus wi |=

af(φ,w0i ). Lemma 3.3 yieldsw |= φ. □

Let LjX ,Y be the language of all words that satisfy condition (j)
of the Master Theorem for the sets X and Y . The Master Theorem
can then be reformulated as:

L(φ) =
⋃

X ⊆µ(φ)
Y ⊆ν (φ)

L1X ,Y ∩ L2X ,Y ∩ L3X ,Y

Therefore, given an automata model effectively closed under union
and intersection, in order to construct automata for all of LTL it
suffices to exhibit automata recognizing L1X ,Y ,L

2
X ,Y ,L

3
X ,Y . In the

next section we consider the case of DRAs, and then we proceed to
NBAs and LDBAs.

6 Constructing DRAs for LTL Formulas
Let φ be a formula of length n. We use the Master Theorem to
construct a DRA for L(φ) with 22

O (n)
states and O(2n ) Rabin pairs.

Since our purpose is only to show that we can easily obtain au-
tomata of asymptotically optimal size, we give priority to a simpler
construction over one with the least number of states. We comment

in Section 9 on optimizations that reduce the size by using other
acceptance conditions.

We first construct DRAs for L1X ,Y , L
2
X ,Y , and L

3
X ,Y with 22

O (n)

states and one single Rabin pair. More precisely, for each of these
languages we construct either a DBA or a DCA. We then construct
a DRA for L(φ) by means of intersections and unions.

A DCA for L1X ,Y . We define a DCA Cφ,X that accepts a wordw iff
wi |= af(φ,w0i )[X ]ν for some suffixwi ofw . In the rest of this part
of the section we abbreviate af(φ,w0i ) to φi . Recall that φi [X ]ν is a
formula of νLTL, and so for every i ≥ 0 there is a DCA with a state
ff such that the automaton rejects iff it reaches this state. Intuitively,
if the automaton rejects, then it rejects “after finite time”. We prove
the following lemma:

Lemma 6.1. Let φi := af(φ,w0i ). Ifw |= φ[X ]ν thenwi |= φi [X ]ν
for all i > 0.

Proof. Assumew |= φ[X ]ν . It suffices to provew1 |= φ1[X ]ν , since
the general case follows immediately by induction. For i = 1 we
proceed by structural induction on φ, and consider only some rep-
resentative cases.
Case φ = a. Sincew |= a[X ]ν = a we have a ∈ w[0]. So φ1[X ]ν =

tt[X ]ν = tt, and thusw1 |= φ1[X ]ν .
Case φ = ψUχ . Since w |= φ[X ]ν we have φ[X ]ν , ff , and so
φ ∈ X . We have:

w |= φ[X ]ν
=⇒ w |= (ψ [X ]ν )W(χ [X ]ν ) (Def. 5.5)
=⇒ w |= (ψ [X ]ν ∧ X((ψ [X ]ν )W(χ [X ]ν ))) ∨ χ [X ]ν
=⇒ w |= (ψ [X ]ν ∧ X((ψUχ )[X ]ν )) ∨ χ [X ]ν (φ ∈ X )
=⇒ w1 |= (ψ1[X ]ν ∧ φ[X ]ν ) ∨ χ1[X ]ν (I.H.)
=⇒ w1 |= ((ψ1 ∧ (ψUχ )) ∨ χ1)[X ]ν (Def. 5.5)
=⇒ w1 |= φ1[X ]ν (Def. 3.1)

□

Loosely speaking, Cφ,X starts by checkingw |=? φ[X ]ν . For this it
maintains the formula (φ[X ]ν )i in its state. If the formula becomes
ff after, say, j steps, thenw ̸ |= φ[X ]ν , and Cφ,X proceeds to check
w |=? φ j [X ]ν . In order to “switch” to this new problem, Cφ,X needs
to know φ j , and so it maintains φ j it in its state. In other words,
after j steps Cφ,X is in state

(
φ j , af(φi [X ]ν ,wi j )

)
, where i ≤ j is the

number of steps after which Cφ,X switched to a new problem for
the last time. If the second component of the state becomes ff , then
the automaton uses the first component to determinewhich formula
to check next. The accepting condition states that the transitions
leading to a state of the form (ψ ,ff)must occur finitely often, which
implies that eventually one of the checksw |=? φ j [X ]ν succeeds.

The formal description of Cφ,X is as follows:

Cφ,X = (Reach(φ) × Reach(φ)[X ]ν ,δ , (φ,φ[X ]ν ),fin (F ))

where
• Reach(φ)[X ]ν =

⋃
ψ ∈Reach(φ) Reach(ψ [X ]ν )

• δ ((ξ , ζ ),ν ) =

{
(af(ξ ,ν ), af(ξ [X ]ν ,ν )) if ζ ≡P ff
(af(ξ ,ν ), af(ζ ,ν )) otherwise.

• F = Reach(φ) × {ff}

Since Reach(φ) has at most size 22
n
, the number of states of Cφ,X

is bounded by
(
22

n
)2
= 2O (2n ).
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Example 6.2. Let φ = G(aUb ∨ Fc), X = {aUb}, and φ[X ]ν =

G(aWb). Below we show a fragment of Cφ,X , with α , β,γ as in
Example 4.3.

φ, φ[X ]ν φ, ffφ ∧ (aUb ∨ Fc),
φ[X ]ν ∧ aWb

β
{c }

{a }
{a }

{c }

β

Forw = {c}{c}({a}{b})ω we have X = GFw ; the word is accepted.
Forw ′ = {c}ω we have X , GFw ′ , and the word is rejected. △

ADBA forL2X ,Y . Wedefine aDBA recognizingL
(∧

ψ ∈X GF(ψ [Y ]µ )
)
.

Observe that GF(ψ [Y ]µ ) ∈ GF(µLTL) for every ψ ∈ X , and that
ψ [Y ]µ has at most n subformulas. By Proposition 4.2, L(GF(ψ [Y ]µ )
is recognized by a DBA with at most 22

O (n)
states. Recall that the

intersection of the languages of k DBAs with s1, . . . , sk states is
recognized by a DBA with k ·

∏k
j=1 sj states. Since |X | ≤ n, the

intersection of the DBAs for the formulas GF(ψ [Y ]µ ) yields a DBA

with at most n ·

(
22

O (n)
)n
= 2n2

O (n)
= 22

O (n)
states.

ADCA for L3X ,Y (φ). TheDCA for L
(∧

ψ ∈Y FG(ψ [X ]ν

)
is obtained

dually to the previous case, applying FG(ψ [X ]ν ) ∈ FG(νLTL), and
Proposition 4.2.

A DRA for L(φ). By the Master Theorem we have:

L(φ) =
⋃

X ⊆µ(φ)
Y ⊆ν (φ)

L1X ,Y ∩ L2X ,Y ∩ L3X ,Y

We first construct a DRA AX ,Y for the intersection of LiX ,Y , where
i = 1, 2, 3. Let AiX ,Y be the DCA or DBA for LiX ,Y . The set of states
of AX ,Y is the cartesian product of the sets of states of the AiX ,Y ,
the transition function is as usual, and the accepting condition is

fin ((S1 ×Q2 ×Q3) ∪ (Q1 ×Q2 × S3)) ∧ inf (Q1 × S2 ×Q3)

where Qi is the set of states of AiX ,Y , and fin (S1), inf (S2), fin (S3)
are the accepting conditions of A1

X ,Y , A
2
X ,Y , and A

3
X ,Y .

We construct a DRA Aφ for L(φ). Since X ⊆ µ(φ) and Y ⊆

ν (φ), there are at most 2n pairs of sets X ,Y . Let A1, . . . ,Ak be an
enumeration of the DRAs for these pairs, where k ≤ 2n , and let
Qi and αi = fin (Ui ) ∧ inf (Vi ) be the set of states and accepting
condition ofAi , repectively. The set of states ofAφ isQ1 × · · · ×Qk ,
the transition function is as usual, and the accepting condition is∨k

i=1 fin (Q1 × · · · ×Qi−1 ×Ui ×Qi+1 × · · · ×Qk ) ∧

inf (Q1 × · · · ×Qi−1 ×Vi ×Qi+1 × · · · ×Qk )

So Aφ has
(
22

O (n)
)2n
= 22

O (n) ·2n = 22
O (n)

states and at most 2n

Rabin pairs.

7 Constructing NBAs for LTL Formulas
Assume that φ has length n. We use the Master Theorem to con-
struct a NBA for L(φ) with 2O (n) states.

We first describe how to construct NBAs for the LTL fragments
of Section 4. Let us start with some informal intuition. Consider

the formula φ = GX(a ∨ b). In the DRA for φ we find states for the
formulas φ and af(φ, ∅) and a transition

φ
∅

−→ af(φ, ∅)

where af(φ, ∅) ≡P φ ∧ (a ∨ b). The languages recognized from the
states φ and af(φ, ∅) are precisely L(φ) and L(af(φ, ∅)). The basic
principle for the construction of the NBAs is to put af(φ, ∅) in
disjunctive normal form (DNF)

φ ∧ (a ∨ b) ≡P (φ ∧ a) ∨ (φ ∧ b)

and instead of a single transition, have two transitions

φ
∅

−→ φ ∧ a and φ
∅

−→ φ ∧ b .

In other words, the nondeterminism is used to guess which of the
two disjuncts of the DNF is going to hold. Formally, we proceed as
follows:

Definition 7.1. We define dnf(φ) as the set of clauses obtained by
putting the propositional formula φ in DNF, i.e., φ ≡P

∨
ψ ∈dnf(φ)ψ .

Further let
Reach∨(φ) =

⋃
w ∈(2Ap )∗

af ∨(ψ ,w)

with af ∨(ψ , ϵ) = dnf(ψ ), af ∨(ψ ,ν ) = dnf(af(ψ ,ν )), and af ∨(ψ ,νw) =⋃
ψ ′∈af ∨(ψ ,ν ) af

∨(ψ ′,w) for every formulaψ , letter ν , and wordw .

Notice that dnf(ff) = ∅ and dnf(tt) = {tt}. Since the automata
defined below have sets of states of the form Reach∨(φ), they have
a state labeled by tt, but no state labeled by ff .

The proof of the next proposition follows immediately from the
definitions.

Proposition 7.2. Let φ ∈ µLTL.
• The following NBA over the alphabet 2Ap recognizes L(φ):

A
φ
µ = ( Reach∨(φ), af ∨, dnf(φ), inf (tt) )

• The following NBA over the alphabet 2Ap recognizes L(GFφ):

A
φ
GFµ = ( Reach∨(Fφ), af ∨Fφ , {Fφ}, inf (tt) )

af ∨Fφ (ψ ,ν ) =

{
{Fφ} ifψ ≡P tt
af ∨(ψ ,ν ) otherwise.

Let φ ∈ νLTL.
• The following NBA over the alphabet 2Ap recognizes L(φ):

A
φ
ν = ( Reach∨(φ), af ∨, dnf(φ), inf (Reach∨(φ)) )

• The following NBA over the alphabet 2Ap recognizes L(FGφ):

A
φ
FGν = ( Reach∨(Gφ) ∪ {FGφ}, af ∨Gφ , {FGφ}, inf (Reach

∨(Gφ)) )

af ∨Gφ (ψ ,ν ) =

{
{FGφ,Gφ} ifψ = FGφ
af ∨(ψ ,ν ) otherwise.

Recall that the elements of Reach(φ) are positive boolean com-
binations of proper subformulas of φ. It follows that the elements
of Reach∨(φ) are conjunctions of proper subformulas of φ. Since
the number of proper subformulas is bounded by the length of the
formula, we immediately obtain:

Proposition 7.3. If φ has n proper subformulas, then Reach∨(φ)
has at most 2n elements, and so all the NBAs of Proposition 7.2 have
at most 2n+1 + 1 = O(2n ) states.
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Example 7.4. Let φ = a ∧X(b ∨ Fc), the formula for which a DBA
was given in Example 4.3. The NBA A

φ
GFµ is shown below. The

figure uses the abbreviations of Example 4.3.

Fφ Fc

b

tt
α

2Ap

α

2Ap

γ

β

2Ap

Compared to the DBA of Example 4.3, the NBA has a simpler
structure, although in this case the same number of states. △

To define NBAs for arbitrary formulas we apply the Master
Theorem. This is routine, and so we only sketch the constructions.

A NBA for L1X ,Y . We define a NBA Cφ,X that accepts a word
w iff wi |= af(φ,w0i )[X ]ν for some suffix wi of w . Recall that
af(φ,w0i )[X ]ν ∈ νLTL for every i ≥ 0. The automaton consists
of two components with sets of states Q1 and Q2 given by

Q1 = {(ψ , 1) | ψ ∈ Reach∨(φ)} Q2 = {(ψ [X ]ν , 2) | ψ ∈ Reach∨(φ)}

Transitions either stay in the same component, or “jump” from the
first component to the second. Transitions that stay in the same
component are of the form (ψ , i)

ν
−→ (ψ ′, i) forψ ′ ∈ af ∨(ψ ,ν ) and

i = 1, 2. “Jumps” are transitions of the form (ψ , 1)
ϵ

−→ (ψ [X ]ν , 2).
Jumping amounts to nondeterministically guessing the suffix wi
satisfying af(φ,w0i )[X ]ν . The accepting condition is inf (Q2). Notice
that the state (ff, 2) does not have any successors.
Since Reach∨(φ) has at most 2n states, Cφ,X has 2O (n) states.

A NBA for L2X ,Y . As in the case of DRAs, we define a NBA recog-

nizing L
(∧

ψ ∈X GF(ψ [Y ]µ )
)
. To obtain an NBA with 2O (n) states

we use a well-known trick. Given a set {ψ1, . . . ,ψk } of formulas,
we have

k∧
i=1

GFψi ≡ GF(ψ1 ∧ F(ψ2 ∧ F(ψ3 ∧ . . . ∧ F(ψk−1 ∧ Fψk ) . . .))

The formula obtained after applying the trick belongs to GF(µLTL)
and has O(n) µ-subformulas. By Proposition 7.2.2 we can construct
a NBA for it with 2O (n) states.

A NBA for L3X ,Y . In this case we apply

k∧
i=1

FGψi ≡ FG

( k∧
i=1

ψi

)
and Proposition 7.2.4, yielding an automaton with 2O (n) states.

ANBA for L(φ). We proceed as in the case of DRAs, using the well-
known operations for union and intersection of NBAs. The NBA
Aφ is the union of at most 2n NBAs AX ,Y , each of them with 2O (n)

states. The difference with the DRA case is that, given NBAs with
n1, . . . ,nk states accepting languages L1, . . . ,Lk , we can construct
a NBA for

⋃k
i=1 Li with

∑k
i=1 ni states, instead of

∏k
i=1 ni states,

as was the case for DRAs. So Aφ has 2n · 2O (n) = 2O (n) states.

8 Constructing LDBAs for LTL Formulas
The translation of LTL into LDBA combines the translations into
DRA and NBA. Recall that the states of an LDBA are partitioned
into an initial component and a deterministic accepting component
containing all accepting states. While in the definition of a LDBA
the initial component can be nondeterministic, in our construction
we can easily make it deterministic: Every accepting run has ex-
actly one non-deterministic step. This makes the LDBA usable for
quantitative (and not only qualitative) probabilistic model checking,
as described in [35].

Lemma 6.1 shows that checking property (1) of Theorem 5.12
can be arbitrarily delayed, which allows us to slightly rephrase the
Master Theorem as follows:

Theorem 8.1. (Variant of the Master Theorem) For every formula
φ and for every wordw : w |= φ iff there exists X ⊆ µ(φ), Y ⊆ ν (φ),
and i ≥ 0 satisfying

(1′) wi |= af(φ,w0i )[X ]ν
(2′) ∀ψ ∈ X . wi |= GF(ψ [Y ]µ )
(3′) ∀ψ ∈ Y . wi |= G(ψ [X ]ν )

Proof. Clearly, the existence of an index i satisfying (1’-3’) implies
that conditions (1-3) hold. For the other direction, assume condi-
tions (1-3) hold. By Lemma 6.1 the index i of condition (1) can
be chosen arbitrarily large. Since w |=

∧
ψ ∈X FG(ψ [X ]ν ), we can

choose i so that it also satisfieswi |=
∧
ψ ∈X G(ψ [X ]ν ). □

The idea of the construction is to use the initial component to
keep track of af(φ,w0i )—that is, after reading a finite wordw0i the
initial component is in state af(φ,w0i )—and use the jump to the
accepting component to guess sets X and Y and the stabilization
point i . The jump leads to the initial state of the intersection of
three DBAs, which are in charge of checking (1′), (2′), and (3′).

Recall that af(φ,w0i ) ∈ Reach(φ) for every wordw and every i ≥
0. For everyψ ∈ Reach(φ) and for each pair of setsX ,Y we construct
a DBA Dψ ,X ,Y recognizing the intersection of the languages of
the formulas:

ψ [X ]ν
∧
ψ ∈X GF(ψ [Y ]µ )

∧
ψ ∈Y G(ψ [X ]ν )

These formulas belong to νLTL, GF(µLTL), and νLTL, respectively,
and so we can obtain DBAs for them following the recipes of Propo-
sition 4.2. As argued before, each of these DBAs have 22

O (n)
states,

and so we can also construct a DBA for their intersection with the
same upper bound. Summarizing, we obtain:

Initial component. The component is (Reach(φ), af, {φ}) and thus
the component has at most 22

n
states. Recall that this component

does not have accepting states.

Accepting component. The component is the disjoint union, for
everyψ ∈ Reach(φ), X ⊆ µ(φ), and Y ⊆ ν (φ), of the DBA Dψ ,X ,Y .
Since Reach(φ) has at most 22

n
formulas and there are at most 2n

pairs (X ,Y ), the component is the disjoint union of at most 22
n
· 2n

automata, each of then with 22
O (n)

states. Thus in total 22
O (n)

states.

A LDBA for L(φ). The LDBA is the disjoint union of the initial
and accepting components. The initial component is connected
to the accepting component by ϵ-transitions: For every formula
ψ ∈ Reach(φ) and for every two sets X ,Y , there is an ϵ-transition
from stateψ of the initial component to the initial state of Dψ ,X ,Y .

9
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The LDBA has 22
O (n)
+ 22

n
= 22

O (n)
states. Recall that the lower

bound for the blowup of a translation of LTL to LDBA is also doubly
exponential (see e.g. [35]).

9 Discussion
This paper builds upon our own work [13, 15, 19, 26, 27, 35]. In
particular, the notion of stabilization point of a word with respect
to a formula, and the idea of using oracle information that is sub-
sequently checked are already present there. The translations of
LTL to LDBAs of [23, 24] are based on similar ideas, also with
resemblance to obligation sets of [29, 30].

The essential novelty of this paper with respect to the previous
work is the introduction of the symmetric mappings ·[·]µ and ·[·]ν .
Applying them to an arbitrary formula φ yields a simpler formula,
but not in the sense one might expect. In particular, φ[Y ]µ may be
stronger than φ. For example, the information that, say, the formula
aWb does not hold infinitely often makes us check the stronger
formula aUb = (aWb)[∅]µ . However, exactly this point makes the
“µ-ν-alternation” work: The formulas φ[X ]ν and φ[Y ]µ are only
simpler in the sense of easier to translate. This is the reason why
operators W and M are present in the core syntax and the missing
piece since the symmetric solutions [26, 27], limited to fragments
based on the simpler operators F and G.

The Master Theorem can be applied beyond what is described
in this paper. In order to translate LTL into universal automata
we only need to normalize formulas into conjunctive normal form.
Furthermore one can obtain a double exponential translation into
deterministic parity automata adapting the approach described in
[14]. Another intriguing question is whether our translation into
NBA, which is very different from the ones described in the litera-
ture is of advantage in some application like runtime verification.

The target automata classes used in practice typically use an ac-
ceptance condition defined on transitions, instead of states. Further,
they use generalized acceptance conditions, be it Büchi or Rabin.
All our constructions can be restated effortlessly to yield automata
with transition-based acceptance, and if generalized acceptance
conditions are allowed then they become simpler and more suc-
cinct. The implementation used in our experiments actually uses
these two features, which is described in the appendix of [16].

To conclude, in our opinion this paper successfully finishes the
journey started in [26]. Via a single theorem it provides an arguably
elegant (unified, symmetric, syntax-independent, not overly com-
plex) and efficient (asymptotically optimal and practically relevant)
translation of LTL into your favourite ω-automata.

Acknowledgments. The authors want to thank Alexandre Duret-
Lutz, Benedikt Seidl, the anonymous reviewers, and the participants
of the 2nd Jerusalem Winter School in Computer Science and Engi-
neering on “Formal Verification” for their helpful comments and
remarks.
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Abstract
We present the conditional value-at-risk (CVaR) in the context of
Markov chains and Markov decision processes with reachability
and mean-payoff objectives. CVaR quantifies risk by means of the
expectation of the worst p-quantile. As such it can be used to design
risk-averse systems. We consider not only CVaR constraints, but
also introduce their conjunction with expectation constraints and
quantile constraints (value-at-risk, VaR). We derive lower and upper
bounds on the computational complexity of the respective decision
problems and characterize the structure of the strategies in terms
of memory and randomization.
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1 Introduction
Markov decision processes (MDP) are a standard formalism for
modelling stochastic systems featuring non-determinism. The fun-
damental problem is to design a strategy resolving the non-determi-
nistic choices so that the systems’ behaviour is optimized with re-
spect to a given objective function, or, in the case of multi-objective
optimization, to obtain the desired trade-off. The objective function
(in the optimization phrasing) or the query (in the decision-problem
phrasing) consists of two parts. First, a payoff is a measurable func-
tion assigning an outcome to each run of the system. It can be
real-valued, such as the long-run average reward (also called mean
payoff ), or a two-valued predicate, such as reachability. Second, the
payoffs for single runs are combined into an overall outcome of the
strategy, typically in terms of expectation. The resulting objective
function is then for instance the expected long-run average reward,
or the probability to reach a given target state.

Risk-averse control aims to overcome one of the main disadvan-
tages of the expectation operator, namely its ignorance towards the
incurred risks, intuitively phrased as a question “How bad are the
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Figure 1. Illustration of VaR and CVaR for some random variables.

bad cases?” While the standard deviation (or variance) quantifies
the spread of the distribution, it does not focus on the bad cases
and thus fails to capture the risk. There are a number of quantities
used to deal with this issue:

• Theworst-case analysis (in the financial context known as dis-
counted maximum loss) looks at the payoff of the worst pos-
sible run. While this makes sense in a fully non-deterministic
environment and lies at the heart of verification, in the proba-
bilistic setting it is typically unreasonably pessimistic, taking
into account events happening with probability 0, e.g., never
tossing head on a fair coin.
• The value-at-risk (VaR) denotes the worst p-quantile for
some p ∈ [0, 1]. For instance, the value at the 0.5-quantile is
the median, the 0.05-quantile (the vigintile or ventile) is the
value of the best run among the 5%worst ones. As such it cap-
tures the “reasonably possible” worst-case. See Fig. 1 for an
example of VaR for two given probability density functions.
There has been an extensive effort spent recently on the anal-
ysis of MDP with respect to VaR and the re-formulated no-
tions of quantiles, percentiles, thresholds, satisfaction view
etc., see below. Although VaR is more realistic, it tends to
ignore outliers too much, as seen in Fig. 1 on the right. VaR
has been characterized as “seductive, but dangerous” and “not
sufficient to control risk” [8].
• The conditional value-at-risk (average value-at-risk, expected
shortfall, expected tail loss) answers the question “What to
expect in the bad cases?” It is defined as the expectation over
all events worse than the value-at-risk, see Fig. 1. As such it
describes the lossy tail, taking outliers into account, weighted
respectively. In the degenerate cases, CVaR for p = 1 is the
expectation and for p = 0 the (probabilistic) worst case. It
is an established risk metric in finance, optimization and
operations research, e.g. [1, 33], and “is considered to be a
more consistent measure of risk” [33]. Recently, it started
permeating to areas closer to verification, e.g. robotics [13].

Our contribution In this paper, we investigate optimization of
MDP with respect to CVaR as well as the respective trade-offs with
expectation and VaR. We study the VaR and CVaR operators for the
first time with the payoff functions of weighted reachability and

https://doi.org/10.1145/3209108.3209176
https://doi.org/10.1145/3209108.3209176
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mean payoff, which are fundamental in verification. Moreover, we
cover both the single-dimensional and the multi-dimensional case.

Particularly, we define CVaR for MDP and show the peculiarities
of the concept. Then we study the computational complexity and
the strategy complexity for various settings, proving the following:

• The single dimensional case can be solved in polynomial
time through linear programming, see Section 5.
• The multi-dimensional case is NP-hard, even for CVaR-only
constraints. Weighted reachability is NP-complete and we
give PSPACE and EXPSPACE upper bounds for mean payoff
with CVaR and expectation constraints, and with additional
VaR constraints, respectively, see Section 6. (Note that al-
ready for the sole VaR constraints only an exponential algo-
rithm is known; the complexity is an open question and not
even NP-hardness is known [15, 32].)
• We characterize the strategy requirements, both in terms of
memory, ranging from memoryless, over constant-size to
infinite memory, and the required degree of randomization,
ranging from fully deterministic strategies to randomizing
strategies with stochastic memory update.

While dealing with the CVaR operator, we encountered surpris-
ing behaviour, preventing us to trivially adapt the solutions to the
expectation and VaR problems:

• Compared to, e.g., expectation and VaR, CVaR does not be-
have linearly w.r.t. stochastic combination of strategies.
• A conjunction of CVaR constraints already is NP-hard, since
it can force a strategy to play deterministically.

1.1 Related work
Worst case Risk-averse approaches optimizing the worst case to-
gether with expectation have been considered in beyond-worst-case
and beyond-almost-sure analysis investigated in both the single-
dimensional [11] and in the multi-dimensional [17] setup.

Quantiles The decision problem related to VaR has been phrased
in probabilistic verificationmostly in the form “Is the probability that
the payoff is higher than a given value threshold more than a given
probability threshold?” The total reward gained attention both in the
verification community [6, 24, 35] and recently in the AI commu-
nity [23, 29]. Multi-dimensional percentile queries are considered
for various objectives, such as mean-payoff, limsup, liminf, shortest
path in [32]; for the specifics of two-dimensional case and their in-
terplay, see [3]. Quantile queries for more complex constraints have
also been considered, namely their conjunctions [9, 20], conjunc-
tions with expectations [15] or generally Boolean expressions [25].
Some of these approaches have already been practically applied
and found useful by domain experts [4, 5].

CVaR There is a body of work that optimizes CVaR in MDP. How-
ever, to the best of our knowledge, all the approaches (1) focus on
the single-dimensional case, (2) disregard the expectation, and (3)
treat neither reachability nor mean payoff. They focus on the dis-
counted [7], total [13], or immediate [27] reward, as well as extend
the results to continuous-time models [26, 30]. This work comes
from the area of optimization and operations research, with the
notable exception of [13], which focuses on the total reward. Since
the total reward generalizes weighted reachability, [13] is related
to our work the most. However, it provides only an approximation

solution for the one-dimensional case, neglecting expectation and
the respective trade-offs.

Further, CVaR is a topic of high interest in finance, e.g., [8, 33].
The central difference is that there variations of portfolios (i.e. the
objective functions) are considered while leaving the underlying
random process (the market) unchanged. This is dual to our prob-
lem, since we fix the objective function and now search for an
optimal random process (or the respective strategy).

Multi-objective expectation In the last decade, MDP have been
extensively studied generally in the setting of multiple objectives,
which provides some of the necessary tools for our trade-off analy-
sis. Multiple objectives have been considered for both qualitative
payoffs, such as reachability and LTL [19], as well as quantitative
payoffs, such as mean payoff [9], discounted sum [14], or total re-
ward [22]. Variance has been introduced to the landscape in [10].

2 Preliminaries
Due to space constraints, some proofs and explanations are short-
ened or omitted when clear and can be found in [28].

2.1 Basic definitions
We mostly follow the definitions of [9, 15]. N,Q,R are used to
denote the sets of positive integers, rational and real numbers,
respectively. For n ∈ N, let [n] = {1, . . . ,n}. Further, kj refers to
k · ej , where ej is the unit vector in dimension j.

We assume familiarity with basic notions of probability theory,
e.g., probability space (Ω,F , µ ), random variable F , or expected value
E. The set of all distributions over a countable set C is denoted by
D (C ). Further, d ∈ D (C ) is Dirac if d (c ) = 1 for some c ∈ C . To
ease notation, for functions yielding a distribution over some setC ,
we may write f (·, c ) instead of f (·) (c ) for c ∈ C .

Markov chains A Markov chain (MC) is a tuple M = (S,δ , µ0),
where S is a countable set of states1, δ : S → D (S ) is a probabilistic
transition function, and µ0 ∈ D (S ) is the initial probability dis-
tribution. The SCCs and BSCCs of a MC are denoted by SCC and
BSCC, respectively [31].

A run inM is an infinite sequence ρ = s1s2 · · · of states, we write
ρi to refer to the i-th state si . A path ϱ in M is a finite prefix of a
run ρ. Each path ϱ inM determines the set Cone(ϱ) consisting of
all runs that start with ϱ. To M, we associate the usual probability
space (Ω,F ,P), where Ω is the set of all runs in M, F is the σ -
field generated by all Cone(ϱ), and P is the unique probability
measure such that P(Cone(s1 · · · sk )) = µ0 (s1) ·

∏k−1
i=1 δ (si , si+1).

Furthermore, ♢B (♢□B) denotes the set of runs which eventually
reach (eventually remain in) the set B ⊆ S , i.e. all runs where ρi ∈ B
for some i (there exists an i0 such that ρi ∈ B for all i ≥ i0).

Markov decision processes A Markov decision process (MDP) is
a tuple M = (S,A,Av,∆, s0) where S is a finite set of states, A
is a finite set of actions, Av : S → 2A \ {∅} assigns to each state
s the set Av(s ) of actions enabled in s so that {Av(s ) | s ∈ S } is
a partitioning of A2, ∆ : A → D (S ) is a probabilistic transition
function that given an action a yields a probability distribution
over the successor states, and s0 is the initial state of the system.

1We allow the state set to be countable for the formal definition of strategies on MDP.
When dealing with Markov Chains in queries, we only consider finite state sets.
2In other words, each action is associated with exactly one state.
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A run ρ ofM is an infinite alternating sequence of states and
actions ρ = s1a1s2a2 · · · such that for all i ≥ 1, we have ai ∈ Av(si )
and ∆(ai , si+1) > 0. Again, ρi refers to the i-th state visited by
this particular run. A path of length k inM is a finite prefix ϱ =
s1a1 · · ·ak−1sk of a run in G.

Strategies and plays. Intuitively, a strategy in an MDPM is a
“recipe” to choose actions based on the observed events. Usually, a
strategy is defined as a function σ : (SA)∗S → D (A) that given a
finite path ϱ, representing the history of a play, gives a probability
distribution over the actions enabled in the last state. We adopt the
slightly different, though equivalent [9, Sec. 6] definition from [15],
which is more convenient for our setting.

LetM be a countable set ofmemory elements. A strategy is a triple
σ = (σu ,σn ,α ), where σu : A × S ×M→ D (M) and σn : S ×M→
D (A) are memory update and next move functions, respectively,
and α ∈ D (M) is the initial memory distribution. We require that,
for all (s,m) ∈ S × M, the distribution σn (s,m) assigns positive
values only to actions available at s , i.e. suppσn (s,m) ⊆ Av(s ).

A play ofM determined by a strategyσ is a Markov chainMσ =

(Sσ ,δσ , µσ0 ), where the set of states is S
σ = S×M×A, the initial dis-

tribution µ0 is zero except for µσ0 (s0,m,a) = α (m) ·σn (s0,m,a), and
the transition probability from sσ = (s,m,a) to s ′σ = (s ′,m′,a′) is
δσ (sσ , s ′σ ) = ∆(a, s ′) · σu (a, s

′,m,m′) · σn (s
′,m′,a′). Hence,Mσ

starts in a location chosen randomly according to α and σn . In state
(s,m,a) the next action to be performed is a, hence the probability
of entering s ′ is ∆(a, s ′). The probability of updating the memory
tom′ is σu (a, s ′,m,m′), and the probability of selecting a′ as the
next action is σn (s ′,m′,a′). Since these choices are independent,
and thus we obtain the product above.

Technically,Mσ induces a probability measure Pσ on Sσ . Since
we mostly work with the corresponding runs in the original MDP,
we overload Pσ to also refer to the probability measure obtained by
projecting onto S . Further, “almost surely” etc. refers to happening
with probability 1 according to Pσ . The expected value of a random
variable X : Ω → R is Eσ [X ] =

∫
Ω X dPσ .

A convex combinations of two strategies σ1 and σ2, written as
σλ = λσ1 + (1 − λ)σ2, can be obtained by defining the memory as
Mλ = {1} × M1 ∪ {2} × M2, randomly choosing one of the two
strategies via the initial memory distribution αλ and then following
the chosen strategy. Clearly, we have that Pσλ = λPσ1 + (1− λ)Pσ2 .

Strategy types. A strategy σ may use infinite memoryM, and both
σu and σn may randomize. The strategy σ is
• deterministic-update, if α is Dirac and the memory update
function σu gives a Dirac distribution for every argument;
• deterministic, if it is deterministic-update and the next move
function σn gives a Dirac distribution for every argument.

A stochastic-update strategy is a strategy that is not necessarily
deterministic-update and randomized strategy is a strategy that
is not necessarily deterministic. We also classify the strategies
according to the size of memory they use. Important subclasses
are memoryless strategies, in which M is a singleton, n-memory
strategies, in whichM has exactly n elements, and finite-memory
strategies, in whichM is finite.

End components. A tuple (T ,B) where ∅ , T ⊆ S and ∅ , B ⊆⋃
t ∈T Av(t ) is an end component of the MDPM if (i) for all actions

a ∈ B, ∆(a, s ′) > 0 implies s ′ ∈ T ; and (ii) for all states s, t ∈ T

there is a path ϱ = s1a1 · · ·ak−1sk ∈ (TB)k−1T with s1 = s , sk = t .

An end component (T ,B) is a maximal end component (MEC) if T
and B are maximal with respect to subset ordering. Given an MDP,
the set of MECs is denoted by MEC. By abuse of notation, s ∈ M
refers to all states of a MECM , while a ∈ M refers to the actions.

Remark 1. Computing the maximal end component (MEC) decom-
position of an MDP, i.e. the computation ofMEC, is in P [18].

Remark 2. For any MDPM and strategy σ , a run almost surely
eventually stays in one MEC, i.e. Pσ [

⋃
Mi ∈MEC ♢□Mi ] = 1 [31].

2.2 Random variables on Runs
We introduce two standard random variables, assigning a value to
each run of a Markov Chain or Markov Decision Process.

Weighted reachability. Let T ⊆ S be a set of target states and
r : T 7→ Q be a reward function. Define the random variable Rr as
Rr (ρ) = r(mini {ρi | ρi ∈ T }), if such an i exists, and 0 otherwise.
Informally, Rr assigns to each run the value of the first visited target
state, or 0 if none. Rr is measurable and discrete, as S is finite [31].
Whenever we are dealing with weighted reachability, we assume
w.l.o.g. that all target states are absorbing, i.e. for any s ∈ T we
have δ (s, s ) = 1 for MC and ∆(a, s ) = 1 for all a ∈ Av(s ) for MDP.

Mean payoff (also known as long-run average reward, and limit
average reward). Again, let r : S 7→ Q be a reward function. The
mean payoff of a run ρ is the average reward obtained per step, i.e.
Rm (ρ) = lim infn→∞ 1

n
∑n
i=1 r(ρi ). The lim inf is necessary, since

lim may not be defined in general. Further, Rm is measurable [31].

Remark 3. There are several distinct definitions of “weighted reach-
ability”. The one chosen here primarily serves as foundation for the
more general mean payoff.

3 Introducing the Conditional Value-at-risk
In order to define our problem, we first introduce the general con-
cept of conditional value-at-risk (CVaR), also known as average
value-at-risk, expected shortfall, and expected tail loss. As already
hinted, the CVaR of some real-valued random variable X and prob-
ability p ∈ [0, 1] intuitively is the expectation below the worst
p-quantile of X .

Let X : Ω → R be a random variable over the probability space
(Ω,F ,P). The associated cumulative density function (CDF) FX :
R→ [0, 1] of X yields the probability of X being less than or equal
to the given value r , i.e. FX (r ) = P({X (ω) ≤ r }). F is non-decreasing
and right continuous with left limits (càdlàg).

The value-at-risk VaRp is the worst p-quantile, i.e. a value v s.t.
the probability of X attaining a value less than or equal to v is p:3

VaRp (X ) := sup{r ∈ R | FX (r ) ≤ p} (VaR1 (X ) = ∞)

Then, with v = VaRp (X ), CVaR can be defined as [33]

CVaRp (X ) := E[X | X ≤ v] =
1
p

∫
(−∞,v]

x dFX ,

with the corner cases CVaR0 := VaR0 and CVaR1 = E.
Unfortunately, this definition only works as intended for contin-

uous X , as shown by the following example.

3An often used, mostly equivalent definition is inf {r ∈ R | FX (r ) ≥ p }. Unfortu-
nately, this would lead to some complications later on. See [28, Sec. A.1] for details.
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Figure 2. Distribution showing peculiarities of CVaR

Example 3.1. Consider a random variable X with a distribution
as outlined in Fig. 2. For p < 1

2 , we certainly have VaRp = 2p. On
the other hand, for any p ∈ ( 12 , 1), we get VaRp = 2. Consequently,
the integral remains constant and CVaRp would actually decrease
for increasing p, not matching the intuition. △

General definition. As seen in Ex. 3.1, the previous definition
breaks down when FX is not continuous at the p-quantile and
consequently FX (VaRp (X )) > p. Thus, we handle the values at the
threshold separately, similar to [34].

Definition 3.2. Let X be some random variable and p ∈ [0, 1].
With v = VaRp (X ), the CVaR of X is defined as

CVaRp (X ) :=
1
p

(∫
(−∞,v )

x dFX + (p − P[X < v]) · v
)
,

which can be rewritten as

CVaRp (X ) = 1
p

(
P[X < v] · E[X | X < v] + (p − P[X < v]) · v

)
.

The corner cases again are CVaR0 := VaR0, and CVaR1 = E.

Since the degenerate cases of p = 0 and p = 1 reduce to already
known problems, we exclude them in the following.

We demonstrate this definition on the previous example.

Example 3.3. Again, consider the random variable X from Ex. 3.1.
For 1

2 < p < 1 we have that P[X < VaRp (X )] = P[X < 2] = 1
2 . The

right hand side of the definition (p − P[X < VaRp (X )]) = p − 1
2

captures the remaining discrete probability mass which we have
to handle separately. Together with

∫
(−∞,2) x dFX =

1
4 we get

CVaRp (X ) = 1
p (

1
4 + (p − 1

2 ) · 2) = 2 − 3
4p . For example, with p = 3

4 ,
this yields the expected result CVaRp (X ) = 1. △

Remark 4. Recall that P[X < r ] can be expressed as the left limit of
FX , namely P[X < r ] = limr ′→−r FX (r ′). Hence, CVaRp (X ) solely
depends on the CDF of X and thus random variables with the same
CDF also have the same CVaR.

We say that F1 stochastically dominates F2 for two CDF F1 and
F2, if F1 (r ) ≤ F2 (r ) for all r . Intuitively, this means that a sample
drawn from F2 is likely to be larger or equal to a sample from F1.
All three investigated operators (E, CVaR, and VaR) are monotone
w.r.t. stochastic dominance [28, Sec. A.1].

4 CVaR in MC and MDP: Problem statement
Now, we are ready to define our problem framework. First, we
explain the types of building blocks for our queries, namely lower
bounds on expectation, CVaR, and VaR. Formally, we consider the
following types of constraints.

e ≤ E(X ) c ≤ CVaRp (X ) v ≤ VaRq (X )

X is some real-valued random variable, assigning a payoff to each
run. With these constraints, the classes of queries are denoted by

MDPcritobj,dim

• crit ⊆ {E,CVaR,VaR} are the types of constraints,
• obj ∈ {r,m} is the type of the objective function, either
weighted reachability r or mean payoff m, and
• dim ∈ {single,multi} is the dimensionality of the query.

We use d to denote the dimensions of the problem, d = 1 iff dim =
single. As usual, we assume that all quantities of the input, e.g.,
probabilities of distributions, are rational.

An instance of these queries is specified by an MDPM, a d-
dimensional reward function r : S → Qd , and constraints from
crit, given by vectors e, c, v ∈ (Q ∪ {⊥})d and p, q ∈ (0, 1)d . This
implies that in each dimension there is at most one constraint per
type. The presented methods can easily be extended to the more
general setting of multiple constraints of a particular type in one
dimension. The decision problem is to determine whether there
exists a strategy σ such that all constraints are met.

Technically, this is defined as follows. LetX be thed-dimensional
random variable induced by the objective obj and reward function
r, operating on the probability space ofMσ . The strategy σ is a
witness to the query iff for each dimension j ∈ [d] we have that
E[X j ] ≥ ej , CVaRpj (X j ) ≥ cj , and VaRqj (X j ) ≥ vj . Moreover, ⊥
constraints are trivially satisfied.

For completeness sake, we also considerMCcrit
obj,dim queries, i.e.

the corresponding problem on (finite state) Markov chains.

Notation. We introduce the following abbreviations.When dealing
with an MDPM, CVaRσp denotes CVaRp relative to the probability
space over runs induced by the strategy σ . When additionally the
random variable X (e.g., mean payoff) is clear from the context, we
may write CVaRp and CVaRσp instead of CVaRp (X ) and CVaRσp (X ),
respectively. We also define analogous abbreviations for VaR.

5 Single dimension
We show that all queries in one dimension are in P. Furthermore,
our LP-based decision procedures directly yield a description of a
witness strategy and allow for optimization objectives. We refer
to the input constraints by e for expectation, (p, c) for CVaR, and
(q, v) for VaR. Further, we use i for indices related to SCCs / MECs.

5.1 Weighted reachability
First, we show the simple result for Markov Chains, providing some
insight in the techniques used in the MDP case.

Theorem 5.1. MC{E,CVaR,VaR}r,single is in P.

Proof. Let M be a finite-state Markov chain, r a reward function,
and T = {b1, . . . ,bn } the target set. Recall that all bi are absorb-
ing, hence single-state BSCCs. We obtain the stationary distribu-
tion p of M in polynomial time by, e.g., solving a linear equation
system [31]. With p, we can directly compute the CDF of Rr as
FRr (v ) =

∑
bi :r(bi )≤v p (bi ) and immediately decide the query. □

Let us consider the more complex case of MDP. We show a
lower bound on the type of strategies necessary to realize obj = r
queries with constraints on expectation and one of VaR or CVaR.
We then continue to prove that this class of strategies is optimal.
This characterization is used to derive a polynomial time decision
procedure based on a linear program (LP) which immediately yields
a witness strategy. Finally, when we deal with the mean payoff case
in Sec. 5.2, we make use of the reasoning presented in this section.
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Figure 3.MDP used to show various difficulties of CVaR

Randomization is necessary for weighted reachability. In the
following example, we present a simple MDP on which all de-
terministic strategies fail to satisfy specific constraints, while a
straightforward randomizing one succeeds in doing so.

Example 5.2. Consider the MDP outlined in Fig. 3. The only non-
determinism is given by the choice in the initial state s0. Hence, any
strategy is characterised by the choice in that particular state. Let
now σa and σb denote the deterministic strategies playing a and b
in s0, respectively. Clearly, σa achieves an expectation, CVaRσa0.05,
and VaRσa0.05 of 5. On the other hand, σb obtains an expectation of
9 with CVaRσb0.05 and VaRσb0.05 equal to 0.

Thus, neither strategy satisfies the constraints q = p = 0.05,
e = 6, and c = 2 (or v = 5). This is the case even when the strategy
has arbitrary (deterministic) memory at its disposal, since in the
first step there is nothing to remember. Yet, σ = 3

4σa+
1
4σb achieves

E = 3
45 +

1
49 = 6 ≥ e, CVaRp = 2.5 ≥ c, and VaRq = 5 ≥ v. △

Hence strategies satisfying an expectation constraint together
with either a CVaR or VaR constraint may necessarily involve ran-
domization in general. We prove that (i) under mild assumptions
randomization actually is sufficient, i.e. no memory is required, and
(ii) fixed memory may additionally be required in general.

Definition 5.3. LetM be an MDP with target set T and reward
function r. We say that M satisfies the attraction assumption if
A1) the target set T is reached almost surely for any strategy, or
A2) for all target state s ∈ T we have r(s ) ≥ 0.

Essentially, this definition implies that an optimal strategy never
remains in a non-target MEC. This allows us to design memoryless
strategies for the weighted reachability problem.

Theorem 5.4. Memoryless randomizing strategies are sufficient for
MDP{E,VaR,CVaR}r,single under the attraction assumption.

Proof. Fix an MDPM and reward function r. We prove that for
any strategy σ there exists a memoryless, randomizing strategy σ ′
achieving at least the expectation, VaR, and CVaR of σ .

All target states ti ∈ T form single-state MECs, as we assumed
that all target states are absorbing. Consequently, σ naturally in-
duces a distribution over these si . Now, we apply [19, Theorem 3.2]
to obtain a strategy σ ′ with Pσ

′

[♢si ] ≥ Pσ [♢si ] for all i .
WithA1), we have

∑
pi = 1 and thus Pσ

′

[♢ti ] = Pσ [♢ti ]. Hence,
σ ′ obtains the same CDF for the weighted reachability objective.
Under A2), the CDF F ′ of strategy σ ′ stochastically dominates the
CDF F of the original strategy σ , concluding the proof. □

Theorem 5.5. Two-memory stochastic strategies (i.e. with both ran-
domization and stochastic update) are sufficient forMDP{E,VaR,CVaR}r,single .

The proof is a simple application of the following Thm. 5.10, as
weighted reachability is a special case of mean payoff. Together with
an example for the lower bound it can be found in [28, Sec. A.2].

(1) All variables ya , xs , xs are non-negative.
(2) Transient flow for s ∈ S :

1s0 (s ) +
∑

a∈A
ya∆(a, s ) =

∑
a∈Av(s )

ya + xs

(3) Switching to recurrent behaviour:∑
s ∈T

xs = 1

(4) VaR-consistent split:

xs = xs for s ∈ T< xs ≤ xs for s ∈ T=
(5) Probability-consistent split:∑

s ∈T≤
xs = p

(6) CVaR and expectation satisfaction:∑
s ∈T≤

xs · r(s ) ≥ p · c
∑

s ∈T
xs · r(s ) ≥ e

Figure 4. LP used to decide weighted reachability queries given a
guess t of VaRp. T∼ := {s ∈ T | r(s ) ∼ t }, ∼∈ {<,=, ≤}.

Inspired by [15, Fig. 3], we use the optimality result fromThm. 5.4
to derive a decision procedure for weighted reachability queries
under the attraction assumptions based on the LP in Fig. 4.

To simplify the LP, we make further assumptions – see [28,
Sec. A.2] for details. First, all MECs, including non-target ones,
consist of a single state. Second, all MECs from which T is not
reachable are considered part of T and have r = 0 (similar to the
“cleaned-up MDP” from [19]). Finally, we assume that the quantile-
probabilities are equal, i.e. p = q. The LP can easily be extended
to account for different values by duplicating the xs variables and
adding according constraints.

The central idea is to characterize randomizing strategies by the
“flow” they achieve. To this end, Equality (2) essentially models
Kirchhoff’s law, i.e. inflow and outflow of a state have to be equal.
In particular, ya expresses the transient flow of the strategy as the
expected total number of uses of action a. Similarly, xs models
the recurrent flow, which under our absorption assumption equals
the probability of reaching s . Equality (3) ensures that all transient
behaviour eventually changes into recurrent one.

In order to deal with our query constraints, Constraints (4) and
(5) extract the worst p fraction of the recurrent flow, ensuring that
the VaRp is at least t . Note that equality is not guaranteed by the LP;
if xs = xs for all s ∈ T≤ , we have VaRp > t . Finally, Inequality (6)
enforces satisfaction of the constraints.

Theorem 5.6. LetM be an MDP with target states T and reward
function r, satisfying the attraction assumption. Fix the constraint
probability p ∈ (0, 1) and thresholds e, c ∈ Q. Then, we have that

1. for any strategy σ satisfying the constraints, there is a t ∈ r(S )
such that the LP in Fig. 4 is feasible, and

2. for any threshold t ∈ r(S ), a solution of the LP in Fig. 4 in-
duces a memoryless, randomizing strategy σ satisfying the
constraints and VaRσp ≥ t .

Proof. First, we prove for a strategy σ satisfying the constraints that
there exists a t ∈ r(S ) such that the LP is feasible. By Thm. 5.4, we
may assume that σ is a memoryless randomizing strategy. From [19,
Theorem 3.2], we get an assignment to the ya ’s and xs ’s satisfying
Equalities (1), (2), and (3) such that Pσ [♢s] = xs for all target states
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s ∈ T . Further, let v = VaRσp be the value-at-risk of the strategy. By
definition of VaR, we have that Pσ [X < v] ≤ p.

Assume for now that Pσ [X < v] = p, i.e. the probability of
obtaining a value strictly smaller than v is exactly p. In this case,
choose t to be the next smaller reward, i.e. t = max{r(s ) < v}. We
set xs = xs for all s ∈ T≤ , satisfying Constraints (4) and (5).

Otherwise, we have Pσ [X < v] < p. Now, some non-zero frac-
tion of the probability mass atv contributes to the CVaR. Again, we
set the values for xs according to Constraint (4). The only degree of
freedom are the values of xs where r(s ) = t . There, we assign the
values so that

∑
s ∈T= xs = p −

∑
s ∈T<

xs , satisfying Equality (5).
It remains to check Inequality (6). For expectation, we have∑
s ∈T xs · r(s ) =

∑
s ∈T P

σ [♢s] · r(s ) = Eσ [Rr] ≥ e. For CVaR,
notice that, due to the already proven Constraints (4) and (5), the
side of Inequality (6) is equal to CVaRσp and thus at least c.

Second, we prove that a solution to the LP induces the desired
strategy σ . Again by [19, Theorem 3.2], we get a memoryless ran-
domizing strategy σ such that Pσ [♢s] = xs for all states s ∈ T .
Then Eσ [Rr] =

∑
s ∈T P

σ [♢s] · r(s ) =
∑
s ∈T xs · r(s ) ≥ e. Further,

CVaRp (Rr) =
1
p

(∑
s :r(s )<v

xs · r(s ) + (p −
∑

s :r(s )<v
xs ) · v

)
by definition. Now, we make a case distinction on xs = xs for all
s ∈ T=. If this is true, we have v = VaRσp = min{r ∈ r(S ) | r > t },
but Pσ [X < v] = p. Consequently, T≤ = {s ∈ T : r(s ) < v}
and

∑
s :r(s )<vxs = p. Otherwise, we have v = t and consequently

T< = {s | r(s ) < v}. Inserting in the above equation immediately
gives the result CVaRp (Rr) = 1

p
∑
s ∈T≤ r(s ) · xs . □

The linear program requires to know the VaRσp beforehand,
which in turn clearly depends on the chosen strategy. Yet, there are
only linearly many values the random variable Rr attains. Thus we
can simply try to find a solution for all potential values of VaRσp ,
i.e. {r ∈ r(S )}, yielding a polynomial time solution.

Corollary 5.7. MDP{E,VaR,CVaR}r,single is in P.

Proof. Under the attraction assumption, this follows directly from
Thm. 5.6. In general, the reduction to mean payoff used by Thm. 5.5
and the respective result from Cor. 5.11 show the result. □

5.2 Mean payoff
In this section, we investigate the case of obj = m. Again, the
construction for MC is considerably simple, yet instructive for the
following MDP case.

Theorem 5.8. MC{E,VaR,CVaR}m,single is in P.

Proof sketch. For each BSCC Bi , we obtain its expected mean payoff
ri = E[Rm | Bi ] through, e.g., a linear equation system [31]. Almost
all runs in Bi achieve this mean payoff and thus the corresponding
random variable is discrete. We reduce the problem to weighted
reachability by using the known reformulation

P[Rm = c] =
∑

Bi :ri=c
P[♢Bi ].

We replace each of these BSCCs by a representative bi to obtain
M′. Define the set of target states T = {bi } and the reachability
reward function r′(bi ) = ri . By applying the approach of Thm. 5.1,
we obtain the expectation, VaR, and CVaR for reachability in M′

which by construction coincides with the respective values for
mean payoff inM. □

5
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Figure 5. Memory is necessary for mean payoff queries

For the MDP case, recall that simple expectation maximization
of mean payoff can be reduced to weighted reachability [2] and
deterministic, memoryless strategies are optimal [31]. Yet, solving
a conjunctive query involving either VaR or CVaR needs more pow-
erful strategies than in the weighted reachability case of Thm. 5.4.
Nevertheless, we show how to decide these queries in P.

Randomization and memory is necessary for mean payoff. A
simple modification of the MDP in Fig. 3 yields an MDP where both
randomization and memory is required to satisfy the constraints of
the following example.

Example 5.9. Consider the MDP presented in Fig. 5. There, the
same constraints as before, i.e. q = p = 0.05, e = 6, and c = 2 (or
v = 5), can only be satisfied by strategies with both memory and
randomization. Clearly, a pure strategy can only satisfy either of the
two constraints again. But now a memoryless randomizing strategy
also is insufficient, too, since any non-zero probability on action
b leads to almost all runs ending up on the right side of the MDP,
hence yielding a CVaRp andVaRq of 0. Instead, a stochastic strategy
with M = {a,b} can simply choose α = {a 7→ 3

4 ,b 7→
1
4 } and play

the corresponding action indefinitely, satisfying the constraints. △

We prove that this bound actually is tight, i.e. that, given sto-
chastic memory update, two memory elements are sufficient.

Theorem5.10. Two-memory stochastic strategies (i.e. with both ran-
domization and stochastic update) are sufficient forMDP{E,VaR,CVaR}m,single .

Proof. Let σ be a strategy on an MDPM with reward function r.
We construct a two-memory stochastic strategy σ ′ achieving at
least the expectation, VaR, and CVaR of σ .

First, we obtain a memoryless deterministic strategy σopt which
obtains the maximal possible mean payoff in each MEC [31]. We
then apply the construction of [9, Proposition 4.2] (see also [15,
Lemma 5.7]), where the ξ is our σopt. (Technically, this can be
ensured by choosing the constraints of the LP L according to σopt.)

Intuitively, this constructs a two-memory strategy σ ′ on M
behaving as follows. Initially, σ ′ remains in each MEC with the
same probability as σ , i.e. Pσ

′

[♢□Mi ] = Pσ [♢□Mi ] by following a
memoryless “searching” strategy and stochastically switching its
memory state to “remain”. Once in the “remain” state, the behaviour
of the optimal strategy σopt is implemented.

Clearly, (i) both strategies remain in a particular MEC with the
same probability, and (ii) σ ′ obtains as least as much value in each
MEC as σ . Hence the CDF induced by σ ′ stochastically dominates
the one of σ , concluding the proof. □

This immediately gives us a polynomial time decision procedure.

Corollary 5.11. MDP{E,VaR,CVaR}m,single is in P.

Furthermore, we can use results of [15, Lemma 16] to trade the
stochastic update for more memory.
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Figure 6. Exponential memory is necessary for mean payoff when
only deterministic update is allowed.

Corollary 5.12. Stochastic strategies with finite, deterministic mem-
ory are sufficient forMDP{E,VaR,CVaR}m,single .

Deterministic strategies may require exponential memory. As
sources of randomness are not always available, one might ask what
can be hoped for when only determinism is allowed. As already
shown in Ex. 5.2, randomization is required in general. But even if
some deterministic strategy is sufficient, it may require memory
exponential in the size of the input, even in an MDP with only 3
states. We show this in the following example.

Example 5.13. Consider the MDP outlined in Fig. 6 together with
the constraints q = p = 0.05, e = 6, and c = 2 (or v = 5). Again,
any optimal strategy needs a significant part of runs to go to the
right side in order to satisfy the expectation constraint. Yet, any
strategy can only “move” a small fraction of the runs there in
each step. In particular, after k steps, the right side is only reached
with probability at most 1 − (1 − ε )k . When choosing ε = 2−n ,
which needs Θ(n) bits to encode, a deterministic strategy requires
k ≥ c/ log(1−2−n ) ∈ O (2n ) memory elements to count the number
of steps. The same holds true for any deterministic-update strategy.

On the other hand, a strategy with stochastic memory update can
encode this counting by switching its state with a small probability
after each step. For example, a strategy switching with probability
p = 3ε from “play b” to “play a” satisfies the constraint. △

5.3 Single constraint queries
In this section, we discuss an important sub-case of the single-
dimensional case, namely queries with only a single constraint, i.e.
|crit| = 1. We show that deterministic memoryless strategies are
sufficient in this case.

One might be tempted to use standard arguments and directly
conclude this from the results of Thm. 5.4 as follows. Recall that this
theorem shows that memoryless, randomizing strategies are suffi-
cient; and that any such strategy can be written as finite convex
combination of memoryless, deterministic strategies. Most con-
straints, for example expectation or reachability, behave linearly
under convex combination of strategies, e.g., Eσλ (X ) = λEσ1 [X ] +
(1 − λ)Eσ2 [X ]. Consequently, for an optimal memoryless strategy,
there is a deterministic witness, which in turn also is optimal.

Surprisingly, this assumption is not true for CVaR. On the con-
trary, the CVaR of a convex combination of strategies might be
strictly worse than the CVaRs of either strategy, as shown in the
following example. We prove a slightly weaker property of CVaR
which eventually allows us to apply similar reasoning.

Example 5.14. Recall the MDP in Fig. 3 and let p = 0.05. As
previously shown, CVaRσap = 5 and CVaRσbp = 0, but the mixed
strategy σλ =

1
2σa +

1
2σb achieves CVaRσλp = 0 instead of the

convex combination 1
25 +

1
20 = 2.5.

Forp = 0.2, we haveCVaRσap = CVaRσbp = 5. Yet, any non-trivial
convex combination of the two strategies yields a CVaRp less than
5. See [28, Sec. A.1] for more details. With according constraints,
this effectively can force an optimal strategy to choose between a
or b. This observation is further exploited in the NP-hardness proof
of the multi-dimensional case in Sec. 6. △

Since CVaR considers the worst events, the CVaR of a combi-
nation intuitively cannot be better than the combination of the
respective CVaRs. We prove this intuition in the general setting,
where instead of a convex combination of strategies we consider a
mixture of two random variables.

Lemma 5.15. CVaRp (X ) is convex in X for fixed p ∈ (0, 1), i.e. for
random variables X1,X2 and λ ∈ [0, 1]

CVaRp (λX1 + (1 − λ)X2) ≤ λ CVaRp (X1) + (1 − λ) CVaRp (X2).

The proof can be found in [28, Sec. A.1]. This result allows us to
apply the ideas outlined in the beginning of the section.

Theorem 5.16. For any obj ∈ {r,m}, deterministic memoryless
strategies are sufficient forMDPcritobj,single when |crit| = 1.

Proof. This is known for crit = {E} [31] and crit = {VaR} [21].
For CVaR, observe that the convex combination of deterministic

strategies cannot achieve a better CVaR than the best strategy
involved in the combination (see Lem. 5.15). This immediately yields
the result for obj = r through Thm. 5.4. For obj = m, we exploit
the approach of Thm. 5.10. Recall that there we obtained a two-
memory strategy σ ′. Both randomization and stochastic update are
used solely to distribute the runs over all MECs accordingly. By
the above reasoning, for each MEC it is sufficient to either almost
surely remain there or leave it. This behaviour can be implemented
by a deterministic memoryless strategy on the original MDP. □

6 Multiple Dimensions
In this section, we deal with multi-dimensional queries. We con-
tinue to use i for indices related to MECs and further use j for
dimension indices. First, we show that the Markov Chain case does
not significantly change.

Theorem 6.1. For any obj ∈ {r,m},MC{E,VaR,CVaR}obj,multi is in P.

Proof. Similarly to the single-dimensional case, we decide each
constraint in each dimension separately, using our previous results.
The query is satisfied iff each of the constraints is satisfied. □

6.1 NP-Hardness of reachability and mean payoff
For the MDP on the other hand, multiple dimensions add significant
complexity. In the following, we show that already the weighted
reachability problem with multiple dimensions and only CVaR con-
straints, i.e.MDP{CVaR}r,multi , is NP-hard. This result directly transfers

to mean payoff, i.e. obj = m. Recall that in contrastMDP{E}r,multi and

evenMDP{E,VaR0 }r,multi , i.e. constraints on the expectation and ensuring
that almost all runs achieve a given threshold, are in P [15].

Theorem 6.2. For any obj ∈ {r,m},MDP{CVaR}obj,multi is NP-hard (when
the dimension d is a part of the input).
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Figure 7. Gadget for variable xm . Uniform transition probabilities
are omitted for readability.

Proof. We prove hardness by reduction from 3-SAT. The core idea
is to utilize observations from Fig. 3 and Ex. 5.14, namely that CVaR
constraints can be used to enforce a deterministic choice.

Let {Cn } be a set of N clauses withM variables xm and set the di-
mensionsd = N+M . By abuse of notation,n refers to the dimension
of clause Cn andm to the one of variable xm , respectively.

The gadget for the reduction is outlined in Fig. 7. Observe that,
due to the structure of the MDP, we have that Rr = Rm.

Overall, the reduction works as follows. Initially, a state ?m ,
representing the variable xm , is chosen uniformly. In this state, the
strategy is asked to give the valuation of xm through the actions
“xm = tt” or “xm = ff”. As seen in Ex. 5.14, the structure of
the shaded states can be used to enforces a deterministic choice
between the two actions. Particularly, in dimensionm we require
CVaRp ≥ 5 for p = M−1

M + 1
M · 0.5 · 0.2. Since all other gadgets yield

0 in dimensionm and only half of the runs going through ?m end
up in the shaded area, this corresponds to Ex. 5.14, where p = 0.2.

Once in either state xm or xm , a state cn corresponding to a
clause Cn satisfied by this assignment is chosen uniformly. In the
example gadget, we would have xm ∈ Cn1 ∩ Cn2 , and xm ∈ Cn3 .
We set the reward of cn to 1n . Then a clause cn is satisfied under
the assignment if the state cn is visited with positive probability,
e.g. if CVaR1 ≥ 1

M · 0.5 ·
1
N . Clearly, a satisfying assignment exists

iff a strategy satisfying these constraints exists. □

6.2 NP-completeness and strategies for reachability
For weighted reachability, we prove that the previously presented
bound is tight, i.e. that the weighted reachability problem with
multiple dimensions and CVaR constraints is NP-complete when d
is part of the input and P otherwise. First, we show that the strategy
bounds of the single dimensional case directly transfer. Intuitively,
this is the case since only the steady state distribution over the
target set T is relevant, independent of the dimensionality.

Theorem 6.3. Two-memory stochastic strategies (i.e. with both ran-
domization and stochastic update) are sufficient forMDP{E,VaR,CVaR}r,multi .
Moreover, if rj (s ) ≥ 0 for all s ∈ T and j ∈ [d], then memoryless
randomizing strategies are sufficient.

Proof. Follows directly from the reasoning used in the proofs of
Thm. 5.10 and Thm. 5.4. □

(1) All variables ya , xs , x
j
s are non-negative.

(4) VaR-consistent split for j ∈ [d]:

x js = xs for s ∈ T
j
< x js ≤ xs for s ∈ T

j
=

(5) Probability-consistent split for j ∈ [d]:∑
s ∈T j

≤

x js = pj

(6) CVaR and expectation satisfaction for j ∈ [d]:∑
s ∈T j

≤

xs · r(s ) ≥ pj · cj
∑

s ∈T
xs · rj (s ) ≥ ej

Figure 8. LP used to decide multi-dimensional weighted reachabil-
ity queries given a guess t of VaRpj . Equalities (2) and (3) are as in
Fig. 4, T j

∼ := {s ∈ T | rj (s ) ∼ tj }, ∼∈ {<,=, ≤}.

Theorem 6.4. MDP{E,VaR,CVaR}r,multi is in NP if d is a part of the input;
moreover, it is in P for any fixed d .

Proof sketch. To prove containment, we guess the VaR threshold
vector t out of the set of potential ones, namely {r | ∃i ∈ [d], s ∈
T .ri (s ) = r }d and use an LP to verify the solution. We again assume
that each MEC can reach the target set and is single-state, as we
did for Fig. 4. The arguments used to resolve this assumption are
still applicable in the multi-dimensional setting. The LP consists of
the flow Equalities (2) and (3) from the LP in Fig. 4 together with
the modified (In)Equalities (4)-(6) as shown in Fig. 8.

The difference is that we extract the worst fraction of the flow
in each dimension. Consequently, we have d instances of each xs
variable, namely x js . The number of possible guesses t is bounded
by |T |d and thus the guess is of polynomial length. For a fixed d
the bound itself is polynomial and hence, as previously, we can try
out all vectors. □

6.3 Upper bounds of mean payoff
In this section, we provide an upper bound on the complexity of
mean-payoff queries. Strategies in this context are known to have
higher complexity.

Proposition 6.5 ([9]). Infinite memory is necessary forMDP{E}m,multi.

Note that this directly transfers to MDP{CVaR}m,multi, as CVaR1 = E.
However, closing gaps between lower and upper bounds for the
mean payoff objective is notoriously more difficult. For instance,
MDP{VaR}m,multi is known to be in EXP, but not even known to be NP-

hard, neither isMDP{E,VaR}m,multi . Sincewe have proven thatMDP{CVaR}m,multi
is NP-hard, we can expect that obtaining the matching NP upper
bound will be yet more difficult. The fundamental difference of the
multi-dimensional mean-payoff case is that the solutions within
MECs cannot be pre-computed, rather non-trivial trade-offs must
be considered. Moreover, the trade-offs are not “local” and must be
synchronized over all the MECs, see [15] for details.

We now observe that, as opposed to quantile queries, i.e. VaR
constraints, the behaviour inside each MEC can be assumed to be
quite simple. Our results primarily rely on [16] and use a similar
notation. In particular, given a run ρ, Freqa (ρ) yields the average
frequency of action a, i.e. Freqa (ρ) := lim infn→∞ 1

n
∑n
t=1 1a (at ),

where at refers to the action taken by ρ in step t .
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Definition 6.6. A strategy σ is MEC-constant if for allMi ∈ MEC
with Pσ [♢□Mi ] > 0 and all j ∈ [d] there is a v ∈ R such that
Pσ [Rmj = v | ♢□Mi ] = 1.

Lemma6.7. MEC-constant strategies are sufficient forMDP{E,CVaR}m,multi .

Proof. Fix an MDPM with MECs MEC = {M1, . . . ,Mn }, reward
function r and a strategy σ . Further, define pi = Pσ [♢□Mi ]. We
construct a strategy σ ′ so that (i) Pσ

′

[♢□Mi ] = pi for all Mi , and
(ii) all behaviours of σ on a MECMi are “mixed” into each run on
Mi , making it MEC-constant.

We first define the mixing strategies σi , achieving point (ii). By
[16, Sec. 4.1], there are frequencies (xa )a∈A which
• satisfy

∑
a∈A xa · ∆(a, s ) =

∑
a∈Av(s ) xa for all s ∈ S ,

• for each action a we have Eσ [Freqa] ≤ xa , and
•

∑
a∈A∩Mi xa = pi .

By [16, Cor. 5.5], there is a (Markov) strategy σi onMi where

Pσi
[
Freqa = xa/pi

]
= 1.

Consequently, σi is almost surely constant on Mi w.r.t. Rm. We
apply the reasoning used in the proof of Thm. 5.10 to obtain the
combined strategy σ ′ which achieves point (i) and switches to σi
upon remaining inMi .

Now, fix any j ∈ [d], Mi ∈ MEC, and p,q ∈ (0, 1). We have
that Eσi [Freqa | ♢□Mi ] ≥ Eσ [Freqa | ♢□Mi ] by construction.
Consequently, Eσ

′

(Rmj ) ≥ E
σ (Rmj ).

Since σ ′ is MEC-constant, we have CVaRσ
′

p (Rmj | ♢□Mi ) =

Eσ
′

[Rmj | ♢□Mi ]. Further, by Eσ [Freqa | ♢□Mi ] · pi ≤ Eσi [Freqa]
for all a, we get Eσ [Rmj | ♢□Mi ] ≤ Eσi [Rmj ]. So, CVaR

σi
p (Rmj ) =

Eσi [Rmj ] ≥ E
σ [Rmj | ♢□Mi ] ≥ CVaRσq (Rmj | ♢□Mi ), as CVaR ≤ E.

Finally, we apply this inequality together with property (i), ob-
taining CVaRσp (Rmj ) ≤ CVaRσ

′

p (Rmj ) by [28, Thm. A.4] □

We utilize this structural property to design a linear program for
these constraints. However, similarly to the previously considered
LPs, it relies on knowing the VaR for each CVaRp constraint. Due
to the non-linear behaviour of CVaR, the classical techniques do
not allow us to conclude that VaR is polynomially sized and thus
we do not present the “matching” NP upper bound, but a PSPACE
upper bound, which we achieve as follows.

Theorem 6.8. MDP{E,CVaR}m,multi is in PSPACE.

Proof sketch. We use the existential theory of the reals, which is NP-
hard and in PSPACE [12], to encode our problem. The VaR vector t
is existentially quantified and the formula is a polynomially sized
programwith constraints linear in VaR’s and linear in the remaining
variables. This shows the complexity result.

The details of the procedure are as follows. For each j ∈ [d],
we use the existential theory of reals to guess the achieved VaR
t = VaRpj . Further, we non-deterministically obtain the following
polynomially-sized information (or deterministically try out all
options in PSPACE). For each j ∈ [d] and for each MEC Mi , we
guess if the value achieved inMi is at most (denotedMi ∈ MECj

≤
)

or above (denotedMi ∈ MECj
> ) the respective tj , and exactly one

MECM
j
=, which achieves a value equal to it. Given these guesses,

we check whether the LP in Fig. 9 has a solution.

(1) All variables ya , ys , xa , xs are non-negative.
(2) Transient flow for s ∈ S :

1s0 (s ) +
∑

a∈A
ya · ∆(a, s ) =

∑
a∈Av(s )

ya + ys

(3) Probability of switching in a MEC is the frequency of using
its actions forMi ∈ MEC:∑

s ∈Mi
ys =

∑
a∈Mi

xa

(4) Recurrent flow for s ∈ S :

xs =
∑

a∈A
xa · ∆(a, s ) =

∑
a∈Av(s )

xa

(5) CVaR and expectation satisfaction for j ∈ [d]:∑
s ∈S j≤

xs · rj (s ) +
(
pj −

∑
s ∈S j≤

xs

)
· tj ≥ pj · cj∑

s ∈S
xs · rj (s ) ≥ ej

(6) Verify MEC classification guess for j ∈ [d]:∑
s ∈M j

≤

xs · rj (s ) ≤ tj forM j
≤
∈ MECj

≤
∪ {M

j
=}∑

s ∈M j
≥

xs · rj (s ) ≥ tj forM j
≥
∈ MECj

> ∪ {M
j
=}

(7) Verify VaR guess for j ∈ [d]:∑
s ∈S j≤

xs ≤ pj
∑

s ∈S j≤∪M
j
=
xs ≥ pj

Figure 9. LP used to decide multi-dimensional mean-payoff queries
given a guess t of VaRpj and MEC classification MECj

≤
, M j
=, and

MECj
> . S

j
∼ := {s ∈ S | s ∈ M andM ∈ MECj

∼}, ∼∈ {≤, >}.

Equations (1)-(4) describe the transient flow like the previous
LP’s and, additionally, the recurrent flow like in [31, Sec. 9.3] or
[9, 16, 19]. This addition is needed, since now our MECs are not
trivial, i.e. single state. Again, Inequalities (5) verify that the CVaR
and expectation constraints are satisfied. Finally, Inequalities (6)
and (7) verify the previously guessed information, i.e. the VaR vector
and the MEC classification.

Using the very same techniques, it is easy to prove that solutions
to the LP correspond to satisfying strategies and vice versa. In
particular, Inequalities (6) and (7) directly make use of the MEC-
constant property of Lem. 6.7. □

While MEC-constant strategies are sufficient for E with CVaR,
in contrast, they are not even for justMDP{VaR}m,multi [15, Ex.22]. Con-

sequently, only an exponentially large LP is known forMDP{VaR}m,multi.
We can combine all the objective functions together as follows:

Theorem 6.9. MDP{E,VaR,CVaR}m,multi is in EXPSPACE.

Proof sketch. We proceed exactly as in the previous case, but now
the flows in Equality (4) are split into exponentially many flows,
depending on the set of dimensions where they achieve the given
VaR threshold, see LP L in [15, Fig. 4]. The resulting size of the
program is polynomial in the size of the system and exponential in
d . Hence the call to the decision procedure of the existential theory
of reals results in the EXPSPACE upper bound. □
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Table 1. Schematic summary of known and new results. Strategies are abbreviated by “C/n-M”, where C is eitherDeterministic or Randomizing,
n is the size of the memory, and M is either Detereministic or Stochastic MEMory.

dim single multi
obj any r m
crit |crit | = 1 |crit | ≥ 2 CVaR ∈ crit {E, VaR0 } {VaR} {CVaR}, {CVaR, E} {E, CVaR, VaR}

Complex. P NP-c., P for fixed d P EXP NP-h., PSPACE NP-h., EXPSPACE
Strat. D/1-MEM R/2-SMEM R/2-SMEM R/∞-DMEM

7 Conclusion
We introduced the conditional value-at-risk for Markov decision
processes in the setting of classical verification objectives of reacha-
bility and mean payoff. We observed that in the single dimensional
case the additional CVaR constraints do not increase the computa-
tional complexity of the problems. As such they provide a useful
means for designing risk-averse strategies, at no additional cost. In
the multidimensional case, the problems become NP-hard. Never-
theless, this may not necessarily hinder the practical usability. Our
results are summarized in Table 1.

We conjecture that the VaR’s for given CVaR constraints are poly-
nomially large numbers. In that case, the provided algorithmswould
yield NP-completeness forMDP{CVaR}m,multi and EXPTIME-containment

for MDP{E,VaR,CVaR}m,multi , where the exponential dependency is only
on the dimension, not the size of the system.
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Value Iteration for Simple Stochastic Games:
Stopping Criterion and Learning Algorithm?

Edon Kelmendi, Julia Krämer, Jan Křet́ınský, and Maximilian Weininger

Technical University of Munich

Abstract. Simple stochastic games can be solved by value iteration
(VI), which yields a sequence of under-approximations of the value of
the game. This sequence is guaranteed to converge to the value only in
the limit. Since no stopping criterion is known, this technique does not
provide any guarantees on its results. We provide the first stopping cri-
terion for VI on simple stochastic games. It is achieved by additionally
computing a convergent sequence of over-approximations of the value,
relying on an analysis of the game graph. Consequently, VI becomes an
anytime algorithm returning the approximation of the value and the cur-
rent error bound. As another consequence, we can provide a simulation-
based asynchronous VI algorithm, which yields the same guarantees, but
without necessarily exploring the whole game graph.

1 Introduction

Simple stochastic game (SG) [Con92] is a zero-sum two-player game played
on a graph by Maximizer and Minimizer, who choose actions in their respective
vertices (also called states). Each action is associated with a probability distri-
bution determining the next state to move to. The objective of Maximizer is
to maximize the probability of reaching a given target state; the objective of
Minimizer is the opposite.

Stochastic games constitute a fundamental problem for several reasons. From
the theoretical point of view, the complexity of this problem1 is known to be
in UP ∩ coUP [HK66] , but no polynomial-time algorithm is known. Further,
several other important problems can be reduced to SG, for instance parity
games, mean-payoff games, discounted-payoff games and their stochastic exten-
sions [CF11]. The task of solving SG is also polynomial-time equivalent to solv-
ing perfect information Shapley, Everett and Gillette games [AM09]. Besides,
the problem is practically relevant in verification and synthesis. SG can model
reactive systems, with players corresponding to the controller of the system and
to its environment, where quantified uncertainty is explicitly modelled. This is
useful in many application domains, ranging from smart energy management

? This research was funded in part by the German Excellence Initiative and the Eu-
ropean Union Seventh Framework Programme under grant agreement No. 291763
for TUM – IAS, the Studienstiftung des deutschen Volkes project “Formal meth-
ods for analysis of attack-defence diagrams”, the Czech Science Foundation grant
No. 18-11193S, TUM IGSSE Grant 10.06 (PARSEC), and the German Research
Foundation (DFG) project KR 4890/2-1 “Statistical Unbounded Verification”.

1 Formally, the problem is to decide, for a given p ∈ [0, 1] whether Maximizer has a
strategy ensuring probability at least p to reach the target.



[CFK+13b] to autonomous urban driving [CKSW13], robot motion planning
[LaV00] to self-adaptive systems [CMG14]; for various recent case studies, see
e.g. [SK16]. Finally, since Markov decision processes (MDP) [Put14] are a special
case with only one player, SG can serve as abstractions of large MDP [KKNP10].
Solution techniques There are several classes of algorithms for solving SG,
most importantly strategy iteration (SI) algorithms [HK66] and value iteration
(VI) algorithms [Con92]. Since the repetitive evaluation of strategies in SI is
often slow in practice, VI is usually preferred, similarly to the special case of
MDPs [KM17]. For instance, the most used probabilistic model checker PRISM
[KNP11] and its branch PRISM-Games [CFK+13a] use VI for MDP and SG
as the default option, respectively. However, while SI is in principle a precise
method, VI is an approximative method, which converges only in the limit. Un-
fortunately, there is no known stopping criterion for VI applied to SG. Conse-
quently, there are no guarantees on the results returned in finite time. Therefore,
current tools stop when the difference between the two most recent approxima-
tions is low, and thus may return arbitrarily imprecise results [HM17].
Value iteration with guarantees In the special case of MDP, in order to
obtain bounds on the imprecision of the result, one can employ a bounded variant
of VI [MLG05,BCC+14] (also called interval iteration [HM17]). Here one com-
putes not only an under-approximation, but also an over-approximation of the
actual value as follows. On the one hand, iterative computation of the least fix-
point of Bellman equations yields an under-approximating sequence converging
to the value. On the other hand, iterative computation of the greatest fixpoint
yields an over-approximation, which, however, does not converge to the value.
Moreover, it often results in the trivial bound of 1. A solution suggested for
MDPs [BCC+14,HM17] is to modify the underlying graph, namely to collapse
end components. In the resulting MDP there is only one fixpoint, thus the least
and greatest fixpoint coincide and both approximating sequences converge to
the actual value. In contrast, for general SG no procedure where the greatest
fixpoint converges to the value is known. In this paper we provide one, yielding
a stopping criterion. We show that the pre-processing approach of collapsing is
not applicable in general and provide a solution on the original graph. We also
characterize SG where the fixpoints coincide and no processing is needed. The
main technical challenge is that states in an end component in SG can have
different values, in contrast to the case of MDP.
Practical efficiency using guarantees We further utilize the obtained guar-
antees to practically improve our algorithm. Similar to the MDP case [BCC+14],
the quantification of the error allows for ignoring parts of the state space, and
thus a speed up without jeopardizing the correctness of the result. Indeed, we
provide a technique where some states are not explored and processed at all, but
their potential effect is still taken into accountThe information is further used
to decide the states to be explored next and to be analyzed in more detail. To
this end, simulations and learning are used as tools. While for MDP this idea
has already demonstrated speed ups in orders of magnitude [BCC+14,ACD+17],
this paper provides the first technique of this kind for SG.
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Our contribution is summarized as follows

– We introduce a VI algorithm yielding both under- and over-approximation
sequences, both of which converge to the value of the game. Thus we present
the first stopping criterion for VI on SG and the first anytime algorithm
with guaranteed precision. We also characterize when a simpler solution is
sufficient.

– We provide a learning-based algorithm, which preserves the guarantees, but
is in some cases more efficient since it avoids exploring the whole state space.

– We evaluate the running times of the algorithms experimentally, concluding
that obtaining guarantees requires an overhead that is either negligible or
mitigated by the learning-based approach.

Related work The works closest to ours are the following. As mentioned
above, [BCC+14,HM17] describe the solution to the special case of MDP. While
[BCC+14] also provides a learning-based algorithm, [HM17] discusses the con-
vergence rate and the exact solution. The basic algorithm of [HM17] is imple-
mented in PRISM [BKL+17] and the learning approach of [BCC+14] in Storm
[DJKV17a]. The extension for SG where the interleaving of players is severely
limited (every end component belongs to one player only) is discussed in [Ujm15].

Further, in the area of probabilistic planning, bounded real-time dynamic
programming [MLG05] is related to our learning-based approach. However, it
is limited to the setting of stopping MDP where the target sink or the non-
target sink is reached almost surely under any pair of strategies and thus the
fixpoints coincide. Our algorithm works for general SG, not only for stopping
ones, without any blowup.

For SG, the tools implementing the standard SI and/or VI algorithms are
PRISM-games [CFK+13a], GAVS+ [CKLB11] and GIST [CHJR10]. The latter
two are, however, neither maintained nor accessible via the links provided in
their publications any more.

Apart from fundamental algorithms to solve SG, there are various practically
efficient heuristics that, however, provide none or weak guarantees, often based
on some form of learning [BT00,LL08,WT16,TT16,AY17,BBS08]. Finally, the
only currently available way to obtain any guarantees through VI is to perform
γ2 iterations and then round to the nearest multiple of 1/γ, yielding the value
of the game with precision 1/γ [CH08]; here γ cannot be freely chosen, but it
is a fixed number, exponential in the number of states and the used probability
denominators. However, since the precision cannot be chosen and the number of
iterations is always exponential, this approach is infeasible even for small games.

Organization of the paper Section 2 introduces the basic notions and revises
value iteration. Section 3 explains the idea of our approach on an example.
Section 4 provides a full technical treatment of the method as well as the learning-
based variation. Section 5 discusses experimental results and Section 6 concludes.
The appendix (available in [KKKW18]) gives technical details on the pseudocode
as well as the conducted experiments and provides more extensive proofs to the
theorems and lemmata; in this paper, there are only proof sketches and ideas.
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2 Preliminaries

2.1 Basic definitions

A probability distribution on a finite set X is a mapping δ : X → [0, 1], such
that

∑
x∈X δ(x) = 1. The set of all probability distributions on X is denoted

by D(X). Now we define stochastic games, in literature often referred as simple
stochastic games or stochastic two-player games with a reachability objective.

Definition 1 (SG). A stochastic game (SG) is a tuple (S ,S�,S©, s0,A,Av, δ, 1, 0),
where S is a finite set of states partitioned into the sets S� and S© of states of
the player Maximizer and Minimizer, respectively, s0, 1, 0 ∈ S is the initial state,
target state, and sink state, respectively, A is a finite set of actions, Av : S → 2A

assigns to every state a set of available actions, and δ : S ×A → D(S ) is a tran-
sition function that given a state s and an action a ∈ Av(s) yields a probability
distribution over successor states.

A Markov decision process (MDP) is a special case of SG where S© = ∅.
We assume that SGs are non-blocking, so for all states s we have Av(s) 6= ∅.
Further, 1 and 0 only have one action and it is a self-loop with probability 1.
Additionally, we can assume that the SG is preprocessed so that all states with
no path to 1 are merged with 0.

For a state s and an available action a ∈ Av(s), we denote the set of successors
by Post(s, a) := {s′ | δ(s, a, s′) > 0}. Finally, for any set of states T ⊆ S , we use
T� and T© to denote the states in T that belong to Maximizer and Minimizer,
whose states are drawn in the figures as � and ©, respectively.

The semantics of SG is given in the usual way by means of strategies and the
induced Markov chain and the respective probability space, as follows. An infi-
nite path ρ is an infinite sequence ρ = s0a0s1a1 . . . ∈ (S×A)ω, such that for every
i ∈ N, ai ∈ Av(si) and si+1 ∈ Post(si, ai). Finite paths are defined analogously as
elements of (S ×A)∗× S . Since this paper deals with the reachability objective,
we can restrict our attention to memoryless strategies, which are optimal for this
objective. We still allow randomizing strategies, because they are needed for the
learning-based algorithm later on. A strategy of Maximizer or Minimizer is a
function σ : S� → D(A) or S© → D(A), respectively, such that σ(s) ∈ D(Av(s))
for all s. We call a strategy deterministic if it maps to Dirac distributions only.
Note that there are finitely many deterministic strategies. A pair (σ, τ) of strate-
gies of Maximizer and Minimizer induces a Markov chain Gσ,τ where the transi-
tion probabilities are defined as δ(s, s′) =

∑
a∈Av(s) σ(s, a) ·δ(s, a, s′) for states of

Maximizer and analogously for states of Minimizer, with σ replaced by τ . The
Markov chain induces a unique probability distribution Pσ,τs over measurable
sets of infinite paths [BK08, Ch. 10].

We write ♦1 := {ρ | ∃i ∈ N. ρ(i) = 1} to denote the (measurable) set of all
paths which eventually reach 1. For each s ∈ S , we define the value in s as

V(s) := sup
σ

inf
τ
Pσ,τs (♦1) = inf

τ
sup
σ

Pσ,τs (♦1),

where the equality follows from [Mar75]. We are interested not only in V(s0),
but also its ε-approximations and the corresponding (ε-)optimal strategies for
both players.
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Now we recall a fundamental tool for analysis of MDP called end components.
We introduce the following notation. Given a set of states T ⊆ S , a state s ∈ T
and an action a ∈ Av(s), we say that (s, a) exitsT if Post(s, a) 6⊆ T . We define
an end component of a SG as the end component of the underlying MDP with
both players unified.

Definition 2 (EC). A non-empty set T ⊆ S of states is an end component
(EC) if there is a non-empty set B ⊆

⋃
s∈T Av(s) of actions such that

1. for each s ∈ T, a ∈ B ∩ Av(s) we do not have (s, a) exitsT ,
2. for each s, s′ ∈ T there is a finite path w = sa0 . . . ans

′ ∈ (T × B)∗ × T , i.e.
the path stays inside T and only uses actions in B.

Intuitively, ECs correspond to bottom strongly connected components of the
Markov chains induced by possible strategies, so for some pair of strategies all
possible paths starting in the EC remain there. An end component T is a maximal
end component (MEC) if there is no other end component T ′ such that T ⊆ T ′.
Given an SG G, the set of its MECs is denoted by MEC(G) and can be computed
in polynomial time [CY95].

2.2 (Bounded) value iteration

The value function V satisfies the following system of equations, which is
referred to as the Bellman equations:

V(s) =


maxa∈Av(s) V(s, a) if s ∈ S�

mina∈Av(s) V(s, a) if s ∈ S©
1 if s = 1

0 if s = 0

(1)

where2

V(s, a) :=
∑
s′∈S

δ(s, a, s′) · V(s′) (2)

Moreover, V is the least solution to the Bellman equations, see e.g. [CH08].
To compute the value of V for all states in an SG, one can thus utilize the
iterative approximation method value iteration (VI) as follows. We start with a
lower bound function L0 : S → [0, 1] such that L0(1) = 1 and, for all other s ∈ S ,
L0(s) = 0. Then we repetitively apply Bellman updates (3) and (4)

Ln(s, a) :=
∑
s′∈S

δ(s, a, s′) · Ln−1(s′) (3)

Ln(s) :=

{
maxa∈Av(s) Ln(s, a) if s ∈ S�

mina∈Av(s) Ln(s, a) if s ∈ S©
(4)

2 Throughout the paper, for any function f : S → [0, 1] we overload the notation and
also write f(s, a) meaning

∑
s′∈S δ(s, a, s′) · f(s′).
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until convergence. Note that convergence may happen only in the limit even for
such a simple game as in Figure 1 on the left. The sequence is monotonic, at all
times a lower bound on V , i.e. Li(s) ≤ V(s) for all s ∈ S , and the least fixpoint
satisfies L∗ := limn→∞ Ln = V.

Unfortunately, there is no known stopping criterion, i.e. no guarantees how
close the current under-approximation is to the value [HM17]. The current tools
stop when the difference between two successive approximations is smaller than
a certain threshold, which can lead to arbitrarily wrong results [HM17].

For the special case of MDP, it has been suggested to also compute the
greatest fixpoint [MLG05] and thus an upper bound as follows. The function
G : S → [0, 1] is initialized for all states s ∈ S as G0(s) = 1 except for G0(0) = 0.
Then we repetitively apply updates (3) and (4), where L is replaced by G. The
resulting sequence Gn is monotonic, provides an upper bound on V and the
greatest fixpoint G∗ := limn Gn is the greatest solution to the Bellman equations
on [0, 1]S .

This approach is called bounded value iteration (BVI) (or bounded real-
time dynamic programming (BRTDP) [MLG05,BCC+14] or interval iteration
[HM17]). If L∗ = G∗ then they are both equal to V and we say that BVI con-
verges. BVI is guaranteed to converge in MDP if the only ECs are those of
1 and 0 [BCC+14]. Otherwise, if there are non-trivial ECs they have to be
“collapsed”3. Computing the greatest fixpoint on the modified MDP results in
another sequence Ui of upper bounds on V, converging to U∗ := limn Un. Then
BVI converges even for general MDPs, U∗ = V [BCC+14], when transformed
this way. The next section illustrates this difficulty and the solution through
collapsing on an example.

In summary, all versions of BVI discussed so far and later on in the paper
follow the pattern of Algorithm 1. In the naive version, UPDATE just performs
the Bellman update on L and U according to Equations (3) and (4).4 For a
general MDP, U does not converge to V, but to G∗, and thus the termination
criterion may never be met if G∗(s0) − V(s0) > 0. If the ECs are collapsed in
pre-processing then U converges to V.

For the general case of SG, the collapsing approach fails and this paper pro-
vides another version of BVI where U converges to V, based on a more detailed
structural analysis of the game.

3 Example

In this section, we illustrate the issues preventing BVI convergence and our
solution on a few examples. Recall that G is the sequence converging to the
greatest solution of the Bellman equations, while U is in general any sequence
over-approximating V that one or another BVI algorithm suggests.

Firstly, we illustrate the issue that arises already for the special case of MDP.
Consider the MPD of Figure 1 on the left. Although V(s) = V(t) = 0.5, we have

3 All states of an EC are merged into one, all leaving actions are preserved and all
other actions are discarded. For more detail see [KKKW18, Appendix A.1.]

4 For the straightforward pseudocode, see [KKKW18, Appendix A.2.].
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Algorithm 1 Bounded value iteration algorithm

1: procedure BVI(precision ε > 0)
2: for s ∈ S do \* Initialization * \
3: L(s) = 0 \* Lower bound * \
4: U(s) = 1 \* Upper bound * \
5: L(1) = 1 \* Value of sinks is determined a priori * \
6: U(0) = 0

7: repeat
8: UPDATE(L,U) \* Bellman updates or their modification * \
9: until U(s0)− L(s0) < ε \* Guaranteed error bound * \

Gi(s) = Gi(t) = 1 for all i. Indeed, the upper bound for t is always updated
as the maximum of Gi(t, c) and Gi(t, b). Although Gi(t, c) decreases over time,
Gi(t, b) remains the same, namely equal to Gi(s), which in turn remains equal to
Gi(s, a) = Gi(t). This cyclic dependency lets both s and t remain in an “illusion”
that the value of the other one is 1.

The solution for MDP is to remove this cyclic dependency by collapsing all
MECs into singletons and removing the resulting purely self-looping actions.
Figure 1 in the middle shows the MDP after collapsing the EC {s, t}. This turns
the MDP into a stopping one, where 1 or 0 is under any strategy reached with
probability 1. In such MDP, there is a unique solution to the Bellman equations.
Therefore, the greatest fixpoint is equal to the least one and thus to V.

Secondly, we illustrate the issues that additionally arise for general SG. It
turns out that the collapsing approach can be extended only to games where
all states of each EC belong to one player only [Ujm15]. In this case, both
Maximizer’s and Minimizer’s ECs are collapsed the same way as in MDP.

However, when both players are present in an EC, then collapsing may not
solve the issue. Consider the SG of Figure 2. Here α and β represent the values
of the respective actions.5 There are three cases:

First, let α < β. If the bounds converge to these values we eventually observe
Gi(q, e) < Li(r, f) and learn the induced inequality. Since p is a Minimizer’s state
it will never pick the action leading to the greater value of β. Therefore, we can
safely merge p and q, and remove the action leading to r, as shown in the second
subfigure.

Second, if α > β, p and r can be merged in an analogous way, as shown in
the third subfigure.

Third, if α = β, both previous solutions as well as collapsing all three states
as in the fourth subfigure is possible. However, since the approximants may only
converge to α and β in the limit, we may not know in finite time which of these
cases applies and thus cannot decide for any of the collapses.

Consequently, the approach of collapsing is not applicable in general. In or-
der to ensure BVI convergence, we suggest a different method, which we call

5 Precisely, we consider them to stand for a probabilistic branching with probability
α (or β) to 1 and with the remaining probability to 0. To avoid clutter in the figure,
we omit this branching and depict only the value.
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deflating. It does not involve changing the state space, but rather decreasing
the upper bound Ui to the least value that is currently provable (and thus still
correct). To this end, we analyze the exiting actions, i.e. with successors outside
of the EC, for the following reason. If the play stays in the EC forever, the target
is never reached and Minimizer wins. Therefore, Maximizer needs to pick some
exiting action to avoid staying in the EC.
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Fig. 1: Left: An MDP (as special case of SG) where BVI does not converge due
to the grayed EC. Middle: The same MDP where the EC is collapsed, making
BVI converge. Right: The approximations illustrating the convergence of the
MDP in the middle.
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Fig. 2: Left: Collapsing ECs in SG may lead to incorrect results. The Greek
letters on the leaving arrows denote the values of the exiting actions. Right
three figures: Correct collapsing in different cases, depending on the relationship
of α and β. In contrast to MDP, some actions of the EC exiting the collapsed
part have to be removed.

For the EC with the states s and t in Figure 1, the only exiting action is c.
In this example, since c is the only exiting action, Ui(t, c) is the highest possible
upper bound that the EC can achieve. Thus, by decreasing the upper bound of
all states in the EC to that number6, we still have a safe upper bound. Moreover,
with this modification BVI converges in this example, intuitively because now
the upper bound of t depends on action c as it should.

For the example in Figure 2, it is correct to decrease the upper bound to
the maximal exiting one, i.e. max{α̂, β̂}, where α̂ := Ui(a), β̂ := Ui(b) are the

6 We choose the name “deflating” to evoke decreasing the overly high “pressure” in
the EC until it equalizes with the actual “pressure” outside.
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current approximations of α and of β. However, this itself does not ensure BVI
convergence. Indeed, if for instance α̂ < β̂ then deflating all states to β̂ is not
tight enough, as values of p and q can even be bounded by α̂. In fact, we have
to find a certain sub-EC that corresponds to α̂, in this case {p, q} and set all its
upper bounds to α̂. We define and compute these sub-ECs in the next section.

In summary, the general structure of our convergent BVI algorithm is to
produce the sequence U by application of Bellman updates and occasionally find
the relevant sub-ECs and deflate them. The main technical challenge is that
states in an EC in SG can have different values, in contrast to the case of MDP.

4 Convergent Over-approximation

In Section 4.1, we characterize SGs where Bellman equations have more solu-
tions. Based on the analysis, subsequent sections show how to alter the procedure
computing the sequence Gi over-approximating V so that the resulting tighter
sequence Ui still over-approximates V, but also converges to V. This ensures that
thus modified BVI converges. Section 4.4 presents the learning-based variant of
our BVI.

4.1 Bloated end components cause non-convergence

As we have seen in the example of Fig. 2, BVI generally does not converge
due to ECs with a particular structure of the exiting actions. The analysis of
ECs relies on the extremal values that can be achieved by exiting actions (in
the example, α and β). Given the value function V or just its current over-
approximation Ui, we define the most profitable exiting action for Maximizer
(denoted by �) and Minimizer (denoted by ©) as follows.

Definition 3 (bestExit). Given a set of states T ⊆ S and a function f : S →
[0, 1] (see footnote 2), the f -value of the best T -exiting action of Maximizer and
Minimizer, respectively, is defined as

bestExit�f (T ) = max
s∈T�

(s,a) exitsT

f(s, a)

bestExit©f (T ) = min
s∈T©

(s,a) exitsT

f(s, a)

with the convention that max∅ = 0 and min∅ = 1.

Example 1. In the example of Fig. 2 on the left with T = {p, q, r} and α < β,

we have bestExit�V (T ) = β, bestExit©V (T ) = 1. It is due to β < 1 that BVI does
not converge here. We generalize this in the following lemma. 4

Lemma 1. Let T be an EC. For every m satisfying bestExit�V (T ) ≤ m ≤
bestExit©V (T ), there is a solution f : S → [0, 1] to the Bellman equations, which
on T is constant and equal to m.
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Proof (Idea). Intuitively, such a constant m is a solution to the Bellman equa-
tions on T for the following reasons. As both players prefer getting m to exiting
and getting “only” the values of their respective bestExit, they both choose to
stay in the EC (and the extrema in the Bellman equations are realized on non-
exiting actions). On the one hand, Maximizer (Bellman equations with max)
is hoping for the promised m, which is however not backed up by any actions
actually exiting towards the target. On the other hand, Minimizer (Bellman
equations with min) does not realize that staying forever results in her optimal
value 0 instead of m. ut

Corollary 1. If bestExit©V (T ) > bestExit�V (T ) for some EC T , then G∗ 6= V.

Proof. Since there arem1,m2 such that bestExit�V (T ) < m1 < m2 < bestExit©V (T ),
by Lemma 1 there are two different solutions to the Bellman equations. In par-
ticular, G∗ > L∗ = V, and BVI does not converge. ut

In accordance with our intuition that ECs satisfying the above inequality
should be deflated, we call them bloated.

Definition 4 (BEC). An EC T is called a bloated end component (BEC), if

bestExit©V (T ) > bestExit�V (T ).

Example 2. In the example of Fig. 2 on the left with α < β, the ECs {p, q} and
{p, q, r} are BECs. 4

Example 3. If an EC T has no exiting actions of Minimizer (or no Minimizer’s

states at all, as in an MDP), then bestExit©V (T ) = 1 (the case with min∅). Hence

all numbers between bestExit�V (T ) and 1 are a solution to the Bellman equations
and G∗(s) = 1 for all states s ∈ T .

Analogously, if Maximizer does not have any exiting action in T , then it
holds that bestExit�V (T ) = 0 (the case with max∅), T is a BEC and all numbers

between 0 and bestExit©V (T ) are a solution to the Bellman equations.
Note that in MDP all ECs belong to one player, namely Maximizer. Conse-

quently, all ECs are BECs except for ECs where Maximizer has an exiting action
with value 1; all other ECs thus have to be collapsed (or deflated) to ensure BVI
convergence in MDPs. Interestingly, all non-trivial ECs in MDPs are a problem,
while in SGs through the presence of the other player some ECs can converge,
namely if both players want to exit (See e.g. [KKKW18, Appendix A.3.]). 4

We show that BECs are indeed the only obstacle for BVI convergence.

Theorem 1. If the SG contains no BECs except for {0} and {1}, then G∗ = V.

Proof (Sketch). Assume, towards a contradiction, that there is some state s
with a positive difference G∗(s) − V(s) > 0. Consider the set D of states with
the maximal difference. D can be shown to be an EC. Since it is not a BEC
there has to be an action exiting D and realizing the optimum in that state.
Consequently, this action also has the maximal difference, and all its successors,
too. Since some of the successors are outside of D, we get a contradiction with
the maximality of D. ut
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In Section 4.2, we show how to eliminate BECs by collapsing their “core”
parts, called below MSECs (maximal simple end components). Since MSECs can
only be identified with enough information about V, Section 4.3 shows how to
avoid direct a priori collapsing and instead dynamically deflate candidates for
MSECs in a conservative way.

4.2 Static MSEC decomposition

Now we turn our attention to SG with BECs. Intuitively, since in a BEC
all Minimizer’s exiting actions have a higher value than what Maximizer can
achieve, Minimizer does not want to use any of his own exiting actions and prefers
staying in the EC (or steering Maximizer towards his worse exiting actions).
Consequently, only Maximizer wants to take an exiting action. In the MDP case
he can pick any desirable one. Indeed, he can wait until he reaches a state where
it is available. As a result, in MDP all states of an EC have the same value
and can all be collapsed into one state. In the SG case, he may be restricted
by Minimizer’s behaviour or even not given any chance to exit the EC at all.
As a result, a BEC may contain several parts (below denoted MSECs), each
with different value, intuitively corresponding to different exits. Thus instead of
MECs, we have to decompose into finer MSECs and only collapse these.

Definition 5 (Simple EC). An EC T is called simple (SEC), if for all s ∈ T
we have V(s) = bestExit�V (T ).

A SEC C is maximal (MSEC) if there is no SEC C ′ such that C ( C ′.

Intuitively, an EC is simple, if Minimizer cannot keep Maximizer away from
his bestExit. Independently of Minimizer’s decisions, Maximizer can reach the
bestExit almost surely, unless Minimizer decides to leave, in which case Maxi-
mizer could achieve an even higher value.

Example 4. Assume α < β in the example of Figure 2. Then {p, q} is a SEC
and an MSEC. Further observe that action c is sub-optimal for Minimizer and
removing it does not affect the value of any state, but simplifies the graph struc-
ture. Namely, it destructs the whole EC into several (here only one) SECs and
some non-EC states (here r). 4

Algorithm 2, called FIND MSEC, shows how to compute MSECs. It returns
the set of all MSECs if called with parameter V. However, later we also call this
function with other parameters f : S → [0, 1]. The idea of the algorithm is the
following. The set X consists of Minimizer’s sub-optimal actions, leading to a
higher value. As such they cannot be a part of any SEC and thus should be
ignored when identifying SECs. (The previous example illustrates that ignoring
X is indeed safe as it does not change the value of the game.) We denote the
game G where the available actions Av are changed to the new available actions
Av′ (ignoring the Minimizer’s sub-optimal ones) as G[Av/Av′]. Once removed,

Minimizer has no choices to affect the value and thus each EC is simple.
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Algorithm 2 FIND MSEC

1: function FIND MSEC(f : S → [0, 1])
2: X ← {(s, {a ∈ Av(s) | f(s, a) > f(s)}) | s ∈ S©}
3: Av′ ← Av \X \* Minimizer’s f -suboptimal actions removed * \
4: return MEC(G[Av/Av′]) \* MEC(G[Av/Av′]) are MSECs of the original G * \

Lemma 2 (Correctness of Algorithm 2). T ∈ FIND MSEC(V) if and only
if T is a MSEC.

Proof (Sketch). “If”: As T is an MSEC, all states in T have the value bestExit�V (T ),
and hence also all actions that stay inside T have this value. Thus, no action
that stays in T is removed by Line 3 and it is still a MEC in the modified game.

“Only if”: If T ∈ FIND MSEC(V), then T is a MEC of the game where
the suboptimal available actions (those in X) of Minimizer have been removed.

Hence for all s ∈ T : V(s) = bestExit�V (T ), because intuitively Minimizer has
no possibility to influence the value any further, since all actions that could do
so were in X and have been removed. Since T is a MEC in the modified game,
it certainly is an EC in the original game. Hence T is a SEC. The inclusion
maximality follows from the fact that we compute MECs in the modified game.
Thus T is an MSEC. ut

Remark 1 (Algorithm with an oracle). In Section 3, we have seen that collapsing
MECs does not ensure BVI convergence. Collapsing does not preserve the values,
since in BECs we would be collapsing states with different values. Hence we want
to collapse only MSECs, where the values are the same. If, moreover, we remove
X in such a collapsed SG, then there are no (non-sink) ECs and BVI converges
on this SG to the original value.

The difficulty with this algorithm is that it requires an oracle to compare
values, for instance a sufficiently precise approximation of V. Consequently, we
cannot pre-compute the MSECs, but have to find them while running BVI.
Moreover, since the approximations converge only in the limit we may never be
able to conclude on simplicity of some ECs. For instance, if α = β in Figure 2,
and if the approximations converge at different speeds, then Algorithm 2 always
outputs only a part of the EC, although the whole EC on {p, q, r} is simple.

In MDPs, all ECs are simple, because there is no second player to be resolved
and all states in an EC have the same value. Thus for MDPs it suffices to collapse
all MECs, in contrast to SG.

4.3 Dynamic MSEC decomposition

Since MSECs cannot be identified from approximants of V for sure, we re-
frain from collapsing7 and instead only decrease the over-approximation in the
corresponding way. We call the method deflating, by which we mean decreas-
ing the upper bound of all states in an EC to its bestExit�U , see Algorithm 3.

7 Our subsequent method can be combined with local collapsing whenever the lower
and upper bounds on V are conclusive.
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The procedure DEFLATE (called on the current upper bound Ui) decreases this
upper bound to the minimum possible value according to the current approxi-
mation and thus prevents states from only depending on each other, as in SECs.
Intuitively, it gradually approximates SECs and performs the corresponding ad-
justments, but does not commit to any of the approximations.

Algorithm 3 DEFLATE

1: function DEFLATE(EC T , f : S → [0, 1])
2: for s ∈ T do
3: f(s)← min(f(s), bestExit�f (T )) \* Decrease the upper bound * \
4: return f

Lemma 3 (DEFLATE is sound). For any f : S → [0, 1] such that f ≥ V and
any EC T , DEFLATE(T, f) ≥ V.

This allows us to define our BVI algorithm as the naive BVI with only the
additional lines 3-4, see Algorithm 4.

Algorithm 4 UPDATE procedure for bounded value iteration on SG

1: procedure UPDATE(L : S → [0, 1], U : S → [0, 1])
2: L,U get updated according to Eq. (3) and (4) \* Bellman updates * \
3: for T ∈ FIND MSEC(L) do \* Use lower bound to find ECs * \
4: U ← DEFLATE(T,U) \* and deflate the upper bound there * \

Theorem 2 (Soundness and completeness). Algorithm 1 (calling Algorithm 4)
produces monotonic sequences L under- and U over-approximating V, and ter-
minates.

Proof (Sketch). The crux is to show that U converges to V. We assume towards
a contradiction, that there exists a state s with limn→∞ Un(s)−V(s) > 0. Then
there exists a nonempty set of states X where the difference between limn→∞ Un
and V is maximal. If the upper bound of states in X depends on states outside of
X, this yields a contradiction, because then the difference between upper bound
and value would decrease in the next Bellman update. SoX must be an EC where
all states depend on each other. However, if that is the case, calling DEFLATE
decreases the upper bound to something depending on the states outside of X,
thus also yielding a contradiction. ut

Summary of our approach:

1. We cannot collapse MECs, because we cannot collapse BECs with non-
constant values.

2. If we remove X (the sub-optimal actions of Minimizer) we can collapse MECs
(now actually MSECs with constant values).

3. Since we know neitherX nor SECs we gradually deflate SEC approximations.
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4.4 Learning-based algorithm

Asynchronous value iteration selects in each round a subset T ⊆ S of states
and performs the Bellman update in that round only on T . Consequently, it
may speed up computation if “important” states are selected. However, using
the standard VI it is even more difficult to determine the current error bound.
Moreover, if some states are not selected infinitely often the lower bound may
not even converge.

In the setting of bounded value iteration, the current error bound is known
for each state and thus convergence can easily be enforced. This gave rise to
asynchronous VI, such as BRTDP (bounded real time dynamic programing) in
the setting of stopping MDPs [MLG05], where the states are selected as those
that appear on a simulation run. Very similar is the adaptation for general MDP
[BCC+14]. In order to simulate a run, the transition probabilities determine how
to resolve the probabilistic choice. In order to resolve the non-deterministic choice
of Maximizer, the “most promising action” is taken, i.e., with the highest U. This
choice is derived from a reinforcement algorithm called delayed Q-learning and
ensures convergence while practically performing well [BCC+14].

In this section, we harvest our convergence results and BVI algorithm for SG,
which allow us to trivially extend the asynchronous learning-based approach of
BRTDP to SGs. On the one hand, the only difference to the MDP algorithm
is how to resolve the choice for Minimizer. Since the situation is dual, we again
pick the “most promising action”, in this case with the lowest L. On the other
hand, the only difference to Algorithm 1 calling Algorithm 4 is that the Bellman
updates of U and L are performed on the states of the simulation run only, see
lines 2-3 of Algorithm 5.

Algorithm 5 Update procedure for the learning/BRTDP version of BVI on SG

1: procedure UPDATE(L : S → [0, 1], U : S → [0, 1])
2: ρ ← path s0, s1, . . . , s` of length ` ≤ k, obtained by simulation where the

successor of s is s′ with probability δ(s, a, s′) and a is sampled randomly from
arg maxa U(s, a) and arg mina L(s, a) for s ∈ S� and s ∈ S©, respectively

3: L,U get updated by Eq. (3) and (4) on states s`, s`−1, . . . , s0 \* all s ∈ ρ * \
4: for T ∈ FIND MSEC(L) do
5: DEFLATE(T,U)

If 1 or 0 is reached in a simulation, we can terminate it. It can happen
that the simulation cycles in an EC. To that end, we have a bound k on the
maximum number of steps. The choice of k is discussed in detail in [BCC+14]
and we use 2·|S | to guarantee the possibility of reaching sinks as well as exploring
new states. If the simulation cycles in an EC, the subsequent call of DEFLATE
ensures that next time there is a positive probability to exit this EC. Further
details can be found in [KKKW18, Appendix A.4.].
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5 Experimental results

We implemented both our algorithms as an extension of PRISM-games [CFK+13a],
a branch of PRISM [KNP11] that allows for modelling SGs, utilizing previous
work of [BCC+14,Ujm15] for MDP and SG with single-player ECs. We tested the
implementation on the SGs from the PRISM-games case studies [gam] that have
reachability properties and one additional model from [CKJ12] that was also
used in [Ujm15]. We compared the results with both the explicit and the hybrid
engine of PRISM-games, but since the models are small both of them performed
similar and we only display the results of the hybrid engine in Table 1.

Furthermore we ran experiments on MDPs from the PRISM benchmark
suite [KNP12]. We compared our results there to the hybrid and explicit engine
of PRISM, the interval iteration implemented in PRISM [HM17], the hybrid
engine of Storm [DJKV17b] and the BRTDP implementation of [BCC+14].

Recall that the aim of the paper is not to provide a faster VI algorithm, but
rather the first guaranteed one. Consequently, the aim of the experiments is not
to show any speed ups, but to experimentally estimate the overhead needed for
computing the guarantees.

For information on the technical details of the experiments, all the models
and the tables for the experiments on MDPs we refer to [KKKW18, Appendix
B]. Note that although some of the SG models are parametrized they could
only be scaled by manually changing the model file, which complicates extensive
benchmarking.

Although our approaches compute the additional upper bound to give the
convergence guarantees, for each of the experiments one of our algorithms per-
formed similar to PRISM-games. Table 1 shows this result for three of the
four SG models in the benchmarking set. On the fourth model, PRISM’s pre-
computations already solve the problem and hence it cannot be used to compare
the approaches. For completeness, the results are displayed in [KKKW18, Ap-
pendix B.5].

Table 1: Experimental results for the experiments on SGs. The left two columns
denote the model and the given parameters, if present. Columns 3 to 5 display
the verification time in seconds for each of the solvers, namely PRISM-games
(referred as PRISM), our BVI algorithm (BVI) and our learning-based algorithm
(BRTDP). The next two columns compare the number of states that BRTDP
explored (#States B) to the total number of states in the model. The rightmost
column shows the number of MSECs in the model.

Model Parameters PRISM BVI BRTDP #States B #States #MSECs

mdsm
prop=1 8 8 17 767 62,245 1

prop=2 4 4 29 407 62,245 1

cdmsn 2 2 3 1,212 1,240 1

cloud
N=5 3 7 15 1,302 8,842 4,421

N=6 6 59 4 570 34,954 17,477
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Whenever there are few MSECs, as in mdsm and cdmsn, BVI performs like
PRISM-games, because only little time is used for deflating. Apparently the ad-
ditional upper bound computation takes very little time in comparison to the
other tasks (e.g. parsing, generating the model, pre-computation) and does not
slow down the verification significantly. For cloud, BVI is slower than PRISM-
games, because there are thousands of MSECs and deflating them takes over
80% of the time. This comes from the fact that we need to compute the ex-
pensive end component decomposition for each deflating step. BRTDP performs
well for cloud, because in this model, as well as generally often if there are many
MECs [BCC+14], only a small part of the state space is relevant for convergence.
For the other models, BRTDP is slower than the deterministic approaches, be-
cause the models are so small that it is faster to first construct them completely
than to explore them by simulation.

Our more extensive experiments on MDPs compare the guaranteed approaches
based on collapsing (i.e. learning-based from [BCC+14] and deterministic from
[HM17]) to our guaranteed approaches based on deflating (so BRTDP and BVI).
Since both learning-based approaches as well as both deterministic approaches
perform similarly (see Table 2 in [KKKW18, Appendix B]), we conclude that
collapsing and deflating are both useful for practical purposes, while the latter is
also applicable to SGs. Furthermore we compared the usual unguaranteed value
iteration of PRISM’s explicit engine to BVI and saw that our guaranteed ap-
proach did not take significantly more time in most cases. This strengthens the
point that the overhead for the computation of the guarantees is negligible

6 Conclusions

We have provided the first stopping criterion for value iteration on simple
stochastic games and an anytime algorithm with bounds on the current error
(guarantees on the precision of the result). The main technical challenge was
that states in end components in SG can have different values, in contrast to
the case of MDP. We have shown that collapsing is in general not possible, but
we utilized the analysis to obtain the procedure of deflating, a solution on the
original graph. Besides, whenever a SEC is identified for sure it can be collapsed
and the two techniques of collapsing and deflating can thus be combined.

The experiments indicate that the price to pay for the overhead to compute
the error bound is often negligible. For each of the available models, at least one
of our two implementations has performed similar to or better than the standard
approach that yields no guarantees. Further, the obtained guarantees open the
door to (e.g. learning-based) heuristics which treat only a part of the state space
and can thus potentially lead to huge improvements. Surprisingly, already our
straightforward adaptation of such an algorithm for MDP to SG yields inter-
esting results, palliating the overhead of our non-learning method, despite the
most naive implementation of deflating. Future work could reveal whether other
heuristics or more efficient implementation can lead to huge savings as in the
case of MDP [BCC+14].
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[SK16] Maŕıa Svorenová and Marta Kwiatkowska. Quantitative verification and
strategy synthesis for stochastic games. Eur. J. Control, 30:15–30, 2016.

[TT16] Alain Tcheukam and Hamidou Tembine. One swarm per queen: A particle
swarm learning for stochastic games. In SASO, pages 144–145, 2016.

18



[Ujm15] Mateusz Ujma. On Verication and Controller Synthesis for Probabilistic
Systems at Runtime. PhD thesis, Wolfson College, Oxford, 2015.

[WT16] Min Wen and Ufuk Topcu. Probably approximately correct learning in
stochastic games with temporal logic specifications. In IJCAI, pages 3630–
3636, 2016.

19



Rabinizer 4: From LTL to Your Favourite
Deterministic Automaton?

Jan Křet́ınský, Tobias Meggendorfer, Salomon Sickert, and Christopher Ziegler

Technical University of Munich

Abstract. We present Rabinizer 4, a tool set for translating formulae of
linear temporal logic to different types of deterministic ω-automata. The
tool set implements and optimizes several recent constructions, including the
first implementation translating the frequency extension of LTL. Further,
we provide a distribution of PRISM that links Rabinizer and offers model
checking procedures for probabilistic systems that are not in the official
PRISM distribution. Finally, we evaluate the performance and in cases with
any previous implementations we show enhancements both in terms of the
size of the automata and the computational time, due to algorithmic as well
as implementation improvements.

1 Introduction

Automata-theoretic approach [VW86] is a key technique for verification and
synthesis of systems with linear-time specifications, such as formulae of linear tempo-
ral logic (LTL) [Pnu77]. It proceeds in two steps: first, the formula is translated into
a corresponding automaton; second, the product of the system and the automaton
is further analyzed. The size of the automaton is important as it directly affects
the size of the product and thus largely also the analysis time, particularly for
deterministic automata and probabilistic model checking in a very direct propor-
tion. For verification of non-deterministic systems, mostly non-deterministic Büchi
automata (NBA) are used [EH00,SB00,GO01,GL02,BKŘS12,DLLF+16] since they
are typically very small and easy to produce.
Probabilistic LTL model checking cannot profit directly from NBA. Even
the qualitative question, whether a formula holds with probability 0 or 1, requires
automata with at least a restricted form of determinism. The prime example are the
limit-deterministic (also called semi-deterministic) Büchi automata (LDBA) [CY88]
and the generalized LDBA (LDGBA). However, for the general quantitative ques-
tions, where the probability of satisfaction is computed, general limit-determinism
is not sufficient. Instead, deterministic Rabin automata (DRA) have been mostly
used [KNP11] and recently also deterministic generalized Rabin automata (DGRA)
[CGK13]. In principle, all standard types of deterministic automata are applicable
here except for deterministic Büchi automata (DBA), which are not as expressive as
? This work has been partially supported by the Czech Science Foundation grant

No. P202/12/G061 and the German Research Foundation (DFG) project KR 4890/1-1
“Verified Model Checkers” (317422601). A part of the frequency extension has been
implemented within Google Summer of Code 2016.
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Fig. 1. LTL translations to different types of automata. Translations implemented in Rabinizer 4 are in-
dicated with a solid line. The traditional approaches are depicted as dotted arrows. The determinization
of NBA to DRA is implemented in ltl2dstar [Kle], to LDBA in Seminator [BDK+17] and to (mostly)
DPA in spot [DLLF+16].

LTL. However, other types of automata, such as deterministic Muller and determin-
istic parity automata (DPA) are typically larger than DGRA in terms of acceptance
condition or the state space, respectively.1 Recently, several approaches with specific
LDBA were proved applicable to the quantitative setting [HLS+15,SEJK16] and
competitive with DGRA. Besides, model checking MDP against LTL properties in-
volving frequency operators [BDL12] also allows for an automata-theoretic approach,
via deterministic generalized Rabin mean-payoff automata (DGRMA) [FKK15].
LTL synthesis can also be solved using the automata-theoretic approach. Although
DRA and DGRA transformed into games can be used here, the algorithms for the
resulting Rabin games [PP06] are not very efficient in practice. In contrast, DPA
may be larger, but in this setting they are the automata of choice due to the good
practical performance of parity-game solvers [FL09,ML16,JBB+17].
Types of translations. The translations of LTL to NBA, e.g., [VW86], are typi-
cally “semantic” in the sense that each state is given by a set of logical formulae
and the language of the state can be captured in terms of semantics of these
formulae. In contrast, the determinization of Safra [Saf88] or its improvements
[Pit06,Sch09,TD14,FL15] are not “semantic” in the sense that they ignore the
structure and produce trees as the new states that, however, lack the logical inter-
pretation. As a result, if we apply Safra’s determinization on semantically created
NBA, we obtain DRA that lack the structure and, moreover, are unnecessarily large
since the construction cannot utilize the original structure. In contrast, the recent
works [KE12,KLG13,EK14,KV15,SEJK16,EKRS17,MS17,KV17] provide “seman-
tic” constructions, often producing smaller automata. Furthermore, various trans-
formations such as degeneralization [KE12], index appearance record [KMWW17]
or determinization of limit-deterministic automata [EKRS17] preserve the semantic
description, allowing for further optimizations of the resulting automata.
Our contribution. While all previous versions of Rabinizer [GKE12,KLG13,KK14]
featured only the translation LTL→DGRA→DRA, Rabinizer 4 now implements
all the translations depicted by the solid arrows in Fig. 1. It improves all these

1 Note that every DGRA can be written as a Muller automaton on the same state space
with an exponentially-sized acceptance condition, and DPA are a special case of DRA
and thus DGRA.
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translations, both algorithmically and implementation-wise, and moreover, features
the first implementation of the translation of a frequency extension of LTL [FKK15].

Further, in order to utilize the resulting automata for verification, we provide
our own distribution2 of the PRISM model checker [KNP11], which allows for
model checking MDP against LTL using not only DRA and DGRA, but also
using LDBA and against frequency LTL using DGRMA. Finally, the tool can turn
the produced DPA into parity games between the players with input and output
variables. Therefore, when linked to parity-game solvers, Rabinizer 4 can be also
used for LTL synthesis.

Rabinizer 4 is freely available at http://rabinizer.model.in.tum.de together
with an on-line demo, visualization, usage instructions and examples.

2 Functionality
We recall that the previous version Rabinizer 3 has the following functionality:

– It translates LTL formulae into equivalent DGRA or DRA.
– It is linked to PRISM, allowing for probabilistic verification using DGRA

(previously PRISM could only use DRA).

2.1 Translations

Rabinizer 4 inputs formulae of LTL and outputs automata in the standard HOA
format [BBD+15], which is used, e.g., as the input format in PRISM. Automata in
the HOA format can be directly visualized, displaying the “semantic” description of
the states. Rabinizer 4 features the following command-line tools for the respective
translations depicted as the solid arrows in Fig. 1:

ltl2dgra and ltl2dra correspond to the original functionality of Rabinizer 3, i.e.,
they translate LTL (now with the extended syntax, including all common
temporal operators) to DGRA and DRA [EK14], respectively.

ltl2ldgba and ltl2ldba translate LTL to LDGBA using the construction of [SEJK16]
and to LDBA, respectively. The latter is our modification of the former, which
produces smaller automata than chaining the former with the standard degen-
eralization.

ltl2dpa translates LTL to DPA using two modes:
– The default mode uses the translation to LDBA, followed by a LDBA-

to-DPA determinization [EKRS17] specially tailored to LDBA with the
“semantic” labelling of states, avoiding additional exponential blow-up of the
resulting automaton.

– The alternative mode uses the translation to DRA, followed by our improve-
ment of the index appearance record of [KMWW17].

fltl2dgrma translates the frequency extension of LTL\GU, i.e. LTL\GU [KLG13]
with G∼ρ operator3, to DGRMA using the construction of [FKK15].

2 Merging these features into the public release of PRISM as well as linking the new
version of Rabinizer is subject to current collaboration with the authors of PRISM.

3 The frequential globally construct [BDL12,BMM14] G∼ρϕ with ∼ ∈ {≥, >,≤, <}, ρ ∈
[0, 1] intuitively means that the fraction of positions satisfying ϕ satisfies ∼ρ. Formally,
the fraction on an infinite run is defined using the long-run average [BMM14].
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2.2 Verification and synthesis

The resulting automata can be used for model checking probabilistic systems and
for LTL synthesis. To this end, we provide our own distribution of the probabilistic
model checker PRISM as well as a procedure transforming automata into games to
be solved.

Model checking: PRISM distribution For model checking Markov chains and
Markov decision processes, PRISM [KNP11] uses DRA and recently also more
efficient DGRA [CGK13,KK14]. Our distribution, which links Rabinizer, ad-
ditionally features model checking using the LDBA [SEJK16,SK16] that are
created by our ltl2ldba.

Further, the distribution provides an implementation of frequency LTL\GU
model checking, using DGRMA. To the best of our knowledge, there are no
other implemented procedures for logics with frequency. Here, techniques of
linear programming for multi-dimensional mean-payoff satisfaction [CKK15]
and the model-checking procedure of [FKK15] are implemented and applied.

Synthesis: Games The automata-theoretic approach to LTL synthesis requires
to transform the LTL formula into a game of the input and output players.
We provide this transformer and thus an end-to-end LTL synthesis solution,
provided a respective game solver is linked. Since current solutions to Rabin
games are not very efficient we implemented a transformation of DPA into
parity games and a serialization to the format of PG Solver [FL09]. Due to the
explicit serialization, we foresee the main use in quick prototyping.

3 Optimizations, Implementation, and Evaluation

Compared to the theoretical constructions and previous implementations, there are
numerous improvements, heuristics, and engineering enhancements. We evaluate
the improvements both in terms of the size of the resulting automaton as well as the
running time. When comparing with respect to the original Rabinizer functionality,
we compare our implementation ltl2dgra to the previous version Rabinizer 3.1,
which is already a significantly faster [EKS16] re-implementation of the official
release Rabinizer 3 [KK14]. All of the benchmarks have been executed on a host
with i7-4700MQ CPU (4x2.4 GHz), running Linux 4.9.0-5-amd64 and the Oracle
JRE 9.0.4+11 JVM. Due to the start-up time of JVM, all times below 2 seconds
are denoted by <2 and not specified more precisely. All experiments were given a
time-out of 900 seconds and mem-out of 4GB, denoted by −.

Algorithmic improvements and heuristics for each of the translations:
ltl2dgra and ltl2dra These translations create a master automaton monitoring

the satisfaction of the given formula and a dedicated slave automaton for each
subformula of the form Gψ [EK14]. We (i) simplify several classes of slaves and
(ii) “suspend” (in the spirit of [BBDL+13]) some so that they appear in the
final product only in some states. The effect on the size of the state space is
illustrated in Table 1 on a nested formula. Further, (iii) the acceptance condition
is considered separately for each strongly connected component (SCC) and then
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Table 1. Effect of simplifications and suspension for ltl2dgra on the formulae ψi = Gφi where φ1 =
a1, φ(i) = (aiU(Xφi−1)), and ψ′i = Gφ′i where φ′1 = a1, φ′1 = (φ′i−1U(Xiai), displaying execution
time in seconds / #states.

ψ2 ψ3 ψ4 ψ5 ψ6

Rabinizer 3.1 [EKS16] <2 / 4 <2 / 16 <2 / 73 3 / 332 60 / 1463
ltl2dgra <2 / 3 <2 / 7 <2 / 35 3 / 199 13 / 1155

ψ′2 ψ′3 ψ′4 ψ′5 ψ′6

Rabinizer 3.1 [EKS16] <2 / 4 <2 / 16 2 / 104 128 / 670 −
ltl2dgra <2 / 3 <2 / 10 <2 / 38 7 / 175 239 / 1330

Table 2. Effect of computing acceptance sets per SCC on formulae ψ1 = x1∧φ1, ψ2 = (x1∧φ1)∨(¬x1∧
φ2), ψ3 = (x1 ∧ x2 ∧ φ1) ∨ (¬x1 ∧ x2 ∧ φ2) ∨ (x1 ∧ ¬x2 ∧ φ3), . . . , where φi = XG((aiUbi) ∨ (ciUdi)),
displaying execution time in seconds / #acceptance sets.

ψ1 ψ2 ψ3 ψ4 ψ5 . . . ψ8

Rabinizer 3.1 [EKS16] <2 / 2 <2 / 7 <2 / 19 − − −
ltl2dgra <2 / 1 <2 / 1 <2 / 1 <2 / 1 <2 / 1 <2 / 1

Table 3. Effect of break-point elimination for ltl2ldba on safety formulae s(n,m) =
∧n

i=1
G(ai∨Xmbi)

and for ltl2ldgba on liveness formulae l(n,m) =
∧n

i=1
GF(ai ∧ Xmbi), displaying #states (#Büchi

conditions)

s(1, 3) s(2, 3) s(3, 3) s(4, 3) s(1, 4) s(2, 4) s(3, 4) s(4, 4)

[SEJK16] 20 (1) 400 (2) 8 · 103(3) 16 · 104(4) 48 (1) 2304 (2) 110592 (3) −
ltl2ldba 8 (1) 64 (1) 512 (1) 4096 (1) 16 (1) 256 (1) 4096 (1) 65536 (1)

l(1, 1) l(2, 1) l(3, 1) l(4, 1) l(1, 4) l(2, 4) l(3, 4) l(4, 4)

[SEJK16] 3 (1) 9 (2) 27 (3) 81 (4) 10 (1) 100 (2) 103 (3) 104 (4)
ltl2ldgba 3 (1) 5 (2) 9 (3) 17 (4) 3 (1) 5 (2) 9 (3) 17 (4)

Table 4. Effect of non-determinism of the initial component for ltl2ldba on formulae f(i) = F(a ∧
XiGb), displaying #states (#Büchi conditions)

f(1) f(2) f(3) f(4) f(5) f(6)

[SEJK16] 4 (1) 6 (1) 10 (1) 18 (1) 34 (1) 66 (1)
ltl2ldba 2 (1) 3 (1) 4 (1) 5 (1) 6 (1) 7 (1)

combined. On a concrete example of Table 2, the automaton for i = 8 has 31
atomic propositions, whereas the number of atomic propositions relevant in
each component of the master automaton is constant, which we utilize and thus
improve performance on this family both in terms of size and time.

ltl2ldba This translation is based on breakpoints for subformulae of the form Gψ.
We provide a heuristic that avoids breakpoints when ψ is a safety or co-safety
subformula, see Table 3.

Besides, we add an option to generate a non-deterministic initial component
for the LDBA instead of a deterministic one. Although the LDBA is then
no more suitable for quantitative probabilistic model checking, it still is for
qualitative model checking. At the same time, it can be much smaller, see Table
4 which shows a significant improvement on the particular formula.
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Table 5. Comparison of the average performance with the previous version of Rabinizer. The statistics
are taken over a set of 200 standard formulae [KMS18] used, e.g., in [BKS13,EKS16], run in a batch
mode for both tools to eliminate the effect of the JVM start-up overhead.

Tool Avg # states Avg #
acc. sets

Avg runtime

Rabinizer 3.1 [EKS16] 6.3 6.7 0.23
ltl2dgra 6.2 4.4 0.12

ltl2dpa Both modes inherit the improvements of the respective ltl2ldba and
ltl2dgra translations. Further, since complementing DPA is trivial, we can
run in parallel both the translation of the input formula and of its negation,
returning the smaller of the two results. Finally, we introduce several heuristics
to optimize the treatment of safety subformulae of the input formula.

dra2dpa The index appearance record of [KMWW17] keeps track of a permutation
(ordering) of Rabin pairs. To do so, all ties between pairs have to be resolved.
In our implementation, we keep a pre-order instead, where irrelevant ties are
not resolved. Consequently, it cannot happen that an irrelevant tie is resolved
in two different ways like in [KMWW17], thus effectively merging such states.

Implementation The main performance bottleneck of the older implementations
is that explicit data structures for the transition system are not efficient for larger
alphabets. To this end, Rabinizer 3.1 provided symbolic (BDD) representation of
states and edge labels. On the top, Rabinizer 4 represents the transition function
symbolically, too.

Besides, there are further engineering improvements on issues such as storing
the acceptance condition only as a local edge labelling, caching, data-structure
overheads, SCC-based divide-and-conquer constructions, or the introduction of
parallelization for batch inputs.
Average performance evaluation We have already illustrated the improvements
on several hand-crafted families of formulae. In Tables 1 and 2 we have even seen
the respective running-time speed-ups. As the basis for the overall evaluation of the
improvements, we use some established datasets from literature, see [KMS18], alto-
gether two hundred formulae. The results in Table 5 indicate that the performance
improved also on average among the more realistic formulae.

4 Conclusion
We have presented Rabinizer 4, a tool set to translate LTL to various deterministic
automata and to use them in probabilistic model checking and in synthesis. The tool
set extends the previous functionality of Rabinizer, improves on previous translations,
and also gives the very first implementations of frequency LTL translation as well
as model checking. Finally, the tool set is also more user-friendly due to richer input
syntax, its connection to PRISM and PG Solver, and the on-line version with direct
visualization, which can be found at http://rabinizer.in.tum.de.
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generalized Rabin pairs for probabilistic model checking and LTL synthesis.
In CAV, pages 559–575, 2013.

[CKK15] Krishnendu Chatterjee, Zuzana Komárková, and Jan Křet́ınský. Unifying
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[KMWW17] Jan Křet́ınský, Tobias Meggendorfer, Clara Waldmann, and Maximilian
Weininger. Index appearance record for transforming rabin automata into
parity automata. In TACAS, pages 443–460, 2017.

[KNP11] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0:
Verification of probabilistic real-time systems. In CAV, pages 585–591, 2011.

[KV15] Dileep Kini and Mahesh Viswanathan. Limit deterministic and probabilistic
automata for LTL \ GU. In TACAS, pages 628–642, 2015.

[KV17] Dileep Kini and Mahesh Viswanathan. Optimal translation of LTL to limit
deterministic automata. In TACAS 2017, 2017. To appear.

[ML16] Philipp J. Meyer and Michael Luttenberger. Solving mean-payoff games on
the GPU. In ATVA, pages 262–267, 2016.

[MS17] David Müller and Salomon Sickert. LTL to deterministic Emerson-Lei au-
tomata. In GandALF, pages 180–194, 2017.

[Pit06] Nir Piterman. From nondeterministic Büchi and Streett automata to deter-
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