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Abstract

This thesis surveys the author’s contributions to the area of models for
stochastic real-time systems. Two fundamental concepts meet in these
models — probability and real-time. The probabilistic behavior is here
deeply connected with time in (continuous) probability distributions that
are used to specify random waiting times in states of a model. Moreover,
we study not only the analysis of such models but also the synthesis of
some unspecified parameters. Hence, we extend the models with the third
concept — nondeterminism. In other words, instead of checking whether
the model is correct (i.e., satisfies a given specification), we are computing
particular model parameters such that the final model with these param-
eters is (nearly) optimal. Some of the results are delivered for game ex-
tensions where part of the nondeterminism is solved by synthesis and the
remaining part is considered to be driven by an antagonistic opponent.

The thesis is structured as a collection of ten conference papers and
one workshop paper, and an accompanying commentary. The commen-
tary aims to highlight the most important results and to explain the “re-
search flow” with the significant connections between the results. The con-
tribution of the thesis author to the particular papers in the collection is
expressed in the list of the included papers at the end of the commentary
part.
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Abstrakt

Habilitačnı́ práce přehledně popisuje autorův vědecký přı́nos v oblasti
modelů pravděpodobnostnı́ch systémů se spojitým časem. V těchto mod-
elech se setkávajı́ dva základnı́ modelovacı́ koncepty — pravděpodobnost
a spojitý čas. V našem přı́padě jsou tyto dva koncepty velmi úzce propo-
jeny, protože uvažujeme systémy, kde pravděpodobnost je definována
na časech setrvánı́ v jednotlivých stavech modelu. Navı́c tyto mod-
ely pouze neanalyzujeme, ale našı́m cı́lem je i syntetizovat parametry,
které nejsou přesně určeny. Tı́m se v modelech vyskytuje i třetı́ kon-
cept — nedeterminismus. Jinými slovy, namı́sto kontroly, zda je model
správný (tj. splňuje danou specifikaci), vypočı́táváme konkrétnı́ hodnoty
pro neurčené parametry modelu tak, aby výsledný model byl (téměř)
optimálnı́. Některé výsledky přinášı́me pro hernı́ rozšı́řenı́, kde část
neurčených parametrů je řešena syntézou optimálnı́ch hodnot a zbývajı́cı́
část je mimo naši kontrolu. V takovém přı́padě se tradičně uvažuje ne-
jhoršı́ možný přı́pad, kdy si představujeme, že zbývajı́cı́ parametry nas-
tavuje nepřı́tel, který se nám snažı́ uškodit.

Práce je strukturována jako komentář a soubor deseti konferenčnı́ch
článků a jednoho seminárnı́ho článku. Cı́lem komentáře je zdůraznit
nejdůležitějšı́ výsledky a vysvětlit postup výzkumných pracı́ s přı́padnými
vazbami mezi jednotlivými výsledky. Přı́nos autora habilitačnı́ práce
k dosaženı́ prezentovaných výsledků je vyjádřen v seznamu přiložených
článků na konci komentáře.

v



vi



Acknowledgments

First of all, I would like to thank all my colleagues for constant willingness
to discuss any problem. I really appreciate fruitful and long-lasting col-
laboration, where the main focus is concentrated on obtaining correct and
valuable results. Special thanks go to co-authors of the papers included
in this collection, namely to Christel Baier, Tomáš Brázdil, Clemens Dub-
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Chapter 1

Introduction

For successful application of up-to-date mathematical techniques to a real-
life problem, we usually need to build a mathematical model of the reality.
On this model, the mathematical computation is proceeded, and the ob-
tained results are consequently interpreted back in the original setting of
the real-life problem. To acquire reasonable outcomes, we need to work
with mathematical models that reflect the crucial parameters of the mod-
eled reality. Here, we are facing the essential problem of modeling. On the
one hand, the more accurate (closer to reality) mathematical model we are
using, the more relevant results we obtain. On the other hand, the more
accurate models we produce, the more demanding computations we need
to apply. Hence, the goal is to balance between the traps lurking in the
extremes — the too imprecise models that lead to easily achievable results
with low practical relevance, and the too complex models that yield precise
but hardly computable results.

In this thesis, we focus on stochastic real-time models. The probabilistic
modeling is useful when we have some quantified uncertainty about the
modeled system. Usually, the probabilistic models are used as a compact
representation of a large system, the assigned probabilities correspond to
expected frequencies of particular types of behavior. E.g., instead of mod-
eling millions of customers with individual requests, we build one prob-
abilistic request generator. Lots of systems also operate in real-time and
thus have to work properly under various time constrains. E.g., an indus-
trial manufacturing robot works in an uncertain environment (possible de-
lays in the preceding processes) with a varying time of its own processes
(due to changes in the temperature or the material quality) but still it has to
satisfy certain conditions required by the subsequent product line robots.
Typical models for such systems studied in the computer science are timed
automata extended with a stochastic behavior, or stochastic processes sup-
plemented with real-time constraints. In some models, the probabilistic
and real-time aspects are structurally separated, e.g., the probabilities are
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assigned to transitions leading to subsequent states but the time aspect of
the behavior in the particular states of the model is fully deterministic (i.e.,
non-stochastic). We consider systems where the timing is stochastic. In
more detail, there are probability distributions on the waiting times in the
model states. We are especially interested in models where both discrete
and continuous distributions on waiting times occur.

Another feature that is often present in real-word examples is nonde-
terminism, i.e., uncertainty without any statistical information. Nondeter-
minism also naturally occures when the aim is to synthesize an efficient
controller of a system. Nondeterminism in stochastic systems is studied
in Markov decision processes or in stochastic games. Stochastic real-time
systems with nondeterminism are modeled by stochastic games on timed
automata or continuous-time stochastic games with timed-automata objec-
tives.

1.1 Motivation Example

Even if it is not usual, let us start with my personal experience that truly
motivated my research in this field of stochastic real-time systems. A few
years ago, one of my colleagues (working on a research position in a multi-
national company) brought up a simple task to be solved.

Example 1.1.1 Let us have an unreliable communication between an air traffic
control center and an aircraft. A request message is sent to the aircraft, and the air
traffic control center waits for the corresponding response. As the communication
is unreliable, there has to be a timeout after which the message is considered to be
lost, and subsequent action has to be taken by the air traffic control center. The cru-
cial task for a communication protocol designer is to find the best delay time for the
timeout when taking into account all technical parameters of the communication,
namely a probability distribution on the response time.

One would expect that this problem can be more or less easily solved
for a given particular instance when all the system parameters are known
and given. Unfortunately, the company did not want to disclose their data
and other details of the model. They were interested in a tool solving all
such questions. Therefore, we reformulated this specific example into a
more general computer science problem:

Example 1.1.2 Let us have a finite-state event-driven system where the events
arise after randomly distributed delays. In the system, we allow using both contin-
uous and discrete probability distributions on delays. First, we are interested in the
system analysis. Later we would like to algorithmically synthesize (near-)optimal
parameters for selected probability distributions concerning a given objective.
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We realized that this had been an interesting open problem that is fairly
challenging. We spent around eight years solving it, and this thesis sum-
marizes all the results already achieved during the research.

1.2 Outline

The remaining part of the commentary is divided into four chapters. In
the first chapter, all the modeling formalisms used in the collected papers
are presented in a unified way. To improve understanding of the rele-
vant results, equivalent or closely relevant formalisms are demonstrated
in Chapter 3. In Chapter 4, all the results of the collected papers are readily
overviewed. The last chapter lists the citation records of all the papers of
the collection and comments my contribution to these papers.
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Chapter 2

Preliminaries

The systems we are interested in can be naturally described by modeling
formalisms of a large class of event-driven systems. An event-driven sys-
tem passively waits in one of its states and reacts to events that are emitted
by an environment. The first emitted event changes the state of the sys-
tem, what can retroactively lead to a change of the environment, e.g., when
entering the new state, some events of the environment could be enabled
or disabled. In our case, we consider the stochastic behavior of events,
i.e., for each event, there is a probability distribution specifying the time
it needs to be enabled before it is emitted. In what follows, we consider
discrete-state event-driven systems (DES) that have finitely many states and
evolve in stochastic time [CL08]. DES can be described in a large number
of formalisms. First, we introduce the formalisms in a context of (Markov)
processes that we are using in most of our papers. In the next chapter, we
explain how these classes correspond to other related formalisms modeling
DES.

2.1 Generalized Semi-Markov Processes

The most general concept of (Markov) processes is a generalized semi-Markov
process (GSMP) [Mat62] that very precisely corresponds to DES. In GSMP,
we have a set of states and a set of events. To each state, there is assigned a
subset of events that are enabled in the state. Each event has an event-time
distribution specifying the probability on time the event needs to be enabled
before it occurs. The time evolves in a state until the first event occurs. Note
that several events may occur at the same time.1 Once a set of events E oc-
curs in a state s, the process traverses a transition to a subsequent state. The
subsequent state is chosen randomly according to a transition distribution
specifying the probability on the subsequent states. The transition distri-
bution depends only on s and E. Hence, the transition can be drawn as a

1This happens with zero probability if the event-time distributions are continuous.

7



hyperedge that starts from s, is labeled with E, and leads to all states with
positive probability in the corresponding transition distribution.

The dynamics of GSMP starts in an initial state s0 (that is either explic-
itly specified or given by an initial distribution on states). Immediately, an
occurrence time is assigned to each of the events enabled in s0 according
to its event-time distribution. Let t be the minimal time assigned, and E
be the set of all events to which the time t was assigned. The process stays
in the initial state for time t, i.e., until the occurrence of the first event(s).
Then the process moves to a state s′ that is chosen randomly according to
the transition distribution for s0 andE. In s′, the occurrence times of events
are updated in the following way:

• for the old events — that were enabled in s but they are not enabled
in s′ — the times are discarded,

• the inherited events — that are enabled in both s and s′ (excluding
those of E) — remain scheduled to the same time point, i.e., the times
to their occurrences are reduced by subtracting t,

• the new events — the remaining events enabled in s′ — are newly
scheduled, i.e., their times to occurrences are freshly chosen accord-
ing to their event-time distributions.

Now again, the minimal occurrence time and the set of minimal events are
selected, and the process goes similarly ahead. We call a configuration the
state of GSMP supplemented by the times to occurrences assigned to all the
enabled events.

To deal with GSMP rigorously, one has to impose some restrictions on
the event-time distributions. In what follows, two special types of events
are often used — exponential and fixed-delay. Fixed-delay events have con-
stant event-time distributions, i.e., they occur after a given constant time
with probability one, and so they come in useful when modeling timeouts.
Exponential events have exponential event-time distributions, hence, due to
the memoryless property of exponential distribution [Nor98], they can be
newly scheduled after each move (even if they are inherited) without any
effect on the model behavior. Now, we can define that a configuration is re-
generative if and only if the occurrence times for all enabled non-exponential
events are newly scheduled, i.e., there is no “truly-inherited” event.

2.2 GSMP Subclasses

In the following, we define some useful subclasses of GSMP.
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Markov regenerative processes (MRP) are GSMP where, from each
reachable configuration, a regenerative configuration is reached with prob-
ability one [Smi55].

Semi-Markov processes (SMP) are GSMP with regenerative configura-
tions only, i.e., all occurrence times of enabled events can be newly sched-
uled according to the event-time distributions after each move between
states [Mat62, LHK01].

Continuous-time Markov chains (CTMC) are GSMP where all event-
time distributions are exponential distributions [Nor98].

fixed-delay CTMC (fdCTMC) are GSMP with exponential or fixed-delay
events only [KKŘ14].

CTMC with alarms (ACTMC) are GSMP where at most one event
with a non-exponential event-time distribution is assigned to each state
[BDK+17a].

one-fixed-delay CTMC (1-fdCTMC) are fdCTMC where at most one
fixed-delay event is assigned to each state [BKK+15]. Note that this is the
common part of fdCTMC and ACTMC.

Discrete-time Markov chains (DTMC) are GSMP where all events are
fixed-delay events with the same delay time and each event is enabled in
at most one state. Note that any GSMP with only discrete event-time dis-
tributions can be equivalently expressed as a DTMC [Nor98].

Hierarchy of the above-mentioned subclasses with respect to their ex-
pressive power is depicted in Figure 2.1. For more details see, e.g., [Kor17].

2.3 Performance Measures and Rewards

This section comes up with a short overview of basic properties and mea-
sures that we are studying on stochastic systems. For more complex prop-
erties, we refer to model-checking results for continuous stochastic logic
(CSL) [ASSB00, BHHK03].

There are two types of analysis: transient and long-run. The basic prop-
erties of transient analysis are reachability property expressing the probabil-
ity that a given target state is reached and time-bounded reachability express-
ing the probability that it is reached in a given amount of time. In the
long-run analysis, the focus is concentrated on the infinite behavior of the
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analyzed system, and the results refer to frequencies of visits to particular
states. Technically, for each state s, we can define the discrete frequency of
visits ds and the timed frequency of visits cs by

ds = lim
n→∞

number of visits to s in the first n steps
n

and

cs = lim
t→∞

time spent in s up to time t
t

.

For CTMC these limits are known to be almost-surely well-defined. We
show that for some fdCTMC models these frequencies are almost-surely
undefined. Such models are called unstable and it has no sense to compute
the above frequencies for them. More details are explained in Section 4.1.

To obtain a single-number characterization, we use the concept of re-
wards (also called costs when the reward values should be negative). Re-
wards are values assigned to particular transitions and states. The transi-
tion reward is counted whenever the transition is traversed. The state re-
ward is understood as a reward for a time unit; hence, when being counted,
they are multiplied by the time spent in the visited state. The transient anal-
ysis usually computes the average reward accumulated before a target state is
reached. Typical measure studied in the long-run analysis is the expected
reward obtained per time unit on an infinite run.

2.4 Decision Processes and Games

It may also happen that some transition distributions or some event-time
distributions are not known. E.g., the events can model reactions with an
environment that is out of our control, or the model design is not completed
and the remaining distributions are the subject of further construction. In
the latter case, the goal is to synthesize the unknown distributions such that
they will maximize our profit (depending on what transient or long-run
property we are interested in). Contrary, if the unknown part of the model
is completely out of our control, we are assuming adversarial control and
compute the profit of the worst case scenario. Both of these systems are
traditionally called decision processes (or one-player games). When some
unspecified parts are under our control and some of them are considered to
be adversarial, we apply the game theoretical approach and look for game
equilibria.

This context allows for a unified view of the wide range of game modi-
fications of the DES modeling formalisms.
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2.4.1 Unspecified Transition Distributions (“where”)

Let us have a model where some for some states the transition distributions
are unknown. We call such states decision states. Note that it would be too
powerful to be able to assign an arbitrary transition distribution to a deci-
sion state (this will, for example, allow for immediate skip to an arbitrary
state of the model). Hence, the transition distributions are not completely
unknown in the decision states. The are actions — candidate transition dis-
tributions. Hence, what is unspecified in a decision state is just which of
the actions will be chosen. In the game terminology, we are looking for
strategies — functions that choose a particular action in each decision state.
Strategies could be pure (when we are choosing one action each time) or
mixed (when a probabilistic choice on actions is allowed). Strategies could
also be memoryless (if it is a function of the current state only) or history-
dependent (if it can depend on all the history of the current execution). Note
that strategies depend just on states (not on configurations where the tim-
ing of future events is stored) [HHK16].

Now, we can define a Markov decision process (MDP) [Kal97, Put94] as a
DTMC with decision states. Note that if we commit to some (memoryless)
strategy in an MDP, all the transition distributions are specified, and we ob-
tain a DTMC. Our contribution to the synthesis of optimal MDP strategies
is described in Section 4.5.

Similarly, we can introduce decision states to CTMC. In a decision state,
there are actions instead of events and transition distributions. Whenever a
decision state is visited, an action has to be chosen according to a strategy.
The chosen action then determines to what state the run goes on. Note that
in the decision states there is no time-flow and so the decision is consid-
ered to be taken immediately when the decision state is visited. By this we
obtain continuous-time Markov decision process (CTMDP) [Put94, GHL09]2.

When the decision states of CTMDP are divided between two players,
we obtain a continuous-time stochastic game (CTG) [Bel57, FV96, BFK+13]. Fi-
nally, we define generalized semi-Markov game (GSMG) [BKK+10] as a GSMP
extended with decision states of two players. Our contribution to solving
GSMG is explained in Section 4.2.

2.4.2 Unspecified Event-Time Distributions (“when”)

Note that in all above-mentioned approaches the strategies decide in zero
time between finitely many options where to go next. Now we would like
to discuss situations where the event-time distributions are the subject of
the decision. An easy example of such a decision process is the delay time

2An alternative definition of CTMDP is that the actions are events and the player chooses
what events are active in the decision state. Here, the actions are stochastic transitions to
subsequent states, where the events are again active.
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synthesis task from our motivation examples of Section 1.1, i.e., we assume
GSMP where delay times of some fixed-delay events would be synthesized.
Our results solving this problem are discussed in Section 4.4.

A bit more complicated exemplification of unspecified event-time dis-
tributions is based on a compositional approach that is natively present in
labeled transition systems with synchronization. The unspecified event can
be understood as a transition synchronized with an environment. Labeled
transition systems are combined with CTMC in interactive Markov chains
(IMC) [HK09]. IMC is a CTMC where some event-time distributions are
not specified, and such events represent labeled transitions waiting for syn-
chronization with an external IMC component running in parallel. Hence,
the strategy resolving the unspecified delay-time distributions is the newly
constructed external IMC component. We report on our contribution to this
field in Section 4.3.

To sum up, in this chapter, we have introduced GSMP, GSMG, IMC,
fdCTMC, ACTMC, and MDP, that are all the modeling formalisms we are
studying in the collected paper.
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Chapter 3

Related Modeling Formalisms

The area of results related to the studied topic is very wide due to a long
time of interest and various approaches to modeling and analyzes of prob-
abilistic systems. To show a clear (but definitely not complete) overview of
the known results, we introduce other modeling formalisms that are in sev-
eral contexts used to model DES. We also note how the formalisms relate
to the subclasses of GSMP introduced in the previous chapter.

3.1 Queues

The simplest model of the event-driven systems is the classical model of
queues. The goal of this model is to manage randomly arriving tasks that
are supposed to be processed by one or more servers dedicated to a queue.
The tasks are arriving according to an exactly specified probability distribu-
tion. When a task arrives, it is stored in the queue and waits to a free server
to be assigned to. When assigned, the task is processed by the server. The
processing takes a random time. The basic parameters of a queue are speci-
fied by Kendall notation [Ken53] A/S/n/B/K where the particular parameters
are:

A – inter-arrival time distribution
(D - deterministic, M - exponential, G - general);

S – service time distribution
(D - deterministic, M - exponential, G - general);

n – number of servers (1, 2, . . . ,∞ );

B – queue size (1, 2, . . . ,∞), the default value is∞; and

K – the overall number of tasks (1, 2, . . . ,∞), the default value is∞.

15



For example, D/M/1/5 identifies a queue with a constant inter-arrival
time, say 15 seconds, exponentially distributed service time, say with a rate
λ = 0.1, one server, and five slots for the managed tasks. Hence, every
15 seconds a new task comes. If there is a free space, the task is placed in
the queue. If all five slots are occupied, the new-coming task is ignored.
The very first task in the queue is being processed by the server what takes
a random exponentially-distributed time (the expected service time is 10
seconds, if λ = 0.1). When the task is done, it is taken out of the queue, and
all the tasks waiting in the queue are shifted forward.

Queues can be connected and form a gueueing network (QN) where done
tasks of a queue can be sent as an input to some subsequent queue(s).
Bounded queues are expressible in GSMP with finitely many states, while
the unbounded queues require countably many states in GSMP [GSTH08].
Depending on the used distribution types (D, M, or G), the queueing net-
works are expressible in particular subclasses of GSMP allowing fixed-
delay events, exponential events, or general events, respectively.

Thanks to the massive application of QN in practice, even very specific
results are of great interest. The most important analysis of queues (as well
as QN) are focused on long-run properties like the expected queue length,
the utilization factor (portion of the server working time vs. idle time),
expected waiting time of a task in the queue, and the probability of ignoring
a task (when a bounded queue is full). For more results see, e.g., [GSTH08,
BGdMT06, CY01].

3.2 Stochastic Variants of Petri Nets

Petri net (PN) is a well established formalism [Pet62] with a long lasting
history and a large number of applications. Formally, Petri net is a bipar-
tite directed multigraph with two type of nodes — places and transitions1.
Places represent sources and are usually depicted by circles. Transitions
represent operations and are depicted by bars. Each edge connects a place
and a transition. Places from where there are edges to a particular transi-
tion are called input places of the transition. Similarly, each transition has
its output places. The dynamics of a Petri net is modeled by tokens that
are assigned to the places and moved according to the transitions. The as-
signments of tokens to places are called markings. A Petri net starts in an
explicitly defined initial marking. A transition, say t, is called enabled if each
of its input places has at least as many tokes as the number of edges leading
from them to t. If a transition is enabled, it can be fired what removes tokens
from the input places and puts them to the output places (multiplicity of
edges corresponds to the number of effected tokens).

1Note that the transitions are not edges but special nodes here.
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Petri nets are native models of concurrency. When there are more transi-
tions enabled in a marking, the one that fires is chosen nondeterministically.
In our context of stochastic-time behavior, the nondeterminism is solved by
stochastic times assigned to transitions. Each enabled transition spends a
random heating time before it is fired. If all the heating times are assigned
according to continuous distributions, the nondeterminism is solved with
probability one. Depending on the types of assigned heating-time distribu-
tions, we obtain different variants of Petri nets.

Stochastic Petri nets (SPN) were independently introduced in [Mol82,
Nat80, Sym80] as timed Petri nets where all the heating times are expo-
nentially distributed. It is not surprising that this formalism is equivalent2

to CTMC. Later, Generalized stochastic Petri nets (GSPN) [MCB84] were de-
fined as SPN extended with immediate transitions that are practical when
creating a comprehensive model. On the other hand, immediate transi-
tions do not increase the expressive power of SPN, as GSPN was shown to
remain equivalent to CTMC [MCB84]. Deterministic and stochastic Petri nets
(DSPN) [MC86] are GSPN extended with transitions of fixed-delay heating
times, hence, they correspond to the fdCTMC class. Omitting all restric-
tions yields to extended stochastic Petri nets (ESPN) [DTGN84] where distri-
butions of arbitrary types are allowed for firing times. ESPN is the coun-
terpart to GSMP. As this class is too general for any reasonable analysis,
Markov regenerative SPN (MRSPN) [DTGN84] are immediately defined in
the same paper as a counterpart to MRP. To complete the list, there are also
Generalized Timed Petri Nets (GTPN) [Mol85, HV85] where only fixed fir-
ing times are allowed. GTPN correspond to GSMP with fixed-delay events
only; hence, they closely relate to DTMC.

For more details concerning stochastic Petri net models and their corre-
spondence to Markov processes, we refer to [Mol81, Mar88, Haa02, Krč14,
Kor17]. For an up-to-date overview of model-checking results for the class
of MRSPN, see [PHV16].

3.3 Stochastic Timed Automata

Another approach to modeling DES is to take the classical timed automata
(TA) [AD94] and extend them with a stochastic behavior.

Timed automata are finite-state automata extended with special vari-
ables called clocks. Clocks evolve continuously and synchronously in time.
A run of a timed automaton starts in a given initial state and all clocks are

2Note that in Petri nets, the set of reachable markings could be easily infinite. Hence,
to be precise, we need to restrict ourselves to bounded Petri nets (those with finitely many
reachable markings). The same holds for the following discussed PN classes and their rela-
tions to the corresponding subclasses of finite-state GSMP.
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set to 0. The states are changed by transitions3 that can be, on the one
hand, constrained to particular clock values and, on the other hand, they
can cause reset of some clocks. In more detail, each transition (with a source
state, a label, and a target state) is assigned a clock guard and a set of clocks
R. The clock guards are conjunctions of lower or upper bounds on the
clock values, and the transition can be proceed only when its clock guards
are fulfilled. If the transition is proceeded, all clocks of the assigned set R
are reset. Reset of a clock is an assignment that sets the clock value to 0.
Note that there are two sources of nondeterminism — delays and transi-
tion choices, i.e., for how long time the automaton will stay in a state and
what transition it will proceed.

Stochastic timed automata (STA) are TA where both delays and transition
choices are made randomly [KNSS00, BBB+07, BBB+14]. Intuitively, for
a state, we will first randomly choose a delay among all possible delays,
then we will randomly choose a transition among those which are enabled
after the delay. There are some natural (but very technical) restrictions on
the delay distributions, e.g., they have to be positive (only) on times when
there is some outgoing transition enabled. The distribution among enabled
transitions is resolved by assigned weights; the probability then respects
the relation of weights assigned to the enabled transitions.

The class of STA roughly corresponds to GSMP. The relation is not as
straightforward as in the case of ESPN. Note that in STA a clock can con-
strain many subsequent transitions without any reset. Contrary, when an
event occurs in a GSMP (and initiates a transition), it is rescheduled or re-
set in the subsequent state. Moreover, the transition distribution in STA is
defined by the weights of the enabled transitions after the delay time, i.e.,
it does not depend on the winning event, but on the delay time. Hence, to
mimic a clock of an STA in a GSMP, we sometimes need more states and
more events. Let us demonstrate that on the example of Figure 3.1 where,
for one STA state with a clock c, we need three states and three events in the
corresponding GSMP. Note that in the STA the transition going down is en-
abled only for c ≤ 1, the transition going right is enabled only for c > 5, and
the self-loop is always enabled. In the GSMP counterpart, we need three
states representing separately the behavior in the time intervals (0, 1), (1, 5),
and (5,∞). The transitions between the three states are triggered by fixed-
delay events efd1 and efd4 that are set to delays 1 and 4, respectively4. The
event-time distribution function of the event e equals the delay distribution
of the STA state.

Similarly to unstable GSMP, also STA have some unintended behavior.
First, there are Zeno runs that were considered already on (non-stochastic)

3Here, the transitions are again labeled edges in the graph representation of the automa-
ton.

4In this example, we assume that the delay distribution function in the STA state is con-
tinuous. Otherwise, we need to discuss the cases when c = 1 and c = 5.
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(b) Three states of GSMP with events efd1, efd4,
and e that mimic the state of Figure 3.1a. Bold
numbers are transition probabilities.

Figure 3.1: GSMP states representing an STA state.

TA [GB07]. A Zeno run executes infinitely many transitions in a finite pe-
riod of time. Intuitively, this happens when the delay times get shorter and
shorter such that their infinite sum is finite. Zeno runs are also in STA,
but they have probability 0 (unless the underlying timed automaton is in-
herently Zeno) [BBB+14]. Other intended property of runs is fairness. A
run is fair if every transition which is enabled infinitely often is taken in-
finitely often. STA with unfair runs of positive probability are studied in
[BBB+08]. Fairness and non-Zeno behavior of STA with connections to the
corresponding properties in GSMP and ESPN are shown in [BBBC18].

Various restrictions on STA are introduced to obtain subclasses where
the runs are almost-surely fair. For example, one-clock STA [BBBM08,
BBB+08] with only one clock variable, or reactive STA [BBJM12] that can
have arbitrary many clocks but the distributions on delays have posi-
tive density on all non-negative real values. One player and two player
games on reactive STA with exponentially distributed delays are studied
in [BF09, BS12]. Up-to-date results concerning model checking of various
STA subclasses are summarized in a unified notation in [BBB+14, BBBC18].
The compositional design based on STA was recently studied in [BBCM16].

Concerning other stochastic extensions of TA, there are also probabilistic
timed automata [KNSS99, KNSS02] where discrete probability distributions
are assigned to the transitions leaving particular states. Such distributions
effect which of the enabled transitions is executed. Contrary to STA, the
time-respective behavior remains nondeterministic and is considered to be
controlled by an adversarial player. Up-to-date results for synthesis and
games on probabilistic timed automata can be found in [FKNT16, JKNP17].
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3.4 Process Algebraic Approach

Many other stochastic formalisms arise from process algebras (PA) [BPS01]
such as Milner’s CCS [Mil89] or Hoare’s CSP [Hoa85]. The key feature
of the PA approach is compositionality, hence, it is natural that IMC (dis-
cussed in Section 2.4.2) belong to this family of formalisms defined on the
algebraic base. The most used formalism of this family is performance eval-
uation PA (PEPA) [CGHT07] that has exponentially distributed action de-
lays. Each PEPA model can be translated to an equivalent CTMC, hence,
all algorithms for CTMC can be successfully applied on PEPA. General dis-
tribution delays are discussed in generalized semi-Markov process alge-
bra [BBG98], calculus for interactive GSMP [BG02], prioritized stochastic
automata [BD04], stochastic process algebra [DK05b], stochastic automata
[DK05a, DGHS18], and the modeling and description language for stochas-
tic timed systems MoDeST [BDHK06]. To sum up, the stochastic process al-
gebras can be viewed as high-level specification formalisms corresponding
to CTMC, GSMP, and their nondeterministic extensions.
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Chapter 4

Thesis contribution

In the collection, the papers are ordered chronologically from [P1] pub-
lished in 2010 to [P11] published in 2017. Here, we explain the results rear-
ranged to five logical blocks. In the first one, we comment the results pub-
lished in [P2], [P3], [P5] and [P6], that relates to GSMP analysis and discuss
stability of the GSMP models. This is the only block with fully stochastic
models, in all the others we study decision processes or games. Section 4.2
is devoted to GSMG with objectives specified by deterministic timed au-
tomata [P1]. Then we focus on compositional approach and study games
on IMC published in [P4]. In Section 4.4, we demonstrate our results on
parameter synthesis in CTMC extended with some non-Markovian events.
Such contributions were presented in [P7], [P8], [P9], and [P10]. Finally,
we comment construction of so-called resilient strategies for MDP models
introduced in [P11].

4.1 Analysis of Generalized Semi-Markov Processes

In this section, we focus on the analysis of GSMP, i.e., the most general
fully stochastic class. In [P3], we show fundamental instability that can oc-
cur in GSMP models. It was a surprise that allowing only two fixed-delay
events and one variable-delay event may cause an unstable behavior of a
GSMP. In particular, in an unstable GSMP there are states for which both
ds and cs frequencies may not be defined for almost all runs. Note that
there had been already presented approximation algorithms computing
these quantities on GSMP [ACD91, ACD92] or some approximation tech-
niques were proposed to analyze GSMP without questioning existence of a
result, e.g., [DTGN84, Lin93, GL94, LS96, LRT99, HTT00, ZFGH00, ZFH01,
SDP03, CGV09].

In more detail, we realized that the traditional region-graph representa-
tion of reachable configurations of the unstable GSMP models fails in two
fundamental principles:
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• It is not true that with probability one each run ends in one of the
bottom strongly connected components of the region-graph.

• It is no true that with probability one each run visiting a bottom
strongly connected component will visit all nodes of the component
infinitely often.

We demonstrate this on two simple examples, and so we disprove the cor-
rectness of the verification algorithms presented in [ACD91, ACD92].

The problem of non-stable GSMP models lies in fixed-delay events that
can immediately schedule themselves whenever they occur; such an event
can occur periodically like ticking of clocks. Hence, we define a syntac-
tically restricted GSMP class, called one-ticking GSMP. Roughly speaking,
in one-ticking GSMP we allow to have at most one periodically ticking se-
quence of fixed-delay events. In the context of the hierarchy depicted in
Figure 2.1, we can note that all MRP models are one-ticking GSMP, but a
one-ticking GSMP model is not necessarily regenerative.

We show that all one-ticking GSMP models are stable, i.e., the frequen-
cies ds and cs are almost surely well defined for each state s. We also show
that the frequencies can be computed not only for the one-ticking GSMP
states but also for states of a deterministic TA “observer” of the one-ticking
GSMP. Finally, we provide algorithms for approximation of these frequen-
cies.

The above-mentioned results were published in [P3]. The positive re-
sults were previously published in a weaker variant for SMP in [P2]. We
also reformulated the negative result for the community working with Petri
nets and published it as a short paper in [P5]. Our stability results are also
closely relevant to almost-sure fairness in STA (every edge which is enabled
infinitely often is taken infinitely often almost surely) [BBB+08] and to de-
cisiveness (almost surely every run either reaches a given target state or a
state from which the target state is no longer reachable) studied on infinite-
state Markov chains in [AHM07]. Concerning up-to-date results, we refer
to [BBBC18] where, among others, the positive results of [P3] are presented
in context of stochastic transition systems that represent a unified view on
STA, GSMP, and ESPN. Finally, it is worth to note that deciding whether a
GSMP is stable (or STA is almost-surely fair) is still an open problem.

4.1.1 Phase-type Fitting

Let us discuss whether it makes sense to develop analysis techniques for
GSMP when one can use a phase-type fitting technique [Neu81] to approx-
imate generally distributed events by CTMC models, i.e., every GSMP can
be approximated by a CTMC.

In [P6], we focused on distributions that are known to require an exces-
sive number of states to reach a reasonably precise approximation by the
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phase-type technique. Typical examples of such distributions are uniform,
discrete, and shifted distributions. The shifted distribution is, for exam-
ple, a packet-delivery time — there is some physical bound on the delivery
time; hence, the packet is delivered earlier than this bound with zero prob-
ability. Note that all the hardly approximated distributions contain inter-
vals with zero density. Addressing this class of distributions, we suggest
an alternative approximation. We generalize phase-type fitting by using
also fixed-delay events, i.e., we are approximating the models by fdCTMC
instead of CTMC. Thanks to fixed-delay events, we split the density func-
tion into multiple intervals and, within each interval, we then approximate
the density with standard phase-type fitting. We call this technique inter-
val phase-type (IPH) approximation. We provide experimental evidence that
our IPH method requires only a moderate number of states to approximate
distributions that contain regions of zero density.

The fdCTMC resulting from IPH can be analyzed by state-of-the-art
techniques (e.g., the subordinated Markov chain method originally pub-
lished for the equivalent DSPN class [Lin93]). Let us recall that some fd-
CTMC models can be unstable and so the analysis techniques are usually
applicable only to subclasses such as MRP, ACTMC, or 1-fdCTMC. Thus,
our result promises an efficient approach to the analysis of non-Markovian
models and motivates further research on MRP, ACTMC, and fdCTMC.

4.2 Generalized Semi-Markov Games

Our first contribution to this field is the definition of the generalized semi-
Markov game (GSMG) [P1], the two-player game extension of GSMP. It
was introduced as a generalization of continuous-time stochastic games
[BFK+13, RS10], whose event-time distributions are only exponentially dis-
tributed.

Here, we describe GSMG in more detail as a GSMP that after each
event-driven transition goes to a game state, called control, belonging to
one of the two players. In each control, the particular player chooses one of
the available actions that randomly lead to subsequent GSMP states. The
controls and the actions are considered to be performed instantly, i.e., the
time passes in the GSMP states only. We also assume that all event-time
distributions are continuous with positive density on one interval of time
values. As the fixed-delayed events are not allowed in here, we are not
afflicted with the instability discussed in the previous section.

On GSMG, we study game objectives specified by a deterministic timed
automaton (DTA) [ACD92]. Intuitively, a timed automaton “observes” a
play of a given GSMG and checks whether certain timing constraints are
satisfied, or not. Player I wins all plays that are accepted by the timed
automaton, and Player II wins the others.
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Namely, we show that in this setting Player I does not need to have
an optimal strategy. However, if Player I has some almost-sure winning
strategy, then she also has an almost-sure winning strategy which can be
encoded by a deterministic timed automaton A. The automaton A reads
the history of a play, and the decisions depend only on the regions of the
resulting configuration entered by A. Further, we provide an exponential-
time algorithm that decides the existence of such a strategy and constructs
it if it exists.

Our constructions and proofs are combinations of standard techniques
(used for timed automata and finite-state games) and some new non-trivial
observations that are specific to the considered model. We also adapt
some ideas presented in [ACD92] (in particular, we use the concept of δ-
separation). Although the results of [P1] consider only reachability accep-
tance of the DTA observer, they were easily extended to DTA with a Büchi
acceptance condition in the PhD thesis of Jan Krčál [Krč14].

4.3 Interactive Markov Chains

Let us recall (see Section 2.4.2) that Interactive Markov chains (IMC) are
compositional behavioral models extending both labeled transition sys-
tems and continuous-time Markov chains. In fact, they are CTMC where
some event-time distributions are not specified, and such events are rather
seen as labels ready for synchronization with an environment. The compo-
sitional approach assumes that the labels are synchronized with the corre-
sponding labels in some components running in parallel.

The main advantage of IMC is the compositionality, which allows for
comfortable hierarchical design and analysis of systems. When a label is
considered only for synchronization among internal subcomponents of an
IMC, it can be hidden for external synchronization using a hiding operator.
An IMC where all labels are hidden is called closed. Let us denote by internal
interactions all the transitions representing internal synchronization based
on labels that are hidden for external components. External interactions will
stand for communication with other components. Based on this, we can
introduce the maximal-progress assumption governing the interplay of event
delays and labeled interactions of an IMC component: Internal interactions
are assumed to happen instantaneously and therefore take precedence over
delay transitions. This does not hold for the external interactions that stand
for synchronization with other components; hence, they could be delayed.
Note that a closed IMC is not necessarily fully stochastic, there still could
be more internal interactions leading from a state, what we call the internal
nondeterminism. The nondeterminism caused by an external interaction is
called external nondeterminism.

In [P4] we analyze open IMC, i.e., those that are not necessarily closed.
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In particular, we introduce the problem of synthesizing optimal control for
time-bounded reachability in an IMC interacting with an unknown envi-
ronment, provided no state has both internal and external interactions. In
our game based analysis of an open IMC C, we assume that the internal
nondeterminism of C is resolved by Player I, who controls C. Player II
constructs an IMC E representing the environment (synchronized by com-
mon non-hidden labels with C) and resolves the nondeterminism caused
by external interactions. Concretely, assume we are given an IMC C which
contains some internal nondeterministic interactions and also offers some
external interactions for synchronization to an unknown environment. Our
goal is to synthesize a scheduler controlling the internal transitions which
maximizes the probability of reaching a set G of goal states, in time T no
matter what and when the environment E decides to synchronize with the
non-hidden actions. Hence, the environment E ranges over all possible
IMC able to synchronize with the non-hidden actions of C.

To get a principal understanding of the complications faced, we need
to consider a restricted setting, where C does not enable internal and ex-
ternal interactions at the same state. We provide an algorithm which ap-
proximates the probability in question up to a given precision ε > 0 and
also computes an ε-optimal scheduler. The algorithm consists of two steps.
First, we reduce the problem to a game where the environment is not an
IMC but can decide to execute external interactions at nondeterministically
chosen time instances. In a second step, we solve the resulting game on
C using discretization. Our discretization is based on the same approach
as the algorithm of [NZ10]. However, the algorithm as well as its proof of
correctness is considerably more complicated due to the nondeterministic
choices of Player II controlling the environment E. We finally discuss what
happens if we allow internal and external transitions to be enabled at the
same time.

To the best of our knowledge, in [P4] we present the first analysis that
is focused on open IMC. The games we consider exploit special cases of the
games studied in [BF09] and in [P1]. However, both papers prove decid-
ability only for qualitative reachability problems and do not discuss com-
positionality issues. Further, while systems of [RS11, BFK+09] are very sim-
ilar to ours, the structure of the environment is fixed there and the verifica-
tion is thus not compositional. The same holds for [Spr11, HNP+11], where
time is under the control of the components.

Follow-up results were published in [HKK13], where the IMC compo-
nent representing the environment is restricted by a modal continuous time
automaton. This allows to omit our constraint forbidding common internal
and external interactions, and thus it enables the first truly compositional
verification. The results were also applied in dynamic fault tree analysis
[KK15, BBH+16]. Our result uses the approximation scheme of [NZ10] that
was subsequently improved in [HH15]. A distributed synthesis for more
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IMC components running in parallel was studied in [HKV16]. Up-to-date
research on compositional stochastic real-time systems is currently also de-
veloped in the SBIP (Stochastic real-time Behavior, Interaction, Priority)
framework [NBB+15, MNB+18]. Based on our results for open IMC, the
compositional design of stochastic systems was also studied on stochastic
timed automata [BBCM16].

4.4 Synthesis of Delays in fdCTMC

In the section, we consider the parametric version of 1-fdCTMC where the
delay times of fixed-delay events are specified by parameters, rather than
concrete values. Our goal is to synthesize the values of these parameters
that optimize the specified objective. As an objective, we first deal with
expected reward accumulated before reaching a given target, then we study
long-run average reward optimization.

4.4.1 Delays for Expected Accumulated Reward Objective

In [P7] we published an algorithm solving the synthesis problem by reduc-
tion to a finite MDP whose actions correspond to discretized (i.e., rounded
to a finite mesh) delay times in the individual states. On such an MDP
we apply standard polynomial time algorithm for the synthesis of the op-
timal delays. The non-trivial part is to prove that the delays may be dis-
cretized, i.e., for each ε > 0, we can compute a sufficiently small discretiza-
tion step which guarantees that the optimal solution of the finite MDP is
an ε-optimal solution for the original fdCTMC. We show that naive com-
putation of the discretization step from the maximal slope is not possible.
Even a very small change of the parameter can cause an arbitrarily high
change in the expected reward. This happens when the delays are near
zero. Our solution, based on rather non-trivial insights into the structure
of 1-fdCTMC models, shows that optimal delays do not need to be close
to zero. Hence, we identify “safe” delays that may be rounded with an
error bounded (exponentially) in the size of the system. This leads to an
exponential time algorithm for solving the optimization problem.

We experimentally implemented the proposed technique in our repos-
itory branch of the PRISM model checker [KNP11] and evaluated it on
some examples. The results were published in [P8]. During the experi-
ments, we realized that most of the computation time was spent by the
construction of the discretized MDP, and even for some very small exam-
ples, the discretized MDP exceeded our 448 GiB RAM. The problem was
not in the number of states of the MDP but in the huge number of ac-
tions that correspond to suitably discretized values of the delays. Hence,
we designed a symbolic synthesis algorithm which avoids the explicit con-
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struction of the large action spaces. Instead, the algorithm computes small
sets of “promising” candidate actions on demand. The candidate actions
are selected by minimizing a certain objective function. Technically, this is
done by computing the symbolic derivative of the objective function and
extracting a high-degree univariate polynomial whose roots are precisely
the points where the derivative takes zero value. Since roots of univari-
ate polynomials can be isolated very efficiently using modern mathemati-
cal software (such as Maple [B+12]), we achieve not only drastic memory
savings but also speedups by three orders of magnitude compared to the
previous method. We demonstrated that our algorithm (experimentally
implemented in PRISM with an external use of Maple) can synthesize de-
lays for non-trivial models of large size (with more than 20,000 states). This
significant improvement was published in [P9].

4.4.2 Delays for Long-Run Average Reward Objective

Here we concentrate on long-run average reward optimization. Our ap-
proach is also based on a reduction to the problem of finding optimal strate-
gies in a symbolically represented decision process, but it is not a straight-
forward extension of the previous work. We need to use semi-Markov
Decision Processes instead of MDP. The discretization bounds for the ex-
pected accumulated reward cannot be directly employed here, as the long-
run average objectives rely on fractions of expected accumulated rewards
and timings.

The results are published in [P10] where instead for 1-fdCTMC it is for-
mulated for (more general) ACTMC models. The event-time distributions
of the optimized alarms have to satisfy four abstractly formulated criteria.
We show that these criteria are fulfilled, e.g., for fixed-delay events, uni-
formly distributed alarms (where the beginning is fixed and we synthesize
the end of the time interval), and Weibull distributions (where the shape k
is fixed to any natural number and we synthesize the scale parameter λ).
Note that exponential distribution is a special case of the Weibull distribu-
tion, where the fixed shape constant k is 1. Our experimental evaluation
shows the applicability of the method on a case study where the goal is to
minimize the power consumption of a disk drive [P10].

4.4.3 Follow-up Work

An extended version of [P10] was recently accepted for publication in
ACM Transactions on Modeling and Computer Simulation. In the jour-
nal version, we prolong the list of supported non-exponential alarm dis-
tributions in ACTMC and also discuss solutions for ACTMC with non-
localized alarms. Alarms are non-localized whenever we want to synthe-
size the same delay-time distribution for an event no matter in what state
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it is scheduled. This approach requires to use partially observable semi-
MDP and appropriate methods to find optimal strategies for them. The
non-localized delays in the context of expected accumulated rewards are
also briefly discussed in [P7]. For more details, we refer to [Kor17] where
all the results of this section are presented for ACTMC with both localized
and non-localized alarms.

4.5 MDP with Resilient Control

The last contribution [P11] is devoted to models of resilient systems repre-
sented by MDP. In resilient systems, there are repair mechanisms that have
to return the system to an operational state when an error occurs.

Usually, constraints on the repair mechanisms are imposed, e.g., con-
cerning the time or resources required (such as energy consumption or
other kinds of costs). For systems modeled by MDP, we introduce the con-
cept of resilient schedulers, which represent control strategies guarantee-
ing that these constraints are always met with probability greater then a
given number. Technically, for a given resource bound R and a probabil-
ity threshold p, we call a scheduler resilient if it ensures with probability at
least p that each error is repaired with at most R resources. Assigning re-
wards to the operational states of the system, we then aim towards resilient
schedulers which maximize the long-run average reward, i.e., the expected
mean payoff. We present a pseudo-polynomial (polynomial when R is en-
coded in unary) algorithm that decides whether a resilient scheduler exists
and if so, yields an optimal resilient scheduler. We also show that already
the decision problem asking whether there exists a resilient scheduler is
PSPACE-hard.

The key technical ingredients of our results are non-trivial observations
about the structure of resilient schedulers, which connect the studied prob-
lems to the existing works on MDPs with multiple objectives and optimal
strategy synthesis [Kal97, EKVY08, BBC+14]. The PSPACE-hardness result
is obtained by a simple reduction of the cost-bounded reachability problem
in acyclic MDPs [HK15].
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[BBC+14] T. Brázdil, V. Brožek, K. Chatterjee, V. Forejt, and A. Kučera.
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On time-average limits in deterministic and stochastic Petri
nets. In ACM/SPEC International Conference on Performance En-
gineering, ICPE’13, Prague, Czech Republic - April 21 - 24, 2013,
pages 421–422. ACM, 2013.

[BKK+15] T. Brázdil, L’. Korenčiak, J. Krčál, P. Novotný, and V. Řehák.
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sity using piecewise phase-type approximation. In Computer
Performance Engineering - 11th European Workshop, EPEW 2014,
Florence, Italy, September 11-12, 2014. Proceedings, volume 8721
of Lecture Notes in Computer Science, pages 119–134. Springer,
2014.
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