
Partially Ordered Automata
Expressivity, Complexity, and Applications

Habilitation Thesis

2019 RNDr. Tomáš Masopust, Ph.D., DSc.

Abstract

A nondeterministic finite automaton (NFA) is partially ordered if the only cycles in its transition
diagram are self-loops. Expressivity of partially ordered NFAs (poNFAs) can be characterized
by the Straubing-Thérien hierarchy. The most studied level of the hierarchy, level 1, is formed
by piecewise testable languages – regular languages recognized by confluent partially ordered
DFAs. Omitting confluence results in partially ordered DFAs characterizing R-trivial languages,
a class of languages strictly between levels 1 and 3

2 of the hierarchy. Lifting the notion from
DFAs to NFAs, Schwentick, Thérien and Vollmer showed that poNFAs characterize level 3

2 of
the hierarchy. We extend this study and provide an NFA characterization of R-trivial languages
and piecewise testable languages.

Our motivation to study partially ordered automata comes from database theory and schema
languages for XML data, namely from scenarios in which we want to describe something
complex by means of a simple language. The technical core consists of separation problems that
are usually of the form “Given two languages K and L, does there exist a language S, coming
from a family F of simple languages, such that S contains everything from K and nothing
from L?” We focus on the case where “simple languages” are represented by piecewise testable
languages. We show that the separation problem of regular languages by piecewise testable
languages is PTIME-complete. Our construction is based on the non-existence of a particular
infinite sequence of words alternating between the languages, called a tower. The number of
words in the tower is its height. We show that two languages are separable if and only if there
is no infinite tower between them. The height is further closely related to the complexity of
computing a separator. We show that the upper bound on the height of finite towers is polynomial
in the number of states and exponential in the size of the alphabet, and that it is asymptotically
tight if the size of the alphabet is fixed. If the alphabet may grow linearly with the number of
states, then the lower bound on the height of towers is exponential with respect to that number.

Another motivation comes from discrete event systems. On some level of abstraction, discrete
event systems can be seen as finite automata with possible additional properties. One of the
fundamental properties is that the system is deadlock free. In some sense, poNFAs are the
simplest deadlock-free models, and hence the study of their lower-bound complexity questions
covers most of the practical cases. The problems of our interest are the questions whether the
behavior of two systems is equivalent or in inclusion. Since the lower-bound complexity of the
problems is covered by the complexity of universality, we primarily investigate the question
whether the behavior of a system is universal. We further discuss consequences of our results to
the verification of detectability and opacity of discrete event systems.

ii

Acknowledgements

I would like to thank all my co-authors who worked with me on the topics of this thesis. Special
thanks go to the Department of Computer Science of the Palacky University, to the Institute of
Mathematics of the Czech Academy of Sciences, to the Institute of applied informatics of the
Bayreuth University, and to the Faculty of Informatics of the Technical University Dresden who
maintained a pleasant and flexible environment for my research.

During the time, my research was supported by the following projects:

• by the Czech Science Foundation project P202/11/P028 (Decentralized and coordination
supervisory control),

• by the Czech Science Foundation project GA15-02532S (Modular and Decentralized
Control of Discrete-Event and Hybrid Systems with Communication),

• by the Ministry of Education, Youth, and Sport of the Czech Republic under the Kontakt II
research project LH13012 (Multi-level supervisory control (MUSIC)),

• by the German Research Foundation (DFG) in Emmy Noether grant MA 4938/2-1 (Quer-
schnitte: XML und formale Sprachen – Theorie und Praxis),

• by the German Research Foundation (DFG) in Emmy Noether grant KR 4381/1-1 (Daten-
integration und -abfrage durch die Zusammenführung von Ontologien und Datenbanken),

• and by the Czech Science Foundation project GC19-06175J (Compositional Methods for
the Control of Concurrent Timed Discrete-Event Systems).

My greatest thanks go to my wife Iveta and my daughter Sofie for their infinite patience and
support.

Copyright c© 2019 Tomáš Masopust

iii

Contents

1 Introduction 3
1.1 Papers in the Collection . 6

2 Basic Notation 8

3 Descriptional Complexity 9
3.1 Reversal . 9

3.1.1 Reversal of R-trivial Languages . 9
3.1.2 Reversal of J -trivial Languages . 10

4 Separability 12
4.1 Separability of Languages . 13
4.2 Asymmetric Separation and Suffix Order . 15
4.3 Computation of Piecewise Testable Separators 16

4.3.1 Bounds on the Height of Towers . 17

5 Complexity of Universality 20
5.1 Partially Ordered NFAs . 22
5.2 Restricted Partially Ordered NFAs . 22

5.2.1 Deciding Universality of rpoNFAs . 24
5.3 PtNFAs . 25

5.3.1 Deciding Universality for ptNFAs . 25
5.4 Inclusion and Equivalence of Partially Ordered NFAs 28

6 Piecewise Testable Languages 30
6.1 Finding a Boolean Combination . 30

6.1.1 Step 1: Checking Piecewise Testability 31
6.1.2 Step 2: Computing the Minimal k . 31
6.1.3 Step 3: Computation of Representatives 33

6.2 Piecewise Testability and Nondeterministic Automata 33
6.3 Complexity . 34

6.3.1 Complexity of Deciding k-Piecewise Testability 34
6.3.2 Complexity of Deciding Piecewise Testability 35

7 Applications 37
7.1 Deterministic Regular Expressions . 37
7.2 Detectability . 38
7.3 Opacity . 40

1

8 Conclusion 44

2

1. Introduction

The relationship between logic and formal languages is studied for decades. In 60th, Büchi [22]
and Elgot [40] showed that a language is regular if and only if it is definable in monadic second
order logic. Later, McNaughton and Papert [87] proved that first-order logic describes star-
free languages, a class of regular languages for which Schützenberger [109] gave an algebraic
characterization – star-free languages are those regular languages whose syntactic monoid is
aperiodic.

Restricting the number of quantifier alternations in first-order logic formulae in the prenex
normal form results in a so-called quantifier alternation hierarchy. The choice of predicates in
the signature of the first-order logic then corresponds to several such hierarchies. The well-known
and closely related hierarchies are the Straubing-Thérien hierarchy [122, 124] and the dot-depth
hierarchy [20, 29, 123].

The Straubing-Thérien hierarchy is alternatively defined as follows. For an alphabet Σ,
L (0) = { /0,Σ∗} and, for integers n≥ 0, the levels L (n+ 1

2) and L (n+1) are defined so that

• level L (n+ 1
2) consists of all finite unions of languages L0a1L1a2 . . .akLk with k ≥ 0,

L0, . . . ,Lk ∈L (n), and a1, . . . ,ak ∈ Σ, and

• level L (n+ 1) consists of all finite Boolean combinations of languages from the level
L (n+ 1

2).

The hierarchy does not collapse on any level [20].
There is a constant interest in automata characterizations of the levels of the Straubing-

Thérien hierarchy, in particular in decision and complexity questions, such as the membership of
a language in a specific level of the hierarchy. Despite a recent progress [2, 97, 99], deciding
whether a language belongs to level k of the Straubing-Thérien hierarchy is still open for k > 7

2 .
The Straubing-Thérien hierarchy further has close relations to the dot-depth hierarchy and to
complexity theory [128].

The most studied level of the Straubing-Thérien hierarchy is level 1, also known as piecewise
testable languages introduced by Simon [115]. Simon showed that piecewise testable languages
are those regular languages whose syntactic monoid is J -trivial and that they are recognized
by confluent partially ordered DFAs. An automaton is partially ordered if its transition relation
induces a partial order on states – the only cycles in its transition diagram are self-loops – and
it is confluent if for any state q and any two of its successor states s and t directly accessible
from q by transitions labeled by a and b, respectively, there is a word w over the alphabet {a,b}
such that a common state is reachable from both states s and t under w, see Figure 1.1 for an
illustration.

Omitting confluence from the definition results in partially ordered DFAs (poDFAs) studied
by Brzozowski and Fich [19]. They showed that poDFAs characterize R-trivial languages, a
class of languages strictly between level 1 and level 3

2 of the Straubing-Thérien hierarchy (the
name comes from the Green’s R relation because the syntactic monoid of R-trivial languages

3

q
s

t

a

b

w ∈ {a,b}∗

w ∈ {a,b}∗

Figure 1.1: Confluence

is R-trivial). Lifting the notion from DFAs to NFAs, Schwentick, Thérien and Vollmer [111]
showed that partially ordered NFAs (poNFAs) characterize level 3

2 of the Straubing-Thérien
hierarchy. Hence poNFAs are more expressive than poDFAs. Languages of level 3

2 are also known
in the literature as Alphabetical Pattern Constraints, which are regular languages effectively
closed under permutation rewriting [14].

Motivated by Brzozowski’s minimization algorithm based on the double computation of
the reverse operation, we study the state complexity of the reverse of minimal poDFAs. State
complexity of an automaton or of a language is the number of states of the minimal DFA
recognizing the language. We establish a tight bound on the state complexity of the reverse of
poDFAs and confluent poDFAs showing that the state complexity of the reverse of a (confluent)
poDFA of the state complexity n is 2n−1. The witness is ternary for poDFAs and (n− 1)-ary
for confluent poDFAs, and the bound can be met neither by a binary poDFA nor by a confluent
poDFA over an (n− 2)-element alphabet. We further provide a characterization of the tight
bounds for poDFAs depending on the state complexity and the size of its alphabet. Chapter 3 is
devoted to the overview of this study.

Our main interest in partially ordered automata is in particular motivated by two problems.
The first problem comes from database theory and schema languages for XML data, namely

from efficient approximate query answering and increasing the user-friendliness of XML Schema.
Both are motivated by scenarios in which we want to describe something complex by means of a
simple language. The technical core of our scenarios consists of separation problems, which are
usually of the form “Given two languages K and L, does there exist a language S, coming from
a family F of simple languages, such that S contains everything from K and nothing from L?”
The family F of simple languages could be, for example, languages definable in (a fragment
of) first-order logic, piecewise testable languages, or languages definable with a special class of
automata.

We focus on simple languages represented by piecewise testable languages and their special
variants, so-called k-piecewise testable languages. We show that the separation problem of regular
languages by piecewise testable languages is PTIME-complete. Our construction showing the
membership in PTIME is based on the non-existence of a particular infinite sequence of words,
called a tower. A tower is a sequence of words alternating between two languages in such a way
that every word is a subsequence of the following word. The height of a tower is the number
of words in the sequence. If there is no tower of infinite height, then the height of all towers
between the languages is bounded. We show that two languages are separable if and only if
there is no infinite tower between them. The height of highest towers is closely related to the
complexity of computing a separator. Therefore, we further investigate upper and lower bounds
on the height of maximal finite towers. We show that the upper bound is polynomial in the
number of states and exponential in the size of the alphabet, and that it is asymptotically tight if
the size of the alphabet is fixed. If the alphabet may grow linearly with the number of states, then
the lower bound on the height of towers is exponential with respect to that number. In this case,
there is a gap between the lower bound and the upper bound, and the asymptotically optimal
bound remains open. Chapter 4 is devoted to these problems.

A regular language is k-piecewise testable if it is a finite boolean combination of languages of
the form Σ∗a1Σ∗ · · ·Σ∗anΣ∗, where ai ∈ Σ and 0≤ n≤ k. Given a DFA A and k≥ 0, it is an NL-

4

complete problem to decide whether the language L(A) is piecewise testable and, for k≥ 4, it is
CONP-complete to decide whether the language L(A) is k-piecewise testable [67]. We discuss
the complexity for k < 4. Furthermore, it is known that the depth of the minimal DFA equivalent
to A serves as an upper bound on k; if L(A) is piecewise testable, then it is k-piecewise testable
for k equal to the depth of A [68]. We show that some form of nondeterminism does not violate
this upper bound result. Specifically, we define a class of self-loop deterministic poNFAs, called
ptNFAs, that characterize piecewise testable languages and show that the depth of a ptNFA
provides an (up to exponentially better) upper bound on k than the minimal DFA. Furthermore,
if the language L(A) is piecewise testable, we want to express it as a Boolean combination of
languages of the above form. Our idea is as follows. If the language is piecewise testable, then it
is k-piecewise testable for some k, and hence there is a congruence ∼k of finite index such that
L(A) is a finite union of ∼k-classes. Each class is characterized by an intersection of languages
of the from Σ∗a1Σ∗ · · ·Σ∗anΣ∗, where n≤ k, and their complements. To represent the ∼k-classes,
we make use of the ∼k-canonical DFA. We identify the states of the ∼k-canonical DFA whose
union forms the language L(A) and use them to construct the required Boolean combination.
We overview these problems and results in Chapter 6.

Our second motivation comes from discrete event systems. On some level of abstraction,
discrete event systems can be seen as finite automata with some additional properties. A funda-
mental property is, e. g., a requirement that the system is deadlock free. In some sense, poNFAs
are the simplest deadlock-free models, and hence the study of the lower-bound complexity
questions for these models covers most of the practical cases. The problems of our interest are
the questions whether the behaviors of two systems are equivalent or in inclusion. Since the
lower-bound complexity of these problems is covered by the complexity of universality, we focus
on the question whether the behavior of the system is universal. An automaton is universal if it
accepts all words over its alphabet. Deciding universality is well known to be PSPACE-complete
for NFAs and regular expressions [1], and the same proof actually shows PSPACE-completeness
for poNFAs. We improve the result by showing that it remains true even when restricting to
a fixed (binary) alphabet. This is already nontrivial since the standard encodings of alphabet
symbols in, e. g., binary can turn self-loops into longer cycles. A lower, CONP-complete com-
plexity bound can be obtained if we require that all self-loops are deterministic in the sense
that the symbol read in the loop cannot occur in any other transition from that state. We find
that such restricted poNFAs (rpoNFAs) characterize the class of R-trivial languages, and we
establish the complexity of deciding whether the language of an NFA is R-trivial. The limitation
to fixed alphabets turns out to be essential even in the restricted case: deciding universality of
rpoNFAs with unbounded alphabets is PSPACE-complete. From the practical point of view, the
languages of rpoNFAs are definable by deterministic (one-unambiguous) regular expressions,
which makes them interesting in schema languages for XML data. Using a nontrivial extension
of the proofs for rpoNFAs, we show the same complexity of the universality problem for ptNFAs.
This strengthens the previous result and provides a new lower-bound complexity for some other
problems, including inclusion, equivalence, and k-piecewise testability. Chapter 5 is devoted to
this topic.

Finally, in Chapter 7, we show several consequences of our previous results in verification of
system-theoretic properties of discrete event systems – detectability and opacity. Detectability
arises in the state estimation of systems and asks whether the current state of the system can
be determined unambiguously after a finite number of observations via some or all trajectories.
Opacity is related to the privacy and security analysis. The system has a secret modeled as a set
of secret states and an intruder is modeled as a passive observer with limited observation. The
system is opaque if the intruder never knows for sure that the system is in a secret state, i. e., the
secret is not revealed.

5

1.1 Papers in the Collection
This thesis is based on the papers listed below, with full versions attached in the appendices.

[34] W. Czerwinski, W. Martens, and T. Masopust. Efficient separability of regular languages
by subsequences and suffixes. Proc. of the 40th International Colloquium on Automata,
Languages, and Programming (ICALP), volume 7966 of LNCS, pages 150–161. Springer,
2013.

Contribution: 33 %. General discussions of the problems and solutions, ideas of some
proofs, including the use of the union-free decomposition, wrote some parts.

[54] Š. Holub, G. Jirásková, and T. Masopust. On upper and lower bounds on the length of
alternating towers. Proc. of the 39th International Symposium on Mathematical Foun-
dations of Computer Science (MFCS), volume 8634 of LNCS, pages 315–326. Springer,
2014.

Contribution: 40 %. Author of the computation of a separator, of the upper-bound result,
and of the exponential lower-bound result; main ideas of the proofs; wrote the paper.

[55] Š. Holub, T. Masopust, and M. Thomazo. On the height of towers of subsequences and
prefixes. Information and Computation 265:77–93, 2019.

This paper is an extended and full version of paper [54].

[60] G. Jirásková and T. Masopust. On the state and computational complexity of the reverse of
acyclic minimal DFAs. Proc. of the 17th International Conference on Implementation and
Application of Automata (CIAA), volume 7381 of LNCS, pages 229–239. Springer, 2012.

Contribution: 50 %. Main ideas of some proofs; writing.

[61] G. Jirásková and T. Masopust. On the state complexity of the reverse of R- and J -trivial
regular languages. Proc. of the 15th International Workshop on Descriptional Complexity
of Formal Systems (DCFS), volume 8031 of LNCS, pages 136–147. Springer, 2013.

Contribution: 50 %. Author of the upper-bound and some lower-bound results; wrote the
paper.

[72] M. Krötzsch, T. Masopust, and M. Thomazo. Complexity of universality and related
problems for partially ordered NFAs. Information and Computation 255:177–192, 2017.

Contribution: 60 %. Main author; main ideas of the proofs; wrote the paper; the main
contribution of the coauthors is in the PSPACE-hardness proof of Theorem 28 and in
improving the text.

[81] T. Masopust. Piecewise testable languages and nondeterministic automata. Proc. of
the 41st International Symposium on Mathematical Foundations of Computer Science
(MFCS), volume 58 of LIPIcs, pages 67:1–67:14. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2016.

[82] T. Masopust. Complexity of deciding detectability in discrete event systems. Automatica
93:257–261, 2018.

[83] T. Masopust. Separability by piecewise testable languages is PTIME-complete. Theoretical
Computer Science 711:109–114, 2018.

6

[84] T. Masopust and M. Krötzsch. Universality of ptNFAs is PSPACE-complete. Proc. of 44th
International Conference on Current Trends in Theory and Practice of Computer Science
(SOFSEM), volume 10706 of LNCS, pages 413–427, Springer, 2018.

Contribution: 60 %. Main author; main ideas of the proofs; wrote the paper; coauthor’s
contribution in the PSPACE-hardness proof of Theorem 2.

[85] T. Masopust and M. Krötzsch. Partially ordered automata and piecewise testability.
Manuscript, 2019.

This manuscript is a completely revised and extended version of my conference paper [81],
and of the previous conference paper [84].

Contribution: 75 %. Main author; main ideas of the proofs; wrote the paper; coauthor’s
contribution in the PSPACE-hardness proof of the universality for ptNFAs.

[86] T. Masopust and M. Thomazo. On boolean combinations forming piecewise testable
languages. Theoretical Computer Science 682:165–179, 2017.

Contribution: 50 %. Main author; Lemmas 5, 9, 10, Theorem 31, and Proposition 32
obtained in fruitful discussions; main ideas of some proofs; wrote the paper.

7

2. Basic Notation

In this section, we briefly unify the basic notation used in this thesis. Specific notions are
introduced in the respective sections. The notation used in the papers on which the thesis is
based may differ.

We assume that the reader is familiar with the basic notions of automata theory [1, 117] and
complexity theory [93]. The cardinality of a set A is denoted by |A| and the power set of A by 2A.
An alphabet is a finite nonempty set. The free monoid generated by an alphabet Σ is denoted by
Σ∗. A word over Σ is any element of Σ∗; the empty word is denoted by ε . For a word w ∈ Σ∗,
|w|a denotes the number of occurrences of letter a in w. If w = xyz, then x is a prefix, y a factor,
and z a suffix of w. A prefix (factor, suffix) of w is proper if it is different from w. A language
over Σ is a subset of Σ∗. For a language L over Σ, let Lc = Σ∗ \L denote the complement of L.

A nondeterministic finite automaton (NFA) is a quintuple A = (Q,Σ,δ , I,F), where Q is a
finite nonempty set of states, Σ is an input alphabet, I ⊆Q is a set of initial states, F ⊆Q is a set of
accepting states, and δ : Q×Σ→ 2Q is the transition function that can be extended to the domain
2Q×Σ∗ by induction. The language accepted by A is the set L(A) = {w∈ Σ∗ | δ (I,w)∩F 6= /0}.

A path π from a state q0 to a state qn under a word a1a2 · · ·an, for some n ≥ 0, is a se-
quence of states and input symbols q0a1q1a2 . . .qn−1anqn such that qi+1 ∈ δ (qi,ai+1), for all
i= 0,1, . . . ,n−1. The path π is accepting if q0 ∈ I and qn ∈F . We use the notation q0

a1a2···an−−−−−→ qn
to denote that there exists a path from q0 to qn under the word a1a2 · · ·an. A path is simple if all
states of the path are pairwise distinct. The number of states on the longest simple path of A ,
starting in an initial state, decreased by one (i. e., the number of transitions on that path) is called
the depth of A , denoted by depth(A).

An automaton A is complete if every transition is defined in every state, that is, for every
state q of A and every letter a ∈ Σ, the set δ (q,a) is nonempty.

An NFA A is deterministic (DFA) if |I| = 1 and |δ (q,a)| ≤ 1 for every q in Q and a in
Σ. Note that we allow transitions to be undefined. To obtain a complete automaton, it is then
necessary to add a sink state.

The reachability relation ≤ on the set of states is defined by p ≤ q if there exists a word
w∈ Σ∗ such that q∈ δ (p,w). An NFA A is partially ordered (poNFA) if the reachability relation
≤ is a partial order. For two states p and q of A , we write p < q if p ≤ q and p 6= q. A state
p is maximal if there is no state q such that p < q. Partially ordered automata are sometimes
called acyclic in the literature, but the reader should keep in mind that in this case self-loops are
allowed.

8

3. Descriptional Complexity

Descriptional complexity, also known as state complexity, studies the questions of the form:

Given automata A1,A2, . . . ,An and an n-ary operation op on languages. What is
the minimum number of states of the automaton (deterministic or nondeterministic)
recognizing the language op(L(A1),L(A2), . . . ,L(An))?

Indeed, the question makes sense if the considered class of languages is closed under the
operation op, that is, if the automata Ai are of some type, then there is an automaton of the
same type recognizing the language op(A1, . . . ,An). A typical and most studied example are
deterministic and nondeterministic finite automata with the binary Boolean operations or with
the unary operation reversal, which is the operation of our interest in this chapter.

3.1 Reversal

The reverse wR of a word w is inductively defined by εR = ε and, for a word v in Σ∗ and a symbol
a in Σ, (va)R = avR. The reverse of a language L is the language LR = {wR | w ∈ L}. The reverse
of a DFA A = (Q,Σ,δ , i,F) is the NFA A R obtained from A by reversing all the transitions
and by swapping the role of the initial and final states, that is, A R = (Q,Σ,δ R,F,{i}), where
δ R(q,a) = {p ∈ Q | δ (p,a) = q}.

Let rev(A) denote the minimal DFA equivalent to A R. It is known that if A is a deterministic
finite automaton with n states, then the size of rev(A) can be in the worst case of size 2n [89].
With this in mind, it could seem that the formula

rev(rev(A))

results in a DFA with a double exponential 22n
state space, compared with the size of A . It

is not the case and, perhaps surprisingly, the result of these two exponential operations is the
minimal DFA recognizing the language of A . This is known as Brzozowski’s minimization
algorithm [18]. The principle of the double reverse further plays a role in the relationship
between algebra and co-algebra [30].

3.1.1 Reversal of R-trivial Languages
Motivated by Brzozowski’s minimization algorithm, we asked the question about the state
complexity of the reverse for partially ordered DFAs, recognizing R-trivial languages, and
showed that the size of the DFA for the reverse is at most 2n−1 and that the bound can be reached
by DFAs over a ternary alphabet.

Theorem 1. Let L be a language accepted by a minimal poDFA with n states. Then the minimal
DFA accepting the reverse of the language L has at most 2n−1 states. The bound is met by a
ternary poDFA with a sink state, or by a poDFA over a growing alphabet without the sink state.

9

Worst-case sc(LR)
where DFA for L is

n = sc(L) without with Upper bound Lower bound
sink state sink state 2n−2 +n−1 2n−2

1 1 1 - -
2 2 2 2 1
3 4 4 4 2
4 7 7 7 4
5 12 12 12 8
6 21 21 21 16
7 34 34 38 32
8 55 64 71 64

Table 3.1: Tight bounds for the reverse of binary R-trivial regular languages

If the alphabet of the DFA is binary, then the bound is at most 2n−2 +n−1, and hence the
ternary alphabet is optimal to obtain the worst-case state complexity. Moreover, for n≥ 8, the
tight bound for the binary case is 2n−2. We further provided a complete characterization of the
tight bounds for R-trivial regular languages depending on the state complexity of the language
and the size of its alphabet. To formulate this result, we denote by fk(n) the state complexity
function of the reverse on R-trivial regular languages over a k-element alphabet, that is, we
define

fk(n) = max{sc(LR) | L⊆ Σ
∗, |Σ|= k,L is R-trivial regular, and sc(L) = n}

where sc(L) denotes the state complexity of the language L, that is, the number of states of its
minimal DFA.

Using this notation, we can summarize our results in the following theorem and Table 3.1.

Theorem 2. Let n≥ 1 and let fk(n) be the state complexity of the reverse on R-trivial regular
languages over a k-element alphabet. Then

f1(n) = n,

f2(n) =


1, if n = 1,
2n−2 +n−1, if 2≤ n≤ 6,
34, if n = 7,
2n−2, otherwise,

f3(n) = fk(n) = 2n−1, for every k ≥ 3.

3.1.2 Reversal of J -trivial Languages
Considering the case of J -trivial languages recognized by confluent poDFAs, we have shown
that to reach the bound 2n−1 requires at least n−1 letters.

Theorem 3. At least n−1 letters are necessary for a confluent poDFA with n states to reach the
state complexity 2n−1 for the reverse operation.

In other words, we have shown that the upper bound on the state complexity of the reverse
cannot be met by a J -trivial language over an (n−2)-element alphabet. We further showed a
tight bound for J -trivial languages over (n−2)-element alphabets and several tight bounds for
binary J -trivial languages.

10

Theorem 4. Let n≥ 3 and let L be a J -trivial language over an (n−2)-element alphabet with
sc(L) = n. Then sc(LR)≤ 2n−1−1 and the bound is tight.

Corollary 5. Let L be a binary J -trivial language with sc(L) = n, where n≥ 4, then sc(LR)≤
2n−3 +min(max(2n−3,(n−2)2),2n−3)+(n−1). A few tight bounds for 2≤ n≤ 7 are given
in Table 3.1, since the bounds there are obtained for R-trivial languages that are also J -trivial.

The case of J -trivial languages over (n− k)-element alphabets, for 2≤ k ≤ n−3, is left
open. However, Campeanu et al. [25] showed that there are finite binary languages whose reverse
is of state complexity 3 ·2 n

2−1−1, if n even, and 2
n+1

2 −1, if n odd. Since every finite language
is J -trivial, we obtain at least these lower bounds for binary J -trivial languages.

The results of this section are mainly based on papers [60, 61] attached in Appendix ??

11

4. Separability

The motivation to study separability comes from scenarios in which we want to describe some-
thing complex by means of a simple language. The separation problem of our interest is of the
following form:

Given two languages K and L and a family of languages F . Is there a language S in
F such that S contains everything from K and nothing from L?

The family F of simple languages could be, for example, languages definable in first-order logic,
piecewise testable languages, or languages definable with a particular type of automata.

For our theoretical research, we were motivated by several problems coming from practice: (a)
increasing the user-friendliness of XML Schema and (b) efficient approximate query answering.

XML Schema is currently the only industrially accepted and widely supported schema
language for XML, designed to alleviate the limited expressiveness of Document Type Definition
(DTD) [15], thereby making DTDs obsolete. However, XML Schema’s extra expressiveness
comes at the cost of simplicity. Its code is designed to be machine-readable rather than human-
readable and its logical core, based on complex types, does not seem well-understood by users [77,
90]. One reason may be that the specification of XML Schema’s core consists of over 100 pages
of intricate text [44]. The BonXai schema language designed by Martens, Neven, Niewerth and
Schwentick [77, 78] is an attempt to overcome these issues and to combine the simplicity of DTDs
with the expressiveness of XML Schema. It has the same expressive power as XML Schema, is
designed to be human-readable, and avoids the use of complex types, aiming at simplifying the
development or analysis of XSDs. The BonXai schema is a set of rules L1→ R1, . . . ,Ln→ Rn in
which all Li and Ri are regular expressions. An unranked tree t (an XML document) is in the
language of the schema if, for every node u, the word formed by the labels of u’s children is
in the language Rk, where k is the largest number such that the word of ancestors of u is in Lk.
This semantical definition is designed to ensure full compatibility with XML Schema [77, 78].
When translating an XML Schema Definition (XSD) into an equivalent BonXai schema, the
regular expressions Li are obtained from a finite automaton that is embedded in the XSD. Since
the current state-of-the-art in translating automata to expressions does not yet generate human-
readable results, we investigated simpler classes of expressions that we expect to suffice in
practice. Practical and theoretical studies show evidence that regular expressions of the form
Σ∗w (with w ∈ Σ+) and Σ∗a1Σ∗ · · ·Σ∗an (with a1, . . . ,an ∈ Σ) and variations thereof seem to be
well-suited [47, 65, 80].

Our second motivation comes from efficient approximate query answering. An efficient
evaluation of regular expressions is relevant in a wide array of fields, for instance in graph
databases and in the context of the SPARQL language [5, 51, 76, 94] for querying RDF data.
Typically, regular expressions are used to match paths between nodes in a huge graph. In fact, the
data can be so huge that the exact evaluation of a regular expression r over the graph (which can
lead to a product construction between an automaton for the expression and the graph [76, 94])
may not be feasible within reasonable time. Therefore, as a trade-off to exact evaluation, one

12

could imagine that we try to rewrite the regular expression r as an expression that we can evaluate
much more efficiently and is close enough to r. Specifically, we could specify two expressions
rpos (resp., rneg) that define the language we want to (resp., do not want to) match in our answer
and ask whether there exists a simple query (e. g., defining a piecewise testable language) that
satisfies these constraints. Notice that the scenario of approximating an expression r in this way
is very general and not even limited to databases. (Also, we can take rneg to be the complement
of rpos.)

At first sight, these two motivating scenarios may seem to be fundamentally different. In the
first, we want to compute an exact simple description of a complex object and in the second we
want to compute an approximate simple query that can be evaluated more efficiently. However,
both scenarios boil down to the same underlying question of language separation.

The effort to approximate languages by simpler languages is further related to system
verification. The goal here is to express a given bad property in a simple logic for which
verification is feasible or even efficient. If the property is not expressible in a simple logic, it
could perhaps be over-approximated in a simple logic. If the system is then safe with respect to
the over-approximated property, i. e. it does not satisfy the over-approximated bad property, then
it is also safe with respect to the original property.

Another situation is to require that every fair run of the system satisfies some additional
conditions. Expressing fairness by a formula ϕ1 and the additional conditions by a formula
ϕ2, we need to verify that the system satisfies the formula ϕ1 ⇒ ϕ2. Now we would like to
interpolate ϕ1 by a formula of a simpler form, say ψ , such that ϕ1⇒ ψ ⇒ ϕ2. Moreover, if we
consider ¬ϕ2 rather than ϕ2, then the set of models satisfying ψ separates the sets of models of
ϕ1 and ¬ϕ2, respectively. Hence, this problem again boils down to the separation problem. The
reader familiar with program verification might have noticed a close relationship to interpolation,
a method providing means to compute separation between good and bad states [31, 105].

Separability is further of interest in logic on words. Place and Zeitoun [100] used separability
to obtain new decidability results for the membership problem for some levels of the Straubing-
Thérien hierarchy [122, 124]. However, the problem remains open for almost all levels of the
hierarchy [2, 97, 99].

Separability by piecewise testable languages has also been investigated outside the family
of regular languages. Although separability of context-free languages by regular languages is
undecidable [58], separability by piecewise testable languages is decidable [35]. The problem
was further generalized to regular tree languages by Goubault-Larrecq and Schmitz [50], and
studied for other types of languages as well, see Czerwiński and Lasota [33] for an overview of
the latest development.

4.1 Separability of Languages
A language S separates language K from L if S contains K and does not intersect L. We say that
S separates K and L if it either separates K from L or L from K. Let F be a family of languages.
Languages K and L are separable by F if there exists a language S in F that separates K and L.

Languages K and L are layer-separable by F if there exists a finite sequence of languages
S1, . . . ,Sm in F such that

1. for all 1≤ i≤ m, language Si \
⋃i−1

j=1 S j intersects at most one of K and L, and

2. K or L (possibly both) is included in
⋃m

j=1 S j.

Separability implies layer-separability, but the opposite implication does not hold.
Our motivation for layered separability comes from the BonXai schema language. We need to

solve layer-separability if we want to decide whether an XML Schema has an equivalent BonXai

13

schema with simple regular expressions (defining languages in F). Layered separability implies
that languages are, in a sense, separable by languages from F in a priority-based system—if
we consider the ordered sequence of languages S1,S2, . . . ,Sm, then, in order to classify a word w
from K∪L as either in K or in L, we have to match it against the Si in the increasing order of the
index i. Then, as soon as we find the lowest index j for which w ∈ S j, we know whether w ∈ K
or w ∈ L.

A quasi-order is a reflexive and transitive relation. A quasi-order 4 on a set X is a well-
quasi-ordering (WQO) if for every infinite sequence (xi)

∞
i=1 of elements of X , there exist indices

i < j such that xi 4 x j. It is known that every WQO is well-founded, that is, there exist no
infinite descending sequences x1 < x2 < · · · such that xi 64 xi+1 for all i. For a quasi-order 4, the
(upward) 4-closure of a language L is the set up4(L) = {w | v 4 w for some v ∈ L}. Language
L is (upward) 4-closed if L = up4(L).

We now extend the notion of alternating towers of Stern [119] and use it to determine
when two languages are not separable. For languages K and L and a quasi-order 4, we say
that a sequence (wi)

k
i=1 of words is a 4-tower between K and L if w1 ∈ K ∪ L and, for all

i = 1, . . . ,k−1:

(1) wi 4 wi+1; (2) wi ∈ K implies wi+1 ∈ L; and (3) wi ∈ L implies wi+1 ∈ K.

We say that k is the height of the 4-tower. We similarly define an infinite sequence of words to
be an infinite 4-tower between K and L.

For v = a1 · · ·an and w ∈ Σ∗a1Σ∗ · · ·Σ∗anΣ∗, we say that v is a subsequence of w, and use the
notation v� w to denote the subsequence order. If we consider the subsequence order �, then
we simply talk about a tower rather than about a �-tower.

We now characterize separability of two languages by a family of 4-closed languages for a
WQO relation 4.

Theorem 6. For languages K and L and a WQO 4 on words, the following are equivalent.

1. K and L are separable by a boolean combination of 4-closed languages.

2. K and L are layer-separable by 4-closed languages.

3. There does not exist an infinite 4-tower between K and L.

Some of the equivalences hold even if the assumptions are weakened. For example, the
equivalence between (1) and (2) does not require 4 to be a WQO.

Since the subsequence order � is a WQO on words, the languages K and L are separable
by piecewise testable languages if and only if they are layer-separable by �-closed languages.
Actually, since � as a WQO has only finitely many minimal elements within a language, the
latter is equivalent to being layer-separable by shuffle ideals, that is, by languages of the form
Σ∗a1Σ∗ · · ·Σ∗anΣ∗.

We have shown how to decide the existence of an infinite tower between two regular lan-
guages, given as regular expressions or NFAs, in polynomial time, which is by Theorem 6
equivalent to deciding whether the two languages can be separated by a piecewise testable
language.

Theorem 7. Given two NFAs A and B, it is possible to test in polynomial time whether L(A)
and L(B) can be separated by a piecewise testable language.

We have shown that if there is an infinite tower between two regular languages, then there is
an infinite tower of a special form in which every word can be decomposed in some synchronized
manner. We can find these special forms of towers in polynomial time in the NFAs. The main

14

F (O,C) single unions bc (boolean combinations)
� (subsequence) NP-complete PTIME PTIME-complete
�s (suffix) PTIME PTIME PTIME

Table 4.1: The complexity of deciding separability for regular languages K and L.

features are that our algorithm runs exponentially faster in the alphabet size than the previous
state-of-the-art [4] and that our algorithm and its proof of correctness do not require knowledge
of the algebraic perspective on regular languages.

To conclude this part, we have further shown that the considered problem is PTIME-hard.
Consequently, the problem cannot be efficiently parallelized [6].

Theorem 8. Deciding separability of regular languages, represented as NFAs, by piecewise
testable languages is PTIME-complete. It remains PTIME-hard even for minimal DFAs.

4.2 Asymmetric Separation and Suffix Order
In this section, we present a bigger picture on efficient separations relevant to our motivation
scenarios. Namely, we consider what happens when we restrict the allowed boolean combinations
of languages. This means that separation is no longer symmetric. We also consider the suffix
order �s between words in which v�s w if and only if v is a (not necessarily strict) suffix of w.
An important technical difference is that the suffix order is not a WQO. Indeed, the suffix order
�s has an infinite antichain, e. g., a,ab,abb,abbb, The results we present here for suffix
order hold true for prefix order as well.

Let F be a family of languages. Language K is separable from a language L by F if there
exists a language S in F that separates K from L, i. e., S contains K and does not intersect L.
Thus, if F is closed under complement, then K is separable from L implies L is separable from
K. The separation problem by F asks, given an NFA for K and an NFA for L, whether K is
separable from L by F .

We consider separation by families of languages F (O,C), where O (“order”) specifies the
ordering relation and C (“combinations”) specifies how we are allowed to combine (upward)
O-closed languages. Specifically, O is either the subsequence order � or the suffix order �s. We
allow C to be one of single, unions, or bc (boolean combinations), meaning that each language
in F (O,C) is either the O-closure of a single word, a finite union of the O-closures of single
words, or a finite boolean combination of the O-closures of single words. Thus, F (�,bc) is the
family of piecewise testable languages and F (�s,bc) is the family of suffix-testable languages.
With this convention in mind, the main result of this section is to provide a complete complexity
overview of the six possible cases of separation by F (O,C).

Theorem 9. For O ∈ {�,�s} and C being one of single, unions, or boolean combinations, we
have that the complexity of the separation problem by F (O,C) is as indicated in Table 4.1.

Since the separation problem for prefix order is basically the same as the separation for
suffix order and has the same complexity, we did not list it separately in the table. Some other
types of languages, such as union-free languages, are further discussed in the original paper [34].
Separability by k-piecewise testable languages and the variants thereof has been studied by
Hofman et al. [53].

15

4.3 Computation of Piecewise Testable Separators
We now focuse on the construction of a piecewise testable separator of two regular languages,
if such a separator exists. It was independently shown by Czerwiński et al. [34] and Place et
al. [98] that the non-separability by piecewise testable languages is equivalent to the existence of
a common pattern in the two automata (called an (u,B)-path in Place et al. [98] and synchronized
languages in Czerwiński et al. [34]). This pattern is further equivalent to the existence of an
infinite tower between the languages [34], and its existence can be detected in polynomial time.
A similar pattern has recently been identified for general word languages [36].

To construct an actual separator is a more difficult task. Place et al. [98] construct the
separator as a union of ∼κ -equivalence classes, where u ∼κ v if and only if the words u and
v have the same set of subsequences of length up to κ . The difficult part is to find a suitable
κ . Place et al. [98] find such a κ that is exponential in the size of the automaton and doubly
exponential in the size of the alphabet. The separator is then κ-piecewise testable and it can be
constructed as the union of ∼κ classes that cover one of the languages.

Our approach is different. For a word w = a1a2 · · ·a`, where ai ∈ Σ, let up(w) denote
the language Σ∗a1Σ∗a2Σ∗ · · ·Σ∗a`Σ∗ of all supersequences of w (the upward closure). For a
language L, let up(L) =

⋃
w∈L up(w). Then up(L) =

⋃
w∈ML

up(w), where ML is the set of all
minimal elements of L with respect to the subsequence relation �, which is finite by Higman’s
Lemma [52]. By construction, up(L) is piecewise testable for any language L.

Let K and L be two disjoint languages over Σ. To construct a piecewise testable language S⊇
K disjoint from L – a piecewise testable separator – we choose up(K) as the first approximation
of S. Typically, up(K) is not disjoint from L, and hence we try to fix it by putting L1 = up(K)∩L
and by taking S0 = up(K)\up(L1). Although S0 is obviously disjoint from L, it may not be a
superset of K, namely if K1 = K∩up(L1) is nonempty. We therefore repeat the construction for
K1, and construct another “layer” of S defining L2 = up(K1)∩L and S1 = up(K1)\up(L2). In
this way, we obtain a sequence S0,S1,S2, . . . of piecewise testable sets defined by K0 = up(K)
and by

Li+1 = up(Ki)∩L,
Ki+1 = up(Li+1)∩K,

Si = up(Ki)\up(Li+1) .

Finally, we define S =
⋃

i≥0 Si. Definitions imply that w ∈ Li+1 if and only if there is a tower
w1 � w′1 � w2 � w′2 � ·· · � wi � w′i = w between K and L. Therefore, if the maximum height
of a tower between K and L is r≤ 2 j−1, then L j+1 is empty. Then S j = up(K j) and S =

⋃ j
i=0 Si

is the piecewise testable separator we are looking for. Notice that the complexity of the above
construction depends on the maximal height of the tower between K and L, which motivates our
study on the upper and lower bounds on the height of finite towers discussed below.

The relationship between the maximal height of towers and the number κ of Place et al.
is another interesting question. The number of classes of the equivalence relation ∼κ indeed
depends on κ and was investigated by Karandikar et al. [63]. We showed that, in some sense, κ

provides an upper bound on the maximal height of towers, and that κ can be arbitrarily larger
than the maximal height of towers [55].

The complexity of a separator S can also be measured by the number of elementary languages
of the form up(w) needed in the boolean expression defining S. Let F be the set of words such
that S is a boolean combination of languages up(w), where w∈F . For each word u∈ Σ∗, the truth
value of u ∈ K is determined by the set σ(u) = {w ∈ F | u ∈ up(w)}. In particular, σ(u) = σ(v)
implies that u ∈ S if and only if v ∈ S. Observe that u� u′ implies that σ(u)⊆ σ(u′). We now
deduce that σ(w1)(σ(w2)(· · ·(σ(wr)⊆ F for any tower (wi)

r
i=1 between two languages K

16

and L, and hence |F | ≥ r−1. This means that any such a boolean expression requires at least as
many elements as is the height of the maximal tower.

4.3.1 Bounds on the Height of Towers
Not much is known about the upper bound on the height of towers between two regular languages
if no infinite tower exists. The only result we are aware of is a result by Stern [119] giving an
exponential upper bound 2|Σ|

2n on the height of towers between a piecewise testable language
over an alphabet Σ represented by an n-state minimal DFA and its complement. We present a
better bound that holds in a general setting of two arbitrary regular languages (having no infinite
tower) represented by NFAs.

Theorem 10. Let A0 and A1 be NFAs with n and m states, respectively, over an alphabet Σ.
Assume that there is no infinite tower between the languages L(A0) and L(A1), and let (wi)

r
i=1

be a tower between the languages such that wi ∈ L(Ai mod 2). Let 1 < µ ≤max(n,m) denote the

maximum of the depths of A0 and A1. Then r ≤ µ |Σ|+1−1
µ−1 .

Thus, the upper bound on the height of towers between two regular languages represented by
NFAs is polynomial with respect to the depth of the NFAs and exponential with respect to the
size of the alphabet.

The question now is how good this bound is. We study this question next and show that it is
tight if the alphabet is fixed. If the alphabet grows with the number of states of the automata,
then we can construct a tower of exponential height with respect to the number of states of the
automata (as well as with respect to the size of the alphabet). However, we do not know whether
this bound is tight. We formulate this question as the following open problem asking how much
the size of the alphabet can increase the height of the tower, given the number of states (or the
depth).

Open Problem 11. Let A0 and A1 be NFAs with n and m states, respectively, over an alphabet
Σ with |Σ| ≥ n+m. Let µ be the maximum depth of A0 and A1. Assume that there is no infinite
tower between the languages L(A0) and L(A1), and let (wi)

r
i=1 be a tower between them. Is it

true that r ≤ µn+m+1−1
µ−1 or even that r ≤ 2n+m?

The upper bound result indicates that the size of the alphabet is significant for the height of
towers. This is confirmed by lower bounds considered now. We consider two cases, namely (i)
the size of the alphabet is fixed and (ii) the size of the alphabet may grow with the size of the
automata. We show that the upper bound is asymptotically tight if the size of the alphabet is
fixed, and that the lower bound may be exponential with respect to the size of the automata if the
alphabet may grow. In this case, the size of the alphabet is approximately the number of states of
the automata.

Theorem 12. For all integers n,m≥ 2 there exist two NFAs with n and m states over an alphabet
of cardinality n+m−2 having a tower of height 2n+m−2−2m−1 +2 and no infinite tower.

We can adapt the theorem to deterministic automata as follows.

Theorem 13. For all integers k≥ 1, d ≥ 2 and every odd positive integer e, there exist two DFAs
with (k+1)d + k−1 and e+1 states over an alphabet of cardinality k+1 having a tower of
height (e+1)dk +2dk−1 and no infinite tower.

Consequently, we have that the upper bound is tight for a fixed alphabet even for DFAs.

Corollary 14. Let k ≥ 2 be a constant. Then the maximum height of a tower between two DFAs
with at most n states over an alphabet of cardinality k having no infinite tower is in Ω

(
nk).

17

If the alphabet is allowed to grow with the number of states, we have shown that the height
of a tower can be exponential in the number of states of NFAs. For DFAs with at most n states,
we obtain that the height of a tower is Ω

(
(n+1)2

n
3

)
. To obtain a better lower bound for DFAs,

we introduced a “determinization” strategy [55].

Theorem 15. For every n≥ 0, there exist two DFAs with at most n+1 states over an alphabet
of cardinality n(n+1)

2 +1 having a tower of height 2n and no infinite tower.

The “determinization” strategy further allows us to prove the following results.

Theorem 16. For every two NFAs A and B with at most n states and k input letters, there exist
two DFAs A ′ and B′ with O

(
n2) states and O(k+n) input letters such that there is a tower

of height r between A and B if and only if there is a tower of height r between A ′ and B′. In
particular, there is an infinite tower between A and B if and only if there is an infinite tower
between A ′ and B′.

Theorem 17. For every two NFAs A and B with at most n states and k input letters, there exist
two DFAs A ′ and B′ with O(kn) states and O(kn) input letters such that there is a tower of
height r between A and B if and only if there is a tower of height r between A ′ and B′. In
particular, there is an infinite tower between A and B if and only if there is an infinite tower
between A ′ and B′.

The lower bounds are not asymptotically equal to the upper bound and it is not known what
the (asymptotically) tight upper bound actually is. Specifically, we do not know whether an
alphabet of size greater than the number of states may help to build higher towers.

Interestingly, the towers used in the constructions to demonstrate lower bounds are mostly
sequences of prefixes. Therefore, we also investigated towers of prefixes. We provided a pattern
that characterizes the existence of an infinite tower of prefixes and proved tight bounds on
the height of towers of prefixes for DFAs and NFAs. This study can be found in our original
paper [55].

Our main results are summarized in Table 4.2.
The main papers [34, 83, 54, 55] on which the results of this chapter are based are attached

in Appendix ??.

18

Upper bound Lower bound

|Σ|= k |Σ| ≥ n+m

NFAs µ |Σ|+1−1
µ−1

Θ
(
µk) Ω(2n+m)

DFAs

(a) Towers of subsequences over Σ; µ = max(n,m)

Upper bound Lower bound

|Σ|= 2 |Σ| ≥ n+m

NFAs (2n−1)(2m−1)+1
2 Ω

(
2
√

2ν

log2ν

)
2n+m−2−o(1)

DFAs
nm
2
+1

nm
2
+1

nm
2
+1

(b) Towers of prefixes; ν = min(n,m)

Table 4.2: Upper and lower bounds on the height of towers of subsequences and prefixes for
automata with n and m states

19

5. Complexity of Universality

Universality is a fundamental question asking whether a given system recognizes all words over
its alphabet. Deciding universality is typically more difficult than deciding the word problem.
The study of universality (and its dual – emptiness) has a long tradition in formal languages
with many applications across computer science, e. g., in knowledge representation and database
theory [9, 24, 118] or in verification [8]. Recent studies investigate the problem for specific types
of automata or grammars, e. g., for prefixes or factors of regular languages [102].

Deciding universality for systems modeled by NFAs is PSPACE-complete [88], and there
are two typical proof techniques to show hardness. One is based on the reduction from the
DFA-union-universality problem [70], and the other on the reduction from the word problem
for polynomially-space-bounded Turing machines [1]. Kozen’s [70] proof showing PSPACE-
hardness of DFA-union universality (actually of its complemented equivalent, DFA-intersection
emptiness) results in DFAs consisting of nontrivial cycles, and these cycles are essential for the
proof; if all cycles of the DFAs were only self-loops, then the problem would be easier:

Theorem 18. The intersection-emptiness problem for poDFAs/poNFAs is CONP-complete. It is
CONP-hard even if the alphabet is binary.

We show that deciding universality for poNFAs has the same worst-case complexity as for
general NFAs, even if restricted to binary alphabets [72]. This is caused by an unbounded number
of nondeterministic steps admitted in poNFAs – they either stay in the same state or move to
another. Forbidding this kind of nondeterminism affects the complexity of deciding universality –
it is CONP-complete if the alphabet is fixed but remains PSPACE-complete if the alphabet may
grow polynomially [72]. The growth of the alphabet thus compensates for the restricted number
of nondeterministic steps. Adding further a structural assumption of confluence on top of these
models preserves the complexity. Our results are summarized in Table 5.1 and further discussed
below with more details.

As already pointed out, we are interested in the universality problem for partially ordered
NFAs (poNFAs) and special cases thereof. An NFA is partially ordered if its transition relation

ST |Σ|= 1 |Σ|= k ≥ 2 Σ is growing
DFA L-comp. [62] NL-comp. [62] NL-comp. [62]

spoNFA 1
2 AC0 AC0 AC0

ptNFA 1 NL-comp. CONP-comp. PSPACE-comp.
rpoNFA NL-comp. CONP-comp. PSPACE-comp.
poNFA 3

2 NL-comp. PSPACE-comp. PSPACE-comp. [1]
NFA CONP-comp. [121] PSPACE-comp. [1] PSPACE-comp. [1]

Table 5.1: Complexity of deciding universality for poNFAs and special classes thereof; ST stands
for the corresponding level of the Straubing-Thérien hierarchy; Σ denotes the input alphabet

20

a
a

Figure 5.1: Forbidden pattern of rpoNFAs

induces a partial order on states: the only cycles allowed are self-loops on a single state. Partially
ordered NFAs define a natural class of languages that has been shown to coincide with level 3

2 of
the Straubing-Thérien hierarchy [111] and with Alphabetical Pattern Constraint (APC) languages,
a subclass of regular languages effectively closed under permutation rewriting [14]. Deciding
whether an automaton recognizes an APC language (and hence whether it can be recognized by
a poNFA) is PSPACE-complete for NFAs and NL-complete for DFAs [14].

Restricting to partially ordered deterministic finite automata (poDFAs), we can capture
further classes of interest: two-way poDFAs characterize languages whose syntactic monoid
belongs to the variety DA [111], introduced by Schützenberger [110]; poDFAs characterize
R-trivial languages [19]; and confluent poDFAs characterize level 1 of the Straubing-Thérien
hierarchy, also known as J -trivial languages or piecewise testable languages [115]. Other
relevant classes of partially ordered automata include partially ordered Büchi automata [73] and
two-way poDFAs with look-around [75].

The first result on the complexity of universality for poNFAs is readily obtained. It is well
known that universality of regular expressions is PSPACE-complete [1, Lemma 10.2], and it is
easy to verify that the regular expressions used in the proof can be expressed in poNFAs:

Corollary 19 (Lemma 10.2 [1]). The universality problem for poNFAs is PSPACE-complete.

A closer look at the proof reveals that the underlying encoding requires an alphabet of size
linear in the input: PSPACE-hardness is not established for alphabets of bounded size. Usually,
one could simply encode alphabet symbols σ by sequences σ1 · · ·σn of symbols from a smaller
alphabet, say {0,1}. However, doing this requires self-loops q σ→ q to be replaced by nontrivial
cycles q

σ1→ ··· σn→ q, which are not permitted in poNFAs.
We settle this open problem by showing that PSPACE-hardness is retained even for binary

alphabets. This negative result leads us to ask if there is a natural subclass of poNFAs for
which universality does become simpler. We consider restricted poNFAs (rpoNFAs), which
require self-loops to be deterministic in the sense that the automaton contains no transition as in
Figure 5.1, which we call nondeterministic self-loops. Large parts of the former hardness proof
hinge on transitions of this form, which, speaking intuitively, allow the automaton to navigate to
an arbitrary position in the input (using the loop) and, thereafter, continue checking an arbitrary
pattern. Indeed, we find that the universality becomes CONP-complete for rpoNFAs with a fixed
alphabet.

However, this reduction of complexity is not preserved for unrestricted alphabets. We have
used a novel construction of rpoNFAs that characterize certain exponentially long words to show
that universality is PSPACE-complete even for rpoNFAs if the alphabet may grow polynomially.

As a by-product, we have shown that rpoNFAs provide another characterization of R-trivial
languages introduced and studied by Brzozowski and Fich [19], and we have established the
complexity of deciding R-triviality and k-R-triviality for rpoNFAs.

From the practical point of view, the problems of inclusion and equivalence of two languages,
which are closely related to universality, are of interest, e. g., in optimization. Indeed, universality
can be expressed either as the inclusion Σ∗ ⊆ L or as the equivalence Σ∗ = L. Although equiva-
lence can be seen as two inclusions, the complexity of inclusion does not play the role of a lower
bound. For instance, for two deterministic context-free languages, inclusion is undecidable [42],
whereas equivalence is decidable [112]. However, the complexity of universality gives a lower

21

bound on the complexity of both inclusion and equivalence, and we have shown that, for the
studied partially ordered NFAs, the complexities of inclusion and equivalence coincide with the
complexity of universality.

5.1 Partially Ordered NFAs

The languages recognized by poNFAs are exactly the languages on level 3
2 of the Straubing-

Thérien hierarchy [111]. Since the hierarchy is proper, this means that poNFAs can only
recognize a strict subset of star-free regular languages. In spite of this rather low expressive
power, the universality problem of poNFAs has the same worst-case complexity as for general
NFAs, even when restricted to a fixed alphabet with only a few letters.

Theorem 20. For every alphabet Σ with |Σ| ≥ 2, the universality problem for poNFAs over Σ is
PSPACE-complete.

Ellul et al. [41, Section 5] give an example of a regular expression over a 5-letter alphabet
such that the shortest non-accepted word is of exponential length, and which can also be encoded
as a poNFA. Our previous proof shows such an example for an alphabet of two letters, if we use
a Turing machine that runs for exponentially many steps before accepting. Note, however, that
this property alone would not imply Theorem 20.

Reducing the size of the alphabet to one leads to a reduction in complexity. This is expected,
since the universality problem for NFAs over a unary alphabet is merely CONP-complete [121].
For poNFAs, the situation is even simpler:

Theorem 21. The universality problem for poNFAs over a unary alphabet is NL-complete. It
can be checked in linear time.

5.2 Restricted Partially Ordered NFAs
Restricted poNFAs are distinguished by deterministic self-loops. We relate them to the known
class of R-trivial languages, and we establish complexity results for deciding whether a language
falls into this class.

Definition 22. A restricted partially ordered NFA (rpoNFA) is a poNFA such that, for every
state q and symbol a, if q ∈ δ (q,a) then δ (q,a) = {q}.

We show that rpoNFAs characterize R-trivial languages, a subclass of regular languages
defined by Brzozowski and Fich [19]. To introduce this class of languages, we require some
auxiliary definitions. A word v = a1a2 · · ·an is a subsequence of a word w, denoted by v 4 w, if
w∈ Σ∗a1Σ∗a2Σ∗ · · ·Σ∗anΣ∗. For k≥ 0, we write subk(v) = {u∈ Σ∗ | u 4 v, |u| ≤ k} for the set of
all subsequences of v of length up to k. Two words w1,w2 are ∼k-equivalent, written w1 ∼k w2,
if subk(w1) = subk(w2). Then ∼k is a congruence (for concatenation) of finite index (i. e., with
finitely many equivalence classes) [115]. R-trivial languages are defined by defining a related
congruence ∼R

k that considers subsequences of prefixes:

Definition 23. Let x,y ∈ Σ∗ and k ≥ 0. Then x∼R
k y if and only if

• for each prefix u of x, there exists a prefix v of y such that u∼k v, and

• for each prefix v of y, there exists a prefix u of x such that u∼k v.

22

A regular language is k-R-trivial if it is a union of ∼R
k classes, and it is R-trivial if it is

k-R-trivial for some k ≥ 0.

It is known that x ∼R
k y implies x ∼k y and (if k ≥ 1) x ∼R

k−1 y [19]. Therefore, every k-
R-trivial language is also (k+1)-R-trivial. Moreover, it has been shown that a language L is
R-trivial if and only if the minimal DFA recognizing L is partially ordered [19]. We can lift this
result to characterize the expressive power of rpoNFAs.

Theorem 24. A regular language is R-trivial if and only if it is accepted by an rpoNFA.

This characterization in terms of automata with forbidden patterns can be compared to results
of Glaßer and Schmitz, who use DFAs with a forbidden pattern to obtain a characterization of
level 3

2 of the dot-depth hierarchy [49, 108].
We can further relate the depth of rpoNFAs to k-R-trivial languages. Recall that the depth of

an rpoNFA A , denoted by depth(A), is the number of input symbols on a longest simple path
of A that starts in an initial state.

Theorem 25. The language recognized by a complete rpoNFA A is depth(A)-R-trivial.

Similar relationships have been studied for J -trivial languages [68, 81], but we are not
aware of any such investigation for R-trivial languages.

We may ask how difficult it is to decide whether a given NFA A accepts a language that is
R-trivial or k-R-trivial for a specific k ≥ 0. For most levels of the Straubing-Thérien hierarchy,
it is not even known if this problem is decidable, and when it is, exact complexity bounds are
often missing [99]. The main exception are J -trivial languages—level 1 of the hierarchy.

To the best of our knowledge, the following complexity results for recognizing (k-)R-trivial
languages had not been obtained previously.

Theorem 26. Given an NFA A , it is PSPACE-complete to decide whether the language accepted
by A is R-trivial.

Theorem 27. Given an NFA A and k≥ 0, it is PSPACE-complete to decide whether the language
accepted by A is k-R-trivial.

In both previous theorems, hardness is shown by reduction from the universality problem for
NFAs [1, 88]. Hence it holds even for binary alphabets. For a unary alphabet, we can obtain the
following result.

Theorem 28. Given an NFA A over a unary alphabet, the problems of deciding whether the
language accepted by A is R-trivial, or k-R-trivial for a given k≥ 0, are both CONP-complete.

We now briefly discuss the complexity of the problem if the language is given as a poNFA
rather than an NFA.

Theorem 29. Given a poNFA A , the problems of deciding whether the language accepted by
A is R-trivial, or k-R-trivial for a given k ≥ 0, are both PSPACE-complete.

We point out that the previous result holds even if the input alphabet of A is binary. For
unary alphabets, the classes of languages of unary poNFAs and of unary R-trivial languages
coincide.

Theorem 30. The classes of unary poNFA languages and unary R-trivial languages coincide.

23

5.2.1 Deciding Universality of rpoNFAs
We now return to the universality problem for the case of rpoNFAs. We first show that we can
indeed obtain the hoped-for reduction in complexity when using a fixed alphabet. For the general
case, however, we can recover the same PSPACE lower bound as for poNFAs, albeit with a more
involved proof. Even for fixed alphabets, we can get a CONP lower bound:

Lemma 31. The universality problem of rpoNFAs is CONP-hard even when restricting to
alphabets with two letters.

For a matching upper bound, if the size |Σ| of the alphabet is bounded, then non-universality
is witnessed by a word of polynomial length. Together with Lemma 31, this allows us to establish
the following result and its immediate corollary.

Theorem 32. Let Σ be a fixed non-unary alphabet, and let B be an rpoNFA over Σ. If A is
an NFA (poNFA, rpoNFA, DFA, poDFA) over Σ, then the problem whether L(A) ⊆ L(B) is
CONP-complete.

Corollary 33. Let Σ be a fixed non-unary alphabet. Then the universality problem for rpoNFAs
over Σ is CONP-complete.

Since the proof of Theorem 21 also applies to rpoNFAs, we immediately have the following
result.

Corollary 34. The universality problem for rpoNFAs over a unary alphabet is NL-complete.

Without fixing the alphabet, universality remains PSPACE-hard even for rpoNFAs, but a
proof along the lines of Theorem 20 is not straightforward. In essence, rpoNFAs lose the ability
to navigate to an arbitrary position within a word for checking some pattern there. Expressions of
the form (Σ∗ · · ·), which we frequently used there (see [72, Theorem 3] for details), are therefore
excluded. This is problematic since the run of a polynomially space-bounded Turing machine
may be of exponential length, and we need to match patterns across the full length of our (equally
exponential) encoding of this run. How can we navigate such a long word without using Σ∗? Our
answer is to first define an rpoNFA that accepts all words except for a single, exponentially long
word. This word will then be used as an rpoNFA-supported “substrate” for our Turing machine
encoding.

Lemma 35. For all positive integers k and n, there exists an rpoNFA Ak,n over an n-letter
alphabet with n(k + 2) states such that the unique word not accepted by Ak,n is of length(k+n

k

)
−1.

As a corollary, we find that there are rpoNFAs A = An,n for which the shortest non-accepted
word is exponential in the size of A . Note that

(2n
n

)
≥ 2n.

Corollary 36. For every integer n ≥ 1, there is an rpoNFA An over an n-letter alphabet with
n(n+2) states such that the shortest word not accepted by An is of length

(2n
n

)
−1. Therefore,

any minimal DFA accepting the same language has at least
(2n

n

)
states.

To simulate exponentially long runs of a Turing machine, we start from an encoding of runs
using words #w1# · · ·#wm# (see the details in the original paper [72] in the appendix) and we
combine every letter of this encoding with one letter of the alphabet of An. We then accept all
words for which the projection to the alphabet of An is accepted by An, i. e., all but those words
of exponential length that are based on the unique word not accepted by An. We ensure that, if
there is an accepting run, it will have an encoding of this length. It remains to eliminate (accept)

24

0 1 2a b

a,b a a,b

Figure 5.2: A confluent automaton accepting a non-piecewise testable language

all words that correspond to a non-accepting or wrongly encoded run. We can check this by
restricting to the first components of our combined alphabet. The self-loop that was used to
encode Σ∗ in poNFAs is replaced by a full copy of An, with an additional transition from each
state that allows us to leave this “loop”. This does not simulate the full loop, but it allows us to
navigate the entirety of our exponential word, which is all we need (more intuition in the next
section; details in the appendix).

Theorem 37. The universality problem for rpoNFAs is PSPACE-complete.

5.3 PtNFAs
An NFA A is a ptNFA if it is an rpoNFA that is complete and confluent; the name comes
from piecewise testable, since ptNFAs characterize piecewise testable languages [81, 86]. An
alternative and our original definition of ptNFAs uses the notion of unique maximal state property,
which we now briefly discuss.

Recall that for two states p and q, we write p < q if p≤ q and p 6= q. A state p is maximal if
there is no state q such that p < q. A poNFA A over Σ with the state set Q can be turned into a
directed graph G(A) with the set of vertices Q where a pair (p,q) ∈ Q×Q is an edge in G(A)
if there is a transition from p to q in A . For an alphabet Γ ⊆ Σ, we define the directed graph
G(A ,Γ) with the set of vertices Q by considering only those transitions corresponding to letters
in Γ. Let Σ(p) = {a ∈ Σ | p a−→ p} denote all letters labeling self-loops in state p. We say that
A satisfies the unique maximal state (UMS) property if, for every state q of A , q is the unique
maximal state of the connected component of G(A ,Σ(q)) containing q.

To decide whether a DFA recognizes a piecewise testable language, Klı́ma and Polák [68]
checks confluence while Trahtman [126] checks the UMS property.

Both notions have their advantages and an effect on the complexity. While Trahtman’s
algorithm runs in time quadratic with respect to the number of states and linear with respect
to the size of the alphabet, Klı́ma and Polák’s algorithm runs in time linear with respect to the
number of states and quadratic with respect to the size of the alphabet. Notice that Cho and
Huynh [27] proved that deciding piecewise testability for DFAs is NL-complete.

Although the notions of UMS and confluence coincide for DFAs, they differ for NFAs. The
automaton in Figure 5.2 is confluent, but it does not satisfy the UMS property. Its language is not
piecewise testable, since there is an infinite sequence a,ab,aba,abab, . . . that alternates between
accepted and non-accepted states, and hence there is a non-trivial cycle in the corresponding
minimal DFA.

We now relate these two notions and use the following lemma as an alternative definition of
ptNFAs (we used it as a definition in our previous work [81]).

Lemma 38. PoNFAs that are complete and satisfy the UMS property are exactly ptNFAs.

5.3.1 Deciding Universality for ptNFAs
We now study the complexity of deciding universality for ptNFAs.

25

For unary alphabets, deciding universality for ptNFAs is solvable in polynomial time [72].
We now improve the result and show that the problem can be efficiently parallelized.

Theorem 39. Deciding universality for ptNFAs over a unary alphabet is NL-complete.

We next show that if the alphabet is fixed, deciding universality for ptNFAs is CONP-
complete, and that hardness holds even if restricted to binary alphabets. Our proof is based
on the construction that non-equivalence for regular expressions with operations union and
concatenation is NP-complete even if one of them is of the form Σn for some fixed n [57, 121].

Theorem 40. Deciding universality for ptNFAs over a fixed alphabet is CONP-complete even if
the alphabet is binary.

If the alphabet may grow polynomially with the number of states, there are basically two
approaches how to tackle the universality problem for ptNFAs to show PSPACE-hardness: (1) to
use a reduction from Kozen’s DFA-union-universality problem [70], or (2) to use a reduction
from the word problem of a polynomially-space-bounded Turing machines à la Aho, Hopcroft
and Ullman [1].

To use the union-universality problem for our purposes, we would need to use partially
ordered DFAs rather than general DFAs to ensure that the union of the DFAs is partially ordered.
However, we have shown that the difficulty of the DFA-union-universality problem comes from
nontrivial cycles, and hence its partially-ordered variant is easier unless PSPACE = NP.

We consider the complemented equivalent of the problem for which we can prove a stronger
result (cf. Theorem 18). The DFA-intersection emptiness problem asks, given n DFAs, whether
the intersection of their languages is empty. Indeed, the union of n DFA languages is universal if
and only if the intersection of their complements is empty. Thus, we have the following corollary.

Corollary 41. The poDFA-union-universality problem is CONP-complete.

We point out that the result cannot be further improved by restricting the size of the alphabet
since the intersection-emptiness problem for unary poNFAs can be solved in polynomial time.
Indeed, if there is a word in the intersection

⋂n
i=1 L(Ai), then there is one that is a prefix of the

word ak1+···+kn , where ki is the depth of Ai, which is of polynomial length.
It can be shown, and it is somehow intuitive, that every rpoNFA is a union of a number

of poDFAs. In other words, every rpoNFA can be decomposed into the union of a number of
poDFAs. Then the question whether an rpoNFA is universal is equivalent to the question whether
the union of the languages of the poDFAs is universal. Since deciding universality for rpoNFAs
is PSPACE-complete (and we show the same complexity for ptNFAs), the previous corollary
implies that the decomposition cannot be constructed in polynomial time.

Thus, we cannot adapt Kozen’s construction to show PSPACE-hardness of deciding univer-
sality for ptNFAs. The situation is, however, different for the reduction from the word problem
of a polynomially-space-bounded Turing machines, which we have modified to prove PSPACE-
hardness for the problem if the alphabet may grow polynomially with the number of states of the
automaton.

To prove the result, we take, for a polynomial p, a p-space-bounded deterministic Turing
machine M together with an input x, and encode the computations of M on x as words over
some alphabet Σ that depends on the alphabet and the state set of M . One then constructs a
regular expression (or an NFA) Rx representing all computations that do not encode an accepting
run of M on x. That is, L(Rx) = Σ∗ if and only if M does not accept x [1].

The form of Rx is relatively simple, consisting of a union of expressions of the form

Σ
∗K Σ

∗ (5.1)

26

Substitute for initial Σ∗ Substitute for ending Σ∗

The ptNFA An,n

A copy of the ptNFA for KA copy of the ptNFA for K

Figure 5.3: Construction of a self-loop-deterministic poNFA (solid edges) solving problem (i),
illustrated for two copies of the ptNFA for K, and its completion to a ptNFA (dashed edges)
solving problem (ii)

where K is a finite language of words of length O(p(|x|)). Intuitively, K encodes possible
violations of a correct computation of M on x, such as the initial configuration does not contain
the input x, or the step from a configuration to the next one does not correspond to a rule of
M . These checks are local, involving at most two consecutive configurations of M , each of
polynomial size. Hence they can be encoded as the finite language K. The initial segment Σ∗ of
(5.1) nondeterministically guesses a position of the computation where a violation encoded by K
occurs, and the last Σ∗ reads the rest of the word if the violation check was successful.

Nonetheless, this idea cannot be directly used to prove our result for two reasons:

(i) Although expression (5.1) can easily be translated to a poNFA, it is not true for ptNFAs
because the translation of the leading part Σ∗K may not be self-loop-deterministic;

(ii) The constructed poNFA may be incomplete and its “standard” completion by adding the
missing transitions to a new sink state may violate confluence.

A first observation to overcome these problems is that the length of the encoding of a
computation of M on x is at most exponential with respect to the size of M and x. It would
therefore be sufficient to replace the initial segment Σ∗ in (5.1) by prefixes of an exponentially
long word. However, such a word cannot be constructed by a polynomial-time reduction. Instead,
we replace the leading Σ∗ with a ptNFA encoding such an exponential word, which exists and is
of polynomial size as we show in Lemma 42 – there we construct, in polynomial time, a ptNFA
An,n that accepts all words but a single one, Wn,n, of exponential length.

Lemma 42. For all integers k,n≥ 1, there exists a ptNFA Ak,n over an n-letter alphabet with
n(2k+1)+1 states, such that the unique non-accepted word of Ak,n is of length

(k+n
k

)
−1.

Since the language K of (5.1) is finite, and hence piecewise testable, there is a ptNFA
recognizing K. For every state of An,n, we make a copy of the ptNFA for K and identify its
initial state with the state of An,n if it does not violate self-loop-determinism; see Figure 5.3 for
an illustration. We keep track of the words read by both An,n and the ptNFA for K by taking the
Cartesian product of their alphabets. A letter is then a pair of symbols, where the first symbol is
the input for An,n and the second is the input for the ptNFA for K. A word over this alphabet is
accepted if the first components do not form the word Wn,n or the second components form a
word that is not a correct encoding of a run of M on x. This results in a self-loop-deterministic
poNFA that overcomes problem (i).

However, this technique is not sufficient to resolve problem (ii). Although the construction
yields a self-loop-deterministic poNFA (rpoNFA) that is universal if and only if the regular
expression Rx is [72], it is incomplete and its “standard” completion by adding the missing

27

A\B DFA ptNFA & rpoNFA poNFA NFA
DFA L/NL NL/CONP/PSPACE NL/PSPACE CONP/PSPACE

ptNFA NL NL/CONP/PSPACE NL/PSPACE CONP/PSPACE

rpoNFA NL NL/CONP/PSPACE NL/PSPACE CONP/PSPACE

poNFA NL NL/CONP/PSPACE NL/PSPACE CONP/PSPACE

NFA NL NL/CONP/PSPACE NL/PSPACE CONP/PSPACE

Table 5.2: Complexity of deciding inclusion L(A)⊆ L(B) (unary/fixed[/growing] alphabet), all
results are complete for the given class

transitions to an additional sink state violates confluence. Because of different expressive powers,
it is not always possible to complete an rpoNFA to obtain a ptNFA. But we show that it is
possible in our case because the length of the input that is of interest is bounded by the length of
the word Wn,n. The maximal state of An,n is accepting, and therefore all the missing transitions
can be added so that the paths required by confluence meet in the maximal state of An,n. Since
all words longer than |Wn,n| are accepted by An,n, we could complete the self-loop-deterministic
poNFA by adding paths longer than |Wn,n| to the maximal state of An,n. However, this cannot
be done by a polynomial-time reduction, since the length of Wn,n is exponential. Instead, we
add a ptNFA to encode such paths in the formal definition of An,n as given in Lemma 42. We
then ensure confluence by adding the missing transitions to states of the ptNFA An,n from which
the unread part of Wn,n is not accepted and from which the maximal state of An,n is reachable
under the symbol of the added transition. The second condition ensures confluence, since all the
transitions meet in the maximal state of An,n. The idea is illustrated in Figure 5.3.

Theorem 43. Deciding universality for ptNFAs is PSPACE-complete.

5.4 Inclusion and Equivalence of Partially Ordered NFAs
Universality is closely related to the inclusion and equivalence problems, which are of interest
mainly from the point of view of optimization, e. g., in query answering.

Given two languages K and L over Σ, the inclusion problem asks whether K ⊆ L and the
equivalence problem asks whether K = L. Universality can then be expressed as the inclusion
Σ∗ ⊆ L or the equivalence Σ∗ = L.

Although equivalence means two inclusions, complexities of these two problems may differ
significantly, e. g., inclusion is undecidable for deterministic context-free languages [42] while
equivalence is decidable [112].

The relation of universality to inclusion and equivalence lies in the fact that the complexity
of universality provides a lower bound on the complexity of both inclusion and equivalence.
Therefore, it remains to show memberships of our results summarized in Tables 5.2 and 5.3.

The complexity of inclusion and equivalence for regular expressions of special forms has
been investigated by Martens et al. [79]. For a few of them, PSPACE-completeness of the
inclusion problem has been achieved. The results were established for alphabets of unbounded
size. Since some of the expressions define languages expressible by poNFAs, we readily have
that the inclusion problem for poNFAs is PSPACE-complete. However, using Theorem 20 and
the well-known PSPACE upper bound on inclusion and equivalence for NFAs, we obtain that the
inclusion and equivalence problems for poNFAs are PSPACE-complete even if the alphabet is
binary.

The expressions in Martens et al. [79] cannot be expressed as rpoNFAs. Hence the question
for rpoNFAs was open. Using Theorem 37 and the upper bound for NFAs, we can easily establish

28

DFA ptNFA & rpoNFA poNFA NFA
DFA L/NL NL/CONP/PSPACE NL/PSPACE CONP/PSPACE

ptNFA NL/CONP/PSPACE NL/PSPACE CONP/PSPACE

rpoNFA NL/CONP/PSPACE NL/PSPACE CONP/PSPACE

poNFA NL/PSPACE CONP/PSPACE

NFA CONP/PSPACE

Table 5.3: Complexity of deciding equivalence (unary/fixed[/growing] alphabet), the problems
are complete for the given classes

that the inclusion and equivalence problems for rpoNFAs are PSPACE-complete. If the alphabet
is fixed, the complexity of inclusion (and of equivalence) is covered by Theorem 32.

For the unary case, it is known that the inclusion and equivalence problems for NFAs over a
unary alphabet are CONP-complete [56, 121]. For poNFAs we have shown that the inclusion
and equivalence problems for poNFAs over a unary alphabet are NL-complete.

We now briefly explain the results summarized in the tables. Let A be an automaton of any
of the considered types. We now discuss the cases depending on the type of B. We assume that
both automata are over the same alphabet specified by B.

If B is a DFA, then L(A)⊆ L(B) if and only if L(A)∩L(B) = /0, which can be checked
in NL (or in L if both automata are unary DFAs), where B denotes the DFA obtained by
complementing B. This covers the first column of Table 5.2.

If B is an rpoNFA over a fixed alphabet, then deciding L(A) ⊆ L(B) is in CONP [72,
Theorem 23]. Furthermore, the case of a unary alphabet follows from the case of unary poNFAs,
and the case of a growing alphabet from the case of general NFAs.

If B is a unary poNFA, we distinguish several cases. First, deciding whether the language of
an NFA is finite is in NL. Thus, if L(A) is infinite and L(B) is finite, the inclusion does not
hold. If both the languages are finite, then the number of words is bounded by the number of
states, and hence the inclusion can be decided in NL. If L(B) is infinite, then there is n bounded
by the number of states of B such that L(B) contains all words of length at least n. Thus, the
inclusion does not hold if and only if there is a word of length at most n in L(A) that is not in
L(B), which can again be checked in NL.

If B is an NFA, then deciding L(A) ⊆ L(B) is in PSPACE using the standard on-the-fly
computation of B and deciding L(A)∩L(B) = /0.

If B is a unary NFA, then if L(B) is finite, we proceed as in the case of B being a unary
poNFA. Therefore, assume that L(B) is infinite and B has n states. Then the minimal DFA
recognizing L(B) has at most 2n states (a better bound is shown by Chrobak [28]). If the
inclusion L(A) ⊆ L(B) does not hold and A has m states, then there exists k ≤ m · 2n, the
number of states of A ×B, such that ak ∈ L(A)\L(B). We can guess k in binary and verify
that the inclusion does not hold in polynomial time by computing the reachable states under ak

using the matrix multiplication. Hence, checking that the inclusion holds is in CONP.
Notice that the upper-bound complexity for equivalence follows immediately from the

upper-bound complexity for inclusion, which completes this section.
The main papers [72, 84, 85] on which the results of this chapter are based are attached in

Appendix ??.

29

6. Piecewise Testable Languages

Recall that a regular language over Σ is piecewise testable (PT) if it is a finite boolean combination
of languages of the form Σ∗a1Σ∗a2Σ∗ · · ·Σ∗anΣ∗, where ai ∈ Σ and n ≥ 0. If n is bounded by
a constant k, then the language is k-piecewise testable (k-PT). Piecewise testable languages
are exactly those regular languages whose syntactic monoid is J -trivial [115]. Simon [116]
provided various characterizations of piecewise testable languages, e. g., in terms of monoids or
automata. These languages are of interest in many disciplines of mathematics, such as semigroup
theory [3, 4, 96] for their relation to Green’s relations or in logic on words [38, 98] for their
relation to first-order logic FO[<] and the Straubing-Thérien hierarchy [95, 122, 124, 125]. They
are indeed studied in formal languages and automata theory [68], recently mainly in the context
of separation [98, 127]. Piecewise testable languages form a strict subclass of star-free languages
or, in other words, of the languages definable by LTL. They are investigated in natural language
processing [43, 103], in cognitive and sub-regular complexity [104], in learning theory [45, 69],
and in databases in the context of XML schema languages [34, 53, 54]. They have been extended
from words to trees [13, 46].

6.1 Finding a Boolean Combination
We studied the problem of translating an automaton accepting a piecewise testable language
into a Boolean combination of languages of the form La1a2···an = Σ∗a1Σ∗a1Σ∗ · · ·Σ∗anΣ∗. Our
motivation comes from the simplification of XML Schema, since such expressions resemble
XPath-like expressions used in the BonXai schema language [78].

Since every piecewise testable language is k-PT for some k ≥ 0, and a k-PT language is
also (k+ 1)-PT, we focus on the Boolean combination of languages Lu, where the length of
u is bounded by the minimal k for which the language is k-PT. From this point of view, we
are interested in translating an automaton to the form of a generalized regular expression (an
expression allowing the operation of complement). Notice that generalized regular expressions
can be non-elementary more succinct than classical regular expressions [37, 121, 48] and that
not much is known about these transformations [41].

There are many possible different Boolean combinations describing the same language, and
it is not clear which of them is the best representation. The choice significantly depends on the
applications. We are interested in those Boolean combinations that resemble the disjunctive
normal form of logical formulas rather than in the most concise representation.

The basic idea of our translation can be outlined as follows. Let L be a language over Σ

represented by its minimal DFA, and let the equivalence relation∼k on Σ∗ be defined by u∼k v if
u and v have the same sets of (scattered) subwords up to length k, denoted by subk(u) = subk(v).
Then L is piecewise testable if and only if there exists a nonnegative integer k such that ∼k⊆∼L,
where ∼L is the Myhill congruence [91]. Thus, every k-PT language is a finite union of ∼k-
classes. As shown, for instance, by Klı́ma [66], the ∼k-classes can be described by languages of

30

the form
[w]∼k =

⋂
u∈subk(w)

Lu∩
⋂

u/∈subk(w),|u|≤k

Lc
u,

where Lc
u denotes the complement of Lu. The high-level approach is thus:

1. Check whether the regular language L is piecewise testable.

2. If so, compute the minimal k ≥ 0 for which L is k-piecewise testable.

3. Compute the finite number of representatives of the equivalence classes that form the
union of the language L, express them as above and form their union.

6.1.1 Step 1: Checking Piecewise Testability
The complexity of the first step has been studied in the literature. Simon [115] proved that
PT languages are exactly those regular languages whose syntactic monoid is J -trivial, which
gives decidability. Stern [120] showed that the problem is decidable in polynomial time for
languages represented by DFAs and Cho and Huynh [27] proved NL-completeness for DFAs.
Later, Trahtman [126] showed that the problem is solvable in time quadratic with respect to
the number of states of the DFA and linear with respect to the size of the alphabet, and Klı́ma
and Polák [68] gave an algorithm that is quadratic in the size of the input alphabet and linear in
the number of states of the DFA. For languages represented by NFAs, we have shown that the
problem is PSPACE-complete [83].

6.1.2 Step 2: Computing the Minimal k

The second step gives rise to the k-piecewise testability problem formulated as follows:

INPUT: an automaton (DFA or NFA) A

OUTPUT: YES if and only if L(A) is k-piecewise testable

The problem is trivially decidable for any k because there are only finitely many k-PT
languages over the alphabet of A . We investigated the computational complexity of this
problem.

The CONP upper bound complexity for DFAs has been independently obtained by Hofman
and Martens [53] (formulated in terms of separability and presented without proof), Klı́ma, Kunc
and Polák [67], and Masopust and Thomazo [86]. Klı́ma, Kunc and Polák further proved that the
problem is CONP-complete for DFAs if k ≥ 4. What is the complexity if k < 4? We now answer
this question.

0-Piecewise Testability Let A be a minimal DFA over an alphabet Σ. The language L(A) is
0-PT if and only if it has a single state, that is, it recognizes either Σ∗ or /0. Thus, it is decidable
in O(1) whether L(A) is 0-PT.

1-Piecewise Testability We showed that the 1-PT problem belongs to AC0, which is a strict
subset of LOGSPACE. There is an infinite hierarchy of classes Σi (Πi) in AC0 based on the
number of alternating levels of disjunctions and conjunctions. Specifically, Σi (Πi) is the class
of problems solvable by uniform families of unlimited fan-in circuits of constant depth and
polynomial size with i alternating levels of AND and OR gates (with NOT gates only in the
input) and with the output gate being an OR gate (an AND gate) [10].

Theorem 44. To decide whether a minimal DFA recognizes a 1-PT language is in AC0.

31

The proof gives that the problem belongs to Π3 of the hierarchy. However, we do not know
whether the 1-PT problem is Π3-hard in the AC0 hierarchy or not.

As a consequence of our construction, if a minimal DFA over Σ has more than 2|Σ| states,
then its language is not 1-piecewise testable.

2-Piecewise Testability We showed that to decide whether a minimal DFA recognizes a 2-PT
language is NL-complete. Notice that this complexity coincides with the complexity of deciding
whether a regular language is piecewise testable, that is, whether there exists a k for which the
language is k-piecewise testable.

Theorem 45. To decide whether a minimal DFA recognizes a 2-PT language is NL-complete.

Blanchet-Sadri [12] has shown that 1-PT languages are characterized as those languages
whose syntactic monoid satisfies the equations x = x2 and xy = yx, and that 2-PT languages are
those languages whose syntactic monoid satisfies the equations xyzx = xyxzx and (xy)2 = (yx)2.
These equations could be directly used to achieve NL algorithms. Our characterizations [86],
however, improve these results and show that, for 1-PT languages, it is sufficient to verify the
equations x = x2 and xy = yx on letters (generators) rather than on words, and that for 2-PT
languages, equation xyzx = xyxzx can be verified on letters (generators) up to the element y,
which is a word (a general element of the monoid). Our results thus decrease the complexity of
the problems. In addition, the partial order and confluence can be checked instead of the equation
(xy)2 = (yx)2.

3-Piecewise Testability For this case, we made use of the equations (xy)3 = (yx)3, xzyxvxwy=
xzxyxvxwy and ywxvxyzx = ywxvxyxzx characterizing the variety of 3-PT languages [12] to show
NL-completeness of the 3-piecewise testability problem.

Theorem 46. To decide whether a minimal DFA recognizes a 3-PT language is NL-complete.

Structural Upper Bound on k

There is an interesting observation by Klı́ma and Polák [68] that if the depth of a minimal DFA
recognizing a PT language is k, then the language is k-PT. (Bounds for finite languages and
upward and downward closures have been investigated by Karandikar and Schnoebelen [64].)
The observation reduces Step 2 of our approach to solving a finite number of k-piecewise
testability problems, since the upper bound on k is given by the depth of the minimal DFA
equivalent to A .

The opposite implication does not hold, and hence we investigated the relationship between
the depth of an NFA and k-piecewise testability of its language. We showed that, for every k ≥ 0,
there exists a k-PT language with an NFA of depth k−1 and with the minimal DFA of depth
2k−1.

Theorem 47. For every n ≥ 1, there exists an n-PT language that is not (n− 1)-PT, it is
recognized by an NFA of depth n−1, and the minimal DFA recognizing it has depth 2n−1.

Although it is a well-known fact that DFAs can be exponentially larger than NFAs, an
interesting by-product of the proof of the previous theorem [86] is that there are NFAs such that
all the exponential number of states of their minimal DFAs form a simple path. Since the reverse
of the NFA constructed in the proof is a DFA, our result also contributes to the state complexity
of the reverse of piecewise testable languages, cf. [21, 61].

32

6.1.3 Step 3: Computation of Representatives
The last step of our approach is to compute those ∼k-classes, whose union forms the language L,
and to express them as the intersection of languages of the form Lu or its complements. To identify
these equivalence classes, we make use of the ∼k-canonical DFA, whose states correspond to
∼k-classes. We construct the ∼k-canonical DFA and compute its accepting states by intersection
with the input automaton. The accepting states then represent the ∼k-classes forming the
language L. The ∼k-canonical DFA can be effectively constructed. Moreover, although the
precise size of the ∼k-canonical DFA is not known, see the estimations in Karandikar, Kufleitner
and Schnoebelen [63], we show that the tight upper bound on its depth is

(k+n
k

)
−1, where n is

the cardinality of the alphabet. This result has also been independently obtained by Klı́ma, Kunc
and Polák [67].

Theorem 48. For any natural numbers k and n, the depth of the minimal DFA recognizing a
k-PT language over an n-letter alphabet is at most

(k+n
k

)
−1. The bound is tight for any k and n.

As already pointed out, this work can be seen as translating an automaton into a form
of a generalized regular expression. Generalized regular expressions can be non-elementary
more succinct than classical regular expressions, however it is not yet known whether this
non-elementary succinctness can be witnessed by a piecewise testable language.

6.2 Piecewise Testability and Nondeterministic Automata
The knowledge of a minimal or reasonably small k for which the language is k-piecewise testable
is of interest in many applications, see, e. g., Martens et al. [78]. The complexity to test whether
a piecewise testable language is k-piecewise testable is CONP-complete for k≥ 4 if the language
is given as a DFA [67] and PSPACE-complete if the language is given as an NFA [86].

Theorem 49. The k-piecewise testability problem for NFAs is PSPACE-complete.

In Section 5.3, we defined a class of nondeterministic finite automata, called ptNFAs. Let us
recall the definition of ptNFAs we use in this section.

Definition 50. An NFA A is called a ptNFA if it is partially ordered, complete, and satisfies the
UMS property.

The prefix “pt” in their name comes from piecewise testable, since, as we have shown [86],
they characterize piecewise testable languages. And indeed include all minimal DFAs recognizing
piecewise testable languages.

Theorem 51. A regular language is piecewise testable if and only if it is recognized by a ptNFA.

The reason why we use the UMS property in the definition of ptNFAs rather than confluence
is simply because confluence does not naturally generalize to NFAs. However, it is known that
partially ordered NFAs characterize the level 3

2 of the Straubing-Thérien hierarchy [111] and
that rpoNFAs characterize R-trivial languages [71]. Adding confluence and completeness on
top of these properties results in ptNFAs [71].

To check whether an NFA is a ptNFA requires to check whether the automaton is partially
ordered, complete and satisfies the UMS property. The violation of these properties can be tested
by several reachability tests, and hence its complexity belongs to coNL=NL. On the other hand,
checking the properties is NL-hard even for minimal DFAs [27].

Theorem 52. It is NL-complete to check whether an NFA is a ptNFA.

33

Unary alphabet Fixed alphabet Arbitrary alphabet
|Σ|= 1 |Σ| ≥ 2 k ≤ 3 k ≥ 4

DFA L-c NL-c NL-c CONP-c [67]
ptNFA NL-c CONP-c PSPACE-c

rpoNFA NL-c CONP-c PSPACE-c
poNFA NL-c PSPACE-c PSPACE-c

NFA CONP-c PSPACE-c PSPACE-c

Table 6.1: Complexity of deciding k-piecewise testability

We show that, analogously to the minimal DFA case, the depth of ptNFAs provides an upper
bound on k-piecewise testability and that this new bound is up to exponentially lower than the
one given by minimal DFAs.

Theorem 53. If the depth of a ptNFA A is k, then the language L(A) is k-piecewise testable.

In other words, the previous theorem says that if k is the minimum number for which a
piecewise testable language L is k-piecewise testable, then the depth of any ptNFA recognizing L
is at least k. This property does not hold for general NFAs, and the gap between k-piecewise
testability and the depth of NFAs can be arbitrarily large.

The opposite implication of Theorem 53 does not hold. Although the depth of ptNFAs is
more suitable to provide bounds on k-piecewise testability, the depth is significantly influenced
by the size of the alphabet. For instance, for an alphabet Σ, the language L =

⋂
a∈Σ La of all words

containing all letters of Σ is a 1-piecewise testable language such that any NFA recognizing it
requires at least 2|Σ| states and is of depth |Σ|. The depth follows from the fact that the shortest
accepted word is of length |Σ|, and hence any path from an initial state to an accepting state must
be of length at least |Σ|.

The dependence on the alphabet is even stronger as shown below.

Lemma 54. For any alphabet of cardinality n > 1, there exists an n2-piecewise testable language
such that any NFA recognizing it is of depth at least nn−1.

6.3 Complexity
In this subsection, we discuss the complexity of deciding (k-)piecewise testability for languages
given as a considered type of partially ordered NFA, as well as by a DFA or by an NFA.

6.3.1 Complexity of Deciding k-Piecewise Testability
Recall that a regular language over Σ is piecewise testable if it is a finite boolean combination of
languages of the form Σ∗a1Σ∗a2Σ∗ · · ·Σ∗anΣ∗, where ai ∈ Σ for i = 1, . . . ,n, n≥ 0. Let k ≥ 0 be
an integer. The language is k-piecewise testable if n≤ k. The k-piecewise testability problem
asks whether a given automaton recognizes a k-piecewise testable language.

In this section, we focus on the complexity of deciding k-piecewise testability for partially
ordered automata. Our results are summarized in Table 6.1. These results revise and improve our
previous results of paper [81] and are part of the manuscript [85]. The proof technique is based
on the following new lemma.

Lemma 55. Let k ≥ 0 be a constant. Then the universality problem is log-space reducible to the
k-piecewise testability problem.

34

|Σ|= 1 |Σ| ≥ 2 Σ is growing
DFA L-c NL-c [27]1 NL-c [27]

rpoNFA X CONP-c PSPACE-c
poNFA X PSPACE-c PSPACE-c

NFA CONP-c PSPACE-c PSPACE-c

Table 6.2: Complexity of deciding piecewise testability

We then immediately have the following results.

Theorem 56. Deciding k-piecewise testability for ptNFAs is PSPACE-complete.

Theorem 57. Let Σ be a fixed alphabet with at least two letters. Deciding k-piecewise testability
for ptNFAs over Σ is CONP-complete.

This result is in contrast with an analogous result for DFAs, where deciding k-piecewise
testability for DFAs over a fixed alphabet is in PTIME [67]. A more precise complexity can be
shown.

Theorem 58. Let Σ be a fixed alphabet with at least two letters. Deciding k-piecewise testability
for DFAs over Σ is NL-complete.

Theorem 59. Let Σ be a fixed alphabet with at least two letters. Deciding k-piecewise testability
for poNFAs over Σ is PSPACE-complete.

Theorems 57 and 59 show hardness even for binary alphabets, which improves our recent
results where the alphabet had at least three letters [81]. Furthermore, we point out that hardness
in Theorem 57 does not follow from the CONP-hardness proof of Klı́ma et al. [67] showing
CONP-completeness of deciding k-piecewise testability for DFAs for k ≥ 4, since their proof
requires a growing alphabet.

It remains to consider the case of unary alphabets.

Theorem 60. Deciding k-piecewise testability for ptNFAs over a unary alphabet is NL-complete.
It holds even if k is given as part of the input.

Theorem 61. Deciding k-piecewise testability for poNFAs and rpoNFAs over a unary alphabet
is NL-complete. It holds even if k is given as part of the input.

Theorem 62. Deciding k-piecewise testability for DFAs over a unary alphabet is L-complete.

Theorem 63. Deciding k-piecewise testability for NFAs over a unary alphabet is CONP-
complete.

6.3.2 Complexity of Deciding Piecewise Testability
The piecewise testability problem asks, given an automaton, whether it recognizes a piecewise
testable language. We now study the complexity of deciding piecewise testability for partially
ordered automata. Our results are summarized in Table 6.2.

1Cho and Huynh [27] showed hardness for a three-letter alphabet. However, the result holds also for binary
alphabets, using, e. g., a reduction from the reachability problem for directed acyclic graphs with out-degree at most
two.

35

To simplify proofs, we would like to use a result similar to Lemma 55. Unfortunately, there
is no such result preserving the alphabet. If there were, it would imply that deciding piecewise
testability for ptNFAs has a nontrivial complexity, but these languages are trivially piecewise
testable. Similarly, it would imply that deciding piecewise testability of unary (r)poNFAs is
nontrivial, but we show below that they are trivially piecewise testable.

Recall that R-trivial languages, poDFA-languages, and rpoNFA-languages coincide.

Theorem 64. The classes of unary poNFA languages, unary R-trivial languages, and unary
piecewise testable languages coincide.

Theorem 65. Deciding piecewise testability for DFAs over a unary alphabet is L-complete.

Theorem 66. Deciding piecewise testability for NFAs over a unary alphabet is CONP-complete.

Theorem 67. Let Σ be a fixed alphabet with at least two letters. Deciding piecewise testability
for poNFAs over Σ is PSPACE-complete.

Theorem 68. Deciding piecewise testability for rpoNFAs is PSPACE-complete.

Theorem 69. Deciding piecewise testability for rpoNFAs over a fixed alphabet is CONP-
complete even if the alphabet is binary.

The main papers [81, 86] on which the results of this chapter are based are attached in
Appendix ??, including the manuscript [85].

36

7. Applications

We now present a few applications of our results in regular expressions used in the schema
languages for XML data according to the W3C standards, and in the system-theoretic properties
of discrete-event systems.

7.1 Deterministic Regular Expressions
In this section, we discuss the relationship of partially ordered NFAs to deterministic regular
expressions (DREs) [16]. DREs are of interest in schema languages for XML data – Doc-
ument Type Definition (DTD) and XML Schema Definition (XSD) – since the World Wide
Web Consortium standards require that the regular expressions in their specification must be
deterministic.

The regular expressions (REs) over an alphabet Σ are defined as follows: /0, ε and a, a ∈ Σ,
are regular expressions. If r and s are regular expressions, then (r · s), (r+ s) and (r)∗ are regular
expressions. The language defined by a regular expression r, denoted by L(r), is inductively
defined by L(/0) = /0, L(ε) = {ε}, L(a) = {a}, L(r · s) = L(r) ·L(s), L(r+ s) = L(r)∪L(s), and
L(r∗) = {ε}∪⋃∞

i=1 L(r)i, where L(r) · L(s) denotes the concatenation of the languages L(r)
and L(s). Let r be a regular expression, and let r be a regular expression obtained from r by
replacing the i-th occurrence of symbol a in r by ai. For instance, if r = (a+ b)∗b(a+ b),
then r = (a1 +b1)

∗b2(a2 +b3). A regular expression r is deterministic (one-unambiguous [16]
or DRE) if there are no words waiv and wa jv′ in L(r) such that i 6= j. For instance, the
expression (a+ b)∗b(a+ b) is not deterministic since the strings b2a2 and b1b2a2 are both in
L((a1+b1)

∗b2(a2+b3)). A regular language is DRE definable if there exists a DRE that defines
it. Brüggemann-Klein and Wood [16] showed that not all regular languages are DRE definable.

The important question is then whether a given regular language is DRE definable. This
problem has been shown to be PSPACE-complete [32]. Since the language of the expression
(a+ b)∗b(a+ b) is not DRE definable [16], but it can be easily expressed by a poNFA, DRE
definability is nontrivial for poNFAs. However, the complexity of deciding whether a poNFA
language is DRE definable follows from the existing results, namely from the proof in Bex
et al. [11] showing PSPACE-hardness of DRE-definability for regular expressions; the regular
expression constructed there can be expressed as a poNFA. Thus, we readily have the following:

Corollary 70. To decide whether the language of a poNFA is DRE definable is PSPACE-complete.

On the other hand, the problem is trivial for the languages of rpoNFAs, which makes rpoNFAs
interesting for the XML schema languages.

Theorem 71. Every rpoNFA language is DRE definable.

To prove the theorem, we need to introduce a few notions. For a state q of an NFA A , the
orbit of q is the maximal strongly connected component of A containing q. State q is called a

37

gate of the orbit of q if q is accepting or has an outgoing transition that leaves the orbit. The orbit
automaton of state q is the sub-automaton of A consisting of the orbit of q in which the initial
state is q and the accepting states are the gates of the orbit of q. We denote the orbit automaton
of q by Aq. The orbit language of q is L(Aq). The orbit languages of A are the orbit languages
of states of A .

An NFA A has the orbit property if, for every pair of gates q1,q2 in the same orbit in A , the
following properties hold: (i) q1 is accepting if and only if q2 is accepting, and (ii) for all states q
outside the orbit of q1 and q2, there is a transition q ∈ q1 ·a if a and only if there is a transition
q ∈ q2 ·a.

Brüggemann-Klein and Wood [16] have shown that the language of a minimal DFA A
is DRE-definable if and only if A has the orbit property and all orbit languages of A are
DRE-definable.

Lemma 72. Every language of a minimal partially ordered DFA is DRE-definable.

This lemma implies Theorem 71. Note that the converse of Theorem 71 does not hold. The
expression b∗a(b∗a)∗ is deterministic [32] and it can be easily verified that its minimal DFA is
not partially ordered, and hence the expression defines a language that is not R-trivial (rpoNFA
definable).

7.2 Detectability
A discrete event system (DES) is modeled as an NFA G with all states accepting. Hence we
simply write G = (Q,Σ,δ , I) without specifying the set of accepting states. The alphabet Σ is
partitioned into two disjoint subsets Σo and Σuo = Σ\Σo, where Σo is the set of observable events
and Σuo the set of unobservable events.

The detectability problem of discrete event systems is a question whether the current and
subsequent states of a DES can be determined based on observations. The problem was intro-
duced and studied by Shu et al. [113, 114]. Detectability generalizes other notions studied in the
literature [23, 101], such as stability of Ozveren and Willsky [92]. Shu et al. further argue that
many practical problems can be formulated as detectability.

Four variants of detectability have been defined: strong and weak detectability and strong
and weak periodic detectability [114]. Let Σ be an alphabet, Σo ⊆ Σ the set of observable events,
and P the projection from Σ to Σo; the projection P : Σ∗→ Σ∗o is a morphism defined by P(a) = ε

for a ∈ Σ \Σo, and P(a) = a for a ∈ Σo. As usual when detectability is studied, we make the
following two assumptions on the DES:

1. G is deadlock free, that is, for every state of the system, at least one event can occur.
Formally, for every q ∈ Q, there is σ ∈ Σ such that δ (q,σ) 6= /0.

2. No loop in G consists solely of unobservable events: for every q ∈ Q and every w ∈ Σ+
uo,

q /∈ δ (q,w).

The set of infinite sequences of events generated by the DES G is denoted by Lω(G). Given
Q′ ⊆Q, the set of all possible states reachable from the states of Q′ after observing a word t ∈ Σ∗o
is denoted by R(Q′, t) = ∪w∈Σ∗,P(w)=tδ (Q′,w). For w ∈ Lω(G), we denote the set of its prefixes
by Pr(w).

Definition 73. A DES G = (Q,Σ,δ , I) is strongly detectable with respect to Σuo if we can
determine, after a finite number of observations, the current and subsequent states of the system
for all trajectories of the system, i. e.,

(∃n ∈ N)(∀s ∈ Lω(G))(∀t ∈ Pr(s))|P(t)|> n⇒ |R(I,P(t))|= 1 .

38

Definition 74. A DES G = (Q,Σ,δ , I) is strongly periodically detectable with respect to Σuo if
we can periodically determine the current state of the system for all trajectories of the system,
i. e.,

(∃n ∈ N)(∀s ∈ Lω(G))(∀t ∈ Pr(s))(∃t ′ ∈ Σ
∗)tt ′ ∈ Pr(s)∧|P(t ′)|< n∧|R(I,P(tt ′))|= 1 .

Definition 75. A DES G = (Q,Σ,δ , I) is weakly detectable with respect to Σuo if we can
determine, after a finite number of observations, the current and subsequent states of the system
for some trajectories of the system, i. e.,

(∃n ∈ N)(∃s ∈ Lω(G))(∀t ∈ Pr(s))|P(t)|> n⇒ |R(I,P(t))|= 1 .

Definition 76. A DES G = (Q,Σ,δ , I) is weakly periodically detectable with respect to Σuo if
we can periodically determine the current state of the system for some trajectories of the system,
i. e.,

(∃n ∈ N)(∃s ∈ Lω(G))(∀t ∈ Pr(s))(∃t ′ ∈ Σ
∗)tt ′ ∈ Pr(s)∧|P(t ′)|< n∧|R(I,P(tt ′))|= 1 .

Shu et al. [114] investigated detectability for deterministic DESs. A deterministic DES is
modeled as a deterministic finite automaton with a set of initial states rather than a single initial
state. The motivation for more initial states comes from the observation that it is often not known
which state the system is initially in. They designed exponential algorithms to decide detectability
based on the computation of the observer.1 Later, to be able to handle more problems, they
extended their study to nondeterministic DESs and improved the algorithms for strong (periodic)
detectability of nondeterministic DESs to polynomial time [113]. Concerning the complexity of
deciding weak detectability, Zhang [130] showed that the problem is PSPACE-complete and that
PSPACE-hardness holds even for deterministic DESs with all events observable. We improve
these results to binary alphabets and to the DFA representation of DESs.

Theorem 77. Deciding whether a deterministic DES over a binary alphabet is weakly (periodi-
cally) detectable is PSPACE-complete.

By a minor modification of the construction in the proof of the previous theorem [82], we
have the following corollary.

Corollary 78. Deciding whether a DES modeled as a DFA is weakly (periodically) detectable is
PSPACE-complete even if the DES has only three events, one of which is unobservable.

The unobservable event in the corollary is unavoidable because any DES modeled as a DFA
with all events observable is always in a unique state, and hence trivially detectable. We now
show that two observable events are also necessary for PSPACE-hardness.

Theorem 79. Deciding whether a DES over a unary alphabet is weakly detectable is in P, and
whether it is weakly periodically detectable is in NP.

Zhang’s result gives rise to a question whether there are structurally simpler DESs with a
tractable complexity of weak (periodic) detectability. The simplest DESs are acyclic DFAs,
recognizing finite languages. Acyclic DESs are not deadlock-free. To fulfill deadlock-freeness,
we consider DESs modeled as DFAs with cycles only in the form of self-loops. As pointed out in
the previous sections, such DFAs recognize a subclass of regular languages strictly included in
star-free languages [19]. Star-free languages are regular languages definable by linear temporal
logic widely used as a specification language in automated verification. The nontrivial-acyclicity
condition is satisfied by poDFAs and we have shown that poDFAs and rpoNFAs recognize the
same class of languages [72].

1An observer is a DFA obtained by replacing unobservable events by ε and by the standard subset construction.

39

We have further shown that deciding weak (periodic) detectability remains PSPACE-complete
even if the DES is modeled as a poDFA, or as an rpoNFA with all events observable. Conse-
quently, the problem is intractable for basically all practical cases. We point out that Zhang [130]
obtained his result by reducing the DFA-intersection problem. Since his construction does not
introduce any non-trivial cycles, it could seem that it also shows the result for poDFAs. This is,
however, not the case because the complexity of the poDFA-intersection problem is easier unless
PSPACE =NP, c. f. Theorem 18. Therefore, to prove our results, we reduced the universality
problem for rpoNFAs.

Theorem 80. Deciding weak (periodic) detectability of DESs modeled as rpoNFAs is PSPACE-
complete even if all events are observable.

Moreover, intractability holds even if the DESs are modeled as poDFAs over a very small
alphabet.

Theorem 81. Deciding weak (periodic) detectability of DESs modeled as poDFAs over a five-
letter alphabet, two of which are unobservable, is PSPACE-complete.

On the other hand, we have shown that deciding strong (periodic) detectability is NL-
complete.

Theorem 82. Deciding whether a DES is strongly (periodically) detectable is NL-complete.

Since NL is the class of problems that can be efficiently parallelized [6], we obtain that
strong (periodic) detectability can be efficiently verified on a parallel computer. Note that Shu
and Lin [113] designed a polynomial-time algorithm to decide strong (periodic) detectability,
and hence the problem was known to be in P.

7.3 Opacity
Opacity is a property related to the privacy and security analysis of discrete-event systems. The
system has a secret and an intruder, modeled as a passive observer with limited observation, tries
to figure it out. The system is opaque if the secret is not revealed.

If the secret is modeled as a set of secret states, the notion is called a state-based opacity.
State-based opacity was introduced by Bryans et al. [17] for systems modeled by Petri nets, and
later adapted for systems modelled by (stochastic) automata by Saboori and Hadjicostis [107].
Intuitively, the system is opaque if the intruder never knows for sure that the system is in a secret
state. Several variants of opacity have been introduced and studied in the literature [59]. Here
we consider only current-state opacity.

Definition 83. Given a DES G = (Q,Σ,δ , I), a projection P : Σ∗ → Σ∗o, a set of secret states
QS ⊆ Q, and a set of non-secret states QNS ⊆ Q. System G is current-state opaque if for
every word w such that δ (I,w)∩QS 6= /0, there exists a word w′ such that P(w) = P(w′) and
δ (I,w′)∩QNS 6= /0.

The notion of opacity independent on the structure of the system was introduced by Badouel
et al. [7] and Dubreil et al. [39] under the name language-based opacity. Language-based opacity
is defined over a set of secret behaviors. Lin [74] further generalized that notion to two sets of
behaviors (secret and non-secret) as follows.

Definition 84. Given a DES G = (Q,Σ,δ , I), a projection P : Σ∗→ Σ∗o, a secret language LS ⊆
L(G), and a non-secret language LNS ⊆ L(G). System G is language-based opaque if LS ⊆
P−1P(LNS).

40

Assuming that the languages LS and LNS are regular, Wu and Lafortune [129] provided
transformations among several notions of opacity, including current-state opacity and language-
based opacity. Their reductions can easily be modified to deterministic log-space reductions,
and hence the following results considering current-state opacity also apply to language-based
opacity.

The following lemma reduces current-state opacity to the inclusion problem.

Lemma 85. Let G = (Q,Σ,δ , I) be a DES, P : Σ∗ → Σ∗o be a projection, QS ⊆ Q be a set
of secret states, and QNS ⊆ Q be a set of non-secret states. Let G1 = (Q,Σ,δ , I,QS) and
G2 = (Q,Σ,δ , I,QNS). Then G is current-state opaque if and only if P(L(G1))⊆ P(L(G2)).

Cassez et al. [26] pointed out that the verification of current-state opacity is at least as hard
as deciding universality. Indeed, L(G) = Σ∗ if and only if G is current-state opaque with respect
to QS = Q\F and QNS = F . This observation and Lemma 85 together with the results on the
complexity of universality and inclusion give us tools to show lower and upper complexity
bounds for deciding opacity.

Our first result shows that deciding current-state opacity is PSPACE-complete even if the
system is given as a DFA, that is, even if the DES is deterministic with a single initial state.

Theorem 86. Deciding current-state opacity for a DES modeled by a DFA with three events,
one of which is unobservable, is PSPACE-complete.

Proof. Membership in PSPACE was shown by Saboori [106] and also follows immediately from
Lemma 85 and the fact that deciding inclusion for two NFAs is PSPACE-complete.

To show hardness, we reduce the DFA-union universality problem [70]. Let A1, . . . ,An be
DFAs over the alphabet {0,1}. Without loss of generality, we may assume that the initial state of
Ai, for all i = 1, . . . ,n, is not reachable from any other state. Let G denote the nondeterministic
union of all Ai’s, that is, L(G) = ∪n

i=1L(Ai). Kozen [70] showed that deciding whether L(G) =
Σ∗ is PSPACE-hard, and hence deciding current-state opacity of G is PSPACE-hard by the
observation of Cassez et al. [26], see the comment below Lemma 85. Notice that the transitions
of G are deterministic, but G has n initial states, say {q1, . . . ,qn}. We further modify G by adding
a new unobservable event a and the transitions (qi,a,qi+1), for i = 1, . . . ,n−1, and let q1 be the
sole initial state. Denoting the result by G′, we can see that G′ is a DFA, and that the observers2

of G and G′ coincide (here we needed the assumption that the initial state of Ai is not reachable
from other states of Ai; otherwise, the languages of the observers of G and G′ could be different).
Altogether, G is opaque if and only if G′ is opaque, which completes the proof.

An unobservable event in the previous theorem is unavoidable because any DFA with all
events observable is always in a unique state, and therefore never opaque. We now show that
having only one observable event makes the problem easier.

Theorem 87. Deciding current-state opacity of a DES modeled by an NFA with a single observ-
able event is CONP-complete.

Proof. Membership in CONP follows from Lemma 85 and the fact that inclusion for unary NFAs
is CONP-complete; hardness follows from the complexity of deciding universality for unary
NFAs, which is CONP-complete [121].

These results give rise to a question whether there are structurally simpler systems for which
the opacity verification is tractable. Structurally the simplest systems are acyclic DFAs with full
observation, recognizing finite languages. However, these systems are never opaque. Nontrivial

2An observer is a DFA obtained by replacing unobservable events by ε and by the standard subset construction,
considering only the reachable part.

41

p
q

r

x
x =⇒ p

p′ q

r

x′
x

x

Figure 7.1: The ’determinization’; x′ and p′ are a new event and a new state

structures could then be acyclic NFAs that still recognize only finite languages. However, real
systems are usually not that simple and often require additional properties, such as deadlock-
freeness. Therefore, we consider automata with cycles in the form of self-loops (poNFAs and
poDFAs) that are, in our opinion, structurally the simplest deadlock-free DES.

We then immediately obtain the following result.

Theorem 88. Deciding current-state opacity of a DES modeled by a poNFA with only two events,
both of which are observable, is PSPACE-complete.

Proof. Membership in PSPACE follows from Lemma 85 and the results on the complexity of
inclusion for poNFAs, and hardness from the fact that deciding universality for poNFAs with
only two events is PSPACE-complete [72].

The situation is again easier if the model has only a single observable event.

Theorem 89. Deciding current-state opacity of a DES modeled by a poNFA with a single
observable event is NL-complete.

Proof. Membership in NL follows from Lemma 85 and the corresponding compexity of inclusion,
and hardness from the fact that deciding universality for unary poNFAs is NL-complete [72].

We now consider DES modeled by poDFAs. Since every DFA with all events observable
is always in a unique state, and hence never opaque, some unobservable events are necessary
to ensure opacity. We show that four events, two of which are unobservable, make the opacity
verification PSPACE-complete even for poDFAs. Consequently, the problem is PSPACE-complete
for basically all practical cases.

Theorem 90. Deciding current-state opacity for poDFAs over an alphabet with four events, two
of which are unobservable, is PSPACE-complete.

Proof. Membership in PSPACE follows from Lemma 85 and the corresponding complexity of
inclusion.

Let A = (Q,{0,1},δ , I,F) be a poNFA. By Theorem 88, deciding current-state opacity for
poNFAs with two events, both observable, is PSPACE-complete. From A , we now construct
a poDFA D = (Q∪Q′,{0,1,a,b},δ ′,s,F) by ’determinizing’ it with help of new events that
we then encode in binary. In more detail, for every state p with two transitions (p,x,r) and
(p,x,q) with p 6= q, we replace the transition (p,x,q) with two transitions (p,x′, p′) and (p′,x,q),
where x′ is a new event and p′ a new state (added to Q′); see Fig. 7.1 for an illustration. In
this way, we eliminate all nondeterministic transitions. The automaton is now deterministic
with the set of initial states I. Let Γ be the set of all the new events. We encode these events
as binary words over {a,b}. To encode |Γ| events, it suffices to consider words of length
m = dlog(|Γ|)e. Let enc : Γ→ {a,b}m be an arbitrary encoding (injection). We replace every
transition (p,x′, p′), for x′ ∈ Γ, by the sequence of transitions (p,enc(x′), p′), which requires to
add at most m−2 new states to Q′. For instance, if (p,x, p′) and (p,y, p′′) are two transitions
with x,y ∈ Γ, and enc(x) = aab and enc(y) = aba, then (p,x, p′) is replaced by transitions
(p,a, p1),(p1,a, p2),(p2,b, p′), where p1, p2 are new states added to Q′, and (p,y, p′′) is replaced
by transitions (p,a, p1),(p1,b, p3),(p3,a, p′′), where p3 is a new state added to Q′; see Fig. 7.2.

42

p
p′

p′′

x
y =⇒ p p1

p2

p3

p′

p′′

a a
b

b

a

Figure 7.2: The encoding enc(x) = aab and enc(y) = aba

To obtain a single initial state, assume that I = {q1, . . . ,qn}. Let m = dlog(n)e. We construct a
binary rooted tree (with root labeled s) of depth m over {a,b} and add it as depicted in Fig. 7.3.
The number of leaves of the tree is 2m and the number of nodes of the tree is 2m+1−1 = O(n).
Let the leaves be denoted by 1,2, . . . ,2m. We add the transitions (i,a,qi) for 1 ≤ i ≤ n. The
resulting automaton, D , is a poDFA over the alphabet {0,1,a,b} with polynomially many new

q1

q2

q3

q4

1
2
3
4

s

Z
a

b

a
b

a
b

a

a

a

a

Figure 7.3: Construction of a single initial state illustrated for 4 initial states

events and states, and a single initial state s. Let P be the projection from {0,1,a,b} to {0,1},
and let P(D) denote the poNFA obtained from D by replacing every transition (p,a,q) by
(p,P(a),q). Then D is current-state opaque with respect to P if and only if P(D) is current-state
opaque (with respect to the identity map), which is if and only if A is current-state opaque (with
respect to the identity map). Notice that we have not set the secret status of states of Q′, and
hence we have that the states of Q′ are neither secret nor non-secret (alternatively, we could set
their secret status according to their “parent” state from Q).

The main papers [81, 82] on which parts the results of this chapter are based are attached
in Appendices ?? and ??, respectively. The part on opacity has not yet been published neither
composed as a manuscript, which explains the presence of proofs.

43

8. Conclusion

We investigated the expressiveness and properties of partially ordered automata, and the com-
plexity of related problems. Namely, we studied the state complexity of the reverse of minimal
poDFAs and established a tight bound on the state complexity of the reverse of poDFAs and
confluent poDFAs showing that the state complexity of the reverse of a (confluent) poDFA of
the state complexity n is 2n−1. The witness is ternary for poDFAs and (n−1)-ary for confluent
poDFAs. The bound can be met neither by a binary poDFA nor by a confluent poDFA over an
(n−2)-element alphabet. We have further provided a characterization of the tight bounds for
poDFAs depending on the state complexity and the size of its alphabet.

Then we focused on the separation problem of regular languages by piecewise testable
languages and showed that it is PTIME-complete. Our construction for membership is based
on the non-existence of a sequence of words alternating between two languages in such a way
that every word is a subsequence of the following word called a tower. We have shown that
two languages are separable if and only if there is no infinite tower between them. The height
of towers is closely related to the complexity of computing a separator. We investigated upper
and lower bounds on the height of maximal finite towers and showed that the upper bound is
polynomial in the number of states and exponential in the size of the alphabet, and that it is
asymptotically tight if the size of the alphabet is fixed. If the alphabet may grow linearly with the
number of states, then the lower bound on the height of towers is exponential with respect to that
number. In this case, there is a gap between the lower and upper bound, and the asymptotically
optimal bound remains open.

Given a DFA A and a k ≥ 0, it is NL-complete to decide whether the language of A
is piecewise testable and, for k ≥ 4, it is CONP-complete to decide whether the language is
k-piecewise testable [67]. We discussed the complexity for k < 4. It is known that the depth
of the minimal DFA equivalent to A gives an upper bound on k; if L(A) is piecewise testable,
then it is k-piecewise testable for k being the depth of A [68]. We showed that some form of
nondeterminism does not violate this upper bound result. Specifically, we defined a class of
self-loop deterministic poNFAs, called ptNFAs, showed that they characterize piecewise testable
languages and that their depth provides an (up to exponentially better) upper bound on k than the
depth of the minimal DFA. Furthermore, if the language L(A) is piecewise testable, we design a
procedure how to express it as a Boolean combination of languages of the above form. Our idea
was as follows. If the language is piecewise testable, then it is k-piecewise testable for some k,
and hence there is a congruence ∼k of finite index such that L(A) is a finite union of ∼k-classes.
Each class is characterized by an intersection of languages of the from Σ∗a1Σ∗ · · ·Σ∗anΣ∗, where
n≤ k, and their complements. To represent the ∼k-classes, we made use of the ∼k-canonical
DFA. We identified the states of the ∼k-canonical DFA whose union forms the language L(A)
and used them to construct the required Boolean combination.

On some level of abstraction, discrete event systems can be seen as finite automata with
some additional properties. A fundamental property is, e. g., deadlock freeness. In some sense,
partially ordered NFAs are the simplest deadlock-free models, and hence the study of their lower-

44

bound complexity covers most of the practical cases. The problems of interest are the questions
whether the behaviors of the two systems are equivalent or in inclusion. Since the lower-bound
complexity of these problems is covered by the complexity of universality, we focused on the
question whether the behavior of the system is universal. Deciding universality is PSPACE-
complete for NFAs and regular expressions, and the same proof shows the result for poNFAs.
We improved the result by showing that it remains true even when restricting to a fixed (binary)
alphabet. This is already nontrivial since the standard encodings of symbols in binary can turn
self-loops into longer cycles. A lower, CONP-complete complexity bound could be obtained if
we require that all self-loops are deterministic in the sense that the symbol read in the loop cannot
occur in any other transition from that state. We found that such restricted poNFAs (rpoNFAs)
characterize the class of R-trivial languages, and we established the complexity of deciding
whether the language of an NFA is R-trivial. The limitation to fixed alphabets turned out to be
essential even in the restricted case: deciding universality of rpoNFAs with unbounded alphabets
is PSPACE-complete. Using a nontrivial extension of the proofs for rpoNFAs, we showed the
same complexity results for the universality problem of ptNFAs. This strengthened the previous
result and provided a new lower-bound complexity for some other problems, including inclusion,
equivalence, and k-piecewise testability.

From the practical point of view, we point out that the languages of rpoNFAs are definable by
deterministic (one-unambiguous) regular expressions, which makes them interesting in schema
languages for XML data.

Finally, we discussed several consequences of our results in the verification of system-
theoretic properties of discrete event systems, namely in the verification of detectability and
opacity.

45

Bibliography

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, 1974.

[2] J. Almeida, J. Bartoňová, O. Klı́ma, and M. Kunc. On decidability of intermediate levels
of concatenation hierarchies. In Developments in Language Theory (DLT), volume 9168
of LNCS, pages 58–70, 2015.

[3] J. Almeida, J. C. Costa, and M. Zeitoun. Pointlike sets with respect to R and J. Journal of
Pure and Applied Algebra, 212(3):486–499, 2008.

[4] J. Almeida and M. Zeitoun. The pseudovariety J is hyperdecidable. RAIRO – Theoretical
Informatics and Applications, 31(5):457–482, 1997.

[5] M. Arenas, S. Conca, and J. Pérez. Counting beyond a yottabyte, or how SPARQL 1.1
property paths will prevent the adoption of the standard. In World Wide Web Conference
(WWW), pages 629–638, 2012.

[6] S. Arora and B. Barak. Computational Complexity – A Modern Approach. Cambridge
University Press, 2009.

[7] E. Badouel, M. Bednarczyk, A. Borzyszkowski, B. Caillaud, and P. Darondeau. Concur-
rent secrets. Discrete Event Dynamic Systems, 17(4):425–446, 2007.

[8] C. Baier and J. Katoen. Principles of model checking. MIT Press, 2008.

[9] P. Barceló, L. Libkin, and J. L. Reutter. Querying regular graph patterns. Journal of the
ACM, 61(1):8:1–8:54, 2014.

[10] D. A. M. Barrington, C. Lu, P. B. Miltersen, and S. Skyum. Searching constant width
mazes captures the AC0 hierarchy. In Symposium on Theoretical Aspects of Computer
Science (STACS), volume 1373 of LNCS, pages 73–83, 1998.

[11] G. J. Bex, W. Gelade, W. Martens, and F. Neven. Simplifying XML schema: effort-
less handling of nondeterministic regular expressions. In International Conference on
Management of Data (SIGMOD), pages 731–744, 2009.

[12] F. Blanchet-Sadri. Games, equations and the dot-depth hierarchy. Computers & Mathe-
matics with Applications, 18(9):809–822, 1989.

[13] M. Bojanczyk, L. Segoufin, and H. Straubing. Piecewise testable tree languages. Logical
Methods in Computer Science, 8(3), 2012.

46

[14] A. Bouajjani, A. Muscholl, and T. Touili. Permutation rewriting and algorithmic verifica-
tion. Information and Computation, 205(2):199–224, 2007.

[15] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau. Extensible Markup
Language XML 1.0 (fifth edition). Technical report, World Wide Web Consortium
(W3C), November 2008. W3C Recommendation, http://www.w3.org/TR/2008/REC-xml-
20081126/.

[16] A. Brüggemann-Klein and D. Wood. One-unambiguous regular languages. Information
and Computation, 142(2):182–206, 1998.

[17] J. W. Bryans, M. Koutny, and P. Y. A. Ryan. Modelling opacity using petri nets. Electronic
Notes in Theoretical Computer Science, 121:101–115, 2005.

[18] J. A. Brzozowski. Canonical regular expressions and minimal state graphs for definite
events. In Symposium on Mathematical Theory of Automata, pages 529–561, 1963.

[19] J. A. Brzozowski and F. E. Fich. Languages of R-trivial monoids. Journal of Computer
and System Sciences, 20(1):32–49, 1980.

[20] J. A. Brzozowski and R. Knast. The dot-depth hierarchy of star-free languages is infinite.
Journal of Computer and System Sciences, 16(1):37–55, 1978.

[21] J. A. Brzozowski and B. Li. Syntactic complexity of R- and J -trivial regular languages.
International Journal of Foundations of Computer Science, 25(7):807–822, 2014.

[22] J. R. Büchi. Weak second-order arithmetic and finite automata. Zeitschrift für mathema-
tische Logik und Grundlagen der Mathematik, 6:66–92, 1960.

[23] P. E. Caines, R. Greiner, and S. Wang. Dynamical logic observers for finite automata. In
Conference on Decision and Control (CDC), pages 226–233, 1988.

[24] D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. Reasoning on regular path
queries. ACM SIGMOD Record, 32(4):83–92, 2003.

[25] C. Câmpeanu, K. Culik II, K. Salomaa, and S. Yu. State complexity of basic operations
on finite languages. In International Workshop on Implementing Automata (WIA), volume
2214 of LNCS, pages 60–70, 2001.

[26] F. Cassez, J. Dubreil, and H. Marchand. Synthesis of opaque systems with static and
dynamic masks. Formal Methods in System Design, 40(1):88–115, 2012.

[27] S. Cho and D. T. Huynh. Finite-automaton aperiodicity is PSPACE-complete. Theoretical
Computer Science, 88(1):99–116, 1991.

[28] M. Chrobak. Finite automata and unary languages. Theoretical Computer Science,
47:149–158, 1986. Errata: Theoretical Computer Science 302 (2003) 497-498.

[29] R. S. Cohen and J. A. Brzozowski. Dot-depth of star-free events. Journal of Computer
and System Sciences, 5(1):1–16, 1971.

[30] T. Colcombet and D. Petrişan. Automata and minimization. ACM SIGLOG News, 4(2):4–
27, 2017.

[31] W. Craig. Linear reasoning. A new form of the Herbrand-Gentzen theorem. Journal of
Symbolic Logic, 22(3):250–268, 1957.

47

[32] W. Czerwiński, C. David, K. Losemann, and W. Martens. Deciding definability by
deterministic regular expressions. In International Conference on Foundations of Software
Science and Computation Structures (FoSSaCS), volume 7794 of LNCS, pages 289–304,
2013.

[33] W. Czerwiński and S. Lasota. Regular separability of one counter automata. Logical
Methods in Computer Science, 15(2), 2019.

[34] W. Czerwiński, W. Martens, and T. Masopust. Efficient separability of regular languages
by subsequences and suffixes. In Internation Colloquium on Automata, Languages and
Programming (ICALP), volume 7966 of LNCS, pages 150–161, 2013.

[35] W. Czerwiński, W. Martens, L. van Rooijen, and M. Zeitoun. A note on decidable separa-
bility by piecewise testable languages. In International Symposium on Fundamentals of
Computation Theory FCT, volume 9210 of LNCS, pages 173–185, 2015. And its extended
version https://arxiv.org/abs/1410.1042 with G. Zetzsche.

[36] W. Czerwiński, W. Martens, L. van Rooijen, M. Zeitoun, and G. Zetzsche. A characteriza-
tion for decidable separability by piecewise testable languages. Discrete Mathematics &
Theoretical Computer Science, 19(4), 2017.

[37] Z. R. Dang. On the complexity of a finite automaton corresponding to a generalized
regular expression. Doklady Akademii Nauk SSSR, 213:26–29, 1973.

[38] V. Diekert, P. Gastin, and M. Kufleitner. A survey on small fragments of first-order
logic over finite words. International Journal of Foundations of Computer Science,
19(3):513–548, 2008.

[39] J. Dubreil, P. Darondeau, and H. Marchand. Opacity enforcing control synthesis. In
International Workshop on Discrete Event Systems (WODES), pages 28–35, 2008.

[40] C. C. Elgot. Decision problems of finite automata design and related arithmetics. Trans-
actions of the American Mathematical Society, 98:21–52, 1961.

[41] K. Ellul, B. Krawetz, J. Shallit, and M. Wang. Regular expressions: New results and open
problems. Journal of Automata, Languages and Combinatorics, 10(4):407–437, 2005.

[42] E. P. Friedman. The inclusion problem for simple languages. Theoretical Computer
Science, 1(4):297–316, 1976.

[43] J. Fu, J. Heinz, and H. G. Tanner. An algebraic characterization of strictly piecewise
languages. In Theory and Applications of Models of Computation (TAMC), volume 6648
of LNCS, pages 252–263, 2011.

[44] S. Gao, C. M. Sperberg-McQueen, H. Thompson, N. Mendelsohn, D. Beech, and
M. Maloney. W3C XML Schema Definition Language (XSD) 1.1 part 1: Structures.
Technical report, World Wide Web Consortium, April 2009. W3C Recommendation,
http://www.w3.org/TR/2009/CR-xmlschema11-1-20090430/.

[45] P. Garcı́a and J. Ruiz. Learning k-testable and k-piecewise testable languages from positive
data. Grammars, 7:125–140, 2004.

[46] P. Garcı́a and E. Vidal. Inference of k-testable languages in the strict sense and application
to syntactic pattern recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 12(9):920–925, 1990.

48

[47] W. Gelade and F. Neven. Succinctness of pattern-based schema languages for XML.
Journal of Computer and System Sciences, 77(3):505–519, 2011.

[48] W. Gelade and F. Neven. Succinctness of the complement and intersection of regular
expressions. ACM Transactions on Computational Logic, 13(1):4, 2012.

[49] C. Glaßer and H. Schmitz. Languages of dot-depth 3/2. Theory of Computing Systems,
42(2):256–286, 2008.

[50] J. Goubault-Larrecq and S. Schmitz. Deciding piecewise testable separability for regular
tree languages. In International Colloquium on Automata, Languages, and Programming
(ICALP), volume 55 of LIPIcs, pages 97:1–97:15, 2016.

[51] S. Harris and A. Seaborne. SPARQL 1.1 query language. Technical report, World Wide
Web Consortium (W3C), 2010. W3C Recommendation, http://www.w3.org/TR/2010/WD-
sparql11-query-20100601/.

[52] G. Higman. Ordering by divisibility in abstract algebras. Proceedings of the London
Mathematical Society, s3-2(1):326–336, 1952.

[53] P. Hofman and W. Martens. Separability by short subsequences and subwords. In
International Conference on Database Theory (ICDT), volume 31 of LIPIcs, pages 230–
246, 2015.

[54] Š. Holub, G. Jirásková, and T. Masopust. On upper and lower bounds on the length of
alternating towers. In Mathematical Foundations of Computer Science (MFCS), volume
8634 of LNCS, pages 315–326, 2014.

[55] Š. Holub, T. Masopust, and M. Thomazo. On the height of towers of subsequences and
prefixes. Information and Computation, 265:77–93, 2019.

[56] M. Holzer and M. Kutrib. Descriptional and computational complexity of finite automata—
A survey. Information and Computation, 209(3):456–470, 2011.

[57] H. B. Hunt III. On the Time and Tape Complexity of Languages. PhD thesis, Department
of Computer Science, Cornell University, Ithaca, NY, 1973.

[58] H. B. Hunt III. On the decidability of grammar problems. Journal of the ACM, 29(2):429–
447, 1982.

[59] R. Jacob, J. Lesage, and J. Faure. Overview of discrete event systems opacity: Models,
validation, and quantification. Annual Reviews in Control, 41:135–146, 2016.

[60] G. Jirásková and T. Masopust. On the state and computational complexity of the reverse of
acyclic minimal DFAs. In International Conference on Implementation and Application
of Automata (CIAA), volume 7381 of LNCS, pages 229–239, 2012.

[61] G. Jirásková and T. Masopust. On the state complexity of the reverse of R- and J-trivial
regular languages. In International Workshop on Descriptional Complexity of Formal
Systems (DCFS), volume 8031 of LNCS, pages 136–147, 2013.

[62] N. D. Jones. Space-bounded reducibility among combinatorial problems. Journal of
Computer and System Sciences, 11(1):68–85, 1975.

[63] P. Karandikar, M. Kufleitner, and P. Schnoebelen. On the index of Simon’s congruence
for piecewise testability. Information Processing Letters, 115(4):515–519, 2015.

49

[64] P. Karandikar and P. Schnoebelen. The height of piecewise-testable languages with
applications in logical complexity. In EACSL Annual Conference on Computer Science
Logic (CSL), volume 62 of LIPIcs, pages 37:1–37:22, 2016.

[65] G. Kasneci and T. Schwentick. The complexity of reasoning about pattern-based XML
schemas. In Principles of Database Systems (PODS), pages 155–164, 2007.

[66] O. Klı́ma. Piecewise testable languages via combinatorics on words. Discrete Mathematics,
311(20):2124–2127, 2011.

[67] O. Klı́ma, M. Kunc, and L. Polák. Deciding k-piecewise testability. Submitted manuscript,
2014.

[68] O. Klı́ma and L. Polák. Alternative automata characterization of piecewise testable
languages. In Developments in Language Theory (DLT), volume 7907 of LNCS, pages
289–300, 2013.

[69] L. Kontorovich, C. Cortes, and M. Mohri. Kernel methods for learning languages.
Theoretical Computer Science, 405(3):223–236, 2008.

[70] D. Kozen. Lower bounds for natural proof systems. In IEEE Symposium on Foundations
of Computer Science (FOCS), pages 254–266, 1977.

[71] M. Krötzsch, T. Masopust, and M. Thomazo. On the complexity of universality for
partially ordered NFAs. In Mathematical Foundations of Computer Science (MFCS),
volume 58 of LIPIcs, pages 61:1–61:14, 2016.

[72] M. Krötzsch, T. Masopust, and M. Thomazo. Complexity of universality and related
problems for partially ordered NFAs. Information and Computation, 255:177–192, 2017.

[73] M. Kufleitner and A. Lauser. Partially ordered two-way Büchi automata. International
Journal of Foundations of Computer Science, 22(8):1861–1876, 2011.

[74] F. Lin. Opacity of discrete event systems and its applications. Automatica, 47(3):496–503,
2011.

[75] K. Lodaya, P. K. Pandya, and S. S. Shah. Around dot depth two. In Developments in
Language Theory (DLT), volume 6224 of LNCS, pages 303–315, 2010.

[76] K. Losemann and W. Martens. The complexity of evaluating path expressions in SPARQL.
In Principles of Database Systems (PODS), pages 101–112, 2012.

[77] W. Martens, F. Neven, M. Niewerth, and T. Schwentick. Developing and analyzing XSDs
through BonXai. PVLDB, 5(12):1994–1997, 2012.

[78] W. Martens, F. Neven, M. Niewerth, and T. Schwentick. BonXai: Combining the simplicity
of DTD with the expressiveness of XML schema. In Principles of Database Systems
(PODS), pages 145–156, 2015.

[79] W. Martens, F. Neven, and T. Schwentick. Complexity of decision problems for XML
schemas and chain regular expressions. SIAM Journal on Computing, 39(4):1486–1530,
2009.

[80] W. Martens, F. Neven, T. Schwentick, and G. Bex. Expressiveness and complexity of
XML Schema. ACM Transactions on Database Systems, 31(3):770–813, 2006.

50

[81] T. Masopust. Piecewise testable languages and nondeterministic automata. In Mathemati-
cal Foundations of Computer Science (MFCS), volume 58 of LIPIcs, pages 67:1–67:14,
2016.

[82] T. Masopust. Complexity of deciding detectability in discrete event systems. Automatica,
93:257–261, 2018.

[83] T. Masopust. Separability by piecewise testable languages is PTime-complete. Theoretical
Computer Science, 711:109–114, 2018.

[84] T. Masopust and M. Krötzsch. Universality of ptNFAs is PSPACE-complete. In Inter-
national Conference on Current Trends in Theory and Practice of Computer Science
(SOFSEM), volume 10706 of LNCS, pages 413–427, 2018.

[85] T. Masopust and M. Krötzsch. Partially ordered automata and piecewise testability.
Manuscript, 2019.

[86] T. Masopust and M. Thomazo. On boolean combinations forming piecewise testable
languages. Theoretical Computer Science, 682:165–179, 2017.

[87] R. McNaughton and S. A. Papert. Counter-Free Automata. MIT Press, 1971.

[88] A. R. Meyer and L. J. Stockmeyer. The equivalence problem for regular expressions with
squaring requires exponential space. In Symposium on Switching and Automata Theory
(SWAT), pages 125–129, 1972.

[89] B. G. Mirkin. On dual automata. Kibernetika, 2:7–10, 1966. in Russian. English
translation: Cybernetics 2, 6–9 (1966).

[90] A. Møller and M. I. Schwartzbach. An introduction to XML and web technologies.
Addison-Wesley, 2006.

[91] J. Myhill. Finite automata and representation of events. Technical report, Wright Air
Development Center, 1957.

[92] C. M. Ozveren and A. S. Willsky. Observability of discrete event dynamic systems. IEEE
Transactions on Automatic Control, 35(7):797–806, 1990.

[93] C. H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.

[94] J. Pérez, M. Arenas, and C. Gutierrez. nSPARQL: A navigational language for RDF.
Journal of Web Semantics, 8(4):255–270, 2010.

[95] D. Perrin and J. Pin. First-order logic and star-free sets. Journal of Computer and System
Sciences, 32(3):393–406, 1986.

[96] D. Perrin and J.-E. Pin. Infinite words: Automata, semigroups, logic and games, volume
141 of Pure and Applied Mathematics. Academic Press, 2004.

[97] T. Place. Separating regular languages with two quantifiers alternations. In Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 202–213, 2015.

[98] T. Place, L. van Rooijen, and M. Zeitoun. Separating regular languages by piecewise
testable and unambiguous languages. In Mathematical Foundations of Computer Science
(MFCS), volume 8087 of LNCS, pages 729–740, 2013.

51

[99] T. Place and M. Zeitoun. Separation and the successor relation. In Symposium on
Theoretical Aspects of Computer Science (STACS), volume 30 of LIPIcs, pages 662–675,
2015.

[100] T. Place and M. Zeitoun. Going higher in first-order quantifier alternation hierarchies on
words. Journal of the ACM, 66(2):12:1–12:65, 2019.

[101] P. J. Ramadge. Observability of discrete event systems. In Conference on Decision and
Control (CDC), pages 1108–1112, 1986.

[102] N. Rampersad, J. Shallit, and Z. Xu. The computational complexity of universality
problems for prefixes, suffixes, factors, and subwords of regular languages. Fundamenta
Informatica, 116(1–4):223–236, 2012.

[103] J. Rogers, J. Heinz, G. Bailey, M. Edlefsen, M. Visscher, D. Wellcome, and S. Wibel. On
languages piecewise testable in the strict sense. In The Mathematics of Language (MOL),
volume 6149 of LNAI, pages 255–265, 2010.

[104] J. Rogers, J. Heinz, M. Fero, J. Hurst, D. Lambert, and S. Wibel. Cognitive and sub-regular
complexity (fg). In Formal Grammar, volume 8036 of LNCS, pages 90–108, 2013.

[105] A. Rybalchenko and V. Sofronie-Stokkermans. Constraint solving for interpolation.
Journal of Symbolic Computation, 45(11):1212–1233, 2010.

[106] A. Saboori. Verification and enforcement of state-based notions of opacity in discrete
event systems. PhD thesis, University of Illinois at Urbana-Champaign, 2011.

[107] A. Saboori and C. N. Hadjicostis. Notions of security and opacity in discrete event
systems. In Conference on Decision and Control (CDC), pages 5056–5061, 2007.

[108] H. Schmitz. The forbidden pattern approach to concatenation hierachies. PhD thesis,
University of Würzburg, Germany, 2000.

[109] M. P. Schützenberger. On finite monoids having only trivial subgroups. Information and
Control, 8(2):190–194, 1965.

[110] M. P. Schützenberger. Sur le produit de concatenation non ambigu. Semigroup Forum,
13(1):47–75, 1976.

[111] T. Schwentick, D. Thérien, and H. Vollmer. Partially-ordered two-way automata: A new
characterization of DA. In Developments in Language Theory (DLT), volume 2295 of
LNCS, pages 239–250, 2001.

[112] G. Sénizergues. L(A) = L(B)? Electronic Notes in Theoretical Computer Science, 9:43,
1997.

[113] S. Shu and F. Lin. Generalized detectability for discrete event systems. Systems & Control
Letters, 60(5):310–317, 2011.

[114] S. Shu, F. Lin, and H. Ying. Detectability of discrete event systems. IEEE Transactions
on Automatic Control, 52(12):2356–2359, 2007.

[115] I. Simon. Hierarchies of Events with Dot-Depth One. PhD thesis, University of Waterloo,
Canada, 1972.

52

[116] I. Simon. Piecewise testable events. In GI Conference on Automata Theory and Formal
Languages, pages 214–222, 1975.

[117] M. Sipser. Introduction to the theory of computation. PWS Publishing Company, 1997.

[118] G. Stefanoni, B. Motik, M. Krötzsch, and S. Rudolph. The complexity of answering
conjunctive and navigational queries over OWL 2 EL knowledge bases. Journal of
Artificial Intelligence Research, 51:645–705, 2014.

[119] J. Stern. Characterizations of some classes of regular events. Theoretical Computer
Science, 35(1985):17–42, 1985.

[120] J. Stern. Complexity of some problems from the theory of automata. Information and
Control, 66(3):163–176, 1985.

[121] L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time: Preliminary
report. In ACM Symposium on the Theory of Computing (STOC), pages 1–9, 1973.

[122] H. Straubing. A generalization of the Schützenberger product of finite monoids. Theoreti-
cal Computer Science, 13:137–150, 1981.

[123] H. Straubing. Finite semigroup varieties of the form V*D. Journal of Pure and Applied
Algebra, 36:53–94, 1985.

[124] D. Thérien. Classification of finite monoids: The language approach. Theoretical
Computer Science, 14:195–208, 1981.

[125] W. Thomas. Classifying regular events in symbolic logic. Journal of Computer and
System Sciences, 25(3):360–376, 1982.

[126] A. N. Trahtman. Piecewise and local threshold testability of DFA. In International
Symposium on Fundamentals of Computation Theory (FCT), volume 2138 of LNCS,
pages 347–358, 2001.

[127] L. van Rooijen. A combinatorial approach to the separation problem for regular languages.
PhD thesis, LaBRI, University of Bordeaux, France, 2014.

[128] K. W. Wagner. Leaf language classes. In Machines, Computations, and Universality
(MCU), volume 3354 of LNCS, pages 60–81, 2004.

[129] Y.-C. Wu and S. Lafortune. Comparative analysis of related notions of opacity in cen-
tralized and coordinated architectures. Discrete Event Dynamic Systems, 23(3):307–339,
2013.

[130] K. Zhang. The problem of determining the weak (periodic) detectability of discrete event
systems is PSPACE-complete. Automatica, 81:217–220, 2017.

53

	Introduction
	Papers in the Collection

	Basic Notation
	Descriptional Complexity
	Reversal
	Reversal of R-trivial Languages
	Reversal of J-trivial Languages

	Separability
	Separability of Languages
	Asymmetric Separation and Suffix Order
	Computation of Piecewise Testable Separators
	Bounds on the Height of Towers

	Complexity of Universality
	Partially Ordered NFAs
	Restricted Partially Ordered NFAs
	Deciding Universality of rpoNFAs

	PtNFAs
	Deciding Universality for ptNFAs

	Inclusion and Equivalence of Partially Ordered NFAs

	Piecewise Testable Languages
	Finding a Boolean Combination
	Step 1: Checking Piecewise Testability
	Step 2: Computing the Minimal k
	Step 3: Computation of Representatives

	Piecewise Testability and Nondeterministic Automata
	Complexity
	Complexity of Deciding k-Piecewise Testability
	Complexity of Deciding Piecewise Testability

	Applications
	Deterministic Regular Expressions
	Detectability
	Opacity

	Conclusion

