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Abstract 

 

This thesis uses a game-theoretic framework to formalize the Hayekian notion of equilibrium as 

the compatibility of plans. In order to do so, it imposes more structure on the conventional model 

of strategic games. For each player, it introduces goals, goal-oriented strategies, and the goals’ 

probabilities of success, from which players’ payoffs are derived. The differences between the 

compatibility of plans and Nash equilibrium are identified and discussed. Furthermore, it is 

shown that the notion of compatibility of plans, in general, differs from the notion of Pareto 

efficiency. Since the compatibility of plans across all players can rarely be achieved in reality, a 

measurement is introduced to determine various degrees of plan compatibility. Several possible 

extensions and applications of the model are discussed. First, the model is used to account for, 

endogenous instability of social norms. Second, a new classification of strategic games, based on 

the goal structure of the game, is suggested. Third, the model is used to explain cooperative 

behavior in social dilemmas. Finally, it is suggested that the notion of goal-orientedness of 

behavior can serve as an unifying principle for behavioral sciences. 

 

Keywords: goals, plans, goal-oriented strategies, Hayekian equilibrium, compatibility of plans, 

Nash equilibrium, Pareto efficiency, social norms, classification of games, cooperative behavior, 

Prisoner’s Dilemma 
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1 Introduction 

 

In groups, organizations, and societies, plans of various individuals may or may not be mutually 

compatible. Consider the following two examples: A seller intends to sell a loaf of bread for at 

least $1, while a buyer wants to buy a loaf of bread for at most $2. A football player performing 

a penalty kick plans to kick to the left to score a goal, while a goalie intends to jump to the left to 

prevent a goal. In the first example, plans of the two individuals are mutually compatible: The 

seller’s plan to sell a loaf of bread for at least $1 and the buyers plan to buy a loaf of bread for at 

most $2 can be both successfully carried out at the same time. In the second example, the plans 

of the two individuals are not mutually compatible: The players plan to kick to the left to score a 

goal, and the goalie’s plan to jump to the left to prevent a goal cannot both be successfully 

carried out at the same time.  

 

Intuitively, mutual compatibility of plans across individuals seems to be a characteristic of 

equilibrium. Indeed, Hayek (1937, 2007) famously defined equilibrium as the compatibility of 

plans. However, conventional equilibrium approaches do not model players’ plans and their 

compatibility explicitly. Consider Nash equilibrium, the most commonly used solution concept 

in the game theory. Nash equilibrium is based on the idea of payoff maximization rather than 

plan compatibility. In fact, it can be shown that in Nash equilibrium, players’ plans may or may 

not be compatible. Likewise, the compatibility of plans may not guarantee Nash equilibrium. To 

see this, consider two traders who can either be honest, and carry out a transaction they agreed 
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on, or dishonest and try to cheat the other trader. Their situation can be modeled as the Prisoner’s 

Dilemma with a unique Nash equilibrium in which both players choose to cheat (see Figure 1.1). 

Yet, their plans to cheat are not mutually compatible. Each player’s plan to cheat can be 

successfully carried out only if the other player is honest. Now assume that each player plans to 

be honest and to carry out the transaction as agreed. Their plans are mutually compatible; 

however, the outcome is not a Nash equilibrium because there is a better plan available for each 

player, namely, to cheat. 

 

 

                                            a > 1, b > 0                                                                                                               

 

 

Figure 1.1: Trade as a Prisoner’s Dilemma 

 

Hayek’s notion of equilibrium as the compatibility of plans1 has never been formalized. In this 

work, I fill this gap using the game-theoretic framework. In order to define the compatibility of 

plans, a definition of “plan” has to be introduced. According to my approach, the plan is defined 

as a “goal-oriented strategy”. For this purpose, I extend the conventional definition of strategic 

games by introducing a set of goals for each player and associate them with their actions. The 

compatibility of plans in my model means that all players are successful in achieving all the 

                                                           
1 Various terms have been used in the literature to describe the Hayekian notion of equilibrium, such as “maximum 

compatibility of plans” (Rizzo 1990), “complete plan coordination” (Lewin 1997), or “Hayek’s compatibility” 

(Giocoli 2003). 

 Honest Cheat 

Honest 1, 1 a, –b 

Cheat a, –b 0, 0 
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goals that are part of their plan. To formalize this, for each player, I introduce a success function 

that determines whether players’ goals are achieved or not in a particular outcome. Players’ 

payoffs then depend on two characteristics: how successful a strategy is in achieving the goals 

that the player has in mind and how valuable are these goals to the player. 

 

Since payoffs are derived from goals and their probabilities of success, my model endogenizes 

payoffs of the conventional model. From this perspective, it is related to the model of reason-

based rational choice by Dietrich and List (2013a; 2013b). In their model, players’ payoffs are 

derived from their motivational states. If the motivational state changes, then the player’s payoffs 

may change as well (see Hudik (2014) for a discussion of this model). I interpret the 

motivational state as a set of goals rather than reasons. However, my main purpose is not to 

endogenize preferences; instead, endogenization emerges as a byproduct of an attempt to 

formalize the compatibility of plans. 

 

Explicit modeling of players’ goals is a natural extension of the conventional model with 

exogenous payoffs. This extension is in line with the recent attempts to move towards more 

procedural models of decision making, as well as with an introspective observation that players 

often think in terms of discrete goals and make plans to achieve them. The advantage of the 

framework introduced in this paper is that it is procedural without compromising the 

conventional payoff-based approach. The complementarity between my framework and the 

conventional approach should be highlighted since several authors suggested the notion of goal-

oriented behavior as an alternative to payoff maximization (Conte and Castelfranchi 1995; 

Vanberg 2002; 2004). In my interpretation, the conventional model implicitly aggregates actual 
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players’ motives into payoff maximization.2 My approach disaggregates payoffs into more basic 

components. 

 

Explicit modeling of players’ goals also builds a bridge between economics and other disciplines. 

The notion of goal-orientedness is already employed in psychology (Locke and Latham 2002, 

2013), biology (Mayr 1988, 1992), and it has been traditionally used in cybernetics and systems 

theory (Rosenblueth et al. 1943; Ashby 1957; Bertalanffy 1968). In contrast, game-theoretic 

literature on modeling players’ goals is small.3 Although various authors do sometimes speak 

about goals,4 formal models are usually lacking. One exception proving the rule is Castelfranchi 

and Conte (1998), who explore the issue of applicability of game theory to artificial intelligence 

problems and propose what they call “goal-based strategy” as an alternative to payoff 

maximization. Unfortunately, they do not develop the idea any further. Apart from this proposal, 

they also correctly observe that strategies are sometimes (implicitly or explicitly) described as 

                                                           
2 In contrast to my interpretation, payoffs are sometimes treated as actual motives of players. This is justifiable in 

case of money payoffs. However, in general, I find no introspective or other evidence that people actually think in 

terms of payoffs postulated by the conventional model. Surprisingly, procedural-rationality models often keep the 

conventional payoffs-beliefs framework rather than going beyond it. For the criticism along these lines, see Berg 

and Gigerenzer (2010). For a discussion of the relationship between the behavioral (procedural) and rational choice 

models, see Hudik (2017). 

3 This is, however, less true for economics literature in general: Probably the best-known model of purposeful 

behavior is Becker’s (1998) model of consumption as the production of commodities. For a survey of this literature, 

see e.g., Dietrich and List (2013b). Apart from the references in Dietrich and List (2013b), works by Engliš (1930), 

Mises (1996), and Rothbard (2004) are relevant. These works place purposeful behavior at the center of their 

approach. 

4 For instance, the concept of forward induction of Kohlberg and Mertens (1986) is based on goal-based reasoning. 
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goal-oriented. Thus, for instance, one of the strategies in the Prisoner’s Dilemma is usually 

described as “cooperate”, indicating that the outcome aimed at is cooperation.5 My model is 

consistent with Castelfranchi and Conte’s (1998) proposal, but contrary to these authors, I argue 

that the concept of goal-orientedness is compatible with payoff maximization. 

 

On a general level, my model can be thought of as a contribution to the literature that expresses 

dissatisfaction with the Nash equilibrium concept. A prominent example of this literature 

includes Brams and Wittman (1981) Brams and Mattli (1993), and Brams (1994), who argue that 

Nash equilibrium is “myopic” and propose the “theory of moves” to address this deficiency. 

Players in myopic equilibria may be “unhappy” if there exists a Pareto-superior outcome in the 

game. The theory of moves elaborates on how players deal with this dissatisfaction by changing 

the rules of the play. The notion of compatibility of plans provides another reason why players 

may be “unhappy” in Nash equilibria: failure to realize their plans. The complementarity 

between my approach and the theory of moves is underlined by the fact that the authors also 

derive players’ preferences from goals. However, they assume that players’ goals are 

lexicographically ordered. My approach is more general, as it is not restricted to lexicographic 

ordering, and also closer to the conventional game theory with respect to formal representation. 

 

1.1 Outline of the work 

This thesis is organized as follows. 

 

                                                           
5 Another example is the Stag Hunt game, where the strategies are typically described with goals that players want 

to achieve (i.e., “Stag” and “Hare”). I make extensive use of the Stag Hunt game in this work. 



8 

 

Chapter 2 introduces the model of strategic games with goal-oriented strategies. The model is 

compared with the conventional model of strategic games. 

 

Chapter 3 defines two solution concepts for the strategic games with goal-oriented strategies: 

Nash equilibrium and overall compatibility of plans (OCP). The relationship between these two 

solution concepts is discussed. 

 

Chapter 4 discusses the relationship between Pareto efficiency and OCP.  In particular, I show 

that even if all players are successful in achieving their goals, the outcome may not be Pareto 

efficient. The reason is that for each player, there may exist a more valuable goal outside the 

OCP. At the same time, Pareto efficiency does not imply compatibility of plans.  The fact that a 

player does not achieve a particular goal with probability one can be compensated for by a high 

value of this goal to him, which is reflected in high payoff (in relative terms). 

 

Chapter 5 explicitly introduces exogenous events in the model. This extension helps to 

distinguish mutual compatibility of plans across players and the compatibility of players’ plans 

with their environment. Another solution concept is introduced: the mutual compatibility of 

plans (MCP). MCP isolates the compatibility of plans across players from compatibility with the 

environment. 

 

Chapter 6 acknowledges that both OCP and MCP may be difficult to achieve in reality. 

Therefore, measurements are introduced to account for various degrees of plan compatibility. 
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These measurements are used to identify situations “closer to” or “further away from” 

equilibrium in the sense of compatibility of plans. 

 

Chapter 7 considers a more general case of the model, in which players’ plans may be associated 

with more than one goal. 

 

Chapter 8 discusses two additional extensions of the framework. In particular, I consider that 

players have preferences defined on probabilities of success in all feasible outcomes rather than 

on overall probabilities of success of their plans. This extension, which elaborates on the model 

introduced in Chapter 5, enables players to have different preferences in the case when their 

plans were disappointed by the incompatibility of other players’ plans and in the case when their 

plans were disappointed by incompatibility with the environment. As a different extension of the 

basic model, I explicitly include players’ beliefs. This extension allows players to have 

asymmetric beliefs about the realized state of nature. 

 

Chapter 9 starts with the observation that Nash equilibrium and OCP may differ. It is argued that 

if an outcome is an OCP but not a Nash equilibrium, then it is intuitively appealing to players 

because they are successful in carrying out their plans; however, OCP is unstable within the 

game, as the players can profitably deviate from this outcome (i.e., attain a more valuable goal). 

If, on the other hand, an outcome is a Nash equilibrium but not an OCP, then this outcome tends 

to be endogenously unstable, as players, whose plans are disappointed, have an incentive to 

change the game, either by searching for alternative plans or by strategically modifying the game. 
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Chapter 10 applies the notion of endogenous instability of Nash equilibria to account for the 

social norms change. As an example, I use the change of medium of exchange from commodity 

money to banknotes. 

 

Chapter 11 uses the notion of goal-oriented behavior as a link between payoff maximization and 

fitness maximization. It is argued that goal-oriented behavior is a useful tool to model types of 

adaptation that rest between natural selection and purposeful behavior. It is also suggested that 

the idea of goal-directedness can serve as a unifying concept for various behavioral sciences. 

 

Chapter 12 uses the explicit modeling of players’ goals introduced in previous chapters as a tool 

to classify games as pure common-interest, mixed-motive, and pure conflict games. The 

difference between the conventional classification and the suggested classification is discussed. 

 

Chapter 13 considers the intuitive appeal of OCP. It argues that OCP may contribute to the 

explanation of cooperative behavior in the one-shot Prisoner’s Dilemma. This hypothesis is 

tested experimentally. 

 

Chapter 14 concludes with methodological remarks and suggestions for further research. 

 

Appendix I discusses Hayek’s views on equilibrium and compares them to the approach 

introduced in this work. 
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Appendix II reviews existing theories of social norms change and compares them to the approach 

outlined in Chapters 9 and 10. 

 

Appendix III contains instructions used in the Prisoner’s Dilemma experiment reported in 

Chapter 13. 
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2 Strategic games with goal-oriented strategies 

 

2.1 Conventional strategic games 

I start with the definition of conventional strategic games, found in virtually all textbooks on 

game theory. These games consist of three elements: a finite set of players, N; for each player 

i N , a non-empty set of actions, Ai; for each player i N , a preference relation ≿
i
defined on 

the set j N jA A . Preferences are conveniently represented with a payoff function ;iu A  as 

follows: ( ) ( )i iu a u b  whenever a ≿
i
b. 

 

Definition 2.1.  Strategic game is defined as a triple ,( ),iN A  ≿ i . 

 

Example 2.1. Consider a simple two-player example of a strategic game known as the Stag Hunt 

game. Each of the two players – hunters – chooses between cooperating in pursuing a single stag, 

C, and defecting, D, i.e., competing in pursuing a single hare. If both players cooperate, they will 

catch the stag with certainty and share it equally; if only one of them cooperates, he will catch 

nothing. On the other hand, if a player pursues the hare alone, he will catch it for sure; if both 

players pursue the hare, each will catch it with the probability 0.5. Thus we have {1,2}N  , and 

1 2 { , }A A C D  . Payoffs are shown in Figure 2.1. In particular, it is assumed that each player 

prefers a share of the stag to the hare, i.e., 1( , ) ( , )C C D C  and 2( , ) ( , )C C C D . 
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Figure 2.1: The conventional Stag Hunt game 

 

Note that while players care about catching the stag or the hare, the conventional approach does 

not model players’ goals explicitly. Players rank outcomes according to their preferences. In 

contrast to the conventional approach, we may consider players who (implicitly or explicitly) use 

the following reasoning: “I will choose C in order to catch the stag”; or “I will choose D in order 

to catch the hare”. I will refer to such strategies as “goal-oriented strategies” or simply “plans”. 

Plans can be successful with a certain probability. For instance, if both players plan to catch the 

hare, each player’s plan will be successful with probability 0.5. Again, this probability of success 

is not modeled explicitly in the conventional approach. Instead, relative values of the stag and 

the hare, as well as probabilities with which the stag and the hare are caught, are reflected in 

players’ payoffs. It may be useful to disaggregate payoffs into the two components: the value of 

players’ goals, and probabilities that these goals will be achieved. I now express these ideas 

formally. 

 

2.2 Strategic games with goal-oriented strategies 

As in the conventional approach, consider the set of players, N, and for each player i N  a set of 

actions, iA . In addition, introduce for each player i N  a non-empty set of goals, Gi. To capture 

 C D 

C 3, 3 0, 2 

D 2, 0 1, 1 
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the notion of goal-orientedness of behavior, define for each player i N  a set of goal-oriented 

strategies (or plans) i i iS A G  . In words, each action is associated with one (possibly different) 

goal. A more general case where an action can be associated with multiple goals is discussed in 

Chapter 7. The set of strategy profiles 
j N jS  is denoted by S. 

 

We now want to capture the idea that players’ may or may not be successful in realizing their 

plans. In general, whether a player realizes his plan or not depends not only on the strategies 

taken by him and others but also on the environment. For instance, a farmer’s plan to produce a 

certain amount of corn may be disappointed due to unfavorable weather conditions. For now, I 

do not distinguish between the two cases, and I assume that players care only about the overall 

probability of achieving their goals. As I demonstrate below, even this simple model gives 

interesting results. Nevertheless, in Chapter 5, I consider an extension that allows distinguishing 

between incompatibility of a player’s plan with other players’ plans and incompatibility with the 

environment. 

 

To account for the compatibility of players’ plans, define for each i N  a success function6  

: [0,1] iG

ip S  which assigns to each strategy profile a iG -tuple of probabilities, ( | )i ip g s . For 

each goal i ig G , they specify the probability with which the player i achieves his goal if the 

outcome is s. For each player i, denote the set of the probability vectors ( )ip s  by Pi. 

 

                                                           
6 This function is different from the success function used in the contest theory. Nevertheless, it resembles a 

consequence function sometimes considered in strategic games (Osborne and Rubinstein 1994). 
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Since each goal may have a different importance to a player, define for each player i N  a 

complete and transitive preference relation ≿ i  on the set Pi. We will assume that preferences are 

strongly monotone. That is, if ( ) ( )i ip s p s  then ( ) ( )i ip s p s .  In words, players prefer higher 

probability of achieving their goals to lower probability. 7  As usual, preferences can be 

conveniently represented by a payoff function defined in the standard way.8  

 

Definition 2.2. Strategic game with goal-oriented strategies is defined as a sextuple 

,( ),( ),( ),( ),i i i iN A G S p  ≿ i .  

 

Recall that conventional strategic game (Definition 2.1) is defined as a triple ,( ),iN A  ≿ i . This 

means that we have introduced three new elements: goals, plans, and probabilities of success. 

 

Example 2.2. To illustrate Definition 2.2, consider once again the Stag Hunt game introduced in 

the previous section (Example 2.1). We now have ,i N 1 2 { , },A A C D   

1 2 { , }G G Stag Hare  , and 1 2 {( , ),( , )}S S C Stag D Hare  . Probabilities of success and payoffs 

are shown in Figure 1.2a and 1.2b, respectively. The first number in each couple in Figure 1.2a 

represents the probability of catching the stag, while the second represents the probability of 

catching the hare. It is assumed that each player prefers a share of the stag to the hare, i.e., 

(1,0) (0,1)i  for each i. Note that Figure 2.2a is the same as Figure 2.1 except for the 

                                                           
7 In Chapter 12, I show that the strong monotonicity assumption may sometimes be problematic. 

8 Note that preferences are derived from goals and probabilities of their success and not the other way round. In 

Chapter 5, I endogenize the overall probabilities of success and in Chapter 8, I further endogenize preferences. 
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descriptions of the alternatives from which players choose. In the conventional approach, each 

player chooses an action; in the present model, each player chooses a goal-oriented strategy, i.e., 

an action associated with a goal. The similarity between Figure 2.1 and Figure 2.2b highlights 

the fact that the model with goal-oriented strategies endogenizes payoffs of the conventional 

model. 

 

 

a) Probabilities of success     b) Payoffs 

Figure 2.2: Stag Hunt game with goal-oriented strategies 

 

It is useful to consider the case when the conventional model and the model with goal-oriented 

strategies can be thought of as equivalent. Naturally, this occurs when each player has a single 

(possibly different) goal, i.e., 1iG   for each player i. In such a case, preferences can be 

represented simply with the probabilities of success. The following example provides an 

illustration. 

 

Example 2.3. Consider the Stag Hunt game of the previous section again but now assume that 

players do not have the possibility to pursue a hare. That is, 1 2 { , }A A C D   , 1 2 { }G G Stag  , 

 (C, Stag) (D, Hare) 

(C, Stag) (1, 0), (1, 0) (0, 0), (0, 1) 

(D, Hare) (0, 1), (0, 0) (0, 0.5), (0, 0.5) 

 (C, Stag) (D, Hare) 

(C, Stag) 3, 3 0, 2 

(D, Hare) 2, 0 1, 1 
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and 1 2 {( , ),( , )}S S C Stag D Stag  . The success function is shown in Figure 2.3. This function 

also represents the players’ preferences.9 

 

 

 

 

 

Figure 2.3: Stag Hunt with a single goal 

 

In the following chapter, I define two solution concepts for strategic games with goal-oriented 

strategies. 

                                                           
9 The model with one goal becomes similar to win-or-lose games (Binmore 2007). Using the probability of success 

to represent payoffs is often used in the applications of game theory to sports. See e.g., Walker and Wooders (2001) 

and Chiappori et al. (2002). 

 (C, Stag) (D, Stag) 

(C, Stag) 1, 1 0, 0 

(D, Stag) 0, 0 0, 0 
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3 Two notions of equilibrium: Hayek and Nash 

 

I define two solution concepts for strategic games with goal-oriented strategies: Nash 

equilibrium and overall compatibility of plans (OCP). OCP is inspired by Hayek (1937, 2007). I 

summarize Hayek’s views on the equilibrium concept in Appendix I. 

 

3.1 Definitions 

In Chapter 2, I have argued that the model of games with goal-oriented strategies puts more 

structure on the conventional model of strategic games (it specifies what is “behind” the payoffs). 

Therefore, solutions used for the latter type of games can also be used for the former type. In 

particular, we can still apply Nash equilibrium, although the formal definition is slightly different. 

More specifically, in our case, Nash equilibrium is a profile of goal-oriented strategies rather 

than actions. 

 

Definition 3.1. A Nash equilibrium of a strategic game with goal-oriented strategies 

,( ),( ),( ),( ),i i i iN A G S p ≿ i  is a profile *s S  of goal-oriented strategies with the property that 

for every player i N  we have * *( , )i i ip s s  ≿ *( , )i i i ip s s  for all i is S .10 

                                                           
10 It is assumed throughout the paper that players do not choose mixed strategies. One problem with mixed strategies 

is that they allow for multiple interpretations (e.g., Osborne and Rubinstein 1994). A procedural approach, such as 

the one proposed in this paper, should either assume mixed strategies away (if they are irrelevant for the issue at 

hand) or commit to a specific interpretation. This paper adopts the first route. However, a simple way to account for 

mixed strategies in a way consistent with the proposed framework is to consider the possibility that players can 

commit to a randomizing device. This possibility can be modeled as a pure strategy. 
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Example 3.1. The Stag Hunt game in Example 2.2 (Figure 2.2) has two Nash equilibria: (C, Stag; 

C, Stag) and (D, Hare; D, Hare).  

 

Explicit modeling of players’ goals allows for an additional solution concept, based on the 

considerations of whether players are successful in attaining their goals. I first define a perfectly 

successful goal-oriented strategy in a given outcome; then, I define as a profile of perfectly 

successful goal-oriented strategies. I call this profile the overall compatibility of plans (OCP).    

 

Definition 3.2. Consider a strategic game with goal-oriented strategies. A goal-oriented strategy 

j js S   is perfectly successful in s  if ( | ) 1j jp g s   for gj associated with js .  

 

Definition 3.3. Overall compatibility of plans (OCP) in a strategic game with goal-oriented 

strategies ,( ),( ),( ),( ),i i i iN A G S p ≿ i  is a profile ŝ S  of goal-oriented strategies with the 

property that for each i N , îs  is perfectly successful in ŝ . 

 

Example 3.2. The Stag Hunt game in Example 2.2 (Figure 2.2) has one OCP, namely (C, Stag; C, 

Stag). 

 

In Chapter 5, I distinguish OCP from the mutual compatibility of plans (MCP). The term 

“overall” refers to the fact that in the present model, we do not distinguish between the 

compatibility of plans across players and compatibility of plans with the environment. In Chapter 

5, I distinguish these two cases. Both OCP and MCP and are derived from Hayek’s notion of 
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equilibrium. However, Hayek was more interested in mutual compatibility of plans across 

individuals than in compatibility of an individual’s plans with the nature (see Hayek 1937 and 

Appendix I). 

 

Note that unlike Nash equilibrium, OCP is not defined in terms of payoffs. In a sense, the 

compatibility of players’ plans is “objective” because it does not depend on players’ preferences 

and beliefs.11 Nonetheless, there is a link from goals to payoffs through the strong monotonicity 

assumption: Since players seek to realize their plans, a perfectly successful strategy is reflected 

in a high payoff (in relative terms). An important implication of the fact that OCP is not defined 

in terms of payoffs is that players’ plans can be mutually compatible even if players do not 

maximize their payoffs. Conversely, if players maximize their payoffs, they may end up in a 

situation where their plans are mutually incompatible. Therefore, while there is a direct link 

between maximizing behavior and Nash equilibrium (Aumann 1985), there is no such link 

between maximizing behavior and OCP. 12  I now discuss the relationship between the two 

concepts of equilibria in more detail. 

 

                                                           
11  “Objective” here does not refer to physical objectivity but to inter-personal validity. One can think of 

compatibility of plans as being “ontologically subjective” but “epistemologically objective” (Searle 2005). Or – 

using Popper’s (1979) terminology – it is objectivity in the sense of World 3 rather than World 1. On this issue, see 

also Hudik (2011). 

12 The issue of whether there is a link between maximizing behavior and equilibrium has been (in a different 

context) raised by Boettke and Candela (2017). See also Giocoli (2003). 
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3.2 The relationship between OCP and Nash equilibrium 

3.2.1 Games with a single goal 

First, consider a game in which each player has only one goal. For this class of games, the 

following theorem holds. 

 

Theorem 3.1. Let be Γ be a game with goal-oriented strategies where 1iG   for each player i. If 

ŝ  is an OCP, then it is also a Nash equilibrium.  

 

Proof. Note that since ŝ  is an OCP, then ˆ( | ) 1i ip g s   for each player i. The strong monotonicity 

assumption implies that for every player i N  we have ˆ ˆ( , )i i ip s s ≿ ˆ( , )i i i ip s s  for all i is S , 

and therefore, ŝ  is also a Nash equilibrium. 

 

Example 3.3. Consider again the version of the Stag Hunt in Example 2.3, where players do not 

have an option to pursue a hare. In this game, there is a single OCP, (C, Stag; C, Stag), which is 

at the same time a Nash equilibrium (see Figure 2.3). The game has another Nash equilibrium, 

namely (D, Stag; D, Stag). This second Nash equilibrium is not an OCP as neither player 

achieves his goal. 

 

The Example 3.3 shows that even in a game with single goal, Nash equilibrium need not be an 

OCP. On the other hand, since by Theorem 3.1 all OCPs in the games with a single goal are at 

the same time Nash equilibria, the following corollary holds. 
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Corollary 3.1. Let be Γ be a game with goal-oriented strategies where 1iG   for each player i. 

If  Γ has no Nash equilibrium, then it also has no OCP. 

 

Proof. Directly follows from Theorem 3.1. 

 

Example 3.4. Consider the Matching Pennies game with goal-oriented strategies. Each of the two 

players chooses between heads and tails. If both players make the same choice, player 1 wins; if 

their choices differ, then player 2 wins. Each player’s goal is to win the game. Thus we have 

{1,2}N  , 1 2 { , }A A Heads Tails  , 1 2 { }G G Win  , and S1 = S2 = {(Heads, Win), (Tails, Win)}. 

Probabilities of success are shown in Figure 3.1. These probabilities also represent players’ 

payoffs. The game has no Nash equilibrium because, in each outcome, one player can deviate 

and increase his payoff. The game also has no OCP as there is no outcome in which players’ 

plans to win the game are mutually compatible.13 

 

 

 

 

 

Figure 3.1: Matching Pennies with goal-oriented strategies 

                                                           
13 The well-known Holmes-Moriarty game is also of this type. In this game, Holmes, trying to escape Moriarty, 

considers whether to get off the train in Dover or a station earlier. Moriarty, pursuing Holmes, has to decide at which 

station he should wait for Holmes.  Note that this game was introduced by Morgenstern (1928) and inspired Hayek’s 

work on equilibrium (Giocoli 2003; Leonard 2010). See also Appendix I. 

 (Heads, Win) (Tails, Win) 

(Heads, Win) 1, 0 0, 1 

(Tails, Win) 0, 1 1, 0 
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3.2.2 Games with multiple goals 

In general, if each player can pursue only one goal, the analysis of the goal structure of the game 

adds only little to the conventional approach. More interesting cases emerge when players pursue 

multiple goals. Here the conventional analysis collapses potentially complex goal structure into a 

single artificially-constructed goal, namely payoff maximization. Consequently, some relevant 

information about players’ reasoning may get lost by this aggregation. More specifically, with 

multiple goals, there may be OCPs that are not Nash equilibria. This can be seen already in 

games where each player has two goals. The following example provides an illustration. 

 

Example 3.5. Consider first the Stag Hunt game in Example 2.2. The outcome (C, Stag; C, Stag) 

is an OCP (see Figure 1.1a) and, given the preferences in Figure 1.1b, also a Nash equilibrium. 

Now assume that for each player, a hare is preferred to a share of the stag, i.e. (0,1) (1,0)i . At 

the same time, continue to assume that (1,0) (0,0.5)i . The probabilities of success are shown in 

Figure 3.2a. They are the same as in Figure 2.1a (the “hunting technology” has not changed); 

however, payoffs are now different, as shown in Figure 3.2b. 

 

 

 

a) Probabilities of success     b) Payoffs 

Figure 3.2: Stag Hunt as Prisoner’s Dilemma 

 

 (C, Stag) (D, Hare) 

(C, Stag) (1, 0), (1, 0) (0, 0), (0, 1) 

(D, Hare) (0, 1), (0, 0) (0, 0.5), (0, 0.5) 

 (C, Stag) (D, Hare) 

(C, Stag) 2, 2 0, 3 

(D, Hare) 3, 0 1, 1 
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The game now has a structure of the Prisoner’s Dilemma. The outcome (C, Stag; C, Stag) is still 

an OCP but not a Nash equilibrium anymore. Each player can achieve a more valuable goal (i.e., 

hare) by deviating. However, their plans to catch the hare are mutually incompatible: The 

outcome (D, Hare; D, Hare) is not an OCP (although it is a Nash equilibrium). Players thus may 

face a dilemma between the Nash equilibrium and the OCP. Conventional analysis is clear: In 

order to maximize his payoff, each player should choose D. However, the outcome (C, Stag; C, 

Stag) is appealing to the players because they are successful in attaining the goal they have in 

mind. It has been observed that many people actually choose to cooperate in one-shot Prisoner’s 

Dilemma both in laboratory experiments (Colman 1995; Sally 1995; Komorita and Parks 1995) 

and outside the laboratory (List 2006). The notion of compatibility of plans may contribute to the 

explanation of the observed play. I follow this line of reasoning further in Chapter 11. 

 

3.3  A note on the existence of equilibria 

As it is clear from the Matching Pennies game in Example 3.4, Nash equilibrium and OCP may 

not exist even in the simplest games (recall, that we do not consider mixed strategies). While a 

lot of attention is paid to existence theorems in the game-theoretic literature, I argue that the non-

existence of a solution concept for a particular game does not represent a major problem, and in 

the case of OCP, it is, in fact, a feature. 

 

Consider that we observe a stable behavior in reality. For instance, real-world hunters always 

cooperate in pursuing a stag. In line with the current practice, we attempt to account for this 

behavior as a Nash equilibrium phenomenon. Therefore, we construct a game, where pursuing a 

stag is a Nash equilibrium. In other words, equilibrium in such a game exists by construction, 



25 

 

and games with no Nash equilibria are simply non-applicable to cases of stable and persistent 

behavior. 

 

In contrast, OCP can be used to account for changes in behavior. One way to think about this 

equilibrium concept is as a “Platonic” ideal, which players attempt to achieve but often may be 

out of reach.14 More specifically, players care about the maximum success of their plans and if it 

cannot be achieved in a particular game, they would attempt to modify the game. For example, 

they may look for alternative plans (this amounts to expanding their action sets), or they may 

modify the rules of the play (e.g., transforming a one-shot game into a repeated game, static 

game into a dynamic game, or they can apply various commitment strategies). If all players were 

successful in achieving their most valued goals, i.e., if OCP in a particular game existed, we 

would observe no such activity, except in response to exogenous shocks which disturb OCP. I 

pursue this line of reasoning further in Chapter 9.  

 

3.4 Methodological remarks 

Having introduced games with goal-oriented strategies and their solution concepts, several 

methodological comments are in place.  

 

Firstly, specifying the players’ goals depends on the judgment of the model-builder. Note, that 

any outcome of a game can be turned into an OCP by a suitable definition of goals and goal-

oriented strategies. The following example illustrates this point. 

 

                                                           
14 This is in line with Hayek’s own view of the equilibrium concept. See Appendix I. 
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Example 3.6. Consider the Stag Hunt game in Example 2.2 but with the following modification: 

player 1’s goal is to catch nothing yet he is forced to participate in the hunt and has to choose 

between cooperating and defecting, and he cannot let the animals escape. Player 2’s goals remain 

the same as before. Hence, we have {1,2}N  , 1 2 { , }A A C D  , 1 { }G Nothing , 

2 { , }G Stag Hare , S1 = {(C, Nothing), (D, Nothing)}, and 2 {( , ),( , )}S C Stag D Hare . The 

probabilities of success are shown in Figure 3.3a, while the payoffs are represented in Figure 

3.3b. In this game, the outcome (C, Nothing; D, Hare) is an OCP. 

 

 

a) Probabilities of success     b) Payoffs 

Figure 3.3: Stag Hunt as a game with goal-oriented strategies and an ascetic hunter 

 

Example 3.6 shows that OCP depends on the specification of players’ goals, which are not 

observable. However, a very similar problem exists with the conventional approach because a 

model builder has to make a decision about how to determine players’ payoffs. Consequently, 

any outcome can be turned into a Nash equilibrium if payoffs are suitably specified. Indeed, 

since, in the goal-based approach, payoffs are derived from goals, these are just two sides of the 

same problem—namely, determining what players care about. Therefore, if Player 1’s plan is to 

catch nothing, then, by the monotonicity assumption, her payoff in (C, Nothing; D, Hare) will be 

higher than in (C, Nothing; C, Stag), and, therefore, (C, Nothing; D, Hare) is also a Nash 

 (C, Stag) (D, Hare) 

(C, Nothing) (0), (1, 0) (1), (0, 1) 

(D, Nothing) (0), (0, 0) (0.5), (0, 0.5) 

 (C, Stag) (D, Hare) 

(C, Nothing) 0, 3 2, 2 

(D, Nothing) 0, 0 1, 1 
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equilibrium (see Figure 3b). 15 Therefore, from this perspective, both the model of strategic 

games, which includes players’ goals, and the conventional model allow for some flexibility 

because they rely on unobservable parameters. As argued by Rubinstein (1991, 919), modeling is 

akin to art as it requires “intuition, common sense, and empirical data in order to determine the 

relevant factors entering into players’ strategic considerations.” This is true both for the 

conventional approach and for the goal-based approach. 

 

Given the flexibility regarding the definition of goals, how is it possible to derive empirical 

predictions from the model with goal-oriented strategies, given the flexibility regarding the 

definition of goals? The crucial restriction of the model is that goals are not defined in 

probabilistic terms, such as Hare with probability 0.5. Therefore, the outcome (D, Nothing; D, 

Hare) in Example 3.6 cannot be an OCP. First note that allowing for probabilistic goals also 

brings some technical complications. Assume that a player catches the Hare with probability 

larger than 0.5; in such case, it is unclear what the probability of success of the goal Hare with 

probability 0.5 is. A possible interpretation of allowing only for nonprobabilistic goals is that 

players do not have a mental model of the game (e.g., they are individuals who make their 

choices intuitively) and their goal-oriented strategies are programs (Mayr 1988, 1992; Vanberg 

2002, 2004) or heuristics (Gigerenzer 2004). The model with goal-oriented strategies then 

analyzes success and mutual compatibility of these programs or heuristics, rather than players’ 

strategic reasoning about the game. I pursue this line of reasoning in Chapter 11. Nevertheless, it 

                                                           
15 It is assumed that disposal of a hare is not free or that shirking in hunting is costly to player 1. Nevertheless, the 

relationship between payoffs and goals could also be shown if these assumptions do not hold. In such case, player 1 

would simply catch nothing in all outcomes and so all probabilities of success would be zero and his payoffs in all 

outcomes would be equal.   
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is straightforward to include subjective beliefs into the model to model behavior of more 

sophisticated players. This is shown in Chapter 8. 

 

Another problematic issue concerns expectations. A usual requirement for any (long run) 

equilibrium concept is that expectations are correct. 16 This requirement is also in line with 

Hayek’s view that “equilibrium merely means that the foresight of the different members of the 

society is in a special sense correct” (Hayek 1937, 41). Nevertheless, Hayek neither specifies the 

“special sense” in which expectations are correct nor discusses whether correct expectations 

imply compatibility of plans. Although expectations are not explicitly modeled in the present 

paper, the correct-expectation requirement holds for OCP: goal-oriented plans are constructed 

based on expectations, and a successful plan means that these expectations turned out to be 

correct. On the other hand, the correctness of expectations is not a sufficient condition for OCP. 

It may be impossible to achieve OCP in a given game, irrespective of players’ expectations.17 

Consider the following example. 

 

Example 3.7. Recall again the Stag Hunt example in Example 2.2 (Figure 2.2): If a player 

chooses D, the only goal he can achieve is Hare (given the “hunting technology”), and so his 

goal-oriented strategy is (D; Hare). Now, if he expects the other player to choose (D, Hare), the 

outcome is that each player obtains the hare with probability 0.5, which means that the result is 

not an OCP (players’ plans are not compatible), although players’ expectations are correct. The 

                                                           
16 See e.g. Tieben (2012) and Boland (2017) for recent useful reviews of various equilibrium concepts in economics. 

17 Regarding the Nash equilibrium, the correctness of expectations is a sufficient but not necessary condition 

(Aumann and Brandenburger 1995). 
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reason correct expectations do not imply compatibility of plans is that the model does not allow 

players to choose probabilistic goals. Intuitively, undesirable outcomes remain undesirable even 

if they are expected. As argued earlier, allowing for probabilistic goals would strip the model of 

empirical content. 18 

 

Earlier I have mentioned that OCP as an outcome, in which players achieve their goals, may 

have a normative appeal. Indeed, in my approach, players want to carry out their plans with the 

highest possible probability of success. However, the traditional normative benchmark is Pareto 

efficiency, which is defined in terms of utilities rather than plans. It is, therefore, necessary to 

distinguish clearly between the two concepts. I do this in the following chapter. 

                                                           
18 Further chapters offer practical applications of OCP. Chapter 6 discusses the degree of plan compatibility, and 

Chapters 9 and 10 apply OCP to account for endogenous instability of some Nash equilibria. These notions would 

be lost if goals were defined in probabilistic terms. 
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4 Compatibility of plans and Pareto efficiency 

 

Pareto efficiency and related concepts are defined in the usual way. 

 

Definition 4.1. The outcome s  Pareto dominates the outcome s , if, for every player i, we have 

( )ip s  ≿ ( )i ip s , and there exists at least one player j for whom ( ) ( )j jp s p s  . 

 

Definition 4.2. An outcome s  is called Pareto efficient if there does not exist any outcome 

which Pareto dominates the outcome s . 

 

Definition 4.3. Outcomes s  and s  are called Pareto non-comparable, if for some player i, we 

have ( ) ( )i ip s p s , but for some other player j, we have ( ) ( )j jp s p s . 

 

To compare Pareto considerations with the notion of compatibility of plans, I again start with a 

simple case of games in which each player has only one goal. For these games, the following 

theorem holds. 

 

Theorem 4.1. Let Γ be a strategic game with goal-oriented strategies where 1iG   for each 

player i. Assume that the game has one or more OCP. Then ŝ  is an OCP, if and only if it is 

Pareto efficient. 
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Proof. First, I prove that if an outcome is an OCP, then it is Pareto efficient. Since ŝ  is OCP, 

then ˆ( | ) 1i ip g s   for each player i. The strong monotonicity assumption implies that, for every 

player i N , we have ˆ( )ip s ≿ ( )i ip s  for all s S . I now prove that if an outcome is Pareto 

efficient, then it is an OCP. Assume that s  is a Pareto efficient outcome, but it is not an OCP. 

Then there exists a player j, for whom ( | ) 1j jp g s  . At the same time, for player j, we have 

ˆ( | ) 1j jp g s  , therefore, by monotonicity assumption ˆ( ) ( )j jp s p s . It follows that s  cannot 

be Pareto efficient. 

 

I illustrate Theorem 4.1 with the following example. 

 

Example 4.1. Consider once again the version of the Stag Hunt game in Example 2.3. In this 

game, players have only a single goal, Stag. That is, we have 1 2 { , }A A C D  , 1 2 { }G G Stag  , 

and 1 2 {( , ),( , )}S S C Stag D Stag  . A unique OCP of the came is (C, Stag; C, Stag). It is also a 

unique Pareto efficient outcome. 

 

While for one-goal games the sets of OCPs and Pareto efficient outcomes are identical, this 

relationship breaks down once we consider multiple-goal games. The following example shows 

that for these games, a Pareto efficient outcome may not be an OCP. 

  

Example 4.2. Consider the version of the Stag Hunt game in Example 3.5. As noted earlier, this 

game has a structure of the Prisoner’s Dilemma (see Figure 3.2). (C, Stag; C, Stag) is an OCP. 
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Although this outcome is Pareto efficient, it is not the only Pareto efficient outcome of the game. 

The outcomes (D, Hare; C, Stag) and (C, Stag; D, Hare) also belong to the Pareto efficient set.  

 

Example 4.2 shows that in a multi-goal game, there may be Pareto-efficient outcomes that are 

not OCPs. The next example shows that there may be OCPs that are not Pareto efficient. 

 

Example 4.3. Consider a version of the Stag Hunt game in Example 4.2 but assume that catching 

a hare with the probability 0.5 is preferred to catching the stag. Therefore, we have  

(0,0.5) (1,0)i . Figure 4.1a shows the probabilities of success, while Figure 4.1b represents the 

payoffs. 

 

 

a) Probabilities of success     b) Payoffs 

Figure 4.1: Stag Hunt with a dominant strategy 

 

As before, (C, Stag; C, Stag) is an OCP (the “hunting technology” continues to be the same); 

however, it is not a Pareto-efficient outcome: (D, Hare; D, Hare) Pareto-dominates (C, Stag; C, 

Stag). At the same time, (D, Hare; D, Hare) is not an OCP (although it is a Nash equilibrium).  

 

 (C, Stag) (D, Hare) 

(C, Stag) (1, 0), (1, 0) (0, 0), (0, 1) 

(D, Hare) (0, 1), (0, 0) (0, 0.5), (0, 0.5) 

 (C, Stag) (D, Hare) 

(C, Stag) 1, 1 0, 3 

(D, Hare) 3, 0 2, 2 
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To summarize, although OCP may seem to have a normative appeal, it should be recalled that it 

ignores the value of goals to players. Consequently, one or more players may prefer an outcome, 

in which they achieve a higher-valued goal, with a sufficiently high probability, to the outcome 

in which they achieved a lower-valued goal with certainty.19 

                                                           
19 For a different (but compatible) argument why the Hayekian notion of equilibrium may not be preferable, see 

Rizzo (1990). 
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5 Games with random events 

 

So far, I have considered the overall success of plans. That is, I did not distinguish between the 

case when a player’s plan is incompatible with other players’ plans and the case when a player’s 

plan is incompatible with the environment. I now generalize the model to distinguish between 

these two cases.  First, consider the following example. 

 

Example 5.1. Consider the standard Stag Hunt game in Example 2.2, i.e., the stag can only be 

caught if the two players cooperate. Nevertheless, assume that the stag escapes with probability 

0.5. We continue to assume that the hare cannot escape and that if both players pursue the hare, 

each catches it with the probability of 0.5. The probabilities of success and the payoff function 

are shown in Figures 5.1a and 5.1b, respectively. 

 

 

 

 

 

a) Overall probabilities of success    b) Payoffs 

Figure 5.1: A Stag Hunt game with goal-oriented strategies and random events 

 

In the outcome (C, Stag; C, Stag), each player’s probability of success in catching the stag is 0.5. 

In the outcome (D, Hare; C, Hare), each player’s probability of success in catching the hare is 

 (C, Stag) (D, Hare) 

(C, Stag) 3, 3 0, 2 

(D, Hare) 2, 0 1, 1 

 (C, Stag) (D, Hare) 

(C, Stag) (0.5, 0), (0.5, 0) (0, 0), (0, 1) 

(D, Hare) (0, 1), (0, 0) (0, 0.5), (0, 0.5) 
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0.5. Although in both cases the overall probabilities of achieving a given goal are the same, there 

is a difference: In the outcome (C, Stag; C, Stag), plans are compatible across players (they can 

both achieve their goals at the same time) but are not compatible with the environment (the Stag 

may escape). In the outcome (D, Hare; C, Hare), plans are not compatible across players (they 

cannot achieve their goals at the same time) but are compatible with the environment (the Hare 

cannot escape). I extend the model of games with goal-oriented strategies to account for the 

difference between the two cases.  

 

As before, assume the set of players, N, and for each player i, a set of actions, iA , set of goals, 

iG , and a set of goal-oriented strategies, iS . To model the compatibility of players’ plans with 

the environment, define a finite set of states of nature,  , and a probability measure q on  . We 

now have to assess whether the goals of a player are compatible with the goals of other players in 

a given state. In order to do so, define for each i N  a success function  : {0,1} iG

ir S  

which assigns to each strategy profile in every state of nature a iG -tuple of probabilities 

( | , )i ir g s   specifying for each goal i ig G  whether the player i achieves her goal (probability 1) 

or not (probability 0), if the outcome is ( , )s  .  

 

There are two main differences between the success functions ip  and ir . Firstly, the range of the 

function ip  is S, while the range of the function ir   is S . Secondly, the domain of the 

function ip  is [0,1] iG
, while the domain of the function ir  is {0,1} iG

. Intuitively, once a certain 

state is realized, a player’s goal is either achieved or not; there is no intermediate possibility. As 

we will immediately see, the model with random events puts more structure on the original 
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model. Namely, it endogenizes ( )ip s , the overall probability vector that specifies the 

probabilities with which a player i achieves his goals. 

 

For each strategy profile s, the success function
 ir , together with the probability measure q over 

the states, generates a bundle ip  which assigns to each i ig G  an overall probability ( | )i ip g s  

that ig  is achieved by i given the strategy profile s. This is the probability of success of ig  

introduced as a primitive in the simplified model. In the extended model, it is calculated as 

( | ) ( ) ( | , )i i i ip g s q r g s


 


 . As before, for each player i, denote the set of the probability 

bundles ( )ip s  by iP  and define a preference relation ≿ i  on this set.20  

 

Definition 5.1. The strategic game with goal-oriented strategies and random events is an octuple 

, , ,( ),( ),( ),( ),i i i iN q A G S r  ≿ i .  

 

Recall that the simple games with game-oriented strategies were defined as a sextuple 

,( ),( ),( ),( ),i i i iN A G S p  ≿ i  (Definition 2.2). We have now introduced two new elements: states 

of nature and a probability measure on these states. In addition, we have modified the success 

function. 

 

                                                           
20 Note that it is still assumed that players care about the overall probabilities of success of their goals. In particular, 

they do not distinguish between a decrease in the probability of success due to choices of the other players and due 

to chance. See Chapter 8 for an elaboration of this point. 
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Two examples will help to illustrate this framework. In the first example, one player plays only 

against his environment. The second example involves two players and the environment. While 

in the first example, a player’s plans may fail only because of their incompatibility with the 

environment, in the second case, they may fail because of their incompatibility with both 

environment and other players’ plans.   

 

Example 5.2. Assume one player who can either pursue a stag or a hare. Unlike in the previous 

examples, he is able to catch the stag by himself. Nevertheless, the stag escapes with probability 

 . If the player chooses to pursue the hare, he will catch it for sure. Therefore, we have, {1}N  , 

{ , }A C D , { , }G Stag Hare , and {( ,  ),( ,  )}S C Stag D Hare . There are two states of nature, 

the stag escapes (E), and the stag does not escape (NE), { , }E NE , with ( )q E   and 

( ) 1q NE   . Probabilities of success in the two states of nature, 1( , )r s  , are shown in Figure 

5.2a. Figure 5.2b represents the overall probabilities of success, p(s), and payoffs defined on 

these probabilities. It is assumed that (1 ,0) (0,1) . 

 

 

 

 

a) Probabilities of success    b) Overall probabilities and payoffs 

Figure 5.2: A one-player Stag Hunt game 

 

 

 
E 

[ ]   
NE 

[1 ]   

(C, Stag) (0, 0) (1, 0) 

(D, Hare) (0, 1) (0, 1) 

 

 

p(s) 

 

 

Payoffs 

  

(C, Stag) (1 ,0)  3 

(D, Hare) (0, 1) 2 
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Example 5.3.  Consider the Stag Hunt game in Example 5.1 but assume that the stag escapes with 

probability  . As before, we assume that the hare cannot escape and that each hunter catches it 

with the probability 1/2. Therefore, there are four possible states of the world: 

{ , , , }EH1 EH2 NEH1 NEH2 , i.e., the stag either escapes (E) or not (NE), and the hare is 

caught either by the player 1 (H1) or by the player 2 (H2). Respective probabilities are 

( ) ( ) / 2q EH1 q EH2    and ( ) ( ) (1 ) / 2q NEH1 q NEH2    . The probabilities of success 

for each state, ( , )ir s  , are shown in Figures 5.3a-d. 

 

 

 

 

 

 

 

a) Stag escapes, P1 catches the hare     b) Stag escapes, P2 catches the hare 

 

 

 

 

c) Stag does not escape, P1 catches the hare   d) Stag does not escape, P2 catches the hare 

 

 

q(EH1) = α/2 

 (C; Stag) (D; Hare) 

(C; Stag) (0, 0), (0, 0) (0, 0), (0, 1) 

(D; Hare) (0, 1), (0, 0) (0, 1), (0, 0) 

q(EH2) = α/2 

 (C; Stag) (D; Hare) 

(C; Stag) (0, 0), (0, 0) (0, 0), (0, 1) 

(D; Hare) (0, 1), (0, 0) (0, 0), (0, 1) 

q(NEH1) = (1 – α)/2 

 (C; Stag) (D; Hare) 

(C; Stag) (1, 0), (1, 0) (0, 0), (0, 1) 

(D; Hare) (0, 1), (0, 0) (0, 1), (0, 0) 

q(NEH2) = (1 – α)/2 

 (C; Stag) (D; Hare) 

(C; Stag) (1, 0), (1, 0) (0, 0), (0, 1) 

(D; Hare) (0, 1), (0, 0) (0, 0), (0, 1) 



39 

 

 

 

 

 

e) Overall probabilities of success    f) Payoffs 

Figure 5.3: A Stag Hunt game with goal-oriented strategies and random events 

 

Combining the probabilities of success in each state with probabilities of states, we obtain 

overall probabilities of success, p(s). These overall probabilities are shown in Figure 5.3e. Note 

that if 0  , i.e., the stag cannot escape, the game is identical to the one in Example 2.1 (Figure 

2.2). If 0.5  , we obtain the game in Example 5.1 (Figure 5.1). It is assumed that for each 

player i, (1 ) (0,1)i . Payoffs representing these preferences are shown in Figure 5.3f. It can 

be seen that while the simple model in Chapter 2 endogenizes the payoffs of the conventional 

model, the model with exogenous events further endogenizes the probabilities of success of the 

simple model. 

 

We now consider definitions of Nash equilibrium and OCP. Since the model with random events 

endogenizes the model of Chapter 2, neither the definition of Nash equilibrium nor the definition 

of OCP is affected. Nevertheless, in addition to OCP, we may now define the mutual 

compatibility of plans (MCP). MCP isolates the compatibility of a player’s plan with other 

players’ plans from the compatibility of a player’s plan with nature. 

 

 (C, Stag) (D, Hare) 

(C, Stag) (1 – α, 0), (1 – α, 0) (0, 0), (0, 1) 

(D, Hare) (0, 1), (0, 0) (0, 0.5), (0, 0.5) 

 (C, Stag) (D, Hare) 

(C, Stag) 3, 3 0, 2 

(D, Hare) 2, 0 1, 1 
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Definition 5.2. Consider a strategic game with goal-oriented strategies and random events. A 

goal-oriented strategy j js S   is perfectly successful in ( ; )s   if ( | , ) 1i ir g s    for gj associated 

with js .  

 

Definition 5.3. Mutual compatibility of plans (MCP) in a strategic game with goal-oriented 

strategies and random events , , ,( ),( ),( ),( ),i i i iN q A G S r  ≿ i  is a profile s S  of goal-oriented 

strategies with the following property: there exists  , such that for each i N , is  is 

perfectly successful in ( , )s S  . 

 

Example 5.4. Consider the game in Example 5.3 with 0 1  . The game has two Nash 

equilibria, (C, Stag; C, Stag) and (D, Hare; D, Hare), and no OCP. Nevertheless, (C, Stag; C, 

Stag) is a MCP. 

 

The following theorem establishes the relationship between OCP and MCP. To put it simply, if 

an outcome is an OCP, then players’ plans are both mutually compatible and compatible with all 

possible states of nature. Therefore, this outcome has to be also MCP. In contrast, if an outcome 

is an MCP, it may or may not be an OCP because players’ plans may be disappointed by nature 

(see Example 5.4 above). 

 

Theorem 5.1. If an outcome is an OCP, then it is also MCP. 
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Proof. Assume that the outcome ŝ  is an OCP. Then, for each player i, we have ˆ( | ) 1i ip g s   for 

ig  associated with îs . Since ˆ ˆ( | ) ( ) ( | , )i i i ip g s q r g s


 


 , we must have ˆ( | , ) 1i ir g s    for 

each  . Therefore, ŝ  is also an MCP. 
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6  Degrees of plan compatibility 

 

The compatibility of plans, both in the sense of OCP and MCP, is a state of affairs, which can be 

approached but perhaps never achieved in reality. One implication of this observation is that a 

particular outcome can be “closer to” or “further away from” the Hayekian equilibrium. 

Although the situations “near equilibrium” are mentioned in the literature (Rizzo 1990), they 

have not been rigorously defined. The framework introduced in previous chapters allows for 

such a definition. 

 

A simple way to measure closeness to OCP is to use the average success of plans. The degree of 

overall compatibility of plans (DOCP) in an outcome s can be defined as follows: 

 

1
( )

( )

n

i ii
p g s

DOCP s
n




      (6.1) 

 

In words, for each player, we consider the probability of the goal he tries to achieve, and we add 

these probabilities across players. Then we divide this number with the number of players, n. The 

obtained measurement of the degree of plan compatibility is between 1 (perfect compatibility) 

and 0 (perfect incompatibility). 

 

Example 6.1. Consider the Stag Hunt model in Example 2.2 (Figure 2.2a).  For the outcome (D, 

Hare; D Hare), DOCP is equal to 0.5 (each player catches the Hare with the probability 0.5). 
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DOCP has the same value for the outcome (D, Hare; C, Stag): Player 1 catches the Hare with 

probability one, while player 2 catches Stag with probability zero. 

 

For the games with random events, DOCP can be derived as follows: 

 

1 1

1

( | , ) ( )
( ) ( )

n n

m i i j i ii i
jj

r g s p g s
DOCP s q

n n


  


 

 
      (6.2) 

 

That is, we first calculate the average success of plans for each state of nature, and then we add 

these values across all states using the probabilities of each state as weights. Since 

1
( | , )

n

i i ji
r g s 

   also represents the absolute number of successful plans in ( , )s  , the average 

success of plans in ( , )s   can also be interpreted as the proportion of perfectly successful plans 

in ( , )s  . 

 

Example 6.2. Consider the game in Example 5.3 (Figure 5.3a-d). For the outcome (D, Hare; D 

Hare), ( / 2)(0.5) ( / 2)(0.5) [(1 ) / 2](0.5) [(1 ) / 2](0.5) 0.5DOCP           . 

 

In games with random events, we can also define the degree of mutual compatibility of plans 

(DMCP) in an outcome s: 

 

1
( , )

( ) max

n

i ii
r g s

DMCP s
n








      (6.3) 
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DMCP is constructed as follows: for a given outcome s, we first calculate the average success of 

plans for each state of nature. We then select the maximum value. In other words, we consider 

the compatibility of plans under the most favorable state of nature. 

 

Example 6.3. Consider the game in Example 4.3 with 0.5  . For the outcome (C, Stag; C, 

Stag), DOCP is equal to 0.5. max{0,1} 1DMCP  . In contrast, consider the outcome (D, Hare; 

D Hare). For this outcome, both DOCP and DMCP are equal to 0.5. 

 

In the following Chapter, I generalize DOCP and DMCP to games with multiple goals. In 

Chapter 9, I apply these two measurements to account for degrees of stability of Nash equilibria. 
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7 Games with multiple goals 

 

We have assumed that each action is associated with exactly one goal. We now extend the 

definition of goal-oriented strategy to the cases, when an action is associated with several 

independent goals. Formally, a set of goal-oriented strategies can be defined as 

(2 \ )iG
i iS A   . Below is a simple example.21 

 

Example 7.1. Consider the following Battle of Sexes game: Two players choose between opera 

and box match. They both primarily want to coordinate on the same activity; however, player 1 

prefers to attend opera, while player two prefers to attend the boxing match. Therefore, we have 

{1,2}N  , 1 2 { , }A A X Y  , 1 { , }G M O ,  and 2 { , }G M B , where X and Y denote two 

possible activities, M stands for “meet”, O is “opera”, and B represents “box”. Goal-oriented 

strategies are 1 {( ; , ),( ; )}S X M O Y M , and 2 {( ; ),( ; , )}S X M Y M B . The probabilities of 

success are shown in Figure 7.1a, and payoffs are shown in Figure 7.1b. It is assumed that (0,1)  

~i (0,0) for each i. That is, for both activities (opera or box), each player considers the other 

player as an essential input in his consumption technology. 

 

 

                                                           
21 This generalized model then becomes similar to games with multiple payoffs (Zeleny 1975; Zhao 1991). See also 

Nishizaki and Sakawa (2001) for a review of this literature. 

 



46 

 

 

 

 

 

 

a) Probabilities of success      b) Payoffs 

Figure 7.1: The Battle of Sexes as a game with goal-oriented strategies 

 

In the game with multiple goals, the notion of perfectly successful goal-oriented strategy has to 

be generalized. In particular, the probability of success of all goals associated with an action has 

to be equal to one. 

 

Definition 7.1.  Consider a strategic game with goal-oriented strategies. A goal-oriented strategy 

j js S   is perfectly successful in s  if ( | ) 1j jp g s   for all gj associated with js .  

 

The definitions of Nash equilibrium and OCP remain unchanged. 

 

Example 7.2. Consider the Battle of Sexes in Example 7.1. The game has two Nash equilibria, 

both of which are also OCP: (X; M, O; X; M), and (Y; M; Y; M, B). 

 

There is a new result about Pareto efficiency. 

 

 (X; M) (Y; M, B) 

(X; M, O) 2, 1 0, 0 

(Y; M) 0, 0 1, 2 

 (X; M) (Y; M, B) 

(X; M, O) (1, 1), (1, 0) (0, 1), (0, 1) 

(Y; M) (0, 0), (0, 0) (1, 0), (1, 1) 
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Theorem 7.1. Let be Γ be a strategic game with goal-oriented strategies with one or more OCP.  

Let 1{ ,..., }
ii mG g g  for each i and assume that 1( , ,..., )

ii i ms a g g for each i is S  and each 

player i. Then ŝ  is an OCP, if and only if it is Pareto efficient. 

 

Proof. First, I prove that if an outcome is an OCP, then it is Pareto efficient. Since ŝ  is an OCP, 

then ˆ( | ) 1i ip g s   for each goal ig  and each player i. The strong monotonicity assumption 

implies that, for every player i N , we have ˆ( )ip s ≿ ( )i ip s  for all s S . I now prove that if an 

outcome is Pareto efficient, then it is an OCP. Assume that s  is a Pareto efficient outcome, but 

it is not an OCP. Then there exists a player j, for whom ( | ) 1j jp g s   for some jg . At the same 

time, for player j, we have ˆ( | ) 1j jp g s  , and therefore, by strong monotonicity assumption 

ˆ( ) ( )j jp s p s . It follows that s  cannot be Pareto efficient. 

 

Intuitively, if every player achieves all his goals in an outcome of a game, then this game is 

Pareto efficient. If an outcome is Pareto efficient, then it is an OCP, provided that OCP exists, 

and each plan of every player includes all the player’s goals. Note that Theorem 7.1 generalizes 

Theorem 4.1 to cases where 1iG  . The following example illustrates Theorem 7.1. 

 

Example 7.3. Assume the game in Example 7.1, with the following modification: both players 

want to attend opera. Therefore, we have {1,2}N  , 1 2 { , }A A X Y  , 1 2 { , }G G M O  . As 

before, X and Y denote two possible activities, M stands for “meet”, and O is “opera”. Goal-

oriented strategies are 1 2 {( ; , ),( ; , )}S S X M O Y M O  . Probabilities of success are shown in 

Figure 7.2a, and payoffs are shown in Figure 7.2b.  
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a) Probabilities of success      b) Payoffs 

Figure 7.2: The Battle of Sexes as a game with goal-oriented strategies 

 

The outcome (X; M, O; X; M, O) is both unique OCP and unique Pareto efficient outcome. 

 

In the games with multiple goals, the measurements of closeness to OCP and MCP have to be 

generalized. DOCP is still defined as the average success of plans in a given outcome.  

 

1 1

1

( )
( )

s
in m

ij ii j

n s
ii

p g s
DOCP s

m

 




 


     (7.1) 

 

where s
im  is the number of goals the player i tries to achieve in the outcome s. In words, for each 

player, we add the probabilities of the goals he tries to achieve in a given outcome, and then we 

add these sums across all players. We then divide the result by the total number of goals that all 

players try to achieve in s. The obtained measurement of the degree of plan compatibility is 

again between 1 (perfect compatibility) and 0 (perfect incompatibility). If each player tries to 

achieve only one goal, then 1s
im   for each player i and 

1

n s
ii

m n


 . Therefore, we obtain the 

equation (6.1).  

 

 (X; M, O) (Y; M, O) 

(X; M, O) (1, 1), (1, 1) (0, 0), (0, 0) 

(Y; M, O) (0, 0), (0, 0) (1, 0), (1, 0) 

 (X; M, O) (Y; M, O) 

(X; M, O) 2, 2 0, 0 

(Y; M, O) 0, 0 1, 1 
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Example 7.4. Consider the Battle of Sexes in Example 7.1. For the outcome (X, M, O; X, M, O), 

DOCP is equal to 0.75. 

 

In a similar way, we can generalize DMCP: 

 

1 1

1

( , )
( ) max

s
in m

ij ii i
n s

ii

r g s
DMCP s

m


 






 


      (7.2) 

 

The interpretation of DMCP remains the same as before: for a given outcome s, we first calculate 

the average success of plans for each state of nature and then select the maximum value. That is, 

we consider the compatibility of plans under the most favorable state of nature. If in the given 

outcome s each player aims at one goal only, then we have 1s
im   for each player i and 

1

n s
ii

m n


 . Therefore, we obtain the equation (6.3). The following example illustrates the 

calculation of the generalized DMCP. 

 

Example 7.5. Consider a modification of the Battle of Sexes game of Example 7.1, in which 

opera can be cancelled with probability 0 ≤ 1 – γ < 1. Therefore, we have {1,2},N   

1 2 { , },A A X Y   1 { ,  },G M O  2 { ,  },G M B  1 {( ; , ),( ; )},S X M O Y M  and 

2 {( ; ),( ; , )}S X M Y M B , { , }C NC , ( ) 1q C   , and  ( )q NC  , where C refers to the 

state “opera is cancelled” and NC refers to the state “opera is not cancelled”. Note that if  γ  = 1, 

then we obtain the game in Example 7.1. The probabilities of success in each state are shown in 
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Figures 7.3a and 7.3b. Figure 7.3c and 7.3d respectively represent the overall probabilities of 

success and payoffs. It is assumed that (0, )  ~1 (0,0)  and (0,1)  ~2 (0,0) . 

 

 

 

 

 

 

a) Opera is cancelled      b) Opera is not cancelled 

 

 

 

 

c) Probabilities of success      d) Payoffs 

Figure 7.3: The Battle of Sexes as a game with goal-oriented strategies 

 

Consider the outcome (X, M, O; X, M), for this outcome DOCP = (2 + γ )/4. For the state “opera 

is cancelled”, the average compatibility of plans is equal to 0.5; for the state “opera is not 

cancelled”, the average compatibility of plans is 0.75. Therefore, DMCP = 0.75. DOCP can also 

be obtained as a weighted sum of the average compatibility of plans in each state, that is, (1 – 

γ)0.5 + γ 0.75 = (2 + γ )/4. 

 

( ) 1q C    

 (X; M) (Y; M, B) 

(X; M, O) (1, 0), (1, 0) (0, 0), (0, 1) 

(Y; M) (0, 0), (0, 0) (1, 0), (1, 1) 

( )q NC   

 (X; M) (Y; M, B) 

(X; M, O) (1, 1), (1, 0) (0, 1), (0, 1) 

(Y; M) (0, 0), (0, 0) (1, 0), (1, 1) 

 (X; M) (Y; M, B) 

(X; M, O) (1, γ), (1, 0) (0, γ), (0, 1) 

(Y; M) (0, 0), (0, 0) (1, 0), (1, 1) 

 (X; M) (Y; M, B) 

(X; M, O) 2, 1 0, 0 

(Y; M) 0, 0 1, 2 
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The model with multiple goals is considered in Chapters 10, 11, and 12. Chapter 12 highlights 

some difficulties if goals associated with one action are not independent. In such cases, the 

strong monotonicity assumption may not be plausible. Considering multiple goals may be 

thought of as one possible extension of the basic model introduced in Chapter 5. Two other 

possible extensions are considered in the following chapter. 
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8 Extensions 

 

The framework introduced in previous chapters can be further elaborated in various directions. 

Below I briefly discuss two simple extensions. In one case, I further endogenize players’ payoffs 

to account for the possibility that a player may differently evaluate the failure of their plans due 

to incompatibility with other players’ plans and the failure of their plans due to incompatibility 

with the environment. In the other case, I explicitly include players’ beliefs in the model. 

 

8.1 Payoffs 

In the model with random events (Chapter 5), we assumed that players care about the overall 

probabilities of success. Alternatively, we could assume that players care about the probabilities 

of success in each of the feasible outcomes, i.e., that they consider each feasible state of nature 

separately. Consider the following example. 

 

Example 8.1. Two hunters choose between two locations, A and B. In the location A, there are 

many hares, but each escapes the hunters with probability 0.5. In the location B, there is only one 

hare, who cannot escape the hunters. Figure 8.1 shows the overall probabilities of success. Since 

each player pursues only one goal, these probabilities also represent players’ preferences. 
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Figure 8.1: A Hare Hunt 

 

Compare the outcomes (A, Hare; A, Hare) and (B, Hare; B, Hare). The outcome (A, Hare; A, 

Hare) is a MCP, because there is a state of nature in which both players catch a hare. In contrast, 

(B, Hare; B, Hare) is not an MCP. Nevertheless, each player is indifferent between the two 

outcomes because players are assumed to care only about the overall probability of success. We 

now consider a simple extension of the framework introduced in the previous chapters, which 

allows defining different preferences for the outcomes (A, Hare; A, Hare) and (B, Hare; B, Hare). 

 

Formally, we define preferences on the set of probability measures over S , i.e., the set of 

probability vectors ( , )ir s  . In words, we consider preferences for each state of nature separately. 

This extension can be considered as a further endogenization of the model presented in this work. 

As usual, we can represent these preferences with a payoff function. 

 

 (A, Hare) (B, Hare) 

(A, Hare) 0.5, 0.5 0.5, 1 

(B, Hare) 1, 0.5 0.5, 0.5 
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Example 8.2. Consider once again the game in Example 8.1. There are eight states of nature in 

this game shown in Figures 8.2a-h. For example, the state E1N2P1 denotes “hare escapes player 

1, if player 1 chooses A” (E1), “hare doesn’t escape player 2 if player 2 chooses A”, and “player 

1 catches the hare if both players choose B”. The figures in each table represent the players’ 

payoffs. We again use probabilities of success in each state to represent these payoffs, with one 

exception: if a player i does not catch a hare in a state where the hare does not escape him if he 

chooses A, then his payoff is -1 rather than 0.22 Specifically, for player 1, it is the states N1E2P2 

and N1E2P2, while for player 2, it is in the states E1N2P1 and N1N2P1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
22 We may think about these preferences as including regret. For the regret theory, see Loomes and Sugden (1982. 

1987), Sugden (1985, 1993), and Quiggin (1994). 
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a) E1E1P1            b) E1N2P1 

 

 

 

 

 

c) N1E2P1                    d) N1N2P1 

 

 

 

 

e) E1E1P2            f) E1N2P2 

 

 

 

 

 

g) N1E2P2                    h) N1N2P2 

Figure 8.2: A Hare Hunt with payoffs over feasible outcomes 

q(E1E1P1) = 0.125 

 (A, Hare) (B, Hare) 

(A, Hare) 0, 0 0, 1 

(B, Hare) 1, 0 1, 0 

q(E1N2P1) = 0.125 

 (A, Hare) (B, Hare) 

(A, Hare) 0, 1 0, 1 

(B, Hare) 1, 1 1, -1 

q(N1E2P1) = 0.125 

 (A, Hare) (B, Hare) 

(A, Hare) 1, 0 1, 0 

(B, Hare) 1, 0 1, 0 

q(N1N2P1) = 0.125 

 (A, Hare) (B, Hare) 

(A, Hare) 1, 1 1, 1 

(B, Hare) 1, 1 1, -1 

q(E1E1P2) = 0.125 

 (A, Hare) (B, Hare) 

(A, Hare) 0, 0 0, 1 

(B, Hare) 1, 0 0, 1 

q(E1N2P2) = 0.125 

 (A, Hare) (B, Hare) 

(A, Hare) 0, 1 0, 1 

(B, Hare) 1, 1 0, 1 

q(N1E2P2) = 0.125 

 (A, Hare) (B, Hare) 

(A, Hare) 1, 0 1, 1 

(B, Hare) 1, 0 -1, 1 

q(N1N2P2) = 0.125 

 (A, Hare) (B, Hare) 

(A, Hare) 1, 1 1, 1 

(B, Hare) 1, 1 -1, 1 



56 

 

It is useful to combine the preferences in each state to obtain aggregate preferences over 

outcomes s. Denote this aggregate payoff function ( )iU s . Let ( )iu r be a payoff function 

representing preferences over ( , )ir s  . A simple way to obtain the aggregate the payoff function 

over s, is to weight ( )iu r with the probability of the respective state of nature. Denoting the 

aggregate payoff function ( )iU s , we have 

 

( ) ( ) ( ( | , ))i i i iU s q u r g s


 


     (8.1) 

 

Compare the equation (8.1) with the model of Chapter 4. There, we first derived the aggregate 

probability, ( )ip s , as follows:  

 

( | ) ( ) ( | , )i i i ip g s q r g s


 


     
(8.2) 

 

Then we defined preferences over ( )ip s . Denote the payoff function representing these 

preferences ( ( ))i iV p s . Note that ( )iU s  and ( ( ))i iV p s  may or may not represent the same 

preferences. The following examples illustrate the two approaches. 

 

Example 8.3. Consider the game in Examples 8.1 and 8.2. Figure 8.1 shows the payoff function 

( ( ))i iV p s , while Figure 8.2 shows the payoff function ( )iu r . Using equation (8.1), we obtain 

( )iU s  (see Figure 8.3). Comparing Figures 8.1 and 8.3, we see that ( ( )) ( )i i iV p s U s . In 

particular, a player’s payoff is lower, if his plan is disappointed by the other player’s plan rather 
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than by nature. It is straightforward to show that if ( )i iu r r  in Example 8.2, then we obtain 

( ( )) ( )i i iV p s U s . 

 

 

 

 

 

Figure 8.3: Aggregate payoffs of the Hare Hunt 

 

Example 8.4. Consider the one-player Stag Hunt game in Example 5.2. Figure 8.4a shows the 

probabilities of success in different states of nature, and Figure 8.4b represents payoffs defined 

on these aggregate probabilities. These figures correspond to Figures 5.2a and 5.2b in Chapter 4. 

Figure 8.4c shows the probabilities on realized outcomes, and Figure 8.4d uses these 

probabilities to derive expected payoff iU . If 3/ 4  , then i iU V  and the two payoff 

functions represent the same preferences. 

 

 

 

 

 

 

 

 

 (A, Hare) (B, Hare) 

(A, Hare) 0.5, 0.5 0.5, 1 

(B, Hare) 1, 0.5 0.25, 0.25 
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a) Probabilities of success   b) Overall probabilities and payoffs 

 

 

 

 

c) Payoffs in each state    d) Expected payoffs 

Fig. 8.4: A one-player Stag Hunt game 

 

Example 8.5. Consider now the Stag Hunt game in Example 5.3. Recall that in this game, two 

hunters either cooperate to catch a single stag that can escape with probability α, or compete for 

a single hare. For each player, we now define payoffs iu  for each state of nature separately. 

These payoffs are shown in Figure 8.5. The expected payoffs, iU , are calculated by applying the 

equation (8.1). For 3/ 4  , iU  represents the same preferences as the payoff function iV  in 

Example 5.3. 

 

 

 

 

 
E 

[ ]   
NE 

[1 ]   

(C, Stag) (0, 0) (1, 0) 

(D, Hare) (0, 1) (0, 1) 

 

 

p(s) 

 
iV  

(C, Stag) (1 ,0)  3 

(D, Hare) (0, 1) 2 

 
E 

[ ]   
NE 

[1 ]   

(C, Stag) 0 4 

(D, Hare) 2 2 

 iU  

(C, Stag) (1 )4  

(D, Hare) 2 
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a) Stag escapes, P1 catches the hare     b) Stag escapes, P2 catches the hare 

 

 

 

 

 

c) Stag doesn’t escape, P1 catches the hare             d) Stag doesn’t escape, P2 catches the hare 

Figure 8.5: A Stag Hunt game with payoffs over feasible outcomes 

 

Chapter 13 provides empirical evidence that players care about whether their plans fail because 

of the incompatibility of other players’ plans or because of incompatibility with the environment. 

 

8.2 Beliefs 

The framework introduced in preceding chapters considers the “objective” compatibility of plans, 

in the sense that this compatibility is independent of players’ knowledge and beliefs. 

Nevertheless, the model introduced in the preceding chapters can be extended to include players’ 

beliefs. From this perspective, the model with random events considered in Chapter 5 can be 

interpreted as a special case in which 1) all players have common prior beliefs, 2) these prior 

q(EH2) = α/2 

 (C, Stag) (D, Hare) 

(C, Stag) 0, 0 0, 2 

(D, Hare) 2, 0 0, 2 

q(EH1) = α/2 

 (C, Stag) (D, Hare) 

(C, Stag) 0, 0 0, 2 

(D, Hare) 2, 0 2, 0 

q(NEH1) = (1 – α)/2 

 (C, Stag) (D, Hare) 

(C, Stag) 4, 4 0, 2 

(D, Hare) 2, 0 2, 0 

q(NEH2) = (1 – α)/2 

 (C, Stag) (D, Hare) 

(C, Stag) 4, 4 0, 2 

(D, Hare) 2, 0 0, 2 
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beliefs are correct, and 3) all players receive the same signal regardless of the state of the world. 

The model can be generalized by considering differences in prior beliefs across players and 

explicit introduction of a signal function as in conventional Bayesian games (Osborne and 

Rubinstein 1994). This would allow modeling asymmetric information, which is important in 

many cases, and indeed, emphasized by Hayek (1945). I now consider this generalization. 

 

Assume the set of players N and for each player i a set of actions, iA , set of goals, iG , and a set 

of goal-oriented strategies, iS . As in chapter 4,   is the finite set of possible states of nature and 

q is the probability measure on  , with ( ) 0q    for each  . We now introduce for each 

player i the set of player’s types, iT . Players’ information about the state of nature is modeled 

with the signal function :i iT  . The posterior belief that about the state that has been 

realized is 1( | ) ( ) / ( ( ))i i i it q q t    . The overall probability that the goal ig  is achieved given 

the strategy profile s, is given by: ( | ) ( | ) ( | , )i i i i i ip g s t r g s


  


 . Preferences of each 

player are defined on the set of overall probabilities, iP .23 

 

Definition 8.1.  A Bayesian game with goal-oriented strategies is a decuple 

, , ,( ),( ),( ),( ),( ),( ),i i i i i iN q A G S T r  ≿ i .  

 

Note that one can think about this extension as yet another endogenization of conventional 

strategic games. In particular, the conventional strategic game can be understood as a Bayesian 

game where players do not learn anything about the realized state of nature from their signals. 

                                                           
23 Alternatively, we can define preferences for each state separately. See Section 8.1. 
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That is, 1iT   for each player i.  The following example illustrates the model of a Bayesian 

game with goal-oriented strategies. 

 

Example 8.6. Consider once again the Stag Hunt game in Example 5.3, in which stag escapes 

with probability 1 – α = 0.5. Assume that player 2 knows whether the stag escapes or not, while 

Player 1 does not know whether the stag escapes or not. Neither player 1 nor player 2 know who 

will catch the hare if both decide to pursue the hare. Formally, there are four possible states of 

the world { , , , }EH1 EH2 NEH1 NEH2 with 

( ) ( ) ( ) ( ) 1/ 4.q EH1 q EH2 q NEH1 q NEH2     Players’ types are 1 { }T t  and 2 { , },T e n and 

the signal function is 1 1 1 1( ) ( ) ( ) ( )EH1 EH2 NEH1 NEH2 t        for player 1, and 

2 2( ) ( )EH1 EH2 e    and 2 2 2 2( ) ( ) ( ) ( )EH1 EH2 NEH1 NEH2 n        for player 2. The 

probabilities of success in each state are represented in Figure 5.3a-d, as in Example 5.3.  Figure 

8.6a shows the overall probabilities of success. The first part of player 2’s strategy represents 

player 2’s choice if he observes the signal e, while the second part represents player 2’s choice if 

he observes the signal n. For example, (C, Stag; D, Hare) means that player 2 chooses (C, Stag) 

if he knows that the Stag escapes (i.e., he observes e), and (D, Hare) if he knows that the Stag 

does not escape (i.e., he observes n). Figure 8.6b shows players’ payoffs. 
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a) Overall probabilities of success 

 

b) Payoffs 

Figure 8.6: Stag Hunt as a Bayesian game with goal-oriented strategies 

 

The definitions of OCP, MCP, and Nash equilibrium are the same as for the strategic games with 

goal-oriented strategies and random events. Indeed, as argued earlier, these types of games can 

be seen as a special case of Bayesian games with goal-oriented strategies. 

 

Example 8.7. There is no OCP in the game in Example 8.6. There are two MCP, namely, (C, 

Stag; C, Stag, C, Stag) and (C, Stag; D, Hare, C, Stag).  What about Nash equilibria? By strong 

monotonicity assumption, player 2’s strategy (C, Stag; C, Stag) is strictly dominated by (D, Hare; 

C, Stag) and the strategy (C, Stag; D, Hare) are strictly dominated by (D, Hare; D, Hare).  

Intuitively, it is never optimal for player 2 to pursue the stag, if he knows that the stag will 

escape. Strong monotonicity also implies that (D, Hare; D, Hare; D, Hare) is a Nash equilibrium. 

(C, Stag; D, Hare; C, Stag) is a Nash equilibrium only if 1(0.5,0) (0,0.75)  and 

 (C, Stag; C, Stag) (C, Stag; D, Hare) (D, Hare; C, Stag) (D, Hare; D, Hare) 

(C, Stag) (0.5, 0), (0.5, 0) (0, 0), (0, 0.25) (0.5, 0), (0.5, 0.5) (0, 0), (0, 1) 

(D, Hare) (0, 1), (0, 0) (0, 0.75), (0, 0.25) (0, 0.75), (0, 0.25) (0, 0.5), (0, 0.5) 

 (C, Stag; C, Stag) (C, Stag; D, Hare) (D, Hare; C, Stag) (D, Hare; D, Hare) 

(C, Stag) 4, 4 0, 1 4, 5 0, 3 

(D, Hare) 3, 0 2, 1 2, 1 1, 2 



63 

 

2(0.5,0.5) (0,1). This is, in fact, what we assume in Figure 8.6b. Intuitively, players will pursue 

the stag if the value of the stag is sufficiently high compared to the value of the hare. It is 

straightforward to generalize the model to the case when the stag escapes with the probability α. 

Players then pursue the stag if α is sufficiently low, given the value of the stag. 
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9 Endogenous instability of Nash equilibrium 

 

Equilibrium has been traditionally conceived as an endogenously stable outcome. This means 

that it can be displaced only by an exogenous shock (see e.g., O’Driscoll, Jr. and Rizzo 2002; 

Greif 2006 for a discussion).  In light of my framework, this view has to be qualified. It is true 

that Nash equilibrium is a stable outcome within the game. Given the fixed set of possibilities, a 

player cannot improve his situation by changing his behavior. Yet, in some situations, Nash 

equilibrium may not be appealing to players. In these cases, the Nash equilibrium will be 

endogenously unstable because players may try to change the game in order to achieve a more 

favorable outcome. These adjustments are examples of what Hayek calls “endogenous 

disturbances” (Hayek 1948, 40).24  The endogenous instability may occur for three reasons: 1) 

There is an outcome in which one or more players can achieve a higher payoff; 2) Nash 

equilibrium may not be OCP; 3) Both of these reasons occur simultaneously. To illustrate these 

reasons, I give several examples in the following section. 

 

9.1 Examples 

Example 9.1. Consider a version of the Stag Hunt game in which there are many hares and each 

player catches a hare with certainty. Formally, we have N = {1, 2}, A1 = A2 = {C, D}, G1 = G2 = 

{Stag, Hare}, S1 = S2 = {(C, Stag, (D, Hare)}. Probabilities of success and payoffs are shown in 

Figure 9.1a and 9.1b respectively. 

 

                                                           
24 O’Driscoll, Jr. and Rizzo (2002) use the term “endogenously-produced change” in a more general sense. 
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a) Probabilities of success     b) Payoffs 

Figure 9.1: Stag Hunt game with many hares 

 

The game has two Nash equilibria, (C, Stag; C, Stag) and (D, Hare; D, Hare). Both these Nash 

equilibria are also OCP and MCP. The equilibrium (C, Stag; C, Stag) Pareto-dominates the 

equilibrium (D, Hare; D, Hare). Therefore, if players play the equilibrium (D, Hare; D, Hare), 

they will be motivated to look for ways how to switch to the Pareto-dominant equilibrium C, 

Stag; C, Stag) (see e.g., Bowles 2006). 

 

Example 9.2. Consider now a different version of the Stag Hunt game. Firstly, there is only one 

hare. Therefore, if both players pursue the hare, each catches it with probability 0.5. Secondly, 

each player is indifferent between a share of the stag and catching the hare with probability 0.5. 

Therefore, (1, 0) ~i (0, 0.5) for each i. Probabilities of success and payoffs are shown in Figures 

9.2a and 9.2b, respectively. 

 

 

 

 

 

 (C, Stag) (D, Hare) 

(C, Stag) 2, 2 0, 1 

(D, Hare) 1, 0 1, 1 

 (C, Stag) (D, Hare) 

(C, Stag) (1, 0), (1, 0) (0, 0), (0, 1) 

(D, Hare) (0, 1), (0, 0) (0, 1), (0, 1) 
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a) Probabilities of success     b) Payoffs 

Figure 9.2: Stag Hunt game without Pareto-dominance 

 

There is only one Nash equilibrium, namely, (D, Hare; D, Hare). No outcome Pareto-dominates 

the Nash equilibrium outcome. Moreover, the goal-oriented strategy (D, Hare) strictly dominates 

the strategy (C, Stag). Each player will, therefore, choose (D, Hare). However, each player can 

receive a higher payoff if he is the only one pursuing the hare. That is, 

1( , ; , ) ( , ; , )D Hare C Stag D Hare D Hare  and 2( , ; , ) ( , ; , )C Stag D Hare D Hare D Hare . Therefore, 

each player is motivated to change the game to achieve a higher payoff. 

 

If we look at the game from the perspective of goals, then we conclude that there is only one 

OCP (which is at the same time MCP), namely (C, Stag; C, Stag). In particular, the Nash 

equilibrium (D, Hare; D, Hare) is neither OCP nor MCP. Therefore, we predict that the Nash 

equilibrium will be unstable. The prediction of the conventional (payoff-based) approach and the 

goal-based approach are similar. However, there is a subtle difference. Firstly, from the payoff 

perspective, the Nash equilibrium is unstable because there are outcomes with a higher payoff 

for one of the players. In contrast, from the goal perspective, the Nash equilibrium is unstable 

because one of the players fails to achieve his goal. To highlight the difference between the 

payoff and goal perspectives, consider the following example. 

 (C, Stag) (D, Hare) 

(C, Stag) (1, 0), (1, 0) (0, 0), (0, 1) 

(D, Hare) (0, 1), (0, 0) (0, 0.5), (0, 0.5) 

 (C, Stag) (D, Hare) 

(C, Stag) 2, 2 0, 3 

(D, Hare) 3, 0 2, 2 
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Example 9.3. Consider a Hare Hunt game, defined as follows: N = {1, 2}, A1 = A2 = {D}, G1 = 

G2 = {Hare}, and ( | ) 0.5ip Hare DD  . Each player considers only one action (perhaps due to 

strong habit – see Epstein (2001)) and so the game has only a single outcome; this outcome is 

trivially a Nash equilibrium but not an OCP as each player catches the hare with the probability 

0.5.  

 

The conventional approach has nothing to say about the game in Example 9.3 because players 

have no choice within the game, given their actions sets. Moreover, since the game has only one 

outcome, there is no payoff-based reason for players to modify the game. Nonetheless, a goal-

based perspective predicts that players will attempt to change the game since their plans are 

mutually incompatible. To highlight the fact that the goal-based approach gives empirical 

predictions that cannot be derived from the conventional approach, contrast the Hare Hunt in 

Example 7.3 with a version of the Stag Hunt in the following example. 

 

Example 9.4.  N = {1, 2}, Ai = {C}, Gi = {Stag}, and ( | ) 1ip Stag CC  . The single outcome of the 

game is both Nash and OCR.  

 

From the point of view of the conventional theory, the games in Examples 9.3 and 9.4, when 

considered separately, are equivalent and, in fact, uninteresting. In contrast, according to the 

goal-based approach, the two games are different. In the Hare Hunt in Example 9.3, the single 

outcome of the game is an OCP, while in the Stag Hunt in Example 9.4, it is not. Consequently, 
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the goal-based approach predicts that the Hare Hunt will be goal-unstable while the Stag Hunt 

will be goal-stable because players have no incentive to change the game. 

 

Another advantage of the goal-based approach is that it predicts endogenous instability of Nash 

equilibrium ex ante, that is, without identifying an alternative outcome. In the Hare Hunt game in 

Example 9.3, we predict that players are motivated to modify the game even without knowing 

how exactly they will do it or even without identifying alternative outcomes that the players may 

attempt to achieve. In contrast, the conventional approach can reconstruct various game 

modifications only ex post, that is, with the knowledge of relevant alternatives and means to 

achieve them, so that they can be included in the model.25 For instance, assume that players 

attempt to look for an alternative location, where hares could be found. These locations would be 

included in the model as possibilities that could be discovered with given probability by players. 

Search costs then would be balanced against the benefits of sticking to the status quo. While such 

ex post reconstructions are useful  (I discuss them in Section 9.3), the ability to predict instability 

ex ante seems even more important, even though we may not be able to predict how exactly 

players will use their knowledge and resources to modify the game.  

 

Although in this chapter, I emphasize goal considerations, payoff considerations should not be 

neglected. Example 9.3 shows that a Nash equilibrium may be endogenously unstable if it is not 

an OCP. I call this type of instability goal-instability. Now consider Example 9.1. The outcome 

(D, Hare; D, Hare) is an OCP, but it is unstable because there is an outcome where each player 

                                                           
25 This epistemological problem is also mentioned by Hayek (2002). 
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can achieve a higher payoff, namely (C, Stag; C, Stag). I call this type of instability payoff-

instability. In the following section, I give formal definitions. 

 

9.2 Definitions 

I start with the definitions of goal-stability and payoff-stability. 

 

Definition 9.1. An outcome s S  is goal-stable if it is OCP. An outcome s S  is goal-unstable 

if it is not goal-stable. That is, if there exists a player i N  whose goal-oriented strategy is not 

perfectly successful in s .  

 

Definition 9.2. An outcome s S  is payoff-stable if it Pareto-dominates all s S . An outcome 

s S is payoff-unstable if it is not payoff-stable. That is, if there exists a player i N  such that 

is s  for some s S . 

 

Applying Theorem 4.1, we obtain the following result. 

 

Result 9.1. Let Γ be a strategic game with goal-oriented strategies where 1iG   for each player i. 

Assume that the game has one or more OCP. Then ŝ  is goal-stable if and only if it is payoff-

stable. 

 

Stability is a matter of degree. The degree of goal-stability can be measured with DOCP. The 

intuition is that the lower the average success of plans (i.e., the lower DOCP), the less goal-

stable an outcome is. We can also define a measurement of payoff-stability. Note that the crucial 
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difference between the goal-stability and payoff-stability is that from the goal perspective, there 

exists an absolute ideal (namely, OCP) to which other outcomes could be compared. In contrast, 

payoffs are always relative. Therefore, there is no absolute ideal to which other outcomes could 

be compared. A rough and simple way to measure payoff-stability (PS) is to calculate a relative 

number of players who cannot increase their payoff within the game: 

 

( )
n k

PS s
n


       (9.1) 

 

where k is the number of players who can achieve a payoff higher than the payoff they receive in 

the outcome s, and n is the number of players. This measurement ranges from 0 to 1. Clearly, if s 

is payoff-stable (according to the Definition 9.2), then PS(s) = 1. The measurement (9.1) is 

illustrated in the following example. 

 

Example 9.5. Consider the games in Figure 9.3a and 9.3b (goals are left out because they are not 

relevant in this example). 

 

 

 

 

a) PS(T, I) = 1      b) PS(T', I') = 0.5 

Figure 9.3: Payoff stability – illustration 

 

 I O 

T 3, 3 0, 2 

B 2, 0 1, 1 

 I' O' 

T' 3, 2 0, 1 

B' 2, 0 1, 3 
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Consider the Nash equilibrium (T, I) in Figure 9.3a. Using the formula (9.1) we obtain PS(T, I) = 

1. Consider now the Nash equilibrium (T', I') in Figure 9.3b. Calculating the payoff-stability we 

obtain PS(T', I') = 0.5. Therefore, we conclude that (T, I) is more payoff-stable than (T', I'). 

 

The measurement of payoff-stability (9.1) is very simple but has one shortcoming if applied to 

the stability of outcomes in general, rather than to stability of Nash equilibria. Intuitively, Nash 

equilibria are more stable than other outcomes within the game, yet, non-equilibirum outcomes 

can have higher PS than Nash equilibrium. This shortcoming is illustrated by the following 

example. 

 

Example 9.6. Consider the games in Figure 9.4a and 9.4b (goals are again left out). 

 

 

 

 

a) PS(U, L) = 0.5      b) PS(X, A) = 0.5 

Figure 9.4: Payoff-stability of outcomes 

 

Consider the payoff-stability of the outcome (U, L) in the game in Figure 9.4a. Only the row 

player can achieve higher payoff in the game, namely, in the outcome (D, L). Therefore, PS(U, L) 

= 0.5. Consider now the payoff-stability of the outcome (U', L') in the game in Figure 9.4b. 

Again, only the row player can achieve higher payoff in the game, namely, in the outcome (D', 

R'). Therefore, we again have PS(U', L') = 0.5. Nevertheless, intuitively, the outcome (U, L) 

 L R 

U 2, 2 0, 1 

D 3, 2 1, 1 

 L' R' 

U' 2, 2 0, 1 

D' 1, 2 3, 1 
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seems to be more stable than (U', L') because (U, L)  is a Nash equilibrium, while (U', L') is not. 

It would be possible to construct a more sophisticated measurement, e.g., by including a number 

of “moves” necessary to achieve a desired outcome.26 However, this may be impractical because 

such measurement assumes that the rules of the play are fixed. In reality, “unhappy” players may 

change the rules of the play in many different ways. Alternatively, PS can be applied to assess 

the stability of Nash equilibria, rather than any outcome in the game. This is the approach 

considered in this chapter. However, this may also be problematic, as the following example 

shows. 

 

Example 9.7. Consider the games in Figure 9.5a and 9.5b (goals are again left out). 

 

 

 

 

a) PS(A, C) = 0     b) PS(A', C') = 0 

Figure 9.5: Payoff stability of Nash equilibria 

 

In Figure 9.5a, we have PS(A, C) = 0 and in Figure 9.5b, we have PS(A', C') = 0. However, the 

outcome (A, C) seems intuitively more stable than the outcome (A', C') because in the game in 

Figure 9.5a, players have a common interest to achieve the outcome (B, D). In contrast, in the 

game in Figure 9.5b, player 1’s desired outcome is (B', D'), while player 2’s desired outcome is 

                                                           
26 The framework introduced by Brams (1994) seems suitable for this purpose. 

 C D 

A 1, 1 0, 0 

B 0, 0 2, 2 

 C' D' E' 

A' 1, 1 0, 0 0, 0 

B' 0, 0 2, 0 0, 2 
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(B', E'). Therefore, since there is a conflict of interests, the outcome (A', C') is less likely to be 

displaced. 

 

Another issue is the stability of the outcome to which players aspire. In the game in Figure 9.5a, 

both players aspire to the same outcome. This outcome is a Nash equilibrium, and it is Pareto 

dominant. Therefore, we have PS(B, C) = 1. In Figure 9.5b, player 1’s desired outcome is (B', D'), 

which is not a Nash equilibrium. Player 1 may realize that (B', D') is not sustainable and may not 

attempt to achieve this outcome. 27 

 

To summarize, the measurement of payoff-stability (9.1) should be interpreted carefully and in 

combination with other tools. The payoff-stability measurement simply takes into account the 

number of “unhappy” players but does not consider their degree of unhappiness (unlike the goal-

stability measurement, DOCP). It also ignores the complementarities of their efforts when they 

attempt to modify the game, as well as the prospects of successfully modifying the game. These 

measurements simply identify a degree of instability of a Nash equilibrium without specifying 

how exactly this equilibrium may be displaced. 

 

9.3 Stability of games vs. stability of outcomes 

As stated earlier, the Nash equilibrium concept (and equilibrium concepts in general) focuses on 

the stability of outcomes within a game. If an outcome is a Nash equilibrium, no player has an 

                                                           
27 The analysis of game stability is further complicated by the fact that players may have unequal power to influence 

the game. Consequently, goal-instable and payoff-instable Nash equilibria can persist for a long time. The role 

power has been already emphasized by Marx, and in modern game-theoretic literature, it is analyzed to some extent 

by Brams (1994), Bowles (2006), and Belloc and Bowles (2013). 
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incentive to deviate unilaterally from this outcome. Yet, one or more players may have an 

incentive to change the game for goal-reasons, payoff-reasons, or both. Measurements 

introduced in Section 9.2 are designed to measure the degree of instability of Nash equilibria and, 

therefore, also the instability of games. I will now focus on possible ways of how instable games 

may be modified by players. Since the instability of games due to payoff considerations is well 

known and can be studied within the conventional framework, I focus on the endogenous 

instability due to incompatibility of player plans, i.e. on the cases when Nash equilibrium is not 

an OCR, and at the same time, both players achieve the highest possible payoff in the game. 

 

How exactly players modify the game depends on the specific situation. In reality, rules of the 

game are rarely fixed and so redesigning the rules is essentially an entrepreneurial activity. 

Although some goals and actions may be given, players may be able to influence the order of 

play, decide which information to make available, and they can also reconsider their goals, or 

explore new strategies.28 In general, there are many possibilities for how a given game can be 

modified: For instance, players can transform a simultaneous-move game into a sequential game 

(Hamilton and Slutsky 1993; Brams 1994), or they can use various commitment strategies 

(Schelling 1980, 2006). These possibilities have been widely researched in the literature, and so I 

focus on some others that have attracted less attention. 

 

Example 9.8. Consider once again the Hare Hunt in Example 9.3. The unique outcome of this 

game is goal-unstable. In particular, DOCP = 0.5. What possibilities do players have to improve 

on this outcome? For example, one player may attempt to transform the game into a sequential 

                                                           
28 Examples of how people choose rules of the game to solve social dilemmas can be found e.g., in Ostrom (1990). 
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one: If e.g., player 1 moves first, he will catch the hare with probability 1, while the player 2 

catches nothing.29 Nevertheless, the modified game is still not goal-stable because player 2 fails 

to achieve her goal (as before the modification, DOCP = 0.5). Player 2 may perhaps try to move 

even before the player 1.  

 

Another way how players can modify the game is to expand their action sets; for example, each 

player can invest in better hunting technology in an attempt to increase his probability of success. 

This will lead to an innovation race, which, however, cannot change the fact that players’ plans 

will continue to be mutually incompatible. The following simple example illustrates this logic. 

 

Example 9.8. N = {1, 2}, A1 = A2 = {Invest, Not} G1 = G2 = {Hare}. If a player invests in better 

hunting technology and the other player doesn’t, the probability of success for the player who 

invests, increases by τ. If both players invest or if both players don’t invest, each of them catches 

the hare with probability 0.5.30 The probabilities of success of this modified game are shown in 

Figure 9.6. Since each player has only one goal, the probabilities of success can be used to 

represent players’ payoffs. 

 

 

 

                                                           
29 Note that transforming the simultaneous game into the sequential one would affect the players’ payoffs. This 

would also be the case in the Stag Hunt games in Figs. 1 and 3. In contrast, conventional analysis typically assumes 

that the change of the order of play does not affect players’ outcomes (Hamilton and Slutsky 1993).  

30 For simplicity, it is assumed that investment in new technology is costless. 
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Figure 9.6: Technological race in the Hare Hunt 

 

Nash equilibrium of the game is (Invest, Hare; Invest, Hare). Yet, this Nash equilibrium is still 

goal-unstable. DOCP(Invest, Hare; Invest, Hare) = 0.5, which means that the players are 

motivated to modify the game further. 

 

Players can expand their action sets also in different ways: They can search for other locations 

where hares can be found. This case is described in the following example.  

 

Example 9.9. N = {1, 2}, A1 = A2 = {Search, Not} G1 = G2 = {Hare}. Assume that if a player 

abandons the original location and searches for a new one, he will catch a hare with probability 

0.5 < β ≤ 1. This probability is independent of whether the other player searches for a new 

location or not. The probabilities of success (also representing players’ payoffs) are shown in 

Figure 9.7. 

 

 

 

 

Figure 9.7: Hare Hunt with a search option 

 (Invest, Hare) (Not, Hare) 

(Invest, Hare) 0.5, 0.5 0.5 + τ, 0 

(Not, Hare) 0, 0.5 + τ 0.5, 0.5 

 (Search, Hare) (Not, Hare) 

(Search, Hare) β, β β, 1 

(Not, Hare) 1, β 0.5, 0.5 
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The Nash equilibria of the game are (Search, Hare; Not, Hare) and (Not, Hare; Search, Hare). In 

each of these equilibria we have DOCP = (1 + β)/2 > 0.5. Compared to the original Hare Hunt in 

Example 9.3, the goal-stability of Nash equilibrium increases. The payoff stability remains the 

same, i.e., PS = 1. If β = 1, another Nash equilibrium emerges, namely, (Search, Hare; Search, 

Hare). All the three Nash equilibria are then goal-stable and payoff-stable.31 

 

9.4 Stability of Nash equilibria and MCP 

So far, we have focused on goal-stability without considering MCP. From Theorem 5.1, an 

outcome can be goal-unstable (i.e., it is not an OCP), and yet it can be an MCP. First, consider 

the following example. 

 

Example 9.10. Recall the Stag Hunt game in Example 5.1, where the stag can escape with the 

probability α = 0.5. We have shown, that there are two Nash equilibria: (D, Hare; D, Hare) and 

(C, Stag; C, Stag). None of these Nash equilibria is an OCP. Consequently, they will be 

endogenously goal-unstable. Yet, (C, Stag; C, Stag) is an MCP. Therefore, in the (C, Stag; C, 

Stag), the players have a common interest. They are facing a technological problem of how to 

improve their hunting efficiency. In contrast, in the Nash equilibrium (D, Hare; D, Hare), their 

interests are opposed, and they are facing an institutional problem of making their plans mutually 

compatible.32  

                                                           
31 A more realistic example would also incorporate search costs. 

32 Although this is an institutional problem, each hunter may attempt to increase his hunting efficiency by investing 

in better hunting technology. However, this would not solve the institutional problem of the mutual incompatibility 

of plans. 
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In practice, both technological and institutional problems may be involved simultaneously. For 

instance, we can consider a case when the hare can escape both hunters. We can use DMCP to 

measure the degree of mutual plan incompatibility. The lower the DMCP is, the more serious the 

institutional problem is in this particular case. Therefore, DMCP can be used in combination 

with DOCP and PS to assess the endogenous instability of a Nash equilibrium in specific 

contexts. In the following chapter, I apply these concepts to account for changes in social norms. 
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10 A theory of social norms change 

 

Why do norms change? Several possibilities have been suggested in the literature: They may 

change as a result of group selection (Hayek 1973), imitation of more successful groups by less 

successful ones (Boyd and Richerson 2002), or change in costs and benefits (Becker and Murphy 

2000). Another possibility is that they change from within. The dominant model of such change 

is due to Young (1993, 1996, 2001).33 According to his model, changes in norms occur due to 

“mistakes”, which in turn result from the bounded rationality of agents. Hence, a change of a 

norm is modeled as a move from one equilibrium of a given game to another. Explicit modeling 

of goals and probabilities of their success offers another possibility: Individuals may make an 

effort to replace a norm by modifying the game, if they sometimes fail to achieve their goals 

under the current norm, or alternatively, if a better norm (i.e., a norm which enables to achieve 

more valuable set of goals) is available. To use the terminology of the previous chapter, the 

norms change if they are goal-unstable and/or payoff-unstable.34 As an example, consider the 

change of the medium of exchange from coins to banknotes. 

 

Example 10.1. Consider two players using coins in an exchange. However, coins include positive 

transportation costs, c > 0. At the same time, they can be stolen with the probability 0 < 1 – s < 1. 

Players want to carry out the desired transaction. If the coins are stolen, the transaction will fail. 

Each player values carrying out this transaction at v > 0.  Formally, we have N = {1, 2} A1 = A2 = 

                                                           
33 A more detailed survey of the literature can be found in Appendix II. 

34 The possibility of an intentional change of a norm via collective action is studied by Bowles (2006). Bowles uses 

the conventional approach with players motivated by their payoffs.  
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{Coins}, and G1 = G2 = {T, C}, where T refers to “carry out the transaction”, and C represents 

“avoid transportation costs”. There is a single goal-oriented strategy for each player, namely, S1 

= S2 = {(Coins; T, C)}. There are two states of the world: { , }R NR  with ( ) 1p R s   and 

( )p NR s , where R denotes “robbery occurs”, and NR refers to “robbery doesn’t occur”.  

Figures 10.1a and 10.1b show the probabilities of success for each state, while Figures 10.1c and 

10.2d show the overall probabilities and payoffs, respectively. 

 

 

  

 

 

a) Robbery occurs     b) Robbery doesn’t occur 

 

 

  

c) Overall probabilities of success    d) Payoffs 

Figure 10.1: Exchange with coins 

 

Since 0 < s < 1, the unique outcome of the game is not an OCP, with DOCP = s/2. Therefore, the 

outcome is goal-unstable. The players are motivated to look for ways how to decrease the 

probability of robbery and avoid transportation costs. A major innovation came with paper 

( ) 1p R s   

 (Cash; T, C) 

(Cash; T, C) (0, 0), (0, 0)  

( )p NR s  

 (Cash; T, C) 

(Cash; T, C) (1, 0), (1, 0) 

 (Cash; T, C) 

(Cash; T, C) (s, 0), (s, 0)  

 (Cash; T, C) 

(Cash; T, C) sv – c,  sv – c   
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notes.35 This innovation, which transformed the game in Example 10.1 into a new game, is 

described in the following example. 

 

Example 10.2. Consider two players choosing between using coins and notes in a transaction. 

For simplicity, it is assumed that they cannot choose both. The transaction only occurs if they 

choose to use the same means of exchange. Coins include positive transportation costs, c > 0, 

while notes do not. In contrast, notes have no value (because they are either counterfeit or 

inflated) with probability 0 < 1 – q < 1, while coins always have a value. Players want to carry 

out the desired transaction. If the notes have no value, the transaction will fail. Each player 

values carrying out this transaction at v > 0.  Formally, we have N = {1, 2} A1 = A2 = {Coins, 

Notes}, and G1 = G2 = {T, C}, where T refers to “carry out the transaction”, and C represents 

“avoid transportation costs”. There are now four states of the world: 

{ , , , }RNV RV NRNV NRV  with ( ) (1 )(1 )p RNV s q   , ( ) (1 )p RV s q  , 

( ) (1 )p NRNV s q  , and ( )p NRV sq , where R denotes “robbery occurs”, NR refers to 

“robbery doesn’t occur”, NV represents “notes have no value”, and V denotes “notes have a 

value”. Probabilities of success in each state are shown in Figures 10.2a-d, while Figures 10.2e 

and 10.2f show overall probabilities of success and payoffs, respectively. 

 

 

 

 

                                                           
35 For evidence that paper money in China was introduced to avoid transportation costs, see e.g., Bowman (2000), 

Ebrey, Walthall, and Palais (2006), and Gernet (1962). 
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a) Robbery occurs, notes have no value  b) Robbery occurs, notes have a value 

 

 

  

 

 

c) No robbery occurs, notes have no value           d) No robbery occurs, notes have a value 

 

 e) Overall probabilities of success    f) Payoffs 

Figure 10.2: Exchange with coins and notes 

 

One Nash equilibrium of the game is (Notes, T, C; Notes, T, C). This equilibrium is not an OCP, 

with DOCP = (q + 1)/2. Therefore, it is not goal-stable. If qv  ≥ sv – c, then the equilibrium 

(Notes, T, C; Notes, T, C) is payoff-stable. If sv ≥ c, then the outcome (Coins, T, C; Coins, T, C) 

is also a Nash equilibrium. Just like in Example 8.1, the equilibrium (Coins, T, C; Coins, T, C) is 

( ) (1 )(1 )p RNV s q    

 (Coins; T, C) (Notes; T, C) 

(Coins; T, C) (0, 0), (0, 0) (0, 1), (0, 0) 

(Notes; T, C) (0, 1), (0, 0) (0, 1), (0, 1)  

( ) (1 )p RV s q   

 (Coins; T, C) (Notes; T, C) 

(Coins; T, C) (0, 0), (0, 0) (0, 1), (0, 0) 

(Notes; T, C) (0, 1), (0, 0) (1, 1), (1, 1)  

( ) (1 )p NRNV s q   

 (Coins; T, C) (Notes; T, C) 

(Coins; T, C) (1, 0), (1, 0) (0, 1), (0, 0) 

(Notes; T, C) (0, 1), (0, 0) (0, 1), (0, 1)  

( )p NRV sq  

 (Coins; T, C) (Notes; T, C) 

(Coins; T, C) (1, 0), (1, 0) (0, 1), (0, 0) 

(Notes; T, C) (0, 1), (0, 0) (1, 1), (1, 1)  

 (Coins; T, C) (Notes; T, C) 

(Coins; T, C) (s, 0), (s, 0) (0, 1), (0, 0) 

(Notes; T, C) (0, 1), (0, 0) (q, 1), (q, 1)  

 (Coins; T, C) (Notes; T, C) 

(Coins; T, C) sv – c ,  sv – c – c, 0 

(Notes; T, C) 0, – c qv,  qv  
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not an OCP, with DOCP = s/2, and therefore, it is not goal-stable. If qv ≤ sv – c, then this 

equilibrium is payoff-stable. 

 

We are concerned with the transition from coins to paper money. One possibility is that sv < c 

and therefore, (Coins, T, C; Coins, T, C) is not a Nash equilibrium. In words, the high probability 

of robbery and high transportation costs exceed the value of transactions. Therefore, once notes 

are introduced, players have a dominant strategy to choose them as a medium of exchange. 

Alternatively, (Coins, T, C; Coins, T, C) is a Nash equilibrium, and players are facing an 

equilibrium selection problem. In this case, mechanisms analyzed by, for example, Young (1993, 

1996, 2001) and Bowles (2006) may apply.36 

 

Recall that the Nash equilibrium (Notes, T, C; Notes, T, C) is not goal-stable, because with a 

positive probability, banknotes may be valueless. Therefore, the model predicts players will look 

for ways how to increase the success of their plans. For example, they will attempt to increase 

the probability q. This fact explains subsequent efforts to decrease counterfeiting (by designing 

banknotes that are more difficult to counterfeit or by adopting legislation that would make 

counterfeiting less profitable)37 as well as the efforts to design institutions that would tame 

excessive inflations. They may also look for a better media of exchange. All these efforts will be 

                                                           
36 For various accounts of the introduction of paper money, see e.g., Graeber (2011), Ferguson (2008), and Shin 

(2009). 

37  See e.g., Langford (1989), who mentions later 18th-century legislation in England that aimed consumers’ 

protection against forged notes. See also McGowen (2002, 2005, 2007, 2011), Sharpe (1999), and Mockford (2014). 
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more intensive during periods of high inflation rates or frequent counterfeiting.38 At the same 

time, the Nash equilibrium (Notes, T, C; Notes, T, C) is an MCP. Therefore, in this simple setting, 

players are motivated to cooperate to increase q, as they would both benefit from the measures 

that would take them closer to the idealized state of OCP.39 

                                                           
38 For instance, Hayek’s (1976, 1990) proposal to redesign monetary institutions was written in response to high 

inflation rates in the early 1970s. See Komrska and Hudik (2016).  

39 A more realistic model would also include an issuing bank as a player. 
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11 Goal-oriented behavior and evolution 

 

So far, I have focused on modeling human behavior. Nevertheless, the notion of goal-oriented 

strategy can be used in biology to model the behavior of non-human players. Mayr (1988, 1992) 

points out that biology cannot dispense with the notion of goal-directedness, as many processes 

or behaviors in nature are characterized by this property. However, these processes or behaviors, 

which Mayr calls “teleonomic” (a term first introduced by Pittendrigh (1958)), owe their goal-

directedness to the operation of a program rather than deliberate goal-setting. Fortunately, in the 

model introduced in the previous chapters, it is irrelevant whether the goal-orientedness is 

programmed or whether purposeful behavior is involved. 

 

In spite of the importance of goal-orientedness in biology, only a few works incorporated this 

idea into formal models. One possible exception is Kalmus and Smith’s (1960), who introduce a 

model of the sex ratio evolution, according to which sex ratio maximizes the probability that 

when two individuals meet, they will have different sexes. Their model can be understood as an 

(implicit) coordination game with goal-oriented strategies. Maynard Smith (1978, 34) calls their 

model “eccentric” and favors an alternative (more conventional) model according to which the 

sex ratio is determined by a gene with natural selection maximizing the number of copies of that 

gene in future generations. In my interpretation, the positions of Kalmus and Smith (1960) and 

Maynard Smith (1978) are, to some extent, compatible. The former focuses on the problem of 

strategies compatibility while the latter emphasizes the mechanism by which the compatibility 

problem is solved. 
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11.1 Fitness maximization 

In biological applications of game theory, payoffs are interpreted as inclusive or individual 

fitness (or its component) of an organism (Smith 1982, Hofbauer and Sigmund 1998). The 

crucial aspect of these applications is that a strategy (phenotype) is considered to be a hereditary 

trait. This aspect links the frequencies of strategies in a population with the payoffs of a game: 

the higher payoffs, the more offspring, and hence the higher frequency of a particular strategy in 

the population. This, of course, is the standard mechanism of natural selection, which plays an 

important role in the evolution of many phenotypes. There are, however, a couple of problems 

when strategies in the games are behavioral traits. 

 

The first problem is that the link between genes and behavior is not clear; for instance, according 

to Dawkins (1989), genes influence behavior only in a statistical sense, and this influence can be 

modified, overridden, or reversed by other influences. In a similar vein, Buller (2005), points out 

that only proximate mechanisms underlying the tendency to exhibit certain behavior are affected 

genetically. If this is true, it would be indeed astonishing if fitness was the only thing that 

determined frequencies of strategies in a population:  to wit, the “other influences” sometimes 

change rather quickly, possibly several times during a life of an individual (Stephens and 

Clements 2000). Moreover, while paying the lip service to the genetic basis of behavior, the 

games usually focus on phenotypic changes only without actually keeping track of underlying 

genetics, which would be rather complicated business (Hammerstein 2000). 
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The second problem is that some strategies have minimal fitness consequences, and natural 

selection may not be powerful enough to tweak them (Johnstone 2000). Note that this would be 

an issue even if strategies were completely genetically determined. It may also be the case that 

an individual pursues a strategy yielding low payoff in one type of interaction while pursuing 

strategies yielding high payoffs in other types of interactions. Given that fitness is a unique 

measure for an individual, such an organism may cross-subsidize low payoffs in one type of 

interaction with high payoffs in other interactions. Strategies yielding low payoffs thus may not 

be eliminated.40 

 

Based on these arguments – and given the intuitive plausibility and empirical relevance of game-

theoretic models – there seems to be more to payoffs in evolutionary games than just fitness. 

Accordingly, natural selection may not be the only mechanism playing a role in the evolution of 

behavioral strategies; learning (social and individual) may be another one. Behavior is often 

flexible rather than hard-wired. For example, Alexander (1961) has shown that even crickets 

adjust their behavior to their past experience (Dawkins 1989). If learning is important, the 

challenge is how to relate learning to payoffs in evolutionary games. To account for various 

mechanisms of adaptation, Dennett (1995) distinguishes among four types of “creatures”: 

Darwinian, Skinnerian, Popperian, and Gregorian. Darwinian creatures reflect the adaptation 

through natural selection. These types of creatures are described by the conventional 

evolutionary game theory. All living organisms are Darwinian creatures because they are all 

subject to natural selection. Skinnerian creatures, a sub-set of Darwinian creatures, represent 

adaptation through trial-and-error learning. Several game-theoretic learning models account for 

                                                           
40 Related issue arises in the attributes-approach to behavior in economics (Lancaster 1966, Rosen 1974). 
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this behavior (Young 2004). Popperian creatures, a sub-set of Skinnerian creatures, are capable 

of preselection among possible behaviors before they engage in trial-and-error learning. In 

conventional game theory, Popperian creatures are able to (repeatedly) eliminate strictly 

dominated actions or Bayesian learning. Finally, Gregorian creatures, a sub-set of Popperian 

creatures, are those who make use of designed portions of the outer environment. That is, they 

are able to use tools (including mind-tools, such as language) to generate possible behaviors as 

well as to preselect these behaviors before they try them out. The purpose of this chapter is to 

construct a framework that would account for all four types of adaptation. 

  

The main difference between evolutionary game-theoretic models and conventional game-

theoretic models is that in the evolutionary models players maximize their fitness, while in the 

conventional models players maximize subjective utility.41 Therefore the challenge is to find the 

link between fitness and utility. I argue that the notion of goal-oriented behavior provides this 

link. In the following section, I apply the framework introduced in previous chapters to analyze 

the behavior of players who may or may not be humans. 

 

11.2 Example 

Example 11.1. Consider the following version of the Hawk-Dove game, in which two players, 

attacker (player 1) and defender (player 2), aim to obtain a pray. Let {1,2},N   

1 2 { , }A A H D  ,  and 1 2 { , }G G GP AC  , where H represents Hawk, D, stands for Dove, GP 

                                                           
41 For a discussion on the link between fitness maximization and utility maximization, see e.g., Robson (1996, 2001, 

2002), Samuelson and Swinkels (2006), Rayo and Becker (2007), Gintis (2007, 2009) and Sterelny (2012). 
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denotes “Get the prey”, and AC represents “Avoid conflict”. Goal-oriented strategies are the 

following: 1 2 {( ; , ),( ; , )}S S H GP AC D GP AC  . There are four states of nature, each 

occurring with the probability 0.25: {11,12,21,22} . For instance, 12 denotes that the player 1 

gets the prey if both choose H and the player 2 gets the prey if both choose D. Compatibility 

functions for each state are shown in Figures 11.1a-d, and overall probabilities of success and 

payoffs are shown in the Figures 11.1e and 11.1f respectively. 

 

 

 

 

 

a) 11         b) 12   

 

 

 

 

 

c) 21         d) 22   

 

 

 

 

 

(11) 0.25q    

 (H; GP, AC) (D; GP, AC) 

(H; GP, AC) (1, 0), (0, 0) (1, 1), (0, 1) 

(D; GP, AC) (0, 1), (1, 1) (1, 1), (0, 1) 

(12) 0.25q   

 (H; GP, AC) (D; GP, AC) 

(H; GP, AC) (1, 0), (0, 0) (1, 1), (0, 1) 

(D; GP, AC) (0, 1), (1, 1) (0, 1), (1, 1) 

(21) 0.25q   

 (H; GP, AC) (D; GP, AC) 

(H; GP, AC) (0, 0), (1, 0) (1, 1), (0, 1) 

(D; GP, AC) (0, 1), (1, 1) (1, 1), (0, 1) 

(22) 0.25q   

 (H; GP, AC) (D; GP, AC) 

(H; GP, AC) (0, 0), (1, 0) (1, 1), (0, 1) 

(D; GP, AC) (0, 1), (1, 1) (0, 1), (1, 1) 
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e) Probabilities of success      f) Payoffs 

Figure 11.1: Hawk-Dove game with goal-oriented strategies 

 

The game has two Nash equilibria, namely, (D; GP, AC; H; GP, AC) and (H; GP, AC; D; GP, 

AC).  That is, either the attacker is hawkish, and the defender is dovish, or vice versa. In these 

equilibria, one player’s plan is perfectly successful, while the other player’s plan is not. The 

game has no OCP and no MCP. 

 

First, consider first Darwinian creatures. Presumably, for these creatures, the goals “get pray” 

and “avoid conflict”, as well as their relative weighs, are hard-wired. They also have a hard-

wired strategy to achieve these desires in a particular case, i.e., either (H; GP, AC) or (D; GP, 

AC). In this case, one of the Nash equilibria of the game is achieved through natural selection. 

Next, consider Skinnerian creatures. They also have the same hard-wired goals, but they have 

flexibility in choosing the means, i.e., either H or D, to achieve these goals. They adjust their 

behavior based on whether their goals were achieved or not in the past. That is, probabilities of 

success are the performance criterion in their trial-and-error learning. Finally, consider Popperian 

and Gregorian creatures. Their goals are still hard-wired, but their relative weights are flexible. 

That is, these creatures are able to set relative importance to various goals. Just like Skinnerian 

creatures, Popperian and Gregorian creatures can choose their means. However, unlike 

 (H; GP, AC) (D; GP, AC) 

(H; GP, AC) (0.5, 0), (0.5, 0) (1, 1), (0, 1) 

(D; GP, AC) (0, 1), (1, 1) (0.5, 1), (0.5, 1) 

 (H; GP, AC) (D; GP, AC) 

(H; GP, AC) 0, 0 3, 1 

(D; GP, AC) 1, 3 2, 2 
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Skinnerian creatures, they can employ more sophisticated methods of learning. In particular, they 

may use information about strategies of other individuals, and they may even attempt to modify 

the game in ways outlined in Chapter 9. 

 

11.3 Goal-Directedness and Unification of Behavioral Sciences 

There have been attempts to construct a unified theory of behavior, integrating insights from 

various behavioral sciences. For some authors, maximizing behavior has a place in this unified 

theory (Gintis 2007, 2009), while for others, it does not. For example, Vanberg (2002, 2004) 

argues that the principle of payoff maximization should be replaced with Mayr’s (1988, 1992) 

idea of goal-directed program-based behavior (see also Conte and Castelfranchi 1995). 

 

This chapter shows that these two approaches to behavior are, in fact, compatible. The concept of 

goal-oriented strategy does not necessarily presuppose that individuals choose their goals 

consciously. Nothing prevents one from interpreting purposive strategies as goal-directed 

programs. The preference relation defined on the set of lotteries over player’s goals merely 

reflects the unequal importance of various goals to the player (who may be a living or a non-

living system) and is open to various interpretations. It may reflect player’s subjective 

preferences (if it is a human being), contributions of player’s goals to its fitness (if it is an 

organism), preferences of the engineer who designed the player (if it is a machine), or any other 

criterion. If a player has more than one goal, a model of behavior needs to incorporate some sort 

of preference relation, which would describe how agents resolve trade-offs between competing 

goals. Therefore, the concept of goal-orientedness usually (i.e., if players have more than one 

goal) needs to be complemented with the principle of maximizing behavior. But the reverse is 
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also true: the maximization principle sometimes requires the concept of goal-directedness, in 

order to analyze processes of learning. 

 

The conventional game-theoretic assumptions allow only for one method of adjusting strategies 

to the environment at a time: either natural selection (if payoffs are interpreted as players’ 

fitness) or learning and reasoning (if payoffs represent subjective preferences). The distinction 

between means (actions) and goals enables analysis of various adjustment processes of 

adaptation within one framework. For instance, it can be assumed that natural selection operates 

on the set of goals (i.e., it determines the payoffs) and learning and reasoning operates on the 

level of adjustment of actions to given goals (i.e., it is concerned whether a particular strategy 

was successful in achieving a given goal or not) (El Mouden et al. 2012). The model of games 

with goal-oriented strategies can thus provide a link between social and biological sciences. 
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12 Goals and classification of games 

 

Since the birth of game-theory, scholars have attempted to classify games according to various 

criteria and for various purposes (e.g., Guyer and Hamburger 1968; Rapoport, Guyer, and 

Gordon 1967; Kilgour and Fraser 1988). One such classification, introduced by Schelling (1980), 

distinguishes among pure conflict (or zero-sum), pure common-interest (or pure-coordination), 

and mixed-motive games. The definition of these categories is based on relationships between 

payoffs of various players: If players’ payoffs are perfectly positively correlated, then the game 

is of pure common-interest; if the payoffs are perfectly negatively correlated, then the game is of 

pure conflict game. Mixed-motive games are those in which players’ payoffs are imperfectly 

correlated. The following example illustrates this classification. 

 

Example 12.1. Consider the three examples of games in Figure 12.1. The game in Figure 12.1a is 

a pure-common interest game (Spearman rank correlation coefficient is equal to 1)42, the game in 

Figure 12.1b is a mixed-motive game (Spearman rank correlation coefficient is equal to 0.6), and 

the game in Figure 12.1c is a pure-conflict game (Spearman rank correlation coefficient is equal 

to –1). 

 

 

 

                                                           
42 I use the rank correlation coefficient because I assume that payoffs are ordinal. 
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a) A pure common-interest game b) A mixed-motive game c) A pure-conflict game 

Figure 12.1: Pure common-interest, mixed-motive, and pure conflict games 

 

Although this payoff-based definition seems plausible and useful for many purposes, it may be 

inadequate, as shown by the following two examples. 

 

Example 12.2. Consider two players, John and Blonde.43 John wants to meet with Blonde in a bar, 

but he also wants to meet with another person, Brunette. Blonde wants to meet with John, but she 

also wants to prevent John from meeting with Brunette. Both John and Blonde choose between 

two bars, X and Y. Blonde and Brunette are never in the same bar, and so John always meets with 

one or the other. Assume that John prefers meeting with Blonde to meeting with Brunette. Then 

the game is a pure common-interest game such as the one represented in Figure 12.2a.  

 

Example 12.3. Consider Example 12.2 but assume that John prefers meeting with Brunette to 

meeting with Blonde. Then the game is a pure conflict game such as the one represented in 

Figure 12.2b. 

                                                           
43 This example is inspired by the movie “A Beautiful Mind”. 

 X Y 

X 2, 2 0, 0 

Y 0, 0 1, 1 

 X' Y' 

X' 2, 3 0, 1 

Y' 1, 0 3, 2 

 X'' Y'' 

X'' 2, 0 0, 2 

Y'' 1, 1 0, 2 
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a) A pure common-interest dating game  b) A pure-conflict dating game 

Figure 12.2: A dating game 

 

Examples 12.2 and 12.3 show that the game where players have the same goals but put different 

weight to these goals, sometimes correspond to a pure-common interest game and sometimes to 

a pure-conflict game. Nevertheless, the games in Examples 12.2 and 12.3 are intuitively best 

characterized as mixed-motive games. On the one hand, these games involve a common interest: 

John and Blonde want to meet with each other. On the other hand, the games also involve a 

conflict: John wants to meet with Brunette, but Blonde wants to prevent this meeting. 

 

Examples 12.2 and 12.3 show that two games with the same underlying motivation can 

correspond to different payoff structures. The following example shows that one payoff structure 

can correspond to different underlying motivations. 

 

Example 12.4. Consider a modification of the dating game in Example 12.2, in which John wants 

to avoid Blonde while everything else remains the same. This game corresponds to a pure-

conflict game shown in Figure 12.2b. Contrast this game with the game in Example 12.3, which 

 X Y 

X 1, 1 0, 0 

Y 0, 0 1, 1 

 X Y 

X 0, 1 0, 1 

Y 1, 0 0, 1 
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also corresponds to a pure-conflict game but in which John prefers meeting with Brunette to 

meeting with Blonde. 

 

Although the games in Examples 12.3 and 12.4 are represented with the same payoffs, there is an 

important difference between them. In the game in Example 12.3, Blonde can turn the pure-

conflict game into a pure common-interest game by disposing of Brunette. Note that this fact 

cannot be inferred from the standard representation of the game, which does not provide 

information about players’ goals. In contrast, Blonde, in Example 12.4, is unable to turn the 

pure-conflict game into one of pure common interest: if she disposes of Brunette, the game 

continues to be a pure conflict game. This difference between the games in Examples 12.3 and 

12.4 again cannot be inferred from the standard representation. 

 

The Examples 12.2-12.4 illustrate the problem with the payoff-based classification of games: 

actual complex motives of players are aggregated into a single (artificially constructed) motive – 

payoff maximization. As a result, a game involving elements of both conflict and common 

interest may sometimes appear as a game of pure conflict and at other times, as a game of pure 

common interest, depending on which motive prevails. Hence, for more adequate classification 

of games, it seems necessary to disaggregate players’ payoffs and uncover their various motives. 

 

Inspired by the Examples 12.2-12.4, I propose a new definition of pure conflict, pure common-

interest, and mixed-motive games, which involves the standard definition as a special case. At 

the same time, the new definition is complementary to the conventional one because it ignores 
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the relative importance of various goals that players consider. This new definition is based on the 

mutual compatibility of goals across players introduced in previous chapters.  

 

12.1 Definitions 

I formally define a G-pure-common-interest game, G-pure-conflict game, and a G-mixed-motive 

game as follows. G denotes that this classification is goal-based rather than payoff-based. The P-

pure-common-interest game, P-pure-conflict game, and a P-mixed-motive game refers to 

conventional payoff-based classification. 

 

Definition 12.1. Let   be a game with goal-oriented strategies, which allows for multiple goals 

and random events. For each i N  define the function :iz S 0 that assigns to each 

outcome ( , )s   a number of successful goals of player i in the outcome ( , )s  . 

a)  is a G-pure-common-interest game, if, for every pair of player ,i j N , we have 

( , ) 1i jz z  , where ρ is the Pearson correlation coefficient. 

b) Let be such that 2N  ;   is a G-pure-conflict game, for every pair of player ,i j N , we 

have ( , ) 1i jz z  . 

c)   is a G-mixed-motive game, if it is neither a pure common-interest nor a pure-conflict game. 

 

A goal-based perspective focuses on the number of successful goals while ignoring their relative 

importance. In reality, achieving more goals is not always considered to be better from the 

perspective of individuals. For instance, an individual may prefer to achieve one valuable goal to 

several less valuable goals. Therefore, goal-based considerations have to be supplemented with 

payoff considerations, as in the conventional classification of games. The combination of goal-
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perspective and payoff-perspective then provides a more complete understanding of interests in a 

strategic situation. 

 

Definition 12.2. Let   be a game with goal-oriented strategies, which allows for multiple goals 

and random events. 

a)   is a P-pure-common-interest game, if for every pair of players ,i j N , with i j , we have 

( , ) 1s i jr u u  , where sr  is the Spearman’s rank correlation coefficient and ui and uj are payoff 

functions representing player i’s and player j’s preferences respectively. 

b) Let be such that 2N  ;   is a P-pure-conflict game, if ( , ) 1s i jr u u  . 

c)   is a P-mixed-motive game, if it is neither P-pure-common-interest nor P-pure-conflict 

game. 

 

Definitions 12.1 and 12.2 are illustrated by the following examples. 

 

Example 12.5. Consider Examples 12.2 and 12.3. We now formalize them as games with goal-

oriented strategies. Let N = {John, Blonde}, AJ = AB = {X, Y},  GJ = {MBL, MBR},  GB = {MJ, 

PJBR}, where MBL denotes “Meet with Blonde”, MBR represents “Meet with Brunette”, MJ 

denotes “Meet with John”, and PJBR represents “Prevent John from Meeting with Brunette”.  

Success functions are shown in Figure 12.3a. By strong monotonicity assumption, we have 

(1,1) (0,0)B . If (1,0) (0,1)J  then the preferences can be represented by payoffs in Figure 

12.2a. This case corresponds to the Example 12.2. This game is G-mixed-motive ( 1 2( , ) 0z z  ) 

and P-pure-common-interest ( 1 2( , ) 1sr u u  ). If (0,1) (1,0)J , then the preferences can be 
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represented by payoffs in Figure 1b. This case corresponds to the Example 12.3. This game is 

again a G-mixed-motive game ( 1 2( , ) 0z z  ), the structure of goals is the same as before) and P-

pure-conflict game ( 1 2( , ) 1sr u u   ). 

 

Example 12.6.  Consider Example 12.4. Let { , },N John Blonde  { , },J BA A X Y   

{ ,  },JG ABR MBR  { , },BG MJ PJBR  where ABR denotes “Avoid Meeting Blonde”.  Success 

functions are shown in Figure 12.3b. By strong monotonicity assumption we have (1,1) (0,0)B  

and (1,1) (0,0)J .  These preferences can be represented by payoffs in Figure 12.2b. The game 

is a G-pure-conflict game ( 1 2( , ) 1z z  ) as well as a P-pure-conflict game ( 1 2( , ) 1sr u u   ). 

 

 

 

 

a) John wants to meet Blonde    b) John wants to avoid Blonde 

Figure 12.3: Two versions of a dating game as strategic games with goals 

 

In the following section, I establish some relationships between goal-based and preference-based 

classifications. 

 

12.3 Relationships between goal-based and preference-based classifications 

Under what conditions does G-pure-common-interest (G-pure-conflict) correspond to P-pure 

common-interest (P-pure-conflict)? The following two theorems address this question. 

 (X; MJ, PJBR) (Y; MJ, PJBR) 

(X; BL, BR) (1, 0), (1, 1) (0, 1), (0, 0) 

(Y; BL, BR) (0, 1), (0, 0) (1, 0), (1, 1) 

 (X; MJ, PJBR) (X; MJ, PJBR) 

(X; ABL, BR) (0, 0), (1, 1) (1, 1), (0, 0) 

(Y; ABL, BR) (1, 1), (0, 0) (0, 0), (1, 1) 
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Theorem 12.1. Let   be a game with goal-oriented strategies such that 1iG   for all i N . If 

  is a G-pure-common-interest (G-pure-conflict) game, then it is also P-pure-common-interest 

(P-pure-conflict) game. 

 

Proof. Assume first that  is G-pure-common-interest. For each outcome ( , ),s   we have 

( , ) ( , )i jr s r s   for each pair of players ,i j N . Therefore, we also have ( ) ( )i jp s p s  for 

each pair of players ,i j N . By the strong monotonicity assumption, we can represent payoff of 

each player i with the overall probability of success, i.e., ( ) ( )i iu s p s . Therefore, we have 

1 2( , ) 1sr u u   and so   is a P-pure-common-interest game. Assume now that   G-pure-conflict. 

Therefore, we have 2N  . For each outcome ( , )s  , we have 1 2( , ) 1 ( , )r s r s   . Therefore, 

we also have 1 2( ) 1 ( )p s p s  . By the strong monotonicity assumption, we can represent the 

payoff of each player i with the overall probability of success, i.e., ( ) ( )i iu s p s . Therefore, we 

have 1 2( , ) 1sr u u    and so   is a P-pure-conflict game. 

 

I have argued that the problem with the payoff classification is that payoffs do not provide 

information about players’ underlying goals. Hence, if each player has only one goal in mind, 

then no information is lost if these goals are not explicitly specified. In this case, the payoff-

based classification of games as pure common-interest, pure conflict, and mixed-motive is the 

same as goal-based classification. The payoff-based and goal-based classification is equivalent 

also when players have multiple goals, and the probabilities of success of each player’s goals are 

perfectly correlated. 



101 

 

 

Theorem 12.2. Let   be a game with goal-oriented strategies. 

a) If   is a G-pure-common-interest game and ( , ) (1,...,1)ir s    or ( , ) (0,...,0)ir s    for each 

player i, then it is also P-pure-common-interest game. 

b) If   is a G-pure-conflict game and and ( , ) (1,...,1)ir s    or ( , ) (0,...,0)ir s    for each player 

i, then it is also P-pure-conflict game. 

 

Proof. Assume first that  is G-pure-common-interest. For each outcome ( , )s  , we have 

( , ) (1,...,1) ( , ) (1,...,1)i jr s r s     and ( , ) (0,...,0) ( , ) (0,...,0)i jr s r s    for each pair of 

players ,i j N . Therefore, we also have ( | ) ( | ) ( | ) ( | )i i i i j j j jp g s p g s p g s p g s     for each 

,ig ,jg  s, and s', and each pair of players , .i j N  It follows that 

( )ip s ≿ ( ) ( )i i jp s p s  ≿ ( )j jp s  and therefore, ( ) ( ) ( ) ( )i i j ju s u s u s u s    . This means that  

1 2( , ) 1sr u u   and so   is a P-pure-common-interest game. Assume now that   is G-pure-

conflict. Therefore, we have 2.N   For each outcome ( , ),s   we have 

( , ) (0,...,0) ( , ) (1,...,1)i jr s r s     for each outcome ( , )s   and each pair of players ,i j N . 

Therefore, we also have ( | ) ( | ) ( | ) ( | )i i i i j j j jp g s p g s p g s p g s     for each ig , jg , s, and s', 

and each  pair of players ,i j N . It follows that ( )ip s ≿ ( ) ( )i i jp s p s  ≿ ( )j jp s  and therefore, 

( ) ( ) ( ) ( )i i j ju s u s u s u s    . This means that 1 2( , ) 1sr u u    and so   is a P-pure-conflict 

game. 
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Theorem 12.2 generalizes Theorem 12.1 to cases when 1iG   for all i N . Example 12.6 

illustrates Theorem 12.2. In this game, each player has more than one goal. For each player, one 

goal is achieved whenever the other goal is achieved. Since the game is G-pure-conflict, it is also 

P-pure-conflict. 

 

12.4 Discussion 

The way how players’ goals are defined requires some attention. For instance, John of the dating 

game considered in Example 12.2, may want to meet with both Blonde and Brunette, but perhaps 

he does not want to meet with both of them at the same time. Therefore, contrary to the strong 

monotonicity assumption, we may have (1,0) (1,1).J  Furthermore, we may even have 

(0,0) (1,1).J  If such an outcome is feasible, then John’s goals can be more conveniently 

defined as “Meet with Blonde alone” and “Meet with Brunette alone”. The general point is that 

the specification of goals has to be sufficiently detailed so that all characteristics relevant to 

players’ evaluations are included, and the strong monotonicity assumption is met. 

 

12.5 A practical example 

To illustrate the practical relevance of the goal-based classification, consider the following 

example. 

 

Example 12.7. Two countries, A and B, are negotiating a treaty about import quotas and tariffs. If 

the treaty is signed, then tariffs will be reduced, and import quotas will be abolished. If the treaty 

is not signed, then the tariffs will be kept at the current level, and the quotas will not be abolished. 

Each country chooses between signing the treaty, S, and not signing the treaty, NS. The goals of 
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the two countries are defined as follows: { , }AG RT AQ  and { , }BG KT AQ , where RT denotes 

“reduce tariffs”, KT refers to “keep tariffs”, and AQ is “abolish quotas”. Assume the following 

preferences: (1,1) (0,0)A  and (1,0) (0,1)B . That is, for country B, it is more important to keep 

the tariffs than to abolish quotas. The probabilities of success are shown in Figure 12.4a, and the 

payoffs are represented in Figure 12.4b.  

 

 

 

 

a) Probabilities of success     b) Payoffs 

Figure 12.4: An international trade game 

 

Inspecting the payoffs in Figure 12.4b reveals that the game is P-pure-conflict. In contrast, 

Figure 12.4a shows that the game is G-mixed-motive. Therefore, there is some common interest 

(namely to abolish the quotas), and some conflict (the tariff issue). If the two countries consider 

the two issues in a bundle, they would not be able to come to an agreement. If they discussed the 

issues one by one, they would be able to agree on abolishing the quotas.  

 

In reality, players (whether countries, political parties or firms) usually have multiple goals, and 

some of them are possibly mutually compatible. Therefore, they can achieve cooperation if they 

focus on those compatible goals. In contrast, a conflict could be initiated if the conflicting goals 

of players are emphasized. As an example, consider the political development in Turkey in the 

2000s (e.g., Tezcür 2010, Ayan Musil and Dikici Bilgin 2016). In 2002, The Justice and 

 (S; KT, AQ) (N; KT, AQ) 

(S; RT, AQ) (1, 1), (0, 1) (0, 0), (1, 0) 

(N; RT, AQ) (0, 0), (1, 0) (0, 0), (1, 0) 

 (S; KT, AQ) (N; KT, AQ) 

(S; RT, AQ) 1, 0 0, 1 

(N; RT, AQ) 0, 1 0, 1 
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Development Party (AKP), led by Recep Tayyip Erdoğan, was able to attract supporters all over 

the political spectrum. Arguably, this was because the party emphasized goals, such as the 

expansion of ethnic rights, religious freedoms, economic liberalism, and anti-military attitudes, 

that were shared by individuals with diverse political views. In particular, AKP represented an 

opposition to the repressive state. Later, when the issue of the repressive state ceased to be 

salient, differences among the original supporters of AKP came to the forefront, and AKP lost 

the support of some of these voters. 
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13 Compatibility of plans and cooperative behavior 

 

It has been observed that many people cooperate in a one-shot Prisoner’s Dilemma both in 

laboratory experiments (Roth 1988; Colman 1995; Sally 1995; Komorita and Parks 1995; 

Cooper et al. 1996) and outside the laboratory (List 2006). What explains this behavior? 

According to one explanation, individuals care about other things besides material payoffs, such 

as some notion of fairness (Rabin 1993; Fehr and Schmidt 1999; Bolton and Ockenfels 2000; 

Bicchieri 2005; Falk and Fischbacher 2006). According to other explanations, players employ 

various types of (potentially erroneous) reasoning which differ from the conventional rationality, 

such as team reasoning (Bacharach 2006; Sugden 2000, 2003), evidential reasoning (Acevedo 

and Krueger 2005; Krueger and Acevedo 2007; Krueger, DiDonato, and Freestone 2012), or 

sample bias (Chater, Vlaev, and Grinberg 2008).  

 

The framework introduced in previous chapters offers another explanation of the cooperative 

behavior. According to this explanation, individuals use goal-based reasoning and identify the 

cooperative outcome as an OCP, i.e., as an outcome where their goal-oriented strategies are 

compatible.44 At the same time, they, to some extent, ignore the relative value of various goals. 

In a way, these types of players think about the Prisoner’s Dilemma (incorrectly, at least from the 

                                                           
44 This explanation of cooperation in the Prisoner’s Dilemma may resemble Howard’s (1966a; 1966b) “meta-game” 

approach. Howard introduces strategies conditional on the choices of other players. This, however, involves several 

difficulties; above all, it seems inconsistent with the notion of a simultaneous-move game. For criticism of Howard’s 

approach, see e.g., Harris (1969; 1970) and Shubik (1970). 
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point of view of the Nash equilibrium theory) as an equilibrium selection problem. From the 

point of view of the goal-based approach, they face a dilemma between the Nash equilibrium and 

the OCP. I have designed an experiment that tests whether goal-based reasoning can account for 

cooperative behavior in a one-shot Prisoner’s Dilemma. 

 

13.1 Theory 

First, consider the conventional Prisoner’s Dilemma. 

 

Example 13.1. Consider a Prisoner’s Dilemma with material payoffs (“points”). Specifically, 

assume that if both players cooperate (C), each receives 40 points, while if both defect (D), each 

receives 30. If only one player defects, he receives 60, while the player who chooses to cooperate 

receives nothing. Figure 13.1 shows the standard representation of this game. 

 

 

 

 

Figure 13.1: Prisoner’s Dilemma with material payoffs 

 

Provided that players maximize material payoffs, the conventional theory predicts each player 

chooses the dominant strategy, that is, D. Let us now model this Prisoner’s Dilemma as a game 

with goal-oriented strategies. 

 

 C D 

C 40, 40 0, 60 

D 60, 0 30, 30 
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Example 13.2. The set of goals for each player i is Gi = {60, 40, 30} and the goal-oriented 

strategies are Si = {(C, 40), (D, 60), (D, 30)}. ). Figure 13.2a shows the probabilities of success 

for each player. For instance, (1, 0, 0) means that the player succeeds in getting 60 and fails in 

getting 40, and 30. Figure 13.2b shows players’ payoffs. 

 

 

 

 

 

a) Probabilities of success 

 

 

 

 

 

b) Payoffs 

Figure 13.2: Prisoner’s Dilemma with goal-oriented strategies 

 

There are four Nash equilibria (D, 60; D, 60), (D, 60; D, 30), (D, 30; D, 60), and (D, 30; D, 30); 

the last one is also an OCP. There is another OCP that is not a Nash equilibrium, namely (C, 40; 

C, 40).  

 

 (C, 40) (D, 60) (D, 30) 

(C, 40) (0, 1, 0), (0, 1, 0) (0, 0, 0), (1, 0, 0) (0, 0, 0), (1, 0, 0) 

(D, 60) (1, 0, 0), (0, 0, 0) (0, 0, 1), (0, 0, 1) (0, 0, 1), (0, 0, 1) 

(D, 30) (1, 0, 0), (0, 0, 0) (0, 0, 1), (0, 0, 1) (0, 0, 1), (0, 0, 1) 

 (C, 40) (D, 60) (D, 30) 

(C, 40) 2, 2 0, 3 0, 3 

(D, 60) 3, 0 1, 1 1, 1 

(D, 30) 3, 0 1, 1 1, 1 
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A player may reason as follows: “I may try to achieve the outcome (C, 40; C, 40) where my 

strategy is compatible with the other player’s strategy. Hence it’s potentially sustainable. 

However, each of us is tempted to aim at a more valuable goal, namely 60. But our plans to 

achieve 60 are mutually incompatible and, therefore, potentially unsustainable.” Hence, there is a 

dilemma between the OCP, (C, 40; C, 40), and the Nash equilibrium, (D, 30; D, 30). The 

reasoning may then continue as follows. “The only stable outcome in the game is when we both 

choose D, in which case each of us gets 30.” I should, therefore, choose D and aim at obtaining 

30. Nonetheless, even though (D, 30; D, 30) is both Hayek and Nash equilibrium, it is Pareto-

dominated by the Hayek equilibrium (C, 40; C, 40). Hence, there is now another dilemma 

between an OCP, which is a Nash equilibrium, (D, 30; D, 30), and an OCP, which Pareto 

dominates the first OCP. While this second dilemma is obvious already from the conventional 

analysis in terms of players’ payoffs, the first dilemma between OCP and Nash equilibrium can 

be only analyzed when players’ goals are explicitly modeled. The question addressed in this 

chapter is whether the reasoning in terms of compatibility of plans provides an additional 

account of cooperative behavior. 

 

The problem is that in the Prisoner’s Dilemma in Examples 13.1 and 13.2, it is impossible to 

determine whether some players cooperate because they use goal-based reasoning or because of 

other reasons. Therefore, the Prisoner’s Dilemma has to be modified to isolate goal-based 

reasoning. I consider now the following three modifications. 

 

Example 13.3. For each player i, we have Gi = {60, 40} and Si = {(C, 40), (D, 60)}. There are 

two states of the world that occurs with equal probability: either player 1 gets 60 ( 1  ), or 



109 

 

player 2 gets 60 ( 2  ) if the outcome is (D, 60; D, 60). Formally, we have {1,2} , with 

(1) (2) 0.5q q  . Figures 13.3a and 13.3b show probabilities of success in each state. Figures 

13.3c and 13.3d show the overall probabilities of success and payoffs, respectively. I refer to this 

version of the Prisoner’s Dilemma as version I. 

 

 

 

  

 

a) Player 1 gets 60                b) Player 2 gets 60 

 

 

 

 

 c) Overall probabilities of success    d) Payoffs 

Figure 13.3: Prisoner’s Dilemma – version I 

 

The game has only one Nash equilibrium, namely, (D, 60; D, 60). This equilibrium is not an 

OCP, because only one of the players obtains 60. The game is not an MCP either, because there 

is no state of the world in which both players simultaneously obtain 60. There is one OCP, 

namely (C, 40; C, 40). This outcome is also an MCP. Note that if players are risk-neutral, the 

game in Example 13.3 is payoff-equivalent to the games in Examples 13.1 and 13.2. 

 

(1) 0.5p   

 (C, 40) (D, 60) 

(C, 40) (1, 0), (1, 0) (0, 0), (0, 1) 

(D, 60) (0, 1), (0, 0) (0, 1), (0, 0)  

(2) 0.5p   

 (C, 40) (D, 60) 

(C, 40) (1, 0), (1, 0) (0, 0), (0, 1) 

(D, 60) (0, 1), (0, 0) (0, 0), (0, 1)  

 (C, 40) (D, 60) 

(C, 40) (1, 0), (1, 0) (0, 0), (0, 1) 

(D, 60) (0, 1), (0, 0) (0, 0.5), (0, 0.5)  

 (C, 40) (D, 60) 

(C, 40) 40,  40 0, 60 

(D, 60) 60, 0 30, 30 
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Example 13.4. For each player i, we have Gi = {80, 60} and Si = {(C, 80), (D, 60)}. There are 

four states of the world that occurs with equal probability, that is, we have {11,12,21,22} , 

with (11) (12) (21) (22) 0.25q q q q    . For example in the state 12, player 1 obtains 80 if the 

outcome is (C, 80; C, 80), and player 2 obtains 60 if the outcome is (D, 60; D, 60). Figures 

13.4a-d shows probabilities of success in each state. Figures 13.4e and 13.4f show the overall 

probabilities of success and payoffs, respectively. I refer to this version of the Prisoner’s 

Dilemma as version II. 

 

 

 

  

 

a) Player 1 gets both 80 and 60       b) Player 1 gets 80, player 2 gets 60 

 

 

  

 

 

c) Player 2 gets 80, player 1 gets 60    d) Player 2 gets both 80 and 60 

 

 

 

 

(11) 0.25p   

 (C, 80) (D, 60) 

(C, 80) (1, 0), (0, 0) (0, 0), (0, 1) 

(D, 60) (0, 1), (0, 0) (0, 1), (0, 0)  

(12) 0.25p   

 (C, 80) (D, 60) 

(C, 80) (1, 0), (0, 0) (0, 0), (0, 1) 

(D, 60) (0, 1), (0, 0) (0, 0), (0, 1)  

(21) 0.25p   

 (C, 80) (D, 60) 

(C, 80) (0, 0), (1, 0) (0, 0), (0, 1) 

(D, 60) (0, 1), (0, 0) (0, 1), (0, 0)  

(22) 0.25p   

 (C, 80) (D, 60) 

(C, 80) (0, 0), (1, 0) (0, 0), (0, 1) 

(D, 60) (0, 1), (0, 0) (0, 0), (0, 1)  
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 c) Overall probabilities of success    d) Payoffs 

Figure 13.4: Prisoner’s Dilemma – version II 

 

Just like in Example 13.3, this game has only one Nash equilibrium, namely, (D, 60; D, 60). This 

equilibrium is not an OCP, because only one of the players obtains 60. The outcome is not an 

MCP either, because there is no state of the world in which both players simultaneously obtain 

60. Unlike the game in Example 11.3, the outcome (C, 40; C, 40) is neither MCP nor OCP. Yet, 

if players are risk-neutral, the games in the Examples 13.1-13.4 are equivalent. 

 

Example 13.5. For each player i, we have Gi = {80, 60} and Si = {(C, 80), (D, 60)}. There are 

four states of the world that occurs with equal probability: { 1, 2, 1, 2}b b n n  with 

( 1) ( 2) ( 1) ( 2) 0.25q b q b q b q b    . For example, in the state b2, both players obtain 80 if the 

outcome is (C, 80; C, 80), and player 2 obtains 60 if the outcome is (D, 60; D, 60). The 

difference from Example 11.4 is that in the outcome (C, 80; C, 80), either each gets 80 or 

nothing. Figures 13.5a-d shows probabilities of success in each state. Figures 13.5e and 13.5f 

show the overall probabilities of success and payoffs, respectively. I refer to this version of the 

Prisoner’s Dilemma as version III. 

 

 

 (C, 80) (D, 60) 

(C, 80) (0.5, 0), (0.5, 0) (0, 0), (0, 1) 

(D, 60) (0, 1), (0, 0) (0, 0.5), (0, 0.5)  

 (C, 80) (D, 60) 

(C, 80) 40,  40 0, 60 

(D, 60) 60, 0 30, 30 
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a) Both players get 80, Player 1 gets 60               b) Both players get 80, player 2 gets 60 

 

 

  

 

 

c) Players don’t get 80, player 1 gets 60  d) Players don’t get 80, player 2 gets 60 

 

 

 c) Overall probabilities of success    d) Payoffs 

Figure 13.5: Prisoner’s Dilemma – version III 

 

This game has again only one Nash equilibrium, namely, (D, 60; D, 60), which is neither MCP 

nor OCP. As in Example 13.4, the outcome (C, 40; C, 40) is not an OCP. However, unlike in 

Example 13.4, it is an MCP. Again, if players are risk-neutral, the games in Example 13.1-13.5 

are equivalent. 

( 1) 0.25p b   

 (C, 80) (D, 60) 

(C, 80) (1, 0), (1, 0) (0, 0), (0, 1) 

(D, 60) (0, 1), (0, 0) (0, 1), (0, 0)  

( 2) 0.25p b   

 (C, 80) (D, 60) 

(C, 80) (1, 0), (1, 0) (0, 0), (0, 1) 

(D, 60) (0, 1), (0, 0) (0, 0), (0, 1)  

( 1) 0.25p b   

 (C, 80) (D, 60) 

(C, 80) (0, 0), (0, 0) (0, 0), (0, 1) 

(D, 60) (0, 1), (0, 0) (0, 1), (0, 0)  

( 2) 0.25p b   

 (C, 80) (D, 60) 

(C, 80) (0, 0), (0, 0) (0, 0), (0, 1) 

(D, 60) (0, 1), (0, 0) (0, 0), (0, 1)  

 (C, 80) (D, 60) 

(C, 80) (0.5, 0), (0.5, 0) (0, 0), (0, 1) 

(D, 60) (0, 1), (0, 0) (0, 0.5), (0, 0.5)  

 (C, 80) (D, 60) 

(C, 80) 40, 40 0, 60 

(D, 60) 60, 0 30, 30 
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In summary, the conventional approach, which takes payoffs as exogenous, cannot distinguish 

among the three versions of the Prisoner’s Dilemma considered in Examples 13.3-13.5. The 

goal-based approach can distinguish between these three games and gives different predictions 

about behavior in these three versions of the Prisoner’s Dilemma. These predictions are 

discussed in the following section. 

 

13.2 Experimental design and hypotheses 

The model with goal-oriented strategies generates the following testable hypotheses: 

 

H1: Players choose C more frequently in version I than in version II.  

The reason is that in version I of the Prisoner’s Dilemma, the cooperative outcome is both OCP 

and MCP, while in version II, the cooperative outcome is neither OCP nor MCP. 

 

H2: Players choose C more frequently in version I than in version III. 

In both, version I and version III of the Prisoner’s Dilemma, the cooperative outcome is an MCP, 

but only in version I it is an OCP. 

 

We can also use versions II and III of the Prisoner’s Dilemma to test whether players care 

whether their plans fail due to the incompatibility with other player’s plans or due to 

incompatibility with “nature”. Neither in version II nor in version III is the cooperative outcome 

an OCP. However, in version III, the cooperative outcome is an MCP. In other words, in version 

III, players’ plans fail due to incompatibility with the “nature”, while in version II their plans fail 
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because they are incompatible with each other. If players do not care whether their plans fail due 

to incompatibility with “nature” or with incompatibility with each other, then the following 

hypothesis holds: 

 

 H3: The frequency of C is the same in version II and version III. 

 

I conducted an experiment where these three hypotheses were tested. Subjects were 

undergraduate microeconomics students (n = 85). These subjects were randomly assigned to 

three groups, each playing a different version of the Prisoner’s Dilemma, i.e., either version I (n 

= 26), II (n = 30), or III (n = 29). Since the three versions of the Prisoner’s Dilemma are payoff-

equivalent only if individuals are risk-neutral, we also elicited their risk preferences. There were 

two tasks. In the first one, subjects were offered certain option 60 points and a risky option, 

which included either 0 or 60 + y, each with probability 0.5, where {0,10,20,...,190}y . 

Therefore, there were twenty pairs of options to choose from. The second task was the same, 

except that the certain option was 80 points, and the risky option included either 0 or 80 + y, each 

with probability 0.5. (see Appendix III for instructions). After collecting the answers from the 

subjects, I excluded those which were incomplete and/or confused.45 I obtained 62 valid answers 

in total, out of which 20 for version I, 22 for version II, and 20 for version III. The results of the 

experiment are reported in the following section. 

 

 

                                                           
45 More specifically, I excluded subjects who chose an outcome in the Prisoner’s Dilemma instead of an action. I 

also excluded subjects who, in the risk-question, switched back and forth between the risky and certain options. 
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13.3 Results 

Table 13.1 presents the results for the three versions of the Prisoner’s dilemma. I first used the 

Chi-square test of homogeneity to examine whether relative frequencies with which individuals 

chose C are equal across the versions. I reject on 1% significance level that the relative 

frequencies are the same across the three versions of Prisoner’s Dilemma. In line with the H1 

and H2, individuals chose to cooperate more frequently in version I than in versions II and III. In 

particular, in version II, no one chose to cooperate. 

 

 
Version I  

(n = 20) 

Version II 

(n = 22) 

Version III 

(n = 20) 

C 40% 0% 25% 

D 60% 100% 75% 

Chi-square (df = 2) 10.40*** 

 

*** indicates 99% significance. 

 

Table 13.1: Choices in the three versions of the Prisoner’s Dilemma 

 

I then used the same test for pairwise comparisons of the three versions of the Prisoner’s 

Dilemma. The results are shown in Table 13.2. For versions I and II, we reject equality of 

proportions at 1% significance level, and for versions II and III we reject equality of proportions 

at 5% level. However, we do not reject equality of proportions for version I and III even at 10% 

level. 
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Versions I and II Version II and III Versions I and III 

Chi-square (df = 2) 10.87*** 6.24** 1.03 

 

*** and ** indicate 99% and 95% significance respectively. 

 

Table 13.2: Pairwise comparisons of the three versions of the Prisoner’s Dilemma 

 

The differences in behavior in the three versions may be due to risk aversion. In particular, if 

players are risk-averse, then in the versions II and III their payoff from cooperation are lower 

than in the version I. Table 13.3 shows players’ risk preferences in the three versions of the game. 

 

 Version I Version II Version III Risk-neutrality 

Switch (60 p.) 8.30 

(std = 2.81) 

8.34 

(std = 2.77) 

9.90* 

(std = 4.89) 
8.00 

Switch (40 p.) 
6.90** 

  (std = 1.83) 

6.43 

(std = 2.18) 

8.25** 

(std = 4.62) 6.00 

 

Table 13.2: Risk-aversion in the three groups 

 

By conventional criteria, risk-neutrality is not rejected in three cases out of six. In the other three 

cases, players seem to be risk-averse. What matters from the perspective of the hypotheses H1 

and H2, is the risk-equivalent to 40 points in versions II and III. We found that in version II, we 

do not reject risk-neutrality. Therefore, certain 40 points are equivalent to the lottery 80 points 

and 0 with equal probabilities. Consequently, differences in behavior in versions I an II cannot 

be explained by risk aversion. In version III, we reject risk-neutrality at 5% significance level. 

Therefore, we have u(40) > 0.5u(80) + 0.5u(0). Consequently, potential differences in behavior 
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in versions I and III could be explained by risk aversion. We have found that in version III, 

people cooperate less than in version I, which is in line with risk aversion. However, the 

differences in behavior between these two versions are statistically insignificant (see Tables 13.1 

and 13.2).  Finally, we compare risk preferences in versions II and III. In version II we do not 

reject risk-neutrality, while in version III we reject risk-neutrality in favor of risk-aversion. This 

means that the payoff in the cooperative outcome in version III is lower than in version II. 

Therefore, the temptation to defect is higher in version III than in version II. Yet, we observe 

significantly more cooperation in version III than in version II. Therefore, although risk 

preferences are different in versions II and III, they cannot explain differences in behavior in 

these two versions of the Prisoner’s Dilemma. 

 

We now evaluate the hypotheses H1-H3. In line with hypothesis H1, there is significantly more 

cooperation in version I of the game than in version II. This result cannot be explained by risk-

aversion. Therefore, H1 cannot be rejected. However, we do reject H2: Although there the 

frequency of cooperation is higher in version I than in version III, the difference is not 

statistically significant. Moreover, the observed differences may be due to risk-aversion. We also 

reject H3: participants cooperated significantly more in version III than in version II, and the 

difference cannot be explained by risk preferences. We conclude that MCP may explain 

cooperative behavior in Prisoner’s Dilemma. Furthermore, it matters to the individuals whether 

their plans are disappointed due to incompatibility with nature or due to incompatibility with 

other players’ plans.46 Therefore, the model considered in Chapter 8 may be relevant. 

                                                           
46 Related research supports this view. For instance, in the ultimatum game, players respond differently to unfair 

offers from humans than to the same offers from a computer (Sanfrey et al. 2003, Wout et al. 2006). More generally, 
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13.4 Discussion 

This experiment has several limitations. Firstly, samples are small and include only 

undergraduate economic students. Secondly, the payoffs were abstract points rather than money, 

which means that participants may not have been sufficiently motivated to make well-thought 

decisions. However, see e.g., Rubinstein (1999) for the view that experimental results without 

money incentives may also be useful. Although the non-cooperation in version II is striking, 

more tests are needed to establish the relevance of goal-based thinking in decisions. 

                                                                                                                                                                                           
people seem to care not only about consequences but also intentions (Offerman 2002; Sutter 2007; Cushman et al. 

2009; Falk Fehr, and Fischbacher 2008). 
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14 Conclusion 

 

I have attempted to show, that the Hayekian notion of equilibrium as the compatibility of plans 

differs from the conventional Nash equilibrium used in many economic models. Moreover, the 

Hayekian notion of equilibrium differs from Pareto efficiency. I have explicitly modeled 

compatibility of plans in a game-theoretic framework, and I have shown how this notion can be 

used in practice to explain some real-world phenomena. In particular, I have shown how 

incompatibility of plans may give rise to an endogenous change of social norms. Moreover, 

explicit modeling of players’ goals can help to analyze strategic situations involving multiple 

goals. Finally, goal-based reasoning may explain cooperative behavior in the Prisoner’s 

Dilemma and possibly other types of behavior. 

 

Although the model presented in this paper reflects many Hayek’s ideas, there are aspects of the 

Hayekian approach that I neglected. Most importantly, my framework is static. In contrast, 

Hayek was mainly concerned with dynamic coordination (Hayek 1937, 2007). Related to the 

time point is the issue of uncertainty and learning emphasized in the Hayekian literature (e.g., 

O’Driscoll, Jr. and Rizzo 2002). Although the framework developed in this paper in principle 

allows incorporating these additional considerations, they give rise to specific problems that are 

beyond the scope of the present work. Therefore, future research can incorporate these 

considerations into the current framework. 
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Another possible area for future research is a more detailed analysis of relationships among plans. 

The approach presented in this work simply assumes that plans may be compatible or 

incompatible. Nevertheless, they may be compatible at least in two different meanings. They 

may be compatible and independent and compatible and complementary. If two hunters plan to 

catch a hare in an area where hares are abundant, their plans are compatible and independent 

because the success of one player’s plan does not depend on the other player’s plan. In contrast, 

if two players plan to catch a stag, their plans are compatible and complementary because the 

success of one player’s plan depends on the other player’s plan. 

 

The model of goal-based behavior goes beyond the traditional payoff-maximizing approach. 

Nevertheless, it can also be understood as supporting the payoff-maximizing approach as a 

simple and powerful tool of analysis. As argued, payoff-maximizing greatly simplifies complex 

decision processes of real-world individuals. Often this simplification comes at little or no cost. 

For instance, as we have seen in Chapter 2, if all players pursue only one goal and have 

alternative ways to reach this goal, payoffs can be represented simply by probabilities of success 

of achieving this single goal. Even when players have multiple goals in mind, the conventional 

approach is often sufficient to capture all the crucial aspects of behavior. Only when the 

conventional approach fails to give satisfactory answers, one may need to look “behind” the 

payoffs and study actual motivations and decision processes. 
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Appendix I: Hayek on equilibrium 

 

The notion of equilibrium as “compatibility of plans” was introduced by Hayek (1937). 47 

According to him, equilibrium means that the “different plans which the individuals composing 

[a society] have made for action in time are mutually compatible” (Hayek 1948, 41). 48 

Unfortunately, neither Hayek nor his followers clarify in detail how the notions of “plans” and 

“compatibility” fit in the conventional conceptual framework used in economics. Regarding the 

former term, Hayek emphasizes that his concept of equilibrium refers specifically to actions, and 

he contrasts it with approaches that treat equilibrium as a relationship among existing things, 

such as quantities of goods—that is, results of past activities (Hayek 2007, 41–42). Therefore, for 

Hayek, the terms “plan” and “action” seem closely related. He also uses the term “intention” as a 

synonym of “plan” (Hayek 1948, 40). Given Hayek’s emphasis on equilibrium of actions rather 

than of quantities, game theory, rather than Marshallian/Walrasian price theory, seems to be a 

suitable framework to formalize his views. Moreover, Hayek considers situations in which plans 

are chosen “simultaneously but independently by a number of persons” (Hayek, 1948, 38). This 

specification directly calls for the use of strategic games. 

 

                                                           
47 For even earlier Hayek’s discussion of equilibrium, see Hayek (1928).  

48 In the original version of Hayek’s essay, the definition is formulated as follows: equilibrium means that the 

“compatibility exists between the different plans which the individuals composing [a society] have made for action 

in time.” (Hayek 1937, 40). Similar definition can be found in Hayek (2007). 
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However, Hayek does not specify any criterion for how individuals choose a plan from the set of 

feasible plans. His discussion implies that expectations about both external events and plans of 

others are important in the choice of a particular plan (Hayek 1948, 38), but he never explicitly 

considers the value (or profitability) of various feasible plans. While it is plausible that, other 

things equal, individuals choose the plan that is most valuable to them, it is not clear how they 

resolve the trade-off between value and risk if such a trade-off occurs. For example, do 

individuals prefer a plan that promises to achieve a higher-valued but risky goal or a plan that 

enables them to achieve a lower-valued goal with certainty? Hayek does not answer this question. 

According to my approach, it is assumed that individuals use the conventional expected utility 

theory to resolve this trade-off. 

 

Regarding the term “compatibility,” Hayek means that there is a “conceivable set of external 

events which allow people to carry out their plans and not cause any disappointments” (Hayek 

1948, 40). In Chapter 5, I introduce the concept of the “mutual compatibility of plans,” which is 

a formalization of this idea. Although Hayek repeatedly states that equilibrium is a fictitious 

concept (Hayek 1948, 44; 2007, 46, 50), he also argues that empirically there is a tendency 

toward general equilibrium in a market economy (Hayek 1948, 45, 55; 2007, 50). The main 

evidence to support his claim is that prices “tend to correspond to costs” (Hayek 1948, 51; 2007, 

50n2). Hence Hayek’s approach differs from the approaches that model phenomena as if they 

were always in equilibrium (e.g., Machlup 1958). Compatibility of plans, as formalized in the 

present paper, may or may not be considered as a fictitious concept. In large populations, as 

considered by Hayek, compatibility of plans may often be difficult or even impossible to achieve. 
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In Chapter 6, measurements are introduced in an attempt to quantify the tendency toward the 

compatibility of plans in situations in which the compatibility of all plans cannot be achieved. 

 

Hayek also gives some idea of what happens in a state of disequilibrium. He argues that in such a 

situation, “revision of the plans on the part of at least some people is inevitable,” and he refers to 

this revision of plans as “endogenous disturbances” (Hayek 1948, 40). I show that Hayekian 

“compatibility of plans” and Nash equilibrium may or may not coincide. If they coincide, 

Hayek’s statement can be interpreted as follows: individuals choose the Nash equilibrium plans, 

which also allows them to carry out their plans. The question is what happens if, in a Nash 

equilibrium, one or more individuals fail to carry out their plans. In such a situation, individuals 

are already “doing the best they can” given the rules of the game and the choices of others. 

Hayek’s “endogenous disturbance” may refer to a search for new, previously unknown, plans or 

other modifications of the rules of the game. This issue is discussed in Chapter 9. 

 

Although Hayek himself was not engaged in game-theoretic modeling, the discussion above 

suggests that a modified model of a strategic game is a suitable framework to formalize his views. 

In fact, early work by Morgenstern (1928) inspired Hayek’s work on equilibrium (Giocoli 2003; 

Leonard 2010). Moreover, in his early discussion of the equilibrium concept, Hayek calls for a 

systematic attempt to analyze social interactions in terms of compatibility and incompatibility of 

plans (Hayek 1937, 38n1). In this context, he refers to the pioneering game-theoretic work of 

Menger (1974) as an attempt in this direction. However, he arguably became disappointed with 

the later development of game theory (Becchio 2009). Therefore, the model introduced in this 
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thesis can be understood as a response to Hayek’s call and an attempt to develop a game-

theoretic framework along Hayekian lines.  

 

O’Driscoll and Rizzo (2002) also use games (namely, the Keynesian beauty contest and 

Morgenstern’s Holmes–Moriarty game) to discuss the Hayekian notion of equilibrium. However, 

they do not distinguish between Nash’s and Hayek’s notions of equilibria. In this paper, most 

concepts and results are illustrated with various versions of the Stag Hunt game. This game 

provides a suitable illustration of Hayek’s views not only because it shows a coordination 

problem in a (simple) production process, in which Hayek was interested, but also because it can 

be used to represent coordination failure as postulated by Keynesian business cycle theory 

(Bryant 1983, 1994; Cooper and John 1988), which stood in opposition to Hayek’s own theory at 

the time when he was developing his views on equilibrium (Boettke 2018; Caldwell 2004). 

 

For Hayek, the main purpose of the equilibrium concept is to account for the order that exists in 

the society. Nevertheless, the usefulness of the equilibrium concept for him does not end with a 

mere description of the social order. As Hayek puts it:  

 

“Its function is simply to serve as a guide to the analysis of concrete situations, showing what their 

relations would be under ‘ideal’ conditions, and so helping us to discover cause of impending 

changes not yet contemplated by any of the individuals concerned” (Hayek 2007, 51).  

 

For Hayek, the ultimate goal all economic analysis is to provide a causal explanation of 

phenomena and equilibrium analysis is merely a stepping stone towards this goal (Hayek 2007, 

42-43). However, in order to reach this goal, one has to abandon the concept of a stationary 
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equilibrium and use a broader concept which allows for the flow of time. One is tempted to use 

“dynamic” for Hayek’s concept of equilibrium but Hayek explains why this term may be 

misleading due to its ambiguity (Hayek 2007, 42-43).  

 

Statics Dynamics 

Equilibrium 

analysis 

Non-equilibrium analysis 

Equilibrium as a stationary state Non-stationary equilibrium “Causal explanation of 

economic processes” 

 

Figure A.1: Approaches to equilibrium analysis 

 

Figure A.1 describes Hayek’s position in relationship to various other approaches. In particular, 

the term “dynamics” can refer to two types of analyses: a causal explanation of economic 

processes which makes no use of the equilibrium concept and an analysis in terms of non-

stationary equilibria. Hayek refers to this latter type of analysis as an “intermediary field” 

between the static and causal analysis. While the term “dynamics” has been used in opposition to 

both “statics” and “equilibrium analysis” (because both these types of analysis coincided in the 

past – most equilibria considered in the literature were stationary), Hayek emphasizes that an 

analysis can both use the concept of equilibrium and be non-stationary.49 

 

                                                           
49 Within the non-stationary equilibrium analysis two approaches are sometimes distinguished: “functional” and 

“causal-genetic”. According to Rizzo (1990), Hayek belongs to the latter group. However, Hayek (1937, 34-35n) 

explicitly mentions that he uses the term equilibrium in the sense of “functional” analysis. This note was removed in 

a later reprint of the essay (Hayek 1948). 
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OCP and MCP are “static” concepts as they do not involve a time element. This seems to be in 

sharp contrast with Hayek’s approach. As he puts it, “passage of time is essential to give the 

concept of equilibrium any meaning” and the idea that “equilibrium must be conceived as 

timeless” seems to be a “meaningless statement” (Hayek 1948, 37). However, in line with 

Hayek’s views, they may be used as a stepping stone to the causal explanations of social 

phenomena. In Chapter 9, I discuss situations that are Nash equilibria but not OCP and MCP. I 

argue that these situations will be unstable because players will take actions to increase success 

of their goals or perhaps attempt to pursue alternative goals. In Chapter 10, I apply this idea to 

analyze a change of the social norms.  

 

Although in his early writings Hayek considered Walrasian general equilibrium a useful 

approximation of the market order, he later noted that the equilibrium concept is rather 

unfortunate to serve this particular purpose: for one, order is a matter of a degree while 

equilibrium does not allow for degrees; for another, order, unlike equilibrium, can be preserved 

even during a process of change (Hayek 2002, 15). Many authors have been inspired by Hayek’s 

critique of the equilibrium concept and developed alternative approaches under various labels, 

such as theory of market process (e.g. Lachmann 1977; Langlois 1986; Kirzner 1992, 1997; 

Ikeda 1990; O’Driscoll, Jr. and Rizzo 2002; Buchanan and Vanberg 1991; Boettke and Prychitko 

1994), evolutionary economics (e.g. Nelson and Winter 1982, 2002; Boulding 1991; Loasby 

1991, 2001; Potts 2000; Witt 2001, 2008; Dopfer and Potts 2008), or computational economics 

(e.g. Vriend 2002; Arthur 2006, 2010; Bowles, Kirman, and Sethi 2017). 
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My approach acknowledges that the existing equilibrium concepts are inadequate to account for 

Hayek views.50 In order to account for Hayek’s observation that an order (in my approach 

formalized as OCP or MCP) can be preserved in a disequilibrium, I introduce a measure of order 

ranging from 0 (no individual achieves his goal) and 1 (every individual achieves his goal, i.e. 

there is a perfect compatibility of plans and the outcome is Hayek equilibrium).  This measure 

highlights Hayek’s point that the perfect compatibility of plans is a “Platonic” notion that may be 

approached but is rarely reached in complex societies.  

 

Hayek’s views of equilibrium have been discussed in various contexts and in various degrees of 

depth. Some of these works focus on interpretation and evolution of Hayek’s views in the 

context of the Austrian school (Vaughn 1999, 2013), heterodox traditions (Lawson 2005), or 

economics in general (Giocoli 2003). Other works are critical and attempt to develop Hayekian 

view further (O’Driscoll, Jr. 1977; O’Driscoll, Jr. and Rizzo 2002; Rizzo 1990, 1992; Lewin 

1997). Vriend (2002) and Bowles et al. (2017) show the relevance of Hayek’s views for 

contemporary economics of complex adaptive systems. Hudik (2018) compares Hayek’s views 

on equilibrium with price-theoretic concept of equilibrium represented by Machlup (1958). 

Arena (1999) emphasizes the continuity of Hayek’s views on equilibrium. All these and similar 

works are useful in interpreting and extending various aspects of Hayek’s views. Yet, with a few 

exceptions, they do not attempt to trace differences between Hayek’s concept of equilibrium and 

alternative concepts. For example, O’Driscoll and Rizzo ([1985] 2002) also use games (namely, 

Keynesian beauty contest and Morgenstern’s Holmes-Moriarty game) to discuss Hayekian 

notion of equilibrium. However, they do not distinguish between Nash’s and Hayek’s notions of 

                                                           
50 Yet, they me useful for other purposes. See Hudik (2018). 
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equilibria. Overall, there have been very few attempts to formalize Hayek’s views. One of the 

goals of my work is to fill this gap. 
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Appendix II: Theories of social norms change 

 

The question of how social norms change is closely linked to the question of how social norms 

are defined.51 Therefore, I first focus on definitions of social norms, and then I discuss several 

theories of norms change. 

 

Definitions of social norms 

Definitions of social norms can be informal and formal. I first consider informal definitions. 

According to Burke (2007) and Burke and Young (2011), social norms are customary rules of 

behavior that coordinate interactions with others. This definition is very broad and highlights the 

coordinating function of social norms. Another definition emphasizes the role of expectations. 

According to this definition, social norms are behavioral rules supported by a combination of 

empirical and normative expectations (Bicchieri 2005, 2017). This second definition is narrower 

because it distinguishes between social norms and conventions. More specifically, social norms, 

unlike conventions, are supported by normative expectations. In contrast, conventions are 

supported by empirical expectations and a preference to follow if everyone else follows. A 

similar distinction between social norms and conventions is also made by Sugden (1986) and 

Coleman (1990). In Chapter 10, I use the term social norm in a broader sense of Burke and 

Young’s (2011) definition.  

 

                                                           
51 Useful surveys of the literature on social norms include Young (2007), Burke and Young (2011), Elster (1989), 

and Bergstrom (2002). Posner (2000) studies social norms in relation to law. 
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A different perspective on norms is presented by Becker (1996) and Becker and Murphy (2000), 

who define norms as common values of a group internalized as preferences.52 According to this 

approach, individuals follow norms irrespectively of their expectations or behavior of others.53 

Nevertheless, Becker and Murphy (2000) consider the effect of peer pressure on the stability of 

norms. In this view, norms need not necessarily coordinate interactions, but they often reduce 

transaction costs (Becker 1996). Becker and Murphy (2000) distinguish social norms from 

conventions, such as driving on the right side of the road. Conventions, unlike social norms, need 

not have intrinsic value; instead, they depend on the choices of others. 

 

Regarding the formal definitions of social norms (and conventions), we can distinguish between 

game-theoretic and price-theoretic definitions. According to the game-theoretic definitions,  a 

social norm is an equilibrium of a game with multiple equilibria (Burke and Young 2011; 

Sugden 1986). Lewis (1969) focuses on equilibria of coordination games, while Vanderschraaf 

(1998) extends Lewis’s approach to other games. Vanderschraaf (1998) define social norm as 

correlated equilibrium in the sense of Aumann (1974, 1987), whereas Gintis (2009, 2010) 

suggests that social norms are correlating devices for a correlated equilibrium. My formal 

definition is broader than these definitions. It merely assumes that social norm is a Nash 

equilibrium of a game that may or may not have multiple equilibria. Furthermore, my example of 

the medium of exchange is a convention in the sense of Becker and Murphy (2000) and Bicchieri 

(2017). 

 

                                                           
52 Internalization of norms is also considered by Young (2007), Coleman (1990), and Elster (1989, 1999). 

53 This definition corresponds to what Bicchieri (2017) calls a shared (prudential, moral, or religious) norm. 
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The price-theoretic approach to social norms is exemplified by Becker (1996) and Becker and 

Murphy (2000), who model norms simply as arguments in a utility function. These norms may 

increase or reduce an individual’s utility, and they may or may not depend on the choices of 

others. These choices of others are modeled as social capital. In contrast, conventions are inputs 

in the individual’s production function – they do not have intrinsic utility; they have utility only 

as instruments. Furthermore, they are complementary to social capital, which also enters an 

individual’s production function. 

 

Why do social norms change? 

For the approaches where a social norm is an equilibrium of a game with multiple equilibria, 

social norms change means a switch from one equilibrium to another. This change may occur 

from without, due to exogenous shocks (e.g., Libecap 1989), or from within. A change from 

within is analyzed by Young (1993), according to whom players are boundedly rational and 

make “mistakes” when choosing their best response. This account of social norms change 

emphasizes the independent choices of individuals. Other accounts emphasize collective action 

in the change of social norms (Bowles 2006; Libecap 1989). Bicchieri and Mercier (2014) and 

Bicchieri (2017) focus on the collective change of expectations. According to this account, 

norms change if there is a widespread change in expectations. The change of expectations may 

occur bottom-up or top-down. 

 

Approaches that emphasize top-down change of social norms include Belloc and Bowles (2013), 

who highlight the role of political power. Becker (1996) and Becker and Murphy (2000) consider 

a model where an upper class imposes norms on a lower class. However, the upper class has to 
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compensate the lower class if the norms decrease the utility of the members of the lower class. 

Yet other approaches focus on imitation of norms in more successful societies (Robson and 

Vega-Redondo 1996; Boyd and Richerson 2001, 2002; Henrich and Boyd 2001) or on a 

selection of groups with superior norms through growth or conquest (Hayek 1973). 

 

According to my approach to social norm change outlined in Chapter 10, norms change because 

individuals fail to carry out their plans. This corresponds to Bicchieri’s (2017) view that in order 

for a norm to change, there must be a shared reason to change. I argue that this aspect is missing 

in the current models unless the reason for the change is an attempt to achieve a known outcome 

with higher payoff for one or more players. My model does not specify how exactly the change 

will occur. In this respect, it is complementary to models that analyze specific mechanisms of 

norms change. 
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Appendix III: Instructions in the Prisoner’s Dilemma experiment 

 

Instructions 

Welcome to this experiment. You and the other participants are asked to make decisions. Your 

decisions as well as the decisions of the other participants will determine the result of the 

experiment. Please read the instructions thoroughly and think about your decision carefully. 

During the experiment you are not allowed to talk to the other participants or to use cell phones. 

The neglect of these rules will lead to the immediate exclusion from the experiment. If you have 

any questions, please raise your hand. An experimenter will then come to your seat to answer 

your questions. During the experiment we will talk about points instead of money. 

 

The experiment consists of three independent parts in which you can accumulate points. During 

the experiment neither you nor the other participants will receive any information on the course 

of the experiment (e.g. decisions of other participants or results of a particular part). 

 

Version I 

Without showing others what you are doing, write down on a form either the letter x or the letter 

y. Think of this as a “point bid”. I will randomly pair your form with one other form. Neither you 

nor your pair will ever know with whom you were paired. Here is how points will be assigned 

for this activity:  

 If you put y and your pair puts x, then you will get 60 points, and your pair 0 points.  

 If both you and your pair put y, then two possibilities may occur:  
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a) you will get 60 points and your pair 0 points, or  

b) you will get 0 points and your pair 60 points.  

Each possibility occurs with an equal probability, that is, 50%. 

 If you put x and your pair puts y, then you will get 0 points, and your pair 60 points.  

 If both you and your pair put x, then you will both get 40 points.  

Your answer: 

 

Version II 

Without showing others what you are doing, write down on a form either the letter X or the letter 

Y. Think of this as a “point bid”. I will randomly pair your form with one other form. Neither you 

nor your pair will ever know with whom you were paired. Here is how points will be assigned 

for this activity:  

 If you put y and your pair puts X, then you will get 60 points, and your pair 0 points.  

 If both you and your pair put Y, then two possibilities may occur:  

a) you will get 60 points and your pair 0 points, or  

b) you will get 0 points and your pair 60 points.  

Each possibility occurs with an equal probability, that is, 50%. 

 If you put X and your pair puts Y, then you will get 0 points, and your pair 60 points.  

 If both you and your pair put X, then two possibilities may occur: 

a) you will get 80 marks and your pair 0 points, or  

b) you will get 0 marks and your pair 80 points.  

Each possibility occurs with an equal probability, that is, 50% 

Your answer: 
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Version III 

Without showing others what you are doing, write down on a form either the letter x or the letter 

y. Think of this as a “point bid”. I will randomly pair your form with one other form. Neither you 

nor your pair will ever know with whom you were paired. Here is how points will be assigned 

for this activity:  

 If you put y and your pair puts x, then you will get 60 points, and your pair 0 points.  

 If both you and your pair put y, then two possibilities may occur:  

a) you will get 60 points and your pair 0 points, or  

b) you will get 0 points and your pair 60 points.  

Each possibility occurs with an equal probability, that is, 50%. 

 If you put x and your pair puts y, then you will get 0 points, and your pair 60 points.  

 If both you and your pair put x, then two possibilities may occur: 

a) you both will get 80 points, or  

b) you both will get 0 points. 

Each possibility occurs with an equal probability, that is, 50% 

Your answer: 

 

Risk preferences 

For the ten questions below, we ask you to decide between two options. For each question please 

indicate whether you prefer option A or B. 

 



136 

 

Question Option A Option B Your Choice 

1 60 points 60 points with a probability of 50% 

0 points with a probability of 50% 

 

2 60 points 70 points with a probability of 50% 

0 points with a probability of 50% 

 

3 60 points 80 points with a probability of 50% 

0 points with a probability of 50% 

 

4 60 points 90 points with a probability of 50% 

0 points with a probability of 50% 

 

5 60 points 100 points with a probability of 50% 

0 points with a probability of 50% 

 

6 60 points 110 points with a probability of 50% 

0 points with a probability of 50% 

 

7 60 points 120 points with a probability of 50% 

0 points with a probability of 50% 

 

8 60 points 130 points with a probability of 50% 

0 points with a probability of 50% 

 

9 60 points 140 points with a probability of 50% 

0 points with a probability of 50% 

 

10 60 points 150 points with a probability of 50% 

0 points with a probability of 50% 

 

11 60 points 160 points with a probability of 50% 

0 points with a probability of 50% 

 

12 60 points 170 points with a probability of 50% 

0 points with a probability of 50% 

 

13 60 points 180 points with a probability of 50% 

0 points with a probability of 50% 

 

14 60 points 190 points with a probability of 50% 

0 points with a probability of 50% 

 

15 60 points 200 points with a probability of 50% 

0 points with a probability of 50% 

 

16 60 points 210 points with a probability of 50% 

0 points with a probability of 50% 

 

17 60 points 220 points with a probability of 50% 

0 points with a probability of 50% 

 

18 60 points 230 points with a probability of 50% 

0 points with a probability of 50% 

 

19 60 points 240 points with a probability of 50% 

0 points with a probability of 50% 

 

20 60 points 250 points with a probability of 50% 

0 points with a probability of 50% 

 

 

 

For the ten questions below, we ask you to decide between two options. For each question please 

indicate whether you prefer option C or D. 
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Question Option C Option D Your Choice 

1 40 points 40 points with a probability of 50% 

0 points with a probability of 50% 

 

2 40 points 50 points with a probability of 50% 

0 points with a probability of 50% 

 

3 40 points 60 points with a probability of 50% 

0 points with a probability of 50% 

 

4 40 points 70 points with a probability of 50% 

0 points with a probability of 50% 

 

5 40 points 80 points with a probability of 50% 

0 points with a probability of 50% 

 

6 40 points 90 points with a probability of 50% 

0 points with a probability of 50% 

 

7 40 points 100 points with a probability of 50% 

0 points with a probability of 50% 

 

8 40 points 110 points with a probability of 50% 

0 points with a probability of 50% 

 

9 40 points 120 points with a probability of 50% 

0 points with a probability of 50% 

 

10 40 points 130 points with a probability of 50% 

0 points with a probability of 50% 

 

11 40 points 140 points with a probability of 50% 

0 points with a probability of 50% 

 

12 40 points 150 points with a probability of 50% 

0 points with a probability of 50% 

 

13 40 points 160 points with a probability of 50% 

0 points with a probability of 50% 

 

14 40 points 170 points with a probability of 50% 

0 points with a probability of 50% 

 

15 40 points 180 points with a probability of 50% 

0 points with a probability of 50% 

 

16 40 points 190 points with a probability of 50% 

0 points with a probability of 50% 

 

17 40 points 200 points with a probability of 50% 

0 points with a probability of 50% 

 

18 40 points 210 points with a probability of 50% 

0 points with a probability of 50% 

 

19 40 points 220 points with a probability of 50% 

0 points with a probability of 50% 

 

20 40 points 230 points with a probability of 50% 

0 points with a probability of 50% 
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