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Wavelet bases and the fast wavelet transform are a powerful and useful tool for
signal and image analysis, detection of singularities, data compression, and also for
the numerical solution of partial differential equations, integral equations, and integro-
differential equations. One of the most important properties of wavelets is that they
have vanishing moments. Vanishing wavelet moments ensure the so-called compres-
sion property of wavelets. This means that integrals of a product of a function and a
wavelet decay exponentially, dependent on the level of the wavelet if the function is
smooth enough in the support of the wavelet. This enables the obtainment of sparse
representations of functions as well as sparse representations of some operators, see
e.g. [1, 14, 20].

There are two main classes of wavelet based methods for the numerical solution
of operator equations. The first method is the wavelet-Galerkin method. Due to
vanishing moments, the wavelet-Galerkin method leads to sparse matrices not only
for differential equations but also for integral and integro-differential equations while
the Galerkin method with the standard B-spline basis leads to full matrices if the
equation contains an integral term. Another important property of wavelet bases is
that they form Riesz bases in certain spaces, such as Lebesgue, Sobolev or Besov
spaces. Due to this property, the diagonally preconditioned matrices arising from
discretization using the Galerkin method with wavelet bases have uniformly bounded
condition numbers for many types of operator equations.

The second class of methods are adaptive wavelet methods. We focus on adaptive
wavelet methods that were originally designed in [15, 16] and later modified in many
papers [17, 18, 19]. For a large class of operator equations, both linear and nonlin-
ear, it was shown that these methods converge and are asymptotically optimal in the
sense that the storage and the number of floating point operations, needed to resolve
the problem with desired accuracy, depend linearly on the number of parameters rep-
resenting the solution. Moreover, the method enables higher-order approximation if
higher-order spline-wavelet bases are used. The solution and the right-hand side of
the equation have sparse representations in a wavelet basis, i.e. they can be repre-
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sented by a small number of numerically significant parameters. Similarly as in the
case of the wavelet-Galerkin method, the differential and integral operators can be
represented by sparse or quasi-sparse matrices. For a large class of problems, the ma-
trices arising from a discretization using wavelet bases can be simply preconditioned
by a diagonal preconditioner, and the condition numbers of these preconditioned ma-
trices are uniformly bounded. For more details about adaptive wavelet methods, see
[3, 15, 16, 17, 18, 19, 20].

The first wavelet methods used orthogonal wavelets, e.g. Daubechies wavelets or
coiflets. Their disadvantages are that the most orthogonal wavelets are usually not
known in an explicit form and their smoothness is typically dependent on the length
of the support. In contrast, spline wavelets are known in a closed form, are smoother,
and have shorter support than orthogonal wavelets with the same polynomial exact-
ness and the same number of vanishing moments. Therefore, they are preferable in
numerical methods for operator equations.

The objectives of the habilitation thesis are constructions of new spline-wavelet
bases on the interval and product domains adapted to various types of boundary con-
ditions, which outperform the existing bases of the same type with respect to the effi-
ciency of the numerical methods used for solution of differential and integro-differential
equations. More precisely, to construct wavelet bases such that the wavelet-Galerkin
method and adaptive wavelet methods using these bases lead to better conditioned dis-
cretization matrices, sparser matrices, smaller numbers of iterations, smaller numbers
of parameters representing the solution with a desired accuracy, etc., than for other
bases of the same type. The aim is also to illustrate the efficiency and applicability
of the constructed bases on applications.

The thesis is conceived as a collection of the eight previously published articles
[4, 5, 6, 7, 8, 10, 12] supplemented by commentary.

The papers [4, 5, 8] are focused on constructions of well-conditioned biorthogo-
nal spline wavelet bases on the interval where both primal and dual wavelets have
compact support. In [6, 7, 12, 13] we do not require local support of dual wavelets,
which enables us to construct wavelet bases that have smaller support and have sig-
nificantly smaller condition number than wavelet bases with local duals. Moreover,
their construction is significantly simpler than constructions of wavelets with local
duals, which are typically quite long and technical. In [11], we constructed wavelets
that are orthogonal to piecewise polynomials of degree at most seven on a uniform
grid. Due to this property, matrices arising from discretization of second-order differ-
ential equations with coefficients that are piecewise polynomials of degree at most four
on uniform grids are sparse. We use the constructed bases for solving various types
of operator equations, e.g. Poisson’s equation, the Helmholtz equation, fourth-order
differential equations, and the Black-Scholes equation with two state variables. We
also applied the constructed bases for option pricing under Kou’s double exponential
jump-diffusion option pricing model. Other applications are presented in Chapter 2.
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