Příloha č. 10 směrnice MU Habilitační rízení a řízení ke jmenování profesorem

POSUDEK OPONENTA HABILITAČNÍ PRÁCE

Masarykova univerzita Uchazeč

Habilitační práce

Oponent
Pracoviště oponenta, instituce

Mgr. Ondřej Peš, Ph.D.

Mass spectrometry in bioanalytical and clinical applications
doc. Mgr. Jan Havliš, Dr.
NCBR, MUNI SCI, Brno

Dr. Peš publikoval v průběhu 14 let 25 publikací (dle WoS), a sestavil svůj habilitační spis z jedenácti signifikantních prací, obsahujících originální výsledky a dokládající vědeckou erudici kandidáta.

Jako publikace skoro každého bioanalytika, jedná se o relativně široký záběr témat spojených bioanalytickou technikou (hmotnostní spektrometrií) a různými metodikami jejího využití, což vede nakonec k použitému rozdělení spisu.

Dr. Peš se zabýval vývojem a aplikací nových instrumentálních technik (kapitola 2) a využitím bioanalytických technik k charakterizaci stanovení významných bioanalytů (kapitoly 3 a 4). Na tomto místě bych rád zdůraznil především práce v kapitolách 2.2, 2.3 a 3.2 , které jsou dle názoru oponenta prrínosné a odpovídá tomu i príslušný citační ohlas. Z přehledu prací je zrěelné, že kandidát se významnou měrou podílel na 7 z 11 prací (40 a více procent podílu), a tak prokázal schopnost vědecky v týmu i jako hlavní a korespondujicí autor řešit komplexní a rozmanité problémy, využívat nabyté zkušenosti a přenášet je do nových problémủ, jako třeba v prípadě práce podané v kapitole 3.4 o zesílení luminiscenčního signálu v prítomnosti těžké vody. Zvláště pak výsledky v kapitole 4 mají potenciální praktického uplatnění, protože řeší zajímavé bioanalytické problémy s klinickými implikacemi.

Habilitační spis je psán kultivovanou angličtinou, je přehledný a dobře organizovaný. Rozdělen je tematicky na tři okruhy, zahrnujicí předložené publikace dle jejich zaměření. Autorské komentáře ke každé této práci tyto vždy patrǐičně představuje a uvozuje. Za ne zcela organické oponent považuje začlenění sice velmi zajímavého vstupu o bayesovské statistické analýze, nebot' není zcela ukotven v kompozici spisu. Práce diskutovaná v kapitole 4.2 sice obsahuje bayesovské vyhodnocení účinnosti terapie kortikosteroidy, ale nadnesený problém krize reprodukovatelnosti výsledkủ (replication crisis) s ní souvisí jen obecně, tedy jako s jakýmkoliv jiným výzkumem. Patrně přínosnější by bylo zařadit toto pojednání jako samostatnou kapitolu se širším uplatněním, koneckonců jde o autorův prrínos k využití různých epistemologických přistupů. To je však spíše doporučení, které by vedlo k větší přehlednosti spisu, nežli výtka.

Kandidát bezesporu přispěl k novým poznatkủm v oboru bioanalytiky, především při vývoji nových instrumentálních přístupů a v praktické analýze organických, klinicky zajímavých látek (např. alkaloidů).

Vzhledem k tomu, že titul docent je vědecko-pedagogickou hodností, je třeba zmínit, že dr. Peš má za sebou i významnou zkušenost se vzděláváním studentů na Lékařské fakultě MU, především v rámci praktických předmětủ vyžadujících osobní přístup.

Dotazy oponenta \mathbf{k} obhajobě habilitační práce (počet dotazů dle zvážení oponenta)

1) Podle vašeho profesionálního názoru, proč nepřímé (off-line) spojení separačních technik jako elektroforéza či kapalinová chromatografie s hmotností spektrometrií nenašlo takové uplatnění jako spojení přímá? Nabizí se samozřejmě odpověd', že prímé spojení je jednodušší a snadněji proveditelné, ale jsou to jediné nevýhody?
2) Jako odborník pracujicí v oboru klinické bioanalytiky, co podle vás především rozhoduje o uplatnění té či oné analytické techniky a konkrétní metody v klinické praxi? A tím není míněna jen praxe rutinní, kde jsou požadavky velmi striktní, ale i v praxi výzkumné. Co jako badatel a vývojář nových bioanalytických metod a metodik můžete nabídnout kolegům?
3) Testování nulové hypotézy je důležitou součástí současné metodologie vědy především proto, že minimalizuje vliv kognitivních zkreslení, např. konfirmační zkreslení (confirmation bias) nebo zkreslení nulového rizika (zero-risk bias), která často vedou ke švindlování sp(phacking). Testování nulové hypotézy předpokládá, že nepředjímáme výsledek, ačkoliv je samozřejmě možné to obejít špatnou, „cinklou" formulací nulové hypotézy. Dnes se jako jedno z řešení obecně doporučuje neužívat při hodnocení testů hodnotu p, ale třeba prrístupy odhadové statistiky (estimation statistics). Jaké jsou eventuálně robustnèjší postupy a nástroje bayesovské statistiky, které by také mohly vést k minimalizaci kognitivních zkreslení a prevenci „cinklých" statistických vyhodnocení?

Závěr

Habilitační práce Mgr. Ondřeje Peše, Ph.D., „Mass spectrometry in bioanalytical and clinical applications" splňuje požadavky standardně" kladené na habilitační práce v oboru Lékařská chemie a biochemie.

V Moravanech
Dne 26. 5. 2022

