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COMMENTARY 

This Habilitation Thesis is a compilation of selected scientific publications with my 

contribution as author or co-author. The results were obtained mainly at Masaryk 

University in Brno, Czech Republic and articles were published between 2017 and 2022. 

The research aimed at the development of methods and computational tools for the 

engineering and analysis of proteins. The focus was both on developing novel algorithms 

and on bringing different structure- and sequence-based analyses to the broader scientific 

community or even inexperienced users. Therefore, the emphasis was put on 

understandable workflows coupled with easy-to-use graphical user interfaces.   

This Thesis is divided into two parts. Part I contains the introduction to individual 

scientific problems, current state-of-the-art, and contributions to the field by individual 

tools for protein analysis and engineering. Part II consists of 10 publications (listed below) 

where all selected tools are thoroughly described. The topics of these studies cover 

searching for novel enzymes, protein solubility, protein stability, and analysis of access 

pathways.  
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1 Searching for Novel Enzymes 

1.1 Introduction 

During the billion years of evolution, nature has developed an enormous diversity of 

biomolecules. Thanks to the next-generation sequencing technologies1,2, sequences of 

these biomolecules became available and provided an excellent source of novel protein 

sequences. Many genome and metagenome sequencing projects are running at an 

incredible pace resulting in significant growth of sequence databases3,4. The number of 

sequences is doubling every 2.5 years5. On the other hand, experimental characterization 

of individual proteins via classical biochemical techniques is very costly and time-

demanding. This huge contrast between sequenced and characterized proteins is nicely 

visible on the UniProt database (https://www.uniprot.org). The automatically annotated 

part of UniProt, TrEMBL database, contains about 220 million entries, whereas there are 

only about 570 thousand sequences in manually reviewed Swiss-Prot (data from 07/2021). 

Recently, several successful cases where high-through screening techniques, like robotic or 

microfluidic platforms, were developed to identify enzymes with convenient properties6–8. 

Despite this significant progress in high-throughput techniques, these methods are still 

rather scarce, and their development for a particular application can be very time-

demanding.  Therefore, new approaches with sufficient capacity to screen or prioritize 

attractive enzymes are still highly valued. In silico approaches provide an appropriate 

solution for screening large databases incomparably faster than any experimental 

technique.  

1.2 State-of-the-art 

There are more than 220 million uncharacterized sequences in the UniProt database3, 

many of them with enzymatic functions, which can be of great value in many 

biotechnological or medical applications. Genome Online Database (GOLD) database9 

currently contains about 150 thousand ongoing sequencing projects, so the number will 

grow steadily in the future.  The most significant disadvantage of these databases is that 

https://www.uniprot.org/
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most sequences include only insufficient automatically derived annotations that lack 

information about their biological function. Therefore many tools and databases have to 

be used to filter out biologically relevant information. 

Current approaches in novel enzyme identification usually start with metadata search 

or sequence similarity search of a known characterized enzyme against UniProt or 

GeneBank databases10. Metadata, like protein name, functional annotations, source 

organism, etc., are mostly automatically annotated, and their accuracy is relatively low. 

Therefore, further analyses and filtering are necessary to obtain good-quality data. On the 

other hand, sequence similarity search is based only on the evolution similarity of 

homologous sequences and not on the accuracy and availability of individual user-defined 

metadata.  Therefore, the sequence-based search leads to a much higher specificity. First 

algorithms were based on an optimal deterministic search like Needleman and Wunch11, 

but with the growing size of the databases, much faster heuristic algorithms are utilized. 

BLAST algorithm12 is usually applied for pairwise sequence alignment as the golden 

standard method. BLAST is based on finding minimal alignment defined by word size, which 

is then extended into a full-length alignment. The identity of sequences is scored by the 

number of substitutions and gaps specified by scoring matrices13. Even though it is one of 

the oldest heuristic algorithms, it is still broadly used for sequence similarity search. 

Suppose more search sensitivity is needed, algorithms based on position-specific sequence 

matrices, like PSI-BLAST14, or profile-based methods, like HMMER15, are able to find even 

more distant homologs than basic BLAST search. 

Sequence similarity search usually provides an overwhelming amount of hits and 

must be accompanied by analyses using computational tools and biological databases to 

obtain more information on individual sequences. These analyses can provide valuable 

annotations on sequence properties16, structure motifs, enzyme function17, 

classifications18, and localization19, or information on source organisms and their natural 

environment20. These annotations can help with further filtering and prioritization of 

biotechnologically attractive enzymes.  
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1.3 Contribution to the field 

Sequence similarity searches provide hits with relatively low specificity. Therefore, as 

mentioned above, many tools and databases have to be utilized to decrease the number 

of identified putative enzymes to levels reasonable for experimental validation. The more 

the in silico analyses can be applied, the better the chance to find stable, functional, and 

expressible enzymes. Unfortunately, many tools need to be installed, run, and adequately 

analyzed, which often require non-trivial knowledge in bioinformatics. Therefore, we 

designed a computational pipeline capable of searching, filtering, and annotating novel 

enzymes available in sequence databases with a user-defined function. The EnzymeMiner 

web server with a user-friendly graphical user interface was developed to bring this analysis 

to the broader scientific community. The only input is the sequence of an enzyme with the 

required function and the list of essential, i.e. catalytic or ligand-binding residues. We 

believe the tool can allow experimental biologists to find novel enzymes with interesting 

properties without the need for running many different analyses (Figure 1).   

The current version of EnzymeMiner provides only sequence-based information 

about the proteins in the nr database of NCBI. Recent development in the sequencing of 

metagenomes and the availability of their results in the MGnify database4provides a new 

source of potentially interesting enzymes which will more than double the current amount 

of available sequences. Moreover, the recent publication of the structure prediction tool, 

AlphaFold 221, opens the doors for structure-based analyses, providing an entirely new 

level of annotations.  Both structure analysis and metagenomes search will be utilized 

during the development of the latest version of EnzymeMiner. The current version of the 

EnzymeMiner web server is freely available at 

https://loschmidt.chemi.muni.cz/enzymeminer/ and is thoroughly described in PART II. 

https://loschmidt.chemi.muni.cz/enzymeminer/
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Figure 1. Illustration of the EnzymeMiner workflow. The workflow consists of input data (orange), 

search, filtering and annotation of homologous sequences (blue), and visualization of results (yellow). 

Adopted from Vasina et al.22  
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2 Protein Solubility Prediction 

2.1 Introduction  

Solubility is an essential attribute of every protein. Insufficient solubility is one of the 

leading causes of failure in protein production and is critical for any protein-related work. 

Therefore, the prediction of solubility by computational tools is of great interest in both 

basic science and industry. By definition, protein solubility is a thermodynamic parameter 

defined as the protein concentration in a saturated solution in equilibrium with a solid 

phase, either crystalline or amorphous, under a given set of conditions23. However, 

experimental measurement of this parameter on a large scale is rather difficult. Moreover, 

it does not capture all the problems preventing recombinant protein production in a 

functional state in a high concentration. Therefore, expressibility or soluble expression is a 

more precise therm where the final soluble protein must be overexpressed in the soluble, 

well-folded form24,25.  

Moreover, many other problems hamper protein solubility prediction in silico 

primarily due to the inconsistency between available experimental data.  Many conditions 

influence the proper protein solubility, like protein concentration in the cell, presence of 

chaperons, type of the expression system, physical and chemical factors acting during the 

expression, or cell protective mechanisms acting against toxicity of some proteins26. 

Therefore, many solubility predicting tools have to either focus on prediction in very 

specific conditions or neglect the inconsistencies between the expression conditions. Thus, 

the resulting tools either work on only a very limited number of cases or have overly low 

accuracy. Because the prediction of protein solubility is a very complex problem and we are 

not able to define all the crucial parameters by physico-chemical means, machine learning 

is usually utilized to build functional models.  
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2.2 State-of-the-art 

The accuracy of the sequence-based prediction of machine learning-based methods 

highly depends on the size and quality of data available for both training and testing. The 

largest public source of experimental data is the TargetTrack database27 provided by 

Protein Structure Initiative projects. TargetTrack contains experimental data from 

crystallization trials of about 900,000 proteins. Even though the database is not primarily 

focused on protein solubility, the information on whether the protein can be obtained in 

purified form has a great value for designing a large, well-balanced dataset. On the other 

hand, low quality of annotations, lack of consistent information on expressibility failures, 

and plain text format of individual entries make the database unusable without significant 

manual curation and filtering. Several other databases can be used in solving particular 

problems, but none of them has the potential to be used as a large and diverse source of 

training data: i) NESG28 containing high-quality data on protein solubility of almost 10,000 

proteins expressed in E. coli, is a good candidate for testing dataset, ii) HGPD29 contains 

over 9,000 measurements of human proteins, iii) AMYPdb30 with data about 12,000 

amyloid precursor proteins, iv) eSOL31 containing over 4,000 entries from cell-free 

expression systems, or v) RCSB PDB32,33 containing about  190,000 proteins structures but, 

by the definition of the database, only of soluble proteins. 

Solubility depends on many factors, including all the extrinsic conditions 

(concentration, pH, temperature, expression system, chaperons) but also intrinsic 

properties defined by amino acid composition. This makes the prediction models too 

complex to be built rationally. Therefore, the vast majority of available tools is based on 

statistical analysis or machine learning. Solubility predictors depend on the features which 

can be extracted or predicted at the protein sequence level. The most common features 

utilized by many current tools belong to these categories: i) amino acid content depending 

on frequencies of individual residues, dimers, or trimers, ii) physical-chemical properties of 

amino acids (a charge, hydrophobicity, polarity, size, etc.) mainly obtained from AAindex 

database34, iii) features predicted by other tools (secondary structure, solvent accessibility, 
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or disordered and transmembrane regions), and iv) sequence identity based on pairwise 

alignment towards known soluble or insoluble proteins.  

Currently, there are many tools available utilizing the discussed sequence-based 

features to predict protein solubility. These tools differ in feature prioritization and 

statistical or machine learning models used for the prediction. Based on the model, tools 

can be divided into i) discriminant analysis (revised Wilkinson-Harrison model), ii) linear 

regression (CamSol, Protein-Sol), iii) logistic regression (RPSP, PROSSO II, SWI), iv) Support 

Vector Machine (SOLpro, ccSOL, ESPRESSO), and v) neural network (DeepSol, SKADE). 

Interestingly, not necessarily the more sophisticated models provide better results. When 

tested on an independent testing dataset, many of the tools do not provide the accuracies 

presented by the authors (Figure 2). Therefore, it is challenging to select the best predictors 

based on the original papers due to overtraining or inadequate testing. 

 

Figure 2. Receiver operating curves of sequence-based solubility predictors tested on SoluProt test set 

of 3100 sequences. Tools are ordered by the area under the curve (AUC). Adopted from35. 

An even more pronounced problem represents the prediction of the change in 

protein solubility caused by a mutation. The ability to predict the effect of a mutation would 

be of great interest in industry because sufficient protein production is often limiting for 

many applications. Unfortunately, there is only a limited amount of data as no database 

gathering the information about changes in solubility upon mutation is available.  The only 
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datasets that can be obtained are presented as part of the developed tools, but they 

contain only tens or lower hundreds of entries36–38. Individual tools are then based only on 

the sequence analysis, employing machine learning (PON-sol36 or requires 3D structure 

either as optional (CamSol37 and SODA39) or mandatory input (SolubiS40,41, 

AGGRESCAN3D42, and OptSolMut38). These methods then combine profile-based solubility 

prediction with structure corrections, stability evaluation, or introduce a scoring function 

for solubility calculation. Given the limited data available, training of machine-learning-

based models or parametrization of the structure-based features may be biased towards 

the small number of proteins represented in the dataset. Standardizing the mutational data 

and their FAIR storing would help the developers make their tools more generally 

applicable with improved accuracy. 

2.3 Contribution to the field 

Good solubility is one of the basic parameters for any protein used in both basic 

science and industry. Current predictors often do not possess the outstanding accuracy 

presented by their developers when tested on an independent dataset35. Therefore, we 

designed a new tool called SoluProt for sequence-based solubility prediction of proteins 

produced in the most common host organism, E. coli. SoluProt is a machine-learning-based 

tool employing random forest regression. It was trained on a dataset of more than 11,000 

data points obtained by filtration and manual curation of the TargetTrack database. 

SoluProt and 11 other predictors were tested on a dataset based on the NESG database 

containing 3,100 data points. Even though the prediction power is still relatively low, 

SoluProt outperformed all the other tools by accuracy, Matthew's correlation coefficient, 

or area under the ROC curve. Similar values were observed only for PROSSO II, but in this 

case, the testing dataset significantly overlapped (95 %) with the training set of PROSSO. 

Therefore, the final results could be biased towards better performance. 

SoluProt was provided to the community as a web server freely available at 

https://loschmidt.chemi.muni.cz/soluprot/ and is thoroughly described in PART II. 

Moreover, solubility was also observed as the most problematic property when mining 

https://loschmidt.chemi.muni.cz/soluprot/
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novel enzymes43,44. Therefore, SoluProt was introduced into the pipeline and the selection 

table of EnzymeMiner as another criterium for the selection of functional enzymes. 

To tackle the problem of predicting solubility change upon mutation, high-quality 

data are necessary both for training and testing novel methods. Currently, there is no 

database of mutational effects on solubility available. A few datasets constructed by tool 

developers are rather scarce, contain errors, and do not cover data from novel high-

throughput assays45,46. Therefore, we developed a database called SoluProtMutDB, which 

would help with gathering available data, their curation, and standardization. Currently, it 

contains more than 32,000 mutants of about 100 proteins. Together with our data from 

high-throughput microfluidic platforms that are presently being produced, it can create a 

sufficient dataset for training and testing novel tools. SoluProtMutDB is freely available at 

https://loschmidt.chemi.muni.cz/soluprotmutdb. 

  

https://loschmidt.chemi.muni.cz/soluprotmutdb
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3 Prediction of Protein Stability 

3.1 Introduction  

Stability is another fundamental property to be considered in both basic science and 

industrial applications. It can be driven either by thermodynamics (the most stable 

conformation) or kinetics (the most accessible conformation) and depends on many 

intrinsic and extrinsic factors. Most natural proteins are thermodynamically only marginally 

stable up to the level that is necessary for their function47, and in non-standard conditions, 

they are losing their proper structure rapidly48. On the other hand, high stability is 

correlated with high thermostability49, resistance to pH or denaturing chemicals50, 

prolonged half-life51, serum survival time52, good expression yields53, and with resistance 

towards effect of mutations54. Therefore, stability improvements are important in 

biotechnology, medicine, the food industry, and biocatalysis and provide stable templates 

for protein engineering. 

Experimental methods like directed evolution or saturation mutagenesis are capable 

of providing highly stable designs55–57. The drawback is the necessity of screening or 

selection techniques that make them time-consuming and cost-ineffective. Moreover, the 

setup of these methods is sometimes too difficult to be generally applicable to every 

protein. Therefore, computational methods are increasingly applied to pre-select 

positions58 or identify particular mutations59 to accelerate the screening process and 

reduce the experimental effort to the minimum.  

3.2 State-of-the-art 

With a significant increase in computational power in the past few decades, there 

was also a boom in the development of tools for predicting stability change upon mutation. 

These methods can be divided into three categories: i) prediction of free energy change, ii) 

analysis of evolutionary information, and iii) machine learning.  
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Force-field-based methods evaluating the change in folding free energy are probably 

the most common. Universal force fields like in Rosetta60, FoldX61,62, or Eris63 are robust 

and have very good accuracy. On the other hand, the necessity of having a high-quality 3D 

structure as an input and the high demand for computational resources and time make 

them not applicable generally to every protein.  

Phylogeny-based methods like consensus design (CD) or ancestral sequence 

reconstruction (ASR) do not have these limitations because they use only sequence input 

of target and homologous proteins. CD is available in several tools which are easy to use 

(3DM, VectorNTI, and HotSpot Wizard). The drawback of CD methods is that many of the 

consensual mutations preserve also other properties and are not stabilizing64. Therefore, 

these methods rather create a pool of mutations that must be further filtered or tested 

experimentally. ASR was proven to construct very robust proteins with good stability, 

activity, selectivity, and expressibility65–68, but their success depends strongly on high-

quality multiple sequence alignment (MSA) and phylogenetic tree. Even though there are 

tools that provide ASR design (RAxML, FastML, HandAlign), all of them leave the essential 

steps of selection of homologous sequences and MSA construction to the user.  

The advantages of methods based on machine learning are the speed and the ability 

to recognize unknown dependencies that are not considered in force fields. Any 

characteristic that can describe the data can be used as a feature and potentially improve 

the predicting power. Unfortunately, these methods suffer from insufficient quality, size, 

and diversity of data that can be used for training and testing. Most of the machine learning 

tools were based on the ProTherm database69 because, for a long time, it was the only 

available source of stability data. It was updated in 2020 and contains about 31,500 entries. 

Unfortunately, about 40 % are data from wild types and many inaccuracies in annotations, 

inconsistencies in values, and errors in signs were reported70,71. Software developers 

usually need to filter and manually curate ProTherm data so it can be applied for training 

or testing purposes70,72. Moreover, the prediction capabilities of individual tools are hard 

to compare based on the original papers. Datasets used for training and testing are small 



 

 
 

 

20 
 

 

or lack protein diversity. Therefore, many machine learning tools are biased towards 

proteins in their training datasets and fail in general accuracy60,73,74. A thorough description 

of stability prediction tools and datasets we discuss in the review by Musil et al.75 

3.3 Contribution to the field 

Currently, the most successful methods for protein stability design are hybrid 

approaches combining more above-mentioned strategies. They usually rely on force field 

calculations combined with either short molecular dynamics simulations and cysteine 

bridge design (FRESCO76) or with evolution-based methods (FireProt77, PROSS53). Our 

method FireProt was the first that focused on the direct design of multiple-point mutants. 

It is divided into two separate branches, one using Rosetta and FoldX stability evaluation of 

all possible mutations and the second applying back-to-consensus analysis. Both strategies 

are accompanied by statistical, geometry, and energy filters. The effectivity of FireProt was 

shown on the stabilization of haloalkane dehalogenase DhaA and dehydrochlorinase LinA, 

both stabilized by more than 20 °C77. Later, the FireProt method was transformed into an 

automated, user-friendly web server enabling protein stability design using both branches 

of the original method. The tool was proven to be effective by the community of users who 

successfully stabilized their proteins78–81. FireProt is available at 

https://loschmidt.chemi.muni.cz/fireprotweb/ and is thoroughly described in PART II. 

Phylogeny-based methods provide a great alternative when the structure of the 

target protein is not available. Consensus design is not very specific and has been 

implemented already in several tools, but ancestral sequence reconstruction was still far 

from being used automatically. Therefore, we developed FireProtASR, a web server that fully 

automizes the whole ASR workflow under one interface. The tool uses the protein 

sequence as the only input. It provides all ASR steps, like gathering homologous sequences, 

clustering and filtering, construction of MSA and phylogenetic tree, rooting of the tree, 

reconstruction of ancestral sequences, and taking care of the ancestral gaps correction. The 

tool was tested on the enzyme DhaA from the haloalkane dehalogenase family. Five out of 

six designs tested experimentally were folded correctly, stabilized by 20-26 °C, and retained 

https://loschmidt.chemi.muni.cz/fireprotweb/
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or improved activity and yields. FireProtASR is available at 

https://loschmidt.chemi.muni.cz/fireprotasr/ and is thoroughly described in PART II. 

By the time we released FireProtDB, a database of protein stability mutants, the 

available source of stability data was the outdated database ProTherm. ProTherm was last 

updated in 2013, and many inconsistencies were reported, including redundancy, missing 

or wrong values, or opposite signs of ΔΔG. The second database available, ProtaBank from 

2018, introduced new data but did not solve the problems ProTherm contained. FireProtDB 

contains experimental data of 16,000 mutants of more than 300 protein structures. The 

database comprises data from ProTherm, stability data from ProtaBank, data from a recent 

literature search, and experimental data from our group. Moreover, more than 10,000 

mutations were verified in the original publications to reduce the errors in signs, values, 

and other inconsistencies. FireProtDB is available at 

https://loschmidt.chemi.muni.cz/fireprotdb/ and is thoroughly described in PART II. 

  

https://loschmidt.chemi.muni.cz/fireprotasr/
https://loschmidt.chemi.muni.cz/fireprotdb/
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4 Analysis of Ligand Pathways 

4.1 Introduction  

It is estimated that more than 60 % of all enzymes have their active sites buried inside 

the protein core, forming an optimal microenvironment for particular functions82. These 

buried active sites are connected with the surrounding bulk solvent through molecular 

pathways, usually referred to as tunnels. Tunnels exist in all enzyme classes and enable the 

transport of substrates, cofactors, solvents, and products to and from the active site. 

Therefore, they play an essential role in the enzyme's catalytic cycle because the tunnel-

lining residues can significantly influence the rates of substrate binding, product release, or 

substrate inhibition83–85. Moreover, tunnel opening, dynamics, and amino acid composition 

can help to distinguish between ligands of different sizes, flexibility, and physico-chemical 

properties and provide an additional level of enzyme selectivity. 

For their important functions, tunnels in enzymes are also a frequent target of protein 

engineering efforts. Tunnels, similarly to any voids in proteins, are important hot spots for 

increasing protein stability. Optimization of the free space and introduction of additional 

interactions leads to higher increases in the stability compared to mutations in other parts 

of the protein86. On the other hand, because of the tunnel's importance also for the enzyme 

function, one has to be careful about balancing the stability-activity trade-off. The tunnel 

lining residues are often important for both properties but the effect of the mutation can 

be beneficial only for one of them87. Regarding functional properties, ligand transport can 

often be a rate-limiting step of the catalytic cycle88–90. Therefore, tunnel lining residues or 

whole secondary structures around tunnels are often mutated to modify catalytic 

properties91: i) Narrowing of the tunnel may lead to improved catalytic efficiency by 

constriction of the ligand in the active site92, ii) tunnel opening accelerate product release 

or substrate binding93–95, iii) modification of tunnel length or throughput may lead to 

change in substrate specificity96,97, iv) widening of the tunnel bottleneck can create 

promiscuous enzymes98, or v) blockage or opening of water tunnel can result in 
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modification of water flux99,100. Modifying all these effects through tunnel mutagenesis is 

one of the main strategies in protein engineering of enzyme function.  

4.2 State-of-the-art 

Analysis of the access pathways is challenging, using only experimental techniques. 

The few available direct methods, such as time-resolved crystallography and 

crystallography under xenon pressure, are still very time demanding and expensive and 

provide only limited information101,102. Therefore, tunnels and channels can be effectively 

studied using in silico approaches and the field is already well developed103. Most of the 

recent tools, like CAVER 3104, MOLE 2105, and MolAxis106, are based on the pathway 

detection in the protein structure represented by the Voronoi diagram. These tools, based 

solely on the analysis of the geometry of access pathways, are high-speed and can provide 

high-quality results. On the other hand, they do not provide any information about the 

ligand interaction or energy of the ligand transport. 

If one wants to study binding and unbinding processes, the classical experimental 

approach would be rather indirect, like performing enzyme kinetics experiments to 

measure the rates or residence times for the ligands107. In silico methods can be used as a 

complementary approach for experimental studies. The molecular docking108–110 is meant 

to identify optimal binding modes of studied ligands in the binding sites. These methods 

search for local minima of the binding free energy by perturbating the ligand conformation 

and evaluating the binding energy by a scoring function. The use of these methods is critical 

for virtual screenings and drug design111. However, molecular docking provides only 

information about the best binding mode, but it does not take into consideration the 

transport processes. 

Molecular dynamic (MD) simulations are state-of-the-art methods to analyze the 

motion of protein systems in time and their interactions with ligands112. MD simulations 

can be used to study changes in the protein conformation or binding and unbinding of 

ligands92,113. Unfortunately, ligand transport is often beyond the time limits of classical MD 
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simulations. Therefore, many enhanced sampling methods were developed to sample 

larger conformational space114. These methods either implement external force or apply 

different strategies to sample rare events during the simulation. The setup, execution, and 

analysis of MD simulations require significant knowledge of molecular modeling. To 

facilitate specific modeling scenarios, tools employing MD, sometimes in the form of user-

friendly webservers, were developed115–118. Even with a steady improvement of 

computational power in high-performance computing, using the methods based on MD for 

large-scale screening studies is not feasible. Therefore, software tools applying 

approximations to describe the process of ligand transport were recently developed.  

Several approximative methods (SLIGHTER119, MoMA-LigPath120, ART-RRT121, 

GPathFinder122) were developed to study interactions between the protein and the ligand 

during the transport process. These methods, like classical docking, can provide the best 

binding modes but additionally also provide information on the energetics of the transport 

and identify bottlenecks limiting the ligand passage. Protein engineering methods can 

optimize residues in the bottleneck to develop more efficient biocatalysts.   These methods 

use approximations to simulate binding or unbinding fast and provide energy profiles, 

which can be used to rank ligand or tunnel preferences during the transport process.  

4.3 Contribution to the field 

Several tools for the analysis of tunnels are available. Unfortunately, most studies 

focus on a single structure analysis, even though proteins are flexible molecules and only 

analysis of tunnels in an ensemble of structures can provide a proper description of their 

geometry. Caver, for example, can handle even analysis of a large number of snapshots 

from MD simulations but its command-line nature and the necessity of the process 

automation makes it difficult to use. Therefore, we developed Caver Analyst, a stand-alone 

tool for quantitative analysis and real-time visualization of tunnels, calculated by Caver, in 

static structures and molecular simulations. In its second version, Caver Analyst is focused 

on loading and analyzing even long MD simulation trajectories with advanced analysis and 

visualization of tunnel dynamics and bottleneck residues. Moreover, Caver Analyst is not 
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strictly focused only on tunnel analysis. It is mainly a protein visualization tool that enables 

i) different molecular representations, ii) advanced displaying and coloring techniques, iii) 

structure alignment, iv) protonation computation, v) measurements, vi) mutagenesis, vii) 

clip planes and slices, and viii) video recording. The application is supported by the 

following operating systems: Windows 8 or later, Mac OS X 10.7.5 or later, and major 

distributions of Linux, including Fedora Core, Red Hat, and Ubuntu. Caver Analyst 2.0 can 

be downloaded from https://caver.cz and is described in PART II. 

Analysis of tunnel geometry, even in MD trajectory, can provide only very limited 

information about the protein transport processes. Analysis of particular protein-ligand 

complex and evaluation of the energy of the transport brings an additional level of 

information. CaverDock is an approximative tool for the identification of possible 

trajectories of ligand binding or unbinding. The calculation is composed of i) identification 

of tunnels by Caver, ii) discretization of the tunnel into a series of discs, and iii) constrained 

docking to each disc employing a modified docking algorithm of AutoDock Vina with 

parallel heuristics to identify a trajectory of ligand transport. Contrary to MD simulations, 

the calculation takes only from minutes to a couple of hours, which makes this method 

applicable also for screening purposes. We tested the screening capabilities of CaverDock 

in the analysis of inhibitors binding and tunnel preferences in cytochrome P450 and 

leukotriene A4123 and the screening of more than 4,300 globally approved drugs binding in 

Spike protein of SARS-CoV-2124. Moreover, CaverDock was also applied by other users to 

find enantioselective inhibitors125, explain the mode of inhibition126, engineering a new 

catalytic function127, or identification of hot-spots for mutagenesis85. Currently, we are 

working on Python API for easier setup, calculation, and analysis and on the protein 

flexibility implementation, which seems to be the major problem in dynamical tunnels. 

CaverDock can be downloaded from https://loschmidt.chemi.muni.cz/caverdock/ and is 

thoroughly discussed in PART II. 

Both Caver and CaverDock are stand-alone tools that need some basic knowledge in 

bioinformatics to install and run the calculation correctly. To bring both tools even to 

https://caver.cz/
https://loschmidt.chemi.muni.cz/caverdock/
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inexperienced users, we have developed a user-friendly web service with a graphical 

interface called Caver Web. The only mandatory input for tunnel identification and analysis 

by Caver 3.0 is the protein structure and eventually a list of ligands for the transport analysis 

by CaverDock 1.0. On the output, the identified tunnels, their properties, lining residues, 

energy profiles, and trajectories of ligand transport can be visualized. Currently, we are 

broadening the Caver Web features for an automized virtual screening pipeline of FDA-

approved drugs. Moreover, a short molecular dynamic simulation will be introduced into 

the Caver Web to create an ensemble of structures that can be analysed in a statistically 

meaningful manner. The server is freely available at 

https://loschmidt.chemi.muni.cz/caverweb and is thoroughly discussed in PART II. 

Access tunnels are functional regions of proteins. Their modification can significantly 

alter the speed of enzymatic reactions in cases where substrate binding or product release 

are rate-limiting steps of the catalytic cycle. Therefore, protein engineering of tunnel-lining 

residues is one of the effective strategies to improve enzyme activity. HotSpot Wizard is a 

web-based tool for the identification of hot spots for mutagenesis in functional regions, i.e. 

binding sites or access tunnels. It combines sequence and structure information to identify 

non-conserved and non-catalytic residues in these functional regions and combines them 

in smart libraries for screening. In the last version, the HotSpot wizard pipeline (Figure 3) 

was enriched for prediction and validation of 3D structure from sequence, stability 

prediction, and recently also molecular docking. HotSpot Wizard 3.0 web server is freely 

available at https://loschmidt.chemi.muni.cz/hotspotwizard/ and is thoroughly discussed 

in PART II. 

https://loschmidt.chemi.muni.cz/caverweb
https://loschmidt.chemi.muni.cz/hotspotwizard/
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Figure 3. General workflow of HotSpot Wizard. Input files are highlighted in grey, individual analyses in yellow 
and results on the output in green.  Adopted from Planas et al. [/10.1016/j.biotechadv.2021.107696]. 

 

  



 

 
 

 

28 
 

 

REFERENCES 

1. Goodwin, S., McPherson, J. D. & McCombie, W. R. Coming of age: ten years of next-generation sequencing 

technologies. Nat. Rev. Genet. 17, 333–351 (2016). 

2. Check Hayden, E. Technology: The $1,000 genome. Nature 507, 294–295 (2014). 

3. The UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Res. 43, D204–D212 (2015). 

4. Mitchell, A. L. et al. MGnify: the microbiome analysis resource in 2020. Nucleic Acids Res. 48, D570–D578 (2020). 

5. Zallot, R., Oberg, N. O. & Gerlt, J. A. ‘Democratized’ genomic enzymology web tools for functional assignment. Curr. 

Opin. Chem. Biol. 47, 77–85 (2018). 

6. Markel, U. et al. Advances in ultrahigh-throughput screening for directed enzyme evolution. Chem. Soc. Rev. 49, 

233–262 (2020). 

7. Dörr, M. et al. Fully automatized high-throughput enzyme library screening using a robotic platform. Biotechnol. 

Bioeng. 113, 1421–1432 (2016). 

8. Colin, P.-Y. et al. Ultrahigh-throughput discovery of promiscuous enzymes by picodroplet functional 

metagenomics. Nat. Commun. 6, 10008 (2015). 

9. Mukherjee, S. et al. Genomes OnLine Database (GOLD) v.8: overview and updates. Nucleic Acids Res. 49, D723–

D733 (2021). 

10. Zaparucha, A., Berardinis, V. de & Vaxelaire-Vergne, C. Chapter 1:Genome Mining for Enzyme Discovery. in Modern 

Biocatalysis 1–27 (2018). doi:10.1039/9781788010450-00001. 

11. Needleman, S. B. & Wunsch, C. D. A general method applicable to the search for similarities in the amino acid 

sequence of two proteins. J. Mol. Biol. 48, 443–453 (1970). 

12. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 

403–410 (1990). 

13. Wheeler, D. Selecting the Right Protein-Scoring Matrix. Curr. Protoc. Bioinforma. 00, 3.5.1-3.5.6 (2003). 

14. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic 

Acids Res. 25, 3389–3402 (1997). 

15. Eddy, S. R. A new generation of homology search tools based on probabilistic inference. Genome Inform. Int. Conf. 

Genome Inform. 23, 205–211 (2009). 

16. Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinforma. Oxf. Engl. 26, 2460–2461 

(2010). 

17. Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinforma. Oxf. Engl. 30, 1236–1240 

(2014). 

18. Chang, A. et al. BRENDA, the ELIXIR core data resource in 2021: new developments and updates. Nucleic Acids Res. 

49, D498–D508 (2021). 

19. Tsirigos, K. D., Peters, C., Shu, N., Käll, L. & Elofsson, A. The TOPCONS web server for consensus prediction of 

membrane protein topology and signal peptides. Nucleic Acids Res. 43, W401–W407 (2015). 

20. Barrett, T. et al. BioProject and BioSample databases at NCBI: facilitating capture and organization of metadata. 

Nucleic Acids Res. 40, D57–D63 (2012). 

21. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021). 



 

 
 

 

29 
 

 

22. Vasina, M. et al. Tools for computational design and high-throughput screening of therapeutic enzymes. Adv. Drug 

Deliv. Rev. 183, 114143 (2022). 

23. Kramer, R. M., Shende, V. R., Motl, N., Pace, C. N. & Scholtz, J. M. Toward a molecular understanding of protein 

solubility: increased negative surface charge correlates with increased solubility. Biophys. J. 102, 1907–1915 

(2012). 

24. Khurana, S. et al. DeepSol: a deep learning framework for sequence-based protein solubility prediction. 

Bioinformatics 34, 2605–2613 (2018). 

25. Raimondi, D., Orlando, G., Fariselli, P. & Moreau, Y. Insight into the protein solubility driving forces with neural 

attention. PLOS Comput. Biol. 16, e1007722 (2020). 

26. Trimpin, S. & Brizzard, B. Analysis of insoluble proteins. BioTechniques 46, 409–419 (2009). 

27. Helen M. Berman, M. J. G., Andrei Kouranov, David I. Micallef, John Westbrook & investigators, P. S. I. network of. 

Protein Structure Initiative - TargetTrack 2000-2017 - all data files. (2017) doi:10.5281/zenodo.821654. 

28. Price, W. N. et al. Large-scale experimental studies show unexpected amino acid effects on protein expression and 

solubility in vivo in E. coli. Microb. Inform. Exp. 1, 6 (2011). 

29. Hirose, S. et al. Statistical analysis of features associated with protein expression/solubility in an in vivo Escherichia 

coli expression system and a wheat germ cell-free expression system. J. Biochem. (Tokyo) 150, 73–81 (2011). 

30. Pawlicki, S., Le Béchec, A. & Delamarche, C. AMYPdb: a database dedicated to amyloid precursor proteins. BMC 

Bioinformatics 9, 273 (2008). 

31. Niwa, T. et al. Bimodal protein solubility distribution revealed by an aggregation analysis of the entire ensemble of 

Escherichia coli proteins. Proc. Natl. Acad. Sci. U. S. A. 106, 4201–4206 (2009). 

32. Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000). 

33. Burley, S. K. et al. RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological 

macromolecules for basic and applied research and education in fundamental biology, biomedicine, 

biotechnology, bioengineering and energy sciences. Nucleic Acids Res. 49, D437–D451 (2021). 

34. Kawashima, S. & Kanehisa, M. AAindex: amino acid index database. Nucleic Acids Res. 28, 374 (2000). 

35. Hon, J. et al. SoluProt: Prediction of Soluble Protein Expression in Escherichia coli. Bioinforma. Oxf. Engl. btaa1102 

(2021) doi:10.1093/bioinformatics/btaa1102. 

36. Yang, Y., Niroula, A., Shen, B. & Vihinen, M. PON-Sol: prediction of effects of amino acid substitutions on protein 

solubility. Bioinformatics 32, 2032–2034 (2016). 

37. Sormanni, P., Aprile, F. A. & Vendruscolo, M. The CamSol method of rational design of protein mutants with 

enhanced solubility. J. Mol. Biol. 427, 478–490 (2015). 

38. Tian, Y., Deutsch, C. & Krishnamoorthy, B. Scoring function to predict solubility mutagenesis. Algorithms Mol. Biol. 

5, 33 (2010). 

39. Paladin, L., Piovesan, D. & Tosatto, S. C. E. SODA: prediction of protein solubility from disorder and aggregation 

propensity. Nucleic Acids Res. 45, W236–W240 (2017). 

40. Van Durme, J. et al. Solubis: a webserver to reduce protein aggregation through mutation. Protein Eng. Des. Sel. 

29, 285–289 (2016). 

41. De Baets, G., Van Durme, J., van der Kant, R., Schymkowitz, J. & Rousseau, F. Solubis: optimize your protein. 

Bioinformatics 31, 2580–2582 (2015). 



 

 
 

 

30 
 

 

42. Zambrano, R. et al. AGGRESCAN3D (A3D): server for prediction of aggregation properties of protein structures. 

Nucleic Acids Res. 43, W306–W313 (2015). 

43. Vanacek, P. et al. Exploration of Enzyme Diversity by Integrating Bioinformatics with Expression Analysis and 

Biochemical Characterization. ACS Catal. 8, 2402–2412 (2018). 

44. Vanacek, P. et al. Functional Annotation of an Enzyme Family by Integrated Strategy Combining Bioinformatics 

with Microanalytical and Microfluidic Technologies. (2021) doi:10.26434/chemrxiv.13621517.v1. 

45. Klesmith, J. R., Bacik, J.-P., Wrenbeck, E. E., Michalczyk, R. & Whitehead, T. A. Trade-offs between enzyme fitness 

and solubility illuminated by deep mutational scanning. Proc. Natl. Acad. Sci. 114, 2265–2270 (2017). 

46. Wrenbeck, E. E. et al. An Automated Data-Driven Pipeline for Improving Heterologous Enzyme Expression. ACS 

Synth. Biol. 8, 474–481 (2019). 

47. Bar-Even, A. et al. The Moderately Efficient Enzyme: Evolutionary and Physicochemical Trends Shaping Enzyme 

Parameters. Biochemistry 50, 4402–4410 (2011). 

48. Modarres, H. P., Mofrad, M. R. & Sanati-Nezhad, A. Protein thermostability engineering. RSC Adv. 6, 115252–

115270 (2016). 

49. Pucci, F., Kwasigroch, J. M. & Rooman, M. Protein Thermal Stability Engineering Using HoTMuSiC. Methods Mol. 

Biol. Clifton NJ 2112, 59–73 (2020). 

50. Polizzi, K. M., Bommarius, A. S., Broering, J. M. & Chaparro-Riggers, J. F. Stability of biocatalysts. Curr. Opin. Chem. 

Biol. 11, 220–225 (2007). 

51. Wijma, H. J., Floor, R. J. & Janssen, D. B. Structure- and sequence-analysis inspired engineering of proteins for 

enhanced thermostability. Curr. Opin. Struct. Biol. 23, 588–594 (2013). 

52. Gao, D. et al. Thermostable variants of cocaine esterase for long-time protection against cocaine toxicity. Mol. 

Pharmacol. 75, 318–323 (2009). 

53. Goldenzweig, A. et al. Automated Structure- and Sequence-Based Design of Proteins for High Bacterial Expression 

and Stability. Mol. Cell 63, 337–346 (2016). 

54. Bloom, J. D., Labthavikul, S. T., Otey, C. R. & Arnold, F. H. Protein stability promotes evolvability. Proc. Natl. Acad. 

Sci. U. S. A. 103, 5869–5874 (2006). 

55. Kretz, K. A. et al. Gene site saturation mutagenesis: a comprehensive mutagenesis approach. Methods Enzymol. 

388, 3–11 (2004). 

56. Seitz, T. et al. Enhancing the stability and solubility of the glucocorticoid receptor ligand-binding domain by high-

throughput library screening. J. Mol. Biol. 403, 562–577 (2010). 

57. Bommarius, A. S. & Paye, M. F. Stabilizing biocatalysts. Chem. Soc. Rev. 42, 6534–6565 (2013). 

58. Sumbalova, L., Stourac, J., Martinek, T., Bednar, D. & Damborsky, J. HotSpot Wizard 3.0: web server for automated 

design of mutations and smart libraries based on sequence input information. Nucleic Acids Res. 46, W356–W362 

(2018). 

59. Wijma, H. J., Fürst, M. J. L. J. & Janssen, D. B. A Computational Library Design Protocol for Rapid Improvement of 

Protein Stability: FRESCO. Methods Mol. Biol. Clifton NJ 1685, 69–85 (2018). 

60. Kellogg, E. H., Leaver-Fay, A. & Baker, D. Role of conformational sampling in computing mutation-induced changes 

in protein structure and stability. Proteins Struct. Funct. Bioinforma. 79, 830–838 (2011). 



 

 
 

 

31 
 

 

61. Guerois, R., Nielsen, J. E. & Serrano, L. Predicting changes in the stability of proteins and protein complexes: a 

study of more than 1000 mutations. J. Mol. Biol. 320, 369–387 (2002). 

62. Schymkowitz, J. et al. The FoldX web server: an online force field. Nucleic Acids Res. 33, W382-388 (2005). 

63. Yin, S., Ding, F. & Dokholyan, N. V. Eris: an automated estimator of protein stability. Nat. Methods 4, 466–467 

(2007). 

64. Magliery, T. J. Protein stability: computation, sequence statistics, and new experimental methods. Curr. Opin. 

Struct. Biol. 33, 161–168 (2015). 

65. Watanabe, K., Ohkuri, T., Yokobori, S. & Yamagishi, A. Designing thermostable proteins: ancestral mutants of 3-

isopropylmalate dehydrogenase designed by using a phylogenetic tree. J. Mol. Biol. 355, 664–674 (2006). 

66. Wheeler, L. C., Lim, S. A., Marqusee, S. & Harms, M. J. The thermostability and specificity of ancient proteins. Curr. 

Opin. Struct. Biol. 38, 37–43 (2016). 

67. Chaloupkova, R. et al. Light-Emitting Dehalogenases: Reconstruction of Multifunctional Biocatalysts. ACS Catal. 9, 

4810–4823 (2019). 

68. Babkova, P. et al. Structures of hyperstable ancestral haloalkane dehalogenases show restricted conformational 

dynamics. Comput. Struct. Biotechnol. J. 18, 1497–1508 (2020). 

69. Nikam, R., Kulandaisamy, A., Harini, K., Sharma, D. & Gromiha, M. M. ProThermDB: thermodynamic database for 

proteins and mutants revisited after 15 years. Nucleic Acids Res. 49, D420–D424 (2021). 

70. Pucci, F., Bernaerts, K. V., Kwasigroch, J. M. & Rooman, M. Quantification of biases in predictions of protein stability 

changes upon mutations. Bioinforma. Oxf. Engl. 34, 3659–3665 (2018). 

71. Mazurenko, S. Predicting protein stability and solubility changes upon mutations: data perspective. ChemCatChem 

12, 5590–5598 (2020). 

72. Dehouck, Y. et al. Fast and accurate predictions of protein stability changes upon mutations using statistical 

potentials and neural networks: PoPMuSiC-2.0. Bioinformatics 25, 2537–2543 (2009). 

73. Khan, S. & Vihinen, M. Performance of protein stability predictors. Hum. Mutat. 31, 675–684 (2010). 

74. Potapov, V., Cohen, M. & Schreiber, G. Assessing computational methods for predicting protein stability upon 

mutation: good on average but not in the details. Protein Eng. Des. Sel. 22, 553–560 (2009). 

75. Musil, M., Konegger, H., Hon, J., Bednar, D. & Damborsky, J. Computational Design of Stable and Soluble 

Biocatalysts. ACS Catal. 9, 1033–1054 (2019). 

76. Wijma, H. J. et al. Computationally designed libraries for rapid enzyme stabilization. Protein Eng. Des. Sel. 27, 49–

58 (2014). 

77. Bednar, D. et al. FireProt: Energy- and Evolution-Based Computational Design of Thermostable Multiple-Point 

Mutants. PLOS Comput. Biol. 11, e1004556 (2015). 

78. Xia, Y. et al. Development of thermostable sucrose phosphorylase by semi-rational design for efficient biosynthesis 

of alpha-D-glucosylglycerol. Appl. Microbiol. Biotechnol. 105, 7309–7319 (2021). 

79. Liu, Y. et al. Enhancing the thermal stability of ketoreductase ChKRED12 using the FireProt web server. Process 

Biochem. 101, 207–212 (2021). 

80. Cheng, Z. et al. Computational Design of Nitrile Hydratase from Pseudonocardia thermophila JCM3095 for 

Improved Thermostability. Molecules 25, 4806 (2020). 



 

 
 

 

32 
 

 

81. Solarczek, J. et al. Position 123 of halohydrin dehalogenase HheG plays an important role in stability, activity, and 

enantioselectivity. Sci. Rep. 9, 5106 (2019). 

82. Pravda, L. et al. Anatomy of enzyme channels. BMC Bioinformatics 15, 379 (2014). 

83. Kokkonen, P. et al. Substrate inhibition by the blockage of product release and its control by tunnel engineering. 

RSC Chem. Biol. 2, 645–655 (2021). 

84. Marques, S. M., Bednar, D. & Damborsky, J. Computational Study of Protein-Ligand Unbinding for Enzyme 

Engineering. Front. Chem. 6, (2019). 

85. Rapp, L. R. et al. Substrate Anchoring and Flexibility Reduction in CYP153AM.aq Leads to Highly Improved Efficiency 

toward Octanoic Acid. ACS Catal. 11, 3182–3189 (2021). 

86. Koudelakova, T. et al. Engineering Enzyme Stability and Resistance to an Organic Cosolvent by Modification of 

Residues in the Access Tunnel. Angew. Chem. Int. Ed. 52, 1959–1963 (2013). 

87. Liskova, V. et al. Balancing the Stability–Activity Trade-Off by Fine-Tuning Dehalogenase Access Tunnels. 

ChemCatChem 7, 648–659 (2015). 

88. Kokkonen, P. et al. The impact of tunnel mutations on enzymatic catalysis depends on the tunnel-substrate 

complementarity and the rate-limiting step. Comput. Struct. Biotechnol. J. 18, 805–813 (2020). 

89. Wang, L. H., Tsai, A. L. & Hsu, P. Y. Substrate binding is the rate-limiting step in thromboxane synthase catalysis. J. 

Biol. Chem. 276, 14737–14743 (2001). 

90. Shannon, A. E. et al. Product release is rate-limiting for catalytic processing by the Dengue virus protease. Sci. Rep. 

6, 37539 (2016). 

91. Schenkmayerova, A. et al. Engineering the protein dynamics of an ancestral luciferase. Nat. Commun. 12, 3616 

(2021). 

92. Marques, S. M. et al. Catalytic Cycle of Haloalkane Dehalogenases Toward Unnatural Substrates Explored by 

Computational Modeling. J. Chem. Inf. Model. 57, 1970–1989 (2017). 

93. Hamre, A. G., Frøberg, E. E., Eijsink, V. G. H. & Sørlie, M. Thermodynamics of tunnel formation upon substrate 

binding in a processive glycoside hydrolase. Arch. Biochem. Biophys. 620, 35–42 (2017). 

94. Brezovsky, J. et al. Engineering a de Novo Transport Tunnel. ACS Catal. 6, 7597–7610 (2016). 

95. Kong, X.-D. et al. Engineering of an epoxide hydrolase for efficient bioresolution of bulky pharmaco substrates. 

Proc. Natl. Acad. Sci. 111, 15717–15722 (2014). 

96. Subramanian, K. et al. Modulating D-amino acid oxidase (DAAO) substrate specificity through facilitated solvent 

access. PLOS ONE 13, e0198990 (2018). 

97. Finzel, K. et al. Probing the Substrate Specificity and Protein-Protein Interactions of the E. coli Fatty Acid 

Dehydratase, FabA. Chem. Biol. 22, 1453–1460 (2015). 

98. Yan, X., Wang, J., Sun, Y., Zhu, J. & Wu, S. Facilitating the Evolution of Esterase Activity from a Promiscuous Enzyme 

(Mhg) with Catalytic Functions of Amide Hydrolysis and Carboxylic Acid Perhydrolysis by Engineering the Substrate 

Entrance Tunnel. Appl. Environ. Microbiol. 82, 6748–6756 (2016). 

99. Syrén, P.-O., Hammer, S. C., Claasen, B. & Hauer, B. Entropy is key to the formation of pentacyclic terpenoids by 

enzyme-catalyzed polycyclization. Angew. Chem. Int. Ed Engl. 53, 4845–4849 (2014). 

100. David, B. et al. Internal Water Dynamics Control the Transglycosylation/Hydrolysis Balance in the Agarase (AgaD) 

of Zobellia galactanivorans. ACS Catal. 7, 3357–3367 (2017). 



 

 
 

 

33 
 

 

101. Šrajer, V. et al. Protein Conformational Relaxation and Ligand Migration in Myoglobin:  A Nanosecond to 

Millisecond Molecular Movie from Time-Resolved Laue X-ray Diffraction. Biochemistry 40, 13802–13815 (2001). 

102. Schmidt, M. et al. Ligand migration pathway and protein dynamics in myoglobin: A time-resolved crystallographic 

study on L29W MbCO. Proc. Natl. Acad. Sci. 102, 11704–11709 (2005). 

103. Brezovsky, J. et al. Software tools for identification, visualization and analysis of protein tunnels and channels. 

Biotechnol. Adv. 31, 38–49 (2013). 

104. Chovancova, E. et al. CAVER 3.0: A Tool for the Analysis of Transport Pathways in Dynamic Protein Structures. PLOS 

Comput. Biol. 8, e1002708 (2012). 

105. Sehnal, D. et al. MOLE 2.0: advanced approach for analysis of biomacromolecular channels. J. Cheminformatics 5, 

39 (2013). 

106. Yaffe, E., Fishelovitch, D., Wolfson, H. J., Halperin, D. & Nussinov, R. MolAxis: a server for identification of channels 

in macromolecules. Nucleic Acids Res. 36, W210–W215 (2008). 

107. Schuetz, D. A. et al. Kinetics for Drug Discovery: an industry-driven effort to target drug residence time. Drug 

Discov. Today 22, 896–911 (2017). 

108. Trott, O. & Olson, A. J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, 

efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010). 

109. Morris, G. M. et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. 

Comput. Chem. 30, 2785–2791 (2009). 

110. Verdonk, M. L., Cole, J. C., Hartshorn, M. J., Murray, C. W. & Taylor, R. D. Improved protein-ligand docking using 

GOLD. Proteins 52, 609–623 (2003). 

111. Kitchen, D. B., Decornez, H., Furr, J. R. & Bajorath, J. Docking and scoring in virtual screening for drug discovery: 

methods and applications. Nat. Rev. Drug Discov. 3, 935–949 (2004). 

112. Hospital, A., Goñi, J. R., Orozco, M. & Gelpi, J. L. Molecular dynamics simulations: advances and applications. Adv. 

Appl. Bioinforma. Chem. 8, 37–47 (2015). 

113. Kokkonen, P. et al. Molecular Gating of an Engineered Enzyme Captured in Real Time. J. Am. Chem. Soc. 140, 

17999–18008 (2018). 

114. Rydzewski, J. & Nowak, W. Ligand diffusion in proteins via enhanced sampling in molecular dynamics. Phys. Life 

Rev. 22–23, 58–74 (2017). 

115. Bruce, N. J., Ganotra, G. K., Richter, S. & Wade, R. C. KBbox: A Toolbox of Computational Methods for Studying the 

Kinetics of Molecular Binding. J. Chem. Inf. Model. 59, 3630–3634 (2019). 

116. Kingsley, L. J. & Lill, M. A. Including ligand-induced protein flexibility into protein tunnel prediction. J. Comput. 

Chem. 35, 1748–1756 (2014). 

117. Yang, J.-F., Wang, F., Chen, Y.-Z., Hao, G.-F. & Yang, G.-F. LARMD: integration of bioinformatic resources to profile 

ligand-driven protein dynamics with a case on the activation of estrogen receptor. Brief. Bioinform. 21, 2206–2218 

(2020). 

118. Stank, A. et al. TRAPP webserver: predicting protein binding site flexibility and detecting transient binding pockets. 

Nucleic Acids Res. 45, W325–W330 (2017). 



 

 
 

 

34 
 

 

119. Lee, P.-H., Kuo, K.-L., Chu, P.-Y., Liu, E. M. & Lin, J.-H. SLITHER: a web server for generating contiguous 

conformations of substrate molecules entering into deep active sites of proteins or migrating through channels in 

membrane transporters. Nucleic Acids Res. 37, W559–W564 (2009). 

120. Devaurs, D. et al. MoMA-LigPath: a web server to simulate protein-ligand unbinding. Nucleic Acids Res. 41, W297-

302 (2013). 

121. Nguyen, M. K., Jaillet, L. & Redon, S. ART-RRT: As-Rigid-As-Possible exploration of ligand unbinding pathways. J. 

Comput. Chem. 39, 665–678 (2018). 

122. Sánchez-Aparicio, J.-E. et al. GPathFinder: Identification of Ligand-Binding Pathways by a Multi-Objective Genetic 

Algorithm. Int. J. Mol. Sci. 20, 3155 (2019). 

123. Pinto, G. P. et al. Fast Screening of Inhibitor Binding/Unbinding Using Novel Software Tool CaverDock. Front. Chem. 

7, (2019). 

124. Pinto, G. P. et al. Screening of world approved drugs against highly dynamical spike glycoprotein of SARS-CoV-2 

using CaverDock and machine learning. Comput. Struct. Biotechnol. J. 19, 3187–3197 (2021). 

125. Knez, D. et al. Stereoselective Activity of 1-Propargyl-4-styrylpiperidine-like Analogues That Can Discriminate 

between Monoamine Oxidase Isoforms A and B. J. Med. Chem. 63, 1361–1387 (2020). 

126. Singh, P. P., Jaiswal, A. K., Kumar, A., Gupta, V. & Prakash, B. Untangling the multi-regime molecular mechanism of 

verbenol-chemotype Zingiber officinale essential oil against Aspergillus flavus and aflatoxin B1. Sci. Rep. 11, 6832 

(2021). 

127. Papadopoulou, A. et al. Re-Programming and Optimization of a L-Proline cis-4-Hydroxylase for the cis-3-

Halogenation of its Native Substrate. ChemCatChem 13, 3914–3919 (2021). 

  



 

 
 

 

35 
 

 

AUTHOR CONTRIBUTION 

I declare that my contribution to the publications was as: 

1. EnzymeMiner – workflow design, graphical interface design, 

supervision, testing, writing of the manuscript 

2. SoluProt - workflow design, supervision, writing of the manuscript 

3. FireProt – conceptualization, workflow design, graphical interface 

design, supervision, testing, writing of the manuscript 

4. FireProtASR – conceptualization, workflow design, graphical interface 

design, supervision, testing, writing of the manuscript 

5. FireProtDB – conceptualization, data curation, graphical interface 

design, supervision, testing, writing of the manuscript 

6. Caver Analyst 2 - conceptualization, testing, writing of the manuscript 

7. CaverDock - conceptualization, supervision, writing of the manuscript 

8. CaverWeb - conceptualization, workflow design, graphical interface 

design, supervision, testing, writing of the manuscript 

9. HotSpot Wizard - conceptualization, supervision, testing,  writing of the 

manuscript 

  



 

 
 

 

36 
 

 

 

 

 

 

 

 

 

 

 

 

PART II 

SELECTED PUBLICATIONS 



 

 
 

 

 
 

 

 

 

 

 

 

 

EnzymeMiner: Automated Mining of Soluble Enzymes with Diverse 

Structures, Catalytic Properties and Stabilities. 

  



W104–W109 Nucleic Acids Research, 2020, Vol. 48, Web Server issue Published online 11 May 2020
doi: 10.1093/nar/gkaa372

EnzymeMiner: automated mining of soluble enzymes
with diverse structures, catalytic properties and
stabilities
Jiri Hon1,2,3,†, Simeon Borko1,2,†, Jan Stourac1,3, Zbynek Prokop1,3, Jaroslav Zendulka2,
David Bednar 1,3, Tomas Martinek2 and Jiri Damborsky 1,3,*

1Loschmidt Laboratories, Department of Experimental Biology and Research Center for Toxic Compounds in the
Environment RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic, 2IT4Innovations Centre of
Excellence, Faculty of Information Technology, Brno University of Technology, Bozetechova 2, Brno, Czech Republic
and 3International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czech Republic

Received March 08, 2020; Revised April 13, 2020; Editorial Decision April 27, 2020; Accepted April 29, 2020

ABSTRACT

Millions of protein sequences are being discovered
at an incredible pace, representing an inexhaustible
source of biocatalysts. Despite genomic databases
growing exponentially, classical biochemical char-
acterization techniques are time-demanding, cost-
ineffective and low-throughput. Therefore, computa-
tional methods are being developed to explore the
unmapped sequence space efficiently. Selection of
putative enzymes for biochemical characterization
based on rational and robust analysis of all available
sequences remains an unsolved problem. To address
this challenge, we have developed EnzymeMiner––a
web server for automated screening and annotation
of diverse family members that enables selection
of hits for wet-lab experiments. EnzymeMiner priori-
tizes sequences that are more likely to preserve the
catalytic activity and are heterologously expressible
in a soluble form in Escherichia coli. The solubil-
ity prediction employs the in-house SoluProt predic-
tor developed using machine learning. EnzymeMiner
reduces the time devoted to data gathering, multi-
step analysis, sequence prioritization and selection
from days to hours. The successful use case for the
haloalkane dehalogenase family is described in a
comprehensive tutorial available on the EnzymeM-
iner web page. EnzymeMiner is a universal tool ap-
plicable to any enzyme family that provides an inter-
active and easy-to-use web interface freely available
at https://loschmidt.chemi.muni.cz/enzymeminer/.

INTRODUCTION

There are currently >259 million non-redundant protein
sequences in the NCBI nr database (release 2020-02-10)
(1). Despite their enormous promise for biological and
biotechnological discovery, experimental characterization
has been performed on only a small fraction of the avail-
able sequences. Currently, there are about 560 000 protein
sequences reliably curated in the UniProtKB/Swiss-Prot
database (release 2020 01) (2).

The low ratio of characterized to uncharacterized se-
quences reflects the sharp contrast in time-demanding/low-
throughput biochemical techniques versus fast/high-
throughput next-generation sequencing technology.
Although more efficient biochemical techniques employing
miniaturization and automation have been developed
(3–5), the most widely used experimental methods do not
provide sufficient capacity for biochemical characterization
of proteins spanning the ever-increasing sequence space.
Therefore, computational methods are currently the only
way to explore the immense protein diversity available
among the millions of uncharacterized sequence entries.

Two different computational strategies are generally used
for exploration of the unknown sequence space. The first
strategy takes a novel uncharacterized sequence as input
and predicts functional annotations. The method involves
annotating the unknown input sequences by predicting pro-
tein domains (6), Enzyme Commission (EC) number (7)
or Gene Ontology terms that are a subject of the initia-
tive named the Critical Assessment of Functional Anno-
tation (8). These methods are often universal and applica-
ble to any protein sequence. However, they often lack speci-
ficity as the automatic annotation rules or statistical mod-
els need to be substantially general. A significant advantage
of these methods is their seamless integration into available
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databases. Submission of a query sequence to a database
is sufficient, with no need for running computation- and
memory-intensive bioinformatics pipelines locally. A model
example of this approach is the automatic annotation work-
flow of the UniProtKB/TrEMBL database (2).

The second strategy takes a well-known characterized se-
quence as an input and applies a computational workflow,
typically based on a homology search, to identify novel un-
characterized entries in genomic databases that are related
to the input query sequence (5,9). The homology search is
often followed by a filtration step, which checks the essen-
tial sequence properties, e.g. domain structure or presence
of catalytic residues. The main advantage of these methods
is the higher specificity of the analysis. A disadvantage is
that it may be complicated to apply the developed work-
flow to protein families other than those for which it was
designed. Moreover, these workflows typically require run-
ning complex bioinformatics pipelines and are usually not
available through a web interface.

The fundamental unsolved problem is how to deal with
the overwhelming number of sequence entries identified by
these methods and select a small number of relevant hits
for in-depth experimental characterization. For example, a
database search for members of the haloalkane dehaloge-
nase model family using the UniProt web interface yields
3598 sequences (UniProtKB release 2020 01). It is impos-
sible to rationally select several tens of targets for experi-
mental testing without additional bioinformatics analyses
to help prioritize such a large pool of sequences.

To address the challenge of exploring the unmapped en-
zyme sequence space and rational selection of attractive tar-
gets, we have developed the EnzymeMiner web server. En-
zymeMiner identifies novel enzyme family members, com-
prehensively annotates the targets and facilitates efficient
prioritization and selection of representative hits for experi-
mental characterization. To the best of our knowledge, there
is currently no other tool available that allows such a com-
prehensive analysis in a single easy-to-run integrated work-
flow on the web.

MATERIALS AND METHODS

EnzymeMiner implements a three-step workflow: (i) ho-
mology search, (ii) essential residue based filtering and (iii)
hits annotation (Figure 1). To execute these tasks, the server
requires two different types of input information: (i) query
sequences and (ii) essential residue templates. The query se-
quences serve as seeds for the initial homology search. The
essential residue templates, defined as pairs of a protein se-
quence and a set of essential residues in that sequence, allow
the server to prioritize hits that are more likely to display the
enzyme function. Therefore, the essential residues may be
the catalytic and ligand- or cofactor-binding residues that
are indispensable for proper catalytic function. Each essen-
tial residue is defined by its name, position and a set of al-
lowed amino acids for that position.

In the first homology search step, a query sequence is used
as a query for a PSI-BLAST (10) two-iteration search in
the NCBI nr database (1). If more than one query sequence
is provided, a search is conducted for each sequence sepa-
rately. Besides a minimum E-value threshold 10−20, the PSI-

BLAST hits must share a minimum of 25% global sequence
identity with at least one of the query sequences. Artifi-
cial protein sequences, i.e. sequences described by the term
artificial, synthetic construct, vector, vaccinia virus, plas-
mid, halotag or replicon, are removed. EnzymeMiner sorts
the PSI-BLAST hits by E-value and passes a maximum of
10,000 best hits to the next steps in the workflow. The de-
fault parameters for the homology search step, as well as the
other steps, can be modified using advanced options in the
web server.

In the second essential residue based filtering step, the ho-
mology search hits are filtered using the essential residue
templates. First, the hits are divided into template clusters.
Each cluster contains all hits matching essential residues of
a particular template. Essential residues are checked using
global pairwise alignment with the template calculated by
USEARCH (11). When multiple essential residue templates
match, the hit is assigned to the template with the highest
global sequence identity. Second, for each cluster, an ini-
tial multiple sequence alignment (MSA) is constructed us-
ing Clustal Omega (12). The MSA is used to revalidate the
essential residues of identified hits by checking the corre-
sponding column in the MSA. Sequences not matching es-
sential residues of the template are removed from the clus-
ter. Third, the MSA is constructed again for each template
cluster and the essential residues are checked for the last
time. The final set of identified sequences reported by En-
zymeMiner contains all sequences left in the template clus-
ters.

In the third annotation step, the identified sequences
are annotated using several databases and predictors: (i)
transmembrane regions are predicted by TMHMM (13),
(ii) Pfam domains are predicted by InterProScan (14), (iii)
source organism annotation is extracted from the NCBI
Taxonomy (15) and the NCBI BioProject database (16),
(iv) protein solubility is predicted by the in-house tool
SoluProt for prediction of soluble protein expression in Es-
cherichia coli and (v) sequence identities to queries, hits
or other optional sequences are calculated by USEARCH
(11). SoluProt is based on a random forest regression model
that employs 36 sequence-based features (https://loschmidt.
chemi.muni.cz/soluprot/). It has been shown to achieve an
accuracy of 58%, specificity of 73% and sensitivity of 44%
on a balanced independent test set of 3788 sequences (Hon
et al., manuscript in preparation). Alternative solubility pre-
diction tools are summarised in a recently published review
(17). It is not advised to use the solubility score for other
expression systems because it was trained solely on E. coli
data. We expect further intensive development of protein
solubility predictors in coming years and will ensure that
the solubility score in the EnzymeMiner stays at the cutting-
edge in terms of its accuracy and reproducibility.

The sequence space of the identified hits is visualized us-
ing representative sequence similarity networks (SSNs) gen-
erated at various clustering thresholds using MMseqs2 (18)
and Cytoscape (19). SSNs provide a clean visual approach
to identify clusters of highly similar sequences and rapidly
spot sequence outliers. SSNs proved to facilitate identifica-
tion of previously unexplored sequence and function space
(20). The SSN generation method used in EnzymeMiner
is inspired by the EFI-EST tool (21). The minimum align-
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Figure 1. The EnzymeMiner workflow. The workflow consists of three distinct steps: (i) sequence homology search, (ii) filtration of functional sequences,
and (iii) annotation of hits. These steps are executed consecutively and automatically. EnzymeMiner has only two required inputs: (i) query sequences, and
(ii) essential residue templates. The Other sequences are optional inputs that allow EnzymeMiner to calculate the sequence identity between these sequences
and all the hits. Input files are highlighted by a white background, tools and databases have a light blue background, outputs are highlighted by a yellow
background.

ment score to include an edge between two representative
sequences in an SSN is 40.

DESCRIPTION OF THE WEB SERVER

Job submission

New jobs can be submitted from the EnzymeMiner home-
page. EnzymeMiner provides two conceptually different
ways to define the input of the workflow: (i) using cu-
rated sequences from the UniProtKB/Swiss-Prot database
and (ii) using custom sequences. We recommend the
UniProtKB/Swiss-Prot option for users who do not have
in-depth knowledge of the enzyme family. In contrast, the
Custom sequences tab gives full control over the EnzymeM-
iner input––query sequences and essential residue templates
are specified manually by the user. This is recommended for
users who have good knowledge about the enzyme family
and want to provide additional starting information to ob-
tain refined results. The last option is a combination of both
approaches, where Swiss-Prot sequences can be pre-selected
first and then the input can be modified in the Custom se-
quences tab.

In the Swiss-Prot sequences tab (Figure 2A), sequences
from the Swiss-Prot database can be queried by Enzyme
Commission (EC) number. As a result, a table of all se-
quences annotated by the EC number and corresponding
SSN is generated. The table has four columns: (i) sequence
accessions hyperlinked to the UniProt database, (ii) number
of essential residues, (iii) sequence length and (iv) sequence
plot. The sequence plot summarizes two important features
of the sequence – positions of essential residues and identi-

fied Pfam domains. The positions of essential residues are
obtained from the Swiss-Prot database. The SSN visualizes
the sequence space of all the sequences in the current EC
group. Nodes represent Swiss-Prot sequences, whereas edge
lengths are proportional to the pairwise sequence identities.
Similar sequences are close to each other, whereas more dis-
tant sequences are not connected at all.

There are three strategies possible for selecting Swiss-Prot
sequences as the EnzymeMiner query: (i) select a row from
the sequence table, (ii) select a node in the SSN and (iii)
select cluster representatives by defining a sequence iden-
tity threshold. The sequence identity threshold buttons se-
lect cluster representatives at the given percentage thresh-
old. Using this feature, the user can automatically select a
small set of sequences that cover the whole known sequence
space of the current EC group. All selected Swiss-Prot se-
quences are used as a query in the homology search step
and also as essential residue templates for the filtration step.
To modify the selected sets of queries and essential residue
templates, the user can switch to the Custom sequences tab
and refine the selection manually.

EnzymeMiner results

The results page is organized into four sections: (i) job in-
formation box, (ii) download results box, (iii) target selection
table and (iv) sequence similarity network.

In the job information box, the user can find the job ID,
title, start time and status of the job. There is also a rerun
button for rerunning the same analysis without the need for
re-entering the same input. This feature is handy for peri-
odically mining new sequences as the sequence databases
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Figure 2. The EnzymeMiner graphical user interface showing example inputs and results for the haloalkane dehalogenase family (EC 3.8.1.5). (A) Inputs
based on curated sequences from the UniProtKB/Swiss-Prot database. The input sequences can be selected using: (i) the sequence table, (ii) the SSN or (iii)
the sequence identity threshold. (B) Target selection table. The table is organized into eleven sheets that summarize the results from different perspectives.
The table can be filtered using solubility and identity sliders, and transmembrane and extra domain exclusion switches.

grow. For example, there are hundreds of new hits for the
haloalkane dehalogenase family every year. In the down-
load results box, the user can download the results table in
XLSX format or tab-separated text format. A ZIP archive
containing all output files from the EnzymeMiner workflow
can also be downloaded.

The target selection table is the most important compo-
nent of the EnzymeMiner results (Figure 2B). It presents
all the putative enzyme sequences identified by EnzymeM-
iner and helps to select targets for experimental character-
ization. The table is organized into eleven sheets summa-
rizing the results from different perspectives. (i) The Se-
lected sheet shows all the sequences selected from individ-
ual sheets. It contains an extra column to track the argu-
ment used for the selection. By default, it is prefilled by
the name of the sheet from which the sequence was se-
lected, but it can be freely changed. (ii) The Full Dataset
sheet shows all identified sequences. (iii) The Extra domain
sheet shows sequences with extra Pfam domains found in
the sequence but not listed in the Primary domains selec-
tion box. (iv) The Organism sheet shows sequences with
known source organisms. (v) The Temperature sheet shows
sequences from organisms having extreme optimum tem-
perature annotation in the NCBI BioProject database, in-
cluding sequences from thermophilic or cryophilic organ-
isms. (vi) The Salinity sheet shows sequences from organ-
isms having extreme salinity annotation in the NCBI Bio-
Project database. (vii) The Biotic Relationship sheet shows
sequences from organisms having biotic relationship anno-
tation in the NCBI BioProject database. (viii) The Disease
sheet shows sequences from organisms having disease an-
notation in the NCBI BioProject database. (ix) The Trans-
membrane sheet shows sequences with transmembrane re-
gions predicted by the TMHMM tool. (x) The 3D Struc-
ture sheet shows sequences with an available 3D structure in

the Protein Data Bank (22). (xi) The Network sheet shows
sequences clustered into a selected sequence similarity net-
work node.

There are four options for filtering the identified se-
quences displayed in the target selection table. The first op-
tion is the minimum solubility slider. Sequences with lower
predicted solubility will be hidden. We recommend setting
the solubility threshold to >0.5 to increase the probabil-
ity of finding soluble protein expression in E. coli. We do
not recommend to set the solubility threshold too high be-
cause of possible trade-off between enzyme solubility and
activity (23). The second option is the identity range bar.
Only sequences with identity to query sequences in the spec-
ified range will be visible. The third option is to exclude
transmembrane proteins. We recommend removing these
sequences as they are usually difficult to produce and tend
to have lower predicted solubility. The fourth option is to
exclude proteins with an extra domain. Extra domains are
defined as domains found in the sequence but not listed in
the Primary domains selection box. We recommend avoid-
ing sequences with extra domains, but these sequences may
also show interesting and unusual biological properties. The
selection table can be sorted by clicking on a column header.
Holding ‘Shift’ while clicking on the column headers allows
sorting by multiple columns.

The SSN visualizes the sequence space of all identified
sequences. Both clusters of similar sequences and sequence
outliers can be easily identified. As there might be thou-
sands of sequences, the sequences are clustered at the iden-
tity threshold and only an SSN of the representative se-
quences is shown for performance reasons. Sequences hav-
ing greater sequence identity are consolidated into a sin-
gle metanode. Edges indicate high sequence identity be-
tween representative sequences of the connected metanodes.
Clicking on a metanode displays the Network sheet showing
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which sequences are represented by a particular metanode.
The SSN can be downloaded as a Cytoscape session file for
further analysis and custom visualization. Networks clus-
tered at different identities are available. The numbers of
nodes and edges are indicated for each identity threshold.
The SSN is interactively linked to the target selection table.
All nodes representing selected sequences are automatically
highlighted in the SSN.

Target selection

The target selection table and SSN facilitate the selection
of a diverse set of soluble putative enzyme sequences for
experimental validation. First, we recommend setting the
maximum sequence identity to queries to 90%. This will re-
move all hits that are very similar to already known proteins.
Second, we recommend selecting a few sequences from in-
dividual sheets to cover different phyla from the domains
Archea, Bacteria and Eukarya. The most exciting enzymes
might be from extremophilic organisms. Third, the SSN can
be used to check that the selection covers all sequence clus-
ters. Fourth, users can select sequences from all subfamilies
of the enzyme family of interest. The members of different
subfamilies can be easily recognized by the Closest query or
Closest known column in the selection table (note: requires
representative sequences of subfamilies as job input). Fifth,
the available filtering options can be used to (i) prioritize se-
quences with the highest predicted solubility, (ii) prioritize
sequences with known tertiary structures, (iii) eliminate pro-
teins with predicted transmembrane regions and (iv) elimi-
nate sequences with extra domains.

EXPERIMENTAL VALIDATION OF THE EnzymeMiner
WORKFLOW

The EnzymeMiner workflow has been thoroughly experi-
mentally validated using the model enzymes haloalkane de-
halogenases (5). The sequence-based search identified 658
putative dehalogenases. The subsequent analysis prioritized
and selected 20 candidate genes for exploration of their pro-
tein structural and functional diversity. The selected en-
zymes originated from genetically unrelated Bacteria, Eu-
karya and, for the first time, also Archaea and showed novel
catalytic properties and stabilities. The workflow helped to
identify novel haloalkane dehalogenases, including (i) the
most catalytically efficient enzyme (kcat/K0.5 = 96.8 mM−1

s−1), (ii) the most thermostable enzyme showing a melt-
ing temperature of 71◦C, (iii) three different cold-adapted
enzymes active at near to 0◦C, (iv) highly enantioselective
enzymes, (v) enzymes with a wide range of optimal opera-
tional temperature from 20 to 70◦C and an unusually broad
pH range from 5.7–10 and (vi) biocatalysts degrading the
warfare chemical yperite and various environmental pol-
lutants. The sequence mining, annotation, and visualiza-
tion steps from the workflow published by Vanacek and co-
workers (5) were fully automated in the EnzymeMiner web
server. The successful use case for the haloalkane dehaloge-
nase family is described in an easy-to-follow tutorial avail-
able on the EnzymeMiner web page. Additional extensive
validation of the fully automated version of EnzymeMiner,

experimentally testing the properties of another 45 genes of
the haloalkane dehalogenases, is currently ongoing in our
laboratory.

CONCLUSIONS AND OUTLOOK

The EnzymeMiner web server identifies putative members
of enzyme families and facilitates their prioritization and
well-informed manual selection for experimental character-
ization to reveal novel biocatalysts. Such a task is difficult
using the web interfaces of the available protein databases,
e.g. UniProtKB/TrEMBL and NCBI Protein, since addi-
tional analyses are often required. The major advantage of
EnzymeMiner over existing protein sources is the flexibility
of input and concise annotation-rich interactive presenta-
tion of results. The user can input custom queries and a cus-
tom description of essential residues to focus the search on
specific protein families or subfamilies. The output of En-
zymeMiner is an interactive selection table containing the
annotated sequences divided into sheets based on various
criteria. The table helps to select a diverse set of sequences
for experimental characterization. Two key prioritization
criteria are (i) the predicted solubility score, which can be
used to prioritize the identified sequences and increase the
chance of finding enzymes with soluble protein expression,
and (ii) the sequence identity to query sequences comple-
mented with an interactive SSN displayed directly on the
web, which can be used to find diverse sequences. Addition-
ally, source organism and domain annotations help to select
sequences with diverse properties. EnzymeMiner is a uni-
versal tool applicable to any enzyme family. It reduces the
time needed for data gathering, multi-step analysis and se-
quence prioritization from days to hours. All the EnzymeM-
iner features are implemented directly on the web server and
no external tools are required. The web server was opti-
mized for modern browsers including Chrome, Firefox and
Safari. An EnzymeMiner job can take a few hours or days to
compute, depending on the current load of the server. In the
next EnzymeMiner version, we plan three major improve-
ments. First, we will implement automated tertiary struc-
ture prediction based on homology modeling and threading
for all identified sequences. The structural predictions will
allow subsequent analysis of active site pockets/cavities and
access tunnels. Structural features will significantly enrich
the set of annotations and help to identify additional at-
tractive targets for experimental characterization. Second,
we will implement automated periodical mining. When en-
abled, EnzymeMiner will rerun the analysis periodically
and inform the user about novel sequences found since the
last search. Finally, we will implement a wizard for auto-
mated selection of hits based on input criteria provided by
a user.
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Abstract

Motivation: Poor protein solubility hinders the production of many therapeutic and industrially useful proteins.
Experimental efforts to increase solubility are plagued by low success rates and often reduce biological activity.
Computational prediction of protein expressibility and solubility in Escherichia coli using only sequence information
could reduce the cost of experimental studies by enabling prioritization of highly soluble proteins.

Results: A new tool for sequence-based prediction of soluble protein expression in E.coli, SoluProt, was created
using the gradient boosting machine technique with the TargetTrack database as a training set. When evaluated
against a balanced independent test set derived from the NESG database, SoluProt’s accuracy of 58.5% and AUC of
0.62 exceeded those of a suite of alternative solubility prediction tools. There is also evidence that it could signifi-
cantly increase the success rate of experimental protein studies. SoluProt is freely available as a standalone pro-
gram and a user-friendly webserver at https://loschmidt.chemi.muni.cz/soluprot/.

Availability and implementation: https://loschmidt.chemi.muni.cz/soluprot/.

Contact: jiri@chemi.muni.cz

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Low protein solubility causes severe problems in protein science
and industry; insufficient protein solubility is probably the most
common cause of failure of protein production pipelines. The im-
portance of solubility is underlined by the findings of the large-
scale Protein Structure Initiative (PSI) project (Berman et al.,
2017), which sought to produce thousands of protein sequences
from different organisms, crystallize them and resolve their ter-
tiary structure. Unfortunately, in most cases it proved impossible
to produce the target proteins in soluble form. The inherent low
solubility of natural enzymes also limits the success of emerging
high-throughput pipelines that explore protein databases to iden-
tify novel enzymes with diverse functions (Hon et al., 2020;
Vanacek et al., 2018). Given the rapid growth of protein sequence
databases driven by the capabilities of next-generation sequencing
technologies, there is an urgent need to focus only on potentially
soluble targets to avoid wasting resources on hard-to-produce
orthologs. Solubility is thus a key attribute when choosing protein

targets for experimental characterization (Vanacek et al., 2018).
Strictly speaking, solubility is a thermodynamic parameter defined
as the protein’s concentration in a saturated solution in equilib-
rium with a solid phase under specific conditions. However, it is
challenging to quantitatively measure the solubility of large sets of
proteins (Kramer et al., 2012), so there is little quantitative ex-
perimental data on protein solubility. Moreover, this definition of
solubility is too narrow to encompass many of the practical prob-
lems that may occur during protein production with common ex-
pression systems. Therefore, inspired by existing tools
(Supplementary Table S1) (Agostini et al., 2014; Khurana et al.,
2018; Raimondi et al., 2020; Smialowski et al., 2012), available
data (Berman et al., 2017) and laboratory practice, we use a
slightly extended definition of protein solubility in this work.
Specifically, by solubility, we mean the probability of soluble pro-
tein (over)expression in Escherichia coli cells. The difference from
the classical thermodynamic solubility is in the perception of the
insoluble class. We assume that insoluble proteins were either not
expressed or were expressed in the insoluble form.
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Solubility depends on many extrinsic and intrinsic factors.
Extrinsic factors are dictated by the choice of expression system and
the experimental conditions used in protein production. Expression
systems may be either in vivo or in vitro (Carlson et al., 2012;
Rosano and Ceccarelli, 2014). In vivo protein expression is induced
inside living cells of a host organism, whereas in vitro expression
relies on the use of cell-free translational systems. Solubility can be
increased by adjusting extrinsic solubility factors, especially by using
different mutated host strains, codon optimization, coexpression of
chaperones and foldases, lowering cultivation temperatures and
adding suitable fusion partners (Costa et al., 2014). However, tun-
ing the expression system or experimental conditions is not always
sufficient to confer solubility, and is not feasible in high-throughput
protein production pipelines. If extrinsic factors cannot be varied,
protein solubility will depend only on the intrinsic properties of the
protein sequence. Unfortunately, the relationship between a pro-
tein’s sequence and its solubility is poorly understood, mainly due to
a lack of reproducible quantitative solubility measurements (Kramer
et al., 2012). Recent protein engineering studies suggest that charged
amino acids on the protein surface are key intrinsic determinants of
solubility (Carballo-Amador et al., 2019; Chan et al., 2013; Sankar
et al., 2018). However, this knowledge cannot be directly used for
solubility prediction due to a lack of structural data. Despite the
continuous growth of structural databases (Burley et al., 2019), the
structures of proteins of interest are generally unknown, and the lim-
ited availability of template structures prevents their accurate com-
putational prediction.

The simultaneous effects of extrinsic and intrinsic factors make
solubility prediction challenging. For example, the prediction of
solubility from sequence data using machine learning is hindered by
the high level of noise in typical training datasets due to the influ-
ence of diverse extrinsic variables. Because the molecular mecha-
nisms governing protein solubility are poorly understood, recent
solubility prediction tools rely heavily on statistical analysis and ma-
chine learning, using previously reported experimental data to train
and validate model parameters. One of the most widely used data
sources is the TargetTrack database (Berman et al., 2017), formerly
known as PepcDB or TargetDB, which integrates information from
the Protein Structure Initiative projects. This database contains data
from over 900 000 protein crystallization trials involving almost
300 000 unique protein sequences, which are referred to as targets.
The database does not contain solubility data per se, but target pro-
teins can be considered soluble if they were successfully purified in
the experimental trials. A major limitation of this database is the
low quality of its annotations. For example, reasons for failure are
generally not provided for unsuccessful crystallization attempts.
Therefore, it is impossible to distinguish failures due to insolubility
from failures due to other problems later in the experimental pipe-
line. Second, the experimental protocols used for protein production
and crystallization are described in free text with no internal struc-
ture, making it hard to automatically extract information about ex-
perimental conditions and expression systems for a given target.
Filtering is therefore needed to reduce noise before using the
TargetTrack data for model training. However, the application of
stringent filtering rules to the target annotations can dramatically re-
duce the number of usable records.

eSOL is another well-known and commonly used solubility data-
base (Niwa et al., 2009, 2012) that contains experimentally meas-
ured solubilities for over 3 000 E.coli proteins produced in the
PURE (Shimizu et al., 2001) cell-free expression system. eSOL is an
impressive collection of highly homogenous data but has its own
limitations. First, it only contains data on proteins originating from
E.coli. Second, it has relatively little negative data; adding the three
main cytosolic E.coli chaperones (TF, DnaKJE and GroEL/GroES)
to the PURE expression system reduced the number of insoluble pro-
teins from 788 to 24 (Niwa et al., 2012). eSOL is a valuable source
of exact solubility data that were generated using a robust pipeline
and provide a good quantitative measure of thermodynamic solubil-
ity. However, these data cannot be used to assess solubility accord-
ing to our expanded definition, which also encompasses
expressibility.

The relationship between protein sequence and solubility has
been studied for over 30 years, leading to the development of several
predictive models and software tools. There are 11 such models or
tools that use definitions of solubility like that described above and
take protein sequences as their sole input. These are the revised
Wilkinson-Harrison model (rWH) (Davis et al., 1999; Wilkinson
and Harrison, 1991), SOLpro (Magnan et al., 2009), RPSP (Diaz
et al., 2010), PROSO II (Smialowski et al., 2012), ccSOL omics
(Agostini et al., 2012, 2014), ESPRESSO (Hirose and Noguchi,
2013), CamSol (Sormanni et al., 2015), Protein-Sol (Hebditch et al.,
2017), DeepSol (Khurana et al., 2018), SKADE (Raimondi et al.,
2020) and the Solubility-weighted index (SWI) (Bhandari et al.,
2020). However, the accuracy of these tools is limited, and there is
clear room for improvement. Additionally, these tools exhibit poor
generality when used to make predictions based on previously un-
seen data. A comprehensive review of advances in solubility predic-
tion, including predictors that use protein structures as inputs, was
published recently (Musil et al., 2019). Here, we present a novel ma-
chine learning based tool, SoluProt, for predicting soluble expression
from protein sequence data. SoluProt benefits from thorough dataset
pre-processing and predicts soluble expression more accurately than
previously reported methods.

2 SoluProt training and test set

We used the TargetTrack database to build the SoluProt training
set. Since this database does not directly provide solubility informa-
tion, we inferred solubility computationally, using an approach
similar to those adopted previously (Magnan et al., 2009;
Smialowski et al., 2012). A protein was considered soluble if it was
recorded as having reached a soluble experimental state or any sub-
sequent state requiring soluble expression (Supplementary Table
S2). If failed expression or purification was mentioned in the experi-
ment record’s stop status, the protein was labeled insoluble. In con-
trast to a previous approach (Smialowski et al., 2012), we required
an explicit stop status relating to insolubility to reduce the frequency
of incorrect classification of insoluble sequences. To improve the
quality of the training set, we also performed several additional steps
to clean the data.

Most importantly, we performed keyword matching combined
with manual checking of TargetTrack annotations to extract only
proteins expressed in the most common host organism, E.coli. This
was necessary because a protein soluble in one organism might be
insoluble in another. By focusing solely on the most common expres-
sion system, we reduced the noise in the training data. We also used
specific keywords to search the unstructured descriptions of experi-
mental protocols provided in the TargetTrack database
(Supplementary Table S3). Generic search phrases like ‘E.coli’ or
‘Escherichia coli’ were used to identify potential E.coli related pro-
tocols. These protocols were then manually checked and confirmed
(Supplementary Table S4). A full list of 248 TargetTrack protocols
signifying expression in E.coli is available at the SoluProt website.

We next identified transmembrane proteins in the dataset based
on direct annotations from the TargetTrack database and predic-
tions generated using TOPCONS (Tsirigos et al., 2015) with default
settings. The transmembrane proteins were then removed, along
with sequences shorter than 20 amino acids, and sequences with un-
defined residues. We also removed sequences that had been classi-
fied as insoluble but for which a protein structure was available in
the Protein Data Bank (PDB) (Berman, 2000). To this end, we com-
piled an E.coli PDB subset containing sequences of proteins whose
structures had been solved by NMR or X-ray crystallography and
which had been expressed in E.coli according to the PDB annota-
tions (64 416 sequences, downloaded April 4, 2018). Because both
NMR and X-ray crystallography require soluble proteins, any pro-
tein in this PDB subset can be considered soluble in E.coli. This step
reflects advances in molecular biology: methodological develop-
ments have made it possible to produce and crystallize some proteins
that were previously considered insoluble.

Finally, we reduced the sequence redundancy in the training set
by clustering to 25% identity using MMseqs2 (Steinegger and
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Söding, 2017) and retaining only representative sequences from
each cluster. This was done separately for positive and negative sam-
ples to avoid simplifying the prediction problem. We balanced the
number of soluble and insoluble samples such that both classes were
equally represented. Additionally, we balanced the sequence length
distribution so that length alone would not play a dominant role in
the predictions. Sequence length correlates with protein solubility—
larger proteins are usually less soluble. However, we wanted to sup-
press its influence in the model because we anticipate that SoluProt
would mainly be used to prioritize proteins of similar lengths, usual-
ly from a single protein family. A typical expected use case is that of
the EnzymeMiner web server (Hon et al., 2020) for automated min-
ing of soluble enzymes. A prediction model relying heavily on se-
quence length would not perform well in this use case.

The SoluProt test set was built from a dataset generated by the
North East Structural Consortium (NESG), which represents 9644
proteins expressed in E.coli using a unified production pipeline (Price
et al., 2011). The dataset contains two integer scores ranging from 0
to 5 for each target, indicating the protein’s level of expression and
the soluble fraction recovery. The reproducibility of the experimental
results in the dataset was validated by performing repeat measure-
ments for selected targets. The NESG dataset targets are included in
the TargetTrack database because the NESG participated in the PSI
project. However, the expression and solubility levels from the NESG
dataset were not included in the TargetTrack database; instead, they
were provided to us directly by the authors of the original study (W.
Nicholson Price II, personal communication). The high consistency
and quality of the NESG dataset make it suitable for benchmarking
purposes. We processed the NESG dataset using the same procedure
as the training set, although the computational solubility derivation
and expression system filtration steps were omitted because they were
pointless in this case. Instead, we transformed the solubility levels
into binary classes: all proteins with a solubility level of 1 or above
were considered soluble and all others insoluble.

Finally, we ensured that no pair consisting of a sequence from the
test set and a sequence from the training set had a global sequence iden-
tity above 25% as calculated using the USEARCH software (Edgar,
2010). This made the test set more independent because it ensured that
predictions were not validated against data similar to those used during
training. In total, 11 436 protein sequences remained in the SoluProt
training set and 3 100 in the independent SoluProt test set. Both data-
sets had equal numbers of soluble and insoluble samples with balanced
sequence length distributions (Supplementary Fig. S1). The datasets are
available at the SoluProt website. The dataset construction steps are
summarized in Supplementary Table S5.

3 Prediction model

The SoluProt predictor is implemented in Python using scikit-learn
(Pedregosa et al., 2011), Biopython (Cock et al., 2009) and pandas
(McKinney, 2010) libraries. We used a gradient boosting machine
(GBM) (Friedman, 2001) to generate the predictive model.
Prediction features were selected from a set of 251 sequence charac-
teristics that were divided into eight groups: (i) single amino acid
content (20 features), (ii) amino acid dimer content (210 features),
(iii), sequence physicochemical features (12 features, Supplementary
Table S6), (iv) average flexibility as computed by DynaMine (Cilia
et al., 2014) (1 feature), (v) secondary structure content as predicted
by FESS (Piovesan et al., 2017) (3 features), (vi) average disorder as
predicted by ESPRITZ (Walsh et al., 2012) (1 feature), (vii) content
of amino acids in transmembrane helices as predicted by TMHMM
(Krogh et al., 2001) (3 features) and (viii) maximum identity to the
E.coli PDB subset as calculated using USEARCH (1 feature). All
sequences equal to any sequence from the test set were excluded
from the E.coli PDB subset for the calculation of maximum identity.
The objective was to eliminate even the indirect presence of test set
sequences from model training. We standardized all features by sub-
tracting the mean and scaling to unit variance. The means and var-
iances were calculated using the training set.

We removed correlated features in two steps. First, we fitted a
GBM with default parameters using the full training set and all

features. Second, we calculated Pearson’s correlation coefficient for
each pair of features. If the correlation between any two features
exceeded 0.75, we removed the feature with the lesser importance in
the fitted GBM model. We also removed irrelevant features using
LASSO (Tibshirani, 1996). LASSO’s alpha parameter was optimized
to maximize the mean AUC of the GBM model with default parame-
ters over 5-fold cross-validation. The alpha parameter was varied
between 0.08 to 0 with a step size of 6.25�10�4; its optimal value
was 0.005. In total, 96 features were selected for inclusion in the
predictive model (Supplementary Table S7). The DynaMine, FESS
and ESPRITZ features were not included in the final feature set.

We next optimized the hyperparameters of the GBM model,
using an iterative 7-stage strategy to maximize the mean AUC over
5-fold cross-validation using the training set (Supplementary Table
S8). In each stage, one or two parameters were optimized using grid
search; other parameters were left either at their final values from
the previous stages or at the default value if the parameter had not
yet been optimized. The best GBM model achieved mean AUC val-
ues of 0.85 6 0.003 for the training part and 0.72 6 0.02 for the val-
idation part. Overall, the feature selection and hyperparameter
optimization had little effect on the mean AUC: without these meas-
ures, the mean AUC values for the training and validation sets were
0.83 6 0.003 and 0.72 6 0.02, respectively. The main benefit of the
feature selection and parameter tuning steps was that they reduced
the number of features and thus made the feature calculation step
roughly two times faster.

Finally, we used the best GBM hyperparameters to train the final
SoluProt model using the full training set. The resulting model had an
AUC of 0.84 and an accuracy of 76% for the full training set. The five
most important features according to the GBM are: (i) maximum iden-
tity to the E.coli PDB subset (14.5%), (ii) isoelectric point (6.2%), (iii)
predicted number of amino acids in transmembrane helices in the first
sixty amino acids of the protein (4.2%), (iv) lysine content (4.0%) and
(v) glutamine content (3.5%) (Supplementary Table S7).

4 Performance evaluation and comparison

We used the SoluProt test set to evaluate and compare SoluProt to
11 previously published tools. The evaluation relied on both
threshold-independent (area under the ROC curve) and threshold-
dependent metrics (accuracy, Matthew’s correlation coefficient and
confusion matrices). For the threshold-dependent metrics, we
applied a threshold of 0.5 or the thresholds recommended by the
authors of the corresponding method (Table 1). SoluProt achieved
the highest accuracy (58.5%) and the greatest AUC (0.62) of the

Table 1. Performance of various solubility predictors using the bal-

anced SoluProt test set of 3100 sequences

Method AUC T ACC MCC TP TN FP FN

SoluProt 0.62 0.50 58.5% 0.17 939 873 677 611

PROSO II 0.60 0.60 58.0% 0.17 630 1167 383 920

SWI 0.60 0.50 55.9% 0.13 1206 527 1023 344

CamSol 0.57 1.00 54.1% 0.08 676 1001 549 874

ESPRESSO 0.56 0.50 53.8% 0.08 1003 664 886 547

rWH 0.55 0.50 54.0% 0.08 670 1005 545 880

DeepSol 0.55 0.50 52.9% 0.09 230 1409 141 1320

Protein-Sol 0.54 0.45 51.6% 0.03 1056 544 1006 494

SOLpro 0.53 0.50 52.0% 0.04 654 959 591 896

SKADE 0.51 0.50 49.2% –0.03 159 1366 184 1391

ccSOL omics 0.51 0.50 50.8% 0.02 884 690 860 666

RPSP 0.50 0.50 49.8% 0.00 501 1044 506 1049

Note: The different definitions of solubility and target expression system

(Supplementary Table S1) should be considered when comparing the perform-

ance of individual tools.

AUC—area under the ROC curve, T—threshold for the soluble class,

ACC—accuracy, MCC—Matthew’s correlation coefficient, TP—true posi-

tives, TN—true negatives, FP—false positives, FN—false negatives.
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tested tools when evaluated against the SoluProt test set (Table 1
and Fig. 1),followed by PROSO II and SWI.

While the SoluProt test set is independent of the SoluProt train-
ing set, other tools’ training sets might overlap with our test set.
Therefore, we compared the SoluProt test set to the training sets of
DeepSol, SKADE, SWI and SOLpro to quantify their overlaps
(Table 2). DeepSol and SKADE have a common training set, which
showed the largest overlap (74.0%), followed by the SWI training
set (26.5%) and the SOLpro training set (15.5%). SWI benefits
from the overlap; it was the third-best tool in our comparison.
DeepSol and SKADE ranked 7th and 12th by accuracy with respect
to the SoluProt test set despite having the greatest proportion of test
sequences in their training set. This comparatively poor performance
can be partly explained by differences in solubility annotations be-
tween the DeepSol training set and the SoluProt test set (Table 2):
360 (11.6% of the total) sequences annotated as insoluble in the
DeepSol training set were annotated as soluble in the SoluProt test
set. The total number of disagreements (the sum of false positives
and false negatives) ranged from 336 to 551, depending on the
binarization threshold applied to the SoluProt test set
(Supplementary Table S9). No training set was published for
PROSO II; only an initial set of soluble and insoluble sequences
without pre-processing is available. However, the initial set exhibits
95.2% overlap with the SoluProt test set. Therefore, we expect the
overlap of the PROSO II training set to also be very high, like the
DeepSol training set. Unfortunately, the training sets of other previ-
ously developed tools have not been published, preventing a more
comprehensive comparison.

The absolute accuracy of the available solubility prediction tools
is low (below 60%), so there is clearly room for improvement.
Nevertheless, SoluProt and other tools can be useful for protein se-
quence prioritization (Fig. 2), i.e. for selecting a small number of
sequences for in-depth experimental characterization from a large
database of several hundreds or thousands of sequences.
Specifically, predicted solubility values can be used to select a lim-
ited number of high-scoring protein sequences. For example, if we
use SoluProt predictions to order the SoluProt test set and remove
all sequences bar the 10% with the highest scores, we get 232 true
positives, i.e. 49.7% more true positives than would be expected
with blind selection (155 true positives). This shows that despite
their limited accuracy, current solubility predictors are valuable for
protein sequence prioritization and can increase the success rate of
experimental protein studies.

5 Conclusions

We have developed a novel method and software tool, SoluProt, for
sequence-based prediction of soluble protein expression in E.coli.
The tool simultaneously predicts the solubility and expressibility of
the proteins under consideration. SoluProt achieved a higher accur-
acy (58.5%) and AUC (0.62) than a suite of alternative solubility
prediction tools when evaluated using the balanced independent
SoluProt test set of 3100 sequences. PROSO II, SWI and CamSol
were the next best tools, achieving accuracies of 58.0%, 55.9% and
54.1%, respectively. SoluProt also performed well in protein priori-
tization. The main strengths of SoluProt are that it was trained using
a dataset generated by thorough pre-processing of the noisy
TargetTrack data, and was validated using a high-quality independ-
ent test set.

Surprisingly, the recently reported DeepSol (Khurana et al.,
2018) and SKADE (Raimondi et al., 2020) tools, which are based
on deep learning methods, performed worse than the simpler and
mostly older methods PROSO II (Smialowski et al., 2012), SWI
(Bhandari et al., 2020) and CamSol (Sormanni et al., 2015) in our
comparison. This may be partly due to the overlap of their training
set with our test set and disagreements between these sets with re-
spect to the solubility of certain sequences.

The SoluProt predictor is available via a user-friendly web server
or as a standalone software package at https://loschmidt.chemi.
muni.cz/soluprot/. The SoluProt web server has already predicted
the solubility of over 4700 unique protein sequences in ten months
since its launch in February 2020. It has also been integrated into
the web server EnzymeMiner (Hon et al., 2020) for automated

Fig. 1. Receiver operating curves (ROC) calculated for the balanced SoluProt test set of 3100 sequences. The predictors are ordered by the area under the receiver operating

curve (AUC)

Table 2. Overlaps between the SoluProt test set and available train-

ing sets

Dataset Size Test set overlap TP TN FP FN

PROSO II initial 129643 2952 (95.2%) 951 1437 50 514

DeepSol/SKADE 69420 2294 (74.0%) 737 1130 67 360

SWI 12216 820 (26.5%) 537 210 53 20

SOLpro 17408 480 (15.5%) 178 120 39 143

Note: Two sequences were considered identical if their global sequence

identity reported by USEARCH was 100%. Differences in solubility annota-

tions for identical sequences were quantified using confusion matrix terms

(TP, TN, FP and FN). The solubility annotations of the SoluProt test set are

assumed to reflect the true solubilities of the proteins.

TP—true positives, TN—true negatives, FP—false positives, FN—false

negatives. a DeepSol and SKADE share the same training set.
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mining of novel soluble enzymes from protein databases (https://
loschmidt.chemi.muni.cz/enzymeminer/).
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ABSTRACT

There is a continuous interest in increasing pro-
teins stability to enhance their usability in numer-
ous biomedical and biotechnological applications. A
number of in silico tools for the prediction of the
effect of mutations on protein stability have been de-
veloped recently. However, only single-point muta-
tions with a small effect on protein stability are typi-
cally predicted with the existing tools and have to be
followed by laborious protein expression, purifica-
tion, and characterization. Here, we present FireProt,
a web server for the automated design of multiple-
point thermostable mutant proteins that combines
structural and evolutionary information in its calcu-
lation core. FireProt utilizes sixteen tools and three
protein engineering strategies for making reliable
protein designs. The server is complemented with
interactive, easy-to-use interface that allows users
to directly analyze and optionally modify designed
thermostable mutants. FireProt is freely available at
http://loschmidt.chemi.muni.cz/fireprot.

INTRODUCTION

Proteins are widely used in numerous biomedical and
biotechnological applications. However, naturally occur-
ring proteins cannot usually withstand the harsh industrial
environment, since they are mostly evolved to function at
mild conditions (1). Protein engineering has revolutionized
the utilization of naturally available proteins for different
industrial applications by improving various protein fea-
tures such as stability, activity or enantioselectivity to sur-
pass their natural limitations. Protein stability is generally
strongly correlated with its expression yield (2), half-life (3),

serum survival time (4) and performance in the presence of
denaturing agents (5). Thus, stability is one of the key de-
terminants of proteins applicability in biotechnological pro-
cesses.

In the ideal case, the saturation mutagenesis would be
applied to evaluate every possible mutation on every posi-
tion of the engineered protein (6). However, such a search
space would be enormous and the experimental evalua-
tion can delay the design of truly thermostable protein for
months or even years. Therefore, there are demands for ef-
fective and precise predictive computation of protein sta-
bility. To satisfy this goal a number of in silico tools have
been developed recently. Some of these tools such as EASE-
MM (7), I-Mutant (8) or mCSM (9) are based on ma-
chine learning techniques. Others are using so-called ener-
getic functions. These programs can be further categorized
into two groups. The first group utilizes a physical effective
energy function for simulating the fundamental forces be-
tween atoms and is represented by the programs like Rosetta
(10) and Eris (11). The second group is based on statistical
potentials for which the energies are derived from frequen-
cies of residues or atom contacts reported in the datasets
of experimentally characterized protein mutants, e.g. Pop-
MuSiC (12) and FoldX (13). However, due to the poten-
tially antagonistic effect of mutations, only single-point mu-
tations are usually predicted in silico and have to be fol-
lowed by laborious and costly protein expression, purifica-
tion and characterization. Single-point mutations typically
enhance the melting temperature of target proteins by units
of degree (3,14). A much higher degree of stabilization can
be achieved by constructing multiple-point mutants (15).
We have recently developed the FireProt (16), combining
energy- and evolution-based approaches for reliable design
of stable multiple-point mutants. The protocol includes sev-
eral preceding filters that accelerate the calculation by omit-
ting potentially deleterious mutations. FireProt is currently
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available only in a stand-alone format and requires exten-
sive experience in bioinformatics to carry out all necessary
steps of the work flow. Currently, we are aware of only one
server for design of stable multiple-point mutants - PROSS
(17), utilizing Rosetta modeling and phylogenetic sequence
information in its computation core.

Here, we present a web version of FireProt for the auto-
mated design of thermostable proteins. FireProt integrates
sixteen computational tools and utilizes both sequence and
structural information. FireProt web server provides users
with thermostable proteins, constructed by three distinct
strategies: (i) evolution-based approach, utilizing back-to-
consensus analysis; (ii) energy-based approach, evaluating
change in free energy upon mutation and (iii) combination
of both evolution-based and energy-based approaches. In
our view, it is very important to have this integrated ap-
proach, since phylogenetic analysis enables identification of
the mutations stabilized by entropy, which cannot be pre-
dicted by force field calculations (Beerens et al., under re-
view). The server allows users to include preferred muta-
tions into the thermostable protein, to generate correspond-
ing structures and sequences for gene syntheses. Compared
to the previously published FireProt protocol (16), mini-
mum effort and no bioinformatics knowledge is required
from users to calculate and analyze the results. Further-
more, all input parameters and computational protocols
were optimized to minimize otherwise highly time demand-
ing procedure. The server was complemented with a graph-
ical interface allowing users to directly analyze the protein
of interest and design multiple-point mutants.

MATERIALS AND METHODS

The basic workflow of FireProt strategy is outlined in Fig-
ure 1. In order to design a highly reliable thermostable
multiple-point mutant, a protein defined by the user is an-
notated using several prediction tools and databases (Phase
1). With this knowledge in hand, energy- and evolution-
based approach is applied to assemble a list of potentially
stabilizing single-point mutations (Phase 2). Finally, three
multiple-point mutants are generated in an additive man-
ner, while removing potentially antagonistic effects of mu-
tations (Phase 3).

Phase 1: Annotation of the protein

Initially, the user is requested to specify the protein struc-
ture, either by providing its PDB ID or by uploading a user-
defined PDB file. The biological assembly of the target pro-
tein is then automatically generated by the MakeMultimer
tool (http://watcut.uwaterloo.ca/tools/makemultimer/). Se-
quence homologs are obtained by performing a BLAST
search (18) against the UniRef90 database (19), using the
target protein sequence as an input query. Identified ho-
mologs are then aligned with the query protein using USE-
ARCH (20), while sequences whose identity with the query
is below or above the user defined thresholds (default: 30
and 90%) are excluded from the list of homologs. The
remaining sequences are clustered using UCLUST (20),
with a 90% identity threshold to remove close homologs.
The cluster representatives are sorted based on the BLAST

query coverage and by default, the first 200 of them are used
to create a multiple sequence alignment with Clustal Omega
tool (21). The multiple sequence alignment is used to: (i)
estimate the conservation coefficient of each residue posi-
tion in the protein based on the Jensen–Shannon entropy
(22); (ii) identify correlated positions employing a consen-
sual decision of the OMES (23), MI (24), aMIc (25), DCA
(26), SCA (27), ELSC (28), McBASC (29) and (iii) analyze
amino acid frequencies at individual positions within the
protein.

Phase 2: Prediction of single-point mutations

In accordance with the original FireProt protocol, poten-
tially stabilizing single-point mutations are identified via
two separate branches: one relying on the estimation of the
change of free energy upon mutation and second utilizing
back-to-consensus approach.

The first, energy-based approach is employing FoldX and
Rosetta tools that performed best on our testing dataset.
Preceding filters accelerate the calculation by omitting po-
tentially deleterious mutations. Prior to the identification of
the single-point mutations itself, the target protein structure
is amended and minimized. FoldX protocol is utilized to fill
in the missing atoms in the residues and patched structure
is consequently minimized with Rosetta minimization mod-
ule. Conserved and correlated positions are immediately ex-
cluded from further analysis. It was observed that func-
tional and structural constraints in proteins generally lead
to the conservation of amino acid residues (30–33). Simi-
larly, correlated residues ordinarily help to maintain pro-
tein function, folding or stability (34–36). Mutations con-
ducted on these positions are therefore considered unsafe
by current FireProt strategy, even though there is certainly
a space for more sophisticated treatment of correlated posi-
tions, which will be further developed in future versions of
FireProt server.

The remaining positions are subjected to saturation mu-
tagenesis by using FoldX tool. Mutations with predicted
ddG over given threshold (default: –1 kcal/mol) are steered
away and rest is forwarded to Rosetta calculations. Finally,
the mutations predicted by Rosetta as strongly stabilizing
(default cut-off: –1 kcal/mol) are tagged as potential candi-
dates for the design of the multiple-point mutants.

A high time demands of Rosetta analysis were one of
the most excruciating issues with the original FireProt pro-
tocol. Even with the application of filters over 100 muta-
tions was usually left for precise, but slow, Rosetta calcula-
tions. For this reason, we have evaluated several force fields
and Rosetta protocols with the newly assembled dataset
containing 1573 mutations from ProTherm database (37)
and HotMuSiC dataset (38). Based on the results of the
evaluations, the best trade-off between the time require-
ments and precision was selected. With Rosetta protocol 3,
we have achieved more than tenfold increase in calculation
speed while preserving high prediction accuracy. Details on
dataset construction and protocols evaluation can be found
in the Supplement 1 (Supplementary Tables S1–S5).

The second approach is based on the information ob-
tained from multiple sequence alignment. The most com-
mon amino acid in each position of protein sequence often
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Figure 1. Workflow of FireProt strategy.

provides a non-negligible effect on protein stability (39–42).
Therefore, FireProt implements majority and frequency ra-
tio approach to identify mutations at positions where the
wild-type amino acid differs from the most prevalent one.
By default, the single out mutations are located in the posi-
tions where the consensus residue is present in at least 50%
of all analyzed sequences (majority method) or where con-
sensus residue frequency is 40% and is at least five times
more frequent than the wild-type amino acid (frequency ra-
tio method). These thresholds were chosen in accordance to
the previously published HotSpot Wizard method (43). Se-
lected mutations are evaluated by FoldX and the stabilizing
ones are listed as candidate mutations for the engineering
of multiple-point mutant.

Phase 3: Design of thermostable protein

In total, three protein designs are provided by FireProt
strategy. The first design includes only the mutations from
energy-based approach, the second contains the mutations
suggested by the evolution-based approach and the third is
the combination of both. Naturally, because of potentially
antagonistic effects between individual mutations, we can-
not combine individual mutations blindly.

To avoid possible clashes, FireProt strategy is trying to
minimize antagonistic effects by utilizing Rosetta. In the
first step, all pairs of single-point mutations within the range
of 10 Å are evaluated separately for energy- and evolution-
based approach. Once change in free energy is obtained for
all residue pairs, FireProt starts to introduce them into the
multiple-point mutant in the order based on their predicted
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stability, excluding the mutations that are colliding with al-
ready included mutations. Algorithm stops once there are
no mutations left or the stabilizing effect of analyzed pair
drops below defined threshold.

Upon the completion of previous step, procedure is re-
peated this time considering only the pairs between the
mutations chosen for the construction of energy- and
evolution-based mutants. Finally, structures of all three mu-
tants are modeled using the Rosetta protocol 16.

DESCRIPTION OF THE WEB SERVER

Input

The only required input to the web server is a tertiary struc-
ture of the protein of interest, provided either as a PDB ID
or a user-defined PDB file. The user can then choose a pre-
defined biological unit generated by the MakeMultimer tool
or manually select chains for which the calculation should
be performed. The calculations can be configured in either
basic or advanced mode.

In the basic mode, user is allowed to change the setting of
BLAST search and alignment construction. The advanced
mode expands the list of modifiable parameters by the ones
connected with: (i) the identification of consensus residues
by majority and frequency ratio approach, (ii) the thresh-
olds used by FoldX and Rosetta prediction tools and (iii)
the decision threshold employed in the consensual analysis
of correlated positions. Advanced mode allows expert users
to fine-tune the parameters of calculation according to stud-
ied systems. However, the presented default values are op-
timized to provide reliable results for most of the systems
and we therefore do not advice their change in the general
scenarios.

Output

Upon submission, a unique identifier is assigned to each job
to track the calculation and the ‘Results browser’ informs
the user about the status of the individual steps in the Fire-
Prot workflow (Figure 2B). Once the job is finished, users
can either directly download the results in the .zip archive or
navigate themselves into the ‘Results page’ for further anal-
ysis. The ‘Results page’ is intuitively organized into several
panels as described below.

Protein visualization. The wild-type and the mutant struc-
ture is interactively visualized in the web browser (Fig-
ure 2D) utilizing the Jsmol applet (http://wiki.jmol.org/
index.php/JSmol). Users can switch between different pro-
tein visualization styles and also highlight selected amino
acids in the protein structure. Residues that were included
into energy-based mutant are colored in orange, evolution-
based mutations are in blue and all other residues are in
gray. User selected residues that were not part of any mu-
tant are underlined in red.

Mutant overview. The ‘Mutant overview’ panel is orga-
nized into four tabs (Figure 2A). The first three tabs pro-
vide information about mutations included into combined,
energy-based and evolution-based mutant. The checkbox,

allowing users to visualize the chosen residues in Jsmol ap-
plet, can be found in each row together with all data rele-
vant for a given computational approach. The last tab con-
tains the list of all residues in the wild-type structure. While
‘wild-type’ tab is active, the wild-type structure is visualized
in Jsmol applet instead of the mutated one and the user is
allowed to introduce user-defined mutations into multiple-
point mutant via the ‘plus’ icon in the last column.

General information. The ‘FireProt protocol design’ panel
provides users with general information about the target
protein and the designs constructed by FireProt strategy,
such as a number of mutations and estimated change in free
energy (Figure 2C).

Mutant designer. The ‘Mutant designer’ panel allows the
user to design own multiple-point mutant by managing mu-
tations divided into energy- and evolution-based subset. If
all mutations in the subset have their predicted energy val-
ues assigned, a total change in Gibbs free energy is im-
mediately estimated assuming simple additivity. Users can
also generate an amino acid sequence from the designed
multiple-point mutant that combines mutations included
into energy- and evolution-based subsets. All prepared de-
signs can be downloaded in one .zip archive (Figure 2E).

EXPERIMENTAL VALIDATION

The original FireProt strategy was experimentally veri-
fied with three proteins (haloalkane dehalogenase DhaA,
PDB ID 4E46; � -hexachlorocyclohexane dehydrochlori-
nase LinA, PDB ID 3A76; and fibroblast growth factor
2, PDB ID 4OEE) and provided respective stabilization of
proteins �Tm = 25, 21 and 15◦C (Table 1). The original
protocol was modified to enable fully automated calcula-
tion at the reasonable time, while maintaining high pre-
diction accuracy (Supplementary Table S6). Prediction of
eight multiple-point mutants using this modified protocol
was validated using the data of FRESCO (44) and identi-
fied mutations were compared with another online protein
stabilization tool PROSS (17). FireProt and PROSS showed
similar predictive power, correctly identifying 29 and 20 po-
tentially stabilizing positions, respectively (Supplementary
Table S7).

CONCLUSIONS AND OUTLOOK

FireProt is a web server that provides users with a one-
stop-shop solution for the design of thermostable multiple-
point mutant proteins. In comparison with the standalone
FireProt strategy (16), all default parameters and compu-
tational protocols were optimized to increase the calcula-
tion speed, while maintaining the prediction accuracy. The
designs produced by the FireProt workflow were exper-
imentally verified and thus users can obtain highly reli-
able thermostable proteins with minimal experimental ef-
fort. The server is complemented by an easy-to-use graphi-
cal interface that allows users to interactively analyze indi-
vidual mutations selected as a part of energy- or evolution-
based approach together with the ability to design their own
multiple-point mutants on top of our robust strategy.
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Figure 2. FireProt’s graphical user interface showing the results obtained for the haloalkane dehalogenase DhaA (PDB ID: 4e46). (A) The ‘Mutant
overview’ panel provides a list of mutations introduced into protein structure. (B) The ‘Report’ panel shows the status of calculation in the individual
steps of the computational pipeline. (C) The ‘Protocol design’ panel provides general information about FireProt designs. (D) The JSmol ´Viewer´ allows
interactive visualization of the protein. (E) The ‘Mutant designer’ panel enables manual adjustment of a new combined mutant.

Table 1. Experimental validation of FireProt strategy

Protein Energy-based mutations Evolution-based mutations �Tm [◦C]
PDB ID

4E46 8 3 +25
3A76 4 3 +21
4OEE 4 2 +15
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The automation of the whole procedure makes the pro-
cess of the design of thermostable proteins accessible to
users without any prior expertise in bioinformatics since it
eliminates the need to select, install and evaluate tools, op-
timize their parameters, and interpret intermediate results.
However, the energy-based approach of the FireProt strat-
egy depends on the quality of provided protein structure
and therefore the prediction accuracy might be compro-
mised in the case of low-resolution structures or homology
models.

In the future, we plan to implement new strategies such as
a design based on the analysis of correlated positions that
would contribute to the construction of the final combined
mutant, elimination of highly flexible regions and introduc-
tion of disulfide bridges. Also, we plan to equip FireProt
with several new filters, e.g. exclusion of the amino acids lo-
cated in the close neighborhoods of the active sites or the
ones participating in oligomerization.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Abstract

There is a great interest in increasing proteins’ stability to widen their usability in numerous biomedical and
biotechnological applications. However, native proteins cannot usually withstand the harsh industrial environment, since
they are evolved to function under mild conditions. Ancestral sequence reconstruction is a well-established method for
deducing the evolutionary history of genes. Besides its applicability to discover the most probable evolutionary ancestors of
the modern proteins, ancestral sequence reconstruction has proven to be a useful approach for the design of highly stable
proteins. Recently, several computational tools were developed, which make the ancestral reconstruction algorithms
accessible to the community, while leaving the most crucial steps of the preparation of the input data on users’ side.
FireProtASR aims to overcome this obstacle by constructing a fully automated workflow, allowing even the unexperienced
users to obtain ancestral sequences based on a sequence query as the only input. FireProtASR is complemented with an
interactive, easy-to-use web interface and is freely available at https://loschmidt.chemi.muni.cz/fireprotasr/.

Key words: ancestral sequence reconstruction; ancestral enzymes; evolution; phylogeny-based analysis; protein stability

Introduction
Proteins are widely used in numerous biomedical and biotechno-
logical applications. Native proteins have mainly evolved under
mild intracellular conditions [1]. Therefore, their applicability is
often limited in the harsh industrial environments characterized
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by inhospitable temperature, extreme pH, high pressure or the
presence of organic co-solvents. As a result, there is a continu-
ous interest in increasing protein stability. New approaches in
the field of protein engineering, such as fluorescence-activated
cell sorting and microfluidics, have widened the throughput of
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directed evolution experiments. However, saturation mutagen-
esis of all positions and systematic re-combinations of many
single-point mutations of the protein of interest is often out of
reach.

In the past decades, various computational methods were
designed to unburden costly and laborious experimental work by
narrowing down the search space for potential stabilizing muta-
tions. Most of those methods can be assigned to one of the three
categories: (i) machine learning, (ii) force-field-based predictions
and (iii) molecular evolution. Each category has its advantages
and shortcomings [2]. Machine-learning methods are able to
unearth hidden features and dependencies overreaching the
current state of expert knowledge, while still struggling with the
insufficient size, quality and diversity of the experimental data,
essential for training and validation of statistically significant
models. Force-field-based approaches are a robust solution for
the prediction of protein stability; however, they rely on the high-
resolution protein structures that are available for only a small
fraction of the known proteins. Evolution-based approaches do
not suffer from these limitations due to the rapid growth of the
sequence databases. However, this continuous growth widens
the search space and increases noise in the data, requiring
laborious and time-demanding manual corrections from the
side of the user with expert knowledge of the system of interest.
Inexperienced user may not therefore utilize evolution-based
methods effectively to obtain accurate and reliable results.

The two most widely used evolution-based methods for
stability engineering are ancestral sequence reconstruction
(ASR) and consensus design. Both methods start with the
multiple-sequence alignment (MSA) of the set of relevant
homolog sequences. Consensus design relies on the simple
analysis of the conservation of the amino acids on the individual
positions in the sequence alignment. As a result, it cannot
account for the coevolution of the residues located in the
sites responsible for the protein’s activity [3] and is utilized
mostly as a part of the hybrid workflows [4, 5]. In comparison,
ASR goes much further by also considering evolutionary
information depicted by the phylogenetic tree. This inclusion
of the evolutionary distances inscribed into the phylogenetic
tree is mostly negligent at the positions with low Shannon
entropy; however, the discrepancies grow stronger with noisy
MSA [6]. ASR is a probabilistic method that explores the deep
evolutionary history of homolog sequences to reassemble
protein’s evolutionary trajectory [7]. ASR is able to unearth
sequences of the long-extinct genes and organisms from which
the current ones evolved and is, therefore, an invaluable tool
in the field of evolutionary biology [8, 9]. ASR has also been
shown to be a very effective strategy not only for thermostability
engineering [10, 11], but also for improving other protein’s
characteristics such as specificity [12], activity, or expression
[13]. Furthermore, ASR was previously proven to be an effective
strategy for the stabilization of prokaryotic proteins [10, 11],
as well as for the improvement of significantly more complex
eukaryotic proteins such as cytochrome P450 [14, 15]. Two main
algorithms, maximum-likelihood [16, 17] (ML) and Bayesian
inference [18] (BI) were designed to infer ancestral sequence
from MSA and phylogenetic tree. Many tools were built over the
years to make those algorithms accessible to the community.
However, the requirement of the MSA of carefully selected
homologs and the rooted phylogenetic tree are still huge limiting
steps for the general use of ASR method by the non-expert users.

FireProtASR addresses those limitations by introducing one-
stop-shop solution for the ancestral sequence reconstruction.
It covers all steps of ancestral inference including search for

homolog sequences, selection of the biologically relevant sub-
set of the sequences, construction of the multiple-sequence
alignment, construction and rooting of the phylogenetic tree
and finally the ancestral inference with the use of ML. Our
computational workflow is fully automated and removes the
need for extensive expert knowledge of the system of interest
as well as employed bioinformatics tools. Furthermore, a novel
algorithm based on the localized weighted back-to-consensus
analysis was utilized to resolve an issue of the ancestral gaps
reconstruction. Assembled workflow and developed web server
were thoroughly validated using: (i) in-house laboratory experi-
ments, (ii) detailed comparison with three previously published
studies and (iii) a large number of proteins representing struc-
turally and functionally different families. FireProtASR does not
require installation and settings of any software packages as the
method is implemented in the interactive web interface freely
available at: https://loschmidt.chemi.muni.cz/fireprotasr/.

Methods
Workflow description

The basic workflow of the FireProtASR method is outlined in
Figure 1. To infer ancestral sequences representing all ancestral
nodes of the evolutionary tree in a fully automated way, a
set of biologically relevant homologous sequences must be
collected from genomic databases and reduced to a suitable
size (Phase 1). With the initial set of homologous sequences in
hand, several state-of-the-art methods are utilized to construct
a multiple-sequence alignment and a phylogenetic tree, which
are then used to support the inference of ancestral nodes
and reconstruction of ancestral gaps (Phase 2). The FireProtASR

workflow requires no user intervention beyond providing
a query sequence and (in the case of enzymes) selecting
catalytic residues used to identify a biologically relevant set
of homologous sequences. However, it is also possible to start
a calculation with a user-defined initial set of homologous
sequences, MSA, or even a phylogenetic tree instead of a single
sequence, thus skipping the first phase of the calculation.

Phase 1: collection of the initial set of homologous
sequences

The query sequence of the target protein in plain text or FASTA
format is the only input required from the side of the user.
Once the query sequence has been uploaded to the server and
checked for validity, searches for the catalytic residues are per-
formed automatically using SwissProt [19] and the Catalytic Site
Atlas [20]. The user can also specify the catalytic residues by
themselves if no/incorrect catalytic residues are found. Once the
catalytic residues and query sequence have been specified, an
in-house tool called EnzymeMiner [21] is used to collect an initial
set of homologous sequences. EnzymeMiner first performs two
rounds of PSI-BLAST [22] against the NCBI nr database [23]
and then filters out all sequences lacking the designated cat-
alytic residues, thereby ensuring the biological relevance of the
remaining homologs. EnzymeMiner searches can yield up to tens
of thousands of homologous sequences for large families. If no
catalytic residues were selected or provided by the user, BLAST
[24] will be used instead of EnzymeMiner, to obtain an initial set
of homologous sequences with potentially lower quality.

Next, the FireProtASR reduces the set of homologous sequences
to the required number, which is set to 150 sequences by default.
Several filters are applied during this process. First, all homologs
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FireProtASR 3

Figure 1. Workflow diagram for the FireProtASR method. The workflow has two phases: (1) collection of the initial set of homologous sequences and (2) ancestral

sequence reconstruction. Colour coding: yellow denotes intermediate results and blue denotes computational tools. Grey and green denote inputs and outputs of the

calculations, respectively.

with sequence lengths 20% higher or lower than that of the
query sequence are excluded from the initial set. This sequence
length normalization is done to remove potential outliers that
could lead to a construction of a noisy MSA with many gaps.
Second, all homologs whose sequence identity to the query

falls outside a certain range are removed from the initial set.
By default, the upper and lower similarity limits are set to 90
and 30%, respectively. This step ensures that the phylogenetic
tree is unbiased towards the query sequence while removing
distant homologs that would degrade the quality of the sequence
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alignment. Third, USEARCH [25] is used to cluster the remaining
sequences with 90% sequence identity, and a single sequence is
randomly selected from each cluster.

Applying these filters produces a diverse set containing hun-
dreds to thousands of homologous sequences. An initial phylo-
genetic tree is quickly constructed with the PASTA software suite
[26], using MAFFT [27] and the swift neighbour-joining algorithm
implemented in FastTree 2.0 [28]. The resulting phylogenetic tree
is then forwarded to Treemmer [29], which iteratively prunes
leaves from the input tree until a specific number of leaves
remains, while minimizing the loss of genetic diversity. The
pruned tree is then displayed to the user via the interactive
user interface, allowing the user to choose to exclude selected
branches or even whole subtrees of the phylogenetic tree from
further calculations.

Phase 2: ancestral sequence reconstruction

In the second phase, the ancestral sequences are inferred from
the initial set of up to 150 homologs approved by the user. To
begin with, a new MSA is constructed from the reduced set of
homologous sequences. For this task, ClustalΩ [30] is utilized
by default, but other methods will be available in upcoming
versions of FireProtASR. For inference of the final phylogenetic
tree, the best-fitting evolutionary matrix must be selected. This
is done using one of the modules of the IQTREE package [31].
Alternatively, if the user prefers a specific evolutionary matrix
for the biological system of interest, the appropriate model
and all the relevant modifiers can be specified manually when
setting up the calculation.

The evolutionary model and its parameter settings along
with the MSA are then forwarded into RAxML [17], which is used
to construct a robust phylogenetic tree. By default, fifty boot-
straps are performed at the start of the maximum-likelihood
search; since no outgroup is provided, the resulting phylogenetic
tree is unrooted. Automated outgroup sequence selection is
not straightforward, especially for prokaryotic proteins due to
the high frequency of horizontal gene transfers. Rooting of the
tree is therefore performed using a minimal ancestor deviation
algorithm, which was shown to achieve comparable levels of
accuracy to outgroup rooting in trees describing the evolution of
eukaryotes, and to surpass both outgroup and midpoint rooting
in the case of prokaryotes [32].

The MSA constructed with ClustalΩ, the selected evolution-
ary model, and the rooted phylogenetic tree from RAxML are
used as inputs for the Lazarus method [33], which is imple-
mented using the PAML software package [16]. The Lazarus
method was re-implemented for FireProtASR to enable calcu-
lations to be performed without specifying outgroup. Conse-
quently, ancestral sequences of all ancestral nodes are parsed
from their posterior probabilities and provided to users in sep-
arate files in FASTA format. Additionally, BLASTp [24] is used
to search for a template in the PDB database [34], and a model
structure of the query sequence is constructed by homology
modelling using the ProMod3 program [35]. This model is shown
in the web interface to allow users to visualize the differences
between the query sequence and the selected ancestor.

Finally, due to the large number of undesirable ancestral
gaps inserted into ancestral sequences by Lazarus, a novel algo-
rithm for ancestral gap reconstruction was designed for use in
FireProtASR. This algorithm is based on the principle of local-
ized weighted back-to-consensus because consensus analysis
has proven to be an effective approach for increasing proteins’
thermal stability [36–38]. To begin with, each terminal node of

the phylogenetic tree is assigned a binary vector of length equal
to the length of the corresponding sequence in the MSA. Each
position in this vector is assigned a value of −1 or 1, indicating
the presence of a gap or standard amino acid, respectively, at
the corresponding position of the relevant sequence. On moving
from the terminals towards the root of the tree, the probability
of a gap in ancestral node An at position i is calculated as Ani

=
Aki

∗t1∗+Ali
∗t2

t1+t2
, where Ak, Al are the child nodes of An and t1, t2 are the

evolutionary distances between An and its child nodes. Taking
t3 to be the evolutionary distance between An and its parental
node, its value can be updated based on the values of t1 and
t2 as follows: t3_new = t3 + t1+t2

2 . This new value is computed
before proceeding with the calculation for the parental node; its
use increases the relative impact of well-branched subtrees and
therefore limits the impact of lone sequences and small subtrees
compared to that of well-represented ones. Finally, ancestral
sequences are reconstructed based on the scores in the corre-
sponding vector. Positions with values lower than 0 are assigned
as gaps, and the remaining amino acids are selected based on
their posterior probabilities as estimated by Lazarus. The nature
of inconclusive positions with scores in the interval <−0.1, 0.1>

is determined based on the frequencies of gaps in the global
alignment and the state of the parental node. To include the
ancestral gap, frequencies of gaps in the global alignment should
reach over 60%, or over 40% if the ancestral gap is present in the
parental node sequence. The model case for a single position in
the sequence alignment is shown in Figure 2.

Experimental validation

The workflow was experimentally validated using haloalkane
dehalogenases as a model enzyme. This enzyme was selected
as a typical representative of the α/β superfamily, counting over
100 000 proteins. The sequence of the haloalkane dehalogenase
DhaA (UniProt ID P0A3G2) was used as the sole input for the
calculation. Six different ancestral sequences were selected and
experimentally characterized.

Chemicals and growth media

1-bromobutane and LB medium were purchased from Sigma-
Aldrich Co. (St. Louis, MO, USA). IPTG was purchased from
Duchefa Biochemie B.V. (Haarlem, The Netherlands). All
chemicals used in this work were of analytical grade.

Expression in Escherichia coli BL21 (DE3)

Escherichia coli Dh5α cells were obtained from Invitrogen and
Escherichia coli BL21 (DE3) from New England Biolabs. The
genes for the ancestral dehalogenases were synthesized and
subcloned into the expression vector pET21b. The generated
plasmids were transformed into chemo-competent E.coli BL21
(DE3) cells. Obtained colonies were used to prepare precultures
by inoculation into 10 ml of LB medium (with 100 μg/ml
ampicillin) followed by overnight incubation at 37◦C and
180 rpm. For expression of each variant, 1 l of LB medium
supplemented with 100 μg/ml ampicillin was inoculated with
5 mL of the appropriate pre-culture (1/200). The flasks were
incubated at 37◦C and 180 rpm until OD600 0.6–0.8 was reached,
then incubated at 20◦C for 30 min. β-D-1-thiogalactopyranoside
(IPTG, 0.2 mM) was then added for induction, and the culture
was incubated at 20◦C and 180 rpm overnight. Finally, the culture
was harvested by centrifugation at 4500 × g, 4◦C for 15 min, after
which the cell pellets were frozen at −80◦C until further use.
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Figure 2. Ancestral gaps reconstruction algorithm. Green colour denotes the initial branch lengths of the phylogenetic tree. Black numbers indicate the values of the

vectors of the terminal and the ancestral sequences at the given position in the multiple sequence alignment. Red values show the modified branch lengths that are

updated after the calculation of the underlying ancestral node.

Protein purification

The cell pellets were suspended in 50 ml of equilibration buffer
(20 mM phosphate buffer pH 7.5 containing 0.5 M NaCl and
10 mM imidazole) and disrupted by sonication with a Hielscher
UP200S ultrasonic processor (Hielscher, Germany) four times for
4 min each. Disrupted cells were centrifuged at 13 000 × g and 4◦C
for 1 h (Laborzentrifugen, Germany). The crude extract was then
collected, filtered and loaded onto a Ni-NTA Superflow Cartridge
(Qiagen, Germany) in equilibration buffer. Unbound and weakly
bound proteins were washed out using increasing imidazole
concentrations. The target enzyme was eluted with purification
buffer containing 300 mM of imidazole. The eluted protein was
dialyzed three times overnight against 50 mM of phosphate
buffer (pH 7.5), after which its purity was checked by SDS–
polyacrylamide gel electrophoresis (SDS–PAGE). About, 15% poly-
acrylamide gels were stained with Instant Blue (Fluka, Switzer-
land). Protein concentrations were determined by NanoDrop
(Sigma-Aldrich, USA). The enzymes were lyophilized using a
vacuum pump system for long-term storage.

Circular dichroism (CD) spectroscopy

CD spectra were recorded at 20◦C using a spectropolarimeter
Chirascan (Applied Photophysics, United Kingdom). Data were
collected from 190 to 260 nm, at 100 nm/min with a 1-s response
time and 1-nm bandwidth using a 0.1-cm quartz cuvette. Each
spectrum shown is the average of five individual scans and was
corrected for absorbance caused by the buffer. Collected CD data
were expressed in terms of the mean residue ellipticity (ΘMRE),
which was calculated using the equation:

ΘMRE = Θobs · Mw · 100
n · c · l

where Θobs is the observed ellipticity in degrees, Mw is the protein
molecular weight, n is number of residues, l is the cell path
length, c is the protein concentration (0.2 mg/ml) and the factor
100 originates from the conversion of the molecular weight to
mg/dmol.

Thermal denaturation

Thermal unfolding was followed by monitoring the ellipticity at
224 nm over the temperature range of 20–94◦C, with a resolution
of 0.1◦C at a heating rate of 1◦C/min. Recorded thermal denatura-
tion curves were roughly normalized to represent signal changes
between approximately 1 and 0 and fitted to sigmoidal curves
using Origin 6.1 (OriginLab Corporation, USA). The melting tem-
perature (Tm) was evaluated as the midpoint of the normalized
thermal transition.

Enzymatic haloalkane dehalogenase activity

Dehalogenation activity was assayed using the colorimetric
method of Iwasaki et al. [49]. The release of halide ions was
analyzed spectrophotometrically at 460 nm using an Eon
microplate reader (BioTek, USA) after reaction with mercuric
thiocyanate and ferric ammonium sulfate. The reactions were
performed at 37◦C in 25-ml Reacti Flasks closed with Mininert
Valves. The reaction mixtures consisted of 10 ml 100 mM glycine
buffer (pH 8.6) and 10 μl of the substrate 1-bromobutane.
Reactions were initiated by adding the enzyme to a final
concentration of 0.01 (DhaA 172Loc), 0.0065 (DhaA 172Glob),
0.0052 (DhaA 230Glob), 0.028 (DhaA 238Loc) or 0.014 mg/ml
(DhaA 238Glob). Reactions were monitored by withdrawing 1 ml
of samples from the reaction mixture after 0, 5, 10, 15, 20 and
30 min. The samples were immediately mixed with 0.1 ml of 35%
nitric acid to stop the reaction. Dehalogenation activities were
quantified as rates of product formation over time. Each activity
was measured in three independent replicates.

Enzymatic luciferase activity

Luminescence activity measurements were performed with a
FLUOstar OPTIMA Microplate reader (BMG Labtech, Germany)
using coelenterazine as the substrate at 37◦C. A 25 μl of sample
of purified enzyme at a concentration of about 1 mg/ml was
placed into a microtiter plate well. After baseline collection for
10 s, the luminescence reaction was initiated by adding 225 μl
of 8.8 μM coelenterazine in reaction buffer (100 mM potassium
phosphate buffer, pH 7.5). Luminescence was recorded for 72.5 s,
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and each sample was measured in at least three independent
experiments. The areas of the resulting luminescence intensity
peaks in relative luminescence units (RLU) were converted into
values in units of RLU/mg/s.

Results
Web server input

The only required input to the web server is a query sequence
of the target protein in plain text or FASTA format. Alternatively,
one can upload a FASTA file containing an initial set of sequence
homologs or a multiple sequence alignment (MSA). Rooted and
unrooted phylogenetic trees in the standard Newick format can
also be provided. When performing calculations in basic mode,
only the table containing the essential residues is available
to the user. Essential residues are identified automatically by
searching in SwissProt [19] and mCSA [20]. However, the initial
selection can be changed by the user. The default values and
settings of individual computational tools are optimized to pro-
vide reliable results for most systems. Operating in advanced
mode expands the list of modifiable parameters to include those
related to: (i) the thresholds of the homolog identity filters and
sequence clustering, (ii) selection of the evolutionary model and
(iii) construction of the phylogenetic tree. Advanced mode allows
experts to fine-tune the calculation’s parameters based on the
studied biological system, which may be useful when dealing
with particularly small or large protein families.

Selection and reduction

Upon submission, a unique identifier is assigned to each job to
track the calculation. The ‘calculation browser’ informs the user
about the status of the individual steps in the ancestral sequence
reconstruction workflow. Once the first phase of the job is fin-
ished, the initial phylogenetic tree is displayed to the user using
a strongly updated adaptation of PhyloTree library (Figure 3A)
[39], together with the table of removed sequences (Figure 3B).
By clicking on the individual leaves of the phylogenetic tree, the
user can exclude selected sequences from future calculations.
Furthermore, whole subtrees can be removed by choosing this
option in the menu of the selected ancestral node. The MSA of
the homologous sequences can be also visualized by switching
to the multiple sequence alignment tab. This mode is intended
for the expert users with the greater knowledge of the system
of interest as it allows for the removal of the noise and outliers
from the initial set of homolog sequences. If the expert mode
is utilized, it is recommended to exclude the sequences that do
not share the function similar to the query protein or that cause
a significant disturbance in the MSA.

Web server output

The calculation’s progress can be tracked in the ‘calculation
browser’ similarly to the selection step. Once finished, users
can either download the results in the zipped archive directly
from the calculation page or navigate to the ‘Result page’ for
further analysis. The ‘Result page’ is organized into several pan-
els allowing users to interactively visualize and design ancestral
enzymes.

Protein visualization

The homology model of the query protein predicted by ProMod3
is interactively visualized in the web browser using the JSmol

applet [40] (Figure 3D). Users can switch between different visu-
alization styles such as backbone, wireframe or cartoon and
change the quality of the visualized structure. It is also possible
to visualize the differences between the query and the selected
ancestral sequence on the modelled protein structure: substi-
tutions and deletions are shown in blue and red, respectively,
while insertions are indicated by regions between red and yellow
residues.

Ancestral tree panel

The ‘ancestral panel’ shows the final phylogenetic tree con-
structed by RAxML [17] along with further information about the
precalculated ancestral sequences (Figure 3E). By selecting any
of the ancestral nodes, it is possible to either (i) visualize the dif-
ferences between a wild-type protein and the selected ancestor
node on the protein structure or (ii) open a new window pro-
viding an overview of the posterior probabilities for individual
amino acids in the sequence of the selected ancestor (Figure 3G).
Posterior probabilities are shown in the bar-styled sequence logo
together with the percentages for each considered amino acid,
and each bar is expanded with information about the charge and
hydrophobicity of the most probable amino acids. The bar repre-
sentation was in part derived from the SequenceLogo library [41].
The user can edit the ancestral sequence and store it as a new
user-defined ancestor (Figure 3F). This option is useful for the
experts with more in-depth knowledge of the system of interest
and allows to force some specific mutations, e.g., the mutations
with the previously known effect on proteins stability, into the
constructed ancestral sequence. It can also be used to bring
some biological insight into the positions with noisy posterior
probabilities. Furthermore, the ancestral sequences’ MSA can be
visualized in the multiple sequence alignment tab for further
analysis.

Sequence designer

The ‘Sequence designer’ panel allows users to manage and edit
user-defined ancestral sequences. Additionally, new sequences
can be created by modifying existing custom ancestors
(Figure 3C). Differences between the query sequence and custom
ancestors can also be visualized on the protein structure in this
panel. All prepared designs can be downloaded in one zipped
archive together with the original ancestors and the structure
prepared by homology modelling.

Web server experimental validation

In one of our previous studies, we have presented experimental
characterizations of six inferred ancestral proteins from
haloalkane dehalogenase subfamily II [10]. Relative to their
contemporary counterparts, these ancestral proteins exhibited
higher thermal stability (by 8–24◦C), improved yields and
broadened substrate specificity. Those ancestral sequences
were reconstructed by clustering an initial set of homologous
sequences that was reduced by inspection in the sequence-
editing program BioEdit [42]. A multiple sequence alignment
was then manually curated using a structure-guided alignment
of eight proteins from HLD-II and poorly conserved regions were
removed from the alignment. The topology of the phylogenetic
tree was optimized by subtree pruning and re-grafting, and
the tree’s root was established using outgroup selected on the
basis of expert judgement. Finally, the ancestral sequences and
positioning of gaps were refined by manual inspection.
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Figure 3. The FireProtASR graphical user interface showing results obtained for the haloalkane dehalogenase DhaA (UniProt ID P0A3G2, PDB ID 4E46). (A) The sequence-

filtering panel allows users to exclude selected branches from the calculation. (B) The reduction table shows the list of removed sequences. (C) The sequence designer

allows users to download and edit ancestral sequences. (D) The JSmol viewer provides interactive protein visualization. (E) The mutations panel contains all designed

ancestral sequences in the ancestral tree. (F) The edit window enables amino acid substitutions at individual positions. (G) The sequence information window shows

detailed information on selected ancestral sequences.

As part of the validation of FireProtASR, we tried to replicate
these results by using the sequence of haloalkane dehalogenase
DhaA (UniProt ID P0A3G2) as the only input query. All steps
of the calculation, including homologous sequence selection,
multiple sequence alignment construction, phylogenetic rooting

and ancestral reconstruction were carried out automatically.
Three pairs of ancestral sequences were selected, each pair
containing one ‘global’ and one ‘local’ ancestral node (Figure 4A).
Global ancestor (Glob) represents ancestral sequence obtained
directly from the fully automated workflow, while local ancestor
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8 Musil et al.

Figure 4. Results provided by the FireProtASR workflow using haloalkane dehalogenase DhaA as an input query. (A) Phylogenetic tree of the HLD-II constructed by

the FireProtASR strategy with indicated three global ancestors reconstructed within this study. (B) Phylogenetic tree for the local ancestor of the ancestral node 172.

(C) Phylogenetic tree for the local ancestor of ancestral node 230. (D) Phylogenetic tree for the local ancestor of ancestral node 238. (E) Multiple sequence alignment

comparing the query sequence with the suggested ancestral sequences and the result of the back-to-consensus analysis.

(Loc) was constructed by carrying out FireProtASR workflow for a
second time using only the sequences included in the subtree
beneath the selected ancestral node. Local ancestor therefore
represents a root of a phylogenetic tree constructed from only
the sequences most relevant to the selected ancestral node.
Node 238 (Figure 4D) is an ancestor of only five leaves and
was selected because of its close proximity to luciferase and
dehalogenase, providing a fair comparison to the previously
published ancestors. Similar comparison can be also achieved
with node 172 (Figure 4B), having several stable dehalogenases
in its progeny. Finally, node 230 (Figure 4C) was highlighted as a

more distant ancestor of both luciferase and dehalogenase. No
pruning, curation or re-grafting was performed in the process.
Selected ancestral sequences were then subjected to the exper-
imental validation. MSA of the query protein, selected ances-
tors, and the sequence provided by executing back-to-consensus
analysis is attached in Figure 4E.

Although the selected sequences have high implied sequence
similarity (92–97%) with the inferred ancestors, experimental
validation showed that the ancestors’ thermal stability was 20–
26◦C higher than that of wild-type DhaA (Table 1). The ancestral
proteins also exhibited high expressibility, solubility, yields and
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Table 1. Characteristics of reconstructed and experimentally characterized ancestral haloalkane dehalogenases

Protein code Expression (% of
total protein)

Solubility (%) Yield (mg/l) Tm (◦C) HLD act.
(μmol/mg·s)

LUC act.
(RLU/mg·s)

DhaA wt 17 83.1 91.1 50.56 ± 2.4 0.032 ± 0.0059 n.a.
DhaA 172Loc 23 85.5 74.9 71.60 ± 0.7 0.038 ± 0.0002 1.41 ± 0.26
DhaA 172Glob 21 65.2 88.2 70.04 ± 1.5 0.061 ± 0.0045 n.a.
DhaA 230Loc 20 n.d. n.d. n.d. n.d. n.d.
DhaA 230Glob 23 84.8 108.5 72.14 ± 0.4 0.061 ± 0.0118 n.a.
DhaA 238Loc 23 63.2 74.9 70.36 ± 0.6 0.014 ± 0.0021 353.5 ± 14.58
DhaA 238Glob 19 83.3 94.4 76.19 ± 0.2 0.030 ± 0.0012 3.18 ± 0.33

Notes: DhaA, haloalkane dehalogenase from Rhodococcus rhodochrous NCIMB 13064; wt, wild type; Loc, ancestral protein inferred from local alignment; Glob, ancestral
protein inferred from global alignment; Tm, melting temperature; HLD act., haloalkane dehalogenases activity; LUC act., luciferase activity; n.d., not determined due
to poor solubility of this protein; n.a., not active under tested conditions.

catalytic activity. Moreover, inference based on both haloalkane
dehalogenases and luciferases led to the discovery of the very
interesting enzyme ancHLD-Rluc, which exhibits dual dehaloge-
nase and monooxygenase activity. This experimental validation
provides direct experimental evidence of the good functionality
and reliability of the fully automated version of FireProtASR.

Additionally, results obtained using FireProtASR were thor-
oughly and quantitatively compared to three previously
published experimental studies. For this purpose, Euclidean
distance [43], and the Subtree prune and regraft distance
[44] were calculated to compare the trees obtained from
the FireProtASR and published literature. The two trees were
also graphically compared using the Jaccard index utilizing
ColorBrewer [45] scheme. Detailed comparison of all three
experimental studies with the results produced by FireProtASR

server is attached in Supplementary Data 1–3, available online at
https://academic.oup.com/bib. Finally, the robustness and relia-
bility of the FireProtASR server was tested using 60 diverse pro-
teins from various protein families (see Supplementary Data 4
available online at https://academic.oup.com/bib).

Discussion
ASR has been shown to be a very effective strategy for the protein
thermostability engineering and as such was implemented in
various computational tools using maximum-likelihood (FastML
[46], RaxML [17], Ancestors [47]) or Bayesian inference (Han-
dAlign [48], MrBayes [18]) methods. However, a significant limita-
tion of those methods is that they require complex input data to
be uploaded by the users. Those requirements are reaching from
a simple set of homolog sequences to the MSA or even rooted
phylogenetic tree, leaving the most crucial and laborious parts
of the calculation in the hands of the users. Non-expert users
without the deep knowledge of the bioinformatics tools and the
system of interest are therefore hindered from the successful use
of the ASR method.

FireProtASR is a web server that aims to provide users with
one-stop-shop solution for the ancestral sequence reconstruc-
tion. FireProtASR requires minimal input from the users, and
the whole calculation can be processed from a single protein
sequence, set of homolog sequences, MSA and phylogenetic tree.
All steps of the calculation, including the search for biologi-
cally relevant homolog sequences, dataset reduction and the
ancestral reconstruction are automated. Moreover, a novel algo-
rithm based on localized weighted back-to-consensus analysis is
implemented to resolve an issue with ancestral gap reconstruc-
tion. FireProtASR web server is also complemented by an easy-
to-use web interface that allows users to interactively analyze

sequences of the individual ancestral nodes together with the
ability to design their own ancestral sequences based on the
posterior probabilities of the existing nodes.

The robustness and reliability of the results produced by the
FireProtASR workflow was evaluated by experimental character-
ization of six ancestral sequences of haloalkane dehalogenase
from HLD-II subfamily. With the exception of the local variant
of the ancestral node 230, all designed ancestral sequences are
soluble and also retain high expressibility and yields on the
levels comparable to the DhaA wild type. However, the thermal
stability has increased by over 20◦C and global variants 172 and
230 have also increased the HLD activity by two-fold. Increase in
HLD activity cannot be observed in the constructed local variants
that utilize smaller subsets of homolog sequences, and thus
only a limited amount of evolutionary information. This would
encourage the usage of the global variants for the design of
highly stable and active proteins. However, more focused view
using a localized variants of the ancestral nodes can provide
some useful results as can be observed in the local variant of the
node 238 that shows both dehalogenase and monooxygenase
activity. High thermal stabilization was also achieved in those
variants.

Finally, the results provided by the FireProtASR web server are
consistent with the designs presented in the published literature
as the fully automatized designs obtained by FireProtASR method
maintain high sequence similarity (>90%) with the manually
designed and curated ancestors. Finally, the comprehensive
analysis of approximately 60 different proteins from various
protein families have proven the robustness and reliability of
the presented method.

The full automation of the FireProtASR method eliminates the
need to select, install and evaluate individual tools, optimize
their parameters and interpret intermediate results. Together
with its general applicability for a wide range of protein fami-
lies, FireProtASR makes the procedure of ancestral reconstruction
accessible to the users without any prior expertise in bioin-
formatics, and the intuitive web interface allows for a further
analysis utilizing both sequence and structural information.

Key Points
• FireProtASR is a web service for a fully automated

design of stable proteins using ancestral sequence
reconstruction and is accompanied by an interactive
and easy-to-use interface.
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• FireProtASR allows users to utilize ancestral recon-
struction without prior knowledge of the necessary
bioinformatics tools and the biological system.

• The robustness and reliability of the FireProtASR

method were thoroughly tested by both laboratory
experiments and by comparing predictions with the
results published in scientific literature.

• Laboratory characterization of the ancestral designs
showed up to 26◦C improvement in thermostability
and some of the proteins poses even dual catalytic
activity.

Data availability

All data validating the robustness and accuracy of our ser-
vice are available in the Supplementary materials 1-4. Web
service and tutorials are freely available at https://loschmi
dt.chemi.muni.cz/fireprotasr/.

Supplementary Data

Supplementary data are available online at Briefings in Bioin-
formatics.
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ABSTRACT

The majority of naturally occurring proteins have
evolved to function under mild conditions inside
the living organisms. One of the critical obstacles
for the use of proteins in biotechnological applica-
tions is their insufficient stability at elevated temper-
atures or in the presence of salts. Since experimental
screening for stabilizing mutations is typically labo-
rious and expensive, in silico predictors are often
used for narrowing down the mutational landscape.
The recent advances in machine learning and arti-
ficial intelligence further facilitate the development
of such computational tools. However, the accuracy
of these predictors strongly depends on the quality
and amount of data used for training and testing,
which have often been reported as the current bot-
tleneck of the approach. To address this problem,
we present a novel database of experimental ther-
mostability data for single-point mutants FireProtDB.
The database combines the published datasets, data
extracted manually from the recent literature, and
the data collected in our laboratory. Its user inter-
face is designed to facilitate both types of the ex-
pected use: (i) the interactive explorations of indi-
vidual entries on the level of a protein or mutation
and (ii) the construction of highly customized and
machine learning-friendly datasets using advanced
searching and filtering. The database is freely avail-
able at https://loschmidt.chemi.muni.cz/fireprotdb.

INTRODUCTION

Proteins play essential roles in many biotechnological and
biomedical applications, where they are often subjected to
extreme environments, e.g. elevated temperatures or the
presence of various salts. However, naturally occurring pro-
teins have mostly evolved to function in the mild environ-
mental conditions, and therefore their applicability is lim-
ited in the industrial applications. For this reason, protein
engineers generally aim to improve protein stability, and
thermostability is one of their primary targets (1) as it is cor-
related with serum survival time (2), half-life (3), expression
yield (4) and activity in the presence of denaturants (5). A
reliable assessment of the effect of a mutation on protein sta-
bility is often performed experimentally. Extensive experi-
mental screening, however, is slow and costly, prompting the
use of in silico approaches for the pre-selection of promis-
ing mutations. These methods are usually based on one of
the three principles: (i) free energy calculations, (ii) phylo-
genetics or (iii) machine learning. With the recent advances
in artificial intelligence, tool developers increasingly resort
to the third group of methods. However, the accuracy of the
machine learning-based predictors is still severely limited by
the lack of high-quality data (6). Experimental characteri-
zations are usually not capable of producing large amounts
of data, and the majority of these measurements are scat-
tered in the scientific literature. Thus, there is a strong de-
mand for systematic collection, validation, and organiza-
tion of such data in a database.

Two attempts have been made to establish a systematic
and extensive collection of thermostability data so far. The
first and largest database is the Thermodynamic Database
for Proteins and Mutants–ProTherm (7). It was first re-
leased in 1999 with the aim to collect experimentally de-
termined thermodynamic parameters for wild-type proteins
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and their mutants from the published literature. Its latest
version contains >25 000 entries from 740 proteins, and it
serves as the primary source of protein stability data for the
development of new predictors. However, ProTherm was
last updated in 2013 so the database is already out-of-date.
Moreover, several critical issues have been reported, such
as inaccurate annotations or wrong signs of values (6,8–
10). This makes ProTherm even more difficult to use as
time-demanding manual filtering and validation steps are
required to confirm the values in the original articles. This
manual filtering led to the construction of many different,
often overlapping, subsets with corrected values and occa-
sionally new data. Some of these derivative datasets were
deposited to the VariBench database (11) without any at-
tempts to reintegrate the changes into ProTherm or create
an improved database. This changed in 2018 when Prota-
Bank (12) was released. This database aims to collect a wide
range of protein engineering data such as thermostability,
activity, expression, binding and several others. The devel-
opers imported all the data from ProTherm, yet they did not
seem to perform any manual curation. Therefore, the criti-
cal issues listed above were not resolved. And while Prota-
Bank enriched the ProTherm data with recent experimental
studies, the database does not offer any advanced search-
ing and filtering capabilities, at least in its non-commercial
version. This makes the data extraction and processing te-
dious by necessitating many manual steps and hindering
the application of such data-driven methods as machine
learning.

To overcome these limitations, we established the
FireProtDB database that holds manually curated ther-
mostability data for single-point mutants. The database
contains the data available in ProTherm, ProtaBank, and
our extensive manual literature search. Its user-friendly in-
terface allows easy and interactive browsing through the ex-
perimental data and provides links to the corresponding
UniProt and PDB entries. Moreover, advanced searching
and filtering capabilities, the ability to download the data in
a simple table format, and meticulous labelling of data en-
tries used for training and testing of published tools prompt
the further application of machine learning.

MATERIALS AND METHODS

Database architecture and data model

The top-level entity of the FireProtDB database is a unique
protein sequence entry with the assigned UniProt ID (13).
Protein sequences were preferred to structures due to the
broader availability of the former. Each sequence is a string
of amino acids in specified positions. Multiple mutations
can be assigned to a single position, and each mutation can
be evaluated by multiple measurements and derived val-
ues. The measurements represent the experimental values
of the Gibbs free energy changes upon mutation (��G) or
changes in melting temperatures (�Tm). The derived values
stand for averages or medians of multiple measurements for
a particular mutation. Each measurement is also accompa-
nied by a curation flag that indicates whether the value was
manually validated against the original publication to guar-
antee its correctness. Furthermore, each measurement and

derived value can be assigned to multiple published datasets
to promote accurate validation and benchmarking of com-
putational tools.

From the structural point of view, each sequence can have
one or more assigned biological units that denote biolog-
ically relevant quaternary structures of asymmetric units
stored in the PDB database (14). For representative biolog-
ical units, the HotSpot Wizard 3.0 (15) calculation was ex-
ecuted to compute additional sequential and structural an-
notations. These annotations can help with the analysis of
selected mutations and serve as pre-calculated features ap-
plicable in machine learning models.

Stability data acquisition and curation

FireProtDB is composed of the data from four sources: the
ProTherm database, the ProtaBank database, manual min-
ing of the scientific literature, and data collected in our labo-
ratory (Figure 1). The primary data source was ProTherm.
Due to the multiple problems mentioned in the introduc-
tion, we followed several filtering steps. In the first step, we
retained only those entries that met the following four cri-
teria: (i) they have a single-point mutation; (ii) the mutation
is not an insertion or deletion; (iii) the protein has a Swis-
sProt accession code and/or a PDB identifier; (iv) the en-
try includes a measured ��G and/or �Tm. Secondly, we
performed a validity check of SwissProt accession codes
and updated obsolete entries. ProTherm references muta-
tions by their structure index, i.e., the residue number in
the structure, which in many cases does not match their
sequence index, i.e. the position in the sequence. To over-
come this issue, we used a similar approach as in PDBSWS
(16): use the Needleman-Wunsch algorithm (17) to con-
struct the global sequence alignment of sequences extracted
from PDB and UniProt entries and map the mutations onto
the UniProt sequences. In the next step, we confirmed that
the reported wild-type amino acids are in the correct po-
sitions in the structures and unified the reported units. Fi-
nally, we matched the data with the manually curated entries
in the FireProt dataset (18), updated the values, and marked
them as ‘curated’.

In addition to ProTherm, we explored the studies re-
ported in the ProtaBank database, extracted the thermosta-
bility data, and integrated them into our database. We also
performed a manual literature search using stability-based
keywords such as ‘protein stability’, ‘thermostability’, ‘free
energy upon mutation’, ‘protein stabilization’. We mined
the recent scientific articles reporting mutants with mea-
sured stability data and contacted the authors of the pub-
lications when the relevant data were not available in the
article. All such entries were marked as ‘curated’ as we ex-
tracted them directly from the original publications. Fi-
nally, we reviewed the thermostability data collected in our
lab throughout the last few years and added them to the
database. We perform experimental protein characteriza-
tion in our protein engineering projects on a regular basis,
and measuring protein stability is an essential part of such
characterization. In total, the three sources led to a signif-
icant enlargement of the data size by 62% in terms of all
the entries. The number of curated entries more than dou-
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Figure 1. A schematic representation of the data comprising FireProtDB. The primary source of data is filtered ProTherm (7). The FireProt data subset
(18) was manually curated, compared to the source publications, and marked with the ‘curated’ flag. The publications from ProtaBank (12) and manual
literature search were also used to deposit the data. Each mutation in the deposited data was annotated according to its membership in the published
datasets and those deposited on VariBench (11). The HotSpot Wizard 3.0 (15) annotation tool was applied to each protein entry with a known tertiary
structure.

bled compared to the previously collected cleaned FireProt
subset of ProTherm.

Dataset assignment

In the second acquisition step, we collected 40 datasets from
the VariBench database (11) and literature (18), which were
used previously for training or testing of existing predictors.
Since all these datasets are at least partially derived from
ProTherm, we could label each measurement in FireProtDB

by its membership in the datasets. These labels are partic-
ularly useful for the comparison of new prediction models
to the existing tools. This task is usually done by the perfor-
mance evaluation of predictors on a dataset that is entirely
independent of the training and test sets used for the devel-
opment of the tools. Since the dataset construction is often
laborious and consists of a manual data processing, the pos-
sibility to directly exclude the data present in given datasets
significantly simplifies and speeds up the construction pro-
cess.

Calculation of additional annotations

To provide our users with a more advanced description of
their proteins of interest, we enriched the database by sev-
eral important sequence- and structure-related information.
These calculations were performed by HotSpot Wizard 3.0
(15), which is currently the only tool capable of deriving
all these features in a single calculation (19) and provides
machine-readable results. HotSpot Wizard was executed on
a representative biological unit of each protein and provided
the annotations for a structure, such as the residues located
in protein pockets and tunnels, and a sequence, such as cat-
alytic residues, evolutionary conservation scores, back-to-
consensus mutations, and correlated pairs. These annota-
tions can be helpful for a better understanding of structure-
function relationships as well as for generating features for
machine learning.

RESULTS

Web interface

The web interface was designed for both types of expected
users––protein chemists and software developers. Protein
chemists are often looking for the thermostability evidence
for their protein of interest, and they will benefit from its
interactivity and details pages with additional information.
Machine learning experts and bioinformaticians will be
more interested in advanced filtering capabilities facilitating
the process of construction of highly customized datasets
for the training or assessment of various predictors. The en-
try point to the database is the search form, which allows
browsing in two major ways: (i) a simple full-text search for
querying the database using protein name, UniProt acces-
sion codes, PDB identifiers, protein names, publications, au-
thors or organisms and (ii) an advanced search allowing the
users to construct complex rules based on the relational al-
gebra and all available database fields. The latter is one of
the key features of FireProtDB as it facilitates the construc-
tion of highly customized datasets needed for the develop-
ment of new predictors.

Once the user clicks on the ‘Search’ button, they are redi-
rected to the page with the result table. This table contains
a list of available experiments, their basic annotations, and
measured values. The table is paginated to eliminate possi-
ble performance issues and allows further interactive filter-
ing of displayed values. The user can then easily export the
search results in the CSV format using the ‘Export’ button
at the top or the bottom of the page.

Clicking on a mutation name leads to a page with a more
detailed view, showing all the data entries and datasets that
include the selected mutation. Clicking on a protein name
leads to a page providing the basic information such as
UniProt accession code, organism and Enzyme Commis-
sion number, as well as detailed annotation of secondary
structure, catalytic sites, natural variants and amino acid
charges derived from UniProt database using interactive
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Figure 2. Examples of filtering protocols in FireProtDB. Top: The request filters out the data collected at extreme pH or with extreme ��G values, resulting
in >3500 data points left. Bottom: An example of excluding all the mutations that appear in PopMuSiC, FireProt, or PON-Tstab datasets.

Figure 3. An overview of the data deposited to FireProtDB. Left: The table shows the total number of each substitution pair with the wild type amino acids
in rows, mutant amino acids in columns, and the coloring according to the thresholds of 1 (light green), 10 (medium green) and 50 (dark green) entries for
the corresponding substitution. Right: Histograms showing the top seven proteins by their UniProt IDs, the ��G values, and the cumulative number of
amino acid substitutions.

ProtVista tracks (20). This page also contains a list of all
known biological units and a table with all experimental
measurements.

Search queries

Several types of search queries may be of interest to the
users. The first one relates to data filtering by values (10).

Typically, software developers filter out the data collected
at extreme pH (<6 or >8) due to changes in charged states
for ionizable residues. The entries with large absolute ��G
or �Tm are also sometimes excluded due to likely higher
measurement errors, and also because dramatic changes to
the stability may indicate significant structural alterations
to the wild type, which may become a problem for structure-
based features. The second type is relevant for benchmark-
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ing of a newly designed predictor against the existing tools
or creating a meta predictor. In either case, one usually
needs to derive a data subset that has not been used by
the existing predictors for training. The main reason is
the robust performance estimate, which is typically over-
optimistic for these sets (6). Two corresponding examples
of such filtering protocols are shown in Figure 2.

Database dump

For the users requesting even higher control over the data
and filtering capabilities, we offer the possibility to down-
load the complete dump of the database in the SQL for-
mat. This data file can be easily imported to any mod-
ern MariaDB server, version 10.2, and higher. Since the
database structure is complex and any custom query re-
quires joining of multiple tables, the dump also contains
a pre-defined view ‘mutation experiments summary’. The
summary combines all the tables and provides the data in
a similar structure as the CSV export from the user inter-
face. This view or its definition can serve as a useful starting
point for additional filtering or creating custom queries.

Data statistics

Currently, FireProtDB contains 13274 entries for 237 pro-
teins (Figure 3), from which 8189 measurements origi-
nated from ProTherm. The remaining 5085 entries were
added from our literature search (18%), publications from
ProtaBank (28%), VariBench (53%), and our own records
(1%). In total, 43% entries are destabilizing mutations
(�Tm←1 or ��G > 1 kcal/mol), 14% stabilizing (�Tm >
1 or ��G←1 kcal/mol), and 43% considered neutral (–1
≤ �Tm ≤ 1 or – 1 ≤ ��G ≤ 1 kcal/mol). The database also
includes annotations for 40 various published datasets de-
rived from ProTherm, deposited to VariBench (11), or avail-
able in the corresponding articles and web servers. As far
as enzymes are concerned, those collected in the database
cover the first six EC classes, three of which by >40% on
the second level.

DISCUSSION

The availability of large high-quality datasets is one of
the critical requirements for the advancement of machine
learning-based in silico predictors. While some promising
high-throughput experimental methods have been released
recently (21,22), their validation is still ongoing, and protein
stability experiments are still time-consuming and expen-
sive. Building training and testing datasets is hindered by
the data being hidden in the original articles, generating a
strong demand for their systematic mining, collection, vali-
dation, and homogenization. The existing databases are not
fulfilling all the requirements as ProTherm is outdated and
contains incorrect data, and ProtaBank does not provide
advanced search and export tools and is partly commercial.

FireProtDB is a novel database for experimental ther-
mostability data of protein single-point mutants. It con-
sists of the data manually extracted from ProTherm, arti-
cles from ProtaBank, new data obtained by mining the re-
cent literature, and the data collected in our laboratory. The

database is accessible via a user-friendly graphical web in-
terface allowing the users to search and browse the data in-
teractively. Moreover, all the entries are annotated to indi-
cate whether they belong to the already published datasets.
These annotations, combined with the advanced searching
and filtering capabilities, make FireProtDB a valuable data
resource for machine learning developers interested in con-
structing highly customized datasets.

In the future, we will improve our searching queries and
employ automatic text-mining machine learning-based ap-
proaches (23–25) to accelerate literature mining and data
collection, which will be followed by manual curation. We
will also prepare an interactive form for data submissions
by the users. Finally, we will extend the set of automatically
generated features for mutations and add sequence similar-
ity filtering to improve the data usability by the community
of engineers applying machine learning to predict changes
in protein stability.
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Abstract

Motivation: Studying the transport paths of ligands, solvents, or ions in transmembrane proteins

and proteins with buried binding sites is fundamental to the understanding of their biological func-

tion. A detailed analysis of the structural features influencing the transport paths is also important

for engineering proteins for biomedical and biotechnological applications.

Results: CAVER Analyst 2.0 is a software tool for quantitative analysis and real-time visualization of

tunnels and channels in static and dynamic structures. This version provides the users with many

new functions, including advanced techniques for intuitive visual inspection of the spatiotemporal

behavior of tunnels and channels. Novel integrated algorithms allow an efficient analysis and data

reduction in large protein structures and molecular dynamic simulations.

Availability and implementation: CAVER Analyst 2.0 is a multi-platform standalone Java-based ap-

plication. Binaries and documentation are freely available at www.caver.cz.

Contact: kozlikova@fi.muni.cz or jiri@chemi.muni.cz

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The importance of access tunnels in proteins has been demonstrated by

many studies in the last decade (Kingsley et al., 2015; Marques et al.,

2017). Their examination in dynamical protein ensembles became a

standard technique for studying important biochemical phenomena,

designing new biocatalysts, materials or drugs (Brezovsky et al., 2016;

Gora et al., 2013; Koudelakova et al., 2013; Liskova et al., 2015; Yu

et al., 2013). With the current computational capacity, it becomes

affordable to obtain molecular dynamics (MD) trajectories up to the

microsecond time scales. This trend requires new approaches to explore
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the large datasets, as it becomes impracticable to observe such simula-

tions in a frame-by-frame manner. Feature extraction and aggregation

techniques, giving a guidance and overview of interesting sites and prop-

erties of tunnels over time, are therefore necessary. To follow this trend,

we are introducing CAVER Analyst 2.0, which enables visual explor-

ation of protein tunnels and channels even in microsecond-long MD

simulations. This was achieved by introducing novel visualization

approaches and other advanced functions, which enhance the manipula-

tion of such simulation data. CAVER Analyst 2.0 introduces significant

changes and improvements, focusing especially on large data processing,

but also on providing the users with a complete description of the struc-

tural and biophysical features of protein tunnels and channels.

2 Features

Tunnel, channel and cavity calculation: CAVER Analyst 2.0 integra-

tes the most up-to-date CAVER tool with the set of algorithms for:

(i) identification of tunnels and channels in proteins, (ii) analysis of

tunnels and channels in large MD simulations and (iii) identification

of protein pockets and inner cavities. The algorithms are being

continuously developed to provide the most accurate and computa-

tionally efficient description of these specific structural features. The

tunnel calculation can be launched directly from the CAVER

Analyst interface, which offers the basic and advanced calculation

settings modes. For compatibility reasons, we keep the user interface

of the Tunnel Computation window consistent with the version 1.0

(Kozlikova et al., 2014). We have also improved the algorithm for

the cavity detection (Manak et al., 2017).

Visual analysis of tunnels: New visualization techniques present an

important contribution to CAVER Analyst 2.0. They were mostly

designed with the purpose of tunnel exploration in long MD trajectories

(in AMBER, GROMACS, CHARMM formats), focusing on the

changes of the tunnel properties and its surrounding residues over the

time. Both techniques aggregate the spatial information to a single over-

view image so the user can get the information about the main trends in

the tunnel behavior, regardless the MD simulation length. The first tech-

nique (Byska et al., 2015) focuses on the visual representation of the

shape of tunnel cross-cut at a specific site, e.g. its bottleneck. It shows

its changes over time and physico-chemical properties of the amino

acids lining that section (Fig. 1 and Supplementary Fig. S2). The central

part is formed by the contour, which is defined by the cross-cut through

a given tunnel. Each time step generates one contour and their overlay

shows the shape of the cross-cut over the time. The rectangular bars sur-

rounding the contours represent the respective lining amino acids col-

ored by their physico-chemical properties. The second technique (Byska

et al., 2016) shows the width profile of a selected tunnel along the tun-

nel centerline (Fig. 1 and Supplementary Fig. S1). The amino acids

forming the tunnel boundary are presented below the profile using a set

of lines. The length of these lines illustrates the portion of the tunnel

influenced by a particular amino acid. When dealing with dynamic

ensembles, the lines represent the residues and their relative influence

averaged over the entire simulation. Using a vertical slider, the user can

specify a given section of the tunnel, for which the contour representa-

tion is calculated and visualized. The Supplementary Material demon-

strates the applicability of these visualizations with two case studies

focused on the engineering of tunnels aimed at improving protein stabil-

ity and catalytic activity.

Mutagenesis: Engineering proteins typically requires the design

and modeling of mutations. CAVER Analyst 2.0 supports this task

by the new Mutagenesis Window (Supplementary Fig. S3). It offers

the possibility to design one or more mutations in selected positions

of a static molecule structure, which can be further used to recalcu-

late the tunnels and visually compare the differences with

the template. The newly designed molecule can be exported, upon

which additional modeling studies, such as MD simulations, can be

performed. The obtained trajectories can be loaded again to CAVER

Analyst 2.0 and visually explored. The mutagenesis may use two dif-

ferent libraries of residue rotamers (Dunbrack et al., 2011; http://bio

serv.rpbs.univ-paris-diderot.fr/software.html).

Buffering: CAVER Analyst 2.0 enables to manipulate MD simu-

lations of arbitrary length instantly, which ensures that the tool will

be usable with simulations containing orders of magnitude higher

number of time steps than now.

Other features: CAVER Analyst 2.0 offers advanced Measurement

Window, the Clip Plane Window enabling to operate several independ-

ent clip planes and slices at once (Supplementary Fig. S4), improved

manipulation of the protein structure, e.g. removing selected atoms,

exporting structures from selected objects, video recording, high-

resolution screenshots and the accessibility to common actions via the

command line.

3 Implementation

CAVER Analyst 2.0 is a multi-platform JAVA-based software. It

can run on both 32- and 64-bit system architectures with JAVA 1.8

(see Supplementary Material for implementation details).
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Abstract

Motivation: Protein tunnels and channels are key transport pathways that allow ligands to pass

between proteins’ external and internal environments. These functionally important structural fea-

tures warrant detailed attention. It is difficult to study the ligand binding and unbinding processes

experimentally, while molecular dynamics simulations can be time-consuming and computational-

ly demanding.

Results: CaverDock is a new software tool for analysing the ligand passage through the biomole-

cules. The method uses the optimized docking algorithm of AutoDock Vina for ligand placement

docking and implements a parallel heuristic algorithm to search the space of possible trajectories.

The duration of the simulations takes from minutes to a few hours. Here we describe the imple-

mentation of the method and demonstrate CaverDock’s usability by: (i) comparison of the results

with other available tools, (ii) determination of the robustness with large ensembles of ligands and

(iii) the analysis and comparison of the ligand trajectories in engineered tunnels. Thorough testing

confirms that CaverDock is applicable for the fast analysis of ligand binding and unbinding in

fundamental enzymology and protein engineering.

Availability and implementation: User guide and binaries for Ubuntu are freely available for

non-commercial use at https://loschmidt.chemi.muni.cz/caverdock/. The web implementation is

available at https://loschmidt.chemi.muni.cz/caverweb/. The source code is available upon request.

Contact: jiri@chemi.muni.cz

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

Proteins are macromolecules that have myriads of functions in cells

and uses in the chemical, biotechnological and pharmaceutical

industries (Clouthier and Pelletier, 2012; Koeller and Wong, 2001;

Soetaert and Vandamme, 2006). The majority of enzymes have their

active site buried inside their core, connected with the external en-

vironment by access tunnels. Protein tunnels are characterized by a

single opening. They enable the transport of substrates, products,

solvent, and ions in and out of the active site (Brezovsky et al.,

2013; Gora et al., 2013). Tunnels are essential for the natural func-

tion of enzymes, affecting their substrate specificity, stability and ac-

tivity (Gora et al., 2013). The shape and physicochemical properties

of the tunnels may also protect proteins’ hydrophobic core by

restricting the access of solvent molecules and inhibitors. Protein

channels are characterized by two openings. They are often connect-

ing different cellular environments and play an essential role in the

transport of various ligands, solvent molecules and ions. The ration-

al modification of protein tunnels and channels is an important

paradigm in protein engineering (Damborsky and Brezovsky, 2009).

Tunnel- or channel-lining residues directly interact with the passing

ligands and therefore represent hot spots for the optimization of

various enzymatic properties (Bendl et al., 2016).

The process of ligand transport cannot be studied easily by ex-

perimental techniques at the molecular level. Characterization of the

transport processes is usually carried out indirectly by evaluation of

enzymatic activity by steady state or transient kinetics

(Biedermannova et al., 2012; Hu et al., 2016). Experimental meth-

ods offering a direct molecular description of the access pathways,

like crystallography under xenon pressure (Milani et al., 2005; de

Sanctis et al., 2004; Tilton et al., 1984) or time-resolved protein

crystallography (Schmidt et al., 2005; Schotte et al., 2003), are still

very demanding and can only be applied to a narrow spectrum of

proteins. Therefore, computational approaches provide an import-

ant insight into the molecular transport. Many of these methods in-

volve perturbed molecular dynamics (MD) simulations (Arroyo-

Ma~nez et al., 2011) and other enhanced sampling methods

(Rydzewski and Nowak, 2017). Methods such as Protein Energy

Landscape Exploration (Borrelli et al., 2005), Binding Free Energy

Landscape (Bai et al., 2013) or IterTunnel (Kingsley and Lill, 2014)

were developed to simplify the setup and assessment of MD-based

simulations. Nevertheless, MD-based methods are still difficult to

use for interactive analyses, comparative studies or virtual screening

campaigns due to the long simulation times and high numbers of

repetitions required.

To analyse the ligand unbinding more rapidly, without the need

for such computationally demanding MD methods, two alternative

tools have been previously developed. SLITHER (Lee et al., 2009)

uses an iterative docking scheme to generate protein–ligand com-

plexes and calculates corresponding binding free energies. This tool

focuses on the study of ligands passing through channels inside a

protein. The computational core of this method is molecular dock-

ing using AUTODOCK or MEDock (Chang et al., 2005; Morris

et al., 2009). MoMA-LigPath (Devaurs et al., 2013) uses a steric

representation of molecules and a robotic Manhattan-like RRT al-

gorithm (Cortes et al., 2007) to explore the conformational space,

but does not evaluate the free energy of the system. Therefore, an ex-

ternal method must be applied to quantify energy changes that occur

during protein–ligand interactions along the tunnel. Here we present

a novel method for simulating ligand binding and unbinding, imple-

mented in the software tool CaverDock. The software is based

on the step-wise movement of the ligand along the pre-calculated

tunnel. CaverDock uses the docking algorithm of AutoDock Vina

(Trott and Olson, 2010) enriched by the restraints, which serve to:

(i) hold a selected atom of a ligand at a specific disc located along

the tunnel or channel, i.e. position restraint; and (ii) dock the ligand

in the upper-bound vicinity of a previous ligand conformation

in order to maintain continuous ligand movement along the tunnel,

i.e. pattern restraint.

2 Materials and Methods

2.1 CaverDock
In this section, we introduce the basic principles of CaverDock com-

putation. A more thorough methodology is described in detail in

Supplementary Material S1. The complete mathematical and algo-

rithmic description of the method, which is beyond the scope of this

study, is provided in Filipovic et al. (2019). The method is based on

the step-wise movement of the ligand along the tunnel. The tunnel

geometry, approximated by a sequence of spheres, is used as an in-

put. This sequence of spheres can be obtained from tools providing

the PDB file of the tunnel represented by spheres, such as CAVER

3.02 (Chovancova et al., 2012), for whose output file format

CaverDock was optimized. The sequence of spheres is then discre-

tized into a sequence of discs (cross-section slices of a maximal

thickness set by the user).

First, the selected ligand’s atom is positioned at the disc by a pos-

ition restraint. Second, CaverDock minimizes the ligand conform-

ation and evaluates its binding free energy by using the scoring

function from AutoDock Vina (Trott and Olson, 2010). Third, the

ligand trajectory is produced by aggregating the docked poses of the

ligand at each consecutive disc. Such a trajectory samples the tunnel

thoroughly, but the movement of the ligand may be non-continuous.

This non-continuous (lower-bound) trajectory is used to estimate

the lower-bound (lowest) energy profile of the ligand’s transport

through the tunnel. The actual energy may be higher since the non-

continuous movement can avoid small bottlenecks by rapid changes

in the orientation or the conformation of the ligand.

Finally, the pattern constraint is used to compute the continuous

(upper-bound) trajectory. In each step, the ligand is docked in the

vicinity of its previous position allowing only small changes in the

ligand conformation. The number of possible continuous trajecto-

ries grows exponentially with the number of discs, because each

transition to a new disc may lead to changes in the ligand’s position,

orientation and conformation. Therefore, a heuristic method is

employed to search for a continuous trajectory. When the binding

free energy of a given docked conformation is significantly higher

than the binding free energy of the conformation obtained from the

lower-bound trajectory, backtracking is turned on. The ligand con-

formation is changed (e.g. to a conformation explored when lower-

bound trajectory was computed) and the ligand is moved successive-

ly backward to previous discs. The backtracking ends when the for-

ward and backward trajectories converge, or it is stopped if the

starting disc is reached. As there is no guarantee that the resulting

continuous trajectory is optimal, we call it the upper-bound trajec-

tory as the actual energy may be lower than the computed energy.

The practical differences between lower-bound and upper-bound

trajectories are the following: the lower-bound trajectory is able to

completely sample the ligand trajectory. The information from the

lower bound is sufficient for comparison purposes but its main limi-

tation is that it can miss small bottlenecks by rapid changes of the lig-

and orientation. However, the sudden changes in orientation could

potentially mimic the natural flexibility of the protein and lower the

2 O.Vavra et al.
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unnatural energy barriers caused by the receptor rigidity during

binding or unbinding. On the other hand, the upper-bound trajectory

is completely smooth. However, it can create unrealistic conforma-

tions in very tight parts of the tunnel, which are signified by sudden

sharp peaks in the binding energy profile. The energy profile from the

lower-bound calculation shows the best-case scenario of the binding

energy along the tunnel, while the upper-bound can report exagger-

ated energies because the respective trajectory may not be optimal.

2.2 Input preparation
With one exception (for Dataset III, Section 2.3.3), all the simula-

tions described in this manuscript were performed using the follow-

ing settings: the PDB files of the proteins were obtained from the

RCSB Protein Data Bank (Berman et al., 2000). MOL2 files of the

ligands were either downloaded from the ZINC database (Irwin and

Shoichet, 2005) or built in Avogadro (Hanwell et al., 2012) and

minimized with the MMFF94 force field (Halgren, 1996). The re-

ceptor and ligand PDBQT files were prepared using scripts from

MGLtools (Morris et al., 2009) with the default parameters. The

tunnel calculation was performed by CAVER 3.02 (Chovancova

et al., 2012), with the size of the probe set to 0.7 Å, and the other

parameters at the default values. The tunnels were discretized with

0.3 Å steps and extended by 2 Å in the direction of the vector calcu-

lated from the last two spheres in the original tunnel. The script for

the tunnel extension is provided in the CaverDock package. The

configuration files and calculation of the grid box containing the

whole tunnel geometry were prepared by the provided preparation

script. The dragged atom, i.e. the atom attracted to the middle of the

disc at the beginning of each calculation step, was chosen using the

default auto-selection (the closest atom to the centroid of the mol-

ecule). All the simulations were performed in the default (unbinding)

direction. To simulate the binding process, the user has to invert the

discretized tunnel file, e.g. using the bash command tac. Side-chain

flexibility of selected residues can be prepared using MGLtools.

Detailed information about the CaverDock setup is provided in the

manual available at https://loschmidt.chemi.muni.cz/caverdock/.

2.3 Testing datasets
All datasets (Supplementary Material S20) together with the figures

of the ligand’s geometries (Supplementary Material S19) are pro-

vided as the Supplementary Material.

2.3.1 Dataset I: benchmarking

CaverDock was compared with the two existing tools for prediction

of the ligand passage SLITHER (Lee et al., 2009) and MoMA-

LigPath (Devaurs et al., 2013). These tools were compared using 10

cases. The dataset consists of six example cases presented at the

websites of SLITHER and MoMA-LigPath, complemented with

other systems found in the literature (Cui et al., 2015; Koudelakova

et al., 2011; Peräkylä, 2009; Wang et al., 2005) (Supplementary

Material S2). SLITHER and MoMA-LigPath are available as web

servers. SLITHER calculations were conducted with the

AUTODOCK algorithm and the default rigid receptor. MoMA-

LigPath was used with the default settings. The side chains are

treated as flexible by default only in the case of MoMA-LigPath.

CaverDock was used with a rigid receptor and the calculations were

set up in the same manner as described in the Section 2.2.

2.3.2 Dataset II: geometry of tunnels

This dataset was used to test the ability of CaverDock to model ligand

trajectories through tunnels with a broad range of geometries. The

data for proteins and their corresponding tunnels were collected from

the literature (Chovancova et al., 2012; Koudelakova et al., 2013).

Information about the proteins’ native substrates was obtained from

the UniProt (The UniProt Consortium, 2017) and BRENDA data-

bases (Schomburg et al., 2004). The complete dataset consists of 26

proteins with 113 identified tunnels and 33 natural substrates, creat-

ing altogether 136 cases (Supplementary Material S3).

2.3.3 Dataset III: geometry of substrates

The correspondence between the binding energies from CaverDock

and experimentally measured kinetics data were validated using this

dataset. The haloalkane dehalogenase LinB (PDB ID: 1K63) and the

set of 25 halogenated substrates with experimentally determined KM

values (Kmunı́cek et al., 2005) were used (Supplementary Material

S4). To ensure the complete unbinding of each ligand, we used spe-

cific settings to calculate the tunnels in CAVER 3.02, with the shell

radius and shell depth set to 20 and 4 Å, respectively. We selected

the tunnels corresponding to the p1 and p2 tunnels of the LinB deha-

logenase and extended them by 20 Å.

2.3.4 Dataset IV: tunnel engineering

This dataset was assembled to test the ability of CaverDock to de-

scribe the differences in enzymes with rationally engineered access

tunnels (Supplementary Material S5). We analysed the wild-type

dehalogenase LinBWT (PDB ID: 1K63), the variant LinB32 (PDB

ID: 4WDQ) with closed main p1 tunnel (LinB-closedW), and the

variant LinB86 (PDB ID: 5LKA) with newly open p3 tunnel (LinB-

openW). The goal was to compare the energy profiles from

CaverDock (i) with the tunnels detected in the crystal structures and

(ii) the frequency of product (2-bromoethan-1-ol) release through p1

and p3 tunnels obtained in previously published MD simulations

(Brezovsky et al., 2016).

3 Results

3.1 Illustration of CaverDock output
CaverDock generates an output in the form of two PDBQT files.

One file provides a smoothed upper-bound trajectory while the

other represents the lower-bound trajectory of the ligand.

Information about the binding energies and tunnel radii is listed in

the REMARK lines of the respective ligand trajectories, and can be

extracted and plotted using the scripts provided with the package.

The visualization of the results obtained using the CaverDock is pre-

sented in Figure 1.

3.2 Comparison of CaverDock with state-of-the-art

methods SLITHER and MoMA-LigPath
We studied the robustness of SLITHER, MoMA-LigPath and

CaverDock using the Dataset I (Table 1). SLITHER was able to pre-

dict the unbinding trajectory for half of the tested systems. Its main

limitation is that the ligands are moved in a direction parallel to the

y-axis only, making the analysis of curved and narrow tunnels diffi-

cult. Moreover, the ligand trajectories calculated by SLITHER are

discontinuous with significant gaps between the predicted ligand

positions. MoMA-LigPath was more successful, providing a con-

tinuous trajectory for 6 of the 10 test cases, but the tool does not

provide any energy information. CaverDock was the most robust

and provided results for all 10 test cases.

A critical comparison of the features of individual tools revealed

that the main advantage of CaverDock over SLITHER is its ability

to calculate the ligand transport in any direction with a simple setup
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(Supplementary Material S6). The resolution of CaverDock trajecto-

ries is much higher since the ligand has to move through each disc of

the discretized tunnel or channel so there are no large gaps in the tra-

jectory. On the other hand, CaverDock currently cannot analyse

multiple protein conformations simultaneously as it is possible with

the relaxed receptor mode of SLITHER. The main differences be-

tween CaverDock and MoMA-LigPath are that CaverDock is able

to simulate also the binding trajectory of a ligand and gives the in-

formation about the binding energy along the pathway. The advan-

tage of MoMA-LigPath is that it can treat the flexibility of many

side chains simultaneously, while implementation of the side-chain

flexibility is still rather limited in CaverDock and SLITHER. Finally,

CaverDock is the only software which is provided as a web applica-

tion as well as a standalone tool, making it suitable for extensive vir-

tual screening campaigns. The features and the setup options of the

tested tools are summarized in Supplementary Material S6.

3.3 Impact of tunnel geometries on CaverDock

calculations
Dataset II was constructed to test the predictive power of

CaverDock with proteins possessing various geometries of tunnels

with their native substrates. CaverDock was tested on 26 proteins

with 33 substrates (some proteins had more than one native sub-

strate) and 113 tunnels, 136 calculations altogether. Out of 136

CaverDock runs, 81 finished with lower-bound and upper-bound

trajectories, 44 finished only with lower-bound and in 11 cases the

ligands were not able to pass through the tunnels (Supplementary

Material S7).

Although a smoothed (upper-bound) trajectory was not calcu-

lated for almost half of the cases, this does not mean that

CaverDock could not properly simulate the ligand unbinding. The

ligand unbinding process was still sufficiently sampled along the

whole tunnel in the lower-bound trajectory, although the transition

Fig. 1. Illustration of the results obtained using the CaverDock. Top left: Examples of the energy profiles for the haloalkane dehalogenase LinB (PDB ID: 1K63) and

2,3-dichloropropan-1-ol. The binding energy (left vertical axis) of a smoothed continuous upper-bound trajectory, the lower-bound trajectory and tunnel radius

(right vertical axis) are indicated by the full line, dashed line and dotted line, respectively. The direction of the trajectory in the plot is from the active site (marked

by the star symbol) to the surface of the protein. Bottom left: The three-dimensional surface of the corresponding tunnel calculated by CAVER 3.02. Right:

Visualization of a part of a CaverDock trajectory. The protein is displayed as the cyan cartoon with the tunnel shown as the grey transparent surface. Selected

snapshots of the ligand are shown in ball-and-stick representation: 1 (green), 10 (blue), 45 (red), 60 (orange) and 85 (yellow). The snapshot 45 (red) corresponds

to the binding energy maximum of the energy profile

Table 1. Comparative study of CaverDock, SLITHER and MoMA-LigPath

PDB ID Protein Ligand Ligand passage

CaverDock SLITHER MOMA-LigPath

1BN7 Haloalkane dehalogenase 1-Chlorobutane Yes Yes Yes

1MAH Acetylcholinesterase Acetylcholine Yes Yes Yes

2A65 Leucine transporter Leucine Yes Yes Yes

1PV7 Lactose permease Lactose Yes Yes Yes

1SUK Glucose transporter a-D-Glucopyranose Yes Yes No

1TCC Lipase B 4-Methyloctanoic acid Yes No Yes

1ZNJ Insulin hexamer Phenol Yes No Yes

1RC2 Aquaporin Z Glycerol Yes No No

1IE9 Vitamin D receptor 1, 25-Dihydroxyvitamin D3 Yes No No

3LC4 Cytochrome P450 2E1 Arachidonic acid Yes No No

Note: Yes and No describes the result of the qualitative test whether the tool was able to predict a ligand’s trajectory.
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from one conformation to the next was not smooth. This assertion

is corroborated by the manifestation of increases in energy caused

by the tunnel bottlenecks in the lower-bound energy profiles alone.

Therefore, providing data for the lower-bound trajectory alone is a

valid result. Further analysis of the 11 cases in which the ligands

could not pass through the tunnels in CaverDock simulations

revealed that the failure was due to the tunnels being too narrow for

the ligands. In all except one case, these tunnels were graded by

CAVER 3.02 as being ‘lower throughput’, meaning they are appar-

ently less important than others for transport and thus unlikely to be

functionally relevant for transport of the respective ligands. Plots of

the energy profiles can be found in Supplementary Material S8.

3.4 Validation of CaverDock calculations against

experimental data
CaverDock was used to analyse the p1 and p2 tunnels of the haloal-

kane dehalogenase LinB with the set of halogenated substrates from

Dataset III, for which the values of Michaelis constants have been

determined experimentally in our laboratory (Kmunı́cek et al.,

2005). The impact of the ligand and tunnel geometry on the energy

profiles was studied. Selected energy values (Fig. 2) were extracted

from the energy profiles: (i) the energy minimum close to the start of

the trajectory corresponding to the ligand bound into the active site

(EBound), (ii) the maximum energy from the profile (EMax) and (iii)

the last minimum related with the surface-bound ligand (ESurface).

For the analysis of substrates, the main focus was devoted to the

evaluation of the height of the activation energy of association (Ea)

calculated for the ligands going through the tunnel into the active

site. Therefore, the activation energy of association was calculated

as Ea ¼ EMax � ESurface. Ea can be related to the binding kinetics by

the Arrhenius law (k ¼ Ae�
Ea
RT), and thus Ea is expected to vary lin-

early with the logarithm of the association rate, kon. The energy dif-

ference between the active site and the surface-bound energy (DEBS)

was calculated as the difference between the corresponding minima.

DEBS quantifies the enthalpy of binding, which is, according to the

van’t Hoff equation, negatively correlated with the logarithm of the

equilibrium constant. Even though CaverDock provided the

smoothed trajectories for all the test cases, we analysed the binding

energies from the lower-bound trajectories, which provide more rea-

sonable profiles.

Comparison of Ea values for the two tunnels (Fig. 3) indicates

that the energy barriers for the ligand passage through the p2 tunnel

Fig. 2. Schematic energy profile with marked energy values. EBound, the bind-

ing energy of a ligand located inside the active site; EMax, the highest binding

energy in the trajectory; ESurface, the binding energy of the ligand located at

the protein surface; Ea, the activation energy of association for the products

(EMax � EBound) and for the reactants (EMax � ESurface), corresponds to the kin-

etics of a ligand passing through the tunnel; DEBS, difference of the binding

energies in the bound state and at the surface corresponds to the enthalpy of

binding, and is related to the equilibrium constant

Fig. 3. Comparison of the activation energy of association Ea for the p1 and p2 tunnels of the haloalkane dehalogenase LinB with the set of 25 substrates
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are typically two times higher than the corresponding barriers for

the p1 tunnel (Supplementary Material S9 and S10). This is likely

due to the fact that p2 is narrower, longer and more curved than p1

(Supplementary Material S11). These results suggest the preference

of the substrates for binding into the buried active site of that pro-

tein using the p1 tunnel, which is the main tunnel observed in the

crystal structures. Without exception, the energy minima of the

bound states were lower than the surface-bound minima, showing

the tendency of all substrates to bind into the active site cavity rather

than any other part of the tunnel or surface.

We calculated the correlations between the analysed energy val-

ues and the experimentally measured Michaelis constants (KM) and

catalytic constants (kcat). With crude approximation, KM values

should be related to the binding affinity, and it may be expected to

correlate with DEBS. The interpretation of KM in various systems is

complex, as it is composed of multiple steps in the enzymatic reac-

tion, and not only composed of the binding process. Pearson’s cor-

relation coefficient of log(KM) with DEBS showed the values of 0.6

and 0.7 for the p1 and p2 tunnel, respectively. This statistically sig-

nificant correlation shows that CaverDock can describe the binding

trajectory and find a proper binding mode. The level of the observed

correlation is in agreement with the nature of Michaelis constant for

the haloalkane dehalogenase LinB, which is defined by a combin-

ation of the substrate binding and the rate of the follow-up SN2 reac-

tion step resulting in the covalently bound intermediate (Prokop

et al., 2003).

Regarding kcat, this kinetic parameter is limited by the slowest

step in the catalytic cycle. In the haloalkane dehalogenases, this cycle

is rather complex, and the rate-limiting step can easily vary from

substrate to a substrate (Prokop et al., 2003). Therefore, kcat is

expected to correlate with the Ea barriers only in the systems where

the binding of a substrate or unbinding of a product is the rate-

limiting step of the catalysis. Pearson’s correlation coefficient of kcat

and Ea is �0.2 for both p1 and p2 tunnels. These statistically insig-

nificant correlations are in agreement with the transient kinetic ana-

lysis of the haloalkane dehalogenase LinB (Prokop et al., 2003),

demonstrating that the substrate binding is not the rate-limiting step

in the catalytic cycle. The linear regressions of these correlations are

provided in Supplementary Material S12.

3.5 Analysis of proteins with computationally designed

access tunnels
We used CaverDock to analyse Dataset IV, the unbinding of the 2-

bromoethan-1-ol product from three different LinB variants. The

lower-bound energy profiles for the p1 and the p3 tunnels in LinB

wild-type (LinBWT) and two variants carrying tunnel mutations

LinB32 (LinB-closedW) and LinB86 (LinB-openW) are shown in

Figure 4. The results from CaverDock calculation correspond well

with the properties of the tunnels found in the crystal structures,

supporting the blockage of the main p1 tunnel by the bulky Trp resi-

due, intentionally introduced to the LinB32 and LinB86 variants

(Brezovsky et al., 2016). The narrowing of the p1 tunnel by this en-

gineering step resulted in an increased energy barrier for the trans-

port of the 2-bromoethan-1-ol from the active site to protein surface

(Fig. 4A). The follow-up step of the project was opening de novo p3

tunnel in the protein LinB86. Calculation of the energy barriers for

the release of 2-bromoethan-1-ol by this route clearly illustrates re-

moval of the first barrier and significant lowering of the second bar-

rier of the energetic profile (Fig. 4B), which is again in perfect

agreement with crystallographic data. The calculated energy barriers

are matching the diameters of p1 and p3 tunnels calculated in each

of the experimental structures of LinBWT, LinB32 and LinB86

(Supplementary Material S13), suggesting that CaverDock calcula-

tions can reproduce tunnel engineering exercises and has a great po-

tential for computational protein design targeting protein tunnels

and channels.

4 Discussion

Tunnels and channels facilitate the transport of ligands through di-

verse proteins, so understanding the processes underlying the ligand

transport is a cornerstone of biochemistry, structural biology and

medicinal chemistry. The characteristics of these transport pathways

are difficult to study using the currently available experimental tech-

niques, which are not trivial to set up and are very time-consuming

(Mittermaier and Meneses, 2013; Schotte et al., 2003). Moreover, it

can be difficult to study them with the currently available

Fig. 4. Analysis of 2-bromoethan-1-ol unbinding through p1 (A) and p3 (B)

tunnels in the LinB variants with rationally engineered tunnels (Brezovsky

et al., 2016). The p1 tunnel is blocked by a bulky Trp residue in LinB32 and

LinB86, resulting in an increase in the energy barrier. The p3 tunnel was

opened in LinB86 by three point mutations, resulting in removal of the first

barrier and lowering the second barrier
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computational tools, as they typically involve the use of MD simula-

tions (Barducci et al., 2010; Grubmüller et al., 1996; Lüdemann

et al., 2000), which require substantial knowledge of the methods

and too extensive computational resources for screening large

number of ligands.

These limitations led us to develop CaverDock, a fast computa-

tional tool based on molecular docking for simulating ligand transi-

tion through protein tunnels and channels. CaverDock can be used

to infer whether the studied ligand will likely pass through a particu-

lar protein tunnel. It can evaluate the passage of different ligands, or

semi-quantitatively compare the difficulty of ligands passing

through several different tunnels. The method is very easy to setup

with the calculation times typically in the order of minutes. This

makes it suitable for virtual screening purposes or for the enrich-

ment of widely used virtual screening results by molecular docking

(Daniel et al., 2015). In comparison with MD simulations,

CaverDock does not require extensive knowledge of the studied sys-

tem. CaverDock is able to sample the binding energy throughout the

whole protein tunnel and identify unfavourable binding interactions,

which can then be optimized by site-directed mutagenesis (Kaushik

et al., 2018; Liskova et al., 2017). Such places would be missed by

traditional docking techniques. The easy setup and execution of the

calculations may easily provide trajectories of the a ligand passage

through a protein of interest, which can be used as educational

materials in the biochemistry courses, assisting teachers with

visualization of the process of ligand binding or unbinding. Finally,

the advanced settings in CaverDock also enable constrained and pat-

tern docking calculations.

The comparison presented here showed that, when aiming at

exploring the properties of the ligand transport through molecular

tunnels, CaverDock displayed better performance than the other

tested tools SLITHER (Lee et al., 2009) and MoMA-LigPath

(Devaurs et al., 2013). We thoroughly tested CaverDock using 69

ligands, 130 tunnel geometries and 40 protein structures. In most

cases, the ligands successfully passed through the tunnels. In some

cases, the steric hindrances prevented the calculation of a smoothed

(upper-bound) continuous ligand trajectory. However, in these cases

CaverDock was still able to calculate the non-continuous lower-

bound trajectory. Further analysis of the lower-bound energy pro-

files showed that they reflect the increases in the energy associated

with the ligands’ passage through a more restricted and narrow

spaces in a tunnel. Thus, the lower-bound trajectory alone is suitable

for sampling all the binding energies through a tunnel. CaverDock’s

ability to calculate smoothed upper-bound trajectories could poten-

tially be improved by choosing a dragged atom close to the edge of

the ligand rather than the default atom closest to its centroid (espe-

cially for large ligands with high degrees of freedom). Another prob-

lem that may occur is that the energy at the end of the simulation (at

the tunnel mouth) sometimes did not converge to zero. This implies

that the ligand did not reach the fully unbound state. To ensure fur-

ther unbinding of the ligand, the tunnel geometry obtained from

CAVER may be prolonged or recalculated with different settings.

The most important limitation of the first version of CaverDock

is that it cannot robustly address conformational dynamics of the

protein structure. We have analysed the current implementation of

flexibility of the sidechains (Trott and Olson, 2010) in CaverDock

(Supplementary Material S14). The application of flexibility brought

an overall lowering of the energy profile but at the same time it pro-

duced unlikely high-energy conformations of the protein structure in

some instances (Supplementary Material S15, Supplementary

Material S16). Moreover, the introduction of multiple side-chain

flexibility significantly increased the calculation time. For now, we

advise users to use the current implementation of sidechain flexibil-

ity cautiously and take practical measures such as minimizing the

number of flexible sidechains and checking the generated protein

conformations for steric clashes. We also looked at the importance

of backbone dynamics (Supplementary Material S17). Using the

snapshots from previously published accelerated molecular dynam-

ics simulations, we have observed expected changes in the

CaverDock energy profiles calculated with the structures of proteins

possessing different conformations (Supplementary Material S18).

These structures represent highly valuable benchmark for the rigor-

ous treatment of protein flexibility, which is currently under devel-

opment. The most important part in the development will be to

balance the trade-off between the systematic description of protein

conformations and the speed of CaverDock calculations.
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ABSTRACT

Caver Web 1.0 is a web server for comprehensive
analysis of protein tunnels and channels, and study
of the ligands’ transport through these transport
pathways. Caver Web is the first interactive tool
allowing both the analyses within a single graphi-
cal user interface. The server is built on top of the
abundantly used tunnel detection tool Caver 3.02
and CaverDock 1.0 enabling the study of the ligand
transport. The program is easy-to-use as the only
required inputs are a protein structure for a tunnel
identification and a list of ligands for the transport
analysis. The automated guidance procedures assist
the users to set up the calculation in a way to ob-
tain biologically relevant results. The identified tun-
nels, their properties, energy profiles and trajectories
for ligands’ passages can be calculated and visual-
ized. The tool is very fast (2–20 min per job) and
is applicable even for virtual screening purposes.
Its simple setup and comprehensive graphical user
interface make the tool accessible for a broad sci-
entific community. The server is freely available at
https://loschmidt.chemi.muni.cz/caverweb.

INTRODUCTION

Proteins are biomolecules responsible for a vast variety of
functions in all living organisms. They serve as a building
material of cells and participate in regulation, signalling,
transport, and enzymatic catalysis of small molecules. From
the structural point of view, proteins consist of one or more
peptide chains forming highly complex 3D structures con-
taining many internal clefts, grooves, protrusions and voids
(1). Even though such empty spaces are disadvantageous
from the stability point of view, in many proteins they form
functionally important local substructures, such as active
sites, binding sites, allosteric sites, tunnels and channels (2,

3). Anatomies and properties of these substructures signif-
icantly influence protein functions (3). In this study, we are
interested in transport pathways for small ligands repre-
sented by protein tunnels and channels. The channels are
typically characterized by two openings connecting differ-
ent cellular environments and play a key role in the trans-
port of various ions and small molecules through biomem-
branes. The tunnels are mainly present in globular pro-
teins with catalytic function (enzymes) and serve as the
access pathways for substrates, products, co-factors, water
molecules and/or inhibitors from a bulk solvent to buried
active sites. They can also connect two distinct active sites
within a single protein. It has been experimentally demon-
strated that the tunnels and their properties can define many
important protein characteristics like substrate specificity,
enantioselectivity, stability and activity (4–8). Therefore, the
understanding of the transport pathways, their properties
and impact on ligands’ passage is important for decipher-
ing the protein function as well as for practical applications
in the fields of protein engineering and drug design.

The study of access pathways and ligand transport pro-
cesses using experimental techniques is far from trivial.
A quantitative description of these processes is usually
obtained indirectly using transient kinetic measurements.
The few available direct methods such as time-resolved
crystallography and crystallography under xenon pressure
are time-demanding and provide only specific information
(9,10). Therefore, the function of tunnels and channels are
often studied in silico. The tunnel and channel detection
is already well a developed field (11–14). Most of the re-
cent tools, for example Caver 3.02 (15), MolAxis 1.0 (16),
Mole 2.0 (17), are based on the pathway detection in the
Voronoi diagram representation of a protein structure and
offer high-quality results in short calculation time.

In silico analyses of ligand transport are challenging and
the majority of methods are based on some implemen-
tation of molecular dynamics simulations (18–21). These
implementations employ various enhanced sampling ap-
proaches like Random Accelerated Molecular Dynam-
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ics (22), Steered Molecular Dynamics (23–25), Umbrella
Sampling (26), Adaptive Sampling (27) or Metadynam-
ics (26,28) and provide highly robust and accurate results.
However, they are very time demanding, which prevents
their usage in comparative studies or screening campaigns.
Moreover, they usually require advanced knowledge of the
modelling technique and a good understanding of the stud-
ied system. As an alternative, less accurate, but dramati-
cally faster methods were developed. CaverDock 1.0 (29)
and SLITHER 1.0 (30) are based on the iterative molecular
docking along the tunnel, while MoMA-LigPath 1.0 (31,32)
uses a robotic Manhattan-like RRT algorithm.

Here we present Caver Web 1.0, a novel web server for
detection and comprehensive analysis of tunnels and chan-
nels in the protein structures. The server relies on the cal-
culation of well-established and widely used tunnel detec-
tion software Caver 3.02. Moreover, Caver Web also inte-
grates an explicit analysis of ligand transport through tun-
nels, which extends its use towards comparative studies and
virtual screenings. The analysis of ligand transport is car-
ried out by CaverDock 1.0, which provides a good trade-off
between computation time and accuracy, while maintaining
robustness of the workflow. A great care has been devoted to
making the graphical user interface of Caver Web intuitive.
The overall workflow is facilitated by robust default values
of parameters and several automatic guiding mechanisms,
which assist the users to correctly set up the calculation. Im-
portant results can be analysed and viewed directly in the
visualization window. Three detailed tutorials cover typical
use-cases, illustrating applicability of the tool for users with
no prior knowledge of bioinformatics.

WORKFLOW

The basic workflow of the Caver Web tool is depicted in Fig-
ure 1. The first step of the calculation is the selection of a
protein structure and its pre-treatment. The second step is
a selection of a starting point for tunnel detection. Protein
tunnels are identified and analysed in the third step, and op-
tionally used to study the transport of selected ligand(s) in
the fourth step.

Structure selection and pre-treatment

The only required input is a protein tertiary structure. It
can be specified either by the Protein Data Bank (33) ac-
cession code or uploaded as a file in the PDB or the CIF
format. Uploaded structures are automatically converted
to PDB using RCSB MAXIT tool (https://sw-tools.rcsb.
org/apps/MAXIT/index.html), since Caver does not na-
tively support CIF format. The structures are usually de-
posited in the form of asymmetric units, which may not
reflect their naturally occurring quaternary forms (biolog-
ical units) and an analysis carried on this structure may
lead to wrong results and even detection of non-existing
tunnels. To overcome this problem, MakeMultimer (http://
watcut.uwaterloo.ca/tools/makemultimer/) is automatically
executed for uploaded structures to detect their biological
units. Their list and description are provided to users who
can select the most appropriate biological unit or dismiss
them and continue with the original structure.

Starting point selection

The most critical step in tunnel detection is the selection of a
proper starting point. The position of this point constraints
the Caver calculation and defines a common starting point
for all detected tunnels. A wrongly positioned point can sig-
nificantly affect the relevance of detected tunnels and even
lead to irrelevant tunnels. To facilitate this selection, we
designed several automated protocols that provide reliable
starting points suitable for the most common scenarios. In
enzymes, users are often interested in access pathways for
ligands leading to active or binding sites. Thus, the best
starting point for this analysis is usually placed inside the
pocket containing the essential residues (catalytic pocket).
Since there are many tools for pocket detection and several
databases of essential residues, we implemented a fully au-
tomatic ‘Catalytic pocket’ mode, which combines pockets
detection with the analysis of essential residues. Pockets are
detected using Fpocket 2 (34), based on the search of al-
pha spheres in a Voronoi tessellation representation of pro-
tein structures and subsequent clustering of the spheres to
larger elements. The advantage of this tool is that it provides
a druggability score, which represents a likelihood that the
drug-like molecules can bind to the pocket. The essential
residues are obtained from the Mechanism and Catalytic
Site Atlas (35) and SwissProt (36) databases. The entries
in Mechanism and Catalytic Site Atlas are mapped using
the PDB accession codes. The manually curated SwissProt
database is searched using BLAST with the requirement of
30% sequence identity and sequence length between 90 and
110%. After essential residues are identified, the pockets are
matched with these residues and the pockets containing at
least one catalytic residue are marked as catalytic. If essen-
tial residues are missing, Caver Web offers two alternative
helper modes. The first one lists all detected pockets and
sorts them by the estimated druggability score. The second
one places the starting point to the centre of mass of any
ligand present in the structure. However, this mode requires
that the protein was co-crystallized or soaked with ligands,
which occupy the functional site of the protein. This mode
should be used with a great care. Finally, Caver Web offers
the possibility to calculate the position of the starting point
based on the residues selected by the user in the protein se-
quence, which can be further adjusted by the manual opti-
mization of coordinates.

Tunnel detection and analysis

Tunnel detection is carried out by Caver 3.02 (15) which
searches for the paths with the given minimal radius and
the lowest cost in the Voronoi tessellation representation of
protein structures using Djikstra’s algorithm and calculates
their geometries, statistical properties and list of residues
lining the tunnel and forming the bottleneck. Users can
modify several important configuration parameters affect-
ing the properties of the detected tunnels: (i) ‘residues con-
sidered for tunnel calculation’ are the parts of the structure
which Caver will consider for the analysis to allow exclu-
sion of the ligands, ions and water molecules; (ii) ‘minimum
probe radius’ defines the minimal size of a spherical probe
which must fit into the tunnel to be detected; (iii) ‘shell
depth’ specifies the maximal depth of a surface region, i.e.
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Figure 1. Workflow diagram of Caver Web 1.0. The process consists of four phases: (1) structure pre-treatment, (2) detection of the starting point, (3)
identification of tunnels/channels and (4) analysis of ligand transport. *Ligand structures can be uploaded in all formats supported by Open Babel (http:
//openbabel.org/docs/current/FileFormats/Overview.html).

shallow vertices, preventing unnecessary tunnel branching;
(iv) ‘shell radius’ specifies the radius of the probe used to de-
fine which parts of the Voronoi diagram represent the bulk
solvent; (v) ‘clustering threshold’ defines the similarity level
at which the tunnels will be considered the same and clus-
tered together; (vi) ‘maximal distance’ which limits how far
the starting Voronoi vertex can be from the starting point
position selected by the user and (vii) ‘desired radius’ which
specifies how far the starting point vertex must be from the
atoms of the protein structure.

Ligand transport analysis

The last [optional] step of the workflow is the analysis of
ligands transport through the detected tunnels using the
CaverDock software. Initially, one or more small molecules
must be provided by the user. Secondly, one or more iden-
tified tunnels are selected as the path for the ligand trans-

port and a calculation is initiated. Caver Web adds Gas-
taiger charges and AutoDock Vina (37,38) compatible atom
types to every atom using prepare ligand4.py and pre-
pare receptor4.py scripts from the MGLTools (37) package.
Then the Discretizer (29) is used to cut the tunnel to dis-
crete slices with specified distances. Next, the CaverDock is
executed to perform an iterative docking of the ligand to ev-
ery slice of the tunnel using a spatially restrained AutoDock
Vina docking algorithm.

Users can modify two most important parameters: (i)
‘discretization delta’ defines the distance between centres of
two slices of the tunnel and (ii) ‘calculation mode’ of Caver-
Dock defines which ligand restraints will be enforced. The
first mode is called lower-bound and it enforces only the
spatial restraint. This mode is very fast, however, it can miss
some of the bottlenecks due to the possibility of ligand flip-
ping, resulting in non-continuous movement. The second
mode is called upper-bound and employs also the maxi-

http://openbabel.org/docs/current/FileFormats/Overview.html
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mal ligand rotation restriction coupled with backtracking
to guarantee continuous movement. Even though the con-
tinuous movements are more realistic, the analysis is com-
putationally much more intensive and due to the limited ca-
pability of the backtracking it can overestimate energies or
even completely fail to find any possible path. Therefore,
the lower-bound trajectory is set as a default and users are
strongly advised to use energetic profiles calculated in this
mode. CaverDock supports flexible sidechains of selected
residues. However, it has been shown that the energies of
barriers are often artificially flattened (29), making the re-
sults difficult to interpret. For this reason, we suppressed
the flexibility support in Caver Web until this issue is better
resolved in future versions of CaverDock.

DESCRIPTION OF THE WEB SERVER

Input

The only mandatory input is the tertiary protein structure,
which can be either specified by the accession code to the
Protein Data Bank database or uploaded as a file in the
PDB or the CIF format (Figure 2A). Once the structure is
loaded, the MakeMultimer tool is automatically executed
to detect the biological units. More details about each unit
and their image preview can be shown by clicking the ‘book’
icon available on each row. The generated PDB file contain-
ing the biological unit can also be downloaded using the
‘download’ icon.

The next step is the selection of the starting point for the
tunnel detection (Figure 2B). The page integrates the JS-
mol (39) molecular viewer which provides a visualization
support to all modes and allows an immediate and inter-
active check of the current starting point position (repre-
sented as a red ball). Currently, we support four modes,
available via separated tabs. The ‘Catalytic pocket’ mode is
suitable for enzymes and combines detected pockets with
essential residues obtained from the Mechanism and Cat-
alytic Site Atlas and the SwissProt databases. For each cat-
alytic pocket, a list of assigned essential residues, pocket rel-
evance score, volume and the estimated druggability score
are available. Once a particular pocket is selected, all sur-
rounding residues are visualized as sticks and the pocket
shape is represented as an isosurface. The position of the
starting point is calculated as the average centre of mass
of all residues of the selected pocket. The second mode
‘Pocket’ allows users to start from any detected pocket mak-
ing it useful in the case when there are no essential residues
available in the databases. By default, only top ten pock-
ets are shown and ordered by their relevance. The rest is
available on demand. Each pocket is described by its rele-
vance, volume, and estimated druggability score. Further-
more, users can view the residues surrounding the pocket in
the protein sequence. The starting point position is then cal-
culated in the same way as for the ‘Catalytic pocket’ mode.
The third mode is ‘Ligand’ and provides the possibility to
place the starting point to the centre of the mass of any
bound ligand. Each ligand is described using the formula,
the name and the residue number. All ligands are visual-
ized in sticks and distinguished using the different colours.
The ‘Sequence’ mode allows users to select residues man-
ually either from the sequence or directly from the visual-

ized structure. Each selected residue is automatically visu-
alized as sticks. The starting point position is calculated as
the average centre of mass of selected residues. The ‘Man-
ual tuning’ can be activated in all four cases of the starting
point selection to adjust the x, y and z coordinates. Once
the starting point is selected, users can adjust the parame-
ters of Caver calculation. The parameters were described in
the Workflow section.

Output of tunnel analysis

Users can specify a preferred job title for an easier orienta-
tion among submitted jobs. Notifications about the status
of calculations can be sent to a provided email address. All
jobs are stored and are accessible at any time. Once a job
is submitted, tunnels are calculated using Caver tool and
an analysis page is displayed. This page is divided into four
major sections described below.

Job information. This section provides basic information
about the job such as the identifier and the title. It also
allows the user to directly download several files: (i) ‘Py-
MOL session’ downloads a pre-generated session file for the
popular visualization software PyMOL. It contains the up-
loaded protein structure and all the detected tunnels offer-
ing the user to perform a detailed visual analysis or gener-
ate publication-quality images. (ii) ‘Results zip’ downloads
an archive containing raw data generated by Caver during
the calculation. The data can be used for advanced analyses
or they can be directly imported to Caver Analyst (40). (iii)
‘Caver configuration’ opens a pop-up window with a com-
plete configuration file used for the calculation. (iv) ‘Caver
log’ opens a pop-up window with a raw textual output of
Caver and provides details about the calculation process.

Tunnels info. The ‘Tunnels info’ section lists all identified
tunnels and their selected properties (Figure 2C): (i) ‘bottle-
neck radius’ provides the maximal probe size which can fit
in the narrowest part of the tunnel; (ii) ‘length’ quantifies the
length of the tunnel from the starting point to the protein
surface; (iii) ‘curvature’ describes the shape of the tunnel as
the ratio between the length of the tunnel and the shortest
possible distance between the starting point and the tunnel
ending point; and (iv) ‘throughput’ reflects the probability
that the pathway is used as a route for transport of the sub-
stances using the formula e−cost, where e is Euler’s number
and the cost is a function defined as:

∫L
0 r (l)−2 dl

where L is a length of path, r(l) is a function defining the ra-
dius of the largest ball which does not collide with the atoms
of the structure and is centred at the point on the pathway
axis in the distance l from the starting vertex (15). Every tun-
nel can be visualized by ticking the relevant checkbox and
zoomed via the magnifying glass icon. Using the ‘book’ and
the ‘chart’ icons, the ‘Tunnel details’ and the ‘Tunnel profile’
pop-up windows can be opened.

Tunnel details. The ‘Tunnel details’ pop-up window (Fig-
ure 2D) is organized into four tabs: (i) ‘Overview’ contains
the important properties of the tunnel and a static picture
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Figure 2. The graphical user interface of the Caver Web 1.0. The figure presents inputs and outputs obtained for the enzyme haloalkane dehalogenase
LinB (PDB ID: 1CV2). (A) The ‘Select structure’ panel shows detected biological units for the provided protein structure. (B) The ‘Starting point’ panel
for tunnel detection can be selected using four different methods. (C) The ‘Tunnel info’ panel provides an overview of the detected tunnels. (D) The ‘Tunnel
details’ pop-up window presents detailed information about the selected tunnel. (E) The ‘Tunnel profile’ pop-up window shows the radius profile of the
selected tunnels. (F) The ‘New CaverDock calculation’ pop-up window allows users to perform ligand transport analyses. (G) The ‘CaverDock results’
pop-up window displays calculated energy profiles for the selected ligand.

containing the protein as a cartoon and the tunnel visual-
ized by spheres; (ii) ‘Bottleneck’ contains details about the
narrowest part of the tunnel (bottleneck) including a list
of surrounding residues and a static picture of the bottle-
neck with the tunnel visualized as spheres and surround-
ing residues as sticks; (iii) ‘Centreline’ lists all centres of the
spheres along the tunnel centreline with their distance from
the starting vertex on the Voronoi diagram, radius, coor-
dinates of the centre and the Euclidean distance from the
starting point; (iv) ‘Residues & atoms’ contains the list of
all residues surrounding the tunnel.

Tunnel profile. The ‘Tunnel profile’ pop-up window (Fig-
ure 2E) allows a comparative analysis of tunnel profiles, i.e.,
the tunnel radius over the distance along the tunnel centre-
line. Users can select one or more tunnels from the table on

the left and the graphs are automatically generated. More-
over, every data point is interactive and allows a selection of
the proper tunnel sphere in the visualization. The displayed
graphs can be downloaded either as CSV files or PNG im-
ages.

Protein visualization. The protein and all the detected
tunnels can be interactively visualized directly in the web
browser using the JSmol applet. Users can choose to vi-
sualize the protein structures using several commonly used
visualization styles, display a starting point and a starting
pocket, show detected tunnels as balls or line, and visualize
their neighbouring residues.
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Input of analysis of ligand transport

The last section of the output page from the tunnel calcula-
tion is devoted to an [optional] analysis of ligands transport
through the tunnels.

Ligand transport analyses. The ‘Ligand transport analy-
ses’ panel lists all CaverDock calculations with the basic in-
formation about the selected ligand, tunnel and the direc-
tion of the passage: (i) in – from the bulk solvent to the ac-
tive site and (ii) out – from the active site to the bulk solvent.
The status of each job is indicated as an icon - a green tick
for successfully finished jobs, the ‘zzz’ icon for jobs waiting
in a queue, an animated circle for currently running jobs
and a red cross for failed jobs. More details about the job
can be displayed by clicking on the ‘book’ icon. The log file
containing all outputs generated during the calculation can
be viewed using the ‘text file’ icon. Raw data can be directly
downloaded using the ‘download’ icon. The ‘Export data’
button generates an Excel workbook with a summary sheet
as well as a separate sheet for each job containing calculated
energies (named by their identifier). A PDF report contain-
ing information about tunnels, jobs and energy plots can be
generated by clicking on the ‘Generate report’ button.

Start new calculation. The ‘Start new calculation’ pop-up
window (Figure 2F) is divided into three tabs: ‘Ligands se-
lection’, ‘Tunnels selection’ and ‘Advanced configuration’.
In the first tab, users have three ways of providing the only
mandatory input: (i) ‘Upload ligand’ allows the user to up-
load the ligand in any format supported by the Open Babel
(41); (ii) ‘Paste ligand’ supports the input either in SMILES
format or as an accession code to ZINC15 database (42)
and (iii) ‘Draw ligand’ provides the possibility to draw lig-
and’s structure manually using the interactive molecular ed-
itor JSME (43). Users can specify a preferred name for
each ligand and a desired direction ‘in’ or ‘out’ of the ac-
tive site. Molecules uploaded in mol2 format can also keep
their original charges. The second tab contains the list of all
tunnels and allows the user to make their selection for the
analysis. The last tab allows a modification of two param-
eters for the CaverDock calculation: ‘Discretization delta’
and ‘Calculation mode’ which were described in the Work-
flow section. Users can also select the ligands that should
be kept in the structure during the analysis. The residue
names considered during the tunnel detection are automat-
ically selected by default. Since users can upload multiple
ligands and select multiple tunnels, the submission can eas-
ily lead to a combinatorial explosion. To ensure fairness
among users and prevent overloading of the computational
resources, the number of concurrently running calculations
is limited using a fair share score: F = FC + (LIN + LOUT) *
T * M, where FC is the fair share of currently running jobs,
LIN and LOUT is the number of ligands passing in and out,
respectively, T is the number of tunnels and M is the calcu-
lation mode coefficient (1 for lower-bound calculation, 1.5
for upper-bound calculation).

Output of ligand transport analysis

Energy profile. The ‘Energy profile’ pop-up window (Fig-
ure 2G) shows the graph of the calculated binding energies

for each disc. Furthermore, the window also enables an au-
tomatic calculation of the activating energy and the energy
difference between ligand bound on the surface and in the
active site. The users have to interactively select three points
from the graph: (i) EB – the energy minimum of the ligand
bound in the active site; (ii) EMAX – the maximum energy of
the transition and (iii) ES – the energy minimum of ligand
bound in the tunnel mouth. The ‘Save values’ button stores
the values in the report file.

Generate report. The ‘Generate report’ pop-up window is
a configuration dialog allowing users to adapt the content
and the format of the report. It is divided into two tabs. The
first one contains the list of all successfully finished jobs
allowing users to select which jobs should be included in
the report. The second tab focused on energy profiles en-
ables user selection of the scaling mode of all graph axes
(trajectory, energy, and tunnel radius): (i) ‘Automatic’ scales
the axis based on the minimal and maximal values of each
job separately; (ii) ‘Automatic normalization’ scales the axis
based on the minimal and maximal values for all selected
jobs and (iii) ‘Manual limits’ scales the axis to the manually
entered values.

Use cases

The Caver Web tool can be used to address various bio-
chemical problems. Three tutorials presented here and on
the web portal provide an overview how Caver Web can
be used: (i) to compare tunnels of different enzymes, (ii) to
compare the passage of ligands via different tunnels of an
enzyme and (iii) to screen a library of ligands for their pas-
sage through tunnels.

Case 1. Comparing the access tunnels of haloalkane dehalo-
genases. A comparison of protein tunnels can provide
new insights into the structural elements coding for func-
tional differences (2,11,44). Here, we studied the tunnels
of five haloalkane dehalogenases (LinB, DmmA, DbjA,
DhaA and DhlA), which catalyze the cleavage of carbon–
halogen bonds in various halogenated hydrocarbons. These
enzymes are closely related and their catalytic residues are
conserved, yet their substrate preferences vary significantly
(45,46). With the Caver Web tool we can show that the en-
zymes with more constricted tunnels (bottleneck < 1.5 Å)
tend to be most effective with small substrates, e.g., DhlA
with 1,2-dichloroethane and LinB with 1,2-dibromoethane.
DmmA with the widest tunnels (bottleneck 2.5 Å) prefers
the larger substrate 4-bromobutanenitrile. Conformational
changes will be needed for binding of larger molecules to
haloalkane dehalogenases via narrow tunnels (47).

Case 2. Studying paracetamol binding to the human cy-
tochrome P450 3A4. Human cytochrome P450 enzymes
(CYPs) metabolize a wide range of different substrates. The
enzymes show a broad substrate specificity and possess mul-
tiple tunnels leading from the protein surface to the catalytic
site. CYP3A4 is the main drug metabolizing enzyme in the
liver, participating in the metabolism of ∼30% of available
drugs (48,49). One of its substrates, paracetamol, is a com-
mon analgesic and antipyretic drug. Caver Web calcula-
tions revealed that the most preferred route for paracetamol



Nucleic Acids Research, 2019 7

Table 1. Comparison of Caver Web with available servers for detection of tunnels and channels in proteins and ligand transport analysis. Caver Web is
currently the only tool which provides a one-stop shop for tunnel/channel identification and analysis of transport processes. Comprehensive comparison
of Caver and CaverDock with other tools can be found in their primary publications (15,29).

Tunnels and channels analysis Ligand transport analysis

Software Input Supported
Starting point
selection Supported Ligand source Output Ref.

Caver Web PDB IDb, PDB/CIF
fileb

Yes Catalytic pocket,
pocket, ligands,
residues, coordinates

Yes ZINC15, user
file, drawing

Tunnels/channels,
ligand trajectory,
energy profile

this
study

MolAxis PDB ID, PDB file Yes Largest void,
coordinates

No -d Tunnels/channels (16)

MoleOnline PDB IDc, CIF/PDB
filec

Yes Catalytic residues,
residues,
coordinates, pocket,
pattern

No -d Tunnels/channels (51)

BetaCavityWeb PDB ID, PDB file Yes Not required No -d Tunnels/channels (52)
PoreWalker PDB file Yes Not required No -d Channels (12)
ChExVis PDB ID, PDB file Yes Catalytic residues,

HETATM records,
residues

No -d Tunnels/channels (53)

MoMA-LigPatha PDB file No -d Yes Part of PDB file Ligand trajectory (32)

aWeb server SLITHER for ligand transport analysis was not accessible in the time of writing.
bBiological units detection by MakeMultimer.
cBiological units fetched from the PDBe database (54).
dNot applicable.

binding to CYP3A4 is via the tunnel #2. Paracetamol can
also bind through the tunnel #3, while its binding through
the tunnels #1 and #4 requires conformational changes.

Case 3. Virtual screening of leukotriene A4
hydrolase/aminopeptidase inhibitors. Virtual screen-
ing is a well-established technique for drug design and
there are many web services available for this purpose (50).
Caver Web enables docking of ligands along a tunnel.
This procedure significantly enhances the sampling region
as compared to the classical docking. Our target the
leukotriene A4 hydrolase/aminopeptidase (EC 3.3.2.6),
is a bifunctional zinc metalloenzyme that catalyses the
formation of the chemotactic agent LTB4, a key lipid
mediator in the immune response. We screened 21 ligands
and the resulting binding energy profiles were used for
ligand ranking. We found out that the inhibitors ibuprofen
and flurbiprofen have the easiest passage through the main
tunnel. An additional finding was that oxaprozin binds
stronger inside the tunnel than in the active site, which
might indicate an inhibition mechanism based on a tunnel
blockage. Such information would not be available from a
classical virtual screening study targeting only the active
site.

CONCLUSIONS AND OUTLOOK

Caver Web 1.0 is a novel web server for structural and func-
tional analysis of the tunnels and channels in protein struc-
tures. The tool complements tunnels and channels detec-
tion by an explicit analysis of ligand transport (Table 1).
This unique functionality dramatically expands its use to-
wards virtual screening in drug design applications. The
server provides a simple and easy-to-use graphical user in-
terface. Importantly, Caver Web integrates several auto-
mated helper procedures that guide the users through the

workflow. They assist a correct setup of the calculation
without a deep understanding of the setup and navigate
the interpretation of the data obtained by the individual
integrated tools. Caver Web improves the results of virtual
screenings by analyzing the ability of potential inhibitors
to reach their binding positions. The limitations of the web
server relate to its simple interface. Some of the advanced
analyses offered by the stand-alone versions of the software
could be difficult to conduct via the web interface. More-
over, an analysis of extensive datasets, such as large libraries
of ligands or protein assemblies from molecular dynamic
trajectories, is also restricted due to the available computa-
tional resources.

New features will be implemented in the future versions
of Caver Web. Firstly, we plan to optimize the position of
the starting point within the pockets. The current algorithm
places the point in the middle of the pocket, which in some
cases leads to a shortening of the tunnel length. Therefore,
we will develop a new algorithm, which will automatically
push the starting point deeper into the pocket. Secondly,
we will focus on protein dynamics, which can be crucial for
efficient ligand transport through access tunnels in many bi-
ological systems. An incorporation of the side chains’ flex-
ibility or an analysis of molecular ensembles can provide
important insights into the tunnel dynamics and their im-
portance for transport processes. Thirdly, a possibility to
introduce mutations to tunnel-lining or bottleneck residues
and then to recalculate analyses will expand in protein engi-
neering. Finally, the currently used visualization tool JSmol
will be replaced by the Mol* tool, which is being developed
by PDBe and RCSB PDB teams.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Buchstaller,H.-P., Dreyer,M.K., Frech,M., Lowinski,M., Vallee,F.
et al. (2018) Estimation of Drug-Target residence times by � -Random
acceleration molecular dynamics simulations. J. Chem. Theory
Comput., 14, 3859–3869.

23. Chen,L.Y. (2015) Hybrid steered molecular dynamics approach to
computing absolute binding free energy of Ligand–Protein
Complexes: A brute force approach that is fast and accurate. J. Chem.
Theory Comput., 11, 1928–1938.

24. Do,P.-C., Lee,E.H. and Le,L. (2018) Steered molecular dynamics
simulation in rational drug design. J. Chem. Inf. Model., 58,
1473–1482.

25. Skovstrup,S., David,L., Taboureau,O. and Jørgensen,F.S. (2012) A
steered molecular dynamics study of binding and translocation
processes in the GABA transporter. PLoS One, 7, e39360.

26. Zhang,Y. and Voth,G.A. (2011) A combined metadynamics and
umbrella sampling method for the calculation of ion permeation free
energy profiles. J. Chem. Theory Comput., 7, 2277–2283.

27. Marques,S.M., Bednar,D. and Damborsky,J. (2019) Computational
study of protein-ligand unbinding for enzyme engineering. Front.
Chem., 6, 650.

28. Furini,S. and Domene,C. (2016) Computational studies of transport
in ion channels using metadynamics. Biochim. Biophys. Acta (BBA) -
Biomembranes, 1858, 1733–1740.
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ABSTRACT

HotSpot Wizard is a web server used for the auto-
mated identification of hotspots in semi-rational pro-
tein design to give improved protein stability, cat-
alytic activity, substrate specificity and enantiose-
lectivity. Since there are three orders of magnitude
fewer protein structures than sequences in bioin-
formatic databases, the major limitation to the us-
ability of previous versions was the requirement for
the protein structure to be a compulsory input for
the calculation. HotSpot Wizard 3.0 now accepts the
protein sequence as input data. The protein struc-
ture for the query sequence is obtained either from
eight repositories of homology models or is mod-
eled using Modeller and I-Tasser. The quality of the
models is then evaluated using three quality assess-
ment tools––WHAT CHECK, PROCHECK and Mol-
Probity. During follow-up analyses, the system au-
tomatically warns the users whenever they attempt
to redesign poorly predicted parts of their homol-
ogy models. The second main limitation of HotSpot
Wizard’s predictions is that it identifies suitable po-
sitions for mutagenesis, but does not provide any
reliable advice on particular substitutions. A new
module for the estimation of thermodynamic stabil-
ities using the Rosetta and FoldX suites has been
introduced which prevents destabilizing mutations
among pre-selected variants entering experimental
testing. HotSpot Wizard is freely available at http:
//loschmidt.chemi.muni.cz/hotspotwizard.

INTRODUCTION

Proteins are macromolecules with many biological func-
tions. Apart from their irreplaceable role in all living or-
ganisms, they are also widely used in many fields, including
medicine (1), enzymology (2), synthetic biology (3) and ma-
terial science (4). Naturally occurring proteins often do not
meet the specifications for practical applications. Therefore,
protein engineers modify sequences to obtain enhanced
properties or completely new functions. Directed evolution,
which has been an extremely successful protein engineer-
ing technology, does not require a molecular understand-
ing of the impact of mutation on the protein structure (5).
Modified proteins are generated in iterative rounds of mu-
tation and screening or selection of the best hits that possess
the required property (6). The obvious disadvantage to this
method is that only a tiny fraction of all protein variants
contain the desired property. Analysis of libraries contain-
ing millions of mutants is costly and time-consuming. Semi-
rational protein engineering is an approach that implements
in silico identification of important regions of the protein so
that mutagenesis is better located, resulting in smaller high-
quality libraries (7). The key step to semi-rational protein
engineering is the selection of hotspot residues whose mu-
tations will bring the largest improvement to the target pro-
tein properties (8).

HotSpot Wizard 2.0 (9) is an interactive web server
used for the identification of hotspots in proteins by au-
tomated multi-step calculation and a comprehensive pre-
sentation of results. The tool makes protein design acces-
sible to researchers with no prior knowledge of bioinfor-
matics. After entering an input protein structure, 19 pre-
diction tools and 3 databases are used for protein annota-
tion. HotSpot Wizard then provides four different strate-
gies for selecting hotspots: (i) functional hotspots corre-
sponding to highly mutable residues located in the active site
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pocket or access tunnels, (ii) stability hotspots correspond-
ing to flexible residues, (iii) stability hotspots from back-to-
consensus analysis and (iv) correlated hotspots correspond-
ing to pairs of co-evolving residues. The users can design
a smart library based on naturally accepted substitutions
from phylogenetic analysis. HotSpot Wizard 2.0 (9) has
been used for over 10 000 protein structures by more than
1000 unique users since its release. For example, HotSpot
Wizard has been used for the design of smart libraries of
oxyhaemoglobin protein (10), for analysis leading to ther-
mostabilization of a xylanase (11) and for identification of
hotspots in a mutagenesis study of the transcription factor
DREB1A (12). Previous implementations of HotSpot Wiz-
ard had two major drawbacks: (i) a requirement for the ter-
tiary structure as essential input information and (ii) identi-
fication of positions for mutagenesis without quantification
of the effects of individual substitutions on protein stability.
HotSpot Wizard 3.0 shows dramatically enhanced usability
by overcoming both these key limitations.

There are about 135 000 protein structures available in the
RCSB Protein Data Bank (13), but there are more than 98
000 000 known protein sequences (14). Usage of HotSpot
Wizard 2.0 is limited to the proteins with an available 3D
structure. A solution to this problem is the prediction of
the protein structure from its sequence by comparative (ho-
mology) modeling or threading (15). Homology modeling is
based on the fact that members of a protein family with sim-
ilar sequences also have similar tertiary structures (16,17).
In HotSpot Wizard 3.0, it is possible to enter a sequence for
a protein and have its tertiary structure retrieved from the
repositories of models or constructed ad hoc. As the qual-
ity of the protein structure is critical for further structure
analyses carried out by HotSpot Wizard, a robust quality
assessment of the protein structure is provided using three
well-established tools. The current implementation of our
web server predicts hot-spots for mutagenesis and designs
smart libraries based on phylogeny, but does not provide
any quantitative analysis of individual substitutions, which
is important, for example, in studies analyzing structure–
function relationships. Moreover, screening or selection for
multiple mutations at several different positions can still be
time-consuming and so pre-selection of the most appropri-
ate mutations is desirable. To help our users rationally de-
crease the number of variants for experimental testing, pro-
tein stability prediction has been introduced to discard po-
tentially destabilizing mutations.

MATERIALS AND METHODS

Searches of structural databases and model depositories

The overall workflow of HotSpot Wizard 3.0 is outlined
in Figure 1. When a protein sequence is used as an input,
HotSpot Wizard: (i) searches experimentally determined
structures, (ii) searches computationally modeled structures
and (iii) constructs a homology model. The first step in
this workflow is searching the RCSB Protein Data Bank
(13). In this phase, only protein structures with a 100%
sequence identity match (or part of the sequence match-
ing the input with 100% sequence identity) are provided
as a starting structure for the analysis. If no such struc-
ture is found, the Protein Model Portal (18) is searched.

The Protein Model Portal collates models of protein struc-
tures from eight different resources: Center for Structures
of Membrane Proteins, CSMP (19), Joint Center for Struc-
tural Genomics, JCSG (20), Midwest Center for Structural
Genomics, MCSG (21), Northeast Structural Genomics
Consortium, NESG (22), New York SGX Research Cen-
ter for Structural Genomics, NYSGXRC (23), Joint Center
for Molecular Modeling, JCMM (24), ModBase (25) and
SWISS-MODEL Repository (26). HotSpot Wizard queries
the Protein Model Portal and then lists all available hits. Af-
ter selection of one of these models, the structure is down-
loaded directly to Hotspot Wizard from the repository.

Homology modeling

Whenever a homology model is not found or the user is not
satisfied with the quality of the models available in pub-
lic depositories, HotSpot Wizard carries out the homol-
ogy modeling during the phase 1 (Figure 1). There is a
wide range of homology modeling tools available. Twelve
tools were initially considered for our workflow: SWISS-
MODEL (27), Rosetta (28), Robetta (29), PHYRE2 (30),
Pcons (31), Modeller (32), I-Tasser (33), IntFold (34), IMP
(35), HHPred (36), RaptorX (37) and Sparks-X (38). These
tools were analyzed for their availability as well as per-
formance using Continuous Automated Model Evaluation,
CAMEO (18) and Critical Assessment of Protein Struc-
ture Prediction, CASP (39). These community-wide com-
parisons evaluate structure predictions with available exper-
imental data. Based on results from CASP and CAMEO,
six tools were selected for further consideration, installed
locally and tested (Modeller, Sparks-X, RaptorX, Rosetta,
I-Tasser and SWISS-MODEL). RaptorX is very accurate
with good coverage (i.e. percentage of submitted models,
which could be successfully modeled), but it uses the less ac-
curate Modeller for comparative modeling in its standalone
version. Sparks-X is very fast with good coverage, but the
version available for download does not provide modeling,
only template identification. I-Tasser is the slowest of all the
tools considered, but it is very accurate and is ranked the
best by CASP. Rosetta has good accuracy and coverage, but
it requires a template protein and an alignment as an input
defined by user. SWISS-MODEL is fast with good cover-
age, but it is not available as a standalone version. Modeller
is one of the fastest and the most robust tools with reason-
able accuracy for modeling cases with good templates. We
selected two tools for implementation with HotSpot Wiz-
ard: (i) I-Tasser, which is ranked the most accurate of all the
tools considered, but also very slow (∼3 days for an average-
sized protein) and (ii) Modeller, which is less accurate, but
very fast (∼5 min for an average-sized protein). Both tools
can be run in a fully automatic mode, or the template pro-
tein and/or the pairwise alignment can be entered as an in-
put information.

Quality assessment of the model

It is essential to assess the quality of the homology model
prior to its further use for identification of hotspots or for
the design of libraries. It is important to identify low qual-
ity models and the parts of the protein structure which were
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Figure 1. Workflow diagram of HotSpot Wizard 3.0. The workflow consists of four phases: (1) construction of a model of a structure, (2) annotation of a
protein, (3) identification of mutagenesis hot spots and (4) design of mutations and a smart library. Phase 1 is applied only when a sequence is submitted
as the input information. The new modules in version 3.0 are highlighted in red.

not modeled well. The results of today’s modeling tools are
far from perfect due to many difficulties with accurate pro-
tein structure prediction. Quality assessment is therefore an
essential part of the phase 1 of the HotSpot Wizard work-
flow (Figure 1). Several quality assessment tools were con-
sidered and three of them, providing diverse quality met-
rics, were implemented. PROCHECK (40) is used for anal-
ysis of protein backbone torsion angles using Ramachan-
dran diagrams and identification of the outliers from the
allowed values. MolProbity (41) provides several parame-
ters representing the quality of the whole structure as well as
individual residues (number of poor rotamers, Ramachan-
dran outliers, favored Ramachandran conformations, bad
bonds and bad angles in the protein). WHAT CHECK (42)
generates a detailed report about structure quality (checks
on secondary structure, coordinate problems, unexpected
atoms, B-factor, occupancy checks, nomenclature related
problems, geometric checks, torsion-related checks, bump
checks, packing, accessibility, threading, water, ion and hy-
drogen bond-related checks).

Mutation design based on thermodynamic stability

Mutation design is part of the phase 4 of the HotSpot Wiz-
ard computation (Figure 1). Force field calculations are
used for quantifying the change in protein thermodynamic
stability after mutation. Rosetta (43) is used to evaluate
��G between the wild-type and the mutant structures. Ei-
ther single-point or multiple-point mutants can be evalu-
ated. If the single-point mutations are pre-selected, multiple
mutant structures are evaluated according to the user’s se-
lected positions and intended amino acid substitutions. The
user can also select several mutations in a single round and
calculate the energy of combined multiple-point mutants.
For stability evaluation, FoldX (44) is first used for repairing
protein structure by filling in the missing atoms and patch-
ing the structure. Then, minimalization of the structure us-
ing Rosetta is carried out using default settings. After that,
a Rosetta stability calculation according to protocol 3 (45)
is carried out, which results in the prediction of ��G value
for each mutation.
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DESCRIPTION OF THE WEB SERVER

Sequence input and homology modeling

Initially, the user selects one of two types of input data: a
structure or a sequence (Figure 2A). If a sequence is se-
lected, there are three types of input. The user can either
manually enter the protein sequence, specify the UniProt
ID or upload the FASTA file. After entering the sequence,
the user is provided with the results from searching the Pro-
tein Data Bank or the Protein Model Portal. This result is
displayed in the form of a table (Figure 2B). In the case of
the Protein Data Bank results, PDB ID, resolution and the
link to the Protein Data Bank are provided. The user can
then pick one of the proteins and continue with the HotSpot
Wizard workflow. In the case of the results from the Pro-
tein Model Portal model provider, following information is
listed: (i) used template, (ii) sequence identity with a tem-
plate, (iii) range of the alignment, (iv) coverage and (v) reli-
ability of the model. Links to a model in the Protein Model
Portal and the template structure in the Protein Data Bank
are provided in the table. Coverage and reliability of the
models are represented by a color ranging from green to
red (Figure 2C). If the user selects a model with unsatisfac-
tory coverage (<80%) or insufficient reliability (low relia-
bility value), a warning is displayed. When a protein model
is selected which cannot be downloaded automatically, the
user is asked to download it manually and then upload it as
a structure for further analysis. The user can then select one
of the models provided and continue with the HotSpot Wiz-
ard workflow or, if none of the models is satisfactory, carry
out homology modeling and construct their own model. If
the user carries out homology modeling, several parame-
ters must be set first (Figure 2D). The user can select be-
tween Modeller, which is faster but less accurate, or I-Tasser,
which is more accurate but slow. The second important pa-
rameter that must be specified prior to calculation is either
automatic or manual identification of the template structure
and alignment. The template can be provided either by en-
tering the PDB ID or by uploading a PDB file. In the case
of the user entering the alignment, pairwise alignment of
the template and an input sequence in FASTA format must
be provided. The process of hotspot identification can then
begin after all these essential inputs have been defined.

Quality assessment of the model

Results of the quality assessment are shown in separate
windows consisting of three tabs containing various qual-
ity assessment analyses. The first tab shows the MolPro-
bity overall quality assessment table (Supplementary Fig-
ure S1A). In this table, the number and percentage of poor
rotamers, Ramachandran outliers, favored Ramachandran
conformers, bad bonds and bad angles are shown. Col-
ored highlights are used to distinguish between good and
unsatisfactory models. The second tab shows the MolPro-
bity quality assessment results for each residue, displayed
in the form of plots (Supplementary Figure S1B). A plot
of MolProbity Ramachandran scores and MolProbity ro-
tamer scores is given. In the last tab, there is a Ramachan-
dran plot for the protein created by PROCHECK with out-
lier residues highlighted (Supplementary Figure S1C). The

contents of all these tabs can be downloaded in PDF for-
mat together with a full quality assessment report created
by WHAT CHECK.

Mutations design based on stability

The stability changes introduced by specific mutations can
be accessed through a newly introduced Mutations design
module (Supplementary Figure S2A). There are three tabs
in the Mutation design window––the first for definition of
single-point mutants, the second for multiple-point mutants
and the third summarizing the status of submitted jobs.
In the case of single-point mutations, the user can select
particular amino acids for each of the selected hotspots.
The amino acid residues for mutagenesis can be selected
based on: (i) amino acid frequency, (ii) mutational land-
scape, (iii) physico-chemical properties or (iv) user selection
(Supplementary Figure S2B). After selection of the muta-
tions, the stability of each single-point mutation is evaluated
by the Rosetta software suite. The results are shown in the
table––stabilizing mutations are highlighted in green, desta-
bilizing mutations are highlighted in red (Supplementary
Figure S2C). There are two options for setting multiple-
point mutants. Either a particular amino acid can be se-
lected for each position in the multiple-point tab or the re-
sults table from a previous single-point calculation can be
used for recombination with the most promising substitu-
tions. In both cases, only a single substitution for each po-
sition can be selected (Supplementary Figure S2D). After
the calculation is finished, Hotspot Wizard reports the over-
all stability change as well as the decomposition of energy
terms, both of which provide excellent assistance for muta-
genesis experiments (Supplementary Figure S2E). The sta-
bility prediction can be downloaded in CSV format with
the sequence of designed mutants being provided in FASTA
format. These reports can also be generated in PDF or
HTML formats. The third tab shows a table with the his-
tory of previously evaluated stabilities for the job. For each
calculation, the job id, date and time of computation, sta-
tus of the job (failed or finished), mutation type (single-
point or multiple-point), selected positions and mutations
are shown (Supplementary Figure S2F). The results page
from any previous calculations can be revisited at any time.

EXPERIMENTAL VALIDATION

We have carried out validation of individual steps of the
workflow as well as thoroughly tested the final version of the
web server. The homology modeling tools were selected for
implementation based on the results of CAMEO compar-
ison (Supplementary Data 1). The reliability, coverage and
availability of a standalone version of all the software code
were considered during the selection process. The reliability
of the Rosetta protocol 3 employed in the Design module
was benchmarked against experimental stability data pre-
viously collected for multiple-point mutants in our labo-
ratory (46) as well as 1573 single-point mutants available
in the ProTherm and HotMuSiC databases (Supplemen-
tary Data 2). These tests confirmed a significant correla-
tion between half-lives and calculated changes in free energy
��G, as well as an ability of the fast protocol 3 to correctly
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Figure 2. Graphic user interface of the sequence input in the HotSpot Wizard 3.0. (A) Selection between structure and sequence input. (B) After entering
of the sequence, searching for existing structures in PDB database is performed. (C) If no existing structure is found, search in homology model databases
is performed. (D) Setting of homology modeling parameters––user can choose between Modeller and I-Tasser and eventually enter his own template or
sequence alignment.

classify stabilizing and destabilizing mutations. Function-
ality of the Mutation design module was validated by sat-
uration mutagenesis at the hotspot position L177 located
at the tunnel mouth of the haloalkane dehalogenase LinB
(47). Theoretical predictions correctly identified the vari-
ant L177W, which was found to be the most stable also
experimentally (Supplementary Data 3). At last, we used
the HotSpot Wizard 3.0 workflow for computational mu-
tagenesis of six residues lining the active site cavity and the

access tunnel of the haloalkane dehalogenases from non-
pathogenic and pathogenic bacteria Sphingobium japonicum
UT26 and Mycobacterium tuberculosis Rv2579, respectively
(48). Single-point mutations and combined sixfold mutants
were predicted using the automated protocols with crystal
structures and homology models (Supplementary Data 4).
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CONCLUSIONS AND OUTLOOK

HotSpot Wizard 3.0 is a new version of a popular web server
used for the automated prediction of hotspots and the de-
sign of smart libraries in semi-rational protein design. In
this version, homology modeling of the protein structure
dramatically increases the usability of the platform by in-
creasing the number of possible inputs and solves the lim-
itation imposed by the number of available experimental
structures. For homology modeling, Modeller and I-Tasser
are used. The quality of the models created is evaluated
using three different tools to identify wrongly modeled re-
gions, which should be used for further computational de-
sign only with extreme care. The users are automatically
warned whenever they attempt to redesign poorly resolved
regions, for example the residues lying outside allowed re-
gions of the Ramachandran plot. Rational design is further
supported by the novel Mutation design module employing
force field calculations for estimating the effect of substitu-
tion on protein thermodynamic stability. This new module
can dramatically reduce the number of variants selected for
experimental testing and can also help to pre-select muta-
tions for identified positions during construction of smart
libraries. In the future, we want to focus on more systematic
use of multiple structural data from the Protein Data Bank,
and on development of a novel engineering strategy for the
design of biocatalysts that catalyze specific chemical reac-
tions. Extensive databases searches will be coupled with the
computational design module for identification of the best
starting protein template for such an engineering exercise.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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