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Abstract

This work provides background information and commentary to 6
research papers I co-authored. It describes my entry into and research
in bioinformatics from the year 2001 until today. During this time
period I explored a number of avenues in biological sequence analysis,
proposed and designed new algorithms or redressed well-known
algorithms to be applied in novel applications to biological data. The
problems that interested me most were:

• How to search and analyze biological sequences in minimum
time and space? The answer lied mostly in specialized k-mer
data structures and algorithms combined with implementations
relying on pointer arithmetics and bit operations.

• Can we identify and evaluate specific DNA subsequences ca-
pable of forming interesting structures at the molecular level?
I found two novel approaches based on effective evaluation of
nucleotide triplets and quadruplets and their mapping to known
structures.

• What kind of genomic DNA sequence analysis is necessary to
aid biologists in analyzing genome evolution and 3-D structure?
It turned out that existing approaches often ignored repetitive
regions in DNA, so I concentrated on those and designed com-
putational tools for their annotation.

All the algorithmic ideas were swiftly implemented either in re-
search software prototypes or in more advanced software packages
made available to the research community via appropriate channels,
such as repository-deposited source code accompanied by publica-
tions, downloadable GNU Linux packages made with automake or
R/Bioconductor packages. They include the following algorithms or
software:

1. Virtual PCR - a dynamic simulation model with a biological
sequencemining component to predict the results of polymerase
chain reactions; written in Perl and C
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2. PRIMEX – C++/Perl implementation of a k-mer hashing-based
short sequence alignment algorithm; an offline string search
approach to genome analysis

3. Triplex – a new dynamic programming algorithm capable of
predicting triplex DNA formation from sequence; implemented
as an R/Bioconductor package

4. PQSfinder – an algorithm for exhaustive but efficient search in
nucleotide sequence space to identify DNA sequence capable of
forming G-guadruplex structures implemented as an R/Biocon-
ductor package; written in C++/R

5. TE-greedy-nester – a greedy algorithm to identify nested trans-
posable elements in genomic DNA sequences implemented in
Python

6. HiC-TE – a Nextflow workflow based a novel sequencing data
analysis paradigm combining existing software with compo-
nents written in bash, perl, R and Python

All six commented papers were published in Bioinformatics, an
authoritative journal in this area, however I also mention and cite
a number of other papers I co-authored. They mostly represent the
application of the developed approaches to important biological prob-
lems. Some are also additional computer science works where I was in
a supporting position and the major input came from a collaborator.

Keywords

bioinformatics, sequence analysis, simulation, patternmatching, genome,
repetitive sequences
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Glossary

Base - a special chemical group differing between basic building
blocks of DNA, commonly designated as A,C,G,T

Basepair (bp) - a term for two bases usedwhen referring to the length
of a DNA molecule or sequence; bases are typically organized
in one of two pairs, A-T or C-G

(DNA) clone - a fragment of a DNA molecule that is copied and
worked on in a laboratory

DNA - themolecule carrying genetic information found in cells (mostly
in the nucleus, organized into chromosomes); the information
it carries is coded into a sequence (or string) of bases (or base-
pairs); it is “read” by the cell to make RNA and protein

DNA or genome sequencing - identification of the precise order of
bases/basepairs in the DNA molecules of a given sample or
organism

Eukaryote - a type of organisms made of cells that have a nucleus;
this group encompasses fungi, plants and animals; bacteria, on
the other hand belong to a different group called prokaryotes

Genome - a collection of all genes of a given organism; however it
is commonly used in a wider sense to mean all the DNA of an
organism

G-quadruplex - a special structure that can be formed by DNA or
RNA rich in guanines. Tetrads of guanine bases (the Gs) are
formed by Hoogsteen bonding as two or more of these get stabi-
lized by potassium ions and can thereafter form a stable structure
with poorly understood/described biological functions

Hoogsteen basepair - chemically and structurally a different kind of
basepair than the canonical Watson-Crick; this kind of bonding
between bases is seen in triplex and quadruplex DNA

K-mer - a short substring of a string of length K
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Glossary

LTR retrotransposon - a special class of transposable elements that
spread by a “copy-paste” mechanism via an RNA intermediate
and are then reversely (retro-) transcribed back into the genomic
DNA

Nucleic acid - a biochemical substance, a polymer (long string) of
nucleotides; includes DNA and RNA

Protein - a polymer of amino acids; in cells the information regading
what amino acids a protein should be made of is present in the
form of genes in DNA molecules forming the genome; there are
many different genes in a genome and many different proteins
aremade during the lifetime of a cell; if wewere to use an analogy
where the genome is the “software” that the cell carries along,
then proteins would be the “hardware” of the cell

PCR (polymerase chain reaction) - a biochemical reaction used in
the laboratory to synthesize a certain fragment of DNA many
times over, preserving the sequence of one or a fewDNAmolecules
that are used as a template to be copied; the copying/synthesis is
chemically carried out by a DNA polymerase enzyme that has to
be added to the reaction together with the building blocks of the
new DNA (nucleotides) and short fragments of DNA (primers)
from which the synthesis will always start and which delineate
the borders of the desired fragment on the template by binding
to form a duplex

RNA - a type of nucleic acid that carries information for protein syn-
thesis around the cell as mRNA; a few specialized species of
RNA carry out slightly different functions (e.g. t-RNA, rRNA);
in contrast to DNA, RNA is typically single-stranded and not
strictly helical

(Sequence) assembly - the process of putting together many small
sequencing reads (short sequences identified by sequencing
(machines)) in order to reconstruct the sequence of the whole
genome that was sequenced. Most sequencing technologies are
unable to read the sequence of bases of an entire DNA molecule
in one reading.
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Glossary

Transposable element – a region of DNA in the genome that has the
ability to act autonomously by moving or being copied to a
different place in the genome; transposable elements are the
most common cause for dispersed repeats – the phenmenon of
encountering the same DNA sequence many times in different
regions of the genome

Triplex DNA - DNA molecules in which a third strand is attached to
the usual helical DNA duplex; intermolecular complexes of this
kind are called H-DNA
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1 Introduction

Bioinformatics at the crossroads of molecular biology, genomics
and computer science

The last two decades of biological and medical research has been
marked by ground-breaking progress enabled by the arrival of new
technologies and methods in the area of molecular biology and ge-
nomics. While molecular biology as a discipline has roots in the pre-
vious century when the structure of proteins and nucleic acids was
discovered, genomics is the younger sister of molecular biology, pro-
viding methods and tools to study life at molecular level using highly
parallel techniques. Genomic approaches have in turn flooded the
scientific arena with unprecedented volumes of raw data, mostly bi-
ological sequences and their annotation in time and space. These
developments resulted in an ever increasing reliance on computers
and algorithmic solutions in biomedicine, ushering in the era of bioin-
formatics.

Twenty years ago it were the physicists with particle accelerators
and colliders and astronomers with powerful telescopes who were
the hottest candidates for big data accumulation and analysis. Today,
genomics, or biology and medicine are quickly becoming one of the
most data-intensive scientific disciplines on the planet. Having the
data available, however, is only the beginning of a long journey.

The good, the bad and the ugly

In the year 2001, the Human Genome Project yielded the long-awaited
fruits of its labor, providing us with roughly 3 billion nucleotide bases,
the As, C, Gs and Ts of the first reference human genome. Even with
such amodest volume of new data, the task of converting this data into
knowledge turned out to be a winding road with a lot of dead-ends.
For example, a group of people at the forefront of medical research
and human genome sequencing in the US, William A. Haseltine and
Craig Venter, founded a company called Human Genome Sciences
back in 1992 with a vision to build upon the sequencing of the human
genome and profit on the ability to use this information to understand
the underlying molecular causes behind disease and design medicine
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1. Introduction

tailored to the specific mechanisms discovered in genomic data (Allen
2005, McNamee and Ledley, 2013). After almost ten years of studying
the human genome, the company spent all the venture capital money,
about 4 billion USD, only to come up with one candidate drug to treat
lupus. Even that drug was not approved for everybody in a need of
such medicine. The company was taken over by a pharmaceutical
whale Glaxo-Smith-Kline before it could go bankrupt.

On the other hand, there are many success stories. They underline
the fact that understanding the molecular sequences and structures
of life is far from straightforward, but when done with the right tools
and mindset, all kinds of basic and practical/actionable knowledge
can be derived from these data. To name just a few, one can look at the
scientific response to the surprising arrival of the SARS-CoV2 virus.
With the ability to isolate and sequence the virus, molecular biologists
and other practitioners of science andmedicinewere able to synthesize
an artificial RNAmolecule to be used as a vaccine. Later, theywere able
to do the samewithmany viral samples, compare the sequences to each
other and follow the spread of different variants and lineages. None of
this would be possible without necessary genomic and bioinformatic
tools already in place, ready to be used at the onset of the pandemic.
Another example of an enormous dataset and a resulting biological
insight is a recent supercomputing exercise in petabase-scale virus
discovery (Edgar et al., 2022). Perhaps the best description of this study
is what the authors of the study wrote themselves in the abstract of
the above Nature paper:

Public databases contain a planetary collection of nucleic acid
sequences, but their systematic exploration has been inhibited by
a lack of efficient methods for searching this corpus, which (at
the time of writing) exceeds 20 petabases and is growing expo-
nentially1. Here we developed a cloud computing infrastructure,
Serratus, to enable ultra-high-throughput sequence alignment
at the petabase scale. We searched 5.7 million biologically diverse
samples (10.2 petabases) for the hallmark gene RNA-dependent

1. An account of the controversies surrounding the first RNA sequence of the virus
see Campbell (2020) Exclusive: The Chinese Scientist Who Sequenced the First COVID-19
Genome Speaks Out About the Controversies Surrounding His Work in Aug 24, 2020 issue
of TIME magazine (https://time.com/5882918/zhang-yongzhen-interview-c
hina-coronavirus-genome/).
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1. Introduction

RNA polymerase and identified well over 105 novel RNA viruses,
thereby expanding the number of known species by roughly an
order of magnitude.

Converting data to knowledge in bioinformatics

These examples illustrate that currently there are several ways to con-
vert data into knowledge (Gagneur et al., 2017). One is to increase the
output of the analysis of such data to the point that high-performance
computing can find interesting patterns (as shown in the above ex-
ample). If the patterns to look for are not trivial or not even known,
machine learning methods can be trained in what will probably be
black-box models of life and all its intricacies, nevertheless models
that will most likely provide practical solutions to many problems that
were difficult to address only a decade ago2. Another is to improve our
mechanistic understanding of life at molecular level to the point that
we can understand the function of most of the sequences present in
past and current genomes of various species of life. Both approaches
require not only more data by volume or type but also better ability
to store and analyze it, and ultimately draw conclusions from them.
Be it in the form of new knowledge or practical guidelines for the
given moment. In what amounts to about one lifetime, we witnessed
a gradual expansion of the scope of biological research to the arena
of molecular biology, further to genomics, with bioinformatics as a
necessary chain link that can help to make sense of the accumulated
data by following some of the paths outlined above.

Contribution by the author

In my work, first as a biologist, later (since cca 2001) as a bioinfor-
matician, I always strived to place myself at the intersection of biology
and computer science. First in embracing numerical simulation mod-
els to explain phenomena in agriculture, plant nutrition and plant
physiology and biochemistry. Later, with the increasing importance
of molecular biology, genomics and bioinformatics, I shifted interests
slightly, from analog to digital, from simulation models to biological

2. AlphaFold protein structure prediction is one of the first better known techniques
of this kind (https://alphafold.com/).
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1. Introduction

sequence analysis. Symbolically, my first work in this area combined a
dynamic mathematical model of DNA fragment binding and synthe-
sis in PCR (polymerase chain reaction; a commonly used technique
for detection or synthesis of DNA molecules in the laboratory) with a
sequence mining approach that required the adaptation and imple-
mentation of a string matching algorithm. This happened between
2001-2003 and it marked a new phase in my scientific career where
I concentrated on efficient and practical ways of biological sequence
analysis and the application of the resulting tools and algorithms to
some pressing or interesting biological problems at the time.

My contribution to this field is demonstrated here in the 6 attached
publications, each with its own chapter and commentary.
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2 Included publications

Table 2.1: Author’s works tabulated in the order of their appearance
in the following chapters, in print, and in the Appendix as original
texts.

No. Publication My contribution

1
Lexa et al. (2001). Virtual PCR.
Bioinformatics 17(2):192–193
doi: 10.1093/bioinformatics/17.2.192

design and implementation
of simulation model (100%)
data collection (50%)
writing (90%)

2
Lexa et al. (2003). Primex: rapid identification
of oligonucleotide matches in whole genomes
Bioinformatics 19(18):2486–2488
doi: 10.1093/bioinformatics/btg350

design and implementation of
string matching algorithm (100%)
writing (90%)

3

Lexa et al. (2011). A dynamic programming
algorithm for identification of triplex-forming
sequences
Bioinformatics 27(18):2510-2517
doi: 10.1093/bioinformatics/btr439

idea for the algorithm (80%)
data and implementation (20%)
writing (80%)

4

Hon et al. (2017). pqsfinder: an exhaustive
and imperfection-tolerant search tool for
potential quadruplex-forming sequences in R
Bioinformatics 33(21):3373–3379
doi: 10.1093/bioinformatics/btx413

idea for the algorithm (40%)
data and implementation (10%)
writing (80%)

5

Lexa et al. (2020). TE-greedy-nester: structure-
based detection of LTR retrotransposons
and their nesting
Bioinformatics 36(20):4991–4999
doi: 10.1093/bioinformatics/btaa632

design of search and
classification algorithm (80%)
implementation and
data processing (30%)
writing (80%)

6

Lexa et al. (2021). HiC-TE: a computational
pipeline for Hi-C data analysis to study the role
of repeat family interactions in the genome
3D organization
Bioinformatics 38(16):4030–4032
doi: 10.1093/bioinformatics/btac442

idea for the algorithm (100%)
design and implementation
of pipeline (50%)
data analysis (80%)
writing (80%)
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3 Numerical simulation of the polymerase chain
reaction

Lexa M., Horak J., Brzobohaty B. (2001). Virtual PCR. Bioinformatics
17(2):192–193.
doi: 10.1093/bioinformatics/17.2.192

My contribution: design and implementation of simulation model
(100%), data collection (50%), writing (90%)

WoS citations: 28
Google Scholar citations: 64

Towards the end of the millennium, biologists have already col-
lected a considerable amount of sequence data. The central repository
for such data was the NCBI GenBank sequence database (Benson et al.,
2000). The data did not come from the massively parallel techniques
used today but from many small experiments carried out in labora-
tories around the world (Bilofsky and Burks, 1988). Consequently, it
contained a heterogeneous mix of sequence data from short clones
collected and analyzed to find the DNA sequence of a fragment rang-
ing from a single gene or transcript, to medium-sized BAC clones and
other sequences. These were collected systematically for many model
genome species in the process of genome sequencing, or as a cheaper
alternative to assembling the full genome by simply sampling it.

The polymerase chain reaction (PCR)

I realized this data could be mined in a way that would support de-
cision making in a number of real-world research situations. In one
laboratory technique, called PCR, a fragment of DNA is synthesized
by choosing a pair of short sequences upstream and downstream of
the sequence of interest and then DNA polymerase enzyme is used
to make new DNA molecules with identical sequence as the original
fragment (template), starting alternatively from one primer or the
other (Figure 3.1). At that time, it was possible to choose a good primer
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3. Numerical PCR simulation

Figure 3.1: The role of primers in the PCR reaction and the need to
detect unspecific primer binding.

using software that evaluated several properties of the primer DNA
sequences, such as Primer3 (Rozen and Skaletsky, 2000). However,
this approach did not look at one important parameter, the unique-
ness of the primer binding sequence within the template, especially
when amplifying parts of a genome. Often, PCR is used on material
that contains the entire genome of a species, or even more than one
genome (Jung et al. 1992). Also, often the primers are intentionally
made less specific, leading to the so-called multiplex PCR, where the
process may result in the synthesis of several different DNA products
(Edwards and Gibbs, 1994). PCR is also used in a diagnostic manner,
as a proof of the presence of some primer-binding sequence in the
analyzed material (Grondahl et al., 1999).

The VPCR software

Compared to Primer3 (Rychlik and Roads, 1989) and similar software,
I imagined an improved computational approach that would consult
the NCBI GenBank database for any primer pair being tested and
help the user determine what product to expect from running a PCR
reaction with these primers. Such software would have two main com-
ponents. Given a pair of primers and the name of the analyzed species
as input, one component would find all sequences similar enough so
that they could bind the primers (this part initially relied on existing
BLAST software (Altschul et al., 1990)), while the second component
would then run a dynamic simulation model of the PCR reaction and
predict the synthesized (also known as amplified) DNA products. If

10



3. Numerical PCR simulation

the primers were not specific enough, or more than two were used
as input, multiple products were predicted, showing the ability to
simulate DNA products even for multiplex PCR. The software was
written in C and Perl. Themodel was written as a system of differential
equations that were solved using the Euler method (Atkinson, 1989).

At the time of publication there was no such software available
to researchers, making both, the idea and the software quite popu-
lar. I succeeded receiving a two-year research fellowship from the
University of Padua (Padova) to work with professor Giorgio Valle
on further developing and improving this computational approach.
While in Padova, I improved the simulation model to use the latest
methods in melting temperature prediction for DNA duplexes (a
primer bound to its template in PCR forms a primer-template duplex
only at certain temperatures) as proposed by SantaLucia Jr. (1998)
and further fine-tuned the simulation process. The paper describing
the software published in Bioinformatics is my 4th most cited paper
on Google Scholar and the 8th most cited on Web of Science. Ideas
from the paper were later used in other primer design software, such
as MFEprimer (Qu et al., 2009, Wang et al., 2019), Genomemasker
(Anderson et al., 2005), Puns (Boutros and Okey, 2004) and FastPCR
(Kalendar et al., 2017). Several research groups used the software
to evaluate large sets of primers as a filtration step, to select only
primers that showed promising results in the simulation. For example,
Laganiere et al. (2005) wrote: Primer pairs were designed by using the
Primer3 algorithm, and the specificity was tested in silico by using a virtual
PCR algorithm.

VPCR improvements

While still at Padova University, I designed and implemented a new
module of Virtual PCR later called PRIMEX (see next chapter). It re-
placed BLAST sequencematching to NCBI databases with full genome
searches, using a new algorithm based on short fixed word (k-mer)
counting and hashing, thus speeding up the prediction from tens of
minutes to minutes or even seconds on a single typical contemporary
computer. The speedup was much higher for large genomes, which at
the time were beginning to be deposited in the NCBI database (Ara-
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3. Numerical PCR simulation

bidopsis, human and mouse genomes, for example). The PRIMEX
string matching software is fully described in the next chapter.
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4 A k-mer based algorithm for pattern match-
ing in an offline mode

Lexa M., Valle G. (2003). Primex: rapid identification of oligonu-
cleotide matches in whole genomes. Bioinformatics 19(18):2486–2488.
doi: 10.1093/bioinformatics/btg350

My contribution: design and implementation of string matching
algorithm (100%), writing (90%)

WoS citations: 23
Google Scholar citations: 49

As explained in the previous chapter, in 2002 I was an international
fellow at the University of Padova looking for ways to improve our
ability to simulate the PCR reaction products from genomic templates.
Among other components, I was looking for a way to improve string
matching tools for identification of short sequences in genomes. The
largest genome at that time was the human reference genome with
3 billion nucleotide bases and the tool of choice for biologists was to
search such sequences using a very popular software called BLAST
(Altschul et al., 1990). It encapsulated a heuristic search approach
using candidate sequence filtering based on short approximate hits
(similarities between the search sequence and its targets). A small
set of candidate hits was then explored using traditional dynamic
programming algorithms for local sequence similarity to give a final
answer (Galisson, 2000). While using this software as a module in Vir-
tual PCR, I realized the approachwas inefficient for repeated detection
of extremely short hits in a genome or other static sequence database.
I was looking for algorithms that could bring better performance to
sequence comparison.

In the study of string matching (or pattern matching), problems
are typically classified as one of two main approaches (modes of
searching): i) online and ii) offline searching (Karp, 1992). Offline
algorithms assume that the data to be searched are not available for
any preprocessing and has to be searched in a streaming fashion. These

13



4. Sequence pattern matching with k-mers

algorithms are appropriate for situation where the target data change
frequently or where it actually comes as a stream. When the data is
relatively stable, as in the case of genome reference DNA sequences,
offline algorithms are a better chosen. They allow for the creation of
specialized data structures that facilitate rapid string matching. The
actual searching then happens directly on these data structures and
the identification of the target string matched is only done at the end
of the search. Online algorithms tend to have higher space complexity
and lower time complexity. Unlike offline algorithms, they are capable
of searching the data in sublinear time.

A version of such offline algorithmwas used at the time in software
tools called BLAT (Kent, 2002) and SSAHA (Ning et al, 2001). The al-
gorithms reduced a genomic sequence or database to non-overlapping
k-mers, used these to create a lookup/hashing table and used it to
quickly cover any searched string with the k-mers and their positions
in the genome. In case of a match, the string was kept as a candidate
and evaluated further. However the short sequences used as PCR
primers made these tools ill-tuned for string matching in the context
of Virtual PCR, mainly because of the use of k-mer sizes that were two
big. Upon reading some stringology texts and also realizing that BLAST
software filtering based on a pair of hits instead of a single hit per-
forms much better, I modified the k-mer lookup/hashing algorithmic
approach to work also with two approximate hits, and further tailored
the implementation to allow for easy bit-encoding of bases for the en-
visioned k-mer length of 8-12 (BLAT and SSAHA used slightly longer
k-mers). PRIMEX was written in C++ and had three key parameters
to be set before use, k – the k-mer length, m1 - the maximal number of
mismatches allowed between the query k-mer and the target in the
filtration step, and m2 – the maximal desired number of mismatches to
be reported for query strings (also l is the length of the query). Using
a fixed k-mer length k allowed the use of fast pointer arithmetics and
offsets in the code. Together with encoding nucleotides into two bits
this provided for compact and fast string manipulation. The second
parameter, m1 was typically 0 or 1 when used in Virtual PCR. I de-
rived a formula for critical value of m2 based on k, m1 and l that could
be used to determine whether the search for sequences was partly
heuristic and therefore necessarily incomplete or whether the search
guaranteed to find the complete set of matching sequences (Figure
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4. Sequence pattern matching with k-mers

Figure 4.1: PRIMEX string matching software and parameter value
combination thresholds resulting in a heuristic search.

4.1). The threshold (expressed as the number of mismatches between
query and target) above which the search becomes heuristic is:

m2crit = f loor(l/k) ∗ (m1 + 1)− 1

The critical value of m2crit in Figure 4.1 for k = 6, l = 18 and
m1 = 1 is 5.

To use PRIMEX with Virtual PCR efficiently another feature was
needed. Calculating the lookup table from the genome was a time
consuming process that took about 15 minutes for the human genome
on a contemporary single desktop computer. I therefore introduced
the possibility to save the lookup table to disk, allowing the user to skip
this process when repeatedly searching the same sequence database or
genome. Today, modern sequence alignment software always allows
the creation of such index and saving of the index to disk (Langmead
and Salzberg, 2012). However, it is quite possible that at the time,
PRIMEX was the only software with such functionality.

To support the kind of real-time response Virtual PCR required,
even saving and recovering the index from disk was not enough of a
speed-up. A meaningful integration of the two programs for real-time
use became only possible after I allowed PRIMEX to run in server
mode, listening to commands via a port accessible locally or via the in-
ternet. A client software written in Perl took care of issuing commands
on the user side. As a result, tens of minutes of BLAST search was re-
duced to about a minute using standalone PRIMEX and to seconds or
fractions of a second when using the server feature (see Table 1 in the
paper). One important factor in making this approach possible and
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4. Sequence pattern matching with k-mers

successful was the availability of GB-sized computer RAM capacity.
The uncompressed index (circumventing compression was important
for speed) for the human genome was on the order of 4-12GB and the
speed of the server mode relied on the ability to store the entire lookup
table in the RAM of the server computer and consult it as needed for
rapid filtering of k-mer matches.

Using the hardware at the University of Padova I installed servers
for several commonly used genomes that could be accessed from any
place in the worldwith internet access and the PRIMEX client software
running (a simple Perl script using an ad-hoc data exchange protocol).
The use of this functionality did not gain much traction, probably
because of the inflow of new programs from genomic teams in need
of short string matching in the context of next-generation sequencing
(NGS). It was mostly used via my Padova website providing sequence
search support for Virtual PCR simulations. These were also hosted on
a webserver in Padova and at one point enjoyed dozens of users each
day. The use of the server slowly decreased towards the end of the
decade and I stopped updating and supporting the software around
the year 2010. The source code for both, Virtual PCR and PRIMEX are
available for download from my account on Research Gate (https:
//www.researchgate.net/publication/257650663_vpcr-21tar
and https://www.researchgate.net/publication/233734306_mex
-099tar).

Another interesting fact about the PRIMEX software is, that to-
gether with BLAT and SSAHA, they were essentially the first short-
read aligners, a kind of software that only enjoyed a boom few years
later with the oncoming revolution in DNA sequencing (so-called
NGS, or next-generation sequencing). While early NGS mapping
software used similar algorithmic principles (Li et al., 2008), the
use of suffix trees, suffix arrays and a specialized Burrows-Wheeler
transformation-based lookup data structures, such as the FM-index
(Ferragina and Manzini, 2005) came into use and superseded the
previously published and used software (Li and Durbin, 2009, Li et
al., 2009). A Wikipedia page listing all short-read mapping software
illustrates the timeline and capabilities quite well (https://en.wikip
edia.org/wiki/List_of_sequence_alignment_software#Short-r
ead_sequence_alignment).
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4. Sequence pattern matching with k-mers

Another area where string searches showed promise, was the abil-
ity to analyze proteins in a manner reminiscent of topic analysis and
sentence meaning inference in computational linguistics (Lexa et al.,
2009). Since biological sequences are long continuous sequences lack-
ing any clear “punctuation symbols”, their analysis often relied on our
ability to split them into meaningful subsequences. I discovered that
co-ocurrence of short sequence matches determinedwith PRIMEX can
be used to delineate protein domains (regions of proteins carrying out
a conserved function, often geometrically and structurally separated
from other domains of the same protein) (Lexa and Valle, 2004). My
domain identification module was part of a wider software suite of a
group participating in the 2004 round of CASP and CAFASP protein
structure prediction competition (Jin and Dunbrack, 2005).

The few years of popularity of PRIMEX and Virtual PCR helped
me to start a fruitful collaboration upon my arrival to the Faculty of
Informatics at the Masaryk University in Brno. I identified a group of
scientists at the Brno Technical University that was working on hard-
ware acceleration of various computational problems. Together with
Tomas Martinek (and later Ivana Burgetova, and Jiri Hon), we started
an informal bioinformatics group in Brno. We published a number of
papers together, two of which (covering triplex and pqsfinder software
tools) are included here and mentioned in the following chapters. On
the string matching front we designed several FPGA-based architec-
tures that could speed up PRIMEX or simpler string matching tasks
up to several thousand-fold (Martinek et al., 2006, Martinek et al.,
2007, Martinek and Lexa, 2008, Martinek et al., 2009, Martinek and
Lexa, 2010, Martinek and Lexa, 2011). The highlight of this period was
a Best Poster Award from a hardware conference (Martinek and Lexa,
2011). The design of the accelerated PRIMEX and Virtual PCR was
described in a conference paper presented at the 21st European Con-
ference on Modelling and Simulation in Prague in 2007 (Lexa et al.,
2007). Hardware acceleration of string matching was a direction that
emerged also at other places in the world and our resources and inter-
ests would not allow us to pursue this direction further meaningfully.
In the meantime several papers and commercial products and services
based on FPGAs used for bioinformatics already appeared (Arram et
al., 2017) and I moved on to other problems in bioinformatics in my
research.
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5 A triple-stranded DNA pattern matching al-
gorithm and its implementation

Lexa M., Martinek T., Burgetova I., Kopecek D., BrazdovaM. (2011). A
dynamic programming algorithm for identification of triplex-forming
sequences. Bioinformatics 27(18):2510-2517.
doi: 10.1093/bioinformatics/btr439

My contribution: idea for the algorithm (80%), data and implemen-
tation (20%), writing (80%)

WoS citations: 21
Google Scholar citations: 33

In the year 2006, at a workshop organized by the Biophysical In-
stitute of the Czech Academy of Sciences, I encountered a colleague,
dr. Marie Brazdova studying non-B DNA structures in DNA. These
are parts of the DNA molecule that have the ability to adopt a dif-
ferent structural organization than the typical B-DNA helix known
from textbooks. Such structures have been implicated in important
biological processes, including DNA replication, cancer cell life-cycle
regulation, or gene regulation. The group of Marie Brazdova in Brno
was studying these structures experimentally and were looking for a
way to predict their formation by sequence analysis. While at that time
theyweremostly interested in DNA triplexes (so-calledH-DNA), they
were also interested in G-quadruplexes and cruciformDNA structures.
This (at the time unsolved) problem immediately raised my interest.
With the knowledge of a wide range of sequence analysis methods, I
recognized the triplex DNA folding problem as a variant of sequence
alignment, for which a dynamic-programming algorithm has existed
for many years already. With a group of students who studied the
problem in their theses (Kamil Rajdl, Daniel Kopecek, Juraj Jurco) and
colleagues from Brno Technical University who, perhaps also under
my influence, were at that time just making a shift from hardware
acceleration to bioinformatics, we started studying the problem based
on the above algorithmic insight.
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5. Triplex DNA pattern matching

Figure 5.1: Eight types of triplexes that are detected in separate evalu-
ations by the algorithm for a given region. Watson–Crick base pairing
is shown by vertical bars, Hoogsteen base pairing typical for triplexes
is shown with a dashed line. X and Y are two nucleotides on the same
strand that will form a triplet. The eight possible triplets are: Y.X X,
Y .XX , Y .X X, Y.XX , X.Y Y, X .YY , X .Y Y and X.YY (’ designates
complementarity).

H-DNA is made of three strands of DNA, however two of these
strands form the classical Watson-Crick pair (A-T or C-G) and does
not require any special computational consideration. The problemwas
therefore reduced to a molecular palindrome search on the remaining
pair of strands with special folding rules. This basic problem has
already been solved by Nussinov and Jacobson (1980) and once we
found a way to split the triplex DNA formation chemical rules into
eight distinct categories (Figure 5.1), each of which could be solved by
the prediction of palindrome formation, it became clear how H-DNA
structures can be predicted.

The major obstacle was to change the basepair formation rules
from classical pairing to rules applicable to triplex formation. These
rules were partly known and partly we evaluated them using molec-
ular modelling, to calculate which basepairs are capable of forming
the energetically most favorable spatial arrangements and how their
geometries would support each other. While working on the problem
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5. Triplex DNA pattern matching

Figure 5.2: The triplex R/Bioconductor package. (A) 2D diagram and
(B) 3D model of one of the best scored triplexes.

another group from Australia published their own triplex DNA pre-
diction program called Triplexator (Buske et al., 2012). However, it
was based on a different approach and allowed us to soon publish also
our own implementation of the above algorithm (Hon et al., 2013).

To motivate people to use our program, I found a bachelor student
(Kamil Rajdl) at our faculty who was interested in moving our code
to R/Bioconductor. At that time Bioconductor was a repository of
bioinformatics software with growing popularity. He packaged our
implementation into an R/Bioconductor package that allowed users
to easily analyze single sequences or entire sets (Figure 5.2). Since
the publication of triplex, more than 7000 individual IP addresses
downloaded the software from the repository (http://bioconduct
or.org/packages/stats/bioc/triplex/)1.

Later, the software was further improved with important contribu-
tions from two Faculty of Informatics students under my supervision,
especially Daniel Kopecek and his thesis titled Extension and optimiza-
tion of a program for triplex detection in DNA sequences.

1. It should be noted, however, that these numbers include repeated downloads in
separate years, possibly of new versions of the software, so that the real number of
users is more likely in the higher hundreds to lower thousands.
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6 A branch and boundG-quadruplexmatching
algorithm for sequence analysis

Hon J., Martinek T., Zendulka J., Lexa M. (2017). pqsfinder: an exhaus-
tive and imperfection-tolerant search tool for potential quadruplex-
forming sequences in R. Bioinformatics 33(21):3373–3379.
doi: 10.1093/bioinformatics/btx413

My contribution: idea for the algorithm (40%), data and implemen-
tation (10%), writing (80%)

WoS citations: 54
Google Scholar citations: 84

Creating and publishing pqsfinder was a natural extension of my
collaboration with the bioinformatics group at the Brno Technical
University. We have been studying different non-B DNA structures
for a while by then. Upon the success of triplex prediction and its
application to human genomic data (Lexa et al., 2014), interest of col-
leagues from the Academy of Sciences in cruciform DNA, and also the
increasing popularity and importance of G-quadruplexes (Yatsunyk
et al., 2012), we soon started exploring the need and possibility to
identify and evaluate their sequences algorithmically as well.

I spent some time evaluating cruciform DNA which resulted in
a conference paper showing how sequences susceptible to their for-
mation could be recognized. The analysis showed the importance of
superhelical stress in connection with these structures. Their forma-
tion has the capacity to increase or decrease superhelicity of a circular
fragment or a piece of DNA stretched between binding proteins, such
as nucleosomes, scaffolding proteins, other chromatin components,
transcription factors or membranes (Lexa et al., 2012).

However, ourmain research directionwas to be the prediction of G-
quadruplex formation. At the time we encountered this problem, most
researchers were combing DNA sequences using regular expressions.
G-quadruplexes form in loci with several guanines clustered together
and a regular expression of the form G3 − N1−7 − G3 − N1−7 − G3 −
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6. Branch and bound G4 pattern matching

Figure 6.1: (A) Structural aspects of G-quadruplexes (G4s) – a planar
tetrad of guanines; several tetrads can form a canonical G4, imperfect
structures are possible; (B) – algorithmically important search param-
eters.
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6. Branch and bound G4 pattern matching

N1−7 − G3 (where N is any of the four nucleotides found in DNA)
would find the most typical sequences capable of G-quadruplex for-
mation. Experimental evidence in literature pointed towards the pos-
sibility that other sequences were able to form the same structure,
mostly by tolerating an imperfection or two (Mukundan and Phan,
2013), or by folding differently in space (Figure 6.1A). While some
groups addressed this problem successfully by ignoring the precise
mechanism of folding (Bedrat et al., 2016), we felt that a branch and
bound algorithm evaluating all possible ways to form a G-quadruplex
might be feasible1. Jiri Hon, a collaborator of mine was most instru-
mental in finding the best recursion to use in the implementation that
can visit all interesting combinations of guanines (G), however, for
the sake of efficiency will stop that particular evaluation at a point
where the prospective G-quadruplex can not result in a better evalua-
tion score than another that has already been identified in the same
region (Figure 6.1B). Once the algorithm was fully designed and im-
plemented, I realized we could use the results of a freshly introduced
sequencing technique, called G4-seq (Chambers et al., 2015) to fine-
tune and validate our program. With the help of another colleague,
Tomas Martinek, using genetic programming as an optimization tool
on this data, we trained the model and identified a combination of
scoring parameters that gave excellent results. Not only were we able
to predict G4-formation from sequence data with high accuracy, we
could do so better than any of the five or so software tools used at
that time. The accuracy of the various software tools and pqsfinder
was evaluated on a dataset used also by the other research groups in
this area, called Lit392 (Bedrat et al., 2015). It is a compilation of G4-
forming sequences from literature that are supported by experimental
evidence. The set also contains negative examples and therefore lends
itself for this kind of use.

Upon our partial success with triplex and the growing popularity
of R in bioinformatics circles, Jiri Hon steered the implementation
of pqsfinder from the beginning to become an R/Bioconductor pack-
age (Figure 6.2), although the core of the package is written in C++.
Soon it became very popular. It is by far my best-cited paper. The R

1. Interestingly, B.Subramanian (a well-known researcher in G4 studies) once re-
marked at a conference that such evaluation would be computationally too complex,
when at the time we already had first working implementation.
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Figure 6.2: A typical use of pqsfinder to search for DNA sequences.

package has been downloaded so far by more than 10000 indepen-
dent IP addresses (https://bioconductor.org/packages/stat
s/bioc/pqsfinder/)2. A recent review of software for identifying
potential G-quadruplexes confirmed our own accuracy results (Lom-
bardi and Londono-Vallejo, 2020) and placed pqsfinder among the
most accurate. Recently, two new software products with the same
motivation appeared, both based on machine learning approaches –
Quadparser (Sahakyan et al., 2017) and PENGUINN (Klimentova et
al., 2020). While there are indications that PENGUINN produces less
false positives and has higher accuracy, the black-box aspect of the
machine learning approaches keeps our approach with individually
configurable imperfections and their scoring still attractive.

Also, pqsfinder has one extra feature not seen in other similar soft-
ware. Its scoring function is extensible. In the manual to the software
(Hon et al, 2017) we show how this feature can be used to evaluate a
different class of G-quadruplexes than the ones envisaged at inception.
Only a small change in code is required to provide a new type of
scoring that can, for example, evaluate interstrand G-quadruplexes,
where half of the guanines come from another strand of DNA, while
the sequence (the one that is analyzed) has cytosines in the regions
contributing to the quadruplex (Kudlicki, 2016).

Mywork on non-B DNA structure prediction, especially G-quadru-
plexes described in this chapter, led me to another collaboration with
a research group at the Biophysical Institute of the Czech Academy
of Sciences in Brno. In an ad-hoc and informal research collaboration
on repetitive sequences in plants, together with my now long-term
collaborator, dr. EduardKejnovskywho studies plant repeats (many of

2. It should be noted, however, that these numbers include repeated downloads in
separate years, possibly of new versions of the software, so that the real number of
users is more likely in the higher hundreds to lower thousands.
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6. Branch and bound G4 pattern matching

which are mobile/transposable elements), we hypothesized that non-
B DNAmight play some role in their life cycle. Having just finished the
work on pqsfinder, I created a collection of tens of thousands of plant
transposable elements and analyzed them for potential G-quadruplex
forming sequences (PQS). To our surprise, there were certain areas in
these DNA sequences that had much higher probability of containing
a G-quadruplex then other regions (Lexa et al., 2014). They were
the regulatory regions and this finding resonated well with findings
in many other organisms, where G-quadruplexes were found to be
enriched in gene promoters, another regulatory region in the genome.
We were able to confirm similar situation in the human genome (Lexa
et al., 2014b) and lately another research group observed the same
results in the bovine genome (Stefos et al., 2022), so the observation,
which is not currently a well-known fact, seems to hold for most
eukaryotic genomes in nature by now.

Much of our later research focused on pinpointing the possible
roles these G-quadruplexes could play (Kejnovsky et al., 2015). We
formulated a hypothesis that transposable elements, because of their
mobility in genomes, are predisposed as ideal candidates for “ge-
nomic vehicles” in eukaryotes that would populate different areas
of the genome with G-quadruplexes (Kejnovsky and Lexa, 2014).
These could later appear as G-quadruplex enriched gene-regulatory
sequences, such as promoters or enhancers. For example the group of
Stefos et al. (2022) studying G-quadruplexes in the bovine genome
found supporting data for the function of LINE trasnposable element
as such vehicle. This function of transposable elements, in my opin-
ion, is currently underestimated and most of the research worldwide
mainly focuses on specific examples of other two functional classes.
One is encountered where transposable elements were exapted (cap-
tured in a specific locus of the genome) to aid or otherwise modify the
expression or function of a specific gene (Lopez and Bureau, 2018).
Another is seen where the machinery of the host which evolved to sup-
press potentially dangerous repeat expansion inhibits (or silences) not
only the transposable element but also some sequences nearby (in case
of methylation), or genome-wide (in case of small RNA production).

Together with Eduard Kejnovsky we managed to form a small
research group funded by the Czech Grant Agency and occasionally
other grants as well, which now focuses on this line of research. In our
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transposable element studies, I recognized several areas that needed
fresh bioinformatics research. These lines of research are described in
detail in the following two chapters.
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7 A greedy algorithm for detection of nested
structures in genomic DNA sequences

Lexa M., Jedlicka P., Vanat I., Cervenansky M., Kejnovsky E. (2020).
TE-greedy-nester: structure-based detection of LTR retrotransposons
and their nesting. Bioinformatics 36(20):4991–4999.
doi: 10.1093/bioinformatics/btaa632

My contribution: design of search and classification algorithm (80%),
implementation and data processing (30%), writing (80%)

WoS citations: 6
Google Scholar citations: 8

Building on the established collaboration in eukaryotic transpos-
able element research described in the previous chapter, we came
across an area in genome evolution and transposable element analysis
that was not well covered by suitable software tools. To a certain extent
there evenwas no clearly described and suitable algorithm for that par-
ticular sequence analysis. When studying plant genomes, we noticed
that often what looks like isolated fragments of transposable elements
in the genome, are actually fragments of the same element pushed
apart by a later insertion of a younger transposable element into the
middle of the fragmented one. This kind of arrangement reminds us
a bit of the Russian matrioshka dolls and is commonly designated as
nested. When studying transposable elements, one often is interested
in the evolution of the genome and how individual elements were
moved or copied in time or in the past. We desperately needed a tool to
identify the patterns of nesting, including the order and family mem-
bership of the individual elements. While some software existed at the
time, there were some downsides to its use. The best of them, TE-nest
(Kronmiller and Wise, 2008) suffered from very long computation
times and was therefore not suitable for inspection of entire genomes.

After brief experiments with the idea involving a student who used
the subject for their thesis (Radovan Lapar), I laid down a blueprint
for a reasonable algorithmic solution. The following describes how
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7. Algorithm for nested structures

Figure 7.1:Nested structure of LTR retrotransposon insertion in the
genome discovered and reconstructed by the TE-greedy-nester soft-
ware.

the basic algorithm works. A greedy (not necessarily remaining such
in the future, but works satisfactorily enough at the moment) iterative
algorithm finds the most clearly identifiable full-length transposable
elements in the analyzed DNA sequence and removes the nucleotides
that are recognized as being part of the element. This, in turn may
put together a previously fragmented element which now becomes
recognizable as a full-length element and can be removed from the
sequence by another iteration of essentially the same calculation (for
a detailed description of the algorithm, please, see inset on page 2 and
Figure 1 in the paper). We quickly showed that this procedure had
promise, however a series of experiments was needed to fine-tune the
algorithmic steps and find the best values for a number of parameters.
In the end we decided to use a graph-based encoding for the evalu-
ation of transposable element quality. Only elements that score well
against this graph are removed as full-length elements. Another trick
was to slowly lower the strictness of element identification, since the
older sequences were often less conserved and removing imprecisely
younger sequences from them also brought some noise into the for-
mula. When no more transposable elements can be extracted from
the analyzed sequence, the software backtracks its steps to recover
the coordinates of the identified elements and outputs an annotation
file in the GFF3 format that can be visualized with common genome
browsing and visualization tools (Figure 7). The software was called
TE-greedy-nester, with important contributions from two MU Faculty
of Informatics students, Radovan Lapar, Michal Cervenansky, Jakub
Horvath and Ivan Vanat. Ivan Vanat is currently getting ready to de-
fend his master thesis bringing a number of further improvements to
this procedure.
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8 Genome annotation workflow implemented
as a Nextflow pipeline

Lexa M., Cechova M., Nguyen S.H., Jedlicka P., Tokan V., Kubat Z.,
Hobza R., Kejnovsky E. (2022). HiC-TE: a computational pipeline for
Hi-C data analysis to study the role of repeat family interactions in
the genome 3D organization. Bioinformatics 38(16):4030–4032.
doi: 10.1093/bioinformatics/btac442

My contribution: idea for the algorithm (100%), design and imple-
mentation of pipeline (50%), data analysis (80%), writing (80%)

WoS citations: 0
Google Scholar citations: 1

In the past, molecular biology mostly studied genomes as linear
arrangements of genes subject to regulatory influences among them.
This was the legacy of discoveries made in studies of bacteria where
linear gene structure was key to many activities of bacterial cells. How-
ever, in eukaryotes, it turns out, cellular (especially gene-regulatory)
processes are more complicated (Lelli et al., 2012). Much of the regula-
tory properties are not encoded in the linear arrangement of genomic
elements but their ability to contact each other in 3D.

The latest advances in genomics allow us to ask questions about
spatial arrangement of genes and other genomic DNA sequences in
the nucleus of the cell (Fraser et al., 2015). In short, fragments of
DNA in close proximity are chemically fixed, joined together by bonds
and sequenced in a paired mode in such a way that each sequencing
read in the pair contains one side of the original contact. While the
core bioinformatic support for the necessary calculations has been
introduced in parallel with the experimental methods, such as 3C, 4C
and HiC (Fraser et al., 2015), the methods are mostly applicable to the
non-repetitive parts of the genome. Because of my long-term interest
in the repetitive fraction of the genome and bioinformatic methods
that can help understand the repeats and their evolution within plant
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genomes, I started looking at ways to use the spatial HiC data for
characterization of repetitive sequences in the 3D context.

It occurred to me that where traditional HiC analysis binning pro-
cedures groupHiC reads by their location (to increase the signal/noise
ratio), we could try binning by repeat family classification or mem-
bership. This idea grew into a procedure that could show the most
interacting repeat families in heatmaps. Together with a Faculty of
Informatics student Son Hoang Nguyen, a new postdoctoral associate
Monika Cechova and the transposon group of Eduard Kejnovsky, we
organized the main scripts into a robust pipeline based on the increas-
ingly popular Nextflow workflow language. The components of the
pipeline include Perl and Python string manipulation scripts, bash
glue scripts and a number of R scripts for generating visualizations in
the form of heatmaps and circular plots, among other types.

While most of the pipeline relies on existing software and tested
visualization R packages such as circlize, karyoplotteR and ggplot,
a lot of effort went into the proper normalization of counted repeat
contacts. Without the normalization it would be impossible to tell
which number of contacts are common/expected and which signal
some kind of statistical anomaly that could represent a biologically
significant phenomenon. A short description of the normalization
procedures follows.

The HiC-TE pipeline accepts paired HiC sequencing data as input.
After we count all valid HiC pairs in the pipeline a table is created that
contains family names in two columns (family1, family2) and in cases
based on the reference genome also mapped positions (pos1, pos2).
The number of combinations observed between positions and repeat
families contains technical and methodological biases. For example
there are many more pairs observed for adjacent positions on the
same chromosomes compared to long-distance or interchromosomal
HiC pairs. Some kind of normalization is therefore necessary before
reporting basic statistics or creating heatmap visualizations. Choosing
the right normalization method is far from trivial (Sauria et al., 2015).
After careful consideration, we chose three different methods that we
use in parallel towards the end of calculations in the pipeline when a
family by family matrix underlying each heatmap is calculated. The
three normalization methods are:
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Joint probability The baseline probability of observing a HiC pair
between family A and family B is estimated as joint probability of
individual probabilities for observing family A or family B in a given
HiC read.

p(A, B) = p(A).p(B)

All counts of A-B pairs are divided by this number.

Label permutation Family names in the table in columns family1
and family2 are randomly assigned to random (and therefore possibly
different) rows of the table. A matrix is also created from this altered
table. All counts of A-B pairs are divided by corresponding values in
this matrix.

Annotation shuffling While creating the HiC pair table, a parallel
table is made, which uses chromosomal positions randomly shuffled
along the reference genome, while their size distribution is preserved.
The pair count matrix constructed from such table is used for normal-
ization as above (see label permutation).

As output, the pipeline generates a set of tables and images. The
most informative images are the heatmaps showing normalized con-
tacts with values differing from 1 (Figure 8).

.
While the pipeline will happily run on any HiC data and the corre-

sponding reference genome, there are some limitation when running
the vanilla gitlab version in such manner. Repeat classification done
by Repeat Explorer (Novak et al., 2010), TE-greedy-nester and inner
BLAST annotation scripts are plant-oriented, using the Neumann et
al. (2019) plant TE classification scheme. TE-greedy-nester enriches
the annotations for LTR retrotransposons. However, other repeat an-
notations may be preferred for other organisms. To make the analy-
sis more meaningful for animal species where LTR-retrotransposons
are not the main category of repeats, or to provide annotation of
additional repeat classes, compared to only LTR-retrotransposons
annotated by TE-greedy-nester, we allow the main reference-based
repeat annotation to be provided in a GFF3 file. The pipeline is specif-
ically tuned to accept a combination of *.out and *.gff files from Re-
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Figure 8.1: Heatmaps are the main output of HiC-TE allowing the
user to see whether certain families deviate from the normalization
expectations towards more contacts (red), or less contacts (blue) than
expected.
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peatMasker, but can be adapted to other external sources of anno-
tation. The main requirement is for the GFF3 file to contain an an-
not="repeat_family" variable and for the corresponding Perl script
(here enrich_rmsk_gff3_annotation.pl) to be able to add that name
from available output.

HiC-TE pipeline is my first endeavor into the area of reproducible
and scalable workflows. While back in the year 2001 it was considered
satisfactory to provide a running binary or installable source code for
a program to be accepted and used in biological research, nowadays
the growing data volumes and increasing team work in all areas of
science call for formal workflow definitions, transparent code and
the use of robust frameworks that will continue working in many
different use cases. HiC-TE was also our first paper published initially
as a preprint in biorXiv. The experience was a positive one, with the
pipeline earning its first citation while still in the preprint stage.

33



9 Conclusions

The papers discussed in this text show the importance of algorithmic
approaches and data wrangling in contemporary biological research.
In many of my papers, we considered a solution to a problem that
others deemed impractical or even impossible to solve or improve on.
Having the knowledge, access to prior research and perhaps also a
bit of luck to identify a new algorithm, an old algorithm that has not
been adapted to a specific class of biological data or a need among
biologists that has not been met – having all this I sincerely hope I
pushed our ability to analyze biological data forward. If along the way
I inspired a couple of collaborators and students, I consider myself
lucky, indeed.
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åÐÖ ➱✃❐ ×ÛÒÖÚÑÙ❰Þ õÒ❰Ù ÒòÙÐÔä Ù❒Ð Ú❰ÐÛ ôÕØØ åÔÖ ÕÙ Ú❰ÐòÚØ
ÙÒ ÛÐ❰ÙÛÕÑÙ Ù❒Ð ❰Ð❮ÛÑ❒ ÙÒ ❮ ×❮ÛÙÕÑÚØ❮Û ❰×ÐÑÕÐ❰Þ ✃❒❮ÔÜÕÔÜ Ù❒Ð
❊✲ø❮ØÚÐ ØÕÓÕÙ òÒÛ Ù❒Ð ç❇ãñû ❰Ð❮ÛÑ❒ ôÕØØ Ñ❒❮ÔÜÐ Ù❒Ð ØÐøÐØ
Òò ❒ÒÓÒØÒÜÝ ÛÐöÚÕÛÐÖ òÒÛ ❮ ❰ÚÑÑÐ❰❰òÚØ Ó❮ÙÑ❒ä Ù❒ÐÛÐÏÝ ÕÔ✲
ÑÛÐ❮❰ÕÔÜ ÒÛ ÖÐÑÛÐ❮❰ÕÔÜ Ù❒Ð ❰×ÐÑÕåÑÕÙÝ Òò Ù❒Ð ✭➱✃❐Þ û❒Õ❰
Õ❰ ❰ÒÓÐô❒❮Ù ❰ÕÓÕØ❮Û ÙÒ Ñ❒❮ÔÜÕÔÜ ❮ÔÔÐ❮ØÕÔÜ ÙÐÓ×ÐÛ❮ÙÚÛÐ ÕÔ
❮ ÛÐ❮Ø✲ôÒÛØÖ ÛÐ❮ÑÙÕÒÔÞ ã××ÛÒ×ÛÕ❮ÙÐ ❰Ð❮ÛÑ❒ ÓÒÖÐ ❮ÔÖ ❰Ð✲
öÚÐÔÑÐ Ö❮Ù❮Ï❮❰Ð Ñ❮Ô ÏÐ Ñ❒Ò❰ÐÔ ÕÔ Ù❒Ð ÕÔ×ÚÙ òÒÛÓä ôÕÙ❒ ÖÐ✲
Ù❮ÕØÐÖ Ðú×Ø❮Ô❮ÙÕÒÔ Òò Ù❒Ò❰Ð ÜÕøÐÔ ÒÔ â✃ç☎ ç❇ãñû ❮ÔÖ ÒÚÛ
ôÐÏ×❮ÜÐ❰Þ

✄✏■✄➘➪✂✄➶➹ÿ❆ ❱✄➘➪✑➪➮ÿ➹➪➴➶
ûÒ ÖÐÓÒÔ❰ÙÛ❮ÙÐ Ù❒Ð ×ÒÙÐÔÙÕ❮Ø Òò Ù❒Ð ✭➱✃❐ ❮ØÜÒÛÕÙ❒Óä ôÐ
❰❒Òô ÕÙ❰ Ú❰Ð ❮ÔÖ ❒Òô ÕÙ ÑÒÓ×❮ÛÐ❰ ÙÒ Ö❮Ù❮ òÛÒÓ ÛÐ❮Ø✲
ôÒÛØÖ ➱✃❐Þ üÐ ❒❮øÐ Ñ❒Ò❰ÐÔ ÙÒ ❰❒Òô ÙôÒ ÐÔøÕ❰ÕÒÔÐÖ Ú❰Ð❰✉
æÕð Ðø❮ØÚ❮ÙÕÒÔ Òò ×ÛÕÓÐÛ❰ ÙÒ ÏÐ Ú❰ÐÖ ÕÔ ❮Ó×ØÕåÑ❮ÙÕÒÔ òÛÒÓ
ÜÐÔÒÓÕÑ áâã✒ ❮ÔÖ æÕÕð ÕÖÐÔÙÕåÑ❮ÙÕÒÔ Òò ➱✃❐ ×ÛÒÖÚÑÙ❰
ôÕÙ❒ ×ÛÕÓÐÛ❰ ❮Ó×ØÕòÝÕÔÜ ❮ ÜÐÔÐ ò❮ÓÕØÝÞ
➱✃❐ ÛÐ❮ÑÙÕÒÔ❰ Ú❰ÐÖ ÙÒ Ðø❮ØÚ❮ÙÐ Ù❒Ð ❮ØÜÒÛÕÙ❒Ó ôÐÛÐ

Ñ❮ÛÛÕÐÖ ÒÚÙ ÏÝ ❰Ù❮ÔÖ❮ÛÖ ÓÐÙ❒ÒÖ❰ Ú❰ÕÔÜ ✓✔ë✕✖✗✘✙✚✖✚ áâã
❮ÔÖ Ù❒Ð❰Ð ×ÛÕÓÐÛ❰✉

✛✜✜✢❛ ❂ ●❚❚●✛❚❚✣❚✣❚✣❚✛❚✣❚✣❚✣❚✣✛✣●
✛✜✜✢❜ ❂ ✣✛✣✛✣✣✛✣✣✛❚❚❚❚✛✣✛❚✛❚✣❚✣
✛✜✜✤❛ ❂ ●❚❚●●❚●✛●●❚✣✛❚●✛●●✛❚●●✛●✛❚❚✣
✛✜✜✤❜ ❂ ●❚❚❚❚●✣❚✛✛●●❚✣❚❚●●✣✣❚✣❚✛❚✛✣✛❚
●✥✦✧ ❂ ✣✛❚●❚❚✣❚❚●✣★●❚★●✛❚●✛★✛●❚
●✥✦✩ ❂ ✣✣✛●❚✣✛❚✪✣✣✛●●✣✛❚✫✬✛●
●✥✦✮ ❂ ✛❚✛✛✜✛✛✛❚✣★❚✣✛●✣✫✣✣❚❚✣

❙✯✰✱✳✴ ✱✴✰✴❣✵✷✴✸✯✹✸ ✷♣✯✺✴♣ ✴✈✼✳✽✼✾✯✿✰

ûôÒ ×❮ÕÛ❰ Òò ×ÛÕÓÐÛ❰ ×ÛÐøÕÒÚ❰ØÝ ÖÐ❰ÕÜÔÐÖ ÙÒ ❮Ó×ØÕòÝ ❮
ÛÐÜÕÒÔ Òò ã❐❐❀ ❮ÔÖ ã❐❐❁ ÜÐÔÐ❰ ôÐÛÐ Ú❰ÐÖ ÙÒ ÙÐ❰Ù
Ù❒Ð ×ÐÛòÒÛÓ❮ÔÑÐ Òò Ù❒Ð ❮ØÜÒÛÕÙ❒ÓÞ û❒Ð ÛÐ❰ÚØÙÕÔÜ ✭➱✃❐
×ÛÒÖÚÑÙ❰ ❮ÛÐ ÖÕ❰×Ø❮ÝÐÖ ❮ÔÖ øÕ❰Ú❮ØØÝ ÑÒÓ×❮ÛÐÖ ôÕÙ❒ ❮
ÜÐØ Òò ÛÐ❮Ø ➱✃❐ ×ÛÒÖÚÑÙ❰ ÕÔ ❋ÕÜÚÛÐ îÞ ñÕÓÚØ❮ÙÐÖ Ï❮ÔÖ❰
ô❒ÕÑ❒ ÑÒÛÛÐ❰×ÒÔÖ ÙÒ Ðú×ÐÛÕÓÐÔÙ❮Ø Ï❮ÔÖ❰ ❮ÛÐ Ó❮Û÷ÐÖ
ÏÝ ❮ÛÛÒô❰ ÕÔ ❋ÕÜÚÛÐ îãÞ û❒Ð ❮ØÜÒÛÕÙ❒Ó ❒❮❰ ÑÒÛÛÐÑÙØÝ
ÕÖÐÔÙÕåÐÖ Ù❒Ð ã❐❐❁ ×ÛÒÖÚÑÙ ÒÏÙ❮ÕÔÐÖ ÕÔ ❮ ×❮Û❮ØØÐØ ➱✃❐
ÛÐ❮ÑÙÕÒÔÞ ☎Ù òÒÚÔÖ ÒÔØÝ ÒÔÐ ❮ÖÖÕÙÕÒÔ❮Ø ×ÛÒÖÚÑÙ Òò ØÒô

❃❄❅ ❉❍ ❖❏❑▲▼◆ ❯P◗❘❡▼❲◗❳❨ ❩▼❡❲❲ ❬❭❭❪
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❋✞✟✳ ✶✳ ❚✠✡ ☛☞✌✍ ❛✎✏✑✒✓✔✠✕ ❛✖✗ ✒✡❛✎r✘✑✒✎✗ ☞✌✍✙ ✭✚✛ ●✒❛✜✠✓✢❛✎

✜✒✡♣✡✖✔❛✔✓✑✖ ✑♦ ☛☞✌✍ ✑✣✔✜✣✔ ♦✑✒ ✔✠✡ ♦✑✎✎✑✘✓✖✏ ✜✒✓✕✡✒ ♣✡✔♣s ✚✍✍❆❛✤

❜ ✭✎❛✖✡ ✷✛✤ ✚✍✍✥❛✤ ❜ ✭✎❛✖✡ ✸✛✤ ●✦✧★✤✷ ✭✎❛✖✡ ✹✛ ❛✖✗ ●✡✖★✤✸ ✭✎❛✖✡ ✥✛✙

❚✠✡ ✘✓✗✔✠ ✑♦ ✔✠✡ ❜❛✖✗♣ ✘❛♣ ✢✠✑♣✡✖ ✔✑ ✒✡✜✒✡♣✡✖✔ ✔✠✡ ❊r✲❛✎✣✡ ✑♦ ✔✠✡

❇✩✚✪❚ ♣✡❛✒✢✠✙ ❲✓✗✡✒ ❜❛✖✗♣ ✒✡✜✒✡♣✡✖✔ ✠✓✏✠✡✒ ✠✑✕✑✎✑✏❤ ❜✡✔✘✡✡✖

✜✒✓✕✡✒♣ ❛✖✗ ✔✡✕✜✎❛✔✡✙ ✚✒✒✑✘♣ ♣✠✑✘ ❜❛✖✗♣ ✜✒✡♣✡✖✔ ✑✖ ✏✡✎♣ ✑♦ ❛✢✔✣❛✎

☞✌✍ ✜✒✑✗✣✢✔♣✙ ✭❇✛ ●✒❛✜✠✓✢❛✎ ✜✒✡♣✡✖✔❛✔✓✑✖ ✑♦ ♣✓✕✣✎❛✔✓✑✖ ✒✡♣✣✎✔♣

❛♣ ✓✖ ✭✚✛✙ ❖✖✎❤ ✠✓✏✠r♣✜✡✢✓Þ✢✓✔❤ ❜❛✖✗♣ ❛✒✡ ♣✠✑✘✖✙ ✭✌✛ ✚✏❛✒✑♣✡

✏✡✎♣ ✑♦ ✢✑✒✒✡♣✜✑✖✗✓✖✏ ☞✌✍ ✒✡❛✢✔✓✑✖♣✙ ☞✒✓✕✡✒♣ ❛♣ ✓✖ ✭✚✛ ❛✖✗ ✭❇✛✙

✫✬✮✯✰✱✴✵✺✰✺ ✏✡✖✑✕✓✢ ❉✧✚ ✘❛♣ ✣♣✡✗ ❛♣ ✔✡✕✜✎❛✔✡✙

❰×ÐÑÕ✻ÑÕÙÝÞ û❒Õ❰ ×ÛÒÖÚÑÙ ÑÒÚØÖ ÔÒÙ ÏÐ ❰ÐÐÔ ÒÔ Ù❒Ð ÜÐØ
æ❋ÕÜÚÛÐ î✃ðÞ üÕÙ❒ ã❐❐❀ ×ÛÕÓÐÛ ×❮ÕÛä Ù❒Ð ❮ØÜÒÛÕÙ❒Ó
ÕÖÐÔÙÕ✻ÐÖ Ù❒Ð ×ÛÒÖÚÑÙ ❰ÐÐÔ ÕÔ ÛÐ❮Ø ➱✃❐Þ ùÒôÐøÐÛä ❮
ÔÚÓÏÐÛ Òò ❮ÖÖÕÙÕÒÔ❮Ø ➱✃❐ ×ÛÒÖÚÑÙ❰ä ÓÒ❰Ù Òò ô❒ÕÑ❒ ôÐÛÐ
ÓÚÑ❒ ØÒÔÜÐÛ ❮ÔÖ ❒❮Ö ØÒôÐÛ ❰×ÐÑÕ✻ÑÕÙÝ ø❮ØÚÐ❰ä ôÐÛÐ òÒÚÔÖ
æ❋ÕÜÚÛÐ îãðÞ ❋ÕÜÚÛÐ îç ❰❒Òô❰ ÒÔØÝ ❰ÕÓÚØ❮ÙÐÖ ×ÛÒÖÚÑÙ❰
Òò ❒ÕÜ❒ ❰×ÐÑÕ✻ÑÕÙÝÞ ✃ÒÓ×❮ÛÕ❰ÒÔ ôÕÙ❒ Ù❒Ð Ï❮ÔÖ❰ ÜÕøÐÔ ÕÔ
❋ÕÜÚÛÐ î✃ ❰❒Òô❰ Ù❒❮Ù ÐØÕÓÕÔ❮ÙÕÔÜ Ù❒Ð ØÒô✲❰×ÐÑÕ✻ÑÕÙÝ Ï❮ÔÖ❰
ÕÓ×ÛÒøÐ❰ Ù❒Ð Ó❮ÙÑ❒ ÏÐÙôÐÐÔ ❰ÕÓÚØ❮ÙÕÒÔ ❮ÔÖ Ðú×ÐÛÕÓÐÔÙÞ

✼✴✰✴ ❢✼✺✯✳✽❣✵✷✴✸✯✾✸ ✷♣✯✺✴♣ ✴✈✼✳✽✼✾✯✿✰

ã ❰ÐÙ Òò ÖÐÜÐÔÐÛ❮ÙÐ ×ÛÕÓÐÛ❰ ×ÛÐøÕÒÚ❰ØÝ ÖÐ❰ÕÜÔÐÖ ÙÒ
❮Ó×ØÕòÝ ❮ ÑÒÔ❰ÐÛøÐÖ ÛÐÜÕÒÔ Òò ❮ØØ ã❐❐ ÜÐÔÐ❰ ô❮❰ Ú❰ÐÖ ÙÒ
òÚÛÙ❒ÐÛ ÙÐ❰Ù Ù❒Ð ×ÐÛòÒÛÓ❮ÔÑÐ Òò Ù❒Ð ❮ØÜÒÛÕÙ❒ÓÞ û❒Ð❰Ð ôÐÛÐ
Ú❰ÐÖ ❮❰ ×❮ÕÛ❰ ❈✿âîä❀ ❮ÔÖ ❈✿âîä❁Þ û❒Ð ÛÐ❰ÚØÙÕÔÜ ✭➱✃❐
×ÛÒÖÚÑÙ❰ ❮ÛÐ ÑÒÔÙÛ❮❰ÙÐÖ ÙÒ ÛÐ❮Ø ➱✃❐ ×ÛÒÖÚÑÙ❰ ÕÔ ❋ÕÜÚÛÐ îÞ
ñÕÓÚØ❮ÙÐÖ Ï❮ÔÖ❰ ô❒ÕÑ❒ ÑÒÛÛÐ❰×ÒÔÖ ÙÒ ÛÐ❮Ø ➱✃❐ ×ÛÒÖÚÑÙ❰
❰ÐÐÔ ÒÔ ❮ ÜÐØ ❮ÛÐ Ó❮Û÷ÐÖ ÏÝ ❮ÛÛÒô❰ ÕÔ ❋ÕÜÚÛÐ îãÞ ü❒ÕØÐ
Ù❒Ð ❮ØÜÒÛÕÙ❒Ó ❒❮❰ ÑÒÛÛÐÑÙØÝ ÕÖÐÔÙÕ✻ÐÖ ÒÔØÝ ❮ ❰Ó❮ØØ òÛ❮ÑÙÕÒÔ
Òò ã❐❐ ×ÛÒÖÚÑÙ❰ä ÕÙ ÕÖÐÔÙÕ✻ÐÖ ❮ÖÖÕÙÕÒÔ❮Ø ➱✃❐ ×ÛÒÖÚÑÙ❰ä
ÓÒ❰Ù Òò ô❒ÕÑ❒ ôÐÛÐ ØÒÔÜÐÛä ØÒô✲❰×ÐÑÕ✻ÑÕÙÝ ❰ÐöÚÐÔÑÐ❰
æ❋ÕÜÚÛÐ îãðÞ

➷➪❂➮➬❂❂➪➴➶
üÐ ❒❮øÐ ÑÒÔ❰ÙÛÚÑÙÐÖ ❮ÔÖ ÙÐ❰ÙÐÖ ❮ ✭➱✃❐ ❮ØÜÒÛÕÙ❒Ó Ï❮❰ÐÖ
ÒÔ Ù❒Ð ç❇ãñû ØÒÑ❮Ø ❮ØÕÜÔÓÐÔÙ ❰Ð❮ÛÑ❒ Òò ❈ÐÔç❮Ô÷ ÔÒÔ✲
ÛÐÖÚÔÖ❮ÔÙ ❰ÐöÚÐÔÑÐ❰Þ û❒Ð ÑÒÛÛÐ❰×ÒÔÖÕÔÜ ×ÐÛØ ✃❈☎ ❰ÑÛÕ×Ù
Õ❰ ❮ø❮ÕØ❮ÏØÐ ÒÔ Ù❒Ð ☎ÔÙÐÛÔÐÙÞ ûÒ ÒÚÛ ÷ÔÒôØÐÖÜÐä Ù❒Õ❰ Õ❰ ❮
ÔÒøÐØ ÛÐ❰ÒÚÛÑÐ Ú❰ÐòÚØ ÕÔ ➱✃❐ ×ÛÕÓÐÛ ÖÐ❰ÕÜÔ ÙÒ Ðø❮ØÚ❮ÙÐ
×ÛÕÓÐÛ ❰×ÐÑÕ✻ÑÕÙÝÞ ãÖÖÕÙÕÒÔ❮ØØÝä ×ÐÒ×ØÐ ÒÏÙ❮ÕÔÕÔÜ ÓÚØÙÕ×ØÐ
➱✃❐ ×ÛÒÖÚÑÙ❰ Ó❮Ý ÑÒÔ❰ÚØÙ ✭➱✃❐ ÙÒ ÕÖÐÔÙÕòÝ Ù❒ÐÓÞ
✃ÚÛÛÐÔÙØÝ Ù❒Ð ❰ÑÛÕ×Ù ÚÙÕØÕàÐ❰ ç❇ãñû ❰Ð❮ÛÑ❒Ð❰ ÒÔ Ù❒Ð

â✃ç☎ ❰ÐÛøÐÛÞ ùÒôÐøÐÛä ÕÙ Õ❰ Ù❒Ð ×ÒØÕÑÝ Òò â✃ç☎ ÙÒ ×ÛÒÙÐÑÙ
Ù❒ÐÕÛ ❰ÐÛøÐÛ ❮ÔÖ ×ÛÐøÐÔÙ òÛÐöÚÐÔÙ öÚÐÛÕÐ❰ ÒÛÕÜÕÔ❮ÙÕÔÜ òÛÒÓ
❮ ❰ÕÔÜØÐ ÕÔ❰Ù❮ØØ❮ÙÕÒÔÞ û❒ÐÛÐòÒÛÐä ôÐ ❮ÛÐ ÚÔ❮ÏØÐ ÙÒ ÛÚÔ Ù❒Ð
✭➱✃❐ ❰ÑÛÕ×Ù òÒÛ ÜÐÔÐÛ❮Ø ×ÚÏØÕÑ òÛÒÓ ÒÚÛ ôÐÏ ×❮ÜÐ❰Þ
☎Ô❰ÙÐ❮Öä ÛÐ❮ÖÐÛ❰ ❮ÛÐ ÐÔÑÒÚÛ❮ÜÐÖ ÙÒ ÖÒôÔØÒ❮Ö ❮ÔÖ ÕÔ❰Ù❮ØØ
Ù❒ÐÕÛ ×ÛÕø❮ÙÐ ÑÒ×Ý ÒÔ Ù❒ÐÕÛ ÒôÔÞ
☎Ô ×ÛÕÔÑÕ×ØÐä ÙÐ❰Ù ÛÐ❰ÚØÙ❰ ÑÒÛÛÐ❰×ÒÔÖÐÖ ôÕÙ❒ Ðú×ÐÑÙ❮✲

ÙÕÒÔ❰ä ÏÚÙ ❰×ÐÑÕ✻ÑÕÙÝ Òò Ù❒Ð ×ÛÐÖÕÑÙÕÒÔ ÓÚ❰Ù ÏÐ ÕÓ×ÛÒøÐÖ
ÏÐòÒÛÐ ôÕÖÐÛ Ú❰ÐÞ ß❰ÕÔÜ ✭➱✃❐ ÕÔ ÕÙ❰ ×ÛÐ❰ÐÔÙ òÒÛÓä ÒÔÐ
❰❒ÒÚØÖ ØÕÓÕÙ ÒÚÙ×ÚÙ ÙÒ ❒ÕÜ❒✲❰×ÐÑÕ✻ÑÕÙÝ ×ÛÒÖÚÑÙ❰ ÏÝ Ú❰ÕÔÜ
❊✲ø❮ØÚÐ ❃ î✶Þ üÐ ❰ÐÐ Ù❒Ð òÒØØÒôÕÔÜ ❮ÛÐ❮❰ Òò ÕÓ×ÛÒøÐÓÐÔÙ
ÙÒ ÕÔÑÛÐ❮❰Ð Ù❒Ð ×ÛÐÖÕÑÙÕøÐ ❮ÏÕØÕÙÝ Òò ✭➱✃❐✉

æÕð Ú❰ÕÔÜ Ö❮Ù❮Ï❮❰Ð❰ Ù❒❮Ù ÑÒøÐÛ Ù❒Ð ô❒ÒØÐ ÜÐÔÒÓÐ Òò ❮
ÜÕøÐÔ ÒÛÜ❮ÔÕ❰Ó✒

æÕÕð ÕÖÐÔÙÕ✻Ñ❮ÙÕÒÔ Òò ➱✃❐ ×ÛÒÖÚÑÙ❰ ❮ÑÛÒ❰❰ ÏÒÚÔÖ❮ÛÕÐ❰ Òò
❈ÐÔç❮Ô÷ ÐÔÙÛÕÐ❰✒

æÕÕÕð ÛÐ×Ø❮ÑÐÓÐÔÙ Òò ç❇ãñû ÛÒÚÙÕÔÐ❰ ôÕÙ❒ Ñ❮ØÑÚØ❮ÙÕÒÔ❰ Òò
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ABSTRACT
Summary: PRIMEX (PRImer Match EXtractor) can detect
oligonucleotide sequences in whole genomes, allowing for
mismatches. Using a word lookup table and server functional-
ity, PRIMEX accepts queries from client software and returns
matches rapidly. We find it faster and more sensitive than
currently available tools.
Availability: Running applications and source code have been
made available at http://bioinformatics.cribi.unipd.it/primex
Contact: m-lexa@sci.muni.cz

INTRODUCTION
The latest developments in genomics have provided research-
ers with a number of whole-genome sequences and a new
generation of bioinformatic tools. The prediction of non-
trivial PCR amplification products from genomic DNA is a
field that despite its considerable practical value, has not been
satisfactorily investigated at the bioinformatic level.

To predict the outcome of an arbitrary PCR reaction, it is
crucial to identify all the potential priming sites for the primers
in use. The search for candidate matches must be sensitive
enough to extract all the relevant candidate sequences. At
the same time it should be relatively fast, because with large
genomes it tends to be the time-limiting step in PCR simula-
tion. Using BLAST in our first algorithms to predict PCR
products (VPCR 1.0; Lexa et al., 2001), we realized sev-
eral shortfalls of that program for our purposes. We decided
to write a new program that would be better suited for this
purpose. The new program called PRIMEX (PRImer Match
EXtractor) may also find applications in other areas, such as
oligonucleotide probe selection for hybridization experiments
or genome alignment.

We provide interfaces allowing one to rapidly query whole
genomes for occurrences of short oligonucleotide sequences
with mismatches. These include a CGI script, a Perl script

∗To whom correspondence should be addressed at CRIBI Biotechnology
Center, University of Padova, via U.Bassi, 58/b, 35131 Padova, Italy.

with a developer’s library and a standalone C++ program. We
propose a distributed network of PRIMEX servers to provide
search capabilities for most of the sequenced genomes in a
short period of time.

SYSTEM AND METHODS
PRIMEX has been written in C++, compiled with gcc
and executed under Debian Linux 2.4.16 on a dual-
processor Athlon 1600 machine. The server/client functions
of the program are built around a socket library written
by Tougher (2002, http://www.linuxgazette.com/issue74/
tougher.html).

ALGORITHM
In designing the algorithm, we were inspired by some of the
ideas behind BLAT (Kent, 2002) and SSAHA (Ning et al.,
2001) that give our software speed, such as lookup table use
and server functionality.

Lookup table
The program creates a word-sized window positioned at the
first nucleotide of the searched genomic sequence. It moves
the window along the sequence, recording the position of
each word encountered into a lookup table. The lookup table
is an array of lists. The indices of the array represent the
words, while the lists contain all the positions at which the
word has been encountered. Lookup table may be saved for
future use.

Queries
The program enters a server mode and starts listening to quer-
ies. After receiving a query, it extracts words from the query
sequence and searches for matches, using the lookup table.
Pre-defined parameters set the allowed number of mismatches
to be tolerated. The collected matches are then filtered for the
allowed number of mismatches, duplicates are eliminated and
the result is written out.

2486 Bioinformatics 19(18) © Oxford University Press 2003; all rights reserved.
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Table 1. Performance of various search programs when looking for oligonucleotide AAAAAATGATCAATTTACAT in the A.thaliana genome

Program Total Mismatches Search time (s)
0 1 2 3 4 5 6

BLAST 162 1 12
BLAST-O 2 1 5
FASTA 72 1 0 4 13 23 17 12 53
FASTA-O 1 1 19
BLAT 0 0 80
SSAHA 0 0 71
SSAHA-O 3 1 10
CGC FP-O 1 1 10 (estimate)
EMBOSS 983 1 0 5 104 86 8 18
EMBOSS-O 1 1 14
TACG 1 1 49
AGREP 1204 1 0 5 100 779 3632 34
AGREP 1 1 2
PRIMEX (3) 4517 1 0 14 199 56
PRIMEX-S (5) 12140 1 0 14 199 1686 10240 19
with insertions 24902 1 38
PRIMEX-S (4) 1900 1 0 14 199 1686 4
with insertions 3621 1 12
PRIMEX-S (3) 214 1 0 14 199 1
with insertions 286 1 1
PRIMEX-S (2) 15 1 0 14 <1
with insertions 19 1 <1
PRIMEX-S (1) 1 1 0 �1
PRIMEX-SO (0) 1 1 �1

The -O suffix represents searches for high-similarity matches. The -S suffix indicates that the program ran in server mode. The numbers in parentheses are mismatch limits. References:
BLAST (Altschul et al., 1990), FASTA (Pearson and Lipman, 1988), BLAT (Kent, 2002), SSAHA (Ning et al., 2001), CGC FindPatterns (Accelrys, San Diego, CA, USA), EMBOSS
Fuzznuc (http://www.hgmp.mrc.ac.uk/Software/EMBOSS/), TACG (Mangalam, 2001) and AGREP (Wu and Manber, 1994).

IMPLEMENTATION

Important server functions
query_remote S Find matches for oligonucleotide S
dump_state_remote Report the current settings of the

server
get_seq_remote M:N Report the sequence between M

and N

The results of a query are returned in lines. Each line contains
the following data: primer number, query sequence, matched
sequence, clone name, position within the clone, orientation
and number of matching basepairs. For example:

0 AAAAATTTTTCCCCCGGGGG AAAAATTCTGCC-ACCGGGGG
15237134 111102206 + 17

Performance
We carried out a series of performance tests. Table 1 shows,
which of the related routines were able to find an exact or
approximate match to a 20 bp oligonucleotide in the more
than 100 MB-long genomic sequence of Arabidopsis thali-
ana. It also lists the times in seconds necessary to provide

the answers. Without the server speed-up, AGREP was the
best program. However, this program does not provide server
functionality that could be used to accelerate the search in
DNA sequences, therefore, PRIMEX remains currently the
only high-speed choice for oligonucleotide searches in whole
genomes.

DISCUSSION
The future of PRIMEX depends on the applications that
could benefit from its abilities. For instance, primer design
software may query the server and check primers against
whole genomes rapidly. PCR simulation software (Rubin and
Levy, 1996; Lexa et al., 2001) could use PRIMEX. Genome
alignment and analysis software could use repeated PRIMEX
queries to find large-scale similarities between two or more
genomes.

We currently run two PRIMEX servers. A master-list
file defining how to access these services is available at
http://bioinformatics.cribi.unipd.it/primex/primex_master.txt

Current example: 147.162.3.227|30000|Arabidopsis thali-
ana |10|NCBI A.thaliana genome release 147.251.24.2|30000|
Heliobacter species|8|NCBI Helicobacter sp. genome release
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This file is also consulted by the Perl PRIMEX communication
library available for download from our website. Each line
specifies the IP number, port, organism, word size and
optional notes for running servers. Please, contact the authors,
if would like to include your server.
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1Department of Information Technology, Faculty of Informatics, Masaryk University, 60200 Brno, 2Department of
Computer Systems, Faculty of Information Technology, Brno Technical University, 61266 Brno and 3Department of
Biophysical Chemistry and Molecular Oncology , Institute of Biophysics, Academy of Sciences of the Czech Republic
v.v.i., CZ-61265 Brno, Czech Republic
Associate Editor: John Quackenbush

ABSTRACT

Motivation: Current methods for identification of potential triplex-
forming sequences in genomes and similar sequence sets rely
primarily on detecting homopurine and homopyrimidine tracts.
Procedures capable of detecting sequences supporting imperfect,
but structurally feasible intramolecular triplex structures are needed
for better sequence analysis.
Results: We modified an algorithm for detection of approximate
palindromes, so as to account for the special nature of triplex
DNA structures. From available literature, we conclude that
approximate triplexes tolerate two classes of errors. One, analogical
to mismatches in duplex DNA, involves nucleotides in triplets that
do not readily form Hoogsteen bonds. The other class involves
geometrically incompatible neighboring triplets hindering proper
alignment of strands for optimal hydrogen bonding and stacking.
We tested the statistical properties of the algorithm, as well as
its correctness when confronted with known triplex sequences.
The proposed algorithm satisfactorily detects sequences with
intramolecular triplex-forming potential. Its complexity is directly
comparable to palindrome searching.
Availability: Our implementation of the algorithm is available at
http://www.fi.muni.cz/˜lexa/triplex as source code and a web-based
search tool. The source code compiles into a library providing
searching capability to other programs, as well as into a stand-alone
command-line application based on this library.
Contact: lexa@fi.muni.cz
Supplementary Information: Supplementary data are available at
Bioinformatics online.

Received on March 16, 2011; revised on June 24, 2011; accepted
on July 13, 2011

1 INTRODUCTION
Triplexes are local structural variants of DNA, wherein the molecule
adopts a specific secondary structure differing from a canonical
duplex by the recruitment of a third DNA strand. The third strand
binds to the duplex by Hoogsteen or reverse Hoogsteen bonds
with stringency of the same order of magnitude as duplex-forming
strands for the most stable nucleotide combinations (reviewed by

∗To whom correspondence should be addressed.

Frank-Kamenetskii and Mirkin, 1995). Depending on the source of
the third strand, triplex DNA can be intrastrand and interstrand,
or intramolecular and intermolecular. The third strand may just
come from the other strand of the same DNA duplex or from a
completely different DNA molecule, as is the case with triplex-
forming oligonucleotides (Knauert and Glazer, 2001). Nucleotides
in the middle strand of a triplex have Watson–Crick base pairing
to one nucleotide and Hoogsteen or reverse Hoogsteen pairing to
another nucleotide. Together they form a triplex-forming triplet
(also called triad) (Mirkin and Frank-Kamenetskii, 1994; Soyfer and
Potaman, 1995). Depending on the orientation of the third strand, we
distinguish parallel and antiparallel triplexes, named according to
the orientation of the third strand in respect to the central strand.
Figure 1 shows eight types of intramolecular triplex structures
considered in this article. A given sequence on the (+) strand of a
DNA molecule can possibly support all eight types, but necessarily,
only one of the types will be formed at any particular moment.
In DNA triplexes, there is a requirement for neighboring triplets
to be isomorphic, otherwise the potential triplet would be under
strain, hindering the binding of the third strand (Rathinavelan and
Yathindra, 2006; Thenmalarchelvi and Yathindra, 2005). Regardless
of orientation and geometry, the middle nucleotide is generally a
purine-containing one, to support the extra hydrogen bonds needed
to bind the third nucleotide.

Because the middle nucleotide is almost invariably one with
a purine base, attempts to correlate sequence with triplex-
forming properties usually involve detection of homopurine and
homopyrimidine tracts in the analyzed sequence. For example,
Gaddis et al. (2006) created a web-based program that identifies
target sequences for triplex-forming oligonucleotides. The program
identifies homopurine stretches that are allowed to be occasionally
interrupted by a pyrimidine. While this is an appropriate method
for detection of strong triplex-forming signals, we consider this
to be an oversimplification. Numerous papers have reported the
existence of imperfect triplexes (Mergny et al., 1991; Roberts and
Crothers, 1991; Xodo et al., 1993), including cases where the authors
deliberately changed individual nucleotides to observe the effects of
such change. Changes resulting in the formation of non-canonical
triplets did not necessarily disrupt the entire triplex. It is conceivable
that many of the imperfect triplexes may still have similar biological
activity to their ideal counterparts. One possible explanation for the
existence of imperfect triplexes is that they may allow an overlap
between the structural signal and some other sequence feature,
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Fig. 1. Eight types of triplexes that are detected in separate runs of the
algorithm for a given region. Numbering of types is shown as used in
the accompanying software (Supplementary Material). Watson–Crick base
pairing is shown by vertical bars. X and Y are two nucleotides on the
same strand that will form a triplet. The eight possible triplets are: Y.X′X,
Y′.XX′, Y′.X′X, Y.XX′, X.Y′Y, X′.YY′, X′.Y′Y and X.YY′ (N′, a nucleotide
complementary to N; ‘.’, Hoogsteen or reverse Hoogsteen bond).

such as nucleosome positioning pattern or a regulatory protein-
binding sequence. Kinniburgh (1989) proposed a triplex structure
containing a single deletion to explain his experimental results.
Additionally, analyzed sequences may contain errors, including
occasional deletions and insertions.

The existence of triplex DNA has been repeatedly associated
with important biological processes at the molecular level, making
them an attractive target in sequence analysis. Most of the observed
associations suggest roles in mutagenesis, recombination and gene
regulation. Non-B DNA structures, including DNA triplexes, have
been shown to cause deletions, expansions and translocations in
both prokaryotes and eukaryotes (Raghavan et al., 2005). Their
distribution is not random and often colocalizes with sites of
chromosomal breakage (Zhao et al., 2010). Triplex structures can
block the replication fork and result in double-stranded breaks
(Dixon et al., 2008). Unlike other non-canonical structures, triplex-
forming sequences are found frequently in promoters and exons
and have been found to be involved in regulating the expression of
several disease-linked genes (Wang and Vasquez, 2004). In some
cases, the mutagenesis induced by such sequences is enhanced
by their transcription (Belotserkovskii et al., 2007), possibly via
transcriptional arrest.

Sequence–structure relationships of triplexes were brought into
a small number of computational tools for identifying relevant
sequences in genome sequences. Schroth and Ho (1995) analyzed
the occurrence of inverted and mirror repeats in three genomes.
Hoyne et al. (2000) analyzed the Escherichia coli genome for
intrastrand triplex sequences. Another recent work (Cer et al., 2010)
created a web-based catalog of non-B DNA sequences in major
mammalian genomes. Their definition of triplex covers the most
stable canonical triplexes made of G.GC/A.AT and C.GC/T.AT
triplets, but leaves little room for possible errors. Jenjaroenpun and
Kuznetsov (2009) created a web-based analysis tool for triplex target
sequences.

Intramolecular triplex DNA (also called H-DNA) has been shown
to exist both invivo and invitro (Hanvey et al., 1988). Its formation
also depends on the topological state of the given DNA molecule.
While sequences supporting canonical triplets, such as (CT (T ))n
and (GA(A))n tracts, form triplexes readily, imperfect triplexes

may require special conditions, such as low superhelical density
or certain pH to form. Invitro, superhelical density and pH can be
easily controlled. Invivo, pH is tightly controlled by the cell, while
the topological state of any stretch of genomic DNA is generally
unknown, but presumed to be under regulatory control as well. This
uncertainty is the main reason for using the term ‘triplex-forming
sequence’ or ‘triplex-forming potential’, which hints that while the
sequence should be capable of forming a triplex, it may only be
formed under special circumstances.

2 APPROACH
Based on available literature, we assume there are two important
classes of sequence-based imperfections (errors) destabilizing
potential triplex structures.

• Base pairing mismatch

• Geometrical mismatch

Abase pairing mismatch occurs upon the formation of a nucleotide
triplet that does not support strong Hoogsteen or reverse Hoogsteen
bonds. The ability to form the bond and its strength is related to the
number of hydrogen bonds that can be made between the second
and third strand base. In this article, we present an algorithm that
is based on scores assigned to base triplets. The scores are meant
to approximate energy contributions of individual triplets, but at the
same time to be simple enough to support rapid searching that could
be used as pre-filtering, preceding detailed energy calculations on
the candidate sequences.

A geometrical mismatch occurs when directly neighboring
triplets in a structure are not isomorphic. This places extra stress
on the backbone of the third DNA strand preventing it from
creating optimal hydrogen bonds. According to Thenmalarchelvi
and Yathindra (2005), conformational changes necessitated by
triplet non-isomorphism are found to induce an alternative zig-zag
backbone structure for the third strand in special cases. Accordingly,
we made our algorithm favor triplet combinations that are either
isomorphic or made of non-isomorphic pairs that could form a zig-
zag shape by canceling their geometric effect on the third strand
backbone.

We currently ignore other known factors of triplex DNA
formation, such as the competition between alternative structures
(Rippe et al., 1992), fourth strand (the strand which is not part of
the predicted triplex) secondary structure, effects of C+ distribution
(James et al., 2003; Seidman and Glazer, 2003) and other distortions
caused by electrostatic forces (Kang et al., 1992; Tan and Chen,
2006). Most of these factors depend non-trivially on the environment
(Plum et al., 1995). Since the algorithm does not consider the
environment, we focus primarily on sequence-coded effects and the
resulting constraints which can be computed using the information
from primary structure. Destabilizing effects of loop lengths that
differ from the optimum of about five nucleotides (Haasnoot et al.,
1986) and the overall length of the triplex (Tan and Chen, 2006) are
partly accounted for, since these parameters can be set as hard limits
in our implementation, to narrow the search space.

3 METHODS
Datasets: to evaluate the algorithm on selected datasets, we prepared a
set of sequences to work with (all ∼4.7 Mb to match the size of E.coli
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genome): (i) a random nucleotide sequence; (ii) E.coli K-12 MG1655
complete genome (the 1995 U00096.1 version to be able to compare our
results to previous publications); (iii) E.coli K-12 MG1655 complete genome
(the current U00096.2 version for proper positioning in genome browsers);
(iv) a randomized nucleotide sequence of the same E.coli genome; (v) a part
of the human chromosome 5 sequence (positions 144635154–149340649)
and (vi) a randomized version of the same human sequence. For the human
randomized sequence, we also generated a triplex-seeded version with 418
triplex-forming sequences from literature inserted at positions ∼10 000 bp
apart. All the sequence data are available as Supplementary Material and can
also be downloaded from http ://www.fi.muni.cz/∼lexa/triplex. Random
sequences were generated with equal probability for all four bases, and were
prepared with an in-house algorithm seqmix-0.2 (Supplementary Material).

Molecular simulations of triplets: to obtain objective information about
isomorphic groups, we analyzed the angle and radius formed by C1 atoms of
triplet nucleotides as defined in Thenmalarchelvi and Yathindra (2005). The
groups were determined using the following procedure. First, the structures
of all considered triplets were constructed using the NAB language from
AmberTools 1.4 and their potential energy surface was explored for local
minima by moving and rotating the third (Hoogsteen) base in the plane
formed by the other two bases. The energy function was parametrized using
the ff99bsc0 set (Perez et al., 2007). The obtained local minima were filtered
according to the values of the C1 angle (t) and the ratio |WH|/|CH|, where
|WH| represents the distance between the C1 atoms of the Hoogsteen pair
and |CH| represents the distance between the C1 atoms of the mutually
unpaired bases. Filtering thresholds were derived from measurements on
a set of real structures, namely the structures 135D, 149D, 1BCB, 1D3X
(PDB identifiers). The specific thresholds used were 70≤ t ≤130 and 0.54≤
|WH|/|CH|≤0.88. From the resulting set of local minima, the structure with
the lowest potential energy was selected as the source of the parameters t
and r (the radius of the circle formed by the C1 atoms). Finally, the groups
were established by performing cluster analysis using Ward’s method and
euclidean distance between the (t,r) vectors. These results were interpreted
to obtain isomorphic groups in Table 1, and detailed results are available as
Supplementary Material.

Testing overview: we tested our implementation for correctness and
usability. Clearly, the algorithm will only be useful, if it is capable of
identifying potential triplex-forming sequences in a genomic background
with a reasonable success rate. To test the implementation in this respect,
we performed statistical tests on real and randomized sequences, a sequence
recovery test on the triplex-seeded sequences, and we compared our solution
to previously published results for the E.coli genome (Hoyne et al., 2000)
and a currently published non-B DNA database (Cer et al., 2010).

Statistical tests: the statistical tests served to find parameters for the
distribution of scores on randomized sequences and establish a proper
threshold above which candidate hits should be considered significant.
The distribution of scores was modeled according to principles used for
evaluating BLAST results and other sequence similarity scores (Altschul
et al., 1994; Korf et al., 2003), since the alignment of a DNA strand
against itself is statistically similar to aligning two different sequences. This
treatment allowed us to fit the score distribution with an extreme value
distribution function and fit the parameters λ and µ as described by Korf et al.
(2003). To carry out the calculation, we used a function from hmmer-2.3.2
source code (Eddy, 1997).

Recovery tests: the recovery tests evaluated how many of the introduced
triplex-forming sequences were recovered for a selected significance
threshold (P-value) from different backgrounds sequences. We used the
commonly used characteristics for such experiments: specificity (precision),
sensitivity (recall), F2 measure and accuracy (Manning et al., 2008). The
algorithm was tested against our triplex-seeded sequence and a database of
non-B DNA (Cer et al., 2010).

Table 1. Triplex scoring of canonical and less usual triplets

Triplex type Triplet
H.WC:WC

Score
(tts)

Isomorphic
group

References

PARALLEL T.A:T 2 a Goni et al. (2004)
T.G:C 1 a Ghosal and Muniyappa (2006)
C.G:C 2 a Walter et al. (2001),Goni et al.

(2004)
G.G:C 1 b Soyfer and Potaman (1995)
G.T:A 2 b Gowers and Fox (1998)
T.C:G 1 b Soyfer and Potaman (1995)

ANTIPARALLEL A.A:T 2 c (Goni et al. (2004), Mirkin and
Frank-Kamenetskii (1994))

A.G:C 1 d Mirkin and Frank-Kamenetskii
(1994), Raghavan and Lieber
(2007)

T.A:T 2 c Goni et al. (2004), Mirkin and
Frank-Kamenetskii (1994)

T.C:G 1 e Raghavan and Lieber (2007),
Beal and Dervan (1992)

C.A:T 1 d Raghavan and Lieber (2007),
Soyfer and Potaman
(1995),Dayn et al. (1992)

G.G:C 2 e Goni et al. (2004), Mirkin and
Frank-Kamenetskii (1994)

The final score values for both Hoogsteen and reverse-Hoogsteen bonds are in
accordance with tables 4.1 and 4.2 in Soyfer and Potaman (1995). Isomorphic
groups shown here are based on residual twist calculations using molecular dynamics
simulations with the nbd program (AmberTools). ., Hoogsteen bp; :, Watson–Crick bp;
tts, tabulated triplet score.

Escherichia coli tests: we compared our tool and its performance on the
E.coli genome sequence to the results published by Hoyne et al. (2000).
Additionally, we calculated the genome positioning of program output in
respect to known E.coli genes, counting the frequency with which predicted
triplexes fell inside the gene, outside any genes or intersected with them.
Distance to the closest gene was calculated as shown in Figure 6.

4 THE ALGORITHM
Our approach to search for approximate triplexes is based on a dynamic
programming (DP) algorithm to search for approximate palindromes that
can be traced back to Landau and Vishkin (1986). The relationship between
triplex DNA and palindromes stems from the fact, that one of the DNA
strands in the triplex must fold back onto itself, either for Hoogsteen base
pairing or for reverse Hoogsteen base pairing, depending on the type of
triplex that is to be formed (parallel or antiparallel) and the nucleotide
sequence present at the site in question. We will call the part of the triplex
that folds back onto itself self-recognizing.

A DP matrix is constructed so that one side represents the original
sequence, while the other contains the same sequence written backwards
(Fig. 2). With such setup, the main antidiagonal of the DP matrix represents
the n possible central starting positions for the self-recognizing parts of
triplexes with an odd number of nucleotides in the loop. The neighboring
antidiagonal contains the other n−1 possible starting sites for the triplexes
with even number of nucleotides in their loops. Naturally, diagonals starting
at any of these positions represent potential triplexes. If we fill the cells
representing the starting positions with zeros, we can start filling the DP
matrix along the diagonals. At each position [i,j] of the DP matrix, we
compare the symbols at positions i and j in the original sequence. If they
represent a pair present in triplex-forming triplets (tabulated in Table 1), they
are evaluated with positive score. In opposite case, they are penalized with
a negative score value. The numbers entered represent the best score in the
subsequence evaluated so far.
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A

B

Fig. 2. Triplex detection by the DP algorithm demonstrated on the string
gggctccttcttctatcctcttt. (A) The DP matrix with calculated score values.
Because of space limitations, loop size was forced to 0. (B) Triplex alignment.
Hoogsteen bonds are shown by semicolons.

The necessity for a dynamic programming algorithm comes from the
possibility to insert gaps into the triplexes, where symbols in some positions
have no symbols to pair up with in the other arm of the self-recognizing
sequence. In terms of the described algorithm, this means moving from one
diagonal to a neighboring one when calculating the score. At any position,
three possibilities are evaluated:

(1) Extending the existing triplex along the diagonal - match or mismatch,

(2) Inserting a gap at position i of the original sequence - insertion,

(3) Inserting a gap at position j of the original sequence - deletion.

The solution that leads to the maximum score value is recorded in the DP
matrix, while the other possibilities are discarded.

In comparison to a similar algorithm for approximate palindrome
detection, we have introduced three important modifications. First, we
redefined the concept of match and mismatch. Instead of being made up
by pairs of nucleotides with only two possible base pairs, triplexes can
be thought of as sequences of triplets with many possible combinations
of nucleotides in the triplet. There are 16 possible base pairs for parallel
DNA strands and another 16 for antiparallel strands. For these reasons, we
constructed a general similarity matrix instead of using a single match rule
and score.

Second modification brings geometrical considerations into the algorithm,
making certain sequences of triplets less desirable than others. This is similar
to the nearest-neighbor scoring used in duplexes, although we are not as
much concerned about base stacking as we are about the geometry of the
third strand and its ability to position itself for optimal hydrogen bonding.
As discussed by Rathinavelan and Yathindra (2006); Thenmalarchelvi and
Yathindra (2005), some combinations disrupt the backbone geometry. We
therefore decided to divide the triplets into isomorphic groups. Groups
of triplets from one group are more likely to form stable triplexes than
other sequences. Our modification assigns the information about isomorphic
groups to the last computed DP matrix cell on each diagonal. When
calculating a new cell, we lower the score if the newly evaluated triplet

belongs to a different isomorphic group than the preceding one. The score
calculation is

S[i,j]=max

⎧⎨
⎩

S[i,j−1]+gp
S[i−1,j]+gp
S[i−1,j−1]+tts[a,b]+nip

(1)

where a, b are characters at appropriate row and column, tss is tabulated
triplet score, gp is gap penalty and nip is no-isomorphism penalty.

The third consideration is to account for all the possible ways a triplex
can form from a given sequence, i.e. which three strands combine together
and in which orientation (Fig. 1). There are always eight ways that can give
rise to a intramolecular triplex at a given position, since there are two strands
that can serve as the third strand, each having two ends that can loop back
onto the double-stranded region and in each of these cases it can attach
on either side of the duplex in a parallel or antiparallel fashion, forming
Hoogsteen and reverse Hoogsteen bonds, respectively. In order to detect
all types of triplexes the computation is repeated eight times with scoring
matrices specific for parallel and antiparallel triplexes.

4.1 Scoring function
We evaluate the combinations based on their ability to form Hoogsteen
base pairs, tabulating the 32 values as complementarity scores. One way to
populate such table is to consider all canonical triplets to represent a match
and everything else a mismatch. Because the ability to form Hoogsteen bonds
depends partly on the environment of the given nucleotide, we took a semi-
empirical approach, giving all canonical triplets a match score of 2, scanning
triplex literature for examples of less usual triplets and giving those a score
of 1, while all other combinations are scored as a mismatch (Table 1). Other
approaches leading to a better scoring scheme are certainly possible, but
beyond the scope of this article.

4.2 Triplex loop detection
The algorithm introduced in this section has been designed to detect the best
candidates for triplex formation. To avoid the inclusion of free-strand and
loop nucleotides into the overall score for a particular triplex (because these
nucleotides do not participate in Watson–Crick or Hoogsteen base pairing),
our calculations use a technique composed of a combination of local and
global alignment.

In terms of the DP matrix, potential loops always begin at the main
antidiagonal, extending up to lloopmax (user-defined algorithm parameter),
using Equation (1) to calculate new values. The first 2lloopmax antidiagonals
are therefore calculated by a technique similar to the one used in Smith–
Waterman local sequence alignment. In this part, we allow the score of a
growing triplex to grow or decline. However, if the density of errors is
high enough to bring the score into the negative territory (potential loop
occurrence), we do not allow the score to become negative.

Once the calculations exit the area of a potential loop, the calculations
continue in a global alignment mode. This way the algorithm can detect
high-quality triplex candidates without considering errors that fall within
potential loops.

4.3 Triplex detection
The best triplexes in the DP matrix can be identified as those reaching the
highest score. To allow detection of such high scoring segments (HSS)
during the calculation, we use a technique similar to the one used in the
BLAST program. Once the score rises above a preset threshold value, the
region responsible for the score is considered a potential triplex. The score
is monitored (allowed both to increase and decrease) until it falls below a
preset threshold. The sequence from the beginning (the first antidiagonal) up
to the maximum score becomes the HSS of the potential triplex (Fig. 3).

A number of filtration mechanisms can be applied to the step of HSS
segment detection. One of the problems we had to deal with (causing false
HSS detection), was the transfer of scores from neighboring diagonals.
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Fig. 3. Detection of high scoring segments.

In the presence of a high-quality triplex sequence, neighboring diagonals
adopt its high score by introduction of an extra insertion or deletion. We
therefore check for such cases and only report genuine HSS scores and not
the neighboring derivatives.

Further filtration is carried out based on statistical significance of the
results, eliminating all short or low-quality potential triplexes below a
user-defined E-value or P-value threshold (see Section 5 for details on
P-value calculations on experimental datasets). A pair of filtering programs
(prefilter_gff.c and filter_gff.c, see Supplementary Material) were used to
filter out results not supporting a local score maximum (meaning there is a
better result nearby).

4.4 Time and space complexity
Time complexity: the calculation of the entire triangle of the DP matrix
has n2/2 steps. However, when analyzing real or random sequences, the
likelihood of finding a potential triplex decreases with its length (see section
5 for a detailed description of this effect). Therefore, for most practical
purposes we only need to evaluate a limited number of antidiagonals, say 2l,
where l is the maximal length of detected triplexes. Time complexity thus
becomes O(2ln).

Space complexity: with respect to data dependencies, only the values for
the last two antidiagonals are necessary for calculation. Thus, the space
complexity of our algorithm is O(2n).

Both simplifications/efficiency enhancements used to derive the time and
space complexities allow us to easily extend the algorithm to perform an
incremental calculation. If upon completion of the calculation we find that
the number of antidiagonals was not sufficient, leaving several potential
triplexes unresolved, we can pick up the score values from the last two
diagonals and continue in the calculations in another 2l antidiagonals.

5 RESULTS AND DISCUSSION
We subjected the algorithm to increasing levels of scrutiny to verify
the validity of our searching procedures, fine-tune some of the
parameters and establish the biological relevance of selected results.

Initial experiments were directed towards establishing reasonable
mismatch and insertion/deletion penalties. The penalties have
to be high enough to allow for a negative average score per
triplet (Korf et al., 2003). Without any rigorous optimization, we
found the combination mismatch −7, insertion or deletion −9,
no_isomorphism −5 to fulfill these criteria and work reasonably
well on all sequences.

Table 2. The results of fitting an extreme value distribution function to score
distribution data obtained from randomized sequences of E.coli and human
genomes

Randomized sequence data λ µ Threshold

Escherichia coli 0.91 6.00 20
Human chr5 0.84 6.28 21

The threshold shown here for reference purposes is the score above which <10 sequences
were found in randomized data. Precise E-values and P-values can be calculated from
values of λ and µ according to Equation (2).

Identification of a higher number of potential triplexes in real-
world sequences compared with random and randomized sequences
is the first confirmation that the patterns we are collecting using this
approach are not random, but rather specific combinations with a
possible function that are less frequent in random sequences.

For a rigorous test of non-randomness of the identified candidates,
we tested our implementation of the algorithm against a set of 4.7 Mb
DNA sequences from E.coli and human genomes, their randomized
version and a triplex-seeded randomized E.coli genome (see Section
3). For each of the sequences, we used the program to identify
all potential triplexes and their scores. Since an incrementally
detected triplex-forming sequence must obey similar rules as an
incrementally growing sequence alignment (only with different base
pairing rules), we would expect the obtained scores to obey an
extreme value distribution described by Altschul et al. (1994).

P(S >x)=1−e−e−λ×(x−µ)
(2)

We used a maximum likelihood method described by Eddy (1997)
to fit our scores to this function. The resulting values of λ and µ are
given in Table 2. Figure 4 shows a graphical representation and
corresponding parameter values of triplex scores for the different
datasets used. Clearly, randomized sequences have a lower content
of high-scoring sequence patterns. Also, human sequences seem
to be richer in potential triplex-forming sequences, comparable in
density to the artificially seeded E.coli sequence with one triplex
sequence per every 10 000 bp.

We used the λ and µ values to derive statistical thresholds for
searching (Table 2). These are different for parallel and antiparallel
triplexes, since the two use a different similarity matrix, resulting in
different score distributions.

Next, we analyzed the non-B DNA database triplex predictions
(Cer et al., 2010) and our triplex-seeded sequence containing 418
inserted triplexes with artificial mismatches and insertions. Our
program preferentially recovered the positions of known triplex
sequences. Figure 5 shows sensitivity, specificity, accuracy and
F2 measure for these two sets. F measure is the harmonic
mean of sensitivity and specificity. F2 measure is its commonly
used modification, which gives higher priority to recall. F2
measure values >40% are satisfactory, given that 100% of potential
triplexes are recovered with a P-value better than 0.01. Some
loss of performance on triplex-seeded data is understandable, since
mismatches and insertions/deletions were introduced in sequences
as short as 6 bp.

One of the detected sequences, is a well-studied triplex
from human metallothionein-I promoter (Bacolla and Wu, 1991).
This sequence was the second highest-scoring sequence in the
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Fig. 4. Log-scale extreme value distribution functions for E.coli (dashed
line), human (solid line) and triplex-seeded datasets (dotted line) compared
with background random sequences (thin lines), including a random
sequence, randomized E.coli and human sequences. A maximal likelihood
fit to the random sequences is available in Table 2. While the E.coli genome
contains potential triplex sequences only slightly above background levels,
the human genome seems to be rich in such sequences with density similar
to the triplex-seeded dataset.

triplex-seeded data, scoring 34 with a P-value of 5.10−9.
Interestingly, we detected two high-scoring subsequences within the
MT-I promoter potential triplex, supporting the view of Bacolla and
Wu (1991) and Becker and Maher (1998) that alternative triplex
structures may be formed at this specific site.

For an alternative evaluation of the validity of our algorithm,
we analyzed the E.coli genome for triplex-forming sequences and
compared the results with those described in Hoyne et al. (2000).
They searched for potential intrastrand triplex (PIsT). The PIsT
element requires the consecutive occurrence of all three triplex-
forming blocks of nucleotides, while potential intramolecular triplex
(PImT) element requires the consecutive occurrence of just two
triplex-forming blocks (the third block is provided by the parallel
strand). Thus, every PIsT element by definition contains also a PImT
element.

For each of the 25 PIsT elements presented in Hoyne et al.
(2000), we are able to identify the corresponding PImT element
in E.coli genome with appropriate parameter settings. The score of
these elements range from the value of 6 to the value of 20 and
the corresponding P-values vary from 4.7×10−1 to 2.9×10−6.
The best potential triplex element in E.coli genome found by our
algorithm scored 21 with a P-value of 1.2×10−6.

Finally, we examined some of the identified potential triplex sites
for biological relevance. Producing a GFF file with results enabled
us to view them in the UCSC Genome Browser. Here, we noticed a
possible relationship to known E.coli genes. To test this, we counted
the number of predicted triplexes falling within genes, outside genes
or <100 bp from gene boundaries (Fig. 7A). We also calculated the
number of predicted triplexes occurring at different distances from
the closest gene (Fig. 6) and calculated the ratio of this value to
randomly placed positions. There seems to be some preference for
potential triplexes to occur in the −50 to −160 region of known
genes (Fig. 7B). Given the relatively high P-value at which this
effect was still visible, it is possible that it is not directly related
to the presence of triplexes, but rather a result of shared sequence

B

A

Fig. 5. Sensitivity, specificity, accuracy and F2 measure calculated for (A)
the non-B DNA database (Cer et al., 2010); (B) the triplex-seeded dataset.
The figure shows that the best matches obtained with the described algorithm
and settings are entirely made up of the seeded sequences. At lower P-
values, we start picking up some sequences from the background sequence;
acceptable results before accuracy drops sharply are achieved for P-values
of <1.0×10−2.

Fig. 6. The definition of the closest gene as used in the numerical experiment.
For each triplex we identified its center S (rounded up for even triplexes),
and calculated the distances l1, l2, l3 and l4 to the closest upstream and
downstream gene borders on both DNA strands. The minimum of these four
values was used.

characteristic between triplexes and regulatory sequences, such as
their underlying palindromic nature.

Another observation showed these positions to be clustered at
boundaries of evolutionarily poorly conserved regions. A quick
literature search revealed a possible connection. Non-B DNA
structures are likely to pose a physical barrier to transcriptional
apparatus, causing possible transcriptional arrest at such sites (Young
et al., 1991). Transcriptional arrest has been directly linked to
increased mutation rate (Belotserkovskii et al., 2007), which could
explain some aspect of the above-mentioned positioning in genomes.
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B

A

Fig. 7. Graphs showing how potential triplexes identified by the program
are positioned in respect to genes in E.coli. (A) The percentage of triplexes
in the results falling inside genes, intersecting with a gene or falling within
intergenic segments of the genome. Bars are shown for results of decreasing
specificity (from left to right); (B) the relative abundance of high-scoring
sequences at different distances from nearby genes (relative to randomly
placed positions). Both figures were generated after applying the following
cutoffs to the results: top 122 (strong triplex), top 1391 (potential triplex),
top 15300 (weak triplex), top 106623 (background) and random selection of
positions (genome).

While the main purpose of this article is to present the algorithm
itself, a more detailed analysis of the best parameter settings and
performance with specific DNA sequences is needed to further
increase confidence in this kind of sequence analysis.

Because of the increased complexity of scoring, the outlined
procedure for scoring individual triplets within the DP matrix cannot
be easily extended to take advantage of suffix arrays as is done with
palindromes, to further speed up computation.

Overall, we consider it an advantage that triplex identification
can be mapped to a well-researched family of DP algorithms and
possibly take advantage of approaches aimed originally at other
problems, such as sequence alignment.

6 CONCLUSION
We present a novel approach to identifying triplex-forming
sequences in genomes and other DNA sequence data. The
approach is presented in the form of an algorithm based on
previously published algorithms for detection of palindromes. The
novelty stems from the adaptation of DP for use with triplexes

instead of relying on simpler identification of homopurine and
homopyrimidine tracts, which are most appropriate for detection
of perfect triplexes. We implemented our algorithm as a program
written in C, using a reasonable set of parameters based on published
data. The test runs of this program are encouraging, suggesting
that the algorithm can provide high speed searches with increased
sensitivity for approximate triplex-forming sequences.

Funding: Grants (No. 204/08/1560 and No. 301/10/2370) from the
Czech Grant Agency; MSMT Research Grant no. (0021630528),
Security-Oriented Research in Information Technology; BUT grants
(FIT-S-11-1), Advanced secured, reliable and adaptive IT and
(FIT-S-11-2), Recognition and presentation of multimedia data;
ASCR Institutional Research Plans (No. AV0Z50040507 and No.
AV0Z50040702).

Conflict of Interest: none declared.

REFERENCES
Altschul,S.F. et al. (1994) Issues in searching molecular sequence databases. Nat.

Genet., 6, 119–129.
Bacolla,A. and Wu,F.Y-H. (1991) Mung bean nuclease cleavage pattern at a polypurine-

polypyrimidine sequence upstream from the mouse metallothionein-I gene. Nucleic
Acids Res., 1, 1639–1647.

Beal,P.A. and Dervan,P.B. (1992) The influence of single base triplet changes on the
stability of a pur.pur.pyr triple helix determined by affinity cleaving. Nucleic Acids
Res., 20, 2773–2776.

Becker,N.A. and Maher, L.J. III (1998) Characterization of a polypurine/polypyrimidine
sequence upstream of the mouse metallothionein-I gene. Nucleic Acids Res., 26,
1951–1958.

Belotserkovskii,B.P. et al. (2007) A triplex-forming sequence from the human c-MYC
promoter interferes with DNA transcription. J. Biol. Chem., 282, 32433–32441.

Cer,R.Z. et al. (2010) Non-B DB: a database of predicted non-B DNA-forming motifs
in mammalian genomes. Nucleic Acids Res., 39, D383–D391.

Dayn,A. et al. (1992) Intramolecular DNA triplexes: unusual sequence requirements
and influence on DNApolymerization. Proc. Natl Acad. Sci. USA, 89, 11406–11410.

Dixon,B.P. et al. (2008) RecQ and RecG helicases have distinct roles in maintaining
the stability of polypurine.polypyrimidine sequences. Mutat Res., 643, 20–28.

Eddy,S.R. (1997) Maximum likelihood fitting of extreme value distributions. Technical
Report. Available at ftp://selab.janelia.org/pub/publications/Eddy97b/Eddy97b-
techreport.pdf (last accessed date August 07, 2011).

Frank-Kamenetskii,M.D. and Mirkin,S.M. (1995) Triplex DNA structures. Annu. Rev.
Biochem., 64 65–95.

Gaddis,S.S. et al. (2006) A web-based search engine for triplex-forming oligonucleotide
target sequences. Oligonucleotides, 16, 196–201.

Ghosal,G. and Muniyappa,P. (2006) Hoogsteen base-pairing revisited: resolving a role in
normal biological processes and human diseases. Biochem. Biophys. Res. Commun.,
343, 1–7.

Goni,J.R. et al. (2004) Triplex-forming oligonucleotide target sequences in the human
genome. Nucleic Acids Res., 32, 354–360.

Gowers,D.M. and Fox,K.R. (1998) Triple helix formation at (AT)n adjacent to an
oligopurine tract. Nucleic Acids Res., 26, 3626–3633.

Haasnoot,C.A.G. et al. (1986) On loop folding in nucleic acid hairpin-type structures.
J. Biomol. Struct. Dyn., 3, 843–857.

Hanvey,J.C. et al. (1988) Intramolecular DNA triplexes in supercoiled plasmids. Proc.
Natl Acad. Sci. USA, 85 6292–6296.

Hoyne,P.R. et al. (2000) Searching genomes for sequences with the potential to form
intrastrand triple helices. J. Mol. Biol., 302, 797–809.

James,P.L. et al. (2003) Thermodynamic and kinetic stability of intermolecular triple
helices containing different proportions of C+·GC and T·AT triplets. Nucleic Acids
Res., 31, 5598–5606.

Jenjaroenpun,P. and Kuznetsov,V.A. (2009) TTS Mapping: integrative WEB tool for
analysis of triplex formation target DNA sequences, G-quadruplets and non-protein
coding regulatory DNA elements in the human genome. BMC Genomics, 10
(Suppl. 3), S9.

Kang,S.M. et al. (1992) Metal ions cause the isomerization of certain intramolecular
triplexes. J. Biol. Chem., 267, 1259–1264.

2516

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/27/18/2510/181790 by Fakulta Inform
atiky M

U
 user on 22 O

ctober 2022



Copyedited by: ES MANUSCRIPT CATEGORY: ORIGINAL PAPER

[09:54 19/8/2011 Bioinformatics-btr439.tex] Page: 2517 2510–2517

Identification of triplex-forming sequences

Kinniburgh,A.J. (1989) A cis-acting transcription element of the c-myc gene can assume
an H-DNA conformation. Nucleic Acids Res., 17, 7771–7778.

Knauert,M.P. and Glazer,P.M. (2001) Triplex forming oligonucleotides: sequence-
specific tools for gene targeting. Hum. Mol. Genet., 10, 2243–2251.

Korf,I. et al. (2003) BLAST. O’Reilly & Associates, Inc., Sebastopol, 368 pages.
Landau,G.M. and Vishkin,U. (1989) Fast parallel and serial approximate string

matching. J. Algorithms, 10, 157–169.
Manning,C.D. et al. (2008) Introduction to Information Retrieval. Cambridge

University Press, Cambridge, 496 pp.
Mergny,J.L. et al. (1991) Sequence specificity in triple helix formation: experimental

and theoretical studies of the effect of mismatches on triplex stability. Biochemistry,
30, 9791–9798.

Mirkin,S.M. and Frank-Kamenetskii,M.D. (1994) H-DNA and related structures. Annu.
Rev. Biophys. Biomol. Struct., 23, 541–576.

Perez,A. et al. (2007) Refinement of theAMBER force field for nucleic acids: improving
the description of α/γ conformers. Biophys. J., 92, 3817–3829.

Plum,G.E. et al. (1995) Nucleic acid hybridization: triplex stability and energetics. Annu.
Rev. Biophys. Biomol. Struct., 24, 319–350.

Raghavan,S.C. and Lieber,M.R. (2007) DNA structure and human diseases. Front.
Biosci., 12, 4402–4408.

Raghavan,S.C. et al. (2005) Evidence for a triplex DNA conformation at the bcl-
2 major breakpoint region of the t(14;18) translocation. J. Biol. Chem., 280,
22749–22760.

Rathinavelan,T. and Yathindra,N. (2006) Base triplet nonisomorphism strongly
influences DNA triplex conformation: effect of nonisomorphic G* GC and A* AT
triplets and bending of DNA triplexes. Biopolymers, 82, 443–461.

Rippe,K. et al. (1992) Alternating d(G-A) sequences form a parallel-stranded DNA
homoduplex. EMBO J., 11, 3777–3786.

Roberts,R.W. and Crothers,D.M. (1991) Specificity and stringency in DNA triplex
formation. Proc. Natl Acad. Sci. USA, 88, 9397–9401.

Schroth,G.P. and Ho,P.S. (1995) Occurrence of potential cruciform and H-DNA forming
sequences in genomic DNA. Nucleic Acids Res., 23, 1977–1983.

Seidman,M.M. and Glazer,P.M. (2003) The potential for gene repair via triple helix
formation. J. Clin. Invest., 112, 487–494.

Soyfer,V.N. and Potaman,V.N. (1995) Triple-Helical Nucleic Acids. Springer,
Heidelberg, 360 pp.

Tan,Z.J. and Chen,S.J. (2006) Nucleic acid helix stability: effects of salt concentration,
cation valence and size, and chain length. Biophys. J., 90, 1175–1190.

Thenmalarchelvi,R. and Yathindra,N. (2005) New insights into DNA triplexes: residual
twist and radial difference as measures of base triplet non-isomorphism and their
implication to sequence-dependent non-uniform DNA triplex. Nucleic Acids Res.,
33, 43–55.

Walter,A. et al. (2001) Evidence for a DNA triplex in a recombination-like motif: I.
Recognition of Watson-Crick base pairs by natural bases in a high-stability triplex.
J. Mol. Recognit., 14, 122–139.

Wang,G. and Vasquez,K.M. (2004) Naturally occurring H-DNA-forming sequences are
mutagenic in mammalian cells. Proc. Natl Acad. Sci. USA, 101, 13448–13453.

Xodo,L.E. et al. (1993) Sequence-specific DNA-triplex formation at imperfect
homopurine-homopyrimidine sequences within a DNA plasmid. Eur. J. Biochem.,
212, 395–401.

Young,S.L. et al. (1991) Triple helix formation inhibits transcription elongation in vitro.
Proc. Natl Acad. Sci. USA, 88, 10023–10026.

Zhao,J. et al. (2010) Non-B DNA structure-induced genetic instability and evolution.
Cell Mol. Life Sci., 67, 43–62.

2517

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/27/18/2510/181790 by Fakulta Inform
atiky M

U
 user on 22 O

ctober 2022



D Hon et al., 2017

59



Sequence analysis

pqsfinder: an exhaustive and imperfection-

tolerant search tool for potential quadruplex-

forming sequences in R

Ji�r�ı Hon1, Tom�a�s Mart�ınek1, Jaroslav Zendulka1 and Matej Lexa2,*

1IT4Innovations Centre of Excellence, Faculty of Information Technology, Brno University of Technology,

61266 Brno, Czech Republic and 2Department of Information Technology, Faculty of Informatics, Masaryk

University, 60200 Brno, Czech Republic

*To whom correspondence should be addressed.

Associate Editor: John Hancock

Received on April 20, 2017; revised on June 6, 2017; editorial decision on June 19, 2017; accepted on June 23, 2017

Abstract

Motivation: G-quadruplexes (G4s) are one of the non-B DNA structures easily observed in vitro

and assumed to form in vivo. The latest experiments with G4-specific antibodies and G4-

unwinding helicase mutants confirm this conjecture. These four-stranded structures have also

been shown to influence a range of molecular processes in cells. As G4s are intensively studied, it

is often desirable to screen DNA sequences and pinpoint the precise locations where they might

form.

Results: We describe and have tested a newly developed Bioconductor package for identifying po-

tential quadruplex-forming sequences (PQS). The package is easy-to-use, flexible and customiz-

able. It allows for sequence searches that accommodate possible divergences from the optimal G4

base composition. A novel aspect of our research was the creation and training (parametrization)

of an advanced scoring model which resulted in increased precision compared to similar tools. We

demonstrate that the algorithm behind the searches has a 96% accuracy on 392 currently known

and experimentally observed G4 structures. We also carried out searches against the recent

G4-seq data to verify how well we can identify the structures detected by that technology. The cor-

relation with pqsfinder predictions was 0.622, higher than the correlation 0.491 obtained with the

second best G4Hunter.

Availability and implementation: http://bioconductor.org/packages/pqsfinder/ This paper is based

on pqsfinder-1.4.1.

Contact: lexa@fi.muni.cz

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

DNA sequences capable of forming alternative secondary structures,

called non-B DNA, have long been at the center of research interest

because of their possible biological functions (Du et al., 2013) and

their involvement in mutagenesis and disease (Bacolla and Wells,

2009). Instead of forming canonical B-DNA helices with Watson-

Crick base pairing, these regions of DNA can engage in different

types of base pairing and form cruciforms, triplexes (or H-DNA),

G-quadruplexes (G4s), i-motifs and a few other alternative struc-

tures (Wells, 2007). After previous work on algorithms and practical

solutions to identify triplex DNA (Hon et al., 2013; Lexa et al.,

2011), we focus here on identifying potential quadruplex-forming

sequences (PQS).

As evidenced by sequencing (Chambers et al., 2015), as well as a

large number of other experimental and in silico studies, PQS are

found in high numbers in eukaryotic genomes (Huppert, 2005; Lexa
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et al., 2014). They are implicated in several genome-wide processes,

mostly as positive or negative regulators of transcription (Rhodes

and Lipps, 2015), negative regulators of replication which require

specialized helicases for the processes to continue (Mendoza et al.,

2016) and may be dispersed into critical locations of the genome by

the activity of transposable elements (Kejnovsky and Lexa, 2014).

Today, several software tools for identification of PQS in biolo-

gical sequences are available. The oldest and most commonly used

algorithms are based on a simple folding rule representing four runs

of guanines separated by relatively short loops (or spacers). These

include quadparser (Huppert, 2005), QGRS Mapper (D’Antonio

and Bagga, 2004; Kikin et al., 2006) and Quadfinder (Scaria et al.,

2006). The folding rule used in these tools is usually of the form

G{3,6}.{1,8}G{3,6}.{1,8}G{3,6}.{1,8}G{3,6} reflecting the fact that

PQS with short loops and four perfect G runs form the most stable

G4s in vitro. These tools consider only sequences that match the se-

quence formula perfectly.

In recent years, different in vitro experiments have confirmed the

existence of imperfect G4s (Mukundan and Phan, 2013). They have

also been explored in silico by molecular dynamics (Varizhuk et al.,

2017). As a result, new tools for prediction of imperfect G4s began

to be developed. Such tools include TetraplexFinder/QuadBase2

(Dhapola and Chowdhury, 2016), ImGQfinder (Varizhuk et al.,

2014) and G4Hunter (Bedrat et al., 2016). For example,

TetraplexFinder considers potential bulges of defined length in runs

of three guanines, while ImGQfinder considers the possibility of a

single bulge or mismatch in a wider variety of guanine run lengths.

Finally, G4Hunter does not define individual defect types, but uses a

simple encoding and statistics over a sliding window, that can

accomodate different types of defects.

It has also been discovered that a given DNA segment (sequence)

can form several overlapping G4s, by definition mutually exclusive,

where individual nucleotides in the sequence compete with each

other for binding via Hoogsteen bonds (Agrawal et al., 2014). In

these cases, it is very useful to have a tool for predicting all overlap-

ping instances and evaluate them with scores that correlate with the

propensity for G4 formation. The only tool predicting overlapping

G4s and at the same time capable of assigning scores to their indi-

vidual instances is QGRS Mapper. Its score function considers the

number of Gs in each run, loop lengths as well as the difference in

loop lengths. Features of existing software tools for PQS identifica-

tion are summarized in Table 1.

In this paper, we introduce an R package and the underlying al-

gorithm for PQS detection that addresses certain shortcomings of

the available tools.

Five main ideas projected into the package functioning are to: (i)

allow imperfections in PQS as mismatches or bulges in G runs and

excessively long loops between the G runs, (ii) provide a PQS score

that is closely related to G4 stability, (iii) give the user a choice be-

tween reporting all overlapping PQS and/or only the locally best,

(iv) provide the overall number (density) of possible PQS conform-

ations covering each position in the input sequence and (v) allow

users to define their own criteria for matching and scoring, overrid-

ing the defaults determined by calculations in this paper.

The package and the algorithm were called pqsfinder and ac-

cepted into Bioconductor (Huber et al., 2015) in April 2016. Here,

we explain how the ideas were implemented in the package and

apart from tuning its default parameters and settings, we show how

pqsfinder predictions relate to recently carried out G4 sequencing

(also called G4-seq or G-seq) (Chambers et al., 2015).

2 Approach and algorithm

The main principle of the algorithmic approach presented here is

based on the fact that monomolecular G4 structures arise from com-

pact sequence motifs composed of four consecutive and possibly im-

perfect guanine runs (G runs) interrupted by loops of semi-arbitrary

lengths.

The algorithm first identifies four consecutive G run sequences

(G run quartet). Subsequently, it examines the potential of such G

run quartet to form a stable G4 and reports a corresponding quanti-

tative score.

The pqsfinder algorithm can be divided into three logical steps:

(i) identification of all possible G run quartets, (ii) score assignment

and (iii) overlap resolution. All three parts are described in the fol-

lowing sections.

2.1 Identification of all possible G run quartets
The first G run is matched freely in the sequence by a regular expres-

sion G{1,10}.{0,9}G{1,10} with limited minimal and maximal

length. This regular expression allows us to match imperfect G runs

containing both mismatches and bulges while requiring at least two

guanines. The remaining three G runs are matched by the same regu-

lar expression with the following additional constraints: (i) each

subsequent G run must lie beyond the 3’-end of the previous one (no

overlap), (ii) the distance of each G run to the previous G run must

be in the range of minimal and maximal loop length and at most

one loop is allowed to have zero length (Marusic et al., 2013) and

(iii) each G run has to fit in a sequence window defined by the first

G run starting position and the user-defined maximal PQS length.

These constraints are summarized in Figure 1.

As regular expressions are able to capture only one match (usu-

ally the maximal one), to list all possible combinations we use a

backtracking approach. After four initial G runs are matched and

processed, the last successfully matched G run is shortened by one

Table 1. Feature comparison of existing tools for PQS identification

Name Model Overlaps Imperf. Score Avail.

quadparser Folding rule � � � �

QGRS Mapper Folding rule � � � Web

Quadfinder Folding rule � � � �

ImGQfinder Folding rule � �a � Web

TetraplexFinder Regular expression � �b � Web

G4Hunter Sliding window �c � � R script

aImGQfinder allows at most one imperfection.
bTetraplexFinder supports only bulges of fixed length between 0 and 7.
cG4Hunter model inherently merges overlapping and neighbouring PQS. For this reason, the boundaries of individual PQS are not well-defined.
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nucleic acid base from the end and if it is still a valid G run, the algo-

rithm proceeds normally to scoring and overlap resolution. On the

other hand, if the shortened G run is not valid, the algorithm tracks

back to the previous successfully matched G run and applies the

same shortening modification. In this case, if the modified G run is

valid, the algorithm proceeds to match all the following G runs

again. Once the backtracking procedure gets to the first G run and

finds its shortened variant to be invalid, the whole process of G run

identification is rerun from position one after the starting position

of the first G run. The backtracking procedure increases the compu-

tational complexity of the search, but allows us to rigorously model

the competition between overlapping PQS.

2.2 Score assignment
The pqsfinder scoring scheme was designed to quantitatively ap-

proximate the relationship between G4 sequence and the stability of

its structure. While the scoring function is purely empirical, we in-

tentionally chose an approach where the score is modular and, ob-

tained by addition of scores representing the binding affinities of

smaller regions within the G4. This kind of approach has already

been proven to work for simpler DNA structures, such as nucleic

acid duplexes and hairpins. (SantaLucia, 2012; Zuker, 2003)

The first part of the scoring scheme quantifies the quality of indi-

vidual G runs. It awards the PQS a score for each G-tetrad stacking

and penalizes mismatches and bulges in G runs.

The scoring is then defined by Equation 1, where Nt is the num-

ber of tetrads, Bt is a G-tetrad stacking bonus, Nm is the number of

inner mismatches, Pm is mismatch penalization, Nb is the number of

bulges, Pb is bulge penalization, Fb is bulge length penalization fac-

tor, Lbi is the length of the i-th bulge and Eb is bulge length

exponent.

Sr ¼ ðNt � 1ÞBt �NmPm �
XNb

i¼1

Pb þ FbLEb

bi (1)

However, discrimination between bulges and mismatches can be a

demanding task requiring multiple sequence alignment. To avoid

this, we made two simplifying assumptions that allowed us to effi-

ciently analyze bulges and mismatches by only counting lengths of G

runs and their G content. First, we require at least one G run to be

perfect (consisting of just guanines). Second, we limit the number of

imperfections to one per G run. Based on the available literature, we

consider bulges and long loops to be strong destabilizers of G4s and

do not expect more than a few of these imperfections to be possible

at the same time.

In the scoring procedure, a perfect G run is taken as a reference

and other G runs are assessed relatively to the reference. A G run is

classified as mismatched, if it has the same length as the reference

and the G content lower by one. When a G run has a greater length

than the reference and at least the same G content, it is classified as

bulged. Finally, all G runs can only be either perfect, mismatched or

bulged. Other cases are considered to be invalid G runs. When there

are multiple perfect G runs present, the shortest one is used as the

reference.

The second part of the scoring scheme quantifies the destabiliz-

ing effect of the loops on G4 stability. At this time we have no mech-

anistic understanding of possible loop sequence and length effects.

Hence, we limit ourselves to an empirical formula that can accom-

modate some of the observations made by Guédin et al. (2010).

Loop length mean Lm is multiplied by the factor Fm and raised to

the power of Em. Complete scoring function is then expressed by

Equation 2.

S ¼ maxðSr � FmLEm
m ; 0Þ (2)

Fm and Em are numerical parameters that empirically model the

relationship between loop lengths and their destabilization effects

on the quadruplex. These permit a non-linear relationship, while

their values are derived by fitting the model to experimental results

(see Section 4). Sr is the value from Equation 1.

2.3 Overlap resolution
The overlap resolution is an iterative process that is designed to al-

ways prefer dominant PQS. First, all PQS sharing the highest ob-

tained score are selected (in subsequent iterations, PQS sharing the

highest remaining score are used). Second, the selected PQS are pro-

cessed one by one in the order of their increasing starting position as

follows: (i) if the current PQS overlaps the previous PQS, the current

PQS is removed, (ii) if the current PQS is completely included in the

previous PQS, the previous PQS is removed. Third, all lower-scoring

PQS overlapping with any of the remaining selected PQS are dis-

carded. Fourth, all selected PQS are reported and removed. Fifth,

the next iteration begins again with the remaining PQS. Iterations

continue until all PQS are checked (either reported or removed).

We implemented the process above effectively in order to reduce

the memory usage. The main optimization idea is to run the iterative

process progressively as the identification algorithm proceeds

through the sequence. As a result, only a small set of recently identi-

fied overlapping PQS has to be in memory.

3 Implementation

The pqsfinder package was created following recommended prac-

tices for R/Bioconductor packages and all functions are well-

documented within the inline R documentation system. A detailed

user guide with convenient examples was also prepared as a package

vignette. Source code is written in both R and Cþþ, each having its

own important role in the package architecture.

The R code implements the interface that is needed for a seam-

less user interaction within the Bioconductor framework, relying on

the following R packages: Biostrings (Pagès et al., 2016a),

GenomicRanges, IRanges (Lawrence et al., 2013), S4Vectors (Pagès

et al., 2016b), Rcpp (Eddelbuettel and François, 2011) and BH

(Eddelbuettel et al., 2016). The package provides one main function

pqsfinder for running the PQS search algorithm and several second-

ary functions that operate on the search results.

The central data structure for results is the PQSViews class

which is derived from the XStringViews class from the Biostrings

package. It maintains the sequence coordinates of the identified PQS

along with other useful metadata: (i) score, (ii) strand, (iii) number

of tetrads, (iv) number of bulges, (v) number of mismatches and (vi)

loop lengths.

Fig. 1. PQS constraints. Every PQS consists of two types of elements: G runs

(R1–4) and loops (L1–3). The minimal and maximal length of each element

type is constrained by the corresponding options depicted in the picture as

well as the overall PQS length. All these options can be freely customized

when using the pqsfinder package

pqsfinder 3375
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This aside, the PQSViews object provides access to two add-

itional vectors. The first is a density vector—for each sequence pos-

ition it gives the number of different PQS conformations

overlapping that position. The second vector maxScores reports the

PQS quality along the sequence—for each sequence position it gives

the maximal score of all PQS overlapping that position. We consider

these two vectors particularly useful as additional information to the

exact PQS coordinates and metadata. The density and maxScores

vectors can be easily used to discriminate low-complexity regions

(full of guanines) that inherently allow a large amount of folded

PQS conformations from regions that on the other hand contain a

singular high-scoring PQS.

The main PQS search logic is implemented purely in the

Cþþ language for speed since the algorithm is based on an exhaust-

ive search of the PQS topological space and it is computationally in-

tensive by definition. The Rcpp library was used to easily link the

Cþþ code with R scripts. We also employed the Boost regular ex-

pression library (Maddock, 2016) to match individual G runs.

However, we soon realized that the general regular expression en-

gine has a significant overhead and is too slow for our needs. For

this reason, we implemented an optimized matching function for the

default G run regular expression. At the same time, we are linking

the Boost library for the case where users would like to use their

own definition of a G run using an alternative regular expression.

3.1 Customization
Since we strongly support the Bioconductor goal to further scientific

understanding by producing extensible, scalable and interoperable

software, we designed pqsfinder to be easily customizable. The users

can tweak the algorithm options for their personal needs or test new

hypotheses about PQS conformations and develop novel innovative

scoring schemes. Supported options are divided into three logical

groups: (i) filters, (ii) scoring and (iii) advanced (see Table 2).

Filter options control the main algorithmic constraints (see Fig. 1).

These have great impact on the algorithm sensitivity and speed. All

PQS that do not satisfy the basic constraints are excluded immediately

and do not proceed further to the scoring step.

Scoring options include all the constants that appear in the scor-

ing Equations 1 and 2. By default, these constants are set to reason-

able values as described in the next section and its modification is

recommended only to users who would like to bias the scoring sys-

tems towards a specific type of G4 or to refine the constants on

novel data.

Advanced options allow to get full control over the search algo-

rithm by providing alternative G run regular expression and scoring

function. However, the custom scoring function can negatively in-

fluence the overall algorithm performance, particularly on long se-

quences, since there is a significant overhead linked to the calling of

custom R function instead of efficient inline Cþþ implementation.

Thus, this feature is recommended only for rapid prototyping of

novel scoring techniques, which can be later implemented efficiently

in Cþþ and delivered in the next version of the pqsfinder package.

4 Model training

As described in the foregoing section, the scoring model requires sev-

eral constants to be chosen (see scoring group in Table 2). It is, how-

ever, very difficult to estimate these parameters. For this reason, we

decided to construct a training set from available experimental data

and search for a setting that gives the best performance on these

data. The dataset construction process and parameter-search algo-

rithm are discussed in detail in this section.

4.1 Existing datasets
Methods for G4 prediction are usually evaluated on a set of experi-

mentally verified (in vitro) G4s, extracted from different publica-

tions. For example, a recently published method G4Hunter involved

collecting a set of 392 experimentally verified G4s consisting of 298

positive and 94 negative samples (later referred to as Lit392).

However, these datasets have several disadvantages: (i) they are

unbalanced regarding the number of positive and negative samples,

(ii) significant number of items differ only by a single mutation and

(iii) datasets are very small and cover only a small proportion of pos-

sible G4 conformations given all the possible loop lengths, bulges,

mismatches and other defects.

On the other hand, (Chambers et al., 2015) recently published a

novel approach for high throughput sequencing of DNA G4 struc-

tures called G4-seq. The technique detects noisy sequences that

emerge on treatment of DNA samples with Kþ or PDS (pyridostatin,

a chemical G4 stabilizer). As a result of this technology, the authors

released a track (in BED format) that shows the propensity of refer-

ence Human DNA sequence (hg19) to form G4s.

This track has two disadvantages. First, it only shows the level of

mismatches at given sequence positions that were observed during

the sequencing process. Hence, in reality, we have no evidence that a

G4 has been formed, but based on the G4-seq method the level of

mismatches should show high correlation with the probability that

the sequence forms the G4 structure. Second, as the G4 structure is

formed during sequencing, the level of mismatches remains high,

until the end of the sequenced read, even downstream of the actual

G4 structure. As a result, the BED file constructed by mapping the

reads onto the reference sequence, can be affected by this ‘memory

effect’.

Despite these disadvantages, the G4-seq dataset is extremely

valuable, because it shows the G4 structure propensity for the entire

human genome and thus it covers many more possible conform-

ations and imperfect structures (including long loops and bulges)

than any dataset extracted from the published literature.

Table 2. Overview of pqsfinder options

Group Name Description

Filters strand Strand symbol: þ, – or * (both).

overlapping Enables overlapping PQS.

max_len Maximal PQS length.

min_score Minimal PQS score.

run_min_len Minimal G run length.

run_max_len Maximal G run length.

loop_min_len Minimal loop length.

loop_max_len Maximal loop length.

max_bulges Maximal number of bulges.

max_mismatches Maximal number of mismatches.

max_defects Maximal number of all defects.

Scoring tetrad_bonus G-tetrad stacking bonus Bt.

mismatch_penalty Inner mismatch penalization Pm.

bulge_penalty Bulge penalization Pb.

bulge_len_factor Bulge length penal. factor Fb.

bulge_len_exponent Bulge length penal. exponent Eb.

loop_mean_factor Loop mean penal. factor Fm.

loop_mean_exponent Loop mean penal. exponent Em.

Advanced run_re G run regular expression.

custom_scoring_fn User-defined scoring function.

use_default_scoring Enables internal scoring system.

verbose Enables detailed text output.
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Based on these facts we decided to use a subset of G4-seq data

for training of the pqsfinder scoring model. We then used two add-

itional independent datasets for testing: Lit392 and a different (non-

overlapping with training data) subset of G4-seq data. The whole

process was operated as follows:

1. We prepared independent training and test sets from G4-seq

data.

2. We trained pqsfinder parameters on G4-seq training set.

3. We selected those parameters that performed best on the G4-seq

training set.

4. Finally, the selected pqsfinder parameters were evaluated and

compared to other tools on the Lit392 dataset and G4-seq test

set.

In the following subsection, individual steps of this procedure are

described in more detail.

4.2 Preparation of the training and test sets
From the G4-seq data, we used BED files representing the level of

mismatches from two experimental treatments. In the first treat-

ment, the authors stabilized G4s using Kþ while in the second case

they used PDS. In both cases, measurements were done on both

DNA strands separately resulting in four BED files (two treatments

with two strands each).

In the first step, as the Kþ and PDS measurements do not cover

100% of hg19 genome, we identified only those DNA fragments

where both Kþ and PDS measurements were available. Then, we fil-

tered out fragments shorter than 10 kbp and longer fragments were

trimmed to 10 kbp. In the next step, we combined Kþ and PDS BED

files by calculating the average value from both treatments.

Subsequently, we filtered out those fragments that did not include a

significant level of mismatches (where the averaged level of mis-

matches from Kþ and PDS never exceeded threshold 40). In order to

eliminate cases where potential G4 overlapped the beginning or the

end of the fragment, we also filtered out those fragments that

included a significant level of mismatches in the first 30 bp or the

last 30 bp of the fragment.

The described procedure was applied to each strand separately.

Finally, 1100 fragments were chosen at random, 100 as G4-seq

training set (for a total of 1 Mbp) and 1000 as G4-seq test set (for a

total of 10 Mbp). Both datasets are available as Supplementary

Data.

4.3 Training of scoring parameters on the G4-seq train-

ing set
We used the genetic algorithm implemented in the R package GA

(Scrucca, 2013) as a method for parameter-space exploration and

training. In order to make the exploration process easier, the G-tet-

rad stacking bonus was fixed at 40. The remaining scoring options

were trained. Their names, number of bits allocated in GA chromo-

some and ranges of values considered are summarized in Table 3.

Total GA chromosome length was 33 bits. Other pqsfinder options

were fixed to the default values.

To evaluate fitness, we calculated Pearson’s correlation coeffi-

cient between the vector maxScores generated by pqsfinder (see sec-

tion 3) and the averaged level of mismatches from Kþ and PDS

treatments of G4-seq training set. More specifically, maximal values

of the pqsfinder score were calculated for all positions of all DNA

fragments in the training set and these values were correlated with

appropriate positions in the G4-seq training set (experimentally veri-

fied level of mismatches). The basic idea behind this fitness function

is: the higher the correlation coefficient between pqsfinder score and

G4-seq mismatch level, the better the prediction of putative G4

structures will be.

A genetic algorithm was set up with the following parameters: (i)

population size 24, (ii) probability of crossover 0.5, (iii) probability

of mutation 0.5 and (iv) number of generations 200. During the ex-

ploration process, we used monitor function and recorded 1157

unique combinations of parameters and their fitness values.

As the final parameters, we selected the combination with the

maximal fitness value. Concrete values of selected parameters are

listed in Table 3 (column Result). The table of all explored param-

eter combinations and their fitness values is available as

Supplementary Data.

5 Results

In the first step, we compared pqsfinder to other tools capable to

predict whether a given sequence can form a G4 or not. As candi-

date tools that are still working and available online/offline, we se-

lected: G4Hunter, QGRS Mapper, TetraplexFinder and

ImGQfinder. We applied these to a recently published dataset

(Bedrat et al., 2016) containing 392 in vitro verified G4s (Lit392),

originally used to test G4Hunter.

In the next step, we configured and executed the selected tools

with the following parameters. (i) pqsfinder was executed with the

parameters that had the best fitness value on the G4-seq training set.

(ii) G4Hunter was executed with the default parameters. (iii) QGRS

Mapper was executed with the most relaxed parameters, i.e. min-

imal G run length was 2, loop length was in the range 0 to 36 and

maximal length was 45. As pqsfinder, G4Hunter and QGRS

Mapper report scores, to calculate accuracy and Matthews correl-

ation coefficient (MCC), we always systematically found a threshold

that resulted in the highest possible values for each tool.

Interestingly, we found out that for G4Hunter, the threshold 0.71

works even better than thresholds 1.0, 1.2 and 1.5 that are recom-

mended by the authors. (iv) TetraplexFinder was executed with the

following combinations of parameters: G run length 2 and 3, greedy

and non-greedy approach, bulge length in the range 0 to 7 and max-

imal loop length 50. Of all possible TetraplexFinder parameter com-

binations, only the best ones are reported in Table 4. (v)

ImGQfinder was executed with G run length in the range 2 to 5,

maximal loop length 25 and number of defects 0 and 1. Again, only

the best combinations are presented in Table 4.

Finally, for all selected tools and their configurations, we meas-

ured basic performance characteristics, namely accuracy (ACC) and

Matthews correlation coefficient (MCC). For tools that report a

score or allow us to specify a threshold, we also measured the area

under the ROC curve (AUC). The results are summarized in Table

4. Since the Lit392 dataset is unbalanced, MCC is the most relevant

value. As we can see, pqsfinder outperformed other tools

significantly.

Table 3. Trained parameters and their encoding in chromosome

Name Bits Range Step Result

bulge_penalty 6 0–63 1 20

mismatch_penalty 6 0–63 1 28

bulge_len_factor 5 0–3.1 0.1 0.2

bulge_len_exponent 5 0–3.1 0.1 1

loop_mean_factor 6 3–9.3 0.1 6.6

loop_mean_exponent 5 0–3.1 0.1 0.8
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Subsequently, we identified tools capable of predicting overlap-

ping G4s and assigning them a score. Only those tools could also be

evaluated on the G4-seq test set. The basic idea behind this test is to

calculate all possible overlapping G4s for a given sequence and ex-

tract the characteristics of maximal score values (for every sequence

position maximal score of all overlapping G4s is selected). Such

characteristic can then be correlated with the level of mismatches at

the same positions of the G4-seq test set. From the set of available

tools, only the QGRS Mapper and G4Hunter met the requirement.

As a dataset, we used G4-seq test set consisting of 1000 randomly

selected DNA fragments with length of 10 kbp (procedure for data-

set construction is described in Section 4.2).

In the next step we configured and executed selected tools with

the following parameters: pqsfinder was executed with parameters

trained on G4-seq training set. G4Hunter was executed with all

thresholds between 0 and 4 (with step 0.05). Predicted G4s were

refined and merged together. QGRS Mapper was evaluated with the

most relaxed parameters as before, i.e. minimal G run length is 2,

loop length is in range 0 to 36 and maximal length is 45. For results

from each tool, the characteristic of maximal score value was calcu-

lated and compared with the G4-seq test set. This comparison was

done in two ways. First, Pearson correlation coefficient was calcu-

lated for every fragment separately. As the result, we got a

distribution of correlation coefficients with individual means and

standard deviations (see Fig. 2 and Table 5, columns CC mean and

CC SD). Second, Pearson correlation coefficient was calculated for

all fragments joined together to get a single overall value (see Table

5, column Overall CC). As we can see, the pqsfinder significantly

outperformed other tools.

6 Discussion

The objective of the tools for G4 prediction is to model the complex

relationship between DNA sequence and G4 structure. Despite our

ability to model this relationship directly at the molecular level,

using for example molecular dynamics Amber tool (Salomon-Ferrer

et al., 2013), this approach is computationally demanding and the

accuracy of the state-of-the-art force fields is still limited. For these

reasons, existing tools for G4 prediction use much simpler models.

The majority of tools are based on a simple folding rule and are

very fast, but do not allow for possible defects (mismatches and

bulges) easily. There are tools, such as TetraplexFinder and

ImGQfinder that allow for imperfections in G-quadruplexes.

However, without a properly trained scoring model this can easily

lead to a large number of false positives. These tools performed better

in our tests when imperfections were limited or not allowed at all.

A very interesting approach allowing imperfections that is based

on specific encoding and simple statistic over a sliding window was

implemented in G4Hunter. Despite its simplicity, it shows very good

performance characteristics. Unfortunately, we believe that such

simple encoding and statistics cannot reveal all complex relation-

ships between sequence and G4 stability, and thus the accuracy of

such approach is limited.

On the other hand, the approach proposed in this article that

combines pattern matching and detailed inspection of possible de-

fects is configurable and easily extensible. Using advanced options,

it can be quickly customized to detect novel and experimental G4

types that are currently not commonly studied or might be dis-

covered in the future. One such example is the recently postulated

interstrand G4s (Kudlicki, 2016) or G4s formed in cis, as proposed

by Hegyi (2015).

By default, the pqsfinder provides a scoring function that was

trained on G4-seq experimental data and performs better than com-

peting tools. We are aware that G4-seq data essentially represent

conditions in vitro and may not necessarily be directly related to the

ability of G4s to form in vivo, but our current view is that in vivo

G4 formation is a function of their in vitro stability. Therefore,

G-seq experimental data is the best publicly available dataset we

could find at this moment.

However, detailed inspection and modularity are at the cost of

lower processing speed. In the extremely sensitive configuration

Table 4. Performance comparison of different tools on Lit392

dataset

Tool Configuration ACC MCC AUC

pqsfinder Best on G4-seq training set 0.964 0.902 0.975

G4Hunter Default 0.952 0.865 0.969

QGRS Mapper g�2, ll ¼ 36, l ¼ 45 0.954 0.872 0.968

TetraplexFinder g ¼ 2, ll ¼ 50, gr, bl ¼ 0 0.946 0.850 –

TetraplexFinder g ¼ 2, ll ¼ 50, ngr, bl ¼ 0 0.946 0.850 –

ImGQfinder g ¼ 2, ll ¼ 25, d ¼ 0 0.941 0.835 –

ImGQfinder g ¼ 2, ll ¼ 25, d ¼ 1 0.918 0.767 –

Note: The meaning of the configuration options is as follows: t is threshold,

g is G run length, ll is maximal loop length, l is maximal G4 length, gr is

greedy approach, ngr is non-greedy approach, bl is bulge length and d is num-

ber of defects. For tools that report score (pqsfinder, G4Hunter and QGRS

Mapper), we systematically determined thresholds that resulted in the highest

possible ACC and MCC. We also found that for tools without scoring system

(TetraplexFinder and ImGQfinder) it is always better to disable

imperfections.

Fig. 2. Histogram of correlation coefficients for QGRS Mapper, G4Hunter and

pqsfinder on the G4-seq test set fragments. The correlation was measured

between the averaged level of mismatches of the G4-seq test set fragments

(see Section 4.2) and the vector of maximal scores predicted by each tool.

While histograms of QGRS Mapper and G4Hunter correlations are almost the

same, the histogram of pqsfinder correlations is much more positively

skewed

Table 5. Comparison of correlation coefficient (CC) statistics for dif-

ferent tools

Tool CC mean CC SD Overall CC

pqsfinder 0.583 0.106 0.622

G4Hunter 0.450 0.093 0.491

QGRS Mapper 0.422 0.112 0.479

Note: The individual CCs were measured between the averaged level of

mismatches of the G4-seq test set fragments (see Section 4.2) and the vector

of maximal scores predicted by each tool. Overall CC was calculated between

concatenated averaged level of mismatches of all G4-seq test fragments and

concatenated vector of the corresponding predicted maximal scores.
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having the minimal G run length set to 2, the algorithm is able to

process approximately 4 kb per second on current hardware. For ex-

ample, pqsfinder running time on the G4-seq test set (in total 10

Mbp) was around 40 minutes. When the minimal G run length is

increased by one, the speed is usually more than doubled. We do not

consider the speed limitations to be critical. For the most frequently

studied sequences, pqsfinder results can be precomputed and pro-

vided to many users, for example as an R data file or a GFF3-

formatted file.

7 Conclusion

We created a PQS detection tool with a sequence scoring function

that has a moderate number of tunable parameters reflecting se-

quence properties previously associated with observed G4s or their

destabilization (number of Gs in G runs, loop length, presence of

mismatches and bulges). To model G-quadruplexes and search for

the responsible sequences, we selected a mix of known and novel

approaches that give the pqsfinder several desirable characteristics.

In our tests it achieved the best accuracy on both experimentally

verified G-quadruplexes (Lit392) and the independent part of

G4-seq data (none of these datasets were used for training). The

pqsfinder estimates the total number of possible local conform-

ations, accounts for competition between them and allows for im-

perfections with a sound, carefully trained structure-based scoring

model. The presented model was trained on a subset of G4-seq data

that represents the largest set of experimentally verified quadruplex-

forming sequences available so far and includes a wide variety of

imperfections. This new tool also evaluates all the competing con-

formations and can be easily expanded or modified for newly dis-

covered rules and scoring functions in future. We provide evidence

that the pqsfinder is a convenient R/Bioconductor package compat-

ible with many other packages available in this environment.
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Abstract

Motivation: Transposable elements (TEs) in eukaryotes often get inserted into one another, forming sequences that
become a complex mixture of full-length elements and their fragments. The reconstruction of full-length elements
and the order in which they have been inserted is important for genome and transposon evolution studies.
However, the accumulation of mutations and genome rearrangements over evolutionary time makes this process
error-prone and decreases the efficiency of software aiming to recover all nested full-length TEs.

Results: We created software that uses a greedy recursive algorithm to mine increasingly fragmented copies of full-
length LTR retrotransposons in assembled genomes and other sequence data. The software called TE-greedy-nester
considers not only sequence similarity but also the structure of elements. This new tool was tested on a set of nat-
ural and synthetic sequences and its accuracy was compared to similar software. We found TE-greedy-nester to be
superior in a number of parameters, namely computation time and full-length TE recovery in highly nested regions.

Availability and implementation: http://gitlab.fi.muni.cz/lexa/nested.

Contact: lexa@fi.muni.cz

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genomes of most eukaryotic organisms contain repetitive sequences
present as dispersed repeats created by different classes of transpos-
able elements (TEs) (Kapitonov and Jurka, 1999; Smit, 1999). The
dispersed repeats are produced throughout evolution by the activity
of TEs, often in transposition bursts of various intensities, with
many transposition events happening in a short evolutionary time
frame, such as those after polyploidization events (Hirochika, 1997;
Vicient and Casacuberta, 2017). In genomes with high TE content,
some insertions necessarily result in the fragmentation of another
transposon already present at that particular insertion locus. This
leads to nesting where only the youngest full-length copies can be
recognized by software not accounting for fragmentation. Previous
estimates of TE nesting in plant genomes ranged from no nesting
detected in Physcomitrella patens to 14.3% of TEs fragmented by a
TE insertion in Oryza sativa (Gao et al., 2012). There are many
tools and approaches searching for repeated sequences and their
families (Bergman and Quesneville, 2007; Saha et al., 2008;
Valencia and Girgis, 2019). An exhaustive list has been published in
a recent review (Goerner-Potvin and Bourque, 2018). To discover
nesting, people have come up with strategies to identify transposon

fragments that may have originally been a part of a full-length elem-
ent. Perhaps the most popular is RepeatMasker in its newer version
http://www.repeatmasker.org. It identifies fragments based on se-
quence similarity to a library of known repeats and stitches together
nearby fragments that look like they are continuations of each other
when mapped to a model element. LTRtype (Zeng et al., 2017) iden-
tifies different types of structurally complex LTR retrotransposon
elements as well as the nested configuration of these TEs. The sys-
tem is capable of rapidly scanning large-scale genomic sequences
characterizing eight complex types of LTR retrotransposon elements
in addition to the common configuration of two LTR sequences
positioned around an internal sequence with protein coding regions.
The authors claim the program is able to correctly annotate a large
number of structurally complex elements as well as nested inser-
tions. It includes complex elements, e.g. those made of up to two in-
ternal sequences and three LTRs. REannotate (Pereira, 2008)
processes RepeatMasker annotation for: automated defragmenta-
tion of dispersed repetitive elements; resolution of the temporal
order of insertions in clusters of nested elements; and the estimation
of the age of elements with long terminal repeats. Another special-
ized software tool is TEnest, for untangling nested insertions of LTR
retrotransposons, also using sequence similarity and classification of
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identified repeats into families (Kronmiller and Wise, 2008, 2013).
If nearby fragments belong to the same family, the software will rec-
ognize them as a valid power set and assign them to the same full-
length element, thus establishing a nesting order. Greedier (Li et al.,
2008) is an alignment-based software tool also used to discover
nested insertions of transposons. Stitzer et al. (2019) mentioned a re-
cursive approach of annotating nesting of TEs, although no software
is provided or mentioned in their paper.

All available tools rely heavily on the evaluation of sequence
similarity at some key step but it is evident that the structure of ele-
ments (order of domains and regulatory regions) can help to recon-
struct fragmented elements. Structure-based tools are specifically
available for certain classes of repetitive sequences, such as LTR ret-
rotransposons (Ellinghaus, 2008; McCarthy and McDonald, 2003;
Xu and Wang, 2007), however, none are capable of recognizing
element nesting. Therefore, here, we present an alternative approach
to detect nesting, using structure-based recognition of repetitive
sequences, relying primarily on identification of component features
of a typical transposon and their relative position.

2 Algorithm and implementation

We felt there is a possibility for improvement on TE detection by
combining structure-based tools with a greedy algorithmic approach
that would eliminate all detected TEs from analyzed sequences be-
fore going to the next round of detection. Initial rounds of analysis
would help reconstruct many TEs that were fragmented by insertion
of younger TEs but underwent little other change. Such an approach
is inherently modular, it allows us to use an external, independently
tested tool to detect LTR retrotransposons (or any other classes and
tools in future modifications) and to separate full-length TE detec-
tion from their scoring and establishment of the most likely nesting
order.

Besides developing the TE-greedy-nester (labeled as TE-g-nester
in all figures and tables), we also used the common code base for
creating an application that runs in the opposite direction, to gener-
ate sequences containing nested TEs (‘TE-generator’). The TE-
generator can be used for the limited testing of TE-greedy-nester.
The TE-greedy-nester, TE-generator and other softwares are avail-
able from our GitLab project homepage at https://gitlab.fi.muni.cz/
lexa/nested. It is written in Python and will run on most Unix/Linux
platforms. It requires prior installation of LTR FINDER (Xu and
Wang, 2007), BLAST (Altschul et al., 1990) and GenomeTools
(Gremme et al., 2013). An installation script and a link to an
Ubuntu virtual machine with the latest version installed are
provided.

We have also previously packaged our tools for integration and
easier deployment. A Snakemake pipeline was created to run TE-
greedy-nester on larger datasets and store results of the analysis in
GFF files and also in a relational database http://hedron.fi.muni.cz/
TEDb/index.html. A Linux Mint virtual machine has been created
to enable users not only to work with the above pipeline avoiding
potential installation issues but also to modify it to meet their specif-
ic requirements http://hedron.fi.muni.cz/TE-nester_Mint.zip.

2.1 TE-greedy-nester
Our main goal was to design an application capable of processing
sequences automatically and finding nested TEs in reasonable time.
We needed to address specific problems related to the correct detec-
tion of element nesting. First, while sensitive enough, the procedure
should be resistant to detecting false positives. To this end, we in-
corporate a greedy algorithm that evaluates several possible candi-
dates for full-length TEs but ultimately picks only the best ones,
based on the presence of typical full-length TE sequence features. As
a result, false positives are quite rare initially and may become more
frequent at later stages which, however, can be stopped at that
point. To support precision, we chose to use LTR FINDER (Xu and
Wang, 2007), a TE detection tool that showed low false-positive
results and high precision in our experience as well as recent tests
(Valencia and Girgis, 2019). Another requirement is the ability to

detect deep nesting. In such cases, the oldest elements are barely rec-
ognizable because of ageing and the procedure must allow for
imperfections without compromising the ability to detect the partly
eroded elements.

Several rounds of design produced a procedure according to the
following pseudocode (see alsoFig. 1A) where capitalized terms in
parentheses represent typical components of an LTR retrotrans-
poson, non-coding sequences (LTR, PBS, PPT and TSD) detected by
LTR Finder and conserved protein-coding sequences often called
protein domains (GAG, PROT, RH, RT, INT and CHD) detected
using BLASTX.

Evaluation of full-length TE candidates is done by constructing a

weighted directed graph, where nodes represent required sites in a
full-length element (such as domains, PBS, PPT and TSD) (Fig. 1B).
The program is designed to find a path from the left LTR to the right
LTR, whilst visiting every required node in the correct order
(domains are ordered differently in Gypsy and Copia families, some,
like ENV are family-specific, all components are optional). By
assigning weights to the edges, we prioritize a path that has as com-
plete a structure as possible. At the same time, we allow alternative
paths with respective penalties if there is a missing node, or an incor-
rect order of available nodes. The graph structure is quite universal
and is open for future refinements.

We also need a way to recover various subsequences of the ana-
lyzed sequence, such as the original unfragmented sequences of older
TEs fragmented by nesting and the identified features annotated to
the analyzed sequence. This is achieved by a procedure where the
removed sequences are virtually returned to their positions in the
genome and the coordinates of TEs and their features are adjusted
for the inserted elements. Once all TEs that have been removed in
the first phase are processed, we generate a GFF3 file with coordi-
nates that map to the analyzed sequence. The final GFF output file
can be used to visualize all the identified features with specialized
software, such as Genome Tools Annotation Sketch (Fig. 2)
(Gremme et al., 2013), a genome browser, such as IGV (Robinson
et al., 2011; Thorvaldsdottir et al., 2013), or to extract sequences
for certain features using e.g. bedtools (Quinlan and Hall, 2010). In
addition, the sequences of all TEs detected by TE-greedy-nester are
clipped out of the genomic matrices and stored in FASTA format in
a separate directory.

algorithm TE-greedy-nester is

input: DNA sequences

while changed(export_TEs) ¼ TRUE do

foreach DNA sequence do

with LTR Finder detect module ¼
(LTRsjPBSjPPTjTSD)

save TE

with BLASTX get domain ¼
(GAGjPROTjRHjRTjINTTjCHD)

foreach TE do

hsno_TE ¼ calculate_score(TE, domain,

module)

//using greedy algorithm, scoring graph

save hsno_TE//highest-score_non-overlapping TE

removed_positions ¼ positions(hsno_TE)

move removed_positions to export_TEs

save removed_positions//to adjust export_GFF

export_GFF ¼ adjust(export_GFF, removed_

positions)

output: export_TEs, export_GFF
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2.2 TE-generator
To carry out tests of the software, especially its ability to recover
nested sequences, we used TE-generator, part of the code that is
designed to carry out virtual insertions of TE sequences from a li-

brary into a background sequence. The precise position of each
inserted sequence in the resulting test sequence is recorded, to com-

pare the generated GFF3 file with results of analysis of the same se-
quence by TE-greedy-nester.

3 System and methods

3.1 Testing data
3.1.1 Randomly inserted sequences

A first group of testing sequences was prepared as a random mixture

of full-length sequences from maize. A databases of full-length TEs

were downloaded from Maize TE Database at http://people.oregon
state.edu/�fowlerjo/MaizeRepeatDatabases/uniqueTEDB_1526.
fasta.txt in 2018 and Mips-REdat database at ftp://ftpmips.helm
holtz-muenchen.de/plants/REdat/mipsREdat_9.3p_ALL.fasta.gz
(Nussbaumer et al., 2013) for maize and rice full-length TEs, re-
spectively. The generator module of TE-greedy-nester was used to
generate 10 Mbp sequences with 10 and 90% TE sequence content.
Settings were calculated from average TE length (see
commandsUsed.txt in Supplementary Materials).

3.1.2 Deeply nested sequences (Russian doll/Matryoshka)

To test the depth of nesting discoverable by existing tools, as well as
TE-greedy-nester, we wrote a short program (see file matryoshka.pl)
which creates annotated sequence files with an arbitrary depth of
mutually nested TE elements. It complements TE-generator, which
also creates pockets of multiply nested TEs in the generated se-
quence, however, TE-generator is biased towards shallow nested
sets. Matryoshka is written in Perl (code available in Supplementary
Materials). The program takes a multifasta file of LTR retrotrans-
poson sequences as input, samples it i times (i can be set on the com-
mand line), nesting each consecutive sequence into a random
position of the previously inserted sequence. FASTA and BED files
are written as output. Two sets of sequences containing 20 TEs
taken from either Zea mays TE database (zea_matryoshka.fa) or
O.sativa (oryza_matryoshka.fa) were generated.

3.1.3 Maize adh1 neighborhood sequence

To test TE-greedy-nester on biological sequence which is rich in nested
LTR retrotransposons with known position and annotation, the Z.mays
alcohol dehydrogenase 1 gene (SanMiguel et al., 1998) (adh1-F gene ac-
cession number: AF050457.1) flanked with 150 kbp on both 50 and 30

regions, was analyzed. The maize genome was downloaded from
Phytozome 12.0 https://phytozome.jgi.doe.gov/pz/portal.html (Goodstein
et al., 2012). TE sequences obtained by TE-greedy-nester were anno-
tated using the maize specific retrotransposon database multifasta http://
people.oregonstate.edu/�fowlerjo/MaizeRepeatDatabases/uniqueTEDB_
1526.fasta.txt and BLASTN tool (Altschul et al., 1990). Thereafter, the
GT Annotation Sketch figure from TE-greedy-nester was rearranged fol-
lowing TE orientation given in the study by SanMiguel et al. (1998) as
later adapted by Fedoroff (2012).

3.1.4 Maize sequence (first 2 MB from Chr10)

The second biological sequence from the maize genome,
Chromosome10: 0–2 Mb, was used previously to compare LTRtype,
REannotate and TEnest tools (Zeng et al., 2017). We used this se-
quence to maintain continuity and to obtain reliable data for users
of TE-greedy-nester.

3.2 Testing software and data analysis
Performance of TE-greedy-nester and other software able to detect
TE nesting (TEnest, LTRtype and REannotate) were tested on three
different types of data: (i) synthetic data with known randomly
inserted sequences from maize and rice (TE-generator and matry-
oshka), (ii) thoroughly studied and annotated adh1 locus from maize
and (iii) biological data analyzed by other similar software (2 MB
from maize Chr10).

Fig. 2. An example of TE-greedy-nester output visualized using Annotation Sketch from the Genome Tools (Gremme et al., 2013) software suite (Command: gt sketch out-

put.png example.gff)

Fig. 1. Nesting algorithm essentials. (A) Algorithm overview showing data process-

ing in TE-greedy-nester; (B) Scoring graph structure used to evaluate structural com-

pleteness of LTR retrotransposon candidates (shown as SCORE CANDIDATES in

panel A). Any deviation from prescribed order of structural components (full

arrows) is penalized (dotted arrows)
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Testing on synthetic data was done by comparing GFF files pro-
duced by TE-greedy-nester with TE-generator and matryoshka GFF
files describing the introduced nesting. We calculated the number of

intervals representing TEs that overlap by a predefined percentage
of length on both sides using the python script

compGffs2Generator.py (Supplementary Materials).
Testing on the adh1 locus was done by visual inspection of pub-

lished adh1 annotations (Fedoroff, 2012) and our own visualization
with GT Annotation Sketch.

Testing on biological data was carried out by counting the num-
ber of detected full-length TEs in assembled or partly assembled
genomes of 18 species downloaded from Phytozome or other sour-

ces (where applicable): Arabidopsis thaliana, Arabidopsis lyrata,
Azolla filiculoides, Brachypodium distachion, Chlamydomonas
reinhardtii, Dunaliella salina, Glycine max, Gossypium raimondii,
Lotus japonicus, Medicago truncatula, Micromonas pusilla, Musa
acuminata, O.sativa, P.patens, Populus trichocarpa, Pseudotsuga
menziesii, Solanum lycopersicum and Sorghum bicolor.

To confirm a quality of TEs retrieved by TE-greedy-nester, their

long terminal repeat (LTR) sequences were cut with bedtools pack-
age (Quinlan and Hall, 2010) and subsequently LTR identity was
measured using global alignment by STRETCHER tool (Emboss

6.6.0; Rice et al., 2000).

3.3 Performance measures
Performance measures used here were calculated according to the

formulas used in the study by Ou and Jiang (2018)

Sensitivity ¼ TP=ðTPþ FNÞ
Specificity ¼ TN=ðFPþ TNÞ

Accuracy ¼ ðTPþ TNÞ=ðTPþ TNþ FPþ FNÞ
Precision ¼ TP=ðTPþ FPÞ

where true positive (TP) stands for matches of coordinates of TE
found by tested tools and corresponding element given by TE-

generator within tolerance 65% of reference TE length at the start
and end positions. Correspondingly, false positive (FP) is a TE with
no match with any TEs in the generated sequences, a false negative

(FN) are TEs which were present in generated sequence and absent
in output GFFs from given tools, true negative (TN) is estimated TE

count from number of bases which are without TE in both GFF
from TE-generator and also from tested tools.

3.4 Speed and RAM performance
Resource utilization of the four different software tools was com-

pared on all the datasets used in this article. For evaluations, the
programs were run on a dedicated Linux machine running no other

job, using the GNU time command to obtain ‘real time’ and ‘max-
imum resident set size’ as an average of three runs. The machine had
12 GB physical RAM, a 4 core Intel i5 CPU. The running process

was monitored for signs of memory swapping and process pruning.

4 Results

We developed the TE-greedy-nester software for finding nested LTR
retrotransposons using a combination of a greedy algorithm and
identification of full-length TEs. In contrast to comparable software
relying mostly on sequence similarity, TE-greedy-nester is based on
identification of structural features of LTR retrotransposons. We
compared the performance of TE-greedy-nester with four other
related software tools. The number of features detected by TE-
greedy-nester on different types of data is reported in Table 1. We
found that TE-greedy-nester detected the highest number of TEs in
all tested sequences in comparison with other examined tools.
Moreover, despite the higher rate of false-positive identification,
TE-greedy-nester also retrieved the highest count of TEs matched
with elements present in annotated sequences (number of TEs
matched, Table 1). To better evaluate the performance of TE-
greedy-nester, we carried out a deeper analysis using both synthetic
and biological data.

4.1 Annotated synthetic data (TE-generator and

matryoshka)
To test TE-greedy-nester on synthetic data, we generated artificial
sequences using TE-generator. The TE-generator sequences had me-
dium levels of nesting. We also prepared sequences with extreme
depth of nesting, only inserting new sequences into previously
inserted ones and call them ‘matryoshka’. After running TE-greedy-
nester on these sequences, we evaluated sensitivity, selectivity, preci-
sion and accuracy (see Section 3). Sensitivity and precision measure
the ability to detect sequences, selectivity measures the ability to re-
ject false positives and accuracy is a combination of both.
Calculated comparative performance values are shown in Figure 3.
While TE-greedy-nester showed higher sensitivity for all available
data, its comparative accuracy gave mixed results, with lower speci-
ficity (higher false-positive rate) on synthetic data with high TE
density (90%) (Fig. 3B). On the other hand, TE-greedy-nester was
superior to all existing software on synthetic data with deep nesting
(matryoshka). While TEnest could compete with TE-greedy-nester
when provided with the proper TE database (maize) (Fig. 3C), TE-
greedy-nester was the only software that could detect deep nesting
correctly on mixed-origin TE data (Fig. 3D), showing an even higher
accuracy on mixed data than maize data. TE-greedy-nester was also
one to two orders of magnitude faster than TEnest on all datasets.

Because the above performance evaluations on annotated data
partly depend on the definition of successful TE identification, we
examined the effect of position tolerance on performance measures
in the same four annotated synthetic datasets (Fig. 4). It can be seen
that low copy datasets, such as matryoshka, produce the same num-
ber of TEs at the lowest used tolerance of 1% (Fig. 4C and D). TE
rich data from TE-generator show an increased TE discovery at
higher tolerance level, most likely as a result of increased false-
positive rate, this was more apparent in sequences with 90% TE
coverage (Fig. 4B) than in those with 10% TE coverage (Fig. 4A).

Table 1. Number of detected or expected full-length LTR retrotransposons by TE-greedy-nester, TEnest, LTRtype and REannotate on natural

(rows 1–2) and artificial (rows 3–6) testing sequences

Sequence name Seq. length (bp) No. of reference TEs No. of TEs found No. of TEs matched (tolerance¼ 0.01)

TE-g-nester TEnest LTRtype REannotate TE-g-nester TEnest LTRtype REannotate

Zm_adh1 302987 21 15 11 7 6 — — — —

Zm_Chr10_2Mb 2000001 — 157 46 60 21 — — — —

Zm_synth_10 10141285 260 78 77 42 30 35 36 24 14

Zm_synth_90 10271500 2329 774 177 250 193 72 15 36 16

Zm_matryoshka_20 120219 20 16 14 2 2 13 11 0 0

Os_synth_10 10190963 100 90 16 6 3 78 6 6 2

Os_synth_90 9562586 900 729 71 44 24 291 1 19 8

Os_matryoshka_20 198560 20 14 4 0 0 1 4 0 0

4994 M.Lexa et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/20/4991/5871348 by Fakulta Inform
atiky M

U
 user on 22 O

ctober 2022



While Figure 4 shows the overall performance values of the dif-
ferent tools tested, their abilities to discover nested TEs remain part-
ly hidden in the lump sum numbers. We therefore divided the counts
of identified TEs based on their nesting status, including their nest-
ing level (how many successive nesting events occurred within the
given TE internal region) (Fig. 5). The most striking finding is that
all tools overestimate the number of non-nested elements and under-
estimate the number of nested ones (Fig. 5A and B). TEnest was less
prone to this error in high-density TE data (90% TEs; Fig. 5B), in
accordance with its higher specificity on the same data (Fig. 3B).
LTRtype and REannotate missed more TEs than the other two tools.
Only TEnest and TE-greedy-nester were able to resolve the majority
of the deeply nested matryoshka dataset (Fig. 5C and D). The same
tendency could be seen at different nesting levels in 90% TE-
generator data. TEnest and TE-greedy-nester always had much
higher counts than the other tools at nesting levels II and deeper.
TEnest gave higher counts than TE-greedy-nester at nesting levels IV
and higher, however, most of those above nesting level VI were false
positives (Fig. 5B). The best performance of TE-greedy-nester on
mixed origin matryoshka data (generated with TE sequences from
multiple plant species) observed in Figure 5D can be seen here as
well.

For a better perspective of individual tool performance, we also
show the data from this analysis in the Integrated Genome Browser
(Robinson et al., 2011) (Supplementary Fig. S1). While both TE-
greedy-nester and to a limited extent also TEnest had a tendency to
overestimate certain types of TEs (false positives), in the overall
visualization, TE-greedy-nester results render best the overall density
and nesting depth distribution of TEs along the sequence.

4.2 Biological data
After testing on synthetic data, we applied the compared tools to
biological data, namely (i) the well-studied adh1 region from maize
and (ii) a 2-MB region from maize chromosome 10 used in a previ-
ous comparative study by Zeng et al. (2017).

4.2.1 Adh1 region

TE-greedy-nester as well as the other three compared tools was
tested on the adh1 region in which 21 full-length LTR retrotranspo-
sons (of which 12 are nested) were found by SanMiguel et al.
(1998). TE-greedy-nester detected 15 (7 nested), TEnest detected 11
(1 nested), LTRtype 7 (0 nested) and REannotate 6 (1 nested)
(Fig. 6). Only four of these full-length LTR retrotransposons were
identified by all tools, while six were common for TEnest and TE-
greedy-nester results, as can be seen in Supplementary Figure S2A.

To compare adh1 outputs from TE-greedy-nester with the ori-
ginal SanMiguel report on family level, TEs from TE-greedy-nester
were additionally annotated using maize-specific TE database http://
people.oregonstate.edu/�fowlerjo/MaizeRepeatDatabases/
uniqueTEDB_1526.fasta.txt and a locally installed BLASTN
(Altschul et al., 1990) tool (Supplementary Fig. S3). Although the
TE annotations from TE-greedy-nester and Fedoroff (2012) do not
fully match, we counted 12 families that were correctly recognized
and placed within the segment.

4.2.2 2 MB region of maize Chr10. We used all compared software
tools for an analysis of LTR retrotransposons in the initial 2 MB re-
gion of maize chromosomes 10. The maize genome was chosen be-
cause of its high content of LTR retrotransposons that are often
nested and that it was previously tested by other authors on the
same sequence. The results for this maize segment (Supplementary
Fig. S2B) were in line with results on 90% TE-generator data. TE-
greedy-nester found the most TEs, TEnest was the most conservative
in the number of non-nested TEs and LTRtype and REannotate
were not able to find full-length TEs beyond nesting level I.

4.3 Performance tests
To compare the four evaluated software tools also by computational
performance and requirements, we recorded computation times and
peak physical memory usage on the data described above (Table 2).
TEnest, which performed very well in nesting accuracy tests above,
was the slowest and most memory hungry of the four (worst case
8719 s, 12GB RAM). With the largest datasets, it caused the system
to swap memory and kill processes (shown as >12GB RAM in 2)
resulting also in a steep increase of computation time. Our TE-
greedy-nester was comparable with LTR Type and REannotate in
terms of speed and memory usage (worst case 886 s, 628 MB).
While it performed better with RAM on extremely small datasets.
LTR Type used slightly more RAM (752 MB versus 500–600 MB)
and was also slower to compute the results on small datasets (36s
versus 13–21 s). It should be noted that TEnest was set to use four

Fig. 4. Number of correctly identified TEs as a function of length tolerance by the

four software tools; (A) zea_10%; (B) zea_90%; (C) zea_matryoshka; (D)

oryza_10%, (E) oryza_90% and (F) oryza_matryoshka

Fig. 3. Sensitivity, specificity, accuracy and precision of TE-greedy-nester and com-

parable software on synthetic and biological data; (A) zea_10%; (B) zea_90%; (C)

zea_matryoshka; (D) oryza_10%, (E) oryza_90% and (F) oryza_matryoshka
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processors, while TE-greedy-nester used multithread BLASTX
searches (3 processors). LTR Type and REannotate relied on
RepeatMasker output, however, the time to generate that output

was included and tabulated as well. For further details, please, see
Section 3.

4.4 Plant genomes
Finally, we applied TE-greedy-nester to 18 plant genomes available
mostly from Phytozome (see Section 3) and provide the results in

GFF files (http://hedron.fi.muni.cz/TEgnester/). In Table 3, we show

the classification and the main characteristics of TE nesting in these
18 species. We demonstrated that 96.4% of detected TEs (i.e.
98 187 out of 10 1887), have LTR identity 80% or higher
(Supplementary Fig. S4). TE-greedy-nester also found at least one
protein domain in 29.8–88.4% of identified LTR retrotransposons
in vascular plants but only 0–1.9% in non-vascular plants. The per-
centage of TEs found in nested configuration was between 19.6 and
54% in vascular plants and 0 and 17.6% in non-vascular plants.
The highest nesting rates were observed in S.bicolor and G.max.
The proportion of solo LTRs was higher in eudicots and algae (e.g.
Solanum, Gossypium and Dunaliella) than in monocots.

Fig. 5. Number of correctly identified TEs at different nesting levels by the four software tools; (A) zea_10%; (B) zea_90%; (C) zea_matryoshka; (D) oryza_10%, (E)

oryza_90% and (F) oryza_matryoshka

Fig. 6. Number of correctly identified TEs at different nesting levels by the four software tools in biological data; (A) zea_adh1 and (B) zea_2MB
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5 Discussion

Here, we present a new bioinformatic tool TE-greedy-nester for the
detection of nested LTR retrotransposons that is faster and more ef-
ficient in finding deeply nested elements than existing tools. These
advantages are due to the combination of structure-based retrotrans-
poson detection with recursive sequence removal. This results in
comparatively low memory usage and high computation speed, as
seen in performance tests presented herein. With the default settings
our tool is competitively sensitive although can produce higher rates
of false positives in some instances, as seen in both synthetic and
real biological data. We are exploring ways to reduce the number of
false-positive calls where several directions of action are possible,
such as (i) optimizing the search parametrization and scoring of can-
didate TEs; (ii) improving TE annotation, especially by accounting
for TSD sequences that should be present in bonafide full-length
TEs and (iii) abandoning the greedy approach by introducing extra
passes that would pre-score elements or explore multiple sequence
fragmentation scenarios.

Another advantage of TE-greedy-nester is its ability to identify
nesting in different species without the need for species specific TE
databases. This is in sharp contrast to the other three compared
tools that lack performance in cross-species applications. Their
results also differ significantly with the size and sparsity of the used
TE database.

While the focus now is on the nesting of LTR retrotransposons,
the approach is modular and can be expanded to other classes of re-
petitive sequences by simply employing additional TE detection
tools alongside LTR Finder. However, even without expansion to
other TE classes, the algorithm in TE-greedy-nester can detect short
foreign insertions in full-length LTR retrotransposons. This is the
advantage of using structural information where the most important
signal is the order of required TE components, while distance and
sequence similarity is secondary.

Both synthetic and biological data were chosen to represent dif-
ferent TE densities and levels of nesting to identify the strengths and
weaknesses of the tested tools. In this respect, we found that TE-
greedy-nester had the highest sensitivity across the board of different
tests. As expected, high sensitivity typically comes with a higher

proportion of false positives, and so it is important to look at accur-
acy and precision for an objective comparison of different tools. TE-
greedy-nester showed markedly lower precision with 90% TE-

generator data, suggesting that it could benefit from parameter fine-
tuning depending on the TE density of the data being analyzed.

Identifying the best parameter combinations for different types of
data is beyond the scope of this article, where only fixed or default
settings were used. TE-greedy-nester also found nested full-length

TEs one to two orders of magnitude faster than TEnest, which gave
the best results of the three compared tools across different tests.

LTRtype was more conservative but still performed very well on
TE-generator data of both densities. Compared to TEnest, it how-
ever failed to be competitive, together with REannotate, on simple

data with deep nesting, such as the adh1 locus or matryoshka data.
It should be noted that LTRtype is a tool able to recognize compos-

ite LTR retroelements, something the other tools cannot do.
Interestingly, running TE-greedy-nester on several species uncov-

ered remarkable differences to previously published nesting esti-

mates in certain species. For example, in P.patens no nesting was
observed by Gao et al. (2012), while we saw 32% nested LTR

retrotransposons.
TE-greedy-nester development is a live ongoing project. While

we were testing the software performance on nested full-length TEs,
a new feature was added to the code base. TE-greedy-nester can
now identify solo-LTRs in the analyzed sequence based on the

sequences of the LTRs identified in all iterations.
TE nesting reconstruction is important in genome evolution and

TE life cycle studies. We hope it will help users excavate older full-
length TE copies, differentiate between complex TEs transcribed as

a single unit and nested TEs originating from many independent
insertions. Based on the testing results, it may be useful in sequences
with deeply nested structures, such as those in centromeric and peri-

centromeric regions of plant chromosomes. For such use, it might be
useful to expand its abilities towards tandem repeat detection. In
our observations, tandem repeats are one of the things that can con-

fuse LTR Finder into interpreting some of their subsequences as
pairs of LTRs. The situation becomes even more complicated when

such tandem repeats originate from fragments of TE sequences con-
taining fragments of canonical domain coding sequences (Ahmed
and Liang, 2012) or LTRs. TE-greedy-nester should also come

handy in whole genome annotations where speed could be as im-
portant as precision.

Our tool is similar to software mentioned by Stitzer et al. (2019)
in two aspects. We also create a graph data structure to find the best

TE candidates, the two structures, however, carry different types of
data and are used for slightly different purposes.

6 Conclusion

In this work, we present a new software tool for the recovery of full-

length LTR retrotransposons fragmented by the nesting of other ele-
ments. We used a recursive approach in combination with structure-
based detection of TEs with LTR Finder and implemented it in a

Python tool called TE-greedy-nester. We tested this computational
approach on synthetic and natural DNA sequences. Testing showed

that TE-greedy-nester gave high-quality results faster than existing
tools and is superior in selected parameters, especially in its ability
to recover full-length LTR retrotransposons in deeply nested

regions. Moreover, we analyzed 18 plant genomes and showed that
TE-greedy-nester could be used in studies of TE life cycle and gen-

ome evolution, especially in areas where relative insertion times are
important.
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Table 2. Time and memory requirements of tested software when

analyzing input data of different types

Species Sequence TE-g-nester TEnest LTRtype REannotate

Process time (s)

Z.mays synt10 174 83 297 338

synt90 650 8917 740 657

matryoshka 16 544 26 11

adh1 14 1052 36 21

Chr10_2Mbp 331 7866 136 122

O.sativa synt10 187 6562 322 330

synt90 886 3072 145 525

matryoshka 13 57 36 15

Maximum memory usage (Mbytes)

Z.mays synt10 591.5 146.4 740.5 489.0

synt90 628.1 >12000 740.7 536.3

matryoshka 74.8 18.2 739.5 482.4

adh1 77.1 351.5 741.2 482.2

Chr10_2Mbp 152.7 11800.0 752.2 482.1

O.sativa synt10 595.7 >12000 740.4 488.0

synt90 603.7 >12000 740.4 517.9

matryoshka 80.2 18.6 740.7 482.2

Note: Time and memory usage were measured as ‘real time’ and ‘max-

imum resident set size’ using the Linux time command on a dedicated ma-

chine with 12 GB RAM, Intel i5 processor with four cores, Fedora Linux

installed and no other jobs running.
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Abstract

Motivation: The role of repetitive DNA in the 3D organization of the interphase nucleus is a subject of intensive
study. In studies of 3D nucleus organization, mutual contacts of various loci can be identified by Hi-C sequencing.
Typical analyses use binning of read pairs by location to reduce noise. We use binning by repeat families instead to
make similar conclusions about repeat regions.

Results: To achieve this, we combined Hi-C data, reference genome data and tools for repeat analysis into a
Nextflow pipeline identifying and quantifying the contacts of specific repeat families. As an output, our pipeline pro-
duces heatmaps showing contact frequency and circular diagrams visualizing repeat contact localization. Using our
pipeline with tomato data, we revealed the preferential homotypic interactions of ribosomal DNA, centromeric satel-
lites and some LTR retrotransposon families and, as expected, little contact between organellar and nuclear DNA
elements. While the pipeline can be applied to any eukaryotic genome, results in plants provide better coverage,
since the built-in TE-greedy-nester software only detects tandems and LTR retrotransposons. Other repeats can be
fed via GFF3 files. This pipeline represents a novel and reproducible way to analyze the role of repetitive elements in
the 3D organization of genomes.

Availability and implementation: https://gitlab.fi.muni.cz/lexa/hic-te/.

Contact: lexa@fi.muni.cz

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The eukaryotic genome is hierarchically packed in the nucleus
allowing DNA replication and gene transcription to take place in a
spatially and temporally regulated fashion. A significant part of eu-
karyotic genomes is made up of transposable elements (TEs) and sat-
ellite DNA, where e.g. LTR retrotransposons constitute up to 90%
of genomes in some species (Liehr, 2021; Schnable et al., 2009;
Wicker et al., 2018). TEs are often embedded in cellular regulatory
networks (Feschotte, 2008) where they rewire the gene expression
programs (Slotkin and Martienssen, 2007). Many examples of the
domestication of TEs for specific cellular functions have been
observed (Jangam et al., 2017; Sinzelle et al., 2009). Moreover, the
3D organization of the interphase nucleus is recently a subject of in-
tensive study.

Methods of high-throughput mapping of DNA–DNA interac-
tions, such as chromosome conformation capture (Hi-C), now allow
the study of long-distance interactions in eukaryotic nuclei. Because
of technical issues, these have mostly avoided repetitive parts of the
genome. A better understanding of the interaction of the main repeat
classes can help uncover their genomic role. A recent study demon-
strated the role of TEs in organizing the human and mouse genomes
(Lu et al., 2021) and similar analysis in other organisms is hitherto
missing.

Here, we present a new sequence processing pipeline to identify
and quantify interactions of TEs, satellite DNA and rDNA in nuclei,
especially those that participate in long-distance (�1 Mb) or inter-
chromosomal contacts with frequencies that differ from baseline
expectations of randomness.

VC The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 4030
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2 Nextflow pipeline description and testing

Our pipeline (Fig. 1d, Supplementary Fig. S1) integrates sequence
analysis from several sources: assembled genome repeat annotation
[TE-greedy-nester (Lexa et al., 2020), PlantSat database (Macas
et al., 2002)], medium and long-distance contact information (Hi-C
experiments) and repetitive NGS read clustering [Repeat Explorer
(Novak et al., 2013)]. TE-greedy-nester is our previously developed
tool for structure-based detection of LTR retrotransposons that can
even assign fragmented TEs to their families. However, a large num-
ber of tools in this area exist as recently reviewed by Rodriguez and
Makałowski (2022). Currently, alternative annotations from such
sources can be applied via a GFF3 file or consensus sequences that
will be mapped to reference by the pipeline (see ‘DATA’ and
‘OPTIONAL PARAMETERS’ sections in source code
README.md). Repeat Explorer is a popular and time-tested solu-
tion for graph-clustering repetitive sequencing reads without the
need for a reference genome. We included these two tools to comple-
ment each other, as each method has different strengths. For ex-
ample, many reference genomes lack repetitive regions that are hard
to assemble, a situation in which reference-free approach might be
advantageous, although the quality of reference genomes is

gradually improving with T2T sequencing (Nurk et al., 2022). The
pipeline was implemented with Nextflow (Di Tommaso et al., 2017)
to allow for flexibility and scalability, using a recent installation of
Ubuntu Linux with all dependencies included. In addition, we pro-
vide a tested containerized version allowing runs with Docker/
Singularity deployment (see ‘RUNNING THE PIPELINE’ in source
code README.md). As a result, all the figures and tables are fully
reproducible and can be easily generated. We summarize the mem-
ory, disk and time requirements in Supplementary Tables S1 and S2
and Supplementary Figures S2–S4.

To test ‘HiC-TE’, we used a publicly available dataset on the to-
mato (Solanum lycopersicum) (Dong et al., 2017) with two technical
replicates for each of three plants. The minimal input dataset represents
a HiC experiment (FASTQ) with the name of the restriction enzyme
used in the protocol, a reference genome sequence (FASTA), exon anno-
tations (GFF3) and a set of tandem repeats and satellite DNA to be
mapped (PlantSat FASTA) with the telomeric repeat sequence array as
a minimum. We verified that the pipeline produces consistent results
and that the computational replicates are less variable than any other
replicates. We analyzed Hi-C contacts from reads clustered with Repeat
Explorer (Fig. 1a) and reference-mapped long-distance interactions

Fig. 1. HiC-TE pipeline. (a) Reference-free and (b) reference-based heatmaps generated by the pipeline for SRR5748725, showing repeat family pairs and their label-permuta-

tion normalized contact frequency; (c, e) Circos plots for the same showing chromosomal locations of representative contacts for the given family pair; (d) block diagram

showing the overall data flow in the HiC-TE pipeline. Some details were omitted for clarity (the full graph produced by the pipeline is shown in Supplementary Fig. S1) [left—

main data inputs; bottom—main data outputs; double edged rectangles—main processes running external tools; FASTA (*.fa), FASTQ (*.fq), BAM, GFF3—main sequence

and annotation data formats passed between processes]

HiC-TE pipeline for repeat interactions 4031
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(spanning �1 Mb or between sequences located on different chromo-
somes) (Fig. 1b). The main output is a series of heatmaps showing high/
low values of normalized contacts in diverging colors, while fields (re-
peat family pairs) with missing values are shown in gray. The pipeline
also relies on initial trimming of raw reads with Diachromatic (Hansen
et al., 2019), read mapping via Bowtie2 (Langmead and Salzberg,
2012) and BBmap, overlap/intersection analysis with bedtools (Quinlan
and Hall, 2010) and data manipulation and visualization in R/
Bioconductor with extra packages (Supplementary Note S1) (Gel and
Serra, 2017; Gu et al., 2014; Indahl et al., 2018; Pedersen and
Shemanarev, 2020; Wickham, 2007). Before visualization in heatmaps,
the data are normalized using three different normalization techniques
(Supplementary Note S2) to account for background HiC signal and
the fact that repeat families have varying frequencies. Circos plots allow
to understand chromosomal localization of the contacts, such as the
chromosome number or whether it is in a gene-rich or gene-poor area
(Fig. 1c and e). Normalized values that are too close to 1, or based on
samples with a low number of reads (configurable by the user) are
shown as gray fields in these heatmaps.

3 Discussion

The pipeline contains two modes of repeat annotation, reference-
based and reference-free. While reference-based data contain
chromosomal positions and allow the calculation of distances, the
reference-free mode avoids the necessity to discern real and apparent
read mapping, which is especially problematic when dealing with
repeats and short reads. Our tool contrasts traditional methods of
binning HiC contacts (Golicz et al., 2020; Sun et al., 2020; Zheng
et al., 2019) (for the discussion see Supplementary Note S3). It has a
potential, based on frequency of interactions of specific centromeric
or telomeric repeats, to reveal distinct local organizations of chro-
mosomes, such as Rabl, Rosette or Bouquet arrangement (Tiang
et al., 2012) (see Supplementary Note S4 for further discussion of
biological relevancy).

The focus of traditional HiC data analysis pipelines on unique
mapping made us realize that multiple-mapping reads could still be
assigned to a family of repeats. To this end, we built a HiC read map-
ping pipeline that explores this possibility in tandem with Repeat
Explorer software, producing a report of likely interaction partners
among repeat families. Another branch of our computations produces
similar output relying on reads that Bowtie2 maps to annotated
repeats. This Nextflow pipeline can identify and quantify the contacts
of specific repeats in the 3D nucleus. Using real biological data from
public databases we have shown that with proper normalization tech-
niques, known (and possibly also unknown) interaction partners can
be revealed among annotated repeat families.
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