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Abstract

Nowadays, simulations are an essential part of the development of new technologies.
They are namely used in cases when the observation of some events is technically too
complicated, ethically unacceptable or if the repetition of these events is too expen-
sive. This principle is also valid in the field of biomedical image processing where the
images represent some specimen acquired using, for example, the optical microscope.
Here, we study the visual appearance and behavior of selected biological specimen.
The aim is to create a synthetic image or even the whole sequence of synthetic im-
ages that imitate all the visual aspects and behaviour of real living specimen. Subse-
quently, the standard image processing tasks like segmentation and tracking can be
validated by applying them on these synthetic data and testing how they perform. Re-
garding time-lapse image sequences, we are not interested in image processing tasks
only. Such computer generated sequences can reveal whether we correctly understand
the dynamic processes that are modeled in the utilized simulation frameworks.

The aim of this thesis is an introduction and detailed description of the current
methods and principles utilized when generating synthetic image data that imitates
the images as acquired by the optical microscope. These include the methods gener-
ating the static images as well as time lapse image sequences describing the dynamic
processes occurring in living cells. The output of this thesis includes the methods and
principles that led to the implementation of the particular simulation toolkits. These
toolkits serve as modules in the web-based framework called CytoPacq that is cur-
rently capable of generating five types of synthetic cell lines. All the aforementioned
method are described in the conference and journal papers listed in this thesis.
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Shrnutı́

Simulace jsou v dnešnı́ době neodmyslitelnou součástı́ vývoje nových technologiı́.
Využı́vajı́ se zejména v situacı́ch, které nenı́ možné technicky či morálně realizovat
a nebo je jejich opakovánı́ natolik nákladné, že by se opětovné sledovánı́ daných jevů
vůbec nevyplatilo. Nejinak je tomu v oblasti zpracovánı́ biomedicı́nského obrazu pořı́-
zeného na optickém mikroskopu. Zde je předmětem simulacı́ snı́maný biologický
preparát, jehož vizuálnı́ stránku popřı́padě i pohyby sledujeme a snažı́me se je napodo-
bit. Cı́lem je pak vytvořit umělý obraz popřı́padě celou sekvenci syntetických snı́mků,
na nichž se dajı́ následně testovat a ověřovat různé nově vytvářené metody analýzy
obrazu. Mezi ně typicky patřı́ segmentace či sledovánı́ živých buněk. V přı́padě
simulacı́ sekvencı́ populacı́ živých buněk se nejedná pouze o práci s obrazem. Na
takto vygenerované populaci pak můžeme sledovat, zda se uměle vytvořená popu-
lace chová jako reálná populace, a tedy zda správně chápeme podstatu biologických
procesů, které použitý simulačnı́ nástroj implementuje.

Předmětem této práce je představenı́ metod a postupů, které se v současné době
použı́vajı́ ke generovánı́ umělých obrazových dat imitujı́cı́ch snı́mky pořı́zené na optic-
kém mikroskopu. Jedná se jak o statické scény tak i o generovánı́ dynamických procesů
probı́hajı́cı́ch napřı́klad v živých buňkách nebo takových, které se uplatňujı́ při for-
movánı́ buněčných populacı́. Výstupem této práce je mimo jiné i několik simulačnı́ch
nástrojů, které postupně vznikaly jako implementace metod popsaných v jednotlivých
publikacı́ch, přiložených k této práci. Společným jmenovatelem všech představených
nástrojů je rozhranı́ CytoPacq, v němž každý jednotlivý simulačnı́ nástroj sloužı́ jako
modul.
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Melius est illuminare quam lucere solum.

Thomas Aquinas

v



Contents

I Commentary 1

1 Introduction 2
1.1 Focus of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Image Analysis 5

3 Optimization of Convolution 8
3.1 CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Texture Analysis 11
4.1 Texture descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Similarity search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Simulations 14
5.1 Fixed cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2 Living cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3 Living tissues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.4 Benchmark datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6 Conclusion 22

Bibliography 22



II Collection of Articles 27

A Image Analysis 29
“Tissue Reconstruction Based on Deformation of Dual Simplex Meshes” 29
“Distinct Patterns of Histone Methylation and Acetylation in Human

Interphase Nuclei” . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
“Efficient k-NN Based HEp-2 Cells Classifier” . . . . . . . . . . . . . . . 31
“A Performance Evaluation of Statistical Tests for Edge Detection in Tex-

tured Images” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
“Deconvolution of Huge 3D Images: Parallelization Strategies on a Multi-

GPU System” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

B Optimization of Convolution 34
“Efficient Computation of Convolution of Huge Images” . . . . . . . . . 34
“Convolution of Large 3D Images on GPU and its Decomposition” . . . 35
“GPU Optimization of Convolution for Large 3-D Real Images” . . . . . 36

C Texture Analysis 37
“Extension of Tamura Texture Features for 3D Fluorescence Microscopy” 37
“RSURF – The Efficient Texture-Based Descriptor for Fluorescence Mi-

croscopy Images of HEP-2 Cells” . . . . . . . . . . . . . . . . . . . 38
“Texture Analysis Using 3D Gabor Features and 3D MPEG-7 Edge His-

togram Descriptor in Fluorescence Microscopy” . . . . . . . . . . 39

D Simulations 40
“On Simulating 3D Fluorescent Microscope Images.” . . . . . . . . . . . 40
“Generation of Digital Phantoms of Cell Nuclei and Simulation of Image

Formation in 3D Image Cytometry” . . . . . . . . . . . . . . . . . 41
“Generation of 3D Digital Phantoms of Colon Tissue” . . . . . . . . . . . 42
“Towards a Realistic Distribution of Cells in Synthetically Generated 3D

Cell Populations” . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
“On Proper Simulation of Phenomena Influencing Image Formation in

Fluorescence Microscopy” . . . . . . . . . . . . . . . . . . . . . . . 44
“On Proper Simulation of Chromatin Structure in Static Images As Well

As in Time-Lapse Sequences in Fluorescence Microscopy” . . . . 45
“A Benchmark for Comparison of Cell Tracking Algorithms” . . . . . . . 46
“Vascular Network Formation in Silico Using the Extended Cellular Potts

Model” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
“MitoGen: A Framework for Generating 3D Synthetic Time-Lapse Se-

quences of Cell Populations in Fluorescence Microscopy” . . . . . 48





Part I

Commentary

1



Chapter 1

Introduction

The advance in computational power of the computers together with the increase in
the quality and the acquisition speed of optical microscopes goes hand in hand with the
development of new computational methods in the fields such as image segmentation,
image restoration, or image recognition. The growing capabilities of the instruments
enable the acquisition and storage of high-resolution images in 2D, 3D, 3D+time, or
higher dimensions. This requires either the development or at least some small modi-
fications of current image processing methods. The new methods however need to be
properly validated and tested before they are published and practically used.

In the field of biomedical image analysis, the validation process requires the use of
some benchmark dataset. Such datasets contain real or synthetic image data accom-
panied with their ground truth. In the case of real data, the ground truth is typically
obtained as an expert annotated raw image data. For a purely synthetic case, the image
data and also the related ground truth is completely generated in the computer. Both
approaches have their pros and cons.

1.1 Focus of the thesis

Due to the lack of publicly available benchmark datasets containing both real and syn-
thetic image data together with their annotations, my research focuses on the computer
generated data and its associated challenges.

The simulations have always been of a great importance as they substitute the real
processes when those are too expensive to be performed or impossible to be observed.
The latter case is typical for optical microscopy. Here, we observe fixed or living cells
under assumption, that the optical system and the attached electronic acquisition de-
vice does not affect the quality of the original specimen too much. Even though we can
measure the most of optical aberrations and estimate the dominant sources of noise,
that together cause the final observed image to be blurred and noisy, we are still not
able to reveal the original unaffected image how it would appear without any damage.
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Although several deconvolution methods are capable of inverting this degradation
process they can improve the quality of the data only to some extent.

As there exists no exact knowledge, on how the microscopic specimens look, it is
very difficult to evaluate the quality of new emerging segmentation and tracking algo-
rithms that are of a great importance in medicine and biology. The same issue arises
when one wants to tune-up their parameters. In the past, the only available quality
measurement of the algorithms was an expert’s knowledge. The expert either classi-
fied the results of selected algorithm or provided an annotation of some real image
dataset that was further used for evaluation purposes. Both ways however suffer from
two main issues. First, the expert’s evaluation is nondeterministic. Second, for higher
dimensional data (sequences of 2D or 3D images) the handmade annotation is imprac-
tical or even impossible. For this reason, the synthetic data, naturally accompanied by
their ground truth, have started to appear. In the very beginning [Pre79], only the ba-
sic geometric shapes like spheres or disc without any texture representing the internal
structure of the observed cells were employed. Since the late 90s, computer generated
images have started to be more complex as the computer capabilities rose and allowed
for calculations that required higher performance and extensive memory and disk us-
age. Namely, in the last 10 years, several simulation frameworks able to generate, for
example, cells with detailed description of subcellular components [Mur12], large cell
populations [Leh+07; Raj+12; SKS09] and time-lapse image sequences [SU16; Duf+11]
emerged.

The goal of this thesis is to summarize the main topics of my research I focused
to during my work at the Faculty of Informatics, Masaryk University (CZ) and at the
Faculty of Science and Engineering, Manchester Metropolitan University (UK). The re-
sults of my research include journal and conference papers accompanied by software
packages implementing the ideas and methods described in the papers. The most im-
portant software package, which I originally developed in cooperation with my former
supervisor Michal Kozubek, is called CytoPacq1. During the last few years, it has grad-
ually become the core simulation framework in our group.

1.2 Thesis structure

The following chapters provide a brief overview of the methods and software pack-
ages I proposed or analyzed during my research. Chapter 2 is a collection of selected
image analysis methods I designed or studied with my colleagues. It explains my in-
terest in validation techniques in this field. Chapter 3 inspects the use of convolution
when manipulating with huge multidimensional image data. As convolution plays an
important role during the modeling of virtual optical microscope, various optimiza-
tion techniques are introduced and analyzed in this chapter. In chapter 4, I describe
the most common texture descriptors typically used for testing the similarity of the

1http://cbia.fi.muni.cz/simulator/
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synthetic and real image data. Finally, the chapter 5 is dedicated to the fundamentals
of simulations and the generation of benchmark datasets, the tasks I mainly focused
on during my research.
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Chapter 2

Image Analysis

Even though the topic of this work is dedicated to simulations and the generation of
synthetic image benchmark datasets, I would like first put the reader’s attention on
the common image analysis methods. One should keep in mind that there would be
no need for synthetic data if there were no image processing methods that require the
validation and testing. The common tasks in image analysis (segmentation, edge de-
tection, deconvolution, measurement, classification, etc.) were indeed my first research
topic that brought me later to the area of simulations. Even after the main topic of my
research changed to simulations and modeling I have still kept working or collabo-
rating on projects dedicated exclusively to generic image analysis tasks. I believe that
proper understanding of the particular tasks, including their design and implementa-
tion, leads to better design of simulation toolkits that should subsequently help with
validation and testing of the proposed algorithms. For this reason, I consider the de-
sign and further development of various image analysis algorithm utilized in biomed-
ical image analysis to be always a minor but essential part of my research. Here are the
individual topics:

Segmentation. During my Ph.D. studies I collaborated with my former supervisor
Pavel Matula and focused on the segmentation tasks. In particular, I aimed my re-
search on the analysis of fully 3D images of human colon tissues. I designed and
implemented a method suitable for the segmentation of individual cells that occur
inside the image of tight cell cluster. Initially, I co-invented the star-shaped simplex
meshes [MS01], a tool suitable for segmentation of clearly separated potato-like ob-
jects. In this approach, the analyzed objects (cells) were roughly fitted with a regular
parametric mesh, typically in the shape of sphere or ellipsoid, which was further de-
formed. The deformation iteratively followed the Newtonian law of motion including
two principal types of forces: the internal and external one. The former was responsi-
ble for keeping the smoothness of the mesh surface while the latter pushed the mesh
to the places where the remarkable edges in the inspected image were located. The
modified version, called dual simplex meshes [SM03] and particularly designed for the
segmentation of cells located in tight clusters, introduced two meshes. The inner and
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outer one. These two meshes were only allowed to iteratively come near to each other
while still keeping the rules given by internal and external forces defined in the orig-
inal model. This technique was, however, highly sensitive to the initial configuration
of the meshes.

Image measurement. The image segmentation is often only a pre-step for some forth-
coming image processing operations like, for example, the measurement. In this step,
we measure various image or object characteristics. They mostly include the volume
of cells, their surface, roundness, distance of some particular spots from the cell mem-
brane, etc. In the study [Ska+07], we segmented the nucleus of each cell by a Chan-Vese
segmentation algorithm [CV01] and subsequently we measured the distribution of hi-
stones in the individual concentric shells in the cell nucleus [Cre+04]. To validate the
proposed method, we artificially generated several types of radial distributions inside
a sphere and measured the results of our method.

Edge detection in highly textured microscopy data. During my half-year stay at
Manchester Metropolitan University (MMU) in the UK, I collaborated on testing the
statistics-based edge detectors. We studied the properties of these filters and tried to
identify the most suitable filters for edge detection of highly textured biomedical im-
ages [Svo+06; WBS14]. We namely focused on the goodness-of-fit two sample tests
including: Fisher test, Student’s t-test, Mann Whitey U test, Kolomogorov-Smironov
test, χ2 test, and Difference of boxes. For sufficiently large filter masks utilized during
the edge detection, the Kolmogorov-Smirnov and χ2 tests overcame all the others.

Image restoration. The deconvolution plays an important role in the preprocessing
step when manipulating with the image acquired using on optical microscope. In order
to speed up the deconvolution process, which is commonly known to be the long-
lasting process, we tried to utilize the GPU architecture. For this purpose, we designed
a parallel modification of the most common deconvolution algorithms (Wiener, ICTM,
EM-MLE) [KKS13].

Image classification. In 2013, we participated the HEp-2 Cells Classification Contest as-
sociated with International Conference on Pattern Recognition. The aim of this contest
was to design and implement the classifier that is able to categorize pre-segmented 2D
images of HEp-2 cells into 6 classes to detect autoimmune diseases which correspond
to different cell patterns. For this purpose we designed an engine consisting of the fol-
lowing set of image descriptors: Haralick features, Local Binary Patterns, SIFT, surface
descriptor and a granulometry-based descriptor. The final classification was based on
k-NN classifier [SMS14]. In this contest, we achieved 7th place out of 28. In the follow-
ing years, we continued in the development of the proposed classification method and
extended the classifier to also work with 3D image data.
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Articles in collection

• David Svoboda and Pavel Matula. “Tissue Reconstruction Based on Deformation
of Dual Simplex Meshes”. In: DGCI. ed. by S. Svensson I. Nyström G. S. di Baja.
Vol. 2886. LNCS. ISBN 3-540-20499-7. Springer – Berlin, Heidelberg, New York,
2003, pp. 524–533

I invented the method and wrote the paper.

• Magdalena Skalnı́ková et al. “Distinct Patterns of Histone Methylation and Acety-
lation in Human Interphase Nuclei”. In: Physiological Research 56.6 (2007), pp. 797–
806

I co-invented the image analysis method applied to the microscopy data acquired and
processed in the paper. I edited the paper.

• Roman Stoklasa, Tomáš Majtner, and David Svoboda. “Efficient k-NN Based
HEp-2 Cells Classifier”. In: Pattern Recognition 47.7 (2014), pp. 2409 –2418. ISSN:
0031-3203

I collaborated on the method design and edited the paper.

• Ian Williams, Nicholas Bowring, and David Svoboda. “A Performance Evalu-
ation of Statistical Tests for Edge Detection in Textured Images”. In: Computer
Vision and Image Understanding 122 (2014), pp. 115 –130. ISSN: 1077-3142

I analyzed the reviewed methods and wrote the paper.

• Pavel Karas, Michal Kuderjavý, and David Svoboda. “Deconvolution of Huge
3D Images: Parallelization Strategies on a Multi-GPU System”. In: Algorithms
and Architectures for Parallel Processing. Ed. by Joanna Kołodziej et al. Vol. 8285.
Lecture Notes in Computer Science. Springer International Publishing, 2013,
pp. 279–290. ISBN: 978-3-319-03858-2

I edited the paper and prepared the data for testing the individual methods.
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Chapter 3

Optimization of Convolution

The standard simulation process in the field of biomedical imaging can be split into
three consecutive phases: phantom generation, simulation of optical system, and sim-
ulation of acquisition device. Even though the convolution is extensively used also
in the first phase, when generating the individual objects including their localization
within the space, the most clearly the convolution is employed in the second phase,
when modeling the transmission of the image through the optical system. As the pro-
cessed 3D image is typically of a large size (1024×1024×60 voxels) and likewise the
experimental point spread function (PSF), the standard implementation of convolution
would take a long time. Vice versa, the use of fast implementations based on Fourier
transform requires extensive memory usage. The research on this topic tries to find
some sort of compromise.

3.1 CPU

The combination the overlap-and-add and overlap-and-save approaches [OS75] together
with fast convolution (computed in the Fourier spectrum) was found to be an optimal
solution both for time and spatial complexity [Svo11]. In this paper, both image and
convolution kernel were split into several regular pieces (tiles) to lower to spatial com-
plexity. The splitting process was however controlled to avoid excessive requirements
put on the computational power. The paper shows that if both image and kernel are
D-dimensional cubes MD and ND, respectively, and the tiling process splits the image
into m tiles and kernel into n tiles we need to perform in total

(Mn+Nm)D
[
9

2
log2

(
M

m
+
N

n

)D

+ 1

]
(3.1)

multiplications and the spatial complexity drops to:(
M

m
+
N

n

)
· C (3.2)
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Figure 3.1: A graph offering the comparison of the most common implementations of
convolution and the new approach. Evaluated over two 3D images of identical size on
Intel Xeon QuadCore 2.83 GHz computer with 32 GB RAM. Take note, that ITK and
Matlab plots finish earlier as the computation for the images of large dimensions failed
due to the lack of memory.

We showed that the optimal solution occurs, when m and n are minimized and equal
to each other. The proposed algorithm outperformed the standard implementations of
convolution (see Fig. 3.1).

3.2 GPU

In order to further increase the speed of computation of convolution, we focused on
GPU programming. Even though the GPU can work in parallel and can perform a
large amount of instruction per second, it was not originally designed to handle with
large memory blocks. For this purpose, our research was not purely focused on imple-
menting the standard convolution on GPU. We employed the decimation in frequency
(DIF) algorithm and carefully manipulated with the memory blocks to eliminate the
latency and waiting [KS11; KSZ12]. All the conclusions in terms of optimal design of
convolution algorithm both on CPU and GPU are gathered in the book chapter [KS13].

Articles in collection

• David Svoboda. “Efficient Computation of Convolution of Huge Images”. In:
Proceedings of the 16th Int. Conference on ICIAP. ICIAP’11. Berlin, Heidelberg:
Springer-Verlag, 2011, pp. 453–462. ISBN: 978-3-642-24084-3

I am the sole author of this paper.
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• Pavel Karas and David Svoboda. “Convolution of Large 3D Images on GPU and
its Decomposition”. In: EURASIP Journal on Advances in Signal Processing 2011.1,
120 (2011)

I co-inveneted the method and wrote the paper.

• Pavel Karas, David Svoboda, and Pavel Zemčı́k. “GPU Optimization of Con-
volution for Large 3-D Real Images”. In: Advanced Concepts for Intelligent Vision
Systems. Ed. by Jacques Blanc-Talon et al. Vol. 7517. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2012, pp. 59–71. ISBN: 978-3-642-33139-8

I prepared the image data for testing the method and edited the paper.
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Chapter 4

Texture Analysis

The computer generated data together with their annotation (ground truth) help with
validating and testing the newly introduced image analysis methods. However, before
using such data, one should submit such dataset to the criticism whether it corresponds
to some real image dataset. For this reason, both datasets (the real as well as the syn-
thetic one) are commonly submitted to selected set of measures and the results of these
measurements are compared to reveal either the difference or the conformity. The most
commonly employed measurements are the texture descriptors.

4.1 Texture descriptors

In the years 2009-2010, I supervised the bachelor thesis Texture descriptors for biomedical
image data, in which the fully 3D biomedical data (two cell lines) were analyzed using
3D Haralick and Zernike descriptors. In master thesis Application of MPEG-7 descriptors
when analyzing 3D biomedical image data, which I supervised in the years 2012-2013, the
student proposed the extension of standard MPEG-7 descriptors to allow the analy-
sis of volumetric data. In parallel to these results, I co-supervised one PhD student,
who focused his studies and research on texture-based image descriptors in fluores-
cence microscopy. Our first team cooperation resulted in the paper [MS12], where
we allowed the three standard Tamura features (coarseness, contrast, and directional-
ity) [TMY78] to work also with 3D image data.

Later, we participated in the HEp2-cell classification contest, for which we designed
a hand-tailored texture descriptor called RSurf [MSS14]. This descriptor analyzes the
gradient changes along given set of directions. It is highly sensitive to small changes in
the image texture while less sensitive to image rotation. This property makes it suitable
for the analysis of selected cell line without need for rotating each cell into the standard
position.

In the last study, we successfully analyzed the classification power of the 3D Ga-
bor descriptor and 3D MPEG-7 edge histogram descriptor when applied on selected
microscopy images [MS14].

11



(a) (b)

Figure 4.1: Quantile-quantile plots illustrate whether the measured datasets come from
populations with similar distributions. If two sample sets come from a population
with the same distribution, the points should fall approximately along the reference
line y = x: (a) sample sets follow nearly the same distribution, (b) sample sets differ.

4.2 Similarity search

All the texture descriptors mentioned above bring an important information about the
analyzed images, regardless they were withdrawn form the real or synthetic datasets.
However, there are many numbers describing these images (typically grouped into
long feature vectors) and it is difficult to clearly judge, whether the datasets differ or
not. For this purpose, the computed descriptors are further submitted to some statis-
tical methods. These should be able to clearly either approve or reject the similarity
of the datasets. The common statistics include QQ-plots and two-sample goodness-of-fit
tests. Both methods analyze the distribution of the inspected sample sets. The first
technique shows their similarity by plotting their quantiles against each other in the
graph (see Fig. 4.1). The second technique accepts or rejects the hypothesis that the
two sample sets come from the same distribution, i.e. the output is one (binary) num-
ber. We employed both methods in our research to validate the plausibility of our
computer generated data [SKS09; SHS11; SU16].

12



Articles in collection

• Tomáš Majtner and David Svoboda. “Extension of Tamura Texture Features for
3D Fluorescence Microscopy”. In: 3D Imaging, Modeling, Processing, Visualiza-
tion and Transmission (3DIMPVT), 2012 Second International Conference on. 2012,
pp. 301–307

I collaborated on the method design and edited the paper.

• Tomáš Majtner, Roman Stoklasa, and David Svoboda. “RSURF – The Efficient
Texture-Based Descriptor for Fluorescence Microscopy Images of HEP-2 Cells”.
In: Pattern Recognition (ICPR), 2014 22nd International Conference on. 2014, pp. 1194–
1199

I collaborated on the method design and edited the paper.

• Tomáš Majtner and David Svoboda. “Texture Analysis Using 3D Gabor Features
and 3D MPEG-7 Edge Histogram Descriptor in Fluorescence Microscopy”. In:
3D Imaging (IC3D), 2014 International Conference on. 2014, pp. 1–7

I collaborated on the method design and edited the paper.
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Chapter 5

Simulations

In the last few years, the field of biomedical imaging increasingly utilizes the advan-
tages of simulations. The significance of simulations lies in two main aspects. First, the
synthetic, computer generated, data help to measure the quality of newly developed
image analysis methods. These methods include, for example, cell segmentation, cell
tracking, image deconvolution, object measurements, etc. Even though, the method
can be benchmarked with traditionally accessible human-annotated real image data,
the synthetic data can be easily generated in larger quantities. Moreover, the synthetic
datasets are fully accompanied by the ground truth data, which is not the case of real
data. Second, when studying the dynamic processes in living cells, the simulations can
help to understand some events, that are difficult to detect or repeat.

In biomedical imaging community, the pivotal study introducing the basic ideas for
simulating the large cell populations appeared in 2007 [Leh+07]. This study focused
on the main tasks that need to be solved when generating synthetic microscopy image
data. The authors explained in detail the principles of generating the cell shape and in-
ternal structure. They also imitated the image degradation caused by the imperfections
of the optical system. This study was however focused on 2D imaging only.

5.1 Fixed cells

In our paper from the same year [Svo+07], we adopted the main principles from [Leh+07]
and created our own simulation framework. Additionally, we introduced the manip-
ulation with fully 3D data and described in detail some selected image degradation
phenomena, including uneven illumination, photon shot noise, and noise produced
by the signal amplifier. This study was further extended two years later [SKS09] with
several principal modifications. First of all, the three phase simulation model was intro-
duced (see Fig. 5.1). The first phase called CytoGen generates the phantoms of studied
cell line. Here, we generated nuclei of HL-60 or granulocytes. This phase creates the
image, as it would appear in the objective, if there were no phenomena influencing the
final image. The second phase, called OptiGen imitates the existing optical system (mi-
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(a) (b) (c)

Figure 5.1: Three-phase model of simulations: (a) during the first phase the phantom
of an object, that should be synthesized, is prepared, (b) the second phase transmits
the image of the phantom, generated in the previous step, through the virtual optical
system, (c) the transmitted signal is acquired using the virtual acquisition device. Each
3D figure consists of three individual images: the top-left image contains a selected xy-
slice, the top-right image corresponds to a selected yz-slice, and the bottom one depicts
a selected xz-slice. Three mutually orthogonal slice planes are shown with green ticks.

croscope, objective, excitation and emission filters) and its behavior. Here, the image is
typically convolved with some either experimental or theoretical point spread function
(PSF) and further modified by simulating the uneven illumination or other important
phenomena. Finally, the third phase, called AcquiGen, is responsible for simulation of
selected acquisition device. In particular, we modeled the behavior of CCD camera,
including the standard sources of noise (photon shot noise, dark current noise, and
white additive noise produced by an amplifier). The three phase model can be how-
ever identified also in other modalities. The camera can be substituted with ultrasound
receiver/transmitter or CT scanner, for example. The proposed framework has already
been implemented and offered for public use as a web-based service called CytoPacq1.

In order to extend the capabilities of CytoPacq, we included a new type of cell
that can be generated in silico. We focused on tightly connected cell colonies – the
cells forming the villi of human colon tissues [SHS11] (see Fig. 5.2). When generating
the cells forming the colon villi, we initiated the basic structure as a slightly deformed
cylinder with randomly generated points on its surface. These points became the seeds
for 3D Voronoi regions defining the shape of individual cells. The research group from
University of Warwick adopted this principle few year later in [KSR16].

1http://cbia.fi.muni.cz/simulator/
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(a) (b)

Figure 5.2: An example of computer generated fully 3D image of healthy human colon
tissue: (a) final synthetic image as it would appear if acquired using real optical micro-
scope, (b) ground truth mask suitable for segmentation purposes.

5.2 Living cells

So far, all the generated synthetic data have represented the fixed (dead) cells. In 2012,
we published our first study [SU12] explaining how to simply move with the inter-
phase cells. The motility of such generated cells included simply a rotation, shift and
slight deformation. This study became a cornerstone for the activities coming in the
following years when we agreed to co-organize the 1st, 2nd, and 3rd edition of Cell
Tracking Challenge (CTC) associated with IEEE International Symposium on Biomed-
ical Imaging. As co-organizers, we were responsible for the preparation of the syn-
thetic lapse-lapse image data sequences imitating the life of the whole cell population.
Our participation in CTC was concluded in the journal paper [Ma14], where the whole
challenge, including the significance of synthetic data, was described in detail.

In order to control the formation of clusters of synthetic cells in the generated
dataset and to improve the visual plausibility of the initial cell population, we re-
designed the former algorithm randomly distributing cells across the microscope slide
already incorporated in CytoPacq. The new algorithm brought a possibility to control
the clustering effect (see Fig. 5.3) in the generated cell population [SU13].

The simulated time-lapse sequence did not however contain all the standard visu-
ally perceivable artifacts. In the following research, we focused on proper modeling
of particular phenomena that influence the visual appearance for the image sequences
acquired on the real microscope. In particular, we focused on photobleaching [Svo+14]
(also known as fading), which is a photochemical alteration of any dye incapable of
permanently and constantly fluoresce. In order to further improve the visual appear-
ance of internal nucleus structure, we studied the biologically motivated models of
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(a) (b)

Figure 5.3: Different levels of clustering within the initial cell population: (a) 50%, (b)
100%. Each 3D figure consists of three individual images: the top-left image contains a
selected xy-slice, the top-right image corresponds to a selected yz-slice, and the bottom
one depicts a selected xz-slice. Three mutually orthogonal slice planes are shown with
green ticks.

DNA [Str+00] and decided to utilize the so called free joint chain model (FJC) [SUP15].
The upcoming simulation of living cells including the mitotic division however re-

quired the design of a more complex model. For this reason, we proposed a new model
describing also mitotic division (see Fig. 5.4), cell motility, and mutual cell interactions
that commonly occur in cell populations [SU16]. The model was realized as a soft-
ware framework called MitoGen2. The data produced by MitoGen were included in
the benchmark dataset utilized in CTC (2013–2015).

5.3 Living tissues

Initially, our first synthetic images contained only single cells or small clusters. Later
on the time-lapse sequences prepared for CTC, for example, have already contained
the clusters with the tens of cells. Our ambition was to generate the time-lapse image
sequences containing hundreds for cells in order to simulate the would healing or liv-
ing tissues. The preliminary results in [UOS15; Svo+16] show that this task is feasible.

2http://cbia.fi.muni.cz/projects/mitogen.html
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Figure 5.4: One cell cycle of a sample synthetic (computer generated) cell presented
using the sequence of 2D z-slices and a spatio-temporal image. The most important
phases of the cell cycle are visualized and accordingly marked with red arrows. Fol-
lowing the sequence (left to right), we can recognize the particular phases: (a) G2-phase
in which the chromatin is uncoiled; (b) Prophase when the chromatin condensates; (c)
Metaphase during which chromosomes form the metaphase plate; (d) Anaphase when
the genetic material is split into two; (e) Telophase and Cytokinesis in which two new
daughter cells appear; (f) G1-phase when the new cell grows; and (g) S-phase when
DNA is replicated.

5.4 Benchmark datasets

The production of synthetic image data as well as annotated real images is not the only
objective. The main aim is to establish publicly available and acceptable collection of
images along with their ground truth. The research groups need not waste their time
by preparing new annotated real and synthetic datasets. They can simply use the data
that have already been prepared, validated and accepted by the community.

In the last decade, several benchmark datasets appeared to facilitate the research
to those, who develop the image analysis algorithm, including segmentation, tracking,
restoration, or classification. These datasets are published on the Internet and freely
available. The most common collections include:

• Broad Bioimage Benchmark Collection3

3https://data.broadinstitute.org/bbbc/image_sets.html
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• UCSB Bio-Segmentation Benchmark dataset4

• Murphy Lab5

As a complement to the above mentioned data collections that contain mainly the real
annotated data, there are also the collections focused primarily on the synthetic images:

• SIMCEP dataset6

• Masaryk University Cell Image Collection (MUCIC)7.

The last mentioned one is the collection we prepared in Centre for Biomedical Image
Analysis (CBIA) at Faculty of Informatics MU. Currently, this collection contains five
cellular datasets with the following features:

• HL-60 cell line (fixed cells) . . . This dataset contains 30 synthetic images of nu-
clei of HL-60 cell line including ground truth (foreground/background) images.
Each image set contains 20 cell nuclei with specified probability of clustering (0%,
25%, 50%, and 75%). The two levels of SNR are available. In total, there are 240
3D images.

• Granulocytes (fixed cells) . . . This dataset contains 30 synthetic images of nuclei
of granulocytes including ground truth (foreground/background) images. Each
image set contains up to 15 cell nuclei. In total, there are 60 3D images.

• Colon tissues (fixed cells) . . . This dataset contains 30 synthetic images of human
colon tissue including ground truth (foreground/background) images. In total,
there are 60 3D images.

• HL-60 cell line (population of living cells) . . . This dataset contains six computer
generated time-lapse image sequences of nuclei of HL-60 cells. The sequences
are created as a combination of different levels of noise, different levels of syn-
chronization of cells in the population, the various cell density of the initial cell
population, the various number of cells leaving and entering the field of view
and the various number of simulated mitotic events, yielding up to 70 cells in the
field of view.

• Endothelial cells (living cells) . . . This dataset contains one sequence of frames
recording the process called vasculogenesis. The endothelial cells, initially spread
across the glass slide, tend to attach each other and form the networks with thin
and elongated chords. There is just one sequence of synthetic 2D images.

4http://bioimage.ucsb.edu/research/bio-segmentation
5http://murphylab.cbi.cmu.edu/data/
6http://www.cs.tut.fi/sgn/csb/simcep/benchmark/
7http://cbai.fi.muni.cz/datasets/
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Articles in collection

• David Svoboda et al. “On Simulating 3D Fluorescent Microscope Images.” In:
CAIP. ed. by W. G. Kropatsch, M. Kampel, and A. Hanbury. Vol. 4673. LNCS.
Springer, 2007, pp. 309–316

I co-invented the method and wrote the paper.

• David Svoboda, Michal Kozubek, and Stanislav Stejskal. “Generation of Digital
Phantoms of Cell Nuclei and Simulation of Image Formation in 3D Image Cy-
tometry”. In: Cytometry part A 75A.6 (2009), 494–509. ISSN: 1552-4922

I co-invented the method and wrote the paper.

• David Svoboda, Ondřej Homola, and Stanislav Stejskal. “Generation of 3D Digi-
tal Phantoms of Colon Tissue”. In: Proc. of the 8th Int. Conference on Image Analysis
and Recognition, ICIAR 2011. Vol. 6754. LNCS. Springer, 2011, pp. 31–39

I co-invented the method and wrote the paper.

• David Svoboda and Vladimı́r Ulman. “Towards a Realistic Distribution of Cells
in Synthetically Generated 3D Cell Populations”. In: Proceedings of 17th Interna-
tional Conference on Image Analysis and Processing. Vol. 8157. LNCS. Springer, 2013,
pp. 429–438

I co-invented the method and wrote the paper.

• David Svoboda et al. “On Proper Simulation of Phenomena Influencing Image
Formation in Fluorescence Microscopy”. In: 2014 IEEE International Conference on
Image Processing (ICIP). 2014, pp. 3944–3948

I co-invented the method and wrote the paper.

• Martin Maška et al. “A Benchmark for Comparison of Cell Tracking Algorithms”.
In: Bioinformatics 30.11 (2014), pp. 1609–1617

I prepared the synthetic image data for the challenge and edited the paper.

• David Svoboda, Vladimı́r Ulman, and Igor Peterlı́k. “On Proper Simulation of
Chromatin Structure in Static Images As Well As in Time-Lapse Sequences in
Fluorescence Microscopy”. In: Proceedings of 2015 IEEE International Symposium
on Biomedical Imaging. Stoughton (WI, USA): Engineering in Medicine and Biol-
ogy Society, 2015, pp. 712–716. ISBN: 978-1-4799-2375-5

I co-invented the method and wrote the paper.

• David Svoboda et al. “Vascular Network Formation in Silico Using the Extended
Cellular Potts Model”. In: 2016 IEEE International Conference on Image Processing
(ICIP). Signal Processing Society, 2016, pp. 3180–3183. ISBN: 978-1-4673-9961-6

I co-invented the method and wrote the paper.
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• David Svoboda and Vladimı́r Ulman. “MitoGen: A Framework for Generat-
ing 3D Synthetic Time-Lapse Sequences of Cell Populations in Fluorescence Mi-
croscopy”. In: IEEE Transactions on Medical Imaging (2016). in press

I co-invented the method and wrote the paper.
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Chapter 6

Conclusion

In this thesis, I have presented my research contribution to the progress within the area
of image-based simulations in fluorescence microscopy. I have also mentioned areas
of connected work relating to simulations and synthetic data creation. The individual
research contributions were described in detail in the selected representative articles I
have co-authored, which are also attached to this text1.

1The reprints of the articles are excluded from the public version of this thesis to avoid copyright
violation.
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Appendix A

Image Analysis

Conference paper [SM03]

• David Svoboda and Pavel Matula. “Tissue Reconstruction Based on Deformation
of Dual Simplex Meshes”. In: DGCI. ed. by S. Svensson I. Nyström G. S. di Baja.
Vol. 2886. LNCS. ISBN 3-540-20499-7. Springer – Berlin, Heidelberg, New York, 2003,
pp. 524–533

Abstract. A new semiautomatic method for tissue reconstruction based on deforma-
tion of a dual simplex mesh was developed. The method is suitable for specifically-
shaped objects. The method consists of three steps: the first step includes searching for
object markers, i. e. the approximate centre of each object is localized. The searching
procedure is based on careful analysis of object boundaries and on the assumption that
the analyzed objects are sphere-like shaped. The first contribution of the method is the
possibility to find the markers without choosing the particular objects by hand.

In the next step the surface of each object is reconstructed. The procedure is based
on the method for spherical object reconstruction presented in [MS01]. The method
was partially changed and was adapted to be more suitable for our purposes. The
problem of getting stuck in local minima was solved. In addition, the deformation
process was sped up.

The final step concerns quality evaluation: both of the first two steps are nearly
automatic, therefore the quality of their results should be measured.

Reference: http://dx.doi.org/10.1007/978-3-540-39966-7_49
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Journal paper [Ska+07]

• Magdalena Skalnı́ková et al. “Distinct Patterns of Histone Methylation and Acetyla-
tion in Human Interphase Nuclei”. In: Physiological Research 56.6 (2007), pp. 797–806

Abstract. To study 3D nuclear distributions of epigenetic histone modifications such
as H3(K9) acetylation, H3(K4) dimethylation, H3(K9) dimethylation, and H3(K27) tri-
methylation, and of histone methyltransferase Suv39H1, we used advanced image
analysis methods, combined with Nipkow disk confocal microscopy. Total fluores-
cence intensity and distributions of fluorescently labelled proteins were analyzed in
formaldehyde-fixed interphase nuclei. Our data showed reduced fluorescent signals of
H3(K9) acetylation and H3(K4) dimethylation (di-me) at the nuclear periphery, while
di-meH3(K9) was also abundant in chromatin regions closely associated with the nu-
clear envelope. Little overlapping (intermingling) was observed for di-meH3(K4) and
H3(K27) trimethylation (tri-me), and for di-meH3(K9) and Suv39H1. The histone mod-
ifications studied were absent in the nucleolar compartment with the exception of
H3(K9) dimethylation that was closely associated with perinucleolar regions which
are formed by centromeres of acrocentric chromosomes. Using immunocytochemistry,
no di-meH3(K4) but only dense di-meH3(K9) was found for the human acrocentric
chromosomes 14 and 22. The active X chromosome was observed to be partially acety-
lated, while the inactive X was more condensed, located in a very peripheral part of the
interphase nuclei, and lacked H3(K9) acetylation. Our results confirmed specific inter-
phase patterns of histone modifications within the interphase nuclei as well as within
their chromosome territories.

Reference: https://www.ncbi.nlm.nih.gov/pubmed/17298208
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Journal paper [SMS14]

• Roman Stoklasa, Tomáš Majtner, and David Svoboda. “Efficient k-NN Based HEp-2
Cells Classifier”. In: Pattern Recognition 47.7 (2014), pp. 2409 –2418. ISSN: 0031-3203

Abstract. Human Epithelial (HEp-2) cells are commonly used in the Indirect Im-
munofluorescence (IIF) tests to detect autoimmune diseases. The diagnosis consists
of searching and classification to specific patterns created by Anti-Nuclear Antibodies
(ANAs) in the patient serum. Evaluation of the IIF test is mostly done by humans,
which means that it is highly dependent on the experience and expertise of the physi-
cian. Therefore, a significant amount of research has been focused on the development
of computer aided diagnostic systems which could help with the analysis of images
from microscopes. This work deals with the design and development of HEp-2 cells
classifier. The classifier is able to categorize pre-segmented images of HEp-2 cells into
6 classes. The core of this engine consists of the following image descriptors: Haralick
features, Local Binary Patterns, SIFT, surface description and a granulometry-based
descriptor. These descriptors produce vectors that form metric spaces. k-NN classi-
fication is based on aggregated distance function which combines several features to-
gether. An extensive set of evaluations was performed on the publicly available MIVIA
HEp-2 images dataset which allows a direct comparison of our approach with other
solutions. The results show that our approach is one of the leading classifiers when
comparing with other participants in the HEp-2 Cells Classification Contest.

Reference: http://dx.doi.org/10.1016/j.patcog.2013.09.021

http://dx.doi.org/10.1016/j.patcog.2013.09.021


Journal paper [WBS14]

• Ian Williams, Nicholas Bowring, and David Svoboda. “A Performance Evaluation of
Statistical Tests for Edge Detection in Textured Images”. In: Computer Vision and Image
Understanding 122 (2014), pp. 115 –130. ISSN: 1077-3142

Abstract. This work presents an objective performance analysis of statistical tests
for edge detection which are suitable for textured or cluttered images. The tests are
subdivided into two-sample parametric and non-parametric tests and are applied us-
ing a dual-region based edge detector which analyses local image texture difference.
Through a series of experimental tests objective results are presented across a com-
prehensive dataset of images using a Pixel Correspondence Metric (PCM). The results
show that statistical tests can in many cases, outperform the Canny edge detection
method giving robust edge detection, accurate edge localisation and improved edge
connectivity throughout. A visual comparison of the tests is also presented using
representative images taken from typical textured histological data sets. The results
conclude that the non-parametric Chi-Square (χ2) and Kolmogorov-Smirnov (KS) sta-
tistical tests are the most robust edge detection tests where image statistical properties
cannot be assumed a priori or where intensity changes in the image are nonuniform
and that the parametric Difference of Boxes (DoB) test and the Student’s T-test are the
most suitable for intensity based edges. Conclusions and recommendations are finally
presented contrasting the tests and giving guidelines for their practical use while fi-
nally confirming which situations improved edge detection can be expected.

Reference: http://dx.doi.org/10.1016/j.cviu.2014.02.009
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Conference paper [KKS13]

• Pavel Karas, Michal Kuderjavý, and David Svoboda. “Deconvolution of Huge 3D
Images: Parallelization Strategies on a Multi-GPU System”. In: Algorithms and Archi-
tectures for Parallel Processing. Ed. by Joanna Kołodziej et al. Vol. 8285. Lecture Notes in
Computer Science. Springer International Publishing, 2013, pp. 279–290. ISBN: 978-3-
319-03858-2

Abstract. In this paper, we discuss strategies to parallelize selected deconvolution
methods on a multi-GPU system. We provide a comparison of several approaches to
split the deconvolution into subtasks while keeping the amount of costly data transfers
as low as possible, and propose own implementation of three deconvolution methods
which achieves up to 65× speedup over the CPU one. In the experimental part, we
analyse how the individual stages of the computation contribute to the overall com-
putation time as well as how the multi-GPU implementation scales in various setups.
Finally, we identify bottlenecks of the system.

Reference: http://dx.doi.org/10.1007/978-3-319-03859-9_24
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Appendix B

Optimization of Convolution

Conference paper [Svo11]

• David Svoboda. “Efficient Computation of Convolution of Huge Images”. In: Pro-
ceedings of the 16th Int. Conference on ICIAP. ICIAP’11. Berlin, Heidelberg: Springer-
Verlag, 2011, pp. 453–462. ISBN: 978-3-642-24084-3

Abstract. In image processing, convolution is a frequently used operation. It is an
important tool for performing basic image enhancement as well as sophisticated anal-
ysis. Naturally, due to its necessity and still continually increasing size of processed
image data there is a great demand for its efficient implementation. The fact is that
the slowest algorithms (that cannot be practically used) implementing the convolution
are capable of handling the data of arbitrary dimension and size. On the other hand,
the fastest algorithms have huge memory requirements and hence impose image size
limits. Regarding the convolution of huge images, which might be the subtask of some
more sophisticated algorithm, fast and correct solution is essential. In this paper, we
propose a fast algorithm implementing exact computation of the shift invariant convo-
lution over huge multi-dimensional image data.

Reference: http://dx.doi.org/10.1007/978-3-642-24085-0_47
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Journal paper [KS11]

• Pavel Karas and David Svoboda. “Convolution of Large 3D Images on GPU and
its Decomposition”. In: EURASIP Journal on Advances in Signal Processing 2011.1, 120
(2011)

Abstract. In this article, we propose a method for computing convolution of large 3D
images. The convolution is performed in a frequency domain using a convolution the-
orem. The algorithm is accelerated on a graphic card by means of the CUDA parallel
computing model. Convolution is decomposed in a frequency domain using the deci-
mation in frequency algorithm. We pay attention to keeping our approach efficient in
terms of both time and memory consumption and also in terms of memory transfers
between CPU and GPU which have a significant inuence on overall computational
time. We also study the implementation on multiple GPUs and compare the results
between the multi-GPU and multi-CPU implementations.

Reference: http://dx.doi.org/10.1186/1687-6180-2011-120

http://dx.doi.org/10.1186/1687-6180-2011-120


Conference paper [KSZ12]

• Pavel Karas, David Svoboda, and Pavel Zemčı́k. “GPU Optimization of Convolution
for Large 3-D Real Images”. In: Advanced Concepts for Intelligent Vision Systems. Ed. by
Jacques Blanc-Talon et al. Vol. 7517. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2012, pp. 59–71. ISBN: 978-3-642-33139-8

Abstract. In this paper, we propose a method for computing convolution of large 3D
images with respect to real signals. The convolution is performed in a frequency do-
main using a convolution theorem. Due to properties of real signals, the algorithm
can be optimized so that both time and the memory consumption are halved when
compared to complex signals of the same size. Convolution is decomposed in a fre-
quency domain using the decimation in frequency (DIF) algorithm. The algorithm is
accelerated on a graphics hardware by means of the CUDA parallel computing model,
achieving up to 10× speedup with a single GPU over an optimized implementation on
a quad-core CPU.

Reference: http://dx.doi.org/10.1007/978-3-642-33140-4_6
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Appendix C

Texture Analysis

Conference paper [MS12]

• Tomáš Majtner and David Svoboda. “Extension of Tamura Texture Features for 3D
Fluorescence Microscopy”. In: 3D Imaging, Modeling, Processing, Visualization and Trans-
mission (3DIMPVT), 2012 Second International Conference on. 2012, pp. 301–307

Abstract. The image descriptors are a very useful tool in the task of classification.
In biomedical image analysis, they may characterize either the shape or the internal
structure of studied objects. Both characteristics are very important. When analysing
cells, their shape is usually determined first. In the second step, their mask may be
used for the selection of the area where the texture descriptor should be applied. In
this paper, we are going to focus on the texture-based image descriptors called Tamura
features. For their basic properties, they seem to be a very promising tool applicable to
the biomedical image data. We will apply them to selected types of cell lines and test
how they perform. We will also introduce their extension to higher dimensions and
show that they give even better results than in the 2D case.

Reference: http://dx.doi.org/10.1109/3DIMPVT.2012.61
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Conference paper [MSS14]

• Tomáš Majtner, Roman Stoklasa, and David Svoboda. “RSURF – The Efficient Texture-
Based Descriptor for Fluorescence Microscopy Images of HEP-2 Cells”. In: Pattern
Recognition (ICPR), 2014 22nd International Conference on. 2014, pp. 1194–1199

Abstract. In biomedical image analysis, object description and classification tasks are
very common. Our work relates to the problem of classification of Human Epithelial
(HEp-2) cells. Since the crucial part of each classification process is the feature ex-
traction and selection, much attention should be concentrated to the development of
proper image descriptors. In this article, we introduce a new efficient texture-based im-
age descriptor for HEp-2 images. We compare proposed descriptor with LBP, Haralick
features (GLCM statistics) and Tamura features using the public MIVIA HEp-2 Images
Dataset. Our descriptor outperforms all previously mentioned approaches and the
kNN classifier based solely on the proposed descriptor achieve the accuracy as high as
91.1%.

Reference: http://dx.doi.org/10.1109/ICPR.2014.215
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Conference paper [MS14]

• Tomáš Majtner and David Svoboda. “Texture Analysis Using 3D Gabor Features and
3D MPEG-7 Edge Histogram Descriptor in Fluorescence Microscopy”. In: 3D Imaging
(IC3D), 2014 International Conference on. 2014, pp. 1–7

Abstract. The recognition of patterns with focus on texture and shape analysis is still
very hot topic, especially in biomedical image processing. In this article, we introduce
3D extensions of well-known approaches for this particular area. We focus on the col-
lection of MPEG-7 image descriptors, specifically on the Edge Histogram Descriptor
(EHD) and Gabor features, which are the core of the Homogeneous Texture Descrip-
tor (HTD). The proposed extensions are evaluated on the dataset consisting of three
classes of 3D volumetric biomedical images. Two different classifiers, namely k-NN
and Multi-Class SVM, are used to evaluate the proposed algorithms. According to the
presented tests, the proposed 3D extensions clearly outperform their 2D equivalents in
the classification tasks.

Reference: http://dx.doi.org/10.1109/IC3D.2014.7032576
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Appendix D

Simulations

Conference paper [Svo+07]

• David Svoboda et al. “On Simulating 3D Fluorescent Microscope Images.” In: CAIP.
ed. by W. G. Kropatsch, M. Kampel, and A. Hanbury. Vol. 4673. LNCS. Springer, 2007,
pp. 309–316

Abstract. In recent years many various biomedical image segmentation methods have
appeared. Though typically presented to be successful the majority of them was not
properly tested against ground truth images. The obvious way of testing the quality of
new segmentation was based on visual inspection by a specialist in the given field. The
novel 3D biomedical image data simulator is presented in this paper. It offers the re-
sults of high quality. The comparison of generated synthetic data is compared against
real image data using standard similarity techniques.

Reference: http://dx.doi.org/10.1007/978-3-540-74272-2_39
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Journal paper [SKS09]

• David Svoboda, Michal Kozubek, and Stanislav Stejskal. “Generation of Digital
Phantoms of Cell Nuclei and Simulation of Image Formation in 3D Image Cytometry”.
In: Cytometry part A 75A.6 (2009), 494–509. ISSN: 1552-4922

Abstract. Image cytometry still faces the problem of the quality of cell image analysis
results. Degradations caused by cell preparation, optics, and electronics considerably
affect most 2D and 3D cell image data acquired using optical microscopy. That is why
image processing algorithms applied to these data typically offer imprecise and un-
reliable results. As the ground truth for given image data is not available in most
experiments, the outputs of different image analysis methods can be neither verified
nor compared to each other. Some papers solve this problem partially with estimates of
ground truth by experts in the field (biologists or physicians). However, in many cases,
such a ground truth estimate is very subjective and strongly varies between different
experts. To overcome these difficulties, we have created a toolbox that can generate
3D digital phantoms of specific cellular components along with their corresponding
images degraded by specific optics and electronics. The user can then apply image
analysis methods to such simulated image data. The analysis results (such as segmen-
tation or measurement results) can be compared with ground truth derived from input
object digital phantoms (or measurements on them). In this way, image analysis meth-
ods can be compared with each other and their quality (based on the difference from
ground truth) can be computed. We have also evaluated the plausibility of the syn-
thetic images, measured by their similarity to real image data. We have tested several
similarity criteria such as visual comparison, intensity histograms, central moments,
frequency analysis, entropy, and 3D Haralick features. The results indicate a high de-
gree of similarity between real and simulated image data.

Reference: http://dx.doi.org/10.1002/cyto.a.20714
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Conference paper [SHS11]

• David Svoboda, Ondřej Homola, and Stanislav Stejskal. “Generation of 3D Digital
Phantoms of Colon Tissue”. In: Proc. of the 8th Int. Conference on Image Analysis and
Recognition, ICIAR 2011. Vol. 6754. LNCS. Springer, 2011, pp. 31–39

Abstract. Although segmentation of biomedical image data has been paid a lot of
attention for many years, this crucial task still meets the problem of the correctness
of the obtained results. Especially in the case of optical microscopy, the ground truth
(GT), which is a very important tool for the validation of image processing algorithms,
is not available.

We have developed a toolkit that generates fully 3D digital phantoms, that repre-
sent the structure of the studied biological objects. While former papers concentrated
on the modelling of isolated cells (such as blood cells), this work focuses on a repre-
sentative of tissue image type, namely human colon tissue. This phantom image can
be submitted to the engine that simulates the image acquisition process. Such syn-
thetic image can be further processed, e.g. deconvolved or segmented. The results
can be compared with the GT derived from the digital phantom and the quality of the
applied algorithm can be measured.

Reference: http://dx.doi.org/10.1007/978-3-642-21596-4_4
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Conference paper [SU13]

• David Svoboda and Vladimı́r Ulman. “Towards a Realistic Distribution of Cells in
Synthetically Generated 3D Cell Populations”. In: Proceedings of 17th International Con-
ference on Image Analysis and Processing. Vol. 8157. LNCS. Springer, 2013, pp. 429–438

Abstract. In fluorescence microscopy, the proper evaluation of image segmentation
algorithms is still an open problem. In the field of cell segmentation, such evaluation
can be seen as a study of the given algorithm how well it can discover individual cells
as a function of the number of them in an image (size of cell population), their mutual
positions (density of cell clusters), and the level of noise. Principally, there are two
approaches to the evaluation. One approach requires real input images and an expert
that verifies the segmentation results. This is, however, expert dependent and, namely
when handling 3D data, very tedious. The second approach uses synthetic images
with ground truth data to which the segmentation result is compared objectively. In
this paper, we propose a new method for generating synthetic 3D images showing
naturally distributed cell populations attached to microscope slide. Cell count and
clustering probability are user parameters of the method.

Reference: http://dx.doi.org/10.1007/978-3-642-41184-7_44
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Conference paper [Svo+14]

• David Svoboda et al. “On Proper Simulation of Phenomena Influencing Image For-
mation in Fluorescence Microscopy”. In: 2014 IEEE International Conference on Image
Processing (ICIP). 2014, pp. 3944–3948

Abstract. The simulation plays an important role in biomedical image analysis as
it can inherently provide large collections of image data with absolute ground truth.
Compared to real image data typically annotated by some expert, the computer gen-
erated data still lacks the authenticity due to the simplifications of various natural
phenomena. In this paper, we focus on simulating the photobleaching effect and the
uneven illumination, being simplified or even omitted from the majority of present
simulation toolkits, to considerably improve the authenticity of computer generated
data.

Reference: http://dx.doi.org/10.1109/ICIP.2014.7025801

http://dx.doi.org/10.1109/ICIP.2014.7025801


Conference paper [SUP15]

• David Svoboda, Vladimı́r Ulman, and Igor Peterlı́k. “On Proper Simulation of Chro-
matin Structure in Static Images As Well As in Time-Lapse Sequences in Fluorescence
Microscopy”. In: Proceedings of 2015 IEEE International Symposium on Biomedical Imag-
ing. Stoughton (WI, USA): Engineering in Medicine and Biology Society, 2015, pp. 712–
716. ISBN: 978-1-4799-2375-5

Abstract. In fluorescence microscopy, where the benchmark datasets for validating
the various image analysis methods are difficult to obtain, a great demand is either
for manually annotated real image data or for realistic computer generated ones. In
the last two decades, the latter case has become more and more accessible due to an
increasing computer capabilities. However, the development of elaborate models, es-
pecially in the field of fluorescence microscopy imaging, is less progressive. In this
paper, we propose a novel approach, based on well established concepts, to properly
imitate the structure of chromatin inside the interphase cell nucleus as well as its dy-
namics. The performance of the approach was quantitatively evaluated against the real
data. The results show that the produced images are sufficiently plausible and visually
resemble their real counter parts, both for fixed and living cells.

Reference: http://dx.doi.org/10.1109/ISBI.2015.7163972
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Journal paper [Ma14]

• Martin Maška et al. “A Benchmark for Comparison of Cell Tracking Algorithms”.
In: Bioinformatics 30.11 (2014), pp. 1609–1617

Abstract. Automatic tracking of cells in multidimensional time-lapse fluorescence
microscopy is an important task in many biomedical applications. A novel framework
for objective evaluation of cell tracking algorithms has been established under the aus-
pices of the IEEE International Symposium on Biomedical Imaging 2013 Cell Tracking
Challenge. In this article, we present the logistics, datasets, methods and results of the
challenge and lay down the principles for future uses of this benchmark.

The main contributions of the challenge include the creation of a comprehensive
video dataset repository and the definition of objective measures for comparison and
ranking of the algorithms. With this benchmark, six algorithms covering a variety of
segmentation and tracking paradigms have been compared and ranked based on their
performance on both synthetic and real datasets. Given the diversity of the datasets,
we do not declare a single winner of the challenge. Instead, we present and discuss the
results for each individual dataset separately.

Reference: http://dx.doi.org/10.1093/bioinformatics/btu080
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Conference paper [Svo+16]

• David Svoboda et al. “Vascular Network Formation in Silico Using the Extended
Cellular Potts Model”. In: 2016 IEEE International Conference on Image Processing (ICIP).
Signal Processing Society, 2016, pp. 3180–3183. ISBN: 978-1-4673-9961-6

Abstract. Cardiovascular diseases belong to the most widespread illnesses in the de-
veloped countries. Therefore, the regenerative medicine and tissue modeling appli-
cations are highly interested in studying the ability of endothelial cells, derived from
human stem cells, to form vascular networks. Several characteristics can be measured
on images of these networks and hence describe the quality of the endothelial cells.
With advances in the image processing, automatic analysis of these complex images
becomes increasingly common. In this study, we introduce a new graph structure
and additional constraints to the cellular Potts model, a framework commonly uti-
lized in computational biology. Our extension allows to generate visually plausible
synthetic image sequences of evolving fluorescently labeled vascular networks with
ground truth data. Such generated datasets can be subsequently used for testing and
validating methods employed for the analysis and measurement of the images of real
vascular networks.

Reference: http://dx.doi.org/10.1109/ICIP.2016.7532946
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Journal paper [SU16]

• David Svoboda and Vladimı́r Ulman. “MitoGen: A Framework for Generating 3D
Synthetic Time-Lapse Sequences of Cell Populations in Fluorescence Microscopy”. In:
IEEE Transactions on Medical Imaging (2016). in press

Abstract. The proper analysis of biological microscopy images is an important and
complex task. Therefore, it requires verification of all steps involved in the process,
including image segmentation and tracking algorithms. It is generally better to ver-
ify algorithms with computer-generated ground truth datasets, which, compared to
manually annotated data, nowadays have reached high quality and can be produced
in large quantities even for 3D time-lapse image sequences. Here, we propose a novel
framework, called MitoGen, which is capable of generating ground truth datasets with
fully 3D time-lapse sequences of synthetic fluorescence-stained cell populations. Mi-
toGen shows biologically justified cell motility, shape and texture changes as well as
cell divisions. Standard fluorescence microscopy phenomena such as photobleaching,
blur with real point spread function (PSF), and several types of noise, are simulated
to obtain realistic images. The MitoGen framework is scalable in both space and time.
MitoGen generates visually plausible data that shows good agreement with real data
in terms of image descriptors and mean square displacement (MSD) trajectory analy-
sis. Additionally, it is also shown in this paper that four publicly available segmenta-
tion and tracking algorithms exhibit similar performance on both real and MitoGen-
generated data. The implementation of MitoGen is freely available.

Reference: http://dx.doi.org/10.1109/TMI.2016.2606545
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