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Abstract

The development of high throughput techniques allows us the ex-
ploration of the biological samples at a scale never achieved before.
Only two decades ago, the bottleneck of biological discoveries was on
the experimental side. Today, it shifted on the analytical side and led
to more and more computational disciplines to be drawn into play.
The definition of bioinformatics nicely traces these evolutions: in the
beginning, it was seen as the application of computer programs to se-
quence alignment, protein structure prediction and virtual evolution,
while nowadays it is more of an umbrella term for a wide spectrum
of methods combining computer science, statistics, mathematics and
engineering with the goal of analyzing and interpreting biological
data.

The present thesis gathers twelve peer-reviewed journal articles
in the field of bioinformatics that are related to biomarker discovery
and validation. While the methods developed and employed are not
specific to any particular pathology, the majority of the results were
obtained in the field of oncology, particularly in the case of colon and
breast cancers. The articles reproduced here deal with various aspects
of biomarker discovery: (i) development of methods for gene expres-
sion data normalization with applications (Chapters 7, 14, 15); (ii)
classifiers for biomarker design and their applications (Chapters 8, 11,
17); (iii) general methodological aspects for biomarker discovery and
validation applied to problems in breast and colon cancers (Chap-
ters 9, 10, 13); and (iv) methods for histopathology image analysis in
the context of molecular data for proxy biomarker discovery (Chap-
ters 12, 16, 18). Naturally, this is an over-simplified view since each of
these articles is falling under several categories.

The thesis is written as a commentary to a collection of journal
articles with estimated personal contribution to each article varying
between 5% and 80%, for an average of about 40%.
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COMMENTARY





1 Introduction

The last years of the XX-th century witnessed a true technological rev-
olution in biology: the development of first DNA microarrays. They
represented a major step forward from the previous semi-quantitative
techniques as, for the first time, it was possible to measure the expres-
sion level of hundreds (and later, tens of thousands) of genes. The
biology was entering the high-throughput data generation era. The
first published results from expression profiling experiments were
extremely encouraging so, in the beginning, it was hoped that most
of the diseases with high impact (social and economic) would have
found a cure within a decade. Yet, twenty years later we still face the
same problems in predicting the outcome of a treatment or the like-
lihood of a cancer to metastasize, despite the tremendous develop-
ments during this period. With a few exceptions (e.g. BCR/ABL fu-
sion gene in chronic myelogenous leukemia has now a targeted treat-
ment with very good results), the large majority of cancers are still
treated with standard chemotherapy as half a century ago.

So what went wrong? Actually, nothing! As with any new tech-
nology of high impact, false hopes and plain naivety fooled us in be-
lieving that, finally, the holy grail of modern medicine - individual-
ized treatment - was within grasp. However, these new technologies
allowed us to gain insights into a totally new dimension of biology
that greatly expanded our knowledge - but also brought numerous
challenges in digesting the new types of data.

This thesis is about such challenges of extracting actionable gems
of knowledge from large collections of high-throughput genomic data
and their transformation into predictive and prognostic models. Ad-
ditionally, we discuss later development in integrating computational
pathology tools both for biomarker discover and for developing a
more comprehensive view of the disease of interest. A number of
methods for addressing these challenges are presented and discussed
and they represent a volume of work in bioinformatics spanning the
last decade.

It is clear that, today, the microarrays - the main technological
platform used throughout this work - are slowly fading away being
replaced by a more versatile technique - the RNASeq. Nevertheless,
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1. Introduction

the work and the results reviewed here remain valid since most of
the problems one has in building predictive/prognostic models are
the same for RNASeq: normalization, batch effects, validation, model
learnability and model interpretability. These aspects are addressed
in the various articles reproduced here (and in the corresponding
supplemental materials available online from the respective journals)
and they represent but a drop in the ocean of all the choices one is
presented when challenged to mine genomic data.

The expression of genes represents one facet of the biological re-
ality, many other perspectives could be added by considering the in-
formation at protein or epigenetic level, or even at a different scale
such that tissue or organism level (Figure 1.1). Ideally, all these data
would be taken into account when investigating a pathology but our
current ability of managing, mining and interpreting such complex
collections of data is still limited.

Figure 1.1: Data puzzle in biomarker discovery: a plethora of modali-
ties that each bring a different perspective on the investigated biolog-
ical phenomenon.

The rest of this first part starts with some background information
and a short overview of the technological aspects to facilitate the un-
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1. Introduction

derstanding of the subsequent discussions (Chapters 2,3). Then, the
next chapters are dedicated to commenting some aspects of biomarker
discovery from both gene expression and histopathology images (Chap-
ters 4,5). The discussion includes some additional results that were
not published but which may help enrich the reproduced articles. Fi-
nally, some concluding remarks are given in Chpater 6.
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2 Of DNA and gene expression

2.1 DNA and genetic information

The deoxyribonucleic acid (DNA) is a large molecule that encodes all the
biological information needed for the development and reproduction
of all living organisms. It is formed of a pair of strands inter-twined
in the so called double helix. The constitutive unit of this molecule is a
nucleotide - a monomer consisting of a nucleobase (one of the cytosine
(C), guanine (G), adenine (A) or thymine (T)), a sugar (deoxyribose)
and a phosphate group. The nucleotides are bound one to another
via the covalent links between sugars and phosphates which alter-
nate forming the sugar-phosphate backbone. The nucleobases of one
strand bind to the complementary ones from the opposite strand ac-
cording to base paring rules: C and G, A and T - thus the two strands
are said to be antiparallel. The process of base binding is called hy-
bridization (or annealing) and the opposite process, of de-coupling the
two strands is called denaturation (or melting).

The information is coded in the sequences of bases and it relates in
part to the production of various proteins or the regulation of various
processes. The molecular unit of transmission of hereditary informa-
tion is the gene - a variable-length sequence of bases. In humans, it is
estimated that the number of genes is somewhere between 20,000 and
25,000 and they are organized in 23 pairs of chromosomes. The central
dogma of the molecular biology provides a simplified workflow of in-
formation transmission within a biological system: "DNA is used to
produce ribonucleic acid (RNA) (transcription), RNA is used to pro-
duce proteins (translation)". However, there are many other informa-
tion flows that are not cover by this model, for example the methy-
lation processes which alter the gene expression levels. These main
flows of information at molecular level are depicted in Figure 2.2.

The DNA replication ensures the transmission of information from
parent to progeny and involves the replication of the DNA by a pro-
tein complex called replisome, usually in the S-phase of cell cycle.
DNA transcription is the process of producing messenger RNA (mRNA)
from a segment of DNA by RNA polymerases, mainly under the con-
trol of various transcription factors. After some post-trasncription mod-
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2. Of DNA and gene expression
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Figure 2.1: Schematic representation of the DNA molecule. Adapted
from https://en.wikipedia.org/wiki/Nucleic_acid

Replication

Transcription

Translation

DNA

RNA

protein

Figure 2.2: A very schematic representation of the main information
flow according to the central dogma
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2. Of DNA and gene expression

ifications (most notably alternate splicing) of precursors of mRNA,
the mRNA is externalized from the nucleus and its translation takes
place in ribosomes leading to the production of polypeptides that,
after further processing, will finally result in proteins.

This overly simplified description of the information flow at molec-
ular level provides the basis for understanding the interest of mea-
suring the gene expression levels: in general, it is assumed that the
amount of mRNA produced from various genes can be equated to
gene expression levels and is proportional with the amount of protein
products resulting. Thus, the key of the whole process is the reliable
estimation of the amount of specific mRNA sequences.

2.2 DNA microarrays

The DNA microarray technology has its roots in electrophoresis meth-
ods for the detection of known DNA sequences (Southern blotting)
and dates back from the last decades of the twentieth century. It con-
sists in challenging a set of target DNA fragments with a series of
known (complementary) DNA sequences and measuring the abun-
dance of the resulting bound molecules, which is usually obtained
as the intensity of some electrical signal. In general, the DNA (mi-
cro)array is a substrate (nylon membrane, glass or plastic) on which a
number of single stranded DNA fragments of known length and se-
quence are deposited. On this, the properly prepared single stranded
target DNA (or RNA) is "washed over" with the intent of having the
fragments of target DNA attaching to the the probes (hybridizing)
and thus allowing the quantification of their abundance levels (Fig-
ure 2.3). While, in theory, this approach should allow a precise quan-
tification of gene expression levels (as abundance of specific sequences),
many factors influence the quality of the final measurements, start-
ing from microarray design (including the selection of probes and
their distribution over the microarray surface) and sample prepara-
tion (quality of the extracted DNA/RNA, chemical agents, amplifi-
cation protocol, etc), to the data preprocessing methods (normaliza-
tion, batch effects removal, etc.). An exhaustive presentation of this
subject is beyond the scope of the present dissertation, but we will
briefly present the data generation process on an Affymetrix (http:
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2. Of DNA and gene expression

substrate

probes

target (sample)

Figure 2.3: The core principle of gene expression level measuring.

//www.affymetrix.com) platform, which became the de facto standard
for microarray experiments.

We will exemplify the experimental protocol for the Affymetrix
Gene Chip HG-133 Plus 2.0 array. The array contains 1,300,000 unique
nucleotide probes (features, of length 25 nucleotides) targeting more
than 47,000 transcripts and variants representing about 39,000 human
genes (and candidate genes). A characteristic of the Affymetrix ar-
rays is the use of probe pairs: for each target sequence there is a pair
of probes designed such that one matches perfectly the target (per-
fect match probe: PM) while the second one has a single nucleotide
mismatched (mismatch probe: MM) and is supposed to be used as a
negative control to improve the specificity of the measurements. In
this array, there are 11 pairs of probes for each sequence, forming a
probeset. As a side remark, we note that in the latest versions of ana-
lytical protocols, these MM probes are no longer used.

A hybridization experiment (Figure 2.4) involves the following
main steps1:
1. isolation and quantitation of total RNA from the sample

2. reverse transcription to obtain complementary cDNA

1. see the technical manual at https://assets.thermofisher.com/TFS-Assets/
LSG/manuals/expression_analysis_technical_manual.pdf
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2. Of DNA and gene expression

Figure 2.4: Overview of a hibridization experiment on an Affymetrix
platform (from [25])

3. transcription and labeling to complementary RNA cRNA, fol-
lowed by

4. fragmentation (by sonication) to obtain short single stranded
RNA segments

5. the RNA segments are hybridized on the array and, after wash-
ing it, the raw transcript abundance is obtained as the intensity
signal in a scanned image.

Each of these steps has an influence on the final result and a devia-
tion from the protocol may lead to errors that are difficult to detect.
As a consequence, aside from following standardized protocols, one
has to resort to a number of preprocessing data manipulation and
preliminary analyses before data can be considered clean enough for
proper analysis. Another consequence is that simply combining data
from different protocols is normally not possible due to strong effects
introduced in data generation step by individual laboratories (even
technicians) and a batch effect removal step is mandatory.
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2. Of DNA and gene expression

Before concluding this chapter, we note that the quality of the orig-
inal RNA extracted from the biological sample is equally important.
Most notably, the fixation of the biological specimens in formalin and
paraffin blocks leads to a degradation of the genetic material. Spe-
cial protocols need to be devised for such cases, protocols that are
accompanied by specific computational methods for data normaliza-
tion (see Sections 7, 14 and 15 in the present dissertation).
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3 Gene expression data preprocessing

Due to the technical variations in gene expression level measurements,
their direct analysis is posed to fail. To cope with various artifacts in-
troduced by the experimental conditions and to enhance the signal,
various preprocessing steps are needed. It is hoped that after the pre-
processing, most of the "true" signal is preserved while the noise is
reduced, making the measurements comparable across the samples
and, if possible, across experiments.

The preprocessing of microarray experimental data is usually tai-
lored to the platform and many alternative paths are available. The
question of choosing the "right" preprocessing pipeline has received
considerable attention from the beginning (see, for example [3, 2]) but
no definite answer was given. Nevertheless, through experimentation
and learning from earlier failures, standard preprocessing workflows
emerged for major platforms. Since in almost all the examples dis-
cussed in the present dissertation the Affymetrix platform is used (or
its derivatives), we will briefly review the main steps for data pre-
processing and curation for analysis. One has to bear in mind that
while a lot of these preprocessing steps can be (and are) automatized,
the detection of abnormalities relies in many cases on manual inspec-
tion and ad hoc judgement.

3.1 Data acquisition and background correction

As mentioned, for the Affymetrix plaform (as for the majority of mi-
croarray platforms), the initial raw data is obtained by scanning the
microarrays and quantifying the intensity of the light at each probe
location (see Figure 3.1). The amplitude of the signal is given by the
quantizer (scanner) and is typically between 0 and 216 − 1 (for a 16 bit
quantizer). From Figure 3.1 it is apparent that the signal is affected by
both systematic (while the probes are distributed randomly on the ar-
ray, the images show a clear stripe pattern of lower intensities which
may be attributed to the scanner) and random noise (darker or lighter
spots, in the image indicated by white arrows). The background cor-
rection has the purpose of removing the systematic noise and per-
forms a locally weighted adaptive background estimation (e.g. 2-percentile

13



3. Gene expression data preprocessing

Figure 3.1: An example of scanned Affymetrix microarrays. The yel-
low circles indicate control spots while the white arrows indicate ar-
tifacts. (adapted from [28]).

14



3. Gene expression data preprocessing

of the signal intensity in the local neighborhood) and subtraction.

3.2 Signal estimation at probeset level

The goal of this step is to estimate gene (more precisely, probeset)-
specific intensity values as a proxy for the amount of transcript in
the sample. As mentioned, the Affymetrix microarrays use a pair of
probes - perfect match (PM) and mismatch (MM) - in an attempt to
improve the specificity of the signal by subtracting an estimate of
unspecific hybridization (non targeted molecules that, nevertheless,
bind to the probe). The estimates of these quantities are based on
robust statistics (like Tukey’s biweight estimate). Once they are es-
timated, for each probeset an average difference is used as the final
signal intensity estimate and a scaling step is used to ensure that the
signal is comparable across arrays. This signal estimation procedure
is the one initially proposed by Affymetrix and implemented in their
MAS5 normalization method.

We noted already that the use of MM probes has been discontin-
ued in the later versions of various preprocessing methods, mainly
because experience has shown that MM probes are unreliable and
often have higher intensities than the PM probes. This observation
led to the development of alternative probeset-level signal estima-
tors such as those implemented in RMA (log-scale robust multi-array
analysis), which tries to exploit the whole set of arrays in order to ob-
tain better estimates [12]. This method uses median polish iterative
procedure for obtaining the estimates of the probeset-level signals.

As a final step, it is customary to apply quantile normalization
over the whole batch of arrays in an experiment, in order to align
the distribution of the signal across all arrays. The justification of this
step comes from the observation that most of the genes are expressed
similarly across experimental conditions, with only a small fraction
being differentially expressed, hence it is reasonable to assume that the
overall distribution of signal intensities should not vary much across
arrays.

Aside from the MAS5 and RMA, a number of additional methods
have been proposed, but they did not reach the popularity of the two
mentioned here. For a comparison and discussion, see [11]. In the var-
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3. Gene expression data preprocessing

ious articles included in the last chapter of the present dissertation,
these two methods are used, with RMA being used in almost all the
cases.

One fundamental difference should be emphasized between the
MAS5 and RMA (and any other multi-array normalization method):
in contrast with MAS5, the multi-array methods estimate their pa-
rameters and the probeset-level signal by considering all available ar-
rays (i.e. all arrays with enough quality, see next section) and, thus, the
final result is influenced, at least theoretically, by each array in an ex-
periment. This observation has implications in evaluating the perfor-
mance of the predictive models, since any re-sampling method relies
on the assumption of independence between training and testing sets.
It is clear that, in order to enforce this independence, a proper perfor-
mance estimation procedure would repeat the normalization of each
training set and normalize the testing set using the parameters esti-
mated on the training set alone. This aspect will be later discussed in
Chapter 4 (and in Sections 9 and 10).

3.3 Quality control for Affymetrix microarrays

An essential step - actually a suite of steps applied at different stages
of data preprocessing - is the control of quality of the samples in-
cluded in analysis. We have already mentioned the visual inspection
of the scanned images (see Figure 3.1) which can help identifying ob-
viously defective arrays. However, as the number of arrays in an ex-
periment increases, this task becomes tedious in addition of being
subjective. To help providing a more quantitative measure of array
quality, different quality scores and coefficients have been proposed
along with guidelines for selecting the quality criteria. Still, depend-
ing of the type of experiment, these guidelines have to be adapted.
For example, in the case of profiling archival material (formalin fixed,
paraffin-embedded (FFPE)), it is expected that the overall intensity of
the signal is lower than in the case of fresh frozen material, due to the
degradation of the DNA. This aspect is addressed at several occasions
in the articles reproduced here – see Sections 11, 14 and 15.

Two main criteria are used to judge the quality of the individual
microarrays:
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3. Gene expression data preprocessing

• percentage of present calls (%PC): this is the main quality metrics
provided by Affymetrix from the earlier versions of their arrays
and is computed using Wilcoxon rank test to test whether sig-
nificantly more PMs have higher signal than their correspond-
ing MMs and produces a detection call (absent, present or marginal).
This method is implemented within the MAS5 normalization
procedure. For example, if an array has %PC below 80% than
one may choose to call it defective and remove it from further
processing.

• median normalized unscaled standard error (median NUSE) is the
procedure usually used in the context of RMA normalization
and relies on the estimation of the residuals from fitting a probe-
level model on all arrays in a batch. Briefly, the model assumes
that the normalized, background-adjusted, probe-level data is
a linear combination (in log-space) of a gene expression in an
array, a probe-level effect and a measurement error. Visualizing
the distribution of the residuals in an array can help in identi-
fying artifacts but, as mentioned, this is not a feasible approach
for large sets. Therefore, a summary statistics (like median) can
be computed on a per-array basis and used in deciding whether
an array is of sufficient quality (for example, a cut-off value of
1.02 for median NUSE has proven reasonable for fresh frozen
samples).

An in depth discussion of this matter is beyond the scope of the
present dissertation and has been addressed in several publications
(see, for example [13]). In the context of using gene expression data
derived from archival material (FFPE) we performed a less formal
comparison of the two approaches and found them to be highly con-
cordant. In Figure 3.2 the two criteria are plotted for a set of 240 ar-
rays. The "traditional" cut-off for fresh-frozen samples seemed to be
too drastic, therefore a less stringent value - indicated in red - for me-
dian NUSE was adopted, since it was expected to have in general a
lower signal from this arrays. Still, it is apparent that there is a direct
relation between the two quality metrics.
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3. Gene expression data preprocessing

Figure 3.2: Present call vs. median NUSE on a set of 240 customized
Affymetrix microarrays. This data has been used in articles repro-
duced in Sections 11, 17.
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3. Gene expression data preprocessing

3.4 A note on normalizing PCR expression data

Polymerase chain reaction (PCR) is a technique of amplifying a DNA
region several orders of magnitude to allow the detection and then
quantification of the number of copies of that region, which is then
converted into an expression level. Without delving into details, we
just remark that this technique allows accurate measurement of ex-
pression levels of several tens of genes (thus it is not a high-throughput
technique as microarrays) and is used as a diagnostic tool due to its
low costs and relatively fast processing time. As always, this method
requires a proper data normalization before any gene-based score can
be computed.

The normalization implies computing a differential expression level
with reference to the expression of one or several control genes (house-
keeping genes) that are supposed to have stable expression in the
given condition. We have shown that some of the traditional control
genes may actually vary across a number of cases in breast and colon
cancer. Thus, a new set of control genes had to be selected for dif-
ferent pathologies. To avoid the tedious trial-and-error cycle of ex-
perimental biology, we developed a computational method that ex-
ploits public data from microarray platforms ([23] and Section 7) and
proposes a score for estimating the suitability of the candidate gene.
This method has been used for selecting control genes in several ex-
periments and as basis for computing genomic prognostic scores in
breast cancer (see Sections 14, 15, also [16, 1]).

In Figure 3.3 the variability (standard deviation) as a function of
mean expression level for several control genes is shown in a PCR
experiment involving 25 fresh frozen breast cancer samples. We note
that the proposed procedure allowed the identification of more ro-
bust control genes (lower variability, stable low expression - RPLP0,
UBB, RPS11) which formed the basis of the reference point for the
genomic score.
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3. Gene expression data preprocessing

Figure 3.3: Control genes (solid black triangles) and target genes for
the development of a genomic score. The newly proposed control
genes RPLP0, UBB, RPS11 perform better than the traditional ones
GUSB, ACTB and TFRC.
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4 Comments on the performance of predictive
and prognostic models built on gene expres-
sion data

From the beginning, it was clear that one of the main applications of
the microarray technology would be in the development of predictive
and prognostic models. Here distinguish between two major types
of models built on gene expression data: in line with the standard
biostatistical nomenclature, we call a model predictive if it is intended
to predict whether a patient would respond or not to a treatment, and
we call a model prognostic if it is intended to predict whether or not
a patient would die from the disease (in a reasonable time frame) or
if it predicts the time to an event (such as disease relapse or death).

In general, building predictive models is much more complicated
because they require a proper experimental design (as the prognostic
ones as well), but one is required to prove that the model is indeed
predictive for treatment response, rather than just prognostic (within
the specific treatment regimen). Another complication arise from the
fact that, at least in theory, for building a predictive model one has to
compare a treated group of patients with an untreated group (nor-
mally patients would be randomly assigned to the two groups at the
enrollment). In the case of severe pathologies like cancer it is nowa-
days not possible to obtain such cohorts (with, maybe, the exception
of very early stages), since denying the treatment to a patient would
be unethical. Hence, most of the predictive models refer to predicting
the benefit from adding a new compound to the standard of care.

One of the early successes was the identification of the molecu-
lar basis of a subtype of the chronic leukemia characterized by the
expression of the chimeric BCR/ABL fusion gene [14] and a corre-
sponding targeted therapy [26]. The first prognostic models to reach
widespread were intended to predict survival of patients with breast
cancers. While they seemed to have a genuine prognostic value, they
also stirred a lot of critics quite early on. The main concern was re-
lated to the reproducibility of the models: independently developed
models led to different gene signatures and were apparently contra-
dictory (see, for example [9]). It took years and a sustained effort to

21



4. On the performance of predictive and prognostic models

realize that breast cancer was a heterogeneous disease also from a
molecular perspective, hence the population sampling would influ-
ence dramatically the gene expression signatures learned. Also, since
the genes were not independent but rather formed clusters of co-
regulated genes (gene modules) some models picked one or other
gene from various clusters, the final lists having a small number of
common genes. On top of these biology-related causes, the chosen
computational modeling approaches were quite different and hence
the results differed as well. This early story should serve as a warning
that, from a computational/machine learning perspective, there is no
single "true" predictive model, but rather there are several views on
the same reality. What matters in the end, is the validation and re-
producibility of the claimed results, not necessarily the names of the
genes in the models.

4.1 General considerations on model learnability

In practice, the usual scenario for developing a new predictive or
prognostic model starts with a biological or clinical problem - for
example, "build a prognostic model for triple-negatve breast cancer
patients". This means that the patient population is (normally) well
defined (here, "triple-negative" meaning ER-, PgR- and Her2- breast
cancer) as is the end-point (say, time-to-relapse). However, there is
no guarantee that the solution to the problem actually exists and,
if it exists, whether it can be found in the given feature space (in
our case, the gene expression space). Hence, the fundamental ques-
tion is: can a model be actually learned for the given problem? And the
usual approach to answer this question is to sistematicaly try solv-
ing the problem using a number of different approaches. But when
the results are not satisfactory, the question becomes even more diffi-
cult to answer, because one can wonder whether the sample size was
enough, or whether the methods attempted were appropriate, etc.
Ideally, we would like to have a "score" that would indicate how diffi-
cult a problem is, independent of the methods. Clearly, as stated, this
is an unsolvable problem, but insights into the problem difficulty can
be gained by examining the performance of some basic classifiers. In
a sense, we would like to find a method of characterizing the prob-
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4. On the performance of predictive and prognostic models
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Figure 4.1: Problem complexity as a function of cumulative informa-
tion: a "simpler" problem would have more informative features and,
hence, the curresponding curve would be above the more complex
problems (e.g. black curve)

lem difficulty similarly as the classifiers can be characterized by the
Vapnik-Chervonenkis dimensionality [31].

This is the context in which we set out to investigate the impact
of problem difficulty and sample size, with applications to a clas-
sification problem in breast cancer. The MAQC-II project provided
the perfect opportunity (and the required data sets) for this investi-
gation. In our investigation (Section 9, [22]) we introduced a new in-
dex called cumulative information which was used to approximate the
problem complexity (Figure 4.1). It is clear that this index is an over-
simplification (for example, it does not account for the inter-variable
correlations), but it proved its utility in ranking the problems under
investigation. This ranking was then confirmed by the classifiers’ per-
formance which reproduced the ranking.

Interestingly, the obtained ranking of the biological problems mim-
icked the clinicians intuition that predicting the oestrogen-receptor
(ER) status is much easier that predicting whether a patient will have
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Figure 4.2: Learning curves for three problems in breast cancer. Note
the logarithmic scale on the x-axis. See Section 9 and [22] for details.

a complete response to neo-adjuvant chemotherapy (in breast cancer).
We also studied the influence of the sample size on the quality

of the predictions. While the required sample size for constructing a
classifier for a given endpoint can be estimated only in toy examples
(under constraining assumptions regarding the underlying distribu-
tions), we found that using learning curves for guiding the sample size
selection is more appropriate, even though much more computation-
ally intensive. For the same three problems ranked above, the learn-
ing curves are shown in Figure 4.2.

The three learning curves suggest different behaviors of the clas-
sifiers (here only one representative classifier was chosen per prob-
lem): while for the easiest problem, increasing the sample size seem
to bring little benefit (as seems to be the case for the most difficult
problem as well), for the average difficulty, the learning curves sug-
gest that the model could still be improved - at the cost of doubling
(or even tripling) the size of the data set. For the most difficult prob-
lem, it seems that there is little hope in gaining anything. Of course,
these observations should be taken cautiously, since extrapolating the
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learning curves may prove delicate, even though the sample size used
was in the order of 200 cases.

4.2 A note on model performance estimation

The fast uptake of the microarray technology in biological and clin-
ical studies put under pressure the existing data analysis capabili-
ties of various laboratories and led to a series of sub-optimal or even
erroneous analyses. For example, in an early critical review of the
gene expression-based prognostic and predictive models in oncol-
ogy, Dupuy and Simon [8] found that more than 50% of the studies
contain at least one of the 3 fundamental errors they considered: (i)
incorrect control for multiple-testing in gene filtering; (ii) spurious
claims in class discovery studies (usually based on "visual" discovery
of classes in cluster analysis); and (iii) incorrect cross-validation pro-
cedures resulting in optimistically-biased performance estimation. A
decade later, the situation improved dramatically as much more ex-
perience has been gained from the many failed trials.

The initial results of Dupuy and Simon [8] were among the causes
for setting up the MAQC-II project by US’s FDA. The main results
are reproduced in Section ??. Besides them, many other side projects
were focussing on more specific aspects. Here we present a differ-
ent perspective on the published results. Indeed, one key question
is whether the estimated performance (at modeling stage) is repro-
duced by the independent validations. The design of the MAQC-II
allowed the investigation of these aspects on a large scale collection
of predictive models. The set up of the MAQC-II required that each
participating team (in total, there were 38 teams, most of them from
US, but also a few from Europe and Asia) submitted a data analysis
plan (written before having access to the data) to be applied to each
of the 13 predictive problems. Each team had the choice in model-
ing one, several or all of the problems (endpoints), but the modeling
procedure was required to be identical. In the end, more than 30,000
models were submitted for blind validation (some teams had chosen
to submit thousands of models, one model per combination of param-
eters) and by comparing their observed performance with the initial
estimates, one can gain some insights into the stability of various an-
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Figure 4.3: Overall design of the analytical pipeline for the MAQC-II
project, as put forward by the SIB team

alytical approaches. While the full discussion and main results are
presented in Section 10 and [27], here we will briefly discuss some of
the results regarding the model performance estimation procedures.
At the time of the project, I was with the Swiss Institute of Bioinfor-
matics (SIB) which I represented in the project, hence the "SIB" refers
to the results I obtained.

Given the rather constraining nature of the exercise, we have adopted
a very conservative approach, with well tested procedures for fea-
ture selection and classifier design. The drawback was clear: we might
have not profited from tuned-to-the-problem modeling strategies, but
the expected benefits were a more robust performance and small bias
in its estimation. The overall design of the processing pipeline is given
in Figure 4.3.

A first observation is that the overall performance of the system
was evaluated by cross-validation (actually a repeated (10×) 5-fold
cross validation), corresponding to the outer CV loop in the Figure 4.3.
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It was already mentioned elsewhere (Sections 3.2 and 3.3) that the
most commonly used quality control and normalization procedures
are using batches of microarrays for parameter estimation. In order to
avoid repeatedly fitting these models inside the cross-validation, we
opted for procedures applicable on individual arrays (%PC for qual-
ity control - Section 3.3, and MAS5 for normalization 3.2), thus being
able to perform them only once, outside the cross-validation, without
violating the performance estimation assumptions (different data for
model building and model assessment).

Also, because the training set sample size was relatively small, the
feature selection method employed was based on single-variable as-
sessment (ratio of between- to within-group sum of squares - simi-
lar to Fisher criterion) and the optimal number of features was esti-
mated within an inner cross-validation loop (Figure 4.3). The same
constraints restricted the types of classifiers tested, to those that ex-
perience has shown to perform robustly on large number of prob-
lems (diagonal LDA, general LDA, logistic and penalized logistic re-
gression, and CART). Again, any meta-parameter those methods had
were optimized in the inner cross-validation loop. The details of SIB’s
data analysis plan were presented during MAQC-II plenary meeting
at FDA headquarters in Washington DC (March 2008).

In Figure 4.4 are shown the boxplots corresponding to the perfor-
mance estimates provided by each participating team. It is already
clear that a wide range of performances were expected to be observed
on the independent validation sets. More troubling, for the "positive
control" endpoints (H and L), which were supposed to be predicted
with a performance close to 1.0 (for AUC), some of the models seemed
to be far off-target.

Finally, when comparing the estimated/expected performance of
the models with the observed performance, the results were even
more worrying: in some cases, the AUC bias (in absolute values) was
around 0.5 which would be the difference between a perfect model
and a totally random one (see left panel in Figure 4.5). It was clear that
the performance estimation procedure of some teams was extremely
biased. This led to the selection of a set of rules that would guaran-
tee, in principle, an unbiased (or, more likely, low bias) estimate of
the performance (but not necessarily a good performance), recom-
mendations that are now part of the FDA’s guide for good practices

27



4. On the performance of predictive and prognostic models

A B C D E F G H I J K L M

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

AUC estimated by 10x5-CV

Endpoint

A
U

C

Figure 4.4: Estimated performance of the SIB’s models by repeated
5-fold cross validation (red dots) and the estimated performance of
all other models submitted to MAQC-II, for the 13 endpoints (A-M).
An AUC above 0.6 was considered useful for the prediction of the
endpoint. The yellow endpoints (H and L) were later revealed to be
"positive controls" - problems easy to predict, while the orange end-
points (I and M) were "negative controls" - randomly assigned labels.
The first three endpoints (A-C) were related to toxico-genomics and
were not modeled by SIB.
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AUC minus observed AUC. Left panel: estimation bias by endpoint
(red dots correspond to SIB), right panel: estimation bias by partici-
pating team (cyan colored box corresponds to SIB).

in biomarker discovery.
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5 Integration of pathology images: towards a
multimodal biomarker discovery

Modern investigation methods in biology and clinical research rely
more often than not on multiple sources of information. For example,
combining clinical observations, like patient survival or pathologic
response, with gene expression data is, nowadays, routinely used for
discovering new biomarkers or therapy targets. Similarly, combin-
ing gene expression and copy number variation information and/or
methylation data, brings a new level of resolution when investigating
molecular changes at cellular level. Each of these different modali-
ties provides another perspective on the same underlying biological
reality. The current proposal is concerned with the combination of
three modalities: histopathology imaging, gene expression and clini-
cal data.

Digital pathology is an active research field which employs meth-
ods of image processing and analysis for assisting the interpretation
and understanding the histopathology slide images. It has the po-
tential of proposing a more quantitative, thus less subjective, char-
acterization of the slides and of introducing new image descriptors,
which can be further mined for diagnostic and prognostic clues [10].
As an example of combining digital pathology and clinical informa-
tion, the recently proposed immune response score [15], relies on pre-
cise counts of all T-cells (TH1) in whole slide images, a task that is
clearly too tedious for a human expert to perform for each sample
to be assessed. Initial tests show that the score has more prognostic
power than even the well-established TNM grading, providing an ex-
cellent argument in favor of using digital pathology in clinical prac-
tice. However, it relies on special staining for correctly labeling the
different types of T-cells.

The histopathology assessment of the samples can be combined
with the gene expression and clinical data in a joint model. For ex-
ample, the tumor grade (a histopathology categorical variable, usu-
ally with three levels: "well differentiated", "moderately differenti-
ated" and "undifferentiated") can be combined with expression of ESR1
gene and a genomic proliferation score in order to build a prognostic
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score for breast tumors (similar to [29]). In this approach the infor-
mation extracted from the histopathology modality is highly filtered
(the human expert extracts only several aspects from the pathology
slides, according to the current practice) and extremely summarized
(in the above example, only three values are possible), in contrast with
the gene expression, which preserves basically all its information.
While the process of filtering and summarization greatly improves
the signal-to-noise ratio and eases the interpretability of the data, it
does this at the expense of discarding some useful information and
limiting the descriptive vocabulary of the histopathology images.

In this context we set out to investigate different aspects of ex-
ploiting and integrating the whole slide imaging in the biomarker
discovery pipeline. Our approach, in contrast with many others, takes
a completely data-driven perspective, without benefitting from - nor
being biased by - pathologist’s expert supervision. However, once the
model were built, the pathologists were called for validating them.
The advantage is that the resulting models revealed new features,
some of them - this being the drawback - without a clear correspon-
dence in pathology practice. The full description is given in Sections 12,
16 and 18.

The computational approach taken was based on extensions to
bag-of-visual features method [7]. These extensions aimed at pro-
ducing more descriptive dictionaries for the histopathology images
and investigated the possibility of structuring the visual dictionaries
around some semantical terms, allowing an easier interpretation of
the results (see Figure 5.1.

Another computational aspect addressed was the optimization of
the visual features for the purpose of analyzing pathology images
and in-depth analyses were performed using both "classical" features
(from Gabor wavelets to local binary patterns) (see [5] for detailed
results) and convolutional neural networks features (as used in [20]).
Also, in [4] we propose a hierarchical quantification schema for build-
ing multiresolution visual dictionaries. Annectodically, this approach
led to features that were more appealing to an expert pathologist than
the convolutional features, but the overall performance of the system
was lower.

The main message of all this investigations is that not only it is
possible to combine whole-slide imaging with molecular/gene ex-

32



5. Integration of pathology images

C.41 C.69 C.67 C.17 C.50

p
ro

li
fe

ra
ti

o
n
 p

a
tt

e
rn

s

in
v
a
s
io

n
/d

if
fe

re
n
ti

a
ti

o
n
 p

a
tt

e
rn

s
/

c
o
n
n
e
c
ti

v
e
 t

is
s
u
e

s
p
a
rs

e
 t

u
m

o
r 

n
u
c
le

i/

d
if
fe

re
n
ti

a
ti

o
n
/f

a
t

C.64 C.56 C.65

Figure 5.1: The structure of a visual dictionary for breast cancer: three
main clusters of features can be observed, each related to a different
architectural pattern with clear interpretation [18].
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pression data, but this combination reveals new connections between
the "genetic program" and the tissue architecture. The results were
obtained from breast and colon cancer data but the techniques em-
ployed are easily applicable to other pathologies as well. The most
important results were:

• Construction of a joint imaging and genomic prognostic score
in breast cancer.
In the case of breast cancer, proliferation of cancer cells is a
strong prognostic marker (in addition to, and independent of,
ER and Her2 hormonal statuses), and well known to patholo-
gists. Hence it was reassuring to see that a part of the image-
based features that were correlated with the outcome repro-
duced this result. In Figure 5.1 the structure of the visual dic-
tionary is shown along with semantic annotations. The prog-
nostic score built solely on image features was almost as sen-
sitive as its gene expression correspondent. However, a com-
bined image-expression score performed even better [18].

• Recognition of "BRAF-positive" high-risk patients with colorec-
tal cancer.
In [21] we described a novel gene expression signature identi-
fying a high risk group of patients (positive by the signature,
hence called "BRAF-positive"). This group assembled both pa-
tients with BRAF V600E mutation (a known risk marker) and
other patients not harboring this mutation but subject to the
same dismal outcome. In [17] and later in [24] we describe a
system for identifying most of these patients based solely on
histopathology images. This result shows that typical tumor
architecture patterns (including the papillary/serrated pheno-
type) can be linked to this high risk group allowing its recog-
nition even in the absence of molecular profiling.

• First steps towards a computational imaging characterization
of inter-tumoral heterogeneity.
The fact that solid tumors are heterogeneous is well known and
the recent advances in molecular profiling confirmed and ex-
panded the characterization of tumor subtyping. In colorectal
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cancer, we have proposed a molecular taxonomy based on 5
subtypes, with the observation that not all tumors could be as-
signed with high confidence to these subtypes (there are prob-
ably some lower prevalence subgroups that were not enough
present in our data for their characterization) [6]. Using deep
learning image features and a hierarchy of support vector ma-
chines we were able to construct a decision system capable of
predicting the molecular subtypes with high confidence (for
four out of the five subtypes). To the best of our knowledge,
this is the first image-based predictor of molecular subtypes
for any tumor type. The implications of our result go beyond
the prediction aspect. Indeed, what we noticed is that part of
the tumor correspond to one subtype while other parts may
correspond to different subtypes. The decision mostly reflects
the dominant subtype but this observation clearly indicates the
sensitivity of the results obtained from molecular profiling to
the tumor sampling strategy, and impacts the large majority of
the results published so far in the field.
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6 Concluding remarks

The previous chapters tried to present the context in which the ar-
ticles reproduced in the second part were written, and also to bring
to the attention of the reader some results that were left aside from
the publications. It is clear - also from browsing the articles - that the
methods evolved along with the technology and the type of prob-
lems one is facing in biomarker discovery. The latest directions of re-
search, concerning the joint analysis of histopathology images and
gene expression (or other molecular data), clearly show that having
the right data and a modern computational infrastructure allows one
novel ways of exploring an ever increasingly complex biological real-
ity.
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This second part is dedicated to reproducing a number of articles
published over the years in various international journals, dealing
with different theoretical and practical aspects of mining, designing,
evaluating and validating a number of biomarkers and gene expres-
sion signatures. For each article, its current (as of August 2017) bib-
liometrics information is provided. Most of the articles are accompa-
nied by supplemental materials freely available online at the respec-
tive journals web pages.
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Abstract
Background: Gene expression analysis has emerged as a major biological research area, with real-
time quantitative reverse transcription PCR (RT-QPCR) being one of the most accurate and widely
used techniques for expression profiling of selected genes. In order to obtain results that are
comparable across assays, a stable normalization strategy is required. In general, the normalization
of PCR measurements between different samples uses one to several control genes (e.g.
housekeeping genes), from which a baseline reference level is constructed. Thus, the choice of the
control genes is of utmost importance, yet there is not a generally accepted standard technique for
screening a large number of candidates and identifying the best ones.

Results: We propose a novel approach for scoring and ranking candidate genes for their suitability
as control genes. Our approach relies on publicly available microarray data and allows the
combination of multiple data sets originating from different platforms and/or representing different
pathologies. The use of microarray data allows the screening of tens of thousands of genes,
producing very comprehensive lists of candidates. We also provide two lists of candidate control
genes: one which is breast cancer-specific and one with more general applicability. Two genes from
the breast cancer list which had not been previously used as control genes are identified and
validated by RT-QPCR. Open source R functions are available at http://www.isrec.isb-sib.ch/
~vpopovic/research/

Conclusion: We proposed a new method for identifying candidate control genes for RT-QPCR
which was able to rank thousands of genes according to some predefined suitability criteria and we
applied it to the case of breast cancer. We also empirically showed that translating the results from
microarray to PCR platform was achievable.

Background
Real-time quantitative reverse transcription PCR (RT-
QPCR) has become a method of choice for gene expres-

sion profiling in a large number of applications. However,
obtaining reliable measurements still depends on the
choice of control genes on which the baseline level is con-
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structed. Selecting the control genes remains a critical
point in the normalization process. Often, a short list of
candidates is produced based on non-systematic and/or
often poorly defined biological considerations.

In early studies, normalization was usually based on a sin-
gle control gene. More recently, the trend is to use several
control genes whose average expression level (on a log-
scale) is used as baseline [1,2]. Suitable control genes are
selected from a short list of 10–15 genes by ranking them
according to a criterion that essentially selects those genes
having low variation across samples. We describe brie y a
few such methods below.

[2] introduces a stability coefficient which is used along
with the coefficient of variation for ranking the genes
from a predefined list of candidates. Gene stability is
defined in terms of average standard deviation of the log-
ratios of pairs of candidate genes. Genes are ranked by
iteratively removing those most unstable. This approach
has the drawback that repeated comparison of pairs of
genes is required, which is feasible only when the number
of candidates is small. In addition, the method implicitly
assumes that there are no co-regulated genes. A model-
based approach proposed by [1] aims at estimating the
overall variation as well as the between sample variation
of each candidate gene. However, with this approach it is
cumbersome to integrate different platforms. In an appli-
cation to plant pathogen profiling, [3] investigates a list of
18 pre-selected candidate housekeeping genes, using the
method proposed in [2] and RT-QPCR for measuring the
gene expressions. [4] proposes a PCA-based statistical
analysis to identify the most suitable control genes among
13 candidates which were selected such that they had
independent functions in cellular maintenance.

[5] introduces a strategy which combines the coefficient of
variation, maximum fold change and mean expression
value in a ranking criterion that is applied to a large
number of samples representing a wide variety of tissues.
All these samples were hybridized on either Affymetrix
HG-U133A or HG-U133 Plus 2.0 arrays and quantile-nor-
malized together prior to ranking. Only probesets com-
mon to both arrays were used, with probesets targeting the
same gene averaged into a single value.

There are some important differences between the meth-
ods described above and our approach (described below).
Firstly, in contrast with all the studies based on PCR, we
do not require a short list of candidate genes to be pro-
duced before assessing their suitability as control genes.
Instead, we screen all the genes represented on the micro-
array chips, giving us the opportunity to assess genes that
have not been reported previously. Moreover, we take a
meta-analytical approach to the problem, first creating an

independent ranking within each data set then aggregat-
ing these rankings into a single list. This approach has the
advantage of being platform- and normalization-inde-
pendent. In addition, the approach is not limited to using
only genes common between different data sets. Also, by
not using the coefficient of variation, we can treat uni-
formly both single and two-colors arrays. Thus, we are
able to exploit data obtained from different platforms
without requiring them to be normalized together. Fur-
thermore, the meta-analytical approach allows us to inte-
grate gene lists produced using our ranking system with
other ranked gene lists from the literature and we do not
require all data to be normalized together. Another key
difference is that we introduce a new stability coefficient
that combines the mean expression and the standard devi-
ation in a ranking criterion that corresponds to our
requirements for candidate control genes for RT-QPCR. In
general, these requirements are:

• low variability across different specimens (e.g., subtypes
of tumors or normal tissues);

• high and moderate level of expression, such that control
genes with expression levels across a larger range may be
selected;

• consistency across experiments and platforms.

A key question is whether it is possible to select genes
from microarray studies that perform as control genes on
PCR platform, given that the two technologies are differ-
ent. We hypothesize that translating the list of candidate
genes from microarray to PCR platform is feasible and we
provide empirical evidence in this sense.

Results
Data sets and pre-processing steps
We have collected ten publicly available data sets [6-15],
listed in Table 1, from which we derived the quantities of
interest: the mean and standard deviations of the log-

Table 1: The ten public microarray data sets used (n = number of 
samples).

Data set ID and reference n Platform

BWH [6] 47 Affymetrix U133v2
EMC [7] 286 Affymetrix U133A
EXPO [8] 1375 Affymetrix U133Plus2
JRH2 [9] 61 Affymetrix U133A
MGH [10] 60 Agilent
NKI [11] 337 Agilent (custom)
STOCK [12] 159 Affymetrix U133A, B
TGIF1 [13] 49 Affymetrix U133A
UNC [14] 153 Agilent HuA1
UPP [15] 249 Affymetrix U133A, B
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intensities (on Affymetrix platforms) or of the log-ratios
(on Agilent platforms).

We note here that the original EXPO data set contains a
number of different pathologies, but we restrict analysis
here to eight different types of cancer (breast, colon,
endometrium, kidney, lung, ovary, prostate and uterus)
for which a sufficient number of samples existed. EXPO
breast cancer samples (n = 328) were used to produce
both the breast cancer and general cancer lists of candi-
date genes.

The Affymetrix data are available as MAS5.0 normalized
values. The Agilent data contains log-ratios (base 10) and
mean-centered log-intensities. The standard deviations of
log-intensities (Affymetrix) and log-ratios (Agilent) were
used as measures of variability. The means of log-intensi-
ties (both Affymetrix and Agilent) were used as measures
of average expression level.

When multiple probesets of the same gene are present,
only the most variable one is used. We consider all genes

from each platform, the aggregation methods used being
able to cope with 'missing' genes (those not represented
on the array). Considering only those genes common to
all platforms is an unnecessary limiting constraint, as
increasing the number of data sets and the heterogeneity
of the collection leads to a successively smaller intersec-
tion of genes.

Before any further usage of the data, we reduce the varia-
bility across platforms by scaling with a factor given by a
first order LOESS fit of the data. The effect of this transfor-
mation can be seen in Figure 1, where the black line rep-
resents the fitted curve. This simple approach seems
effective, except for genes with low expression. However,
as we are interested in genes with higher mean expression,
this deficiency is not problematic.

Ranking the genes
Let us consider that we have M microarray data sets, each
containing expression values of a set of genes Gk, k =
1,...,M, and let G = ∪kGk = {1,...,N} be the set of all genes
represented at least once in any of these data sets.

Example of variance stabilization by LOESS correctionFigure 1
Example of variance stabilization by LOESS correction. LOESS correction applied to three data sets: BWH, NKI and 
EXPO-breast, respectively. The first row shows the original data with the fitted first order LOESS curve, while the second row 
shows the variance-stabilized data.
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Gene scores
We aim to design a scoring function which ranks the genes
such that higher scores correspond to genes that are more
suitable to be used as control genes. As mentioned above,
the score has to combine each gene's mean expression and
standard deviation into a single value such that higher
expression levels and lower variances (standard devia-
tions) are favored. Moreover, the score must be independ-
ent of the technology used to measure expression levels
and the method for normalization.

These requirements lead us to propose a new stability score
for the gene expression levels. This score for gene i in data
set k, denoted sik, is defined as

where  and  are the estimated mean log-intensity

and the standard deviation of the gene i in data set k. The

 coefficient allows the user to control the trade-off
between the mean expression and the standard deviation
in gene scoring. Results reported here were obtained with

 = 0.25. The k parameter allows one to define the level of

mean expression below which the genes are not consid-

ered for ranking, i.e. the score for these genes is -∞. We

have set k to be the 25th percentile of the mean expres-

sion, for each data set k. Genes having a higher score are
considered more suitable as control genes. As we see from
Eq. 1, high variation in gene expression leads to a lower
score when mean expression levels are equal. This is one
reason we select the most highly variable probeset from

the probesets representing the same gene, in order to
encompass the worst-case scenario. Note also that there is
no need to normalize the scores to make them compara-
ble across data sets, because they are used solely for rank-
ing the genes within the same data set. Finally, having
computed the scores for all the genes within a data set, we
order the genes from high to low values of the scores, with
ties resolved by ordering by the mean expression (from
high to low). From this perspective, the scores can be seen
as defining classes of equivalence among genes: all the
genes in the same class (having the same score) are
equally useful as normalization genes. By using the sec-
ond ordering criterion, we can select control genes with a
desired expression level (examples of classes of equiva-
lence are the equal score levels in Figure 2).

Figure 2 displays the influence of the mean expression
level and the standard deviation on the gene score. All
genes located on the curves have the same score value
(they belong to the same equivalence class). Two consec-
utive curves are separated by one score unit.

Using this stability score, we ranked the genes from each
data set, obtaining the lists that will be later combined. An
excerpt from the ten lists for the breast cancer data sets is
shown in Table 2 (first ten columns).

Combining results from different data sets
Once genes are ranked according to their scores in each
data set (lower ranks correspond to higher scores), the
natural next step is to combine these rankings into a glo-
bal ranked list. We combine the ranks of the genes rather

sik ik k ik= − −a m b slog (max{ , }) ,2 0 (1)

m̂ ik ŝ ik

Scatter plots of standard deviation versus mean log-intensity for BWH, NKI and EXPO-breast data sets, respectivelyFigure 2
Scatter plots of standard deviation versus mean log-intensity for BWH, NKI and EXPO-breast data sets, 
respectively. The shading codes the gene stability scores, with darker colors indicating higher scores. These three data sets 
are from different microarray platforms. The light gray points indicate the discarded genes (those with mean expression level 
below the  value – see Eq. 1). The curves correspond to equal score levels and are one score unit apart.
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than their scores to avoid normalizing the scores across
different data sets, thereby achieving platform-independ-
ence. To this end we use the rank product score [16], which
is a fast and efficient method for combining ranked lists.
It computes, for each gene i ∈ G, a new score

where rankk(i) is the rank of sik, the score for gene i in data
set k (topmost gene has the rank 1), and ni is the number
of data sets in which the gene i appears. The final list is
obtained by sorting the genes in increasing order of Ri. The
top 20 genes from the aggregated breast cancer list are
given in the 'Meta' (last) column of Table 2.

Validation of the aggregated lists
There is no absolute criterion by which one can judge the
quality of the resulting lists. Rather, the aggregated list
could be used to select from the top genes (100, for exam-
ple) those genes that also satisfy further conditions of the
specific application.

We can, however, have a subjective impression of the
validity of the aggregated list by visualizing the resulting
top genes in data sets not used for producing the list. We
obtained a list of the top 100 genes by applying the
method described above on eight of the ten data sets, leav-
ing NKI and UPP aside as validation sets. The top 100
genes in both validation sets (different microarray plat-

forms) are plotted in Figure 3. As a comparison, we also
include the five control genes used in [17] (represented as
triangles in the figure). It is seen that the genes are gener-
ally concentrated in the lower right part of the plot, corre-
sponding to high mean expression levels and low
variance. There is a notable difference between the quality
of the results (given by the concentration of the control
genes in the lower right corner) on the two platforms, due
to the fact that most of the data sets used for gene selection
are from Affymetrix platforms. While the top 100 lists
contain genes with high stability scores on the Affymetrix
platforms (the UPP data set), on the custom Agilent plat-
form (NKI) there are a number of genes that are missed.
Nevertheless, those selected still function well as control
genes.

Control genes lists
We have analyzed ten different data sets which have sam-
ples hybridized on different versions of Agilent and
Affymetrix platforms. Using our proposed method, we
compiled two different lists of candidate control genes:
one specific to breast cancer [see Additional file 1] and
one resulting from the analysis of eight different types of
cancer, thus applicable to cancers in general [see Addi-
tional file 2]. From the breast cancer list we selected two
new control genes which were validated in an RT-QPCR
assay that also included five previously used control genes
(ACTB, TFRC, GUSB, RPLP0 and GAPDH – see [17]) and
breast cancer-related genes (e.g. ESR1, ERBB2, AURKA,
etc.). The RT-QPCR results confirm the findings from the
microarray analysis and show that more stably expressed
control genes can be selected by applying the criteria men-

R i
ni

i k

k

=
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟∏ rank ( ) ,

1

(2)

Table 2: Top 20 control genes from the ten breast cancer data sets and top 20 genes from the aggregated list (Meta column)

BWH EMC JRH2 MGH NKI STOCK TGIF1 UNC UPP EXPO-breast Meta

RPL37A PPIA RPL41 ZNF557 UBC RPS11 RPL41 RPS10 RPL9 CALM2 RPL37A
RPL41 CALM2 RPL39 CDR1 UBB RPS24 RPL37A RPS18 RPL37A HNRPA1 RPL27A
RPS18 SRP14 RPL23A PPP1R2 OAZ1 RPL9 EEF1A1 RPLP1 ACTG1 NACA RPS18
RPL39 RPL37A RPL37A TCN2 DYNLL1 RPL37A RPL30 RPS11 RPL27A UBA52 RPL30
RPL23A RPS18 EEF1A1 SSBP1 RAPSN RPL41 RPL39 RPS23 CFL1 LAPTM4A RPL41
RPL9 RPL30 RPS23 RPL27A PCBP1 RPL27A PPIA RPL37A RPS11 RPL27A CALM2
RPLP1 RPL27A RPS27 RPS3 KCNH3 RPL39 ACTG1 RPL11 RPS13 RPL30 RPL27
RPS27 RPS11 CALM2 BRCC3 RPL3 RPLP1 CFL1 RPS15 RPL27 RPL9 K-ALPHA-1
RPL27A RPL39 RPS18 PTMA RPL8 UBB RPS23 RPL14 RPL41 RPL31 RPS11
RPL30 RPS15 ACTG1 ABCF2 MYL6 RPS15A RPL10 NACA RPS18 RPL37 RPL39
RPS29 RPS24 RPL10 PCDH18 RPL14 CALM2 CALM2 RPL36AL RPS15 RPS11 RPS13
ACTG1 RPL32 RPS24 LAX1 RPL7A NACA RPS11 UBA52 RPL6 RPS29 NACA
CALM2 RPS15A RPS15A TPMT FAU RPL30 HNRPA1 NEDD8 RPLP1 RPS24 RPL23A
RPS13 RPLP1 RPL32 GALE ARF1 CFL1 RPL6 PCBP1 RPL32 RPS13 RPS24
HNRPA1 RPL9 RPL27A MTCH1 CCT3 RPS13 RPL23A NDUFB2 RPL31 RPS21 HNRPA1
RPS24 UBB UBB ATP5G2 PSAP RPS3A K-ALPHA-1 HNRPM RPL39 UBB RPL9
RPL31 K-ALPHA-1 RPS29 SF3B2 CD81 RPL37 RPS18 HNRPC UBB RPS27A RPLP1
RPL34 RPS13 RPL30 SND1 SQSTM1 RPS18 EEF1G NDUFB8 RPS24 RPS15 RPL32
RPS15A RPL27 PPIA RPL5 K-ALPHA-1 RPL27 TUBA6 ATP5J2 RPS27 RPL32 LAPTM4A
RPS21 FAU CFL1 SKAP2 CALR RPL24 RPS3A TARDBP DDX5 RPL24 RPS15A
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tioned above. Also, they provide empirical evidence sup-
porting the working hypothesis that PCR control genes
can be selected from microarray data.

The list of the top 50 control genes obtained from the ten
breast cancer data sets is given in Table 3. More compre-
hensive lists, including one containing the top 2000 can-
didate breast cancer genes and a similar list compiled
from eight different types of cancer, are available [see
Additional file 1 and Additional file 2]. In the case of
breast cancer control genes, it is interesting to note that
some of the "classical" genes (e.g. ACTB, GAPDH, TFRC)
are not among the top 50.

Evaluation of control genes by RT-QPCR
Motivated by the consistency of the selection process for
suitable control genes among different microarray plat-
forms, we performed a small scale RT-QPCR experiment
to test the performance of two new control genes along
with a number of more commonly used control genes. In
this experiment, RNA was isolated from 25 cryo-preserved
breast cancer samples and the expression of 47 genes was
measured by RT-QPCR [18]. Test genes were selected
according to their relatedness to proliferation or estrogen
receptor functions. Some of the test genes had been previ-
ously identified and used for characterizing primary
breast cancers [17]. Two genes, RPS11 and UBB, ranked 9

and 31 in Table 3 respectively, were compared to five
additional control genes and to a number of test genes
previously measured by [17]. Mean raw expression values
of all candidate control and test genes were plotted against
standard deviations of each gene (Figure 4). The raw Ct
(cycle threshold) value is the number of PCR cycles
required for the fluorescence signal to cross the back-
ground threshold, so that low Ct values correspond to
high expression levels. RPS11 and UBB are clearly among
the most stably expressed genes, as their standard devia-
tions are both quite low. Other genes frequently used as
control genes are also shown. For comparison, mean
expression and standard deviation of several test genes are
also indicated. The expression of most test genes is much
more variable than UBB and RPS11.

The two new control genes, together with RPLP0, offer the
best trade-off between mean expression level and variabil-
ity, while others like ACTB or TFRC are less stably
expressed and therefore seem less suitable for use as nor-
malization genes.

Discussion
We propose a new approach which leverages publicly
available microarray data to produce lists of candidate
control genes for RT-QPCR. Our method is independent
of the microarray platform or normalization methodol-

Scatter plots of standard deviation versus mean log-intensity for two validation data sets (from left to right: NKI and UPP)Figure 3
Scatter plots of standard deviation versus mean log-intensity for two validation data sets (from left to right: 
NKI and UPP). The top 100 breast cancer control genes resulting from aggregating eight data sets are plotted as circles. Tri-
angles correspond to the five control genes used in [17] (NKI does not contain the ACTB gene).
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ogy, and is able to cope with gene lists that overlap only
partially. After screening thousands of genes (generally
more than 10,000 genes in each data set), we have pro-
duced two separate lists of candidate genes: one specific to
breast cancer and one generally applicable to different
types of cancer. We do not consider these lists as generally
applicable, as the data used do not allow such generaliza-
tion. Different pathologies may have a different impact on
the control genes and some of the control genes we

selected may become ineffective in the case of a disease
which affects their particular functions. On the other
hand, more diverse data should be used if the goal is find-
ing global control genes. The list of the top 50 breast can-
cer control genes (Table 3) is dominated by ribosomal
proteins. This finding is consistent with the fact that ribos-
omes are a major component of basic physiologic proc-
esses in all the cells and not a primary target of changing
conditions. Other genes present among the first 50 genes

Table 3: Top 50 control genes as resulting from aggregating the ten breast cancer data sets. Two genes – RPS11 and UBB – were 
selected as control genes and validated by RT-PCR

Rank Gene symbol Gene ID Description

1 RPL37A 6168 ribosomal protein L37a
2 RPL27A 6157 ribosomal protein L27a
3 RPS18 6222 ribosomal protein S18
4 RPL30 6156 ribosomal protein L30
5 RPL41 6171 ribosomal protein L41
6 CALM2 805 calmodulin 2 (phosphorylase kinase, delta)
7 RPL27 6155 ribosomal protein L27
8 K-ALPHA-1 10376 alpha tubulin
9 RPS11 6205 ribosomal protein S11

10 RPL39 6170 ribosomal protein L39
11 RPS13 6207 ribosomal protein S13
12 NACA 4666 nascent-polypeptide-associated complex alpha polypeptide
12 RPL23A 6147 ribosomal protein L23a
14 RPS24 6229 ribosomal protein S24
15 HNRPA1 3178 heterogeneous nuclear ribonucleoprotein A1
16 RPL9 6133 ribosomal protein L9
17 RPLP1 6176 ribosomal protein, large, P1
18 RPL32 6161 ribosomal protein L32
19 LAPTM4A 9741 lysosomal-associated protein transmembrane 4 alpha
20 RPS15A 6210 ribosomal protein S15a
21 DYNLL1 8655 dynein, light chain, LC8-type 1
22 ACTG1 71 actin, gamma 1
23 TUBA6 84790 tubulin, alpha 6
24 SRP14 6727 signal recognition particle 14kDa (homologous Alu RNA binding protein)
25 MYL6 4637 myosin, light chain 6, alkali, smooth muscle and non-muscle
26 RPL24 6152 ribosomal protein L24
27 FAU 2197 Finkel-Biskis-Reilly murine sarcoma virus (FBR-MuSV) ubiquitously expressed (fox derived); ribosomal protein S30
28 RPL31 6160 ribosomal protein L31
29 RPS15 6209 ribosomal protein S15
30 MTCH1 23787 mitochondrial carrier homolog 1 (C. elegans)
31 UBB 7314 ubiquitin B
32 RPL37 6167 ribosomal protein L37
33 HMGN2 3151 high-mobility group nucleosomal binding domain 2
34 RPS27 6232 ribosomal protein S27 (metallopanstimulin 1)
35 GDF8 2660 growth differentiation factor 8
36 RPL38 6169 ribosomal protein L38
37 RPS29 6235 ribosomal protein S29
38 SULT1C2 27233 sulfotransferase family, cytosolic, 1C, member 2
39 RPL6 6128 ribosomal protein L6
40 UBC 7316 ubiquitin C
41 UBA52 7311 ubiquitin A-52 residue ribosomal protein fusion product 1
42 MRFAP1 93621 Mof4 family associated protein 1
43 HNRPK 3190 heterogeneous nuclear ribonucleoprotein K
44 PARK7 11315 Parkinson disease (autosomal recessive, early onset) 7
45 PSMC1 5700 proteasome (prosome, macropain) 26S subunit, ATPase, 1
46 LOC158572 158572 hypothetical protein LOC158572
47 RPS8 6202 ribosomal protein S8
48 ATP5A1 498 ATP synthase, H+ transporting, mitochondrial F1 complex, alpha subunit 1, cardiac muscle
49 EIF4H 7458 eukaryotic translation initiation factor 4H
50 CD63 967 CD63 molecule
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code for protein turnover (ubiquitin), tubulin-related
proteins or actins, structures which are required in all liv-
ing cells.

Our results are supported by recent findings of de Jonge et
al. [5], who used a different ranking method. In addition,

the lists of control gene candidates for breast cancer and
for diverse types of cancer are similar [see Additional file
1 and Additional file 2], as a large number of the top
ranked genes belong to the same functional category
(ribosomal genes, protein turnover).

RT-QPCR experimentFigure 4
RT-QPCR experiment. Standard deviation as a function of the mean expression level (expressed as raw Ct values) of 47 
genes in a RT-QPCR experiment. Higher expression levels correspond to smaller raw Ct values. Control genes are repre-
sented by triangles, test genes by circles. The new control genes RPS11 and UBB are in the lower left corner.
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Another important finding is that some of the commonly
used control genes in breast cancer (ACTB and TFRC)
appear to be less stable than previously assumed. This has
an impact on the normalization strategy of the QPCR
measurements: indeed, in our more recent experiments
we have chosen to use the mean of RPLP0, RPS11 and
UBB (on the log2 scale) for normalizing the expression of
test genes.

Finally, we would like to emphasize that these two lists
should not be taken in an absolute sense: a gene in top 10
is not necessarily a better choice than a gene in the top 20
to 30. But we do consider it to be definitely a better candi-
date than a gene not in top 100. Nor do we consider the
resulting ranking as providing a solution to the problem
of finding normalization genes in all contexts. Rather, the
lists produced through this process are meant to guide the
choice of control genes while also taking into considera-
tion the specific requirements of any individual analysis.
Depending on the planned application, other parameters
must be considered. For example, short amplicons or
intron-spanning primers must be used when the starting
RNA is considerably degraded or when residual DNA con-
taminations might affect QPCR. The final choice of con-
trol genes should be made not by blind adherence to the
ranked list, but be imposed by the intended application.

Conclusion
Starting from clearly defined criteria, we have designed a
novel method for ranking the candidate genes for their
suitability as control genes in RT-QPCR experiments. The
genes from a data set were ranked according to their sta-
bility score, which represented a trade-off between gene's
average expression level and its variance. Finally, the rank-
ings from several data sets were combined into a list of
candidate genes, with higher ranked genes being consid-
ered to be more suitable as control genes. The proposed
approach had the advantage of being platform- and nor-
malization- independent and of not being restricted to
only the list of common genes across all data sets.

By applying the proposed method to two particular collec-
tions of data sets we were able to produce two lists of can-
didate genes from which control genes for either breast
cancer or more diverse cancer could be easily selected.
Two new control genes for breast cancer – UBB and RPS11
– have been identified and validated by RT-QPCR.

Our results support the hypothesis that selecting control
genes for QPCR from microarray data is feasible.
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ABSTRACT
Summary: A top scoring pair (TSP) classifier consists of a pair
of variables whose relative ordering can be used for accurately
predicting the class label of a sample. This classification rule has
the advantage of being easily interpretable and more robust against
technical variations in data, as those due to different microarray
platforms. Here we describe a parallel implementation of this classifier
which significantly reduces the training time, and a number of
extensions, including a multi–class approach which have the potential
of improving the classification performance.
Availability and Implementation: Full C++ source code and
R package Rgtsp are freely available from http://lausanne.isb-
sib.ch/∼vpopovic/research/. The implementation relies on existing
OpenMP libraries.
Contact: vlad.popovici@isb-sib.ch

1 INTRODUCTION
Top scoring pairs (TSPs) (Geman et al. (2004)) are simple two–
variables binary classifiers, in which the prediction of the class label
is based solely on the relative ranking of the expression levels of
the two genes. The rank–based approach to classification ensures a
higher degree of robustness to technical variations and makes the
rule easily portable across platforms. Also, the direct comparison of
the expression level of the genes is easily interpretable in the clinical
context, making the TSPs attractive for medical tests.

Let x = [xi]i=1,...,m ∈ Rm be a vector of measurements (e.g.
gene expression) representing a sample and let the corresponding
class label be y, with two classes denoted by 0 and 1. Then, for all
pairs of variables i and j, a score is computed,

si,j = P (xi < xj |y = 1)−P (xi < xj |y = 0), 1 ≤ i, j ≤ m (1)

where P are conditional probabilities estimated from the data, and
the corresponding decision rule is: if sign(si,j)xi < sign(si,j)xj
then predict y = 1, otherwise y = 0. The pairs are ordered by
the absolute values of their scores and the top t pairs (t ≥ 1)
are then considered for the final model (Xu et al. (2005); Tan
et al. (2005); Geman et al. (2004)). Remarkably, training a TSP

∗to whom correspondence should be addressed

Fig. 1. Predicting estrogen receptor status: if GSTP1 < ESR1, then the
sample is considered ER+ (red dots), otherwise ER- (blue dots).

does not require the optimization of any parameter and does not
depend on any threshold. Selecting a suitable value for t should be
done following the usual machine learning paradigm for optimizing
meta–parameters (see, for example, Hastie et al. (2001)). Figure 1
shows an example of a TSP predicting the estrogen receptor status.
The decision boundary (in grey) is always a line with a slope of 1.

2 IMPLEMENTATION
While the method briefly described above is simple and poses
no implementation problems, using it in the context of highly
dimensional data requires the evaluation of an extremely large
number of pairs of variables making its usage impractical, especially
in the context of resampling techniques for performance estimation.
However, most if not all of the modern desktop computers are multi–
core machines, making parallel programs a feasible alternative to
classical serial ones.

Our implementation in C++ exploits the multi-core architecture
by using the OpenMP libraries of the system (Chapman et al.
(2007)), and is wrapped in an R package – Rgtsp. The full source
code and the R package are available from http://lausanne.isb-
sib.ch/∼vpopovic/research/. As C++ is the main implementation
language, the library can easily be extended and integrated with

1
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other software libraries. Also, the R functions are independent of
the domain of application so they could be applied to any kind of
data.

3 USAGE EXAMPLES
We present a typical case of using Rgtsp package. These examples
represent solely some code snippets and not the full process of
developing and assessing the performance of a classifier.

The data used in these examples consists of 130 samples stage I
to III breast cancer (Hess et al. (2006)) and the goal is to predict the
estrogen receptor status (positive or negative coded with ”+1” and
”0”, respectively). For illustration purposes we use only a subset of
full data set available from GEO repository under accession number
GSE16716.

Before starting R, the user has the option of choosing the
number of processing units that will be used, by setting the
environment variable OMP_NUM_THREADS. If not set, it defaults
to the maximum number of processing units available.

The first steps load the library and the data and build a list of TSPs
(note that the matrix X contains the variables as columns):

> library(Rgtsp)
> data(mdabr)
> tsp.list = tsp.n(X, y.erpos, 500)
> str(tsp.list)
> print(tsp.list)

The function tsp.n() returns at most n TSPs as a list with three
components: the first two correspond to the indexes of the selected
variables and the third one contains the associated scores. A similar
function, tsp.s(), returns all the TSPs that have a score larger
than a specified value.

For the p−th TSP, the prediction rule can be written as: predict
class ”+1” if X[,tsp.list$I[p]] < X[,tsp.list$J[p]]
and this forms the core of the predict function. The decision
function for p = 1 in the above example is shown in Figure 1.
Given a list of TSPs one has different choices on how to obtain
the final predicted labels. Currently, Rgtsp proposes two means
of combining the predictions of individual TSPs: either by majority
voting or by weighting the votes with the correspoding scores
- giving more weight to the TSPs with better scores. This
functionality is available through the predict() generic function:

> yp = predict(tsp.list, X, combiner="majority")
> sum(yp != y.erpos) # count the errors
[1] 3

By inspecting the list of TSPs, it becomes clear that there are
variables that are selected many times as having always either higher
or lower value than all its pairing variables. We call such a structure
a TSP hub and we can construct all the hubs larger than a specified
size (25 pairs for example) using

> h = tsp.hub(tsp.list, min.hub.size=25)
> print(h)
Hub 1: 194 pairs
Center: 953 >
14 25 42 43 44 45 54 105 140 146 149 150 152 202 ...

This corresponds to a TSP hub in which the probeset
colnames(X)[953] (205225_at, ESR1) has a higher
expression than all other probesets in the list tsp.list. The TSP

hubs can also be used in predicting the labels, through the same
mechanism as above:

> yph = predict(h, X, combiner="majority")
> sum(yph != y.erpos) # no. of errors: 6

We see that in this particular case the prediction by TSP hubs is
slightly less accurate than the combined predictions of the individual
TSPs.

The generalization performance of the TSPs classifiers can be
estimated by various methods. The Rgtsp package provides a
function for k-fold cross–validation of the binary TSP classifiers
(either tsp.n() or tsp.s() functions), cv.tsp(), which
returns the training and validation performance of the classifier (it
defaults to 5–fold cross–validation).

> r = cv.tsp(X, y.erpos)
> print(r)
$tr.m
Error.rate Sensitivity Specificity AUC
0.02884615 0.97812500 0.96000000 0.96906250

In the case of a multi–class problem, we propose to use
classification trees built on top of TSPs predictions. For C > 2
classes, one can train TSPs to solve each of theC(C−1)/2 pairwise
binary classification problems (called one–versus–one (Hsu and
Lin (2002)) or round robin (Fürnkranz (2002)) strategy) and then
combine the predictions of the TSPs through a classification tree to
predict the original classes. For more details the reader is referred to
the package web page. This approach is implemented in the function
mtsp() and makes use of the ctree() function in the party R
package (y4 is an artificial 4–class label vector):

> m = mtsp(X, y4)
> yp = predict(m, X)
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Abstract

Introduction: As part of the MicroArray Quality Control (MAQC)-II project, this analysis examines how the choice of
univariate feature-selection methods and classification algorithms may influence the performance of genomic
predictors under varying degrees of prediction difficulty represented by three clinically relevant endpoints.

Methods: We used gene-expression data from 230 breast cancers (grouped into training and independent
validation sets), and we examined 40 predictors (five univariate feature-selection methods combined with eight
different classifiers) for each of the three endpoints. Their classification performance was estimated on the training
set by using two different resampling methods and compared with the accuracy observed in the independent
validation set.

Results: A ranking of the three classification problems was obtained, and the performance of 120 models was
estimated and assessed on an independent validation set. The bootstrapping estimates were closer to the
validation performance than were the cross-validation estimates. The required sample size for each endpoint was
estimated, and both gene-level and pathway-level analyses were performed on the obtained models.

Conclusions: We showed that genomic predictor accuracy is determined largely by an interplay between sample
size and classification difficulty. Variations on univariate feature-selection methods and choice of classification
algorithm have only a modest impact on predictor performance, and several statistically equally good predictors
can be developed for any given classification problem.

Introduction
Gene-expression profiling with microarrays represents a
novel tissue analytic tool that has been applied success-
fully to cancer classification, and the first generation of
genomic prognostic signatures for breast cancer is
already on the market [1-3]. So far, most of the pub-
lished literature has addressed relatively simple classifi-
cation problems, including separation of cancer from
normal tissue, distinguishing between different types of
cancers, or sorting cancers into good or bad prognoses
[4]. The transcriptional differences between these condi-
tions or disease states are often large compared with
transcriptional variability within the groups, and there-
fore, reasonably successful classification is possible. The

methodologic limitations and performance characteris-
tics of gene expression based classifiers have not been
examined systematically when applied to increasingly
challenging classification problems in real clinical data
sets.
The MicroArray Quality Control (MAQC) (MAQC

Consortium project-II: a comprehensive study of com-
mon practices for the development and validation of
microarray-based predictive models) breast cancer data
set (Table 1) offers a unique opportunity to study the
performance of genomic classifiers when applied across
a range of classification difficulties.
One of the most important discoveries in breast can-

cer research in recent years has been the realization that
estrogen receptor (ER)-positive and -negative breast can-
cers represent molecularly distinct diseases with large
differences in gene-expression patterns [5,6]. Therefore,
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gene expression-based prediction of ER status represents
an easy classification problem.
A somewhat more difficult problem is to predict

extreme chemotherapy sensitivity, including all breast
cancers in the analysis. This classification problem is
facilitated by the association between clinical disease
characteristics and chemotherapy sensitivity. For exam-
ple, ER-negative cancers are more chemotherapy sensi-
tive than are ER-positive tumors [7].
A third, and more difficult, classification problem is to

predict disease outcome in clinically and molecularly

homogeneous patient populations. Genomic predictors
could have the greatest clinical impact here, because tra-
ditional clinical variables alone are only weakly discrimi-
natory of outcome in these populations. In the current
data set, prediction of chemotherapy sensitivity among
the ER-negative cancers represents such a challenge.
The goal of this analysis was to assess how the

degree of classification difficulty may affect which ele-
ments of prediction methods perform better. We
divided the data into a training set (n = 130) and a
validation set (n = 100) and developed a series of

Table 1 Patient characteristics in the training and validation sets

Training set (n = 130) Validation set (n = 100) P value

Median age 51 years (28-79 years) 50 years (26-73 years)

Race 0.804

Caucasian 85 (65%) 68 (68%)

African American 13 (10%) 12 (12%)

Asian 9 (7%) 7 (7%)

Hispanic 21 (16%) 13 (13%)

Mixed 2 (2%) 0

Cancer histology 0.047

Invasive ductal (IDC) 119 (92%) 85 (85%)

Mixed ductal/lobular (IDC/ILC) 8 (6%) 8 (8%)

Invasive lobular (ILC) 1 (0.7%) 7 (7%)

Others 2 (1.3%) 0

Tumor size 0.643

T0 1 (1%) 2 (2%)

T1 12 (9%) 8 (8%)

T2 70 (54%) 62 (62%)

T3 21 (16%) 13 (13%)

T4 26 (20%) 15 (15%)

Lymph node stage 0.935

N0 39 (30%) 27 (27%)

N1 60 (46%) 47 (47%)

N2 14 (11%) 13 (13%)

N3 17 (13%) 13 (13%)

Nuclear grade (BMN) 0.005

1 2 (2%) 11 (11%)

2 52 (40%) 42 (42%)

3 76 (58%) 47 (47%)

Estrogen receptor 0.813

Estrogen receptor positive 80 (62%) 60 (60%)

Estrogen receptor negative 50 (38%) 40 (40%)

HER-2 < 0.001

HER-2 positive 33 (25%) 7 (7%)

HER-2 negative 96 (74%) 93 (93%)

Neoadjuvant therapy 0.005

Weekly T × 12 + FAC × 4 112 (86%) 98 (98%)

3-Weekly T × 4 + FAC × 4 18 (14%) 2 (2%)

Pathologic complete response (pCR) 33 (25%) 15 (15%) 0.055

Estrogen receptor: cases in which more than 10% of tumor cells stained positive for ER with immunohistochemistry (IHC) were considered positive. HER-2: cases
that showed either 3+ IHC staining or had gene copy number greater than 2.0 were considered HER-2 “positive.” T = paclitaxel; FAC = 5-fluorouracil, doxorubicin,
and cyclophosphamide. The P values for the association tests were obtained from a c2 test unless the number of cases was fewer than five in any category, in
which case, Fisher’s Exact test was used.

Popovici et al. Breast Cancer Research 2010, 12:R5
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classifiers to predict (a) ER status, (b) pathologic com-
plete response (pCR) to preoperative chemotherapy for
all breast cancers, and (c) pCR for ER-negative breast
cancers. A predictor, or classifier, in this article is
defined as a set of informative features (generated by a
particular feature-selection method) and a trained dis-
crimination rule (produced by applying a particular
classification algorithm).
First, we examined whether the success of a predictor

was influenced by a feature-selection method. We exam-
ined five different univariate feature-selection methods
including three variations of a t test-based ranking and
two methods that order features based on differences in
expression values. It has been shown that several differ-
ent classification algorithms can yield predictors with
rather similar performance metrics [8-10]. However, it
remains unknown whether the relative performances of
different methods may vary depending on the difficulty
of the prediction problem. We examined this question
for eight different classifiers representing a broad range
of algorithms, including linear (LDA), diagonal linear
(DLDA), and quadratic discriminant analysis (QDA);
logistic regression (LREG); and two versions of support-
vector machines (SVM) and k-nearest neighbor (KNN)
methods. Altogether, 40 different predictors were devel-
oped for each of the three classification problems (five
different feature-selection methods × eight different
classifiers). We also were interested determine to what
extent the cross-validation classification performance is
influenced by different data-resampling methods and the
difficulty of the classification problem. We estimated the
classification performance by using 10-times-repeated
fivefold cross validation (10 × 5-CV) and leave-pair-out
(LPO) bootstrapping [11] (a method that better accounts
for training and testing variability). We calculated per-
formance metrics for each of the 120 predictors (40 pre-
dictors × three endpoints) and compared the estimated
accuracy in the training set with the observed accuracy
in the independent validation set.

Materials and methods
Patients and materials
Gene-expression data from 230 stage I to III breast
cancers, without individual patient identifiers, were
provided to the MAQC project by the University of
Texas M.D. Anderson Cancer Center (MDACC) Breast
Cancer Pharmacogenomic Program. Gene-expression
results were generated from fine-needle aspiration spe-
cimens of newly diagnosed breast cancers before any
therapy. The biopsy specimens were collected sequen-
tially during a prospective pharmacogenomic marker
discovery study approved by the institutional review
board between 2000 and 2008. These specimens

represent 70% to 90% pure neoplastic cells with mini-
mal stromal contamination [12]. All patients signed
informed consent for genomic analysis of their cancers.
Patients received 6 months of preoperative (neoadju-
vant) chemotherapy including paclitaxel, 5-fluorouracil,
cyclophosphamide, and doxorubicin, followed by surgi-
cal resection of the cancer. Response to preoperative
chemotherapy was categorized as a pathologic com-
plete response (pCR = no residual invasive cancer in
the breast or lymph nodes) or residual invasive cancer
(RD). The prognostic value of pCR has been discussed
extensively in the medical literature [13]. Genomic
analyses of subsets of this sequentially accrued patient
population were reported previously [9,14,15]. For each
endpoint, we used the first 130 cases as a training set
to develop prediction models, and the next 100 cases
were set aside as independent validation set. Table 1
and Additional file 1 show patient and sample charac-
teristics in the two data sets.

Gene-expression profiling
Needle-aspiration specimens of the cancer were placed
into RNAlater™ solution (Qiagen, Germantown, MD,
USA) and stored at -80°C until further analysis. RNA
extraction and gene-expression profiling were per-
formed in multiple batches over time, as described pre-
viously [16,17] by using Affymetrix U133A (Affymetrix,
Santa Clara, CA, USA) microarrays. Gene-expression
data have been uploaded to the Gene Expression Omni-
bus website under the accession number GSE16716.
Normalization was performed by using MAS 5.0 soft-
ware (Affymetrix, Santa Clara, CA, USA) with default
settings. Quality-control assessment of the hybridization
results were performed with SimpleAffy software by
Bioconductor; the percentage present call had to be
more than 30%, scaling factor less than 3, and the 3’/5’
ratios for b-actin less than 3, and for GAPDH, less than
1.3. These quality-control metrics are presented for
each case in Additional file 2.

Ranking of classification problems by informative feature
utility score
To assess the relative difficulty of the three classification
problems that we selected to study, we adopted an
approach similar to that described in [18]. This method
defines the utility of a feature i as its Fisher score,
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where μ1i and μ2i are the class means, and s1i and s2i

are the class standard deviations for the feature i,
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respectively. If features are ordered f1 ≥ f2 ≥ ... then, for
each endpoint, the cumulative information is defined as

F fj i

i

j N

=
=

≤

∑
1

,

where N is the sample size. This cumulative informa-
tion score assumes that the features are independent
and that their effect on the classification performance is
additive. This is rarely the case, as features are often
correlated. Nonetheless, this cumulative information
score is a simple and straightforward approach to esti-
mate the relative difficulty of a classification problem
early in the classifier-development process: an easier
problem tends to have larger values for F than does a
more difficult problem.

Feature-selection methods
No prefiltering of probe sets was done; all probe sets were
considered by the feature-ranking methods that included
(a) unequal variance t test (FS1); (b) unequal variance t
test with filtering of probe sets that were correlated with
one another (Pearson correlation > 0.75) to generate inde-
pendently informative features (FS2); (c) instead of remov-
ing the correlated features, they were combined into meta-
features by averaging them (FS3); and (d) we also ranked
features according to their ratio of between- to within-
group sum of squares (FS4) and (e) according to the abso-
lute differences in the class means (FS5).

Classification algorithms
We examined eight classifiers in combination with the
previously mentioned feature-selection methods, includ-
ing linear discriminant analysis (LDA), diagonal linear
discriminant analysis (DLDA), quadratic discriminant
analysis (QDA), logistic regression (LREG), two k near-
est neighbors classifiers with k = 3 (KNN3) and k = 11
(KNN11), and support vector machines with a radial
basis function kernel with two different values for the
kernel parameter: g = 0.5 (SVM05) and g = 2.0 (SVM2),
respectively. Overall, 40 models were developed for each
of the three prediction problems.

Estimation of predictive performance
Leave-N-out cross-validation and other resampling
methods of the training set are often used to select a
final predictor for independent validation. Therefore, it
is important to understand how resampling-based pre-
dictive performance correlates with predictive perfor-
mance on independent validation cases. To study this
question, we used a nested two-level cross-validation
scheme, in which the cross-validation in the outer loop
had the role of estimating the performance of the whole

modeling procedure, whereas the cross-validation in the
inner loop was used for selecting the optimal number of
features [19].
The procedure in the inner loop is as follows. For

each combination of a feature-selection method F and
a classification algorithm C, the number of features j
(F, C) in the model was considered as a free-parameter
(within a predefined set of allowable values) and was
optimized. In the inner loop, a repeated (5 times), stra-
tified (to preserve the proportion of the two classes in
all training and testing splits), fivefold cross-validation
was used to define the number of features that maxi-
mized the AUC. A ranking of the features was first
obtained by applying F on the reduced internal train-
ing set (obtained by leaving aside one fold from the
current training set). Then the classifier C was trained
on the same set, but considering only the top j(F, C)
features. The predictions on the internal testing set
(the left-out fold) were recorded, and the procedure
was repeated. At the end, an estimation of the AUC
was obtained, corresponding to the given combination
of F, C, and j(F, C). The procedure was repeated with
different folds, and an average estimate of the AUC
was obtained for each F, C, and j(F, C). The optimal
number of features j*(F, C) was selected as the value j
(F, C) yielding the highest average AUC. The number
of features allowed for each model was chosen a
priori, to avoid overfitting of models and to limit the
computation time. For the prediction of ER status, the
feature size was chosen to contain all values between 2
and 15, whereas for both pCR endpoints, it was
{2,5,8,...,41}; 41 being almost half the size of the smal-
lest training set (n = 85 ER-negative cancer). For a
pseudo-code that details the schema used for cross-
validation [see Additional file 3]. To avoid adding
variability due to random partitioning the data into
folds, all estimates were obtained on the same splits of
the data.
We investigated two methods in the outer loop. The

first method is a stratified 10-times-repeated fivefold
cross-validation (10 × 5-CV). In each of the five cross-
validation iterations, 80% of the data were first used as
input to the inner loop procedure for feature selection
and training the classifier with the selected features,
and finally, the remaining 20% of the data were used
to test the classifier. The 95% CI for the area under
the receiver operating characteristics curve (AUC) was
approximated by [AUC - 1.96 SEM, AUC + 1.96
SEM]. The SEM was estimated by averaging the 10
estimates of the standard error of the mean obtained
from the five different estimates of the AUC produced
by the 5-CV.
The second method in the outer loop is a bootstrap-

based method, also known as a smoothed version of
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cross-validation [20]. Efron and Tibshirani [20] proposed
the leave-one-out bootstrap method on the performance
metric error rate, and their technique was recently
extended by Yousef and colleagues [11] to the perfor-
mance metric AUC. This method uses a leave-pair-out
(LPO) bootstrap approach to estimate the mean AUC
(mean over training sets) and a “delta method after
bootstrap” to estimate the variability of the estimated
mean AUC. We point out that this variability captures
both the effect of finite training-set size and the effect
of finite testing-set size. In the LPO approach, multiple
(n = 5,000) training sets are obtained by stratified boot-
strap resampling, and each training set is used as input
to the inner-loop procedure for feature selection and
training the classifier with the selected features. In test-
ing, any pair of cases (one from the positive class and
one from the negative class) is tested on the classifiers
trained on the bootstrap samples that do not contain
the two held-out cases. The Wilcoxon-Mann-Whitney
statistic of the prediction results on pairs of cases is
averaged over all bootstrap-training sets and is used to
estimate the mean AUC. An advantage of this technique
is that it allows estimating the variability of the AUC
estimator by using the influence function method
[11,20]. By assuming that the estimated AUC is asymp-
totically normal, the 95% CI of the AUC can be approxi-
mated by [AUC - 1.96 SEM; AUC + 1.96 SEM].
The estimated performance and the associated CIs

from the training and internal-assessment process are
compared with the independent validation performance.
The conditional validation performance was obtained by
selecting features and training the classifier with the
training data set and testing on the validation data set.
This performance is conditional on the particular finite
training set and may vary when the training set varies.
Therefore, we estimated the mean of this conditional
performance where the mean is over multiple training
sets and obtained by bootstrapping the training set mul-
tiple times and averaging the conditional AUCs, as
tested on the validation set [21].
We also estimated the variability of the conditional

validation performance and decomposed the variance
into two components: the variability due to the finite
size of the training set and the variability due to the
finite size of the test set [21]. The training variability
reflects the stability of the classifier performance when
the training set varies, and the testing variability reflects
the expected performance variation for different test
sets.
To compare the ability of the performance estimates

of 10 × 5-CV and the LPO bootstrap to predict the per-
formance on the independent set, we used a root mean
square error (RMSE) measure, which is defined as
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where F and C index feature selection and classifier,
respectively, A denotes the mean AUC; the superscript
“internal” can be “10 × 5-CV” or “LPO bootstrap.”

Estimation of predictor learning over increasing training-
set size
Predictor learning was evaluated for the models that
performed nominally the best in independent valida-
tion for each of the three prediction problems. All 230
cases were included in the analysis to fit learning
curves to these three models. For the ER-status end-
point, 10 different training-sample sizes, ranging from
n = 60 to n = 220 by increments of 20, were used to
estimate the dependence of the performance para-
meters on the sample size. For each sample size, 10
different random samples were drawn from the full set
by stratified sampling, and fivefold cross-validation was
used to assess the error rate and AUC of the models
where all the parameters of the models were recalcu-
lated. A similar approach was taken for the pCR (n =
50, 70, ..., 210) and “pCR in ER-negative cancer” pre-
dictors (n = 25, 40, ..., 85). By following the work of
Fukunaga [22], the following learning-curve model was
fit to the resulting AUC: Y = a+b/TrainingSize.

Congruence of different predictors at gene and functional
pathway level
We were interested in examining the congruence of
informative features that were selected by different
methods for the same prediction endpoint and also for
different endpoints. Both gene-level and pathway-level
analyses were performed as described previously [23].
MetaCore protein-function classification was used to
group genes into protein functions, and GeneGo Path-
way maps were used for functional classification of
predictive features. We assessed congruency by using
the kappa statistics. The input for kappa involves “lear-
ners” that classify a set of objects into categories. We
considered each feature-selection method as a learner
and each probe set as an object. The probe sets used
in this analysis are presented in Additional file 4. Each
probe set from the rank-ordered lists is categorized by
each feature-selection method either as 1 (that is,
selected as informative) or 0 (that is, nonselected). By
using such an 0/1 matrix for all probe sets × all fea-
ture-selection methods for every prediction endpoint
as input, we can calculate Cohen ’s kappa function
for the congruency. For pathway-level analysis, we
mapped the probe sets to pathway lists by using
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hypergeometric enrichment analysis. The pathways are
ranked by enrichment P values, and the top n path-
ways (n equals the number of genes in the input list
for comparison and consistency between the two
levels) were selected for presentation.
All statistical analysis was performed by using R

software.

Results
Difficulty of the classification problems
Three distinct classification problems were studied: (a)
ER-status prediction, including 80 ER-positive (62%) and
50 ER-negative training cases (38%); (b) pCR prediction,
including 33 cases with pCR (25%) and 97 cases with
residual cancer (75%) for training; and (c) pCR prediction
for ER-negative cancers, including 27 training cases with
pCR (54%) and 23 with residual cancer (46%). Figure 1
shows the cumulative information scores for the three
endpoints: larger cumulative information is an indicator
for a simpler classification problem. The obtained rank-
ing implies that the three endpoints represent different
degrees of classification difficulty.

We also assessed the significance of the utility scores by
using permutation tests (10,000 permutations) for com-
puting the raw P values, followed by Benjamini-Hochberg
correction for multiple testing. For the ER-status end-
point, 1,502 features with significant utility scores (P
value < 0.0001) were used, whereas for the pCR (all
cases), 252 significant features and only five features (cor-
responding to A2M [HGNC:7], RNMT [HGNC:10075],
KIAA0460 [HGNC:29039], AHNAK [HGNC:347], and
ACSM1 [HGNC:18049] genes) were used for pCR among
ER-negative cancers.

Effect of feature-selection methods and classification
algorithms on cross-validation performance
Figure 2 illustrates the average cross-validation AUC
estimated by 10 × 5-CV for all predictors, stratified by
feature-selection method (left column). All feature-selec-
tion methods performed similarly in combination with
various classification algorithms for a given endpoint.
The two non-t test-based methods, FS4 and FS5,
showed slightly better performances than did t test-
based feature selection for the most difficult prediction

Figure 1 Relative complexity of the three prediction problems. The cumulative information values have been scaled such that the
maximum value is 1. To make the curves comparable and to take into account the sample size, the ratio between the number of features used
in the cumulative information (F) and the sample size is used on the horizontal axis. Larger values of the cumulative information indicate simpler
problems.
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endpoint “pCR on ER-negative cancers” in cross valida-
tion, but confidence intervals widely overlapped. Addi-
tional file 5 shows the average error rates and AUCs
generated from 10 × 5-CV for each prediction model
applied to all three classification problems, along with
the average number of features selected. Interestingly,
the number of selected features did not increase as the
prediction problem became more difficult. For the most
difficult problem, the number of selected features was
lower than that for the moderately difficult problem.
This is probably because of the lack of informative fea-
tures: as the classification problem becomes more diffi-
cult, fewer features are informative for the outcome
(also see Figure 1).
Figure 2 also shows the variability of the classification
error rates and AUC estimated through 10 × 5-CV for
all predictors, stratified by classification algorithm (right
column). All methods performed similarly. The predic-
tion endpoint (that is, classification difficulty) had the
greatest effect on the cross-validation AUC. The effects
of feature-selection method and choice of classifier algo-
rithm were modest.

Bootstrap and independent-validation results
Figure 3 shows the estimated AUCs obtained with 10 ×
5-CV (black square), LPO bootstrap (black circle), and
the conditional AUC (blue circle) on the independent
validation set and its variability (blue error bar repre-
senting ± 2 SD) and mean (red cross). Additional file 5
includes the internal (10 × 5-CV and LPO bootstrap)
and independent validation-performance metrics for
each predictor. Both internal-estimation methods
yielded AUCs that were very close, well within 2 stan-
dard deviations of the mean, to the conditional and
mean AUCs observed in the independent validation.
Internal-performance estimates generated within the
training set only slightly overestimated the performance
relative to independent validation, indicating both that
the modeling approach was correct and that no strong
batch effect occurred between training and validation
sets. Simpler linear methods, such as LREG, LDA, and
DLDA, performed generally well in both internal and
independent validation, and these methods were among
the top five nominally best-performing models for all
prediction endpoints [see Additional file 5]. The non-t
test-based feature-selection methods (FS4, FS5) that
showed good results in cross validation also performed
well in independent validation and were included in
four of the top five models for each endpoint. However,
the 95% CIs of the point estimates overlap broadly for
all predictors, and no single strategy emerged as clearly
superior for any particular endpoint.
To assess the confidence-interval estimation, we calcu-

lated the RMSE for the AUC estimates obtained with 10

× 5-CV and LPO bootstrap for all the three endpoints.
Leave-pair-out bootstrap performed better than 10 × 5-
CV in terms of the agreement with the mean AUC esti-
mated in the independent-validation set: RMSEs for
LPO bootstrap were 0.0484, 0.0491, and 0.357 in com-
parison with 0.0562, 0.0713, and 0.449 for 10 × 5-CV
for the ER status, pCR, and pCR within ER-negative
endpoints, respectively.
Figure 3 clearly shows that the variability of the esti-

mated classification performance increases as the level
of classification difficulty increases. This implies that,
to achieve the same level of statistical precision of the
estimated performance, more cases are needed for a
more-difficult endpoint. Figure 3 also shows both the
conditional (blue circle) and mean validation AUCs
(red cross). The larger the difference between the con-
ditional validation AUC and the mean validation AUC,
the less stable the predictor is with respect to varying
the training sets. A quantitative measure of classifier
stability is the training variability, and we have decom-
posed the variability of the conditional validation AUC
shown in Figure 3 into two components (training
variability and testing variability) and put the results in
Additional file 5.

Predictor-performance and sample-size estimations
through learning curves
To estimate the training-set size that is necessary to
develop predictors that operate near their respective pla-
teaus, we examined how the performance characteristics
of each of the nominally best predictors for each end-
point improved as the training-set size increased. For
ER-status prediction, we selected QDA with FS1 (condi-
tional validation AUC = 0.939); for pCR prediction
including both the ER-positive and -negative cancers, we
selected LREG with FS5 (conditional validation AUC =
0.805); and for pCR in ER-negative cancers, we selected
LREG with FS4 (conditional validation AUC = 0.627).
Figure 4 shows the observed changes in average AUCs
for each of the classifiers as the training-set size
increased from 60 to 220 (or from 25 to 85 for pCR pre-
diction in ER-negative cancers) and the projected
improvements for assumed larger training sets. The
results indicate that for the easiest problem (ER), the
predictor seems to perform at its best with a sample
size around 80 to 100. For the moderately difficult pro-
blem (pCR), the steady increase of the learning curve
suggests that the performance of the model can be
improved by increasing the sample size, beyond the
highest value currently tested (220). For the pCR in ER-
negative cancer endpoint, the learning curves manifested
a very modest and gradual improvement in performance
between training sample sizes of 25 and 85, suggesting
that either too few samples were available for a reliable
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estimation of the learning curve or that limited informa-
tion in the mRNA space exists to predict this particular
outcome with the methods applied in this analysis. The
learning curve that had a slope significantly different
from 0 was the one for the pCR endpoint (P = 0.001;
ER endpoint, P = 0.05; pCR in ER-negative endpoint, P
= 0.365).

Functional analysis of predictive features
Our results demonstrate that several different feature
sets can yield predictors with statistically similar

performances [8-10,24]. This may occur because the
various probe sets that represent different genes capture
information from the same complex molecular pathways
that determine a particular clinical outcome [25]. In
other words, different features measure different compo-
nents of the same informative biologic pathway. To test
this concept, we mapped each of the 15 feature sets
used in the final validation models to known biologic
pathways. The different feature sets selected for a parti-
cular prediction endpoint had a high level of congruency
at both the gene and the pathway levels across all the

Figure 2 Boxplots of the estimated area under the curve (AUC), stratified by feature-selection and classification methods. The boxplots
show the mean AUC in 10 times fivefold cross validation (CV). The left column contains the estimated AUC stratified by the feature-selection
method, and the right column contains the estimated AUC stratified by the classification method.
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five different ranking methods (Table 2). The selected
gene sets and pathways were also rather similar to each
other for the ER and pCR prediction endpoints. How-
ever, the genes and pathways predictive of pCR in ER-
negative cancers were very different from the other two
informative gene sets.
Additional file 6 contains the pathway-enrichment

tables for the three endpoints, including pathways with
enrichment P values < 0.1. Thirty-two pathways contrib-
uted to the prediction of ER status; 36, to pCR predic-
tion; and 11, to pCR prediction within ER-negative

cancers across the five feature-selection methods. For
the ER endpoint, development, cell adhesion, cytoskele-
ton remodeling, DNA damage, apoptosis, and ER tran-
scription factor activity were the most significant
pathway elements common to all informative feature
sets. We also noted that most pathways that were
involved in pCR prediction (31 of 36) were the same as
those involved in ER-status prediction. This is consis-
tent with the known association between pCR rate and
ER status [7]. Estrogen receptor-negative cancers had
significantly higher pCR rates than ER-positive cancers
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Figure 3 Graphic summaries of the estimated and observed areas under the curve (AUCs) for each of the 120 models. For each
combination of feature-selection method and classification algorithm, the AUCs ± 2 standard deviations are plotted. Mean AUCs obtained from
10 × 5-CV (cross-validation; black square), LPO bootstrap (black dot), and the conditional (blue circle) and mean (red cross) validation AUCs are
shown.
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(54% pCR in ER-negative cancers versus 7.5% pCR in
ER-positive cancers; c2 test P value = 1.068e-08). The
pathways that were selected for prediction of pCR in
ER-negative cancers were distinct from the pathways
that were predictive of pCR in all patients and included
immune response-related pathways (IL-2 and T-helper
cell activation), opioid-receptor signaling, and endothe-
lial cell-related pathways.

Discussion
The goal of this analysis was to examine how the choice
of a univariate feature-selection method and classifica-
tion algorithm may influence the performance of predic-
tors under varying degrees of classification difficulty.
We examined the influence of changing two critical
components, feature selection and classification algo-
rithm in the predictor development process, for three
different prediction problems that represented three
levels of difficulty in a clinically annotated human breast
cancer data set. Classification of breast cancer into ER-
positive or -negative categories is an easy classification
problem; the large number of informative probe sets

and high information content of the features allow clear
separation of the groups. The AUC values for the 40
different prediction models for this endpoint ranged
from 0.875 to 0.939 in the independent validation set.
Prediction of pCR across all breast cancers, including
both ER-negative and ER-positive cases, represented a
slightly more difficult prediction problem with AUCs
ranging between 0.61 and 0.80 in the validation set. Pre-
diction of pCR in the molecularly more homogeneous
ER-negative breast cancer subpopulaton proved to be
the most difficult classification challenge: the validation
AUCs ranged from 0.34 to 0.62. No predictor-develop-
ment strategy emerged as clearly superior for any of the
classification problems. The 95% CI of the prediction
accuracies overlaped broadly for most of the predictors.
However, LDA, DLDA, LREG, and QDA classification
algorithms were consistently among the best-performing
models for each problem. Interestingly, KNN3 and SVM
methods were often among the worst-performing mod-
els in independent validation, even though these reached
relatively high AUC values in cross validation. It is pos-
sible that further fine tuning of parameters for these

Figure 4 Learning curves for the best predictors for each of the three endpoints. For each endpoint, the learning curve of the best-
performing model on the validation set was estimated by fivefold cross-validation for gradually increasing sample sizes. The plot shows both
the estimated performance for different sample sizes and the fitted curve. The quadratic discriminant analysis (QDA) classifier required more than
60 samples, so the minimum sample size for it was 80. Note the nonlinear scale of the x-axis.
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more-complex classifiers (in the sense of an implemen-
table decision boundary) could have improved predictive
performance. We examined only the radial function ker-
nel for SVM with two a priori set kernel parameters g =
0.5 and 2.0, and the parameter C (cost of misclassifica-
tion) was also fixed at 10. Fixing these parameters may
have resulted in “less than optimally trained” models
that could lead to added variability in the performance
of the classifiers. Also, we examined only two versions
of KNN with a priori set k of 3 and 11, and found that
KNN11 outperformed KNN3. Low values of k yield
local classifiers with low bias but high variance, whereas
higher values led to more-global classifiers with higher
bias and lower variance; exploring a broader range of k
values could have optimized prediction results. Optimiz-
ing the parameters g or k is not a straightforward task.
It should be done within the inner cross-validation pro-
cess, just as is done with feature selection. Fine tuning
different model parameters outside of the two-stage
cross-validation process would lead to model-selection
bias, or optimization bias [19].
An interesting observation was that simple feature-

selection methods that ranked features based on
difference in means performed very well in both
cross-validation and independent validation relative to
the more commonly used t statistic-based ranking.
Four of the top five models for each prediction pro-
blem used features selected by the non-t test-based
methods. However, it is important to recognize that
all of the feature-selection methods that we examined
represented univariate filtering approaches that rank
features individually and independent of the classifica-
tion method. It is possible that nonparametric or
multivariate feature-selection methods could yield dif-
ferent results. Penalized feature-selection methods,

which embed feature selection in the classifier fitting
step, may also have advantages, because features that
might not be discriminatory individually could be
jointly predictive in combination with other features.
At least one article suggested that multivariate sparse
penalized likelihood methods, including lasso and
elastic net, might have a slight edge compared with
univariate filtering [26]. Other publications that com-
pared several univariate and multivariate feature-
selection methods in public cancer data sets by using
10-fold cross-validation estimates found that simple
univariate feature-selection methods often outper-
formed more-complex multivariate approaches
[27,28].
Our data demonstrate that many different feature sets

and classification methods can yield similarly accurate
predictors for a given endpoint. When we mapped the
feature sets generated by five different univariate fea-
ture-selection methods to biologic pathways, each
method tended to identify similar genes and pathways.
The biologic pathways that were implicated in ER-status
or pCR prediction were distinct from the pathways that
were predictive of pCR in ER-negative cancers. This
pathway-level analysis is hypothesis generating and will
require further laboratory validation to determine the
importance of the identified pathways (for example,
immune response, endothelial-cell regulation, G-protein
signaling) in the biology of chemotherapy response in
ER-negative breast cancer.
To estimate potential improvements in predictive per-

formance of the nominally best predictors for each clas-
sification problem, we pooled all cases and carried out a
series of split-sample training and validation analyses in
which the predictors were trained on increasingly larger
data sets. For the easy classification problem (ER-status),
relatively small sample sizes (80 to 100 samples) were
enough for constructing excellent predictors. In con-
trast, for the moderately difficult problem (pCR predic-
tion), the accuracy of the model steadily improved as
the sample size increased. For the most difficult pro-
blem, pCR prediction in ER-negative cancer, a minimal
improvement was observed over a range of 25 to 85
training cases. It is important to note that the pCR and
ER status predictors trained on 80 cases showed good
or excellent conditional AUCs (0.65 and 0.94, respec-
tively). This modest performance and limited improve-
ment of the pCR predictor for ER-negative cancer may
be due to (a) too small sample size for trainig or (b) the
incompletness of the mRNA expression-based feature
space, meaning that this class-separation problem can-
not be fully accomplished by using information only
from the available probes by using the methods that we
applied. However, fitting learning curves to preliminary
data sets could assisst investigators in estimating

Table 2 Congruencies across different endpoints and
different feature-selection methods

Same endpoint but different feature selection (FS)

Endpoint Gene-level Level of canonic-pathway maps

ER status 0.541 0.573

pCR 0.544 0.572

pCR(ER-) 0.593 0.532

Same FS but different endpoints

FS Gene-level Level of canonic-pathway maps

FS1 0.300 0.290

FS2 0.299 0.274

FS3 0.291 0.278

FS4 0.295 0.291

FS5 0.272 0.282

The table shows that kappa statistics (that is, congruency) are high for
different feature-selection methods for the same endpoint but are low for the
same feature-ranking method for different endpoints. Both gene-level and
pathway-level analyses show similar results.
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sample-size requirements for a particular prediction pro-
blem for any given model.

Conclusions
This analysis confirms that it is possible to build multi-
gene classifiers of clinical outcome that hold up in inde-
pendent validation. Predictor performance is determined
largely by an interplay between training-sample size and
classification difficulty. Variations on univariate feature-
selection methods and choice of classification algorithm
had only a modest impact on predictor performance,
and it is clear that within our statistical precision, sev-
eral equally good predictors can be developed for each
of our classification problems. Pathway-level analysis of
informative features selected by different methods
revealed a high level of congruency. This indicates that
similar biologic pathways were identified as informative
for a given prediction endpoint by the different univari-
ate feature-selection methods. The independent valida-
tion results also showed that internal 10 × 5-CV and
LPO bootstrap both yielded reasonably good and only
slightly optimistic performance estimates for all the
endpoints.

Additional file 1: Supplemental Table S1. Clinical data for all the
patients in the training and validation sets.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/bcr2468-S1.xls ]

Additional file 2: Supplemental Table S2. Quality control results.
Click here for file
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Additional file 3: Supplemental Table S3. Pathways mapping for all
endpoints.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/bcr2468-S3.xls ]

Additional file 4: Supplemental methods. Pseudo-code description of
the two-level external cross-validation scheme.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/bcr2468-S4.pdf ]

Additional file 5: Supplemental Table S4. Features (probesets) selected
in the 120 models.
Click here for file
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of guidelines for safe and effective use of preclinical and clinical 
genomic data. Although previous studies have compared and bench-
marked individual steps in the model development process19, no 
prior published work has, to our knowledge, extensively evaluated 
current community practices on the development and validation of 
microarray-based predictive models.

Microarray-based gene expression data and prediction models are 
increasingly being submitted by the regulated industry to the FDA 
to support medical product development and testing applications20. 
For example, gene expression microarray–based assays that have 
been approved by the FDA as diagnostic tests include the Agendia 
MammaPrint microarray to assess prognosis of distant metastasis in 
breast cancer patients21,22 and the Pathwork Tissue of Origin Test 
to assess the degree of similarity of the RNA expression pattern in 
a patient’s tumor to that in a database of tumor samples for which 
the origin of the tumor is known23. Gene expression data have 
also been the basis for the development of PCR-based diagnostic 
assays, including the xDx Allomap test for detection of rejection of  
heart transplants24.

The possible uses of gene expression data are vast and include diag-
nosis, early detection (screening), monitoring of disease progression, 
risk assessment, prognosis, complex medical product characteriza-
tion and prediction of response to treatment (with regard to safety or 
efficacy) with a drug or device labeling intent. The ability to generate 
models in a reproducible fashion is an important consideration in 
predictive model development.

A lack of consistency in generating classifiers from publicly avail-
able data is problematic and may be due to any number of factors 
including insufficient annotation, incomplete clinical identifiers, 
coding errors and/or inappropriate use of methodology25,26. There 

the MicroArray Quality control (MAQc)-ii study of 
common practices for the development and validation 
of microarray-based predictive models

As part of the United States Food and Drug Administration’s (FDA’s) 
Critical Path Initiative to medical product development (http://www.
fda.gov/oc/initiatives/criticalpath/), the MAQC consortium began in 
February 2005 with the goal of addressing various microarray reli-
ability concerns raised in publications1–9 pertaining to reproducibility 
of gene signatures. The first phase of this project (MAQC-I) exten-
sively evaluated the technical performance of microarray platforms 
in identifying all differentially expressed genes that would potentially 
constitute biomarkers. The MAQC-I found high intra-platform repro-
ducibility across test sites, as well as inter-platform concordance of 
differentially expressed gene lists10–15 and confirmed that microarray 
technology is able to reliably identify differentially expressed genes 
between sample classes or populations16,17. Importantly, the MAQC-I 
helped produce companion guidance regarding genomic data submis-
sion to the FDA (http://www.fda.gov/downloads/Drugs/GuidanceCo
mplianceRegulatoryInformation/Guidances/ucm079855.pdf).

Although the MAQC-I focused on the technical aspects of gene 
expression measurements, robust technology platforms alone are 
not sufficient to fully realize the promise of this technology. An 
additional requirement is the development of accurate and repro-
ducible multivariate gene expression–based prediction models, also 
referred to as classifiers. Such models take gene expression data from 
a patient as input and as output produce a prediction of a clinically 
relevant outcome for that patient. Therefore, the second phase of the 
project (MAQC-II) has focused on these predictive models18, study-
ing both how they are developed and how they are evaluated. For 
any given microarray data set, many computational approaches can 
be followed to develop predictive models and to estimate the future 
performance of these models. Understanding the strengths and limi-
tations of these various approaches is critical to the formulation 

*A full list of authors and affiliations appears at the end of the paper. Correspondence should be addressed to L.S. (leming.shi@fda.hhs.gov or leming.shi@gmail.com).
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Gene expression data from microarrays are being applied to predict preclinical and clinical endpoints, but the reliability of 
these predictions has not been established. In the MAQC-II project, 36 independent teams analyzed six microarray data sets 
to generate predictive models for classifying a sample with respect to one of 13 endpoints indicative of lung or liver toxicity in 
rodents, or of breast cancer, multiple myeloma or neuroblastoma in humans. In total, >30,000 models were built using many 
combinations of analytical methods. The teams generated predictive models without knowing the biological meaning of some of 
the endpoints and, to mimic clinical reality, tested the models on data that had not been used for training. We found that model 
performance depended largely on the endpoint and team proficiency and that different approaches generated models of similar 
performance. The conclusions and recommendations from MAQC-II should be useful for regulatory agencies, study committees 
and independent investigators that evaluate methods for global gene expression analysis.
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are also examples in the literature of classifiers whose performance 
cannot be reproduced on independent data sets because of poor study 
design27, poor data quality and/or insufficient cross-validation of all 
model development steps28,29. Each of these factors may contribute 
to a certain level of skepticism about claims of performance levels 
achieved by microarray-based classifiers.

Previous evaluations of the reproducibility of microarray-based 
classifiers, with only very few exceptions30,31, have been limited 
to simulation studies or reanalysis of previously published results. 
Frequently, published benchmarking studies have split data sets at 
random, and used one part for training and the other for validation. 
This design assumes that the training and validation sets are produced 
by unbiased sampling of a large, homogeneous population of samples. 
However, specimens in clinical studies are usually accrued over years 
and there may be a shift in the participating patient population and 
also in the methods used to assign disease status owing to changing 
practice standards. There may also be batch effects owing to time 
variations in tissue analysis or due to distinct methods of sample 
 collection and handling at different medical centers. As a result, 
 samples derived from sequentially accrued patient populations, as 
was done in MAQC-II to mimic clinical reality, where the first cohort 
is used for developing predictive models and subsequent patients are 
included in validation, may differ from each other in many ways that 
could influence the prediction performance.

The MAQC-II project was designed to evaluate these sources of 
bias in study design by constructing training and validation sets at 
different times, swapping the test and training sets and also using 
data from diverse preclinical and clinical scenarios. The goals of 
MAQC-II were to survey approaches in genomic model develop-
ment in an attempt to understand sources of variability in prediction 
performance and to assess the influences of endpoint signal strength 
in data. By providing the same data sets to many organizations for 
analysis, but not restricting their data analysis protocols, the project 
has made it possible to evaluate to what extent, if any, results depend 
on the team that performs the analysis. This contrasts with previous 
benchmarking studies that have typically been conducted by single 
laboratories. Enrolling a large number of organizations has also made 
it feasible to test many more approaches than would be practical for 
any single team. MAQC-II also strives to develop good modeling 
practice guidelines, drawing on a large international collaboration of 
experts and the lessons learned in the perhaps unprecedented effort 
of developing and evaluating >30,000 genomic classifiers to predict 
a variety of endpoints from diverse data sets.

MAQC-II is a collaborative research project that includes 
participants from the FDA, other government agencies, industry 
and academia. This paper describes the MAQC-II structure and 
experimental design and summarizes the main findings and key 
results of the consortium, whose members have learned a great deal  
during the process. The resulting guidelines are general and should 
not be construed as specific recommendations by the FDA for  
regulatory submissions.

RESULTS
Generating a unique compendium of >30,000 prediction models
The MAQC-II consortium was conceived with the primary 
goal of examining model development practices for generating 
binary classifiers in two types of data sets, preclinical and clinical 
(Supplementary Tables 1 and 2). To accomplish this, the project 
leader distributed six data sets containing 13 preclinical and clini-
cal endpoints coded A through M (Table 1) to 36 voluntary par-
ticipating data analysis teams representing academia, industry 

and government institutions (Supplementary Table 3). Endpoints 
were coded so as to hide the identities of two negative-control end-
points (endpoints I and M, for which class labels were randomly 
assigned and are not predictable by the microarray data) and two 
 positive-control endpoints (endpoints H and L, representing the 
sex of patients, which is highly predictable by the microarray data). 
Endpoints A, B and C tested teams’ ability to predict the toxicity 
of chemical agents in rodent lung and liver models. The remaining 
endpoints were predicted from microarray data sets from human 
patients diagnosed with breast cancer (D and E), multiple myeloma 
(F and G) or neuroblastoma (J and K). For the multiple myeloma 
and neuroblastoma data sets, the endpoints represented event free 
survival (abbreviated EFS), meaning a lack of malignancy or disease 
recurrence, and overall survival (abbreviated OS) after 730 days  
(for multiple myeloma) or 900 days (for neuroblastoma) post treat-
ment or diagnosis. For breast cancer, the endpoints represented 
estrogen receptor status, a common diagnostic marker of this 
cancer type (abbreviated ‘erpos’), and the success of treatment 
involving chemotherapy followed by surgical resection of a tumor 
(abbreviated ‘pCR’). The biological meaning of the control end-
points was known only to the project leader and not revealed to 
the project participants until all model development and external 
validation processes had been completed.

To evaluate the reproducibility of the models developed by a data 
analysis team for a given data set, we asked teams to submit models 
from two stages of analyses. In the first stage (hereafter referred to as 
the ‘original’ experiment), each team built prediction models for up to 
13 different coded endpoints using six training data sets. Models were 
‘frozen’ against further modification, submitted to the consortium 
and then tested on a blinded validation data set that was not available 
to the analysis teams during training. In the second stage (referred 
to as the ‘swap’ experiment), teams repeated the model building and 
validation process by training models on the original validation set 
and validating them using the original training set.

To simulate the potential decision-making process for evaluating a 
microarray-based classifier, we established a process for each group 
to receive training data with coded endpoints, propose a data analysis 
protocol (DAP) based on exploratory analysis, receive feedback on 
the protocol and then perform the analysis and validation (Fig. 1). 
Analysis protocols were reviewed internally by other MAQC-II par-
ticipants (at least two reviewers per protocol) and by members of the 
MAQC-II Regulatory Biostatistics Working Group (RBWG), a team 
from the FDA and industry comprising biostatisticians and others 
with extensive model building expertise. Teams were encouraged to 
revise their protocols to incorporate feedback from reviewers, but 
each team was eventually considered responsible for its own analysis 
protocol and incorporating reviewers’ feedback was not mandatory 
(see Online Methods for more details).

We assembled two large tables from the original and swap experi-
ments (Supplementary Tables 1 and 2, respectively) containing 
summary information about the algorithms and analytic steps, or 
‘modeling factors’, used to construct each model and the ‘internal’ 
and ‘external’ performance of each model. Internal performance 
measures the ability of the model to classify the training samples, 
based on cross-validation exercises. External performance measures 
the ability of the model to classify the blinded independent validation 
data. We considered several performance metrics, including Matthews 
Correlation Coefficient (MCC), accuracy, sensitivity, specificity, 
area under the receiver operating characteristic curve (AUC) and 
root mean squared error (r.m.s.e.). These two tables contain data on 
>30,000 models. Here we report performance based on MCC because 
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it is informative when the distribution of the two classes in a data set 
is highly skewed and because it is simple to calculate and was available 
for all models. MCC values range from +1 to −1, with +1 indicating 
perfect prediction (that is, all samples classified correctly and none 
incorrectly), 0 indicates random prediction and −1 indicating perfect 
inverse prediction.

The 36 analysis teams applied many different options under each 
modeling factor for developing models (Supplementary Table 4) 
including 17 summary and normalization methods, nine batch-effect 
removal methods, 33 feature selection methods (between 1 and >1,000 
features), 24 classification algorithms and six internal validation 
 methods. Such diversity suggests the community’s common practices are 

Table 1 Microarray data sets used for model development and validation in the MAQC-II project

Date set 
code

Endpoint 
code

Endpoint  
description

Microarray  
platform

Training seta Validation seta

Comments and references
Number  

of samples
Positives 

(P)
Negatives  

(N)
P/N  
ratio

Number  
of samples

Positives  
(P)

Negatives 
(N)

P/N  
ratio

Hamner A Lung tumorigen 
vs. non-tumorigen 
(mouse)

Affymetrix Mouse 
430 2.0

70 26 44 0.59 88 28 60 0.47 The training set was first  
published in 2007 (ref. 50) and 
the validation set was generated 
for MAQC-II

Iconix B Non-genotoxic liver 
carcinogens vs.  
non-carcinogens  
(rat)

Amersham Uniset  
Rat 1 Bioarray

216 73 143 0.51 201 57 144 0.40 The data set was first published 
in 2007 (ref. 51). Raw microarray 
intensity data, instead of ratio 
data, were provided for MAQC-II 
data analysis

NIEHS C Liver toxicants vs. 
non-toxicants based 
on overall necrosis 
score (rat)

Affymetrix  
Rat 230 2.0

214 79 135 0.58 204 78 126 0.62 Exploratory visualization of the 
data set was reported in 2008 
(ref. 53). However, the phenotype 
classification problem was  
formulated specifically for  
MAQC-II. A large amount of  
additional microarray and 
phenotype data were provided to 
MAQC-II for cross-platform and 
cross-tissue comparisons

Breast 
cancer 
(BR)

D Pre-operative treat-
ment response (pCR, 
pathologic complete 
response)

Affymetrix Human 
U133A

130 33 97 0.34 100 15 85 0.18 The training set was first  
published in 2006 (ref. 56) and 
the validation set was specifically 
generated for MAQC-II. In addi-
tion, two distinct endpoints (D 
and E) were analyzed in MAQC-II

E Estrogen receptor 
status (erpos)

130 80 50 1.6 100 61 39 1.56

Multiple 
myeloma 
(MM)

F Overall survival  
milestone outcome 
(OS, 730-d cutoff)

Affymetrix Human 
U133Plus 2.0

340 51 289 0.18 214 27 187 0.14 The data set was first published 
in 2006 (ref. 57) and 2007 
(ref. 58). However, patient 
survival data were updated and 
the raw microarray data (CEL 
files) were provided specifically 
for MAQC-II data analysis. In 
addition, endpoints H and I were 
designed and analyzed specifically 
in MAQC-II

G Event-free survival 
milestone outcome 
(EFS, 730-d cutoff)

340 84 256 0.33 214 34 180 0.19

H Clinical parameter  
S1 (CPS1). The  
actual class label 
is the sex of the 
patient. Used as a 
“positive” control 
endpoint

340 194 146 1.33 214 140 74 1.89

I Clinical parameter  
R1 (CPR1). The 
actual class label is 
randomly assigned. 
Used as a “negative” 
control endpoint

340 200 140 1.43 214 122 92 1.33

Neuro-
blastoma 
(NB)

J Overall survival  
milestone outcome 
(OS, 900-d cutoff)

Different versions 
of Agilent human 
microarrays

238 22 216 0.10 177 39 138 0.28 The training data set was first 
published in 2006 (ref. 63). 
The validation set (two-color 
Agilent platform) was generated 
specifically for MAQC-II. In addi-
tion, one-color Agilent platform 
data were also generated for most 
samples used in the training and 
validation sets specifically for 
MAQC-II to compare the predic-
tion performance of two-color  
versus one-color platforms. 
Patient survival data were also 
updated. In addition, endpoints L 
and M were designed and  
analyzed specifically in MAQC-II

K Event-free survival 
milestone outcome 
(EFS, 900-d cutoff)

239 49 190 0.26 193 83 110 0.75

L Newly established 
parameter S (NEP_S).  
The actual class label 
is the sex of the  
patient. Used as a 
“positive” control 
endpoint

246 145 101 1.44 231 133 98 1.36

M Newly established 
parameter R (NEP_R). 
The actual class label 
is randomly assigned. 
Used as a “negative” 
control endpoint

246 145 101 1.44 253 143 110 1.30

The first three data sets (Hamner, Iconix and NIEHS) are from preclinical toxicogenomics studies, whereas the other three data sets are from clinical studies. Endpoints H and L are positive 
controls (sex of patient) and endpoints I and M are negative controls (randomly assigned class labels). The nature of H, I, L and M was unknown to MAQC-II participants except for the project 
leader until all calculations were completed.  
aNumbers shown are the actual number of samples used for model development or validation.
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well represented. For each of the models nominated by a team as being 
the best model for a particular endpoint, we compiled the list of features 
used for both the original and swap experiments (see the MAQC Web 
site at http://edkb.fda.gov/MAQC/). These comprehensive tables rep-
resent a unique resource. The results that follow describe data mining 
efforts to determine the potential and limitations of current practices for 
developing and validating gene expression–based prediction models.

Performance depends on endpoint and can be estimated 
during training
Unlike many previous efforts, the study design of MAQC-II provided 
the opportunity to assess the performance of many different modeling 

approaches on a clinically realistic blinded external validation data set. 
This is especially important in light of the intended clinical or preclini-
cal uses of classifiers that are constructed using initial data sets and 
validated for regulatory approval and then are expected to accurately 
predict samples collected under diverse conditions perhaps months or 
years later. To assess the reliability of performance estimates derived 
during model training, we compared the performance on the internal 
training data set with performance on the external validation data set 
for of each of the 18,060 models in the original experiment (Fig. 2a). 
Models without complete metadata were not included in the analysis.

We selected 13 ‘candidate models’, representing the best model for 
each endpoint, before external validation was performed. We required 

that each analysis team nominate one model 
for each endpoint they analyzed and we then 
selected one candidate from these nomi-
nations for each endpoint. We observed a 
higher correlation between internal and 
external performance estimates in terms 
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Figure 1 Experimental design and timeline  
of the MAQC-II project. Numbers (1–11)  
order the steps of analysis. Step 11 indicates  
when the original training and validation  
data sets were swapped to repeat steps 4–10. 
See main text for description of each step. 
Every effort was made to ensure the complete 
independence of the validation data sets from 
the training sets. Each model is characterized 
by several modeling factors and seven internal 
and external validation performance metrics 
(Supplementary Tables 1 and 2). The modeling 
factors include: (i) organization code; (ii) data 
set code; (iii) endpoint code; (iv) summary and 
normalization; (v) feature selection method; 
(vi) number of features used; (vii) classification 
algorithm; (viii) batch-effect removal method; 
(ix) type of internal validation; and (x) number 
of iterations of internal validation. The seven 
performance metrics for internal validation and 
external validation are: (i) MCC; (ii) accuracy; 
(iii) sensitivity; (iv) specificity; (v) AUC;  
(vi) mean of sensitivity and specificity; and  
(vii) r.m.s.e. s.d. of metrics are also provided for 
internal validation results.
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Figure 2 Model performance on internal 
validation compared with external validation. 
(a) Performance of 18,060 models that were 
validated with blinded validation data.  
(b) Performance of 13 candidate models.  
r, Pearson correlation coefficient; N, number 
of models. Candidate models with binary and 
continuous prediction values are marked as 
circles and squares, respectively, and the 
standard error estimate was obtained using  
500-times resampling with bagging of the 
prediction results from each model. (c) Distribution  
of MCC values of all models for each endpoint in 
internal (left, yellow) and external (right, green) 
validation performance. Endpoints H and L (sex of 
the patients) are included as positive controls and 
endpoints I and M (randomly assigned sample 
class labels) as negative controls. Boxes indicate 
the 25% and 75% percentiles, and whiskers 
indicate the 5% and 95% percentiles.
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of MCC for the selected candidate models  
(r = 0.951, n = 13, Fig. 2b) than for the overall 
set of models (r = 0.840, n = 18,060, Fig. 2a), 
suggesting that extensive peer review of 
analysis protocols was able to avoid select-
ing models that could result in less reliable 
predictions in external validation. Yet, even 
for the hand-selected candidate models, there is noticeable bias in the 
performance estimated from internal validation. That is, the internal 
validation performance is higher than the external validation per-
formance for most endpoints (Fig. 2b). However, for some endpoints 
and for some model building methods or teams, internal and external 
performance correlations were more modest as described in the fol-
lowing sections.

To evaluate whether some endpoints might be more predictable 
than others and to calibrate performance against the positive- and 
negative-control endpoints, we assessed all models generated for each 
endpoint (Fig. 2c). We observed a clear dependence of prediction 
performance on endpoint. For example, endpoints C (liver necrosis 
score of rats treated with hepatotoxicants), E (estrogen receptor status 
of breast cancer patients), and H and L (sex of the multiple myeloma 
and neuroblastoma patients, respectively) were the easiest to predict 
(mean MCC > 0.7). Toxicological endpoints A and B and disease 
progression endpoints D, F, G, J and K were more difficult to predict 
(mean MCC ~0.1–0.4). Negative-control endpoints I and M were 
totally unpredictable (mean MCC ~0), as expected. For 11 endpoints 
(excluding the negative controls), a large proportion of the submitted 
models predicted the endpoint significantly better than chance (MCC 
> 0) and for a given endpoint many models performed similarly well 
on both internal and external validation (see the distribution of MCC 
in Fig. 2c). On the other hand, not all the submitted models per-
formed equally well for any given endpoint. Some models performed 
no better than chance, even for some of the easy-to-predict endpoints, 
suggesting that additional factors were responsible for differences in  
model performance.

Data analysis teams show different proficiency
Next, we summarized the external validation performance of the 
 models nominated by the 17 teams that analyzed all 13 endpoints 
(Fig. 3). Nominated models represent a team’s best assessment of its 
model-building effort. The mean external validation MCC per team 
over 11 endpoints, excluding negative controls I and M, varied from 
0.532 for data analysis team (DAT)24 to 0.263 for DAT3, indicating 
appreciable differences in performance of the models developed by dif-
ferent teams for the same data. Similar trends were observed when AUC 

was used as the performance metric (Supplementary Table 5) or when 
the original training and validation sets were swapped (Supplementary 
Tables 6 and 7). Table 2 summarizes the modeling approaches that 
were used by two or more MAQC-II data analysis teams.

Many factors may have played a role in the difference of external vali-
dation performance between teams. For instance, teams used different 
modeling factors, criteria for selecting the nominated models, and soft-
ware packages and code. Moreover, some teams may have been more 
proficient at microarray data modeling and better at guarding against 
clerical errors. We noticed substantial variations in performance among 
the many K-nearest neighbor algorithm (KNN)-based models devel-
oped by four analysis teams (Supplementary Fig. 1). Follow-up inves-
tigations identified a few possible causes leading to the discrepancies in 
performance32. For example, DAT20 fixed the parameter ‘number of 
neighbors’ K = 3 in its data analysis protocol for all endpoints, whereas 
DAT18 varied K from 3 to 15 with a step size of 2. This investigation 
also revealed that even a detailed but standardized description of model 
building requested from all groups failed to capture many important 
tuning variables in the process. The subtle modeling differences not 
captured may have contributed to the differing performance levels 
achieved by the data analysis teams. The differences in performance 
for the models developed by various data analysis teams can also be 
observed from the changing patterns of internal and external valida-
tion performance across the 13 endpoints (Fig. 3, Supplementary  
Tables 5–7 and Supplementary Figs. 2–4). Our observations highlight 
the importance of good modeling practice in developing and validating 
microarray-based predictive models including reporting of compu-
tational details for results to be replicated26. In light of the MAQC-II  
experience, recording structured information about the steps and 
parameters of an analysis process seems highly desirable to facilitate 
peer review and reanalysis of results.

Swap and original analyses lead to consistent results
To evaluate the reproducibility of the models generated by each team,  
we correlated the performance of each team’s models on the original  
training data set to performance on the validation data set and 
repeated this calculation for the swap experiment (Fig. 4). The cor-
relation varied from 0.698–0.966 on the original experiment and from  
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of the best models nominated by the 17 data 
analysis teams (DATs) that analyzed all 13 
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experiment. The median MCC value for 
an endpoint, representative of the level of 
predicability of the endpoint, was calculated 
based on values from the 17 data analysis 
teams. The mean MCC value for a data analysis 
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in developing predictive models, was calculated 
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0.443–0.954 on the swap experiment. For all but three teams (DAT3, 
DAT10 and DAT11) the original and swap correlations were within 
±0.2, and all but three others (DAT4, DAT13 and DAT36) were within 
±0.1, suggesting that the model building process was relatively robust, 
at least with respect to generating models with similar performance. 
For some data analysis teams the internal validation performance 
drastically overestimated the performance of the same model in pre-
dicting the validation data. Examination of some of those models 
revealed several reasons, including bias in the feature selection and 
cross-validation process28, findings consistent with what was observed 
from a recent literature survey33.

Previously, reanalysis of a widely cited single study34 found that 
the results in the original publication were very fragile—that is, not 
reproducible if the training and validation sets were swapped35. Our 
observations, except for DAT3, DAT11 and DAT36 with correlation 
<0.6, mainly resulting from failure of accurately predicting the posi-
tive-control endpoint H in the swap analysis (likely owing to operator 
errors), do not substantiate such fragility in the currently examined 
data sets. It is important to emphasize that we repeated the entire 
model building and evaluation processes during the swap analysis 
and, therefore, stability applies to the model building process for 
each data analysis team and not to a particular model or approach. 
Supplementary Figure 5 provides a more detailed look at the cor-
relation of internal and external validation for each data analysis team 
and each endpoint for both the original (Supplementary Fig. 5a) and 
swap (Supplementary Fig. 5d) analyses.

As expected, individual feature lists differed from analysis group 
to analysis group and between models developed from the original 
and the swapped data. However, when feature lists were mapped to 
biological processes, a greater degree of convergence and concordance 
was observed. This has been proposed previously but has never been 
demonstrated in a comprehensive manner over many data sets and 
thousands of models as was done in MAQC-II36.

The effect of modeling factors is modest
To rigorously identify potential sources of variance that explain the 
variability in external-validation performance (Fig. 2c), we applied 
random effect modeling (Fig. 5a). We observed that the endpoint 

itself is by far the dominant source of variability, explaining >65% 
of the variability in the external validation performance. All other 
factors explain <8% of the total variance, and the residual variance 
is ~6%. Among the factors tested, those involving interactions with 
endpoint have a relatively large effect, in particular the interaction 
between endpoint with organization and classification algorithm, 
highlighting variations in proficiency between analysis teams.

To further investigate the impact of individual levels within each 
modeling factor, we estimated the empirical best linear unbiased pre-
dictors (BLUPs)37. Figure 5b shows the plots of BLUPs of the cor-
responding factors in Figure 5a with proportion of variation >1%. 
The BLUPs reveal the effect of each level of the factor to the corre-
sponding MCC value. The BLUPs of the main endpoint effect show 
that rat liver necrosis, breast cancer estrogen receptor status and the 
sex of the patient (endpoints C, E, H and L) are relatively easier to be 
predicted with ~0.2–0.4 advantage contributed on the correspond-
ing MCC values. The rest of the endpoints are relatively harder to 
be predicted with about −0.1 to −0.2 disadvantage contributed to 
the corresponding MCC values. The main factors of normaliza-
tion, classification algorithm, the number of selected features and 
the feature selection method have an impact of −0.1 to 0.1 on the 
corresponding MCC values. Loess normalization was applied to the 
endpoints (J, K and L) for the neuroblastoma data set with the two-
color Agilent platform and has 0.1 advantage to MCC values. Among 
the Microarray Analysis Suite version 5 (MAS5), Robust Multichip 
Analysis (RMA) and dChip normalization methods that were 
applied to all endpoints (A, C, D, E, F, G and H) for Affymetrix data,  
the dChip method has a lower BLUP than the others. Because 
 normalization methods are partially confounded with endpoints, it 
may not be suitable to compare methods between different confounded 
groups. Among classification methods, discriminant analysis has the 
largest positive impact of 0.056 on the MCC values. Regarding the 
number of selected features, larger bin number has better impact on  
the average across endpoints. The bin number is assigned by applying 
the ceiling function to the log base 10 of the number of selected features. 
All the feature selection methods have a slight impact of −0.025 to 0.025 

Table 2 Modeling factor options frequently adopted by MAQC-II data 
analysis teams

Modeling factor Option

Original analysis (training => validation)

Number  
of teams

Number  
of endpoints

Number  
of models

Summary and normalization Loess 12   3 2,563
RMA   3   7 46
MAS5 11   7 4,947

Batch-effect removal None 10 11 2,281
Mean shift   3 11 7,279

Feature selection SAM   4 11 3,771
FC+P   8 11 4,711
T-Test   5 11 400
RFE   2 11 647

Number of features 0~9 10 11 393
10~99 13 11 4,445
≥1,000   3 11 474
100~999 10 11 4,298

Classification algorithm DA   4 11 103
Tree   5 11 358
NB   4 11 924

KNN   8 11 6,904
SVM   9 11 986

Analytic options used by two or more of the 14 teams that submitted models for all endpoints in both  
the original and swap experiments. RMA, robust multichip analysis; SAM, significance analysis of 
microarrays; FC, fold change; RFE, recursive feature elimination; DA, discriminant analysis; Tree,  
decision tree; NB, naive Bayes; KNN, K-nearest neighbors; SVM, support vector machine.
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dependent on data analysis team. Pearson correlation coefficients 
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in both the original (x axis) and swap (y axis) analyses. The unusually low 
correlation in the swap analysis for DAT3, DAT11 and DAT36 is a result 
of their failure to accurately predict the positive endpoint H, likely due to 
operator errors (Supplementary Table 6).
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on MCC values except for recursive feature elimination (RFE) that  
has an impact of −0.006. In the plots of the four selected interactions, 
the estimated BLUPs vary across endpoints. The large variation across 
endpoints implies the impact of the corresponding modeling factor on 
different endpoints can be very different. Among the four interaction  
plots (see Supplementary Fig. 6 for a clear labeling of each inter-
action term), the corresponding BLUPs of the three-way interaction 
of organization, classification algorithm and endpoint show the high-
est variation. This may be due to different tuning parameters applied 
to individual algorithms for different organizations, as was the case  
for KNN32.

We also analyzed the relative importance of modeling factors on 
external-validation prediction performance using a decision tree 
model38. The analysis results revealed observations (Supplementary 
Fig. 7) largely consistent with those above. First, the endpoint code 
was the most influential modeling factor. Second, feature selection 
method, normalization and summarization method, classification 
method and organization code also contributed to prediction per-
formance, but their contribution was relatively small.

Feature list stability is correlated with endpoint predictability
Prediction performance is the most important criterion for evaluat-
ing the performance of a predictive model and its modeling process. 
However, the robustness and mechanistic relevance of the model and 

the corresponding gene signature is also important (Supplementary 
Fig. 8). That is, given comparable prediction performance between 
two modeling processes, the one yielding a more robust and repro-
ducible gene signature across similar data sets (e.g., by swapping the 
 training and validation sets), which is therefore less susceptible to 
sporadic fluctuations in the data, or the one that provides new insights 
to the underlying biology is preferable. Reproducibility or stability of  
feature sets is best studied by running the same model selection protocol 
on two distinct collections of samples, a scenario only possible, in  
this case, after the blind validation data were distributed to the data 
analysis teams that were asked to perform their analysis after swapping 
their original training and test sets. Supplementary Figures 9 and 10 
show that, although the feature space is extremely large for microarray 
data, different teams and protocols were able to consistently select the 
best-performing features. Analysis of the lists of features indicated that 
for endpoints relatively easy to predict, various data analysis teams 
arrived at models that used more common features and the overlap 
of the lists from the original and swap analyses is greater than those 
for more difficult endpoints (Supplementary Figs. 9–11). Therefore, 
the level of stability of feature lists can be associated to the level of dif-
ficulty of the prediction problem (Supplementary Fig. 11), although 
multiple models with different feature lists and comparable perform-
ance can be found from the same data set39. Functional analysis of the 
most frequently selected genes by all data analysis protocols shows 
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that many of these genes represent biological processes that are highly 
relevant to the clinical outcome that is being predicted36. The sex-
based endpoints have the best overlap, whereas more difficult survival 
endpoints (in which disease processes are confounded by many other 
factors) have only marginally better overlap with biological processes 
relevant to the disease than that expected by random chance.

Summary of MAQC-II observations and recommendations
The MAQC-II data analysis teams comprised a diverse group, some 
of whom were experienced microarray analysts whereas others were 
graduate students with little experience. In aggregate, the group’s  
composition likely mimicked the broad scientific community engaged 
in building and publishing models derived from microarray data. The 
more than 30,000 models developed by 36 data analysis teams for  
13 endpoints from six diverse clinical and preclinical data sets are a 
rich source from which to highlight several important observations.

First, model prediction performance was largely endpoint (bio-
logy) dependent (Figs. 2c and 3). The incorporation of multiple data 
sets and endpoints (including positive and negative controls) in the 
MAQC-II study design made this observation possible. Some end-
points are highly predictive based on the nature of the data, which 
makes it possible to build good models, provided that sound modeling 
procedures are used. Other endpoints are inherently difficult to pre-
dict regardless of the model development protocol.

Second, there are clear differences in proficiency between data 
analysis teams (organizations) and such differences are correlated 
with the level of experience of the team. For example, the top- 
performing teams shown in Figure 3 were mainly industrial participants  
with many years of experience in microarray data analysis, whereas 
bottom-performing teams were mainly less-experienced graduate 
students or researchers. Based on results from the positive and nega-
tive endpoints, we noticed that simple errors were sometimes made, 
suggesting rushed efforts due to lack of time or unnoticed implemen-
tation flaws. This observation strongly suggests that mechanisms are 
needed to ensure the reliability of results presented to the regulatory 
agencies, journal editors and the research community. By examining 
the practices of teams whose models did not perform well, future 
studies might be able to identify pitfalls to be avoided. Likewise, 
practices adopted by top-performing teams can provide the basis for 
developing good modeling practices.

Third, the internal validation performance from well-implemented, 
unbiased cross-validation shows a high degree of concordance with the 
external validation performance in a strict blinding process (Fig. 2).  
This observation was not possible from previously published studies 
owing to the small number of available endpoints tested in them.

Fourth, many models with similar performance can be developed 
from a given data set (Fig. 2). Similar prediction performance is 
attainable when using different modeling algorithms and parameters, 
and simple data analysis methods often perform as well as more 
complicated approaches32,40. Although it is not essential to include 
the same features in these models to achieve comparable prediction 
performance, endpoints that were easier to predict generally yielded 
models with more common features, when analyzed by different 
teams (Supplementary Fig. 11).

Finally, applying good modeling practices appeared to be more 
important than the actual choice of a particular algorithm over the 
others within the same step in the modeling process. This can be seen 
in the diverse choices of the modeling factors used by teams that pro-
duced models that performed well in the blinded validation (Table 2) 
where modeling factors did not universally contribute to variations in 
model performance among good performing teams (Fig. 5).

Summarized below are the model building steps recommended to 
the MAQC-II data analysis teams. These may be applicable to model 
building practitioners in the general scientific community.

Step one (design). There is no exclusive set of steps and procedures, 
in the form of a checklist, to be followed by any practitioner for all 
problems. However, normal good practice on the study design and 
the ratio of sample size to classifier complexity should be followed. 
The frequently used options for normalization, feature selection and 
classification are good starting points (Table 2).

Step two (pilot study or internal validation). This can be accom-
plished by bootstrap or cross-validation such as the ten repeats of a 
fivefold cross-validation procedure adopted by most MAQC-II teams. 
The samples from the pilot study are not replaced for the pivotal 
study; rather they are augmented to achieve ‘appropriate’ target size.

Step three (pivotal study or external validation). Many investigators 
assume that the most conservative approach to a pivotal study is to 
simply obtain a test set completely independent of the training set(s). 
However, it is good to keep in mind the exchange34,35 regarding the 
fragility of results when the training and validation sets are swapped. 
Results from further resampling (including simple swapping as in 
MAQC-II) across the training and validation sets can provide impor-
tant information about the reliability of the models and the modeling 
procedures, but the complete separation of the training and validation 
sets should be maintained41.

Finally, a perennial issue concerns reuse of the independent valida-
tion set after modifications to an originally designed and validated 
data analysis algorithm or protocol. Such a process turns the valida-
tion set into part of the design or training set42. Ground rules must 
be developed for avoiding this approach and penalizing it when it 
occurs; and practitioners should guard against using it before such 
ground rules are well established.

DISCUSSION
MAQC-II conducted a broad observational study of the current com-
munity landscape of gene-expression profile–based predictive model 
development. Microarray gene expression profiling is among the most 
commonly used analytical tools in biomedical research. Analysis of 
the high-dimensional data generated by these experiments involves 
multiple steps and several critical decision points that can profoundly 
influence the soundness of the results43. An important requirement 
of a sound internal validation is that it must include feature selection 
and parameter optimization within each iteration to avoid overly opti-
mistic estimations of prediction performance28,29,44. To what extent 
this information has been disseminated and followed by the scien-
tific community in current microarray analysis remains unknown33. 
Concerns have been raised that results published by one group of 
investigators often cannot be confirmed by others even if the same 
data set is used26. An inability to confirm results may stem from any 
of several reasons: (i) insufficient information is provided about the 
methodology that describes which analysis has actually been done;  
(ii) data preprocessing (normalization, gene filtering and feature 
selection) is too complicated and insufficiently documented to be 
reproduced; or (iii) incorrect or biased complex analytical methods26 
are performed. A distinct but related concern is that genomic data may 
yield prediction models that, even if reproducible on the discovery 
data set, cannot be extrapolated well in independent validation. The 
MAQC-II project provided a unique opportunity to address some of 
these concerns.

Notably, we did not place restrictions on the model building methods 
used by the data analysis teams. Accordingly, they adopted numerous 
different modeling approaches (Table 2 and Supplementary Table 4). 
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For example, feature selection methods varied widely, from statisti-
cal significance tests, to machine learning algorithms, to those more 
reliant on differences in expression amplitude, to those employing 
knowledge of putative biological mechanisms associated with the 
endpoint. Prediction algorithms also varied widely. To make internal 
validation performance results comparable across teams for different 
models, we recommended that a model’s internal performance was 
estimated using a ten times repeated fivefold cross-validation, but this 
recommendation was not strictly followed by all teams, which also 
allows us to survey internal validation approaches. The diversity of 
analysis protocols used by the teams is likely to closely resemble that 
of current research going forward, and in this context mimics reality. 
In terms of the space of modeling factors explored, MAQC-II is a sur-
vey of current practices rather than a randomized, controlled experi-
ment; therefore, care should be taken in interpreting the results. For 
 example, some teams did not analyze all endpoints, causing missing 
data (models) that may be confounded with other modeling factors.

Overall, the procedure followed to nominate MAQC-II candidate 
models was quite effective in selecting models that performed rea-
sonably well during validation using independent data sets, although 
generally the selected models did not do as well in validation as in 
training. The drop in performance associated with the validation 
highlights the importance of not relying solely on internal validation 
performance, and points to the need to subject every classifier to at 
least one external validation. The selection of the 13 candidate models 
from many nominated models was achieved through a peer-review 
collaborative effort of many experts and could be described as slow, 
tedious and sometimes subjective (e.g., a data analysis team could 
only contribute one of the 13 candidate models). Even though they 
were still subject to over-optimism, the internal and external perform-
ance estimates of the candidate models were more concordant than 
those of the overall set of models. Thus the review was productive in 
identifying characteristics of reliable models.

An important lesson learned through MAQC-II is that it is almost 
impossible to retrospectively retrieve and document decisions that 
were made at every step during the feature selection and model devel-
opment stage. This lack of complete description of the model building 
process is likely to be a common reason for the inability of different 
data analysis teams to fully reproduce each other’s results32. Therefore, 
although meticulously documenting the classifier building procedure 
can be cumbersome, we recommend that all genomic publications 
include supplementary materials describing the model building and 
evaluation process in an electronic format. MAQC-II is making avail-
able six data sets with 13 endpoints that can be used in the future as a 
benchmark to verify that software used to implement new approaches 
performs as expected. Subjecting new software to benchmarks against 
these data sets could reassure potential users that the software is 
mature enough to be used for the development of predictive models 
in new data sets. It would seem advantageous to develop alternative 
ways to help determine whether specific implementations of modeling 
approaches and performance evaluation procedures are sound, and to 
identify procedures to capture this information in public databases.

The findings of the MAQC-II project suggest that when the same 
data sets are provided to a large number of data analysis teams, many 
groups can generate similar results even when different model build-
ing approaches are followed. This is concordant with studies29,33 that 
found that given good quality data and an adequate number of inform-
ative features, most classification methods, if properly used, will yield 
similar predictive performance. This also confirms reports6,7,39 on 
small data sets by individual groups that have suggested that several 
different feature selection methods and prediction algorithms can 

yield many models that are distinct, but have statistically similar 
performance. Taken together, these results provide perspective on 
the large number of publications in the bioinformatics literature that 
have examined the various steps of the multivariate prediction model 
building process and identified elements that are critical for achieving 
reliable results.

An important and previously underappreciated observation from 
MAQC-II is that different clinical endpoints represent very different 
levels of classification difficulty. For some endpoints the currently 
available data are sufficient to generate robust models, whereas for 
other endpoints currently available data do not seem to be sufficient 
to yield highly predictive models. An analysis done as part of the 
MAQC-II project and that focused on the breast cancer data demon-
strates these points in more detail40. It is also important to point out 
that for some clinically meaningful endpoints studied in the MAQC-II 
project, gene expression data did not seem to significantly outperform 
models based on clinical covariates alone, highlighting the challenges 
in predicting the outcome of patients in a heterogeneous popula-
tion and the potential need to combine gene expression data with  
clinical covariates (unpublished data).

The accuracy of the clinical sample annotation information may 
also play a role in the difficulty to obtain accurate prediction results 
on validation samples. For example, some samples were misclassified 
by almost all models (Supplementary Fig. 12). It is true even for some 
samples within the positive control endpoints H and L, as shown 
in Supplementary Table 8. Clinical information of neuroblastoma 
patients for whom the positive control endpoint L was uniformly 
misclassified were rechecked and the sex of three out of eight cases 
(NB412, NB504 and NB522) was found to be incorrectly annotated.

The companion MAQC-II papers published elsewhere give more 
in-depth analyses of specific issues such as the clinical benefits of 
genomic classifiers (unpublished data), the impact of different 
modeling factors on prediction performance45, the objective assess-
ment of microarray cross-platform prediction46, cross-tissue pre-
diction47, one-color versus two-color prediction comparison48, 
functional analysis of gene signatures36 and recommendation of a 
simple yet robust data analysis protocol based on the KNN32. For 
example, we systematically compared the classification perform-
ance resulting from one- and two-color gene-expression profiles of 
478 neuroblastoma samples and found that analyses based on either 
 platform yielded similar classification performance48. This newly gene-
rated one-color data set has been used to evaluate the applicability of 
the KNN-based simple data analysis protocol to future data sets32. In 
addition, the MAQC-II Genome-Wide Association Working Group 
assessed the variabilities in genotype calling due to experimental or 
algorithmic factors49.

In summary, MAQC-II has demonstrated that current methods 
commonly used to develop and assess multivariate gene-expression  
based predictors of clinical outcome were used appropriately by 
most of the analysis teams in this consortium. However, differences 
in proficiency emerged and this underscores the importance  
of proper implementation of otherwise robust analytical methods. 
Observations based on analysis of the MAQC-II data sets may be 
applicable to other diseases. The MAQC-II data sets are publicly 
available and are expected to be used by the scientific community 
as benchmarks to ensure proper modeling practices. The experience 
with the MAQC-II clinical data sets also reinforces the notion that 
clinical classification problems represent several different degrees 
of prediction difficulty that are likely to be associated with whether 
mRNA abundances measured in a specific data set are informative for 
the specific prediction problem. We anticipate that including other 
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types of biological data at the DNA, microRNA, protein or meta-
bolite levels will enhance our capability to more accurately predict 
the clinically relevant endpoints. The good modeling practice guide-
lines established by MAQC-II and lessons learned from this unprec-
edented collaboration provide a solid foundation from which other 
high-dimensional biological data could be more reliably used for the 
purpose of predictive and personalized medicine.

METhODS
Methods and any associated references are available in the online  
version of the paper at http://www.nature.com/naturebiotechnology/.

Accession codes. All MAQC-II data sets are available through 
GEO (series accession number: GSE16716), the MAQC Web site 
(http://www.fda.gov/nctr/science/centers/toxicoinformatics/maqc/), 
ArrayTrack (http://www.fda.gov/nctr/science/centers/toxicoinfor-
matics/ArrayTrack/) or CEBS (http://cebs.niehs.nih.gov/) accession 
number: 009-00002-0010-000-3.

Note: Supplementary information is available on the Nature Biotechnology website.
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ONLINE METhODS
MAQC-II participants. MAQC-II participants can be grouped into several 
 categories. Data providers are the participants who provided data sets to the 
consortium. The MAQC-II Regulatory Biostatistics Working Group, whose 
members included a number of biostatisticians, provided guidance and standard 
operating procedures for model development and performance estimation. One 
or more data analysis teams were formed at each organization. Each data analysis 
team actively analyzed the data sets and produced prediction models. Other par-
ticipants also contributed to discussion and execution of the project. The 36 data 
analysis teams listed in Supplementary Table 3 developed data analysis protocols 
and predictive models for one or more of the 13 endpoints. The teams included 
more than 100 scientists and engineers with diverse backgrounds in machine 
learning, statistics, biology, medicine and chemistry, among others. They volun-
teered tremendous time and effort to conduct the data analysis tasks.

Six data sets including 13 prediction endpoints. To increase the chance 
that MAQC-II would reach generalized conclusions, consortium members 
strongly believed that they needed to study several data sets, each of high 
quality and sufficient size, which would collectively represent a diverse set of 
prediction tasks. Accordingly, significant early effort went toward the selec-
tion of appropriate data sets. Over ten nominated data sets were reviewed 
for quality of sample collection and processing consistency, and quality of 
microarray and clinical data. Six data sets with 13 endpoints were ultimately 
selected among those nominated during a face-to-face project meeting with 
extensive deliberations among many participants (Table 1). Importantly, three 
preclinical (toxicogenomics) and three clinical data sets were selected to test 
whether baseline practice conclusions could be generalized across these rather 
disparate experimental types. An important criterion for data set selection 
was the anticipated support of MAQC-II by the data provider and the com-
mitment to continue experimentation to provide a large external validation 
test set of comparable size to the training set. The three toxicogenomics data 
sets would allow the development of predictive models that predict toxicity 
of compounds in animal models, a prediction task of interest to the pharma-
ceutical industry, which could use such models to speed up the evaluation of 
toxicity for new drug candidates. The three clinical data sets were for endpoints 
associated with three diseases, breast cancer (BR), multiple myeloma (MM) 
and neuroblastoma (NB). Each clinical data set had more than one endpoint, 
and together incorporated several types of clinical applications, including 
treatment outcome and disease prognosis. The MAQC-II predictive modeling 
was limited to binary classification problems; therefore, continuous endpoint 
values such as overall survival (OS) and event-free survival (EFS) times were 
dichotomized using a ‘milestone’ cutoff of censor data. Prediction endpoints 
were chosen to span a wide range of prediction difficulty. Two endpoints,  
H (CPS1) and L (NEP_S), representing the sex of the patients, were used as 
positive control endpoints, as they are easily predictable by microarrays. Two 
other endpoints, I (CPR1) and M (NEP_R), representing randomly assigned 
class labels, were designed to serve as negative control endpoints, as they 
are not supposed to be predictable. Data analysis teams were not aware of 
the characteristics of endpoints H, I, L and M until their swap prediction 
results had been submitted. If a data analysis protocol did not yield models to 
accurately predict endpoints H and L, or if a data analysis protocol claims to 
be able to yield models to accurately predict endpoints I and M, something 
must have gone wrong.

The Hamner data set (endpoint A) was provided by The Hamner Institutes 
for Health Sciences. The study objective was to apply microarray gene expres-
sion data from the lung of female B6C3F1 mice exposed to a 13-week treat-
ment of chemicals to predict increased lung tumor incidence in the 2-year 
rodent cancer bioassays of the National Toxicology Program50. If successful, 
the results may form the basis of a more efficient and economical approach 
for evaluating the carcinogenic activity of chemicals. Microarray analysis was 
performed using Affymetrix Mouse Genome 430 2.0 arrays on three to four 
mice per treatment group, and a total of 70 mice were analyzed and used as 
MAQC-II’s training set. Additional data from another set of 88 mice were 
collected later and provided as MAQC-II’s external validation set.

The Iconix data set (endpoint B) was provided by Iconix Biosciences. 
The study objective was to assess, upon short-term exposure, hepatic tumor 
induction by nongenotoxic chemicals51, as there are currently no accurate and  

well-validated short-term tests to identify nongenotoxic hepatic tumorigens, 
thus necessitating an expensive 2-year rodent bioassay before a risk assessment 
can begin. The training set consists of hepatic gene expression data from 216 
male Sprague-Dawley rats treated for 5 d with one of 76 structurally and mecha-
nistically diverse nongenotoxic hepatocarcinogens and nonhepatocarcinogens. 
The validation set consists of 201 male Sprague-Dawley rats treated for 5 d with 
one of 68 structurally and mechanistically diverse nongenotoxic hepatocarcino-
gens and nonhepatocarcinogens. Gene expression data were generated using the 
Amersham Codelink Uniset Rat 1 Bioarray (GE HealthCare)52. The separation  
of the training set and validation set was based on the time when the micro-
array data were collected; that is, microarrays processed earlier in the study 
were used as training and those processed later were used as validation.

The NIEHS data set (endpoint C) was provided by the National Institute 
of Environmental Health Sciences (NIEHS) of the US National Institutes 
of Health. The study objective was to use microarray gene expression data 
acquired from the liver of rats exposed to hepatotoxicants to build classifiers 
for prediction of liver necrosis. The gene expression ‘compendium’ data set 
was collected from 418 rats exposed to one of eight compounds (1,2-dichloro-
benzene, 1,4-dichlorobenzene, bromobenzene, monocrotaline, N-nitro-
somorpholine, thioacetamide, galactosamine and diquat dibromide). All eight 
compounds were studied using standardized procedures, that is, a common 
array platform (Affymetrix Rat 230 2.0 microarray), experimental procedures 
and data retrieving and analysis processes. For details of the experimental 
design see ref. 53. Briefly, for each compound, four to six male, 12-week-old 
F344 rats were exposed to a low dose, mid dose(s) and a high dose of the toxi-
cant and sacrificed 6, 24 and 48 h later. At necropsy, liver was harvested for 
RNA extraction, histopathology and clinical chemistry assessments.

Animal use in the studies was approved by the respective Institutional 
Animal Use and Care Committees of the data providers and was conducted 
in accordance with the National Institutes of Health (NIH) guidelines 
for the care and use of laboratory animals. Animals were housed in fully 
accredited American Association for Accreditation of Laboratory Animal  
Care facilities.

The human breast cancer (BR) data set (endpoints D and E) was contributed 
by the University of Texas M.D. Anderson Cancer Center. Gene expression data 
from 230 stage I–III breast cancers were generated from fine needle aspiration 
specimens of newly diagnosed breast cancers before any therapy. The biopsy 
specimens were collected sequentially during a prospective pharmacogenomic 
marker discovery study between 2000 and 2008. These specimens represent 
70–90% pure neoplastic cells with minimal stromal contamination54. Patients 
received 6 months of preoperative (neoadjuvant) chemotherapy includ-
ing paclitaxel (Taxol), 5-fluorouracil, cyclophosphamide and doxorubicin 
(Adriamycin) followed by surgical resection of the cancer. Response to pre-
operative chemotherapy was categorized as a pathological complete response 
(pCR = no residual invasive cancer in the breast or lymph nodes) or residual 
invasive cancer (RD), and used as endpoint D for prediction. Endpoint E is the 
clinical estrogen-receptor status as established by immunohistochemistry55. 
RNA extraction and gene expression profiling were performed in multiple 
batches over time using Affymetrix U133A microarrays. Genomic analysis of 
a subset of this sequentially accrued patient population were reported previ-
ously56. For each endpoint, the first 130 cases were used as a training set and 
the next 100 cases were used as an independent validation set.

The multiple myeloma (MM) data set (endpoints F, G, H and I) was con-
tributed by the Myeloma Institute for Research and Therapy at the University 
of Arkansas for Medical Sciences. Gene expression profiling of highly purified 
bone marrow plasma cells was performed in newly diagnosed patients with 
MM57–59. The training set consisted of 340 cases enrolled in total therapy 2 
(TT2) and the validation set comprised 214 patients enrolled in total therapy 3  
(TT3)59. Plasma cells were enriched by anti-CD138 immunomagnetic bead 
selection of mononuclear cell fractions of bone marrow aspirates in a central 
laboratory. All samples applied to the microarray contained >85% plasma 
cells as determined by two-color flow cytometry (CD38+ and CD45−/dim) 
performed after selection. Dichotomized overall survival (OS) and event-free 
survival (EFS) were determined based on a 2-year milestone cutoff. A gene 
expression model of high-risk multiple myeloma was developed and validated 
by the data provider58 and later on validated in three additional independent 
data sets60–62.
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The neuroblastoma (NB) data set (endpoints J, K, L and M) was contributed 
by the Children’s Hospital of the University of Cologne, Germany. Tumor 
samples were checked by a pathologist before RNA isolation; only samples 
with ≥60% tumor content were used and total RNA was isolated from ~50 mg  
of snap-frozen neuroblastoma tissue obtained before chemotherapeutic  
treatment. First, 502 preexisting 11 K Agilent dye-flipped, dual-color replicate 
profiles for 251 patients were provided63. Of these, profiles of 246 neuroblas-
toma samples passed an independent MAQC-II quality assessment by majority 
decision and formed the MAQC-II training data set. Subsequently, 514 dye-
flipped dual-color 11 K replicate profiles for 256 independent neuroblastoma 
tumor samples were generated and profiles for 253 samples were selected to 
form the MAQC-II validation set. Of note, for one patient of the validation 
set, two different tumor samples were analyzed using both versions of the  
2 × 11K microarray (see below). All dual-color gene-expression of the MAQC-II  
training set were generated using a customized 2 × 11K neuroblastoma-related 
microarray63. Furthermore, 20 patients of the MAQC-II validation set were 
also profiled using this microarray. Dual-color profiles of the remaining 
patients of the MAQC-II validation set were performed using a slightly revised 
version of the 2 × 11K microarray. This version V2.0 of the array comprised 
200 novel oligonucleotide probes whereas 100 oligonucleotide probes of the 
original design were removed due to consistent low expression values (near 
background) observed in the training set profiles. These minor modifications 
of the microarray design resulted in a total of 9,986 probes present on both 
versions of the 2 × 11K microarray. The experimental protocol did not differ 
between both sets and gene-expression profiles were performed as described63. 
Furthermore, single-color gene-expression profiles were generated for 478/499 
neuroblastoma samples of the MAQC-II dual-color training and validation sets 
(training set 244/246; validation set 234/253). For the remaining 21 samples 
no single-color data were available, due to either shortage of tumor material 
of these patients (n = 15), poor experimental quality of the generated single-
color profiles (n = 5), or correlation of one single-color profile to two different 
dual-color profiles for the one patient profiled with both versions of the 2 × 
11K microarrays (n = 1). Single-color gene-expression profiles were generated 
using customized 4 × 44K oligonucleotide microarrays produced by Agilent 
Technologies. These 4 × 44K microarrays included all probes represented by 
Agilent’s Whole Human Genome Oligo Microarray and all probes of the ver-
sion V2.0 of the 2 × 11K customized microarray that were not present in the 
former probe set. Labeling and hybridization was performed following the 
manufacturer’s protocol as described48.

Sample annotation information along with clinical co-variates of the patient 
cohorts is available at the MAQC web site (http://edkb.fda.gov/MAQC/). The 
institutional review boards of the respective providers of the clinical micro-
array data sets had approved the research studies, and all subjects had provided 
written informed consent to both treatment protocols and sample procure-
ment, in accordance with the Declaration of Helsinki.

MAQC-II effort and data analysis procedure. This section provides details 
about some of the analysis steps presented in Figure 1. Steps 2–4 in a first 
round of analysis was conducted where each data analysis team analyzed 
MAQC-II data sets to generate predictive models and associated perform-
ance estimates. After this first round of analysis, most participants attended 
a consortium meeting where approaches were presented and discussed. The 
meeting helped members decide on a common performance evaluation pro-
tocol, which most data analysis teams agreed to follow to render performance 
statistics comparable across the consortium. It should be noted that some data 
analysis teams decided not to follow the recommendations for performance 
evaluation protocol and used instead an approach of their choosing, resulting 
in various internal validation approaches in the final results. Data analysis 
teams were given 2 months to implement the revised analysis protocol (the 
group recommended using fivefold stratified cross-validation with ten repeats 
across all endpoints for the internal validation strategy) and submit their final 
models. The amount of metadata to collect for characterizing the modeling 
approach used to derive each model was also discussed at the meeting.

For each endpoint, each team was also required to select one of its  
submitted models as its nominated model. No specific guideline was given 
and groups could select nominated models according to any objective or 
subjective criteria. Because the consortium lacked an agreed upon reference 

performance measure (Supplementary Fig. 13), it was not clear how the 
nominated models would be evaluated, and data analysis teams ranked models 
by different measures or combinations of measures. Data analysis teams were 
encouraged to report a common set of performance measures for each model 
so that models could be reranked consistently a posteriori. Models trained 
with the training set were frozen (step 6). MAQC-II selected for each end-
point one model from the up-to 36 nominations as the MAQC-II candidate 
for validation (step 6).

External validation sets lacking class labels for all endpoints were distrib-
uted to the data analysis teams. Each data analysis team used its previously 
frozen models to make class predictions on the validation data set (step 7). 
The sample-by-sample prediction results were submitted to MAQC-II by 
each data analysis team (step 8). Results were used to calculate the external 
validation performance metrics for each model. Calculations were carried 
out by three independent groups not involved in developing models, which 
were provided with validation class labels. Data analysis teams that still had 
no access to the validation class labels were given an opportunity to correct 
apparent clerical mistakes in prediction submissions (e.g., inversion of class 
labels). Class labels were then distributed to enable data analysis teams to 
check prediction performance metrics and perform in depth analysis of results.  
A table of performance metrics was assembled from information collected in 
steps 5 and 8 (step 10, Supplementary Table 1).

To check the consistency of modeling approaches, the original validation and 
training sets were swapped and steps 4–10 were repeated (step 11). Briefly, each 
team used the validation class labels and the validation data sets as a training 
set. Prediction models and evaluation performance were collected by internal 
and external validation (considering the original training set as a validation 
set). Data analysis teams were asked to apply the same data analysis protocols 
that they used for the original ‘Blind’ Training → Validation analysis. Swap 
analysis results are provided in Supplementary Table 2. It should be noted 
that during the swap experiment, the data analysis teams inevitably already 
had access to the class label information for samples in the swap validation set, 
that is, the original training set.

Model summary information tables. To enable a systematic comparison of 
models for each endpoint, a table of information was constructed containing 
a row for each model from each data analysis team, with columns containing 
three categories of information: (i) modeling factors that describe the model 
development process; (ii) performance metrics from internal validation; and 
(iii) performance metrics from external validation (Fig. 1; step 10).

Each data analysis team was requested to report several modeling factors for 
each model they generated. These modeling factors are organization code, data 
set code, endpoint code, summary or normalization method, feature selec-
tion method, number of features used in final model, classification algorithm, 
internal validation protocol, validation iterations (number of repeats of cross-
validation or bootstrap sampling) and batch-effect-removal method. A set of 
valid entries for each modeling factor was distributed to all data analysis teams 
in advance of model submission, to help consolidate a common vocabulary 
that would support analysis of the completed information table. It should be 
noted that since modeling factors are self-reported, two models that share a 
given modeling factor may still differ in their implementation of the modeling 
approach described by the modeling factor.

The seven performance metrics for internal validation and external valida-
tion are MCC (Matthews Correlation Coefficient), accuracy, sensitivity, spe-
cificity, AUC (area under the receiver operating characteristic curve), binary 
AUC (that is, mean of sensitivity and specificity) and r.m.s.e. For internal  
validation, s.d. for each performance metric is also included in the table. 
Missing entries indicate that the data analysis team has not submitted the 
requested information.

In addition, the lists of features used in the data analysis team’s nominated 
models are recorded as part of the model submission for functional analysis 
and reproducibility assessment of the feature lists (see the MAQC Web site at 
http://edkb.fda.gov/MAQC/).

Selection of nominated models by each data analysis team and selection  
of MAQC-II candidate and backup models by RBWG and the steering  
committee. In addition to providing results to generate the model information 
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table, each team nominated a single model for each endpoint as its preferred 
model for validation, resulting in a total of 323 nominated models, 318 of 
which were applied to the prediction of the validation sets. These nominated 
models were peer reviewed, debated and ranked for each endpoint by the 
RBWG before validation set predictions. The rankings were given to the 
MAQC-II steering committee, and those members not directly involved in 
developing models selected a single model for each endpoint, forming the 13 
MAQC-II candidate models. If there was sufficient evidence through docu-
mentation to establish that the data analysis team had followed the guidelines 
of good classifier principles for model development outlined in the standard 
operating procedure (Supplementary Data), then their nominated models 
were considered as potential candidate models. The nomination and selec-
tion of candidate models occurred before the validation data were released. 
Selection of one candidate model for each endpoint across MAQC-II was 
performed to reduce multiple selection concerns. This selection process turned 
out to be highly interesting, time consuming, but worthy, as participants had 
different viewpoints and criteria in ranking the data analysis protocols and 
selecting the candidate model for an endpoint. One additional criterion was 
to select the 13 candidate models in such a way that only one of the 13 models 
would be selected from the same data analysis team to ensure that a variety 
of approaches to model development were considered. For each endpoint, a 
backup model was also selected under the same selection process and criteria 
as for the candidate models. The 13 candidate models selected by MAQC-II 
indeed performed well in the validation prediction (Figs. 2c and 3).
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A B S T R A C T

Purpose
Our purpose was development and assessment of a BRAF-mutant gene expression signature for
colon cancer (CC) and the study of its prognostic implications.

Materials and Methods
A set of 668 stage II and III CC samples from the PETACC-3 (Pan-European Trails in Alimentary Tract
Cancers) clinical trial were used to assess differential gene expression between c.1799T�A (p.V600E)
BRAF mutant and non-BRAF, non-KRAS mutant cancers (double wild type) and to construct a gene
expression–based classifier for detecting BRAF mutant samples with high sensitivity. The classifier was
validated in independent data sets, and survival rates were compared between classifier positive and
negative tumors.

Results
A 64 gene-based classifier was developed with 96% sensitivity and 86% specificity for detecting
BRAF mutant tumors in PETACC-3 and independent samples. A subpopulation of BRAF wild-type
patients (30% of KRAS mutants, 13% of double wild type) showed a gene expression pattern and
had poor overall survival and survival after relapse, similar to those observed in BRAF-mutant
patients. Thus they form a distinct prognostic subgroup within their mutation class.

Conclusion
A characteristic pattern of gene expression is associated with and accurately predicts BRAF
mutation status and, in addition, identifies a population of BRAF mutated-like KRAS mutants and
double wild-type patients with similarly poor prognosis. This suggests a common biology between
these tumors and provides a novel classification tool for cancers, adding prognostic and biologic
information that is not captured by the mutation status alone. These results may guide therapeutic
strategies for this patient segment and may help in population stratification for clinical trials.

J Clin Oncol 30:1288-1295. © 2012 by American Society of Clinical Oncology

INTRODUCTION

Activation of the KRAS/BRAF/MEK/ERK cascade is
believed to occur frequently in colorectal (CRC)
cancer on the basis of the observed 40% incidence of
KRAS mutations and 10% to 15% incidence of
BRAF mutations.1-4 KRAS and BRAF mutations oc-
cur in a mutually exclusive pattern in CRC, which
has long been interpreted as a sign of functional
redundancy. However, these mutations occur in dif-
ferent histopathologic subtypes of CRC,5,6 and we
recently showed7 that the prognosis of patients with
KRAS and BRAF mutant metastatic CRC is quite
different, with a clearly worse prognosis for BRAF-
mutant disease. It has been suggested this could be
due to higher levels of mitogen-activated protein

kinase activation in BRAF-mutant (BRAFm) colon
cancer.8,9 Unlike the majority of KRAS-mutant
(KRASm) CRCs, BRAFm metastatic CRCs do not
respond to any current chemotherapy, and the out-
come of patients with BRAFm CRC is similar to that
of untreated patients.

Our main objective was to better unders-
tand the underlying biology of BRAFm CRCs as
captured by gene expression. We developed a
BRAFm gene signature that allowed an accurate
identification of BRAFm samples, and which,
when applied to BRAF wild-type samples, identi-
fied additional colon cancer (CC) samples that
manifested a similar gene expression pattern. Al-
though a substantial amount of work has been
dedicated to the development of BRAFm gene
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expression signatures in melanoma,10-12 to the best of our knowledge,
there is no such published work in the CC context. Taking advantage
of a large series of tumors with gene expression and mutation data
from the PETACC-3 (Pan-European Trails in Alimentary Tract
Cancers) clinical trial,13 we studied the genes differentially ex-
pressed between c.1799T�A (p.V600E) BRAFm and double-wild-
type (WT2) tumors, defined as non-BRAF mutant, non-KRAS
mutant. We purposely excluded the KRASm tumors from this com-
parison because it was unclear whether KRASm carcinomas had over-
lapping biology with BRAFm. Next, we built a classifier able to
recognize with high sensitivity BRAFm CCs in our own and external
data sets.

When the BRAF classifier was applied to the whole population, it
identified a BRAF wild-type subpopulation, with similar gene expres-
sion and prognostic characteristics. Approximately 62% of these
BRAFm-like tumors were KRASm (30% of all KRASm were BRAFm-
like),withtherestbeingWT2(13%ofallWT2). Inourdata, theBRAFm-
like population represented 18% of CCs. This intriguing finding
suggests a common biology between these tumors, not predicted by
the mutation status. The results obtained show that our current clas-
sifications of tumors as KRAS- or BRAF-mutant or mitogen-activated
protein kinase–active versus nonactive are inadequate to capture the
whole underlying biology and clinical behavior.

MATERIALS AND METHODS

Tumor Samples and Data Preparation

Within the PETACC-3 clinical trial,13 formalin-fixed paraffin-
embedded tissue blocks were collected after cancer diagnosis and indepen-
dently of future research plans, and DNA was extracted from 1,404
microdissected tissue sections. The analysis of KRAS exon 2 and BRAF
exon 15 was performed by allele-specific real-time polymerase chain reac-
tion.7 The mutation status has been confirmed for all samples by a second
analysis, using Sequenom.14 RNA of sufficient quantity and quality was ex-
tracted from 895 samples, and gene expressions were measured on the AL-
MAC Colorectal Cancer DSA platform (Craigavon, Northern Ireland)—a
customized Affymetrix chip with 61,528 probe sets mapping to 15,920 unique
Entrez Gene IDs—in two phases (phase 1: n � 322, phase 2: n � 573). In total,
688 unique samples passed the final quality control (phase 1: n � 265 [82.3%],
phase 2: n � 423 [73.8%]) and were used in subsequent analysis (Data Sup-
plement). Of this series of CCs, 257 (37.4%) were KRAS mutated, whereas
BRAF mutation was detected in 47 (6.8%) of the cases (Data Supplement).

The stage III subset included all samples for which profile data could be
obtained and is thus representative of the clinical population of the trial. The
stage II subset included all patients with relapse for whom profile data could be
obtained and is thus also representative of this group, whereas from the
nonrelapsing patients, a randomly selected population was profiled.

Three additional independent data sets15-17 were used for validation of
the signature, whereas a fourth data set,18 with available survival information,
was used for validating the prognostic value of the signature.

Statistical Analysis

PETACC-3 gene expression data were retrospectively analyzed to derive
the BRAF gene signature discriminating between c.1799T�A (p.V600E)
BRAFm and double-wild-type (WT2; BRAF and KRAS wild-type) tumors.
Samples with missing mutation information (n � 39) were discarded from the
gene signature development, but were included later in the survival analysis.

Gene expression data were normalized using RMA (Robust Microchip
Average)19 and summarized at the gene level by choosing the probe set with the
highest standard deviation as a representative of each gene, in each data
set individually.

Differentially expressed genes were obtained by fitting multivariate linear
models (using LIMMA20 package) to probe set–level data to fully exploit the

potential of the platform. To account for known association between micro-
satellite instability-high (MSI-H), BRAFm, and right-sided tumors,7 the linear
model for the whole population included factors for BRAF mutation, MSI
status, and tumor site (all binary variables). For the microsatellite stable (MSS)
subpopulation, the model included only the BRAF mutation status and tumor
site. The false discovery rate was controlled by Benjamini-Hochberg proce-
dure21 and required to be at most 1%, whereas the minimum absolute log-fold
change was 0.585 (� log2 1.5). As the MSI-H subpopulation was small and
consisted only of right-sided samples, the differentially expressed genes were
derived by comparing BRAFm and WT2 only in the right colon, with a false
discovery rate less than 25% and no constraint on the fold change.

For signature generation, an adapted version of the top scoring pairs
algorithm22 (multiple top scoring pairs [mTSP]; Data Supplement) was used,
resulting in gene pairs deemed as the most informative in the process of
classifier construction. The final classification model consisted of two groups
of genes (G1 and G2), and the prediction was made comparing the averages of
these groups: If, for a given sample, the average of G1 was smaller than the
average of G2, then the sample was predicted to be BRAFm, otherwise WT2.

We also defined a BRAF score (BS) as the difference between the average
expression of G2 genes and the average expression of G1 genes (from the
mTSP model) and used it to analyze the stratification for different threshold
values (a threshold of 0 leading to the original decision rule). An alternative
threshold for the BRAF score was obtained as the value that maximized
Matthews correlation coefficient23 on the PETACC-3 data set.

The performance of the classifier was estimated by repeated (10 times)
stratified five-fold cross-validation, following the MAQC-II guidelines,24 and
measured in terms of sensitivity, specificity, and error rate. The final BRAF
classifier was built from all BRAFm and WT2 samples in the PETACC-3 data
set and then applied to the full PETACC-3 data set (including KRASm) and
independent validation sets for the analysis of stratification of the population
(Data Supplement). Because the stage II subgroup of PETACC-3 is smaller and
not fully representative, the analysis of the prognostic value of the signature is
focused on stage III subgroup. However, results for both stages are given
(Data Supplement).

The association between predicted class and survival outcomes was
tested using Cox proportional hazard models (log-likelihood test) and log-
rank test for dichotomous variables. Three survival outcomes have been con-
sidered: overall survival, relapse-free survival and survival after relapse. Fisher’s
exact test was used for testing differences in proportions in contingency tables.

RESULTS

BRAFm: Characteristic Genes and Classifier

In the PETACC-3 data set, we identified 314 differentially ex-
pressed probe sets between BRAFm and WT2 (see Materials and
Methods for details), mapping to 223 unique EntrezGene IDs. Top 50
differentially expressed probe sets are given in Table 1, with the full
table given in the Data Supplement. We also derived lists of differen-
tially expressed genes for the MSI-H and MSS tumors separately
(Data Supplement).

Using the technique of mTSP, a 32-gene pair BRAFm signature
(Table 2) was obtained by training on the c.1799T�A (p.V600E)
BRAFm and WT2 samples, considering all genes, whether or not they
were previously identified to be differentially expressed. Its perfor-
mance was estimated at a sensitivity of 95.8% and a specificity of
86.5% (Table 3). Fifty of the 64 genes of the signature were among the
223 differentially expressed genes (Data Supplement).

BRAFm-Like Tumors

To make the distinction between the true and classifier-predicted
mutation status, we prefix the predictions by “pred-”: pred-BRAFm
denotes the samples predicted to be BRAFm, whereas pred-BRAFwt

Identification of BRAF-Like Patients

www.jco.org © 2012 by American Society of Clinical Oncology 1289

UniversitÃƒÆ’Ã‚Â¤t ZÃƒÆ’Ã‚Â¼rich) on April 19, 2012 from 130.223.120.6
Information downloaded from jco.ascopubs.org and provided by at SWISS CONSORTIUM (Hauptbibliothek

Copyright © 2012 American Society of Clinical Oncology. All rights reserved.

11. BRAF-mutant-like colon cancer

99



denotes those predicted to be BRAF wild type. The pred-BRAFm
samples consist of true BRAF mutants and the subset of WT2 and
KRASm samples that are positive for the signature. These tumors
share a common gene expression pattern, as can be seen in Appendix
Figure A1 (online only). We call the subset of BRAF wild-type samples

that are positive for the signature BRAFm-like to distinguish them
from the true BRAFm.

Having identified a population of BRAFm-like samples, we pro-
ceeded to its characterization: In the population stratification analysis
of PETACC-3, approximately 30% (76 of 257) of KRASm and 13%

Table 1. Top 50 Differentially Expressed Probe Sets Between c.1799T�A (p.V600E) BRAFm and WT2

Probe Set ID Gene Symbol Entrez GeneID LFC Official Full Name

ADXCRPD.7995.C1_x_at AQP5 362 �2.91 Aquaporin 5
ADXCRIH.384.C1_s_at REG4 83998 �2.80 Regenerating islet-derived family, member 4
ADXCRAG_BC014461_x_at CDX2 1045 2.02 Caudal type homeobox 2
ADXCRAG_BC014461_at CDX2 1045 1.97 Caudal type homeobox 2
ADXCRPD.10572.C1_at HSF5 124535 1.70 Heat shock transcription factor family member 5
ADXCRAG_AK024491_s_at SOX8 30812 �1.95 SRY (sex determining region Y)-box 8
ADXCRSS.Hs#S2988180_at HSF5 124535 2.02 Heat shock transcription factor family member 5
ADXCRPD.7687.C1_at TM4SF4 7104 �1.70 Transmembrane 4 L six family member 4
ADXCRAG_M14335_s_at F5 2153 �1.18 Coagulation factor V (proaccelerin, labile factor)
ADXCRAG_AJ250717_s_at CTSE 1510 �2.62 Cathepsin E
ADXCRAG_AJ132099_s_at VNN1 8876 �0.93 Vanin 1
ADXCRAD_NM_025113_s_at C13orf18 80183 1.77 Chromosome 13 open reading frame 18
ADXCRAG_NM_182510_s_at LOC146336 146336 �1.33 Hypothetical LOC146336
ADXCRAG_BC028581_s_at PIWIL1 9271 �0.72 Piwi-like 1 (Drosophila)
ADXCRAD_BX094012_s_at SOX13 9580 �0.72 SRY (sex determining region Y)-box 13
ADXCRPDRC.4289.C1_at RNF43 54894 1.38 Ring finger protein 43
ADXCRPD.10016.C1_at SATB2 23314 1.82 SATB homeobox 2
ADXCRPDRC.8321.C1_s_at TFCP2L1 29842 1.26 Transcription factor CP2-like 1
ADXCRIH.1549.C1_at ELOVL5 60481 0.94 ELOVL family member 5, elongation of long chain fatty acids (FEN1/

Elo2, SUR4/Elo3-like, yeast)
ADXCRAG_BC028581_x_at PIWIL1 9271 �1.72 Piwi-like 1 (Drosophila)
ADXCRIH.1305.C1_s_at LYZ 4069 �1.61 Lysozyme
ADXCRSS.Hs#S1405714_at RNF43 54894 1.27 Ring finger protein 43
ADXCRSS.Hs#S3740849_at HSF5 124535 1.21 Heat shock transcription factor family member 5
ADXCRSS.Hs#S3012761_at HSF5 124535 1.20 Heat shock transcription factor family member 5
ADXCRAD_BM825250_s_at TM4SF4 7104 �0.99 Transmembrane 4 L six family member 4
ADXCRPD.7300.C1_s_at LOC388199 388199 �1.28 Proline rich 25
ADXCRIH.4080.C1_s_at SPINK1 6690 2.09 Serine peptidase inhibitor, Kazal type 1
ADXCRAD_NM_006113_s_at VAV3 10451 1.38 Vav 3 guanine nucleotide exchange factor
ADXCRIH.546.C1_at GGH 8836 1.49 �-glutamyl hydrolase (conjugase, folylpolygammaglutamyl hydrolase)
ADXCRAD_AJ709424_s_at ABLIM3 22885 �0.65 Actin binding LIM protein family, member 3
ADXCRPDRC.1943.C1_at AXIN2 8313 1.32 Axin 2
ADXCRAD_BG470190_s_at CDX2 1045 0.77 Caudal type homeobox 2
ADXCRAG_XM_371238_at TRNP1 388610 �1.03 TMF1-regulated nuclear protein 1
ADXCRAD_BU664688_s_at SLC14A1 6563 �0.82 Solute carrier family 14 (urea transporter), member 1 (Kidd blood group)
ADXCRPD.12823.C1_s_at SYT13 57586 �0.77 Synaptotagmin XIII
ADXCRAD_CK823169_at ANXA10 11199 �0.80 Annexin A10
ADXCRPD.8346.C1_at HSF5 124535 1.34 Heat shock transcription factor family member 5
ADXCRPD.15182.C1_at MIR142 406934 0.95 MicroRNA 142
ADXCRIH.31.C9_at LYZ 4069 �1.61 Lysozyme
ADXCRAD_BP299698_s_at VNN1 8876 �0.96 Vanin 1
ADXCRPD.14261.C1_at ANO1 55107 �1.12 Anoctamin 1, calcium activated chloride channel
ADXCRAG_NM_002526_at NT5E 4907 �1.27 5�-nucleotidase, ecto (CD73)
ADXCRAD_CN404528_s_at DCBLD2 131566 �0.76 Discoidin, CUB and LCCL domain containing 2
ADXCRAD_BM852899_at DUSP4 1846 �0.98 Dual specificity phosphatase 4
ADXCRAD_BP376354_at AXIN2 8313 1.27 Axin 2
ADXCRAG_U04313_s_at SERPINB5 5268 �0.89 Serpin peptidase inhibitor, clade B (ovalbumin), member 5
ADXCRIH.482.C1_at KLK6 5653 �0.76 Kallikrein-related peptidase 6
ADXCRAD_BM718216_s_at TRNP1 388610 �1.16 TMF1-regulated nuclear protein 1
ADXCRAG_XM_031357_s_at KIAA0802 23255 �0.82 KIAA0802
ADXCRPD.1115.C1_s_at MLPH 79083 �1.32 Melanophilin

NOTE. Positive LFC indicates higher expression in WT2.
Abbreviations: LFC, log fold change; WT2, double wild type.
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(46 of 345) of WT2 samples were BRAFm-like. The BRAFm-like
samples were significantly enriched in right-sided tumors in compar-
ison with non–BRAF-like overall and also separately for KRASm (51%
were right-sided) and WT2 (63% were right-sided). There was no
association with a particular KRAS mutation subtype. Approximately
29% of the BRAFm-like samples were MSI-H (whereas 41% of the
BRAFm were MSI-H). On the other hand, 50% of the MSI-H samples
were BRAFm-like, with an additional 27% being BRAFm (Data Supple-
ment). Separate hierarchical clustering of the KRASm and WT2 sub-
populations, based on the genes from the signature, showed a split
betweenBRAFm-likeandtherestof thesamples(DataSupplement).The
identified BRAFm-like subpopulation was further described in terms of
clinicopathologic features (Data Supplement), survival rates (Table 4 and
Data Supplement), and differentially expressed genes between BRAFm-

like and BRAFm samples (Data Supplement). The two groups of patients
were similar with respect to their clinical and pathologic parameters, with
theonlyexceptionsbeingage(BRAFm-likecomprisemorepatientsolder
than 60 years) and tumor site (56% of BRAFm-like were right-sided,
whereas 77% of BRAFm are right-sided; Data Supplement).

Prognostic Value of the Classifier

The prognostic value of the BRAF signature was assessed in
the combined stage II and III population and in the stage III only
subpopulation for three end points— overall survival (OS),
relapse-free survival (RFS), and survival after relapse (SAR)—
within the whole population, WT2 only, and KRASm only sub-
populations, respectively. To account for the known prognostic
effect of the MSI status (mainly for RFS) and its association with
the BRAF mutation, the survival analysis was also performed
within the MSS population only. The small number of MSI-H
samples prevented a similar analysis of the signature predictions
within MSI-H. In whole population and in MSS, the BRAFm and
BRAFm-like patients have shorter survival times (OS and SAR), as
can be seen in Figure 1 and the Data Supplement for different
stratifications. The BRAFm-likeness showed the strongest prog-
nostic effect for SAR, for both KRASm and WT2 (in all and MSS-
only samples; see Figs 1F and 1H). The corresponding hazard ratios
and their 95% CIs as well as the corresponding log-rank test P
values for each of these comparisons are summarized in Table 4.

No statistically significant difference in survival was found be-
tween the BRAFm and BRAFm-like subpopulations, even though a
tendency was observed for the patients with a BRAFm-like tumor to
have a slightly better prognosis than those with a BRAFm tumor.

To identify potential drivers of the prognostic effect, we assessed
the prognostic value of each of the 64 genes in the signature by fitting
univariate Cox regression models in the whole PETACC-3 population
and in the subset of BRAF wild-type samples (KRASm and WT2).
Most of these genes were found to be significantly associated with the
SAR end point, and, for 25 of them, the association was found also in
the BRAF wild-type subgroup. These results reveal multiple interest-
ing genes for future studies (Data Supplement).

External Validation

The BRAF signature was validated on three external data
sets: Koinuma,15 Kim,16 and an internal series of patients with
cetuximab-treated stage IV disease with gene expression data from
primary tumors.17 When genes from the signature were not repre-
sented on a platform, only the complete pairs of genes were con-
sidered. The aggregated observed sensitivity was 96.0% (24 of 25
BRAFm correctly identified) and the specificity was 86.24% (94 of
109 WT2 and KRASm correctly predicted; Table 3). This con-
firmed the highly sensitive recognition of tumors with a BRAFm
and their distinction from majority non-BRAFm tumors, whereas
approximately 14% of the latter were also wrongly classified as
BRAFm. The reported specificity refers to KRASm and WT2 sam-
ples that should have been labeled as BRAF wild type by the
classifier. The existence of a BRAFm-like group of patients is thus
confirmed in these data sets.

The prognostic value of the BRAF signature has been validated in
all and in the stage II and III only samples from the Moffitt data set18

for OS and SAR (RFS being only marginally significant in stage II and
III). No information on BRAF or KRAS mutational status was available,

Table 2. 32 Pairs of Genes Defining the BRAF Signature

Pair Gene 1 (G1) Gene 2 (G2) Pair Gene 1 (G1) Gene 2 (G2)

1 C13orf18 CTSE 17 VAV3 OSBP2
2 DDC AQP5 18 CFTR KLK10
3 PPP1R14D REG4 19 PHYH DUSP4
4 HSF5 RSBN1L 20 PLCB4 HOXD3
5 SATB2 RASSF6 21 ZNF141 C11orf9
6 TNNC2 CRIP1 22 PPP1R14C CD55
7 GGH PPPDE2 23 FLJ32063 TRNP1
8 SPINK1 PLK2 24 APCDD1 FSCN1
9 PTPRO TM4SF4 25 ACOX1 KIAA0802

10 ZSWIM1 MLPH 26 C10orf99 PLLP
11 RNF43 RBM8A 27 MIR142 IRX3
12 CELP SOX8 28 ARID3A SLC25A37
13 CBFA2T2 PIWIL1 29 C20orf111 PIK3AP1
14 PTPRD LOC388199 30 AMACR TPK1
15 CDX2 S100A16 31 AIFM3 ZIC2
16 TSPAN6 RBBP8 32 CTTNBP2 SERPINB5

NOTE. A sample is predicted to be BRAF mutant if the average expression of
the genes in the Gene 1 (G1) columns is lower than the average expression of
genes in Gene 2 (G2) columns.

Table 3. Performance Metrics for the BRAF Signature

Data Set Sensitivity Specificity Error Rate

PETACC-313

% 95.78 86.52 12.41
Standard deviation 4.04 0.18 0.14

Kim,16 n � 20
% 100.00 54.55 25.00
No. 9/9 6/11 5/20

Koinuma,15 n � 20
% 100.00 72.73 15.00
No. 9/9 8/11 3/20

Cetuximab,17 n � 94
% 85.71 91.95 8.51
No. 6/7 80/87 8/94

Aggregated, on validation sets, n � 134
% 96.00 86.24 11.94
No. 24/25 94/109 16/134

NOTE. PETACC-3: cross-validation estimated performance. For the other
data sets, the values indicate the observed performance.

Abbreviation: PETACC-3, Pan-European Trials in Alimentary Tract Cancers.
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making it impossible to draw any conclusions on the prognostic value of
the signature within the KRASm or WT2 subpopulations. The signature
was confirmed to be prognostic for SAR and progression-free survival
(PFS) in the cetuximab17 data set as well (OS information was not avail-
able for this data set). The survival analysis results and the corresponding
Kaplan-Meier curves are given in Table 4 and in the Data Supplement.

DISCUSSION

Our results show that for c.1799T�A (p.V600E) BRAFm tumors, a char-
acteristic gene expression signature of high sensitivity can be identified,
andthissignatureextendstoapopulationofBRAFwild-typesubgroupof
colon carcinomas (BRAFm-like) sharing similar clinicopathologic and
gene expression features of potential prognostic importance. The BRAF
mutation status has been previously shown to have prognostic value in
CRC,7,25-27bothinMSSandMSI-Htumors,andthisfeatureisalsoshared
byoursignatureinthecaseofMSStumors.Becauseofthelimitednumber
of MSI-H tumors, we could not assess its prognostic value in those sam-
ples.TheBRAFm-liketumors,eitherKRASmordoublewildtype, showa

similar poor prognostic in all and MSS-only samples. This effect was also
independent of tumor stage.

Globally, the group of BRAFm-like tumors discovered studying the
gene expression data shows clinicopathologic features more similar to the
BRAFm tumors (Data Supplement) than to pred-BRAFwt. As previously
described,13,28 BRAFm tumors are found with higher frequencies in right
(proximal) colon, are enriched for the MSI-H phenotype, and are of
higher grade. In our study, the frequencies of high-grade were 30% in
BRAFm, 20% in BRAFm-like, and 5% in pred-BRAFwt; of MSI-H, 30%,
30%, and 3%, respectively; of right-side, 75%, 55%, and 30%, respec-
tively.Themucinoustumorsaremost frequentlyBRAFm-like(45%)and
are less often BRAFm (30% v only 10% in pred-BRAFwt). The exception
is age, for which the frequency of young patients is highest in BRAFm-like
(55%) and lowest in BRAFm (35%).

From a biologic perspective, this finding supports the notion that
the poor outcome of tumors with BRAFm is shared with some non–
BRAF-mutated tumors, suggesting that they have common biology
that drives poor survival after relapse. For the genes in the signature,
the c.1799T�A (p.V600E) BRAFm tumors display a homogeneous

Table 4. Survival Analyses Results

Data Set

OS RFS SAR

P HR 95% CI P HR 95% CI P HR 95% CI

PETACC-3, all
pred-BRAFm/pred-BRAFwt .0005 1.67 1.25 to 2.25 .2447 1.17 0.90 to 1.53 < .001 2.85 2.06 to 3.95

BRAFm/BRAFwt .0021 2.01 1.28 to 3.17 .1602 1.37 0.88 to 2.12 < .001 3.68 2.20 to 6.16

Within KRASm: BRAFm-like/pred-BRAFwt .5196 1.16 0.74 to 1.83 .4724 1.17 0.76 to 1.78 .0021 2.13 1.30 to 3.48

Within WT2: BRAFm-like/pred-BRAFwt .1312 1.58 0.87 to 2.87 .4866 1.20 0.72 to 2.01 .0011 2.72 1.46 to 5.06

PETACC-3, stage III
pred-BRAFm/pred-BRAFwt < .0001 1.93 1.41 to 1.79 .0455 1.34 1.00 to 1.79 < .0001 3.04 2.15 to 4.29

BRAFm/BRAFwt .0024 2.14 1.29 to 3.55 .1685 1.41 0.86 to 2.32 < .0001 4.53 2.54 to 8.07

Within KRASm: BRAFm-like/pred-BRAFwt .1916 1.37 0.85 to 2.21 .8203 1.05 0.68 to 1.64 .0038 2.09 1.26 to 3.46

Within WT2: BRAFm-like/pred-BRAFwt .0365 1.90 1.03 to 3.50 .2154 1.40 0.82 to 2.40 .0012 2.75 1.45 to 5.19

PETACC-3, MSS
pred-BRAFm/pred-BRAFwt < .0001 2.19 1.57 to 3.07 .0159 1.46 1.07 to 1.99 < .0001 3.16 2.17 to 4.59

BRAFm/BRAFwt < .0001 2.91 1.74 to 4.88 .0228 1.79 1.08 to 2.98 < .0001 4.67 2.57 to 8.45

Within KRASm: BRAFm-like/pred-BRAFwt .0511 1.59 0.99 to 2.53 .4690 1.17 0.76 to 1.82 .0043 2.07 1.24 to 3.43

Within WT2: BRAFm-like/pred-BRAFwt .0642 1.98 0.95 to 4.16 .3464 1.37 0.71 to 2.63 .0001 4.24 1.89 to 9.47

PETACC-3, MSS/stage III
pred-BRAFm/pred-BRAFwt < .0001 2.27 1.58 to 3.25 .0105 1.54 1.10 to 2.15 < .0001 2.97 2.01 to 4.40

BRAFm/BRAFwt .0024 2.43 1.35 to 4.40 .1149 1.59 0.89 to 2.86 < .0001 3.88 1.99 to 7.56

Within KRASm: BRAFm-like/pred-BRAFwt .0216 1.77 1.08 to 2.89 .1765 1.37 0.87 to 2.16 .0089 1.98 1.18 to 3.34

Within WT2: BRAFm-like/pred-BRAFwt .0220 2.35 1.11 to 4.98 .2789 1.46 0.73 to 2.93 < .0001 4.67 2.05 to 10.63

Moffitt18

pred-BRAFm/pred-BRAFwt .0376 1.67 1.02 to 2.73 .0956 1.77 0.90 to 3.50 .0014 3.78 1.58 to 9.04

pred-BRAFm/pred-BRAFwt (stages II,III) .0003 3.22 1.66 to 6.26 .0498 2.02 0.99 to 4.15 .0017 3.97 1.58 to 9.99

pred-BRAFm/pred-BRAFwt (stage III) .0002 4.26 1.87 to 9.69 .0204 2.79 1.13 to 6.87 .0028 4.95 1.58 to 15.44

Cetuximab,17 MSS

OS PFS SAR

P HR 95% CI P HR 95% CI P HR 95% CI

pred-BRAFm/pred-BRAFwt < .0001 4.49 2.40 to 8.38 < .0001 4.58 2.45 to 8.56

BRAFm/BRAFwt .0018 3.24 1.46 to 7.19 < .0001 5.72 2.49 to 13.12

Within BRAFwt: BRAFm-like/pred-BRAFwt .0017 3.45 1.56 to 7.63 < .0001 3.26 1.47 to 7.22

NOTE. Highly significant results (P � .01) are set in bold. For the Cetuximab data set, only two end points could be considered: SAR and PFS. This data set contained
also only stage IV MSS patients. When the predictions are considered within KRASm or WT2 subpopulations, those samples positive for the signature are called
BRAFm-like (see the Results section). The comparison is given in the first column, with the reference category in italic font.

Abbreviations: BRAFm, true BRAF mutant; BRAFwt, true BRAF wild type; HR, hazard ratio; MSS, microsatellite stable; OS, overall survival; PETACC-3,
Pan-European Trails in Alimentary Tract Cancers; PFS, progression-free survival; pred-BRAFm, classifier-predicted BRAF mutant; pred-BRAFwt, classifier-predicted
BRAF wild type; SAR, survival after relapse.
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gene expression pattern, which is also found in some KRASm and
WT2 samples (approximately 30% and 13% in our data, respectively;
Appendix Fig A1). It is interesting to note that BRAF mutations have
been strongly associated with the serrated adenoma pathway,29,30 and
thus the clear differences in gene expression between BRAFm and
other colon tumors may be related to a different adenoma-carcinoma
progression sequence. The existence of several subgroups of CCs,
defined by their DNA methylation and mutation status, was first
discovered in a population-based study31 and was then subsequently
confirmed.32,33 A recent study34 similarly presented evidence validat-
ing the existence of a cluster that included all BRAFm samples and a
fraction of KRASm (18% of all KRASm) and WT2 samples and that
was enriched for CIMP-positive, MLH1 hypermethylated, and right-
sided tumors. For the moment, we can only speculate about the relation
between our BRAFm-like concept and this cluster. In any case, it also
supports the idea that c.1799T�A (p.V600E) BRAFm tumors form a
homogeneous group with respect to the genes in the signature and that a
sizeable set of other tumors show similar characteristics. The underlying

driver biology of this BRAFm-like group remains unknown, although
it is clearly associated with clinicopathologic features, such as MSI-H,
right-sidedness, and mucinous histology.

The identification of a BRAFm-like subpopulation of CC that
includes KRASm and WT2 samples and that manifests a coherent
clinical behavior suggests that a new definition of CC subgroups is
needed. To the best of our knowledge, this is the first reported split
based on gene expression data of the KRASm tumors (see also Data
Supplement), which were considered until now as a compact group,
based solely on their mutation status.

The genes associated with the BRAF c.1799T�A (p.V600E) mu-
tation in CC and in melanoma are dissimilar, indicating tissue-specific
biology that needs to be understood and targeted differently. It is
therefore not surprising that BRAF-specific inhibitors, such as
PLX4032 or GSK2118436, although very successful in BRAFm mela-
noma, have failed in BRAFm colorectal cancer treatment.35,36

In summary, our results show that for c.1799T�A (p.V600E)
BRAFm tumors, a high-sensitivity gene expression signature can be
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Fig 1. Kaplan-Meier curves for different stratifications of the stage III subpopulation and different end points. Columns correspond to overall survival and survival after
relapse end points, respectively. Panels A-D correspond to stratifications into samples predicted to be BRAF mutant (pred-BRAFm)/predicted to be BRAF wild type
(pred-BRAFwt; A, B) and BRAF mutant (BRAFm)/BRAF mutant like (BRAFm-like)/pred-BRAFwt (C, D) in the whole stage III subpopulation. Panels E-H correspond to
stratifications BRAFm-like/pred-BRAFwt within KRAS mutant (E, F) and double wild type (WT2; G, H) subpopulations, in microsatellite stable. For the cases when only
two populations are compared, the log-rank test P values and the hazard ratios (HRs; with 95% CIs) are given.
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derived and that this signature identifies also a subgroup of BRAFm-
like tumors sharing similar clinicopathologic features of potential
prognostic importance. They also indicate histologic and prognostic
heterogeneity within the KRASm and thus challenge the current as-
sumption that these tumors can all be considered alike. This stratifi-
cation may be of interest in randomized clinical trials and in drug
development studies and can easily be obtained by applying the pro-
posed classifier.

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS
OF INTEREST

Although all authors completed the disclosure declaration, the following
author(s) indicated a financial or other interest that is relevant to the subject
matter under consideration in this article. Certain relationships marked
with a “U” are those for which no compensation was received; those
relationships marked with a “C” were compensated. For a detailed
description of the disclosure categories, or for more information about
ASCO’s conflict of interest policy, please refer to the Author Disclosure
Declaration and the Disclosures of Potential Conflicts of Interest section in
Information for Contributors.

Employment or Leadership Position: Scott Weinrich, Pfizer (C);
Heather Estrella, Pfizer (C); Graeme Hodgson, Pfizer (C); Tao Xie, Pfizer
(C) Consultant or Advisory Role: Sabine Tejpar, Pfizer (C); Fred T.
Bosman, Pfizer (C); Arnaud D. Roth, Pfizer (C) Stock Ownership: Scott
Weinrich, Pfizer; Heather Estrella, Pfizer; Graeme Hodgson, Pfizer
Honoraria: Arnaud D. Roth, Pfizer Research Funding: Sabine Tejpar,
Pfizer, Merck; Eric Van Cutsem, Pfizer; Fred T. Bosman, Pfizer Expert
Testimony: None Other Remuneration: None

AUTHOR CONTRIBUTIONS

Conception and design: Vlad Popovici, Eva Budinska, Sabine Tejpar,
Arnaud D. Roth, Mauro Delorenzi
Provision of study materials or patients: Eric Van Cutsem
Collection and assembly of data: Vlad Popovici, Eva Budinska, Sabine
Tejpar, Scott Weinrich, Heather Estrella, Graeme Hodgson, Eric Van
Cutsem, Tao Xie, Fred T. Bosman, Arnaud D. Roth
Data analysis and interpretation: Vlad Popovici, Eva Budinska, Sabine
Tejpar, Heather Estrella, Graeme Hodgson, Eric Van Cutsem, Fred T.
Bosman, Mauro Delorenzi
Manuscript writing: All authors
Final approval of manuscript: All authors

FE

0

No. at risk
BRAFm-like 51 48 38 34 29 27 7 1
pred-BRAFwt 143 140 135 119 109 98 18 3

P = .022
HR, 1.77 (95% CI, 1.08 to 2.89)

BRAFm-like
pred-BRAFwt

Ov
er

al
l S

ur
vi

va
l

(p
ro

po
rti

on
)

Time (months)

1.0

0.8

0.6

0.4

0.2

12 24 36 48 7260 84 0

No. at risk
BRAFm-like 24 12 5 3 1 0
pred-BRAFwt 58 42 25 15 7 1

P = .009
HR, 1.98 (95% CI, 1.18 to 3.34)

BRAFm-like
pred-BRAFwt

P = .022
HR, 2.35 (95% CI, 1.11 to 4.98)

BRAFm-like
pred-BRAFwt

P < .001
HR, 4.67 (95% CI, 2.05 to 10.63)

BRAFm-like
pred-BRAFwt

Su
rv

iv
al

 A
fte

r R
el

ap
se

(p
ro

po
rti

on
)

Time (months)

1.0

0.8

0.6

0.4

0.2

12 24 36 48 60

HG

0

No. at risk
BRAFm-like 21 21 19 15 11 10 1 0
pred-BRAFwt 226 222 212 200 190 179 33 2

Ov
er

al
l S

ur
vi

va
l

(p
ro

po
rti

on
)

Time (months)

1.0

0.8

0.6

0.4

0.2

12 24 36 48 7260 84 0

No. at risk
BRAFm-like 9 4 1 0 0 0
pred-BRAFwt 65 53 38 24 13 2

Su
rv

iv
al

 A
fte

r R
el

ap
se

(p
ro

po
rti

on
)

Time (months)

1.0

0.8

0.6

0.4

0.2

12 24 36 48 60

/ /// ////
/////// ///////////

/
/ / ///////////////////////////////////////////////////////////////////// // ////

/ /

//

/
/

/ /
/ / /

/
/

/
///

/

/

/
/ /

/
/
/ / //// / // /

/
/ / // / /

/
/

/
/ // // / /// /

/ /
/

/ / / / / //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// / //////

Fig 1. (continued).
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A key requirement for precision medicine is the accurate identification of patients that would respond to a specific treatment or
those that represent a high-risk group, and a plethora of molecular biomarkers have been proposed for this purpose during the last
decade.Their application in clinical settings, however, is not always straightforward due to relatively high costs of some tests, limited
availability of the biological material and time, and procedural constraints. Hence, there is an increasing interest in constructing
tissue-based surrogate biomarkers that could be applied with minimal overhead directly to histopathology images and which could
be used for guiding the selection of eventual further molecular tests. In the context of colorectal cancer, we present a method for
constructing a surrogate biomarker that is able to predict with high accuracy whether a sample belongs to the “BRAF-positive”
group, a high-risk group comprising V600E BRAF mutants and BRAF-mutant-like tumors. Our model is trained to mimic the
predictions of a 64-gene signature, the current definition of BRAF-positive group, thus effectively identifying histopathology image
features that can be linked to a molecular score. Since the only required input is the routine histopathology image, the model can
easily be integrated in the diagnostic workflow.

1. Introduction

The pathologic assessment of the tumor specimen provides
the essential information for patient management, outcome
estimation, and treatment decision. In the case of colorec-
tal cancer (CRC), the main parameters of the pathologic
assessment include the TNM stage, histologic grade, tumor
type, vascular infiltration, and status of the resectionmargins
[1]. Aside from these classical parameters, the discovery of
molecular drivers and markers for resistance led to refined
prognostic and predictive models [2]. For example, it has
been shown that KRAS-mutated tumors are resistant to
anti-EGFR treatment [3, 4]. In parallel several molecular
taxonomies partially explaining intertumoral heterogeneity
have been proposed for CRC [5–7]. Of interest for the current
study is the identification of a high-risk group ofCRCpatients

consisting of V600E BRAF mutants and a sizeable BRAF-
wild type subset of tumors which display a similar pattern
of gene activation, the so-called BRAF-mutant-like tumors
[8]. This group is collectively called BRAF-positive, as the
defining 64-gene signature has positive values for these cases
[8]. These are only a few of the plethora of gene expression
signatures proposed for CRC (in other types of cancer, the
situation being similar) and they all have in common the
requirement for profiling a rather large panel of genes and
the limited usage in clinical practice. Among the reasons
for their slow adoption are the associated costs for tests
and limited availability of biological material. On the other
hand, if one could robustly predict the outcome of some of
these molecular tests directly from the data available for the
pathologic assessment, significant speed-ups and cost cuts
would be achieved. This is one of the main justifications of
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the present study, in which we propose an image analysis
model for recognizing the “BRAF-positive” cases of CRC,
that is, to predict the (dichotomized) outcome of the BRAF
signature [8]. A second and broader in scope justification is
the interest in identifying and understanding the connections
between tumor architecture and gene activity as captured by
transcriptomics.

Such connections between phenotypical appearance of
the tumor and gene activity have been established before. For
example, in the case of breast cancer the lobular phenotype
is associated with deletions in the CDH1 gene (encoding E-
cadherin) [9] and the mesenchymal/metaplastic features are
predictive in the case of AR-positive triple negative breast
cancers [10]. In the case of colorectal cancer (CRC) the associ-
ation ofmucinous/serrated carcinomaswithBRAFmutations
is well known and we have shown that such association can
be extended to the group of “BRAF-mutated-like” tumors,
characterized by a specific genomic signature [8]. Similarly,
connections between nuclear morphometry and molecular
data have been identified in glioblastoma [11] and exploited
in a multimodal prognostic signature in breast cancer [12].
When deriving molecular subtypes for colorectal cancer, we
have also identified tumor architecture patterns preferentially
enriched in those subtypes [5].These observations all support
the idea that genomic and phenotypic traits can be put in
correspondence and, by consequence, that some phenotypic
features could potentially be used as proxies for genomic
markers.

In the present work, we propose an approach at building
a histology image-based classifier able to predict the “BRAF-
positive” status, as defined by the genomic signature.Thegene
expression data for the signature is supposed to be obtained
from the same (or adjacent) tumor section as the histopathol-
ogy whole-slide image.The key point of our approach resides
in a convenient summarization of the imaging data into
a code vector used for building the classification model.
Apart from our own earlier results [13], there were no other
studies to guide our selection of image features useful for
this task. Hence, we took a data-driven approach in which
the implicit hypothesis was that local tumor appearance
contained enough information to build a predictor for the
genomic “BRAF-positive” status. Thus, our approach was
prior-free, in the sense that we did not restrict ourselves to
a set of predefined (by an expert pathologist) measurements,
with the potential drawback of limiting interpretability of the
results.

Having a tissue-based surrogate biomarker for a genomic
test allows an immediate integration in the routine diagnostic
workflow and may provide the pathologist with hints for
further genomic testing. This integration is supported by the
increased adoption of digital pathology solutions. Addition-
ally, such models can be applied to pathology image archives
for the selection of cases for retrospective studies.

2. Materials and Methods

2.1. Data. The data collection used consisted of 𝑛 = 291
samples for which both histopathology whole-slide images
and clinical data (includingBRAF andKRASmutation status)
were available, along with gene expression necessary for

Table 1: Summary of main clinical parameters.

Parameter N Proportion (%)
Stage

Stage II 55 18.9
Stage III 236 81.1

MSI
MSI-H 12 4.1
MSI-L & MSS 279 95.6

V600E BRAF status
Mutated 16 5.5
Wild type 275 94.5

KRAS (codons 12 and 13) status
Mutated 113 38.8
Wild type 178 61.2

BRAF score
Positive 59 20.3
Negative 232 79.7

Mucinous
Yes 33 11.3
No 258 88.7

computing theBRAF score [8].These sampleswere a subset of
the data collected in the PETACC-3 clinical trial [14] andwere
selected based on the image quality and availability of the
mutation information. A summary of the data is presented
in Table 1 detailing the following clinical and molecular
parameters, in this order: tumor stage; microsatellite sta-
bility status (high microsatellite instability (MSI-M) versus
low microsatellite instability (MSI-L) or microsatellite stable
(MSS)); mutation status of BRAF (V600E mutation) and
KRAS (in codons 12 and 13) oncogenes; BRAF score (from
the genomic signature) and the mucinous histology status of
the tumor.

For each sample, a whole-slide image of haematoxylin-
eosin (H&E) stained tumor sections was acquired at 20x
magnification, using Hamamatsu NanoZoomer C9600 scan-
ner. The resulting images were compressed by the image
acquisition software using JPEG standard (at 80% quality)
and stored in the proprietary NDPI format. The resolution
of the images was 455 nm/pixel (equivalent to 55824 DPI) for
a typical size of 100,000 × 50,000 pixels (varying with the size
of the tissue section). The images were exported in standard
TIFF format using OpenSlide software library [15].

2.2. Image Preprocessing. Thewhole-slide images were down-
scaled to an equivalent 5x magnification and only tumoral
regions were retained from each sample (manually cut
following the pathologist’s annotations), the pixels outside
the tumors being set to zero. To obtain the intensity signal
corresponding to the haematoxylin and eosin dyes, the color
deconvolution method from [16] was used, resulting in two
single channel (intensity) images (H- and E-images).

2.3. Feature Extraction and Image Summarization. Our main
assumption for image data modeling was that local appear-
ance of the tissue section (local texture) contains enough

12. Identification of "BRAF-Positive"

109



BioMed Research International 3

information to yield discriminative features. However, the
representation of an image in terms of a set of local descrip-
tors still does not allow a direct comparison of two images
(required for building a classifier); hence further summariza-
tion and standardization of the representation are needed.
A suitable framework is represented by the image-retrieval
applications based on Bag-of-Visual-Words methods [17]. In
this framework, the local descriptors are used to construct a
codebook for image representation (the information in the
image is highly compressed) and the image is recoded in
terms of frequencies of elements (visual codewords) from the
codebook. We adapted this general approach to the problem
at hand, as follows.

We decided to use a two-level approach to image repre-
sentation with the first level (L1) being generic for all images
and the second one (L2) specific to each class. The main
reason behind this approach was that the first coding level
was designed to capture the appearance of small structures
(several cells, patches of stroma, parts of the colon crypts,
etc.), while the second level was intended to capture larger
arrangements of basic structures, which might be specific to
each class. Additionally, since the classification problem was
highly imbalanced, such separation would allow structures
of both classes to be equally represented. Such multilevel
approach has been already used in natural scene categoriza-
tion [18]; however in our method we used the class label in
generating the second level representation.

The first level (L1) of coding considered local patches of
size 32 × 32 pixels as the basic processing unit. For such
patches, we used the Gabor descriptors computed on bothH-
and E-images for each sample. These descriptors were based
on the real component of the Gabor filter [19]:

𝐺 (𝑥, 𝑦; ], 𝜃, 𝜎) = exp(−𝑥2 + 𝑦22𝜎2 )
× exp (2𝜋]𝑗 (𝑥 cos 𝜃 + 𝑦 sin 𝜃)) ,

(1)

where 𝑗 = √−1 and ] was the frequency, 𝜃 the orientation,
and 𝜎 the bandwidth of the Gaussian kernel, respectively.
The parameters were fixed throughout all experiments: 𝜎 ∈{1, 2√2}, 𝜃 ∈ {𝑘(𝜋/4) | 𝑘 = 0, . . . , 3}, and ] ∈ {3/4, 3/8, 3/16}.
In total, there were 24 Gabor filters that led to a 48-valued
descriptor vector for each H- and E-image, with the first 24
values representing the mean response and the last 24 values
representing the variance of the filter responses, over the
considered 32 × 32 pixels’ patch. Thus, to each local patch
from the original images corresponded 96-value descriptor
vectors obtained by concatenating the Gabor descriptors of
the H- and E-images.

From each image in the training set (which will be gener-
ated within the cross-validation loop, see Classifier Design),1,000 random patch descriptors were selected for building
the L1 codebook using the standard k-means clustering, with𝐾

1
= 128 clusters. Then, all the patches were assigned a code1, . . . , 𝐾

1
based on the closest cluster (codeword) from the L1

codebook.
The second level of coding (L2) considered neighbor-

hoods of 15 × 15 L1 patches (i.e., 480 × 480 pixels). For each

such neighborhood, the descriptor computed was the vector
of frequencies of the L1 codes (a vector with 𝐾

1
values).

Similarly to L1 coding, a new codebook was constructed
by clustering L2 descriptors (500 random L2 descriptors
selected from each image) with 𝐾

2
= 128 clusters. Two

such codebooks were constructed, one of each class (BRAF-
positive and BRAF-negative), and then both used for coding
each image, leading to a representationwith codes 1, . . . , 2𝐾

2
.

The process described above led to a recoding of each
image in terms of a histogram with 2𝐾

2
bins, each corre-

sponding to an L2 code.Wenote that, in all the steps for image
coding, the patches containingmore than 50%of background
pixels were excluded.

2.4. Classifier Design. After the image recoding step, to each
image corresponded a 2𝐾

2
-value vector which constituted

the input data for the classifier design. The classifier design
included the following main steps:

(1) Classifier feature selection: features (elements of the
input vectors) were ordered based on recursive fea-
ture elimination (RFE) method [20] and subsets of
features of sizes 𝑓 = 30, 50, . . . , 130 (approximately
half of total number of features) were considered for
Step (2).

(2) For each subset of features, a Support VectorMachine
(SVM) [21] with Radial Basis Function (RBF) kernel
was trained and its metaparameters were optimized
in an inner cross-validation loop. Its performancewas
estimated by cross-validation and the estimated area
under the ROC curve (AUC) recorded.

(3) The number of features yielding the maximum AUC
was deemed optimal and the final SVM was trained
on that number of features.

To estimate the performance of the system, the image
recoding procedure followed by Steps (1)–(3) above was
embedded into an external 10-fold stratified cross-validation
loop, thus ensuring an unbiased estimation. The vector of
predicted labels within this outer cross-validation was taken
to represent typical predictions of the model and used in
statistical analyses to avoid overly optimistic conclusions that
would have been obtained from the predictions made by the
model trained on the full data set.

2.5. Statistical Analyses. The main performance parameter
for the classifier was AUC, but sensitivity and specificity
were equally measured. For sensitivity and specificity 95%
confidence intervals were computed using Agresti-Coull
approximation [22] while for AUC they were obtained by
bootstrap [23]. To test the association between individual
image features and the class label, univariable logistic regres-
sion models were fit and the sign of the resulting coefficient
was used to determine the sense of the association. To test for
the association between clinical variables and classifier pre-
dictions we used 𝜒2-test on 2 × 2 contingency tables. Survival
analysis was performed using survival package (version 2.39-
4) from R statistical computing environment (version 3.3.1,
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Figure 1: Analysis of the classifier’s predictions. (a) Waterfall plot of the BRAF scores and the corresponding predictions (color-coded). (b)
The relationship between the genomic score (𝑥-axis) and the prediction margin (𝑦-axis) for the misclassified samples.

Table 2: Confusion matrix for classifier predictions. The ground
truth is given by the genomic signature.

Predicted
BRAF-negative

Predicted
BRAF-positive

Genomic BRAF-negative 221 11
Genomic BRAF-positive 9 50

http://www.r-project.org). The estimation of hazard ratios
was obtained from Cox proportional hazards regression in
the absence of any other covariates, while the comparison of
survival experiences of different subgroups was assessed by
log-rank test (Mantel-Haenszel test). Statistical significance
level was chosen to be 𝑝 = 0.05 and no adjustment for
multiple hypotheses testing was performed.

3. Results and Discussion

3.1. Image-Based Predictor. Theestimated performance of the
classifier was AUC = 0.938, 95% CI = (0.903–0.972), with a
default operating point yielding a sensitivity Se = 0.848, 95%
CI = (0.733–0.920), and a specificity Sp = 0.926, 95% CI =
(0.917–0.974), corresponding to an accuracy Acc = 0.931,
95% CI = (0.896–0.956). The optimal number of features
varied throughout the cross-validation iterations between 70
and 110. In Table 2, the confusion matrix from the cross-
validation predictions is shown.

The relationship between the image-based classifier pre-
dictions (from cross-validation) and the genomic score can
be seen in Figure 1. The misclassified samples are covering
the whole range of genomic scores (Figure 1(a)). For the
SVMs, the margin of a sample can be viewed as a confidence
in the prediction; hence we were interested in studying the
classification errors in the context of their corresponding
margins. In Figure 1(b), the margins are shown as a function
of genomic score. It appears that smaller margin corresponds
to larger (in absolute value) BRAF scores indicating that the
confidence in those (erroneous) predictions is rather low.

A different trade-off between sensitivity and specificity
could be obtained by adapting the classifier’s threshold: for
example, an operating point yielding Se = 0.915, 95% CI =
(0.812–0.967), and Sp = 0.776, 95%CI = (0.718–0.825), would
favor the detection of BRAF-positives.

3.2. Relationship with Clinical Parameters. Further investiga-
tion of the classifier’s errors showed that most of the false
negatives were KRASmutants (6 out of 9) while the majority
of the false positives were double wild type (BRAF and KRAS
wild type). We also note that the classifier labeled two cases
(out of 16) of BRAF mutant tumors as “BRAF-negative”;
however, one of them had also a negative genomic score. The
predictions were also associated with the mucinous status
of the tumors (𝜒2 test𝑝 value = 0.0066), the microsatellite
instability status (𝜒2 test𝑝 value < 0.0001), and the grade
(𝜒2 test𝑝 value = 0.0006) as expected [8] but not with
other clinical parameters including KRAS mutation status
and tumor stage.

The BRAF genomic signature was shown to have a strong
prognostic value for overall survival (OS) and survival after
relapse (SAR) and limited value for relapse-free survival
(RFS) [8]. In the subset of samples considered, the genomic
signature maintained its prognostic value and the classifier
predictions inherited, to some degree, this property: the
predictions were prognostic for OS (𝑝 = 0.007,HR = 1.81,
95% CI = (1.17–2.81)) and SAR (𝑝 = 0.010,HR = 1.89, 95%
CI = (1.16–3.10)) but not for RFS (𝑝 = 0.072,HR = 1.44, 95%
CI = (0.97–2.13)).

3.3.The Predictive Image Features. We investigated the struc-
ture of the final model generated using the complete data set,
on which both image recoding and the classifier design steps
were applied as described above. For this model, 90 features
(corresponding to codewords from the L2 codebook) were
selected as the optimal set and using the logistic regression
coefficient (from single-variable models) they were divided
into “positive features” (preferentially present in BRAF-
positive cases, 58 features in total, see Figure 2) and “negative
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Figure 2: “Positive features”: image patterns associated with BRAF-positive class. Each feature is a 480 × 480 image patch and corresponds
to an L2 codeword. Higher resolution image is available at DOI: 10.5281/zenodo.376999.

Figure 3: “Negative features”: image patterns associated with BRAF-negative class. Each feature is a 480 × 480 image patch and corresponds
to an L2 codeword. Higher resolution image is available at DOI: 10.5281/zenodo.376999.

features” (preferentially present in BRAF-negative cases, 32
features in total, see Figure 3). We note that a number
of features were dedicated to representing the border of
the tumors and that some were partially affected by the
markings present on the slides. It appears that the color
deconvolution used in combination with Gabor descriptors
made the representation robust to this type of noise. A second
observation was that there were, roughly, twice as many
image features representing the positive class compared to

the negative one. This was to some degree not unexpected:
indeed, in general, the BRAF-mutated and MSI-H CRC
tumors show more intratumoral heterogeneity than the rest;
however our results may suggest that this characteristic is
common to a larger group of tumors.

The exact contribution of each feature to the final decision
is less obvious as their involvement in the classifier’s predic-
tion is through the RBF kernel and since the support vectors
(actually a number of images from the training set) are
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(a) (b)

(c) (d)

Figure 4: Spatial distribution of (positive and negative) features in two correctly classified images. The regions with low contrast were not
involved in the classification process. (a-b) A BRAF-positive tumor: (a) positive image features; (b) negative image features. (c-d) A BRAF-
negative tumor: (c) positive image features; (d) negative image features. Higher resolution images are available at DOI: 10.5281/zenodo.376999.

defining the separation boundary between classes. However,
a visualization of their spatial distribution in images may
help in qualitatively understanding the model: in Figure 4
two examples of correctly classified tumors are shown. It
appears that the features identified as “positive features” cover
a relatively larger region in the BRAF-positive tumors than
the “negative features.” The inverse relationship holds for the
BRAF-negative tumors.

We also investigated whether the codebooks (for both
levels of coding, L1 and L2) are biased towards one or a
small group of images. We recall that the codebooks have
been generated using an equal number of image patches
randomly selected from the images. None of the clusters
of the codebooks was dominated by a particular image,
indicating that the codebooks capture general features.

4. Conclusions

We presented an image-based classifier that was able to
predict with high accuracy the outcome of a genomic score.
The input images were scans of H&E pathology slidesmaking
the system suitable for integration in the routine diagnostic
procedures. Since the predictions of the classifier (as those of
the corresponding genomic score) were not correlated with
the TNM staging, they brought an independent indication
of high-risk tumors (in the case of positive predictions). The
system could also be applied for the retrospective selection of
cases from tumor archives, reducing the volume of cases that
an expert would need to evaluate.

Another important outcome is the observation that
some gene expression based signatures may be translated
into an image-based surrogate biomarker. Such tissue-based
biomarkers may be used as a filtering step before the genomic
tests.
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Abstract
Microsatellite instability (MSI) occurs in 10–20% of colorectal tumours and is associated with good prognosis.
Here we describe the development and validation of a genomic signature that identifies colorectal cancer
patients with MSI caused by DNA mismatch repair deficiency with high accuracy. Microsatellite status for 276
stage II and III colorectal tumours has been determined. Full-genome expression data was used to identify
genes that correlate with MSI status. A subset of these samples (n = 73) had sequencing data for 615 genes
available. An MSI gene signature of 64 genes was developed and validated in two independent validation
sets: the first consisting of frozen samples from 132 stage II patients; and the second consisting of FFPE
samples from the PETACC-3 trial (n = 625). The 64-gene MSI signature identified MSI patients in the first
validation set with a sensitivity of 90.3% and an overall accuracy of 84.8%, with an AUC of 0.942 (95% CI,
0.888–0.975). In the second validation, the signature also showed excellent performance, with a sensitivity
94.3% and an overall accuracy of 90.6%, with an AUC of 0.965 (95% CI, 0.943–0.988). Besides correct
identification of MSI patients, the gene signature identified a group of MSI-like patients that were MSS by
standard assessment but MSI by signature assessment. The MSI-signature could be linked to a deficient MMR
phenotype, as both MSI and MSI-like patients showed a high mutation frequency (8.2% and 6.4% of 615 genes
assayed, respectively) as compared to patients classified as MSS (1.6% mutation frequency). The MSI signature
showed prognostic power in stage II patients (n = 215) with a hazard ratio of 0.252 (p = 0.0145). Patients
with an MSI-like phenotype had also an improved survival when compared to MSS patients. The MSI signature
was translated to a diagnostic microarray and technically and clinically validated in FFPE and frozen samples.
Copyright  2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

Keywords: Colorectal cancer; microsatellite instability; deficient mismatch repair system; gene expression; mutation frequency; genomic
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Introduction

There are at least two recognized pathways of
colorectal carcinogenesis [1]. The most common
pathway is a progressive model that involves stepwise
accumulation of genetic alterations in several key
oncogenes and tumour suppressor genes, such as

KRAS, BRAF, TP53 and, importantly, the adenoma-
tous polyposis coli (APC) gene [2,3]. These tumours
account for approximately 85% of all sporadic disease
and commonly display a chromosomal instability
(CIN) phenotype that is associated with widespread
structural alterations. A second class of colon tumours
manifests a microsatellite instability (MSI) phenotype;

Copyright  2012 Pathological Society of Great Britain and Ireland. J Pathol 2012
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these tumours typically display various insertions or
deletions, most commonly in short tandem repeats,
the so-called microsatellites [4]. MSI is the molecular
fingerprint of a deficient mismatch repair system.
Approximately 15% of colorectal cancers (CRCs)
display MSI, owing either to epigenetic silencing
of MLH1 or to somatic or germline mutations in
one of the mismatch repair genes MLH1, MLH3,
MSH2, MSH6 or PMS2 [5]. Consequently, the MSI
phenotype is also referred to as the deficient MMR
(dMMR) phenotype. MSI rates vary with tumour
stage and, in the adjuvant setting, MSI patients have
been associated with longer survival than patients
with microsatellite-stable (MSS) tumours [6,7]. The
deficiencies in MMR genes lead to loss of function
of tumour suppressor genes and are associated with
activating mutations in oncogenes such as BRAF [8].

Patients with MSI cancers might have different
responses to chemotherapy compared to MSS patients
[1,9]. The MMR involves the recognition and repair
of incorrectly paired nucleotides during DNA repli-
cation. 5-Fluorouracil (5-FU)-based chemotherapy is
the standard treatment for stage II and III CRCs
after surgery, and the survival advantage associated
with this treatment is about 10% [10]. Data from
patients with MSI and from cell lines with dMMR
indicate that MSI promotes resistance to 5-FU treat-
ment [1]. However, results from clinical studies are
conflicting. It seems that MSI patients with stage II
cancer have no benefit from 5-FU treatment [11,12],
while stage III MSI patients might benefit from treat-
ment, but this is predominantly seen in patients that
have a germline predisposition [13]. Evidence sup-
porting the preferential efficacy of irinotecan in MSI
tumours continues to emerge, but are still consid-
ered preliminary [14]. Other studies have shown that
MSI colorectal cancer might be specifically sensitive
to compounds inhibiting the phosphatidylinositol 3-
kinase (PI3K)–AKT–mammalian target of rapamycin
(mTOR) pathway [15].

Considering the different prognosis and treatment
response of MSI patients when compared to MSS
patients, an accurate diagnosis is needed to facili-
tate appropriate treatment decisions. Today, several
methods for the detection of MSI status are used.
MSI can be detected by PCR amplification of specific
microsatellite repeats. The presence of instability is
determined by comparing the length of nucleotide
repeats in tumour cells and normal cells. A consensus
conference established a panel of microsatellite
markers with appropriate sensitivity and specificity to
diagnose MSI [16]. This reference panel, known as
the Bethesda panel, included five microsatellite loci:
two mononucleotides (Bat25 and Bat26) and three
dinucleotides (D5s346, D2s123 and D17s250) [17].
Immunohistochemical analysis of MMR proteins is
an alternative method to detect MSI in the clinical
setting and complements the genetic testing of Lynch
syndrome [18]. Lack of expression of one or more of
the MMR proteins is indicative of deficient MMR, and

can help to determine which gene harbours a germline
mutation or has been inactivated by another mecha-
nism. However, traditional methods for determining
MSI status might not identify all patients with a defi-
cient mismatch repair system and other methods might
be required for a more comprehensive detection [19].

As demonstrated by others [15,20] and in this paper,
patients with MSI have a very distinct gene expres-
sion pattern that allows the development of strong gene
expression signatures. Pairwise comparisons between
studies showed that 94–98% of genes have consis-
tent changes in expression, even though samples were
analysed on different platforms and in different studies
[20]. Here we describe the development and validation
of a robust gene expression signature that identifies
patients with MSI status, determined by standard meth-
ods (PCR, IHC) with high accuracy, and additionally
identifies a group of MSS patients with a MSI-like
phenotype. The signature was translated into a diag-
nostic test that can be used in fresh or FFPE material
and can be performed in combination with other gene
expression signatures [21,22] for further classification
of early-stage colon cancer patients.

Methods

Patients and samples
In this study, microsatellite instability was assessed in
three patient cohorts that have been described previ-
ously: a development cohort (A) [22], a first indepen-
dent validation cohort (B) [23] and a second inde-
pendent cohort in the subset of the PETACC-3 gene
expression dataset with complete MSI status informa-
tion (cohort D) [24–26]. The prognostic value of the
developed MSI signature was assessed on cohort B
combined with an additional set of samples with patient
follow-up data but without hospital-based MSI assess-
ment (cohort C). Patient and sample characteristics are
shown in Table 1. All tissue samples were collected
from patients with appropriate informed consent. The
study was carried out in accordance with the ethical
standards of the Helsinki Declaration and was approved
by the medical ethical boards of the participating med-
ical centres and hospitals.

Hospital-based assessment for microsatellite
instability (MSI)
For the development cohort (cohort A), fresh-frozen
tumour samples from patients with colorectal cancer
were collected (n = 276; Table 1). For 90 patients,
5 µm slides were immunohistochemically stained for
the markers MLH1 and PMS2. For the remaining 186
patients and for all patients in validation cohort B (n
= 132; Table 1) the MSI/MSS status was assessed
by PCR amplification, following the standard proto-
col of the hospital and described in [21,22,26] and in
Supplementary methods (see Supplementary material).
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Table 1. Patient characteristics
Cohorts A B C D Total

Development Validation Validation (prognosis) Validation

Patients (n) 276 132 131 625 1164
Tissue type Fresh Fresh Fresh FFPE
Age

< 70 157 84 60 529 830
≥ 70 119 48 71 96 334

Stage
I 40 – – – 40
II 157 132 131 104 524
III 78 – – 521 599
IV 1 – – – 1

Gender
Male 165 74 66 382 687
Female 111 58 65 243 477

Location
Left colon 143 76 56 391 666
Right colon 96 56 57 234 443
Rectum 37 – 10 – 47
Not available – – 8 – 8

Grade
1 83 1 21 – 105
2 172 90 87 567∗ 916*
3 20 41 21 55∗ 137*

Not available 1 – 2 3 6
BRAF

Activating mutation 24 18 13 46 101
Wild-type/unknown mutation 248 86 92 577 1003
Not available 4 28 26 2 60

Microsatellite stability
MSI 29 31 – 70 130
MSS 247 101 – 555 903
Not available – – 131 – 131

∗ The PETACC3 dataset dichotomized the grade information by grouping stages 1 and 2, and 3 and 4, respectively.

Patients who had at least two microsatellite unstable
markers were defined as MSI. A tumour with only
normal markers was defined as microsatellite-stable
(MSS). MSI assessment of the PETACC-3 samples
(cohort D) was performed as described previously,
using a standard panel of 10 mononucleotide and din-
ucleotide microsatellite loci by PCR amplification of
normal/tumour DNA pairs [26]. Irregularity in one
marker (two in the PETACC-3 study) was defined
as low-grade microsatellite instability (MSI-L); irreg-
ularity in more markers was defined as high-grade
microsatellite instability (MSI) [27]. Patients with MSI-
L were classified as MSS for all analysis.

Development and validation of a 64-gene signature
associated with MSI status
RNA extraction, T7-based linear amplification, Cy-
dye labelling and hybridization to Agilent arrays was
performed as described previously [22]. All tumour
samples contained > 30% tumour cells. Samples were
analysed against a common reference that was gener-
ated using a pool of 44 CRC samples. Gene expres-
sion measurements were normalized (Lowess normal-
ization) and log-ratios were used for identification of
genes that were associated with the MSI status of the
tumours (based on two-sided Student’s t-test). We used
a 10-fold cross-validation (CV10) procedure that has

been described previously [22,28]. The CV10 proce-
dure was applied on the development cohort (n =
276) and repeated 1000 times to determine classifica-
tion performance and for robust gene selection. During
each CV10 round, genes were ranked by p value. The
64 genes (see Supplementary material, Table S1) with
the highest frequency of appearance within the top-
ranking genes in each of the 1000 CV loops were
selected as the final set with the strongest MSI associ-
ation (http://research.agendia.com/).

The 64 gene set was used to construct a nearest
centroid-based classification method (cosine correla-
tion); a MSI gene signature index for the individual
samples was defined as the difference of the two cor-
relations. Samples were classified within the MSI group
if their index exceeded a predefined optimized thresh-
old. This threshold was determined to reach a maximal
overall accuracy (sum of sensitivity and specificity).

The 64-gene signature was validated on 132 inde-
pendent CRC samples analysed in the same way as
the development cohort, using the same microarray
platform and threshold (cohort B, Table 1). Samples
were classified as MSI if their index (the difference
of the two correlations) exceeded the predefined opti-
mized threshold. A second validation was performed
on data from the PETACC-3 study comprising 625
colon tumour FFPE samples with known MSI status,
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Figure 1. (A) A 64-gene expression signature for identification of colorectal cancer samples with MSI, MSI-like and MSS phenotypes.
The MSI signature read-outs (index) are shown for 276 tumour samples (cohort A): red, relative up-regulation; green, down-regulation.
Standard hospital-based MSI assessment is indicated in the middle bars, together with the BRAF V600E mutation status: light grey, MSS
or BRAF wild-type, dark grey, MSI or BRAF mutation. (B) ROC curve and AUC of the signature read-out on validation cohort B. (C) ROC
curve and AUC of the MSI signature on validation cohort D (PETACC-3 study). The optimal sensitivity and specificity (with a sensitivity of
at least 0.9 and sum of sensitivity and specificity is maximal) is indicated in grey.

of which 70 (11.2%) were MSI (cohort D, Table 1). As
described previously [25], these 625 samples had been
hybridized to a custom Affymetrix platform optimized
for analysis of degraded RNA in FFPE samples. We
could identify 58 of the 64 MSI signature genes. Read-
out of the MSI gene signature index on the Affymetrix
data was done in a similar fashion as for the first valida-
tion cohort. A receiver operating characteristic (ROC)
curve was plotted and the area under the ROC curve

(AUC) was calculated. Sensitivity and specificity were
calculated based on the optimal overall accuracy, with
a sensitivity of at least 90%.

Besides the main binary classification of MSS and
MSI samples, a secondary threshold was determined
to subclassify MSI-like samples that were positive by
MSI gene expression signature but typically classified
as MSS by hospital assessment. Both thresholds for
MSI and MSI-like classification were determined using
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the development cohort A only and are indicated in
Figure 1A.

Functional analysis of 64-gene signature
Functional analysis of the genes in the signature was
performed by using the Database for Annotation, Visu-
alization and Integrated Discovery (DAVID) software,
v 6.7 [29]. The enriched functional annotation clusters
were calculated by DAVID through grouping enriched
functional terms. The parameter set used had a similar-
ity threshold of 0.4, multiple linkage threshold of 0.3
and an EASE parameter of 0.5. Only clusters larger
than three functional terms were used.

Investigation of mutation frequency
DNA fragment libraries were prepared using the
TruSeq DNA Sample Preparation Kit (Illumina) and
were hybridized to the SureSelect Human Kinome bait
library according to the manufacturer’s protocol (Agi-
lent). Captured DNA samples were sequenced on a
HiSeq 2000 (Illumina), using a 55 bp paired-end proto-
col. Sequence reads were aligned to the human genome
(GRCh37/hg19) and unique pairs were used for variant
calling. Candidate variants were identified using SAM-
tools and the following inclusion criteria were applied:
minimum coverage 10; minimum variant count 5; a
variant must be detected on both strands. Variants were
assessed using the Ensembl variant effect predictor (v
62) to define those that were likely to impact protein
coding sequences and to filter out germline polymor-
phisms. Matched germline DNA was sequenced for 19
of the 73 tumour samples and an additional 56 normal
samples were used to improve the removal of germline
SNPs and sequencing errors. In this paper we focus on
mutation load; a full analysis of the sequence alter-
ations is the subject of another study.

Statistical and survival analysis
All analyses and statistical tests were performed
in Matlab (MathWorks) or R (v 2.14.1; www.r-
project.org). All tests were two-sided and the signif-
icance level of p values was set to be 0.05. Survival
analysis was performed on cohorts B and C combined,
using Cox proportional hazard models with 10-year
distant metastasis-free survival (dmfs) as end point.

Results

Development of an MSI signature
A cohort of 276 colorectal tumour samples (cohort A,
Table 1) was analysed for their microsatellite status
[microsatellite instability (MSI) or stability (MSS)]
according to the local standard methodology at the
originating hospital (see Methods for details); 11%
(n = 29) of the tumours were identified as MSI
(Table 1). This cohort was used for identification of

genes with expression strongly associated with MSI
status. Using a 10-fold cross-validation procedure,
we identified a set of 64 genes (see Supplementary
material, Table S1) that formed the basis of a single
sample-based classifier to accurately identify MSI
tumours (Figure 1A). Optimal accuracy was reached
upon classification of 57 samples as MSI by the
signature and 219 samples as MSS, corresponding
to a sensitivity of 93.1% and a specificity of 87.9%
(Table 2).

The 64-gene signature was validated in an inde-
pendent cohort of 132 stage II colon cancer samples
(validation cohort B, Table 1) that was analysed using
the single sample predictor (SSP), as established in
the development cohort. Performance in the validation
samples showed an area under the ROC curve (AUC)
of 0.942 (95% CI, 0.888–0.975) with a sensitivity of
90.3% and a specificity of 83.2% when applying the
established threshold for MSS and MSI classification
(Figure 1B, Table 2).

A second independent validation of gene signature
was performed on a prospective cohort of FFPE tissue
samples from the randomized PETACC-3 study (cohort
D, Table 1) [24]. Signature read-out in the PETACC-3
samples showed a very high concordance with hospital-
based MSI assessment, with an ROC of 0.965 (95%
CI, 0.943–0.988), which has an optimal sensitivity of
94.3% and specificity of 90.1% (Figure 1C, Table 2).
Besides validating the signature in an independent
prospective study, this result showed that the developed
64-gene signature can be successfully translated to a
different microarray platform and can likely be used
for MSI assessment on FFPE samples.

MSI signature and mutation frequency
In all patient cohorts, the MSI signature was able to
correctly identify nearly all MSI patients (sensitivity
above 92%) but they were classified as MSI by the
gene signature (Figure 1A). We hypothesized that,
although these MSI-like tumours were assessed as
MSS by standard methods, they do have a deficient
mismatch repair (dMMR)-related phenotype. As such,
the developed gene signature might be able to identify
MSI samples but also MSS samples that harbour a
dMMR phenotype (MSI-likes).

To test this hypothesis, we have deep-sequenced
73 tumour samples for their ‘cancer kinome’ (615
genes in total). The sequencing results confirmed
that samples identified as MSI by the gene signature
have a significantly higher mutation frequency (on
average, candidate mutations were identified in 7.4%
of the analysed genes) compared to MSS samples (on
average, candidate mutations were identified in 1.6% of
the genes) (Student’s t-test, p = 3.15e-12). Importantly,
further classification into MSI and MSI-like samples
indicated that the mutation frequency of the MSI-like
tumours (average 6.4%) is also significantly higher than
that of MSS samples (Student’s t-test, p = 6.26e-6) and
comparable to the mutation frequency in MSI samples
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Table 2. Performance of MSI gene signature: performance of MSI and MSS classification by the 64-gene signature compared to standard
local hospital methodology

Tissue n Sensitivity Specificity Overall accuracy

Development cohort A Fresh 276 93.1 87.9 88.4
Validation cohort B Fresh 132 90.3 83.2 84.8
Validation cohort D (PETTAC-3) FFPE 625 94.3 90.1 90.6

(8.2%) (Figure 2). This result suggests that MSI-like
tumours also harbour a dMMR phenotype, resulting in
a higher mutation rate.

It is important to note that the MSI-like patients, as
identified by the signature, were not patients with a
low-grade MSI (MSI-low) assessment by the hospital
(data not shown), confirming that the MSI-likes might
be a subclass that cannot be identified by standard MSI
assessment.

Investigation of activating mutations in BRAF
showed that 64.3% of all samples classified as MSI
by the gene signature harboured an activating BRAF
mutation (36 of 56 samples with a known BRAF
mutation status). In the MSI-like class, 17.4% of
the samples had an activating BRAF mutation, while
the MSS classified samples were almost exclusively
(98.0%) BRAF wild-type (342 of 349 samples).

Functional annotation
The association between the MSI gene signature and a
dMMR phenotype was further supported by functional
analysis. The results indicated that four functional
annotation clusters were significantly enriched in the 64
signature genes (see Methods; see also Supplementary
material, Tables S1 and S2). Annotation cluster 1
indicated that the encoded proteins of the signature
are enriched with zinc-finger domain proteins, which
are often found as part of transcription, translation,
DNA replication and repair machineries [30]. Together
with the enrichment in functional terms related to
DNA binding and the nucleic acid metabolic processes
(annotation cluster 2), these results are in agreement
with the nature of DNA mismatch repair proteins as
DNA interacting/metabolism partners that often form
large complexes in the nucleus (annotation cluster 4)
[31]. In addition, annotation cluster 3 indicated that the
signature genes are also involved in apoptosis.

MSI-signature and prognosis
The prognostic value of the 64-gene MSI signature was
tested on 263 mostly (80%) untreated stage II tumours:
132 samples from validation cohort B, plus an addi-
tional set of 131 stage II colon tumours with no avail-
able hospital-based MSI assessment (validation cohort
C, Table 1). Patients with samples classified as MSI by
the gene signature showed a significantly better distant
metastasis-free survival (DMFS) compared to patients
with MSS tumours, with a hazard ratio (HR) of 0.252
(95% CI, 0.076–0.83, p = 0.0145) (Figure 3A). After
further subclassification into MSI, MSI-like and MSS,
the MSI-like group also showed a significantly better

survival compared to MSS samples. Interestingly, the
MSI group with concordant MSI classification by sig-
nature and hospital method showed a 100% survival
rate (Figure 3B). In contrast to stage II, investigation
in stage III samples (n = 201) showed no prognostic
value of MSI/MSS classification (p = 0.29) (data not
shown).

It has been postulated that MSI patients might be
resistant to 5-FU treatment and that this resistance is
associated with thymidylate synthase (TYMS) activity.
We therefore investigated the expression of TYMS
in the tumours. Samples classified as MSI showed
a significant higher expression of TYMS compared
to samples classified as MSS (cohort A, p < 1e-
18). Samples classified as MSI-like showed also a
significantly higher expression of TYMS compared to
MSS (p = 3.9e-13) (Figure 4).

Technical validation of the MSI gene signature
The reproducibility of the MSI signature was inves-
tigated by replicate hybridization and analysis of 53
samples. MSI gene signature results were highly repro-
ducible, with an R2 value of 0.992 (Figure 5A)
and, importantly, all samples resulting in the same
classification (100% concordance). Matching samples
from the same patients (n = 60) that were either
preserved as formalin-fixed and paraffin-embedded
(FFPE) or preserved fresh in RNA-retain were analysed
to address tumour heterogeneity and technical differ-
ences between FFPE and fresh preservation. The read-
outs of MSI signature score from these two biopsies
were highly correlated (R = 0.93) and the binary results
(MSS versus MSI) were 98.4% concordant. In addition,
a repeated assessment was performed for three samples
over 20 consecutive days by five different technicians.
Signature read-out was stable across the 20 consecutive
days, with an average standard deviation of well below
5% of the total dynamic range (Figure 5B). Of the 60
measurements, only two read-outs resulted in a change
in classification outcome (96.7% concordance). Finally,
validation of the signature on the PETACC-3 study
(Figure 1C) indicated that the gene signature, which
has been developed and validated on fresh-frozen tissue
samples, can be used for assessment of FFPE samples
as well as fresh tissue.

Discussion

In this report we describe the development of a
64-gene expression signature that identifies patients
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Figure 3. Prognostic value of the 64-gene MSI signature in 263 stage II colorectal cancer (cohorts B and C combined). (A) Kaplan–Meier
(KM) survival curves for samples classified as MSI (MSI and MSI-like combined) and MSS by the gene signature; (B) KM curves for samples
classified as MSI, MSI-like and MSS by the gene signature. p values are based on log-rank test.

with DNA mismatch repair deficiency resulting in
a MSI phenotype. The signature was developed and
independently validated in large sets of samples and
showed high reproducibility in technical validation
experiments. To our knowledge, this is the first report
to describe a genomic MSI-signature directly linked to
mutation frequency, which was translated into a robust
diagnostic test.

The MSI-signature identifies patients with MSI
status with high accuracy (85% and 91% accuracy in
validation sets B and D, respectively) but also identifies
a group of MSI-like patients who are not recognized by
traditional methods as MSI but have features similar
to MSI patients, eg high mutation frequency, frequent
BRAF mutations, high TYMS expression and better
prognosis. This observation is in good agreement with
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Figure 4. Relative gene expression levels (log10 scale) of thymidy-
late synthase (TYMS) in samples classified as MSS, MSI and MSI-like
by the 64-gene signature. Samples classified as MSI showed a sig-
nificant higher expression of TYMS compared to samples classified
as MSS (p < 1e-18, Student’s t-test) Samples classified as MSI-like
also showed a significantly higher expression of TYMS compared
to MSS (p = 3.9e-13, Student’s t-test).

a recently published study from the Cancer Genome
Atlas (TCGA) Network that also identified a group
of patients with MSI-like features (high mutation
frequency) who were classified as MSS by traditional
methods [19]. This is clinically relevant because
these patients might be better served without adjuvant
chemotherapy if they are stage II. Additionally, these
result indicate that that microsatellite instability is not
necessarily a good surrogate for dMMR in all patients.

Interestingly, in our study, the sample with the
highest mutation frequency (23.8%) is MSI-like by
gene signature but was classified MSS by standard
PCR assessment. This is again in good agreement with
observations from TCGA that found that six patients
with highest mutation rates were classified as MSS
by standard methods. On the other hand, the single
sample that was MSI by standard methods but with
a strong MSS gene expression pattern in our set did
not have an increased mutation rate, suggesting that
this sample was incorrectly classified by standard MSI
assessment (Figure 2).

The more comprehensive identification of MSI and
MSI-like patients might be explained by the fact that
the read-out of gene expression is a measurement of
cellular consequences of DNA MMR deficiency in col-
orectal tumour, and is therefore independent of know-
ing the cause of the defect. At this moment, not all
components of the MMR pathway in human cells are
known, eg the human counterparts of Escherichia coli
MutH and UvrD are not yet identified [31]. Although
the epigenetic silencing of MLH1 is often observed as
the main factor, other factors are known to play a role.
MMR defects can be caused by any genetic or epige-
netic alteration of the genes in the DNA MMR path-
way. Knock-out mouse models of Msh2 , Msh3 , Msh6 ,
Mlh1 , Mlh3 , Pms1 , Pms2 and Exo1 all confer a MSI

phenotype [32,33]. It is therefore difficult to compre-
hensively measure all possible sources causing MMR
deficiency. Moreover, although somatic mutations in
known mismatch-repair genes might be detectable, the
mutations do not always result in microsatellite insta-
bility, at least not in those microsatellites that are
traditionally assessed [19]. However, it is possible to
summarize the cellular consequence of DNA MMR
deficiency with a dominant gene expression pattern,
as with the 64-gene signature, that measures the down-
stream effect. The functional annotation of the 64 genes
further supports the theory that the signature measures
an activation that is caused by MMR deficiency, rather
than the deficiency itself. Proteins with classical con-
served zinc-finger domains, DNA binding domains and
associated to the nucleic acid metabolic processes were
enriched in the signature. The expression signature is
indicative of active DNA damage signalling, which in
turn leads to cell cycle arrest and apoptosis (see Sup-
plementary material, Table S2).

The 64-gene signature summarizes the gene expres-
sion pattern displayed by colorectal tumours with DNA
MMR deficiency, regardless of the diverse causes of
this defect, and therefore might have advantages when
compared to IHC or PCR methods [9]. Using a gene
expression signature for MSI assessment might also
have technical advantages: it does not require a com-
parison of DNA microsatellite regions from paired nor-
mal and tumour tissues; in addition, the nature of a
molecular signature builds upon the read-out of a rela-
tively large set of genes, resulting in robust and repro-
ducible measurements; additionally, the MSI signature
can be read out from the same tissue biopsy and in
the same assay as other diagnostic signatures [20,21],
minimizing sample requirements and systematic errors.

It has been well established that stage II MSI
patients have better prognosis compared to patients
with functional mismatch repair [34]. Consistent with
this knowledge, we report here that tumours predicted
by the 64-gene signature as MSI showed better distant
metastasis-free survival. While the good prognosis of
MSI tumours is well documented, the value of MSI
to predict response to adjuvant chemotherapy is still
under investigation. Cell line models support the idea
that CRCs require a functional MMR system to induce
apoptosis in response to 5-FU treatment [35]. In addi-
tion, meta-analysis of seven independent clinical stud-
ies indicated that MSI patients do not benefit from adju-
vant chemotherapy with 5-FU [12]. The mechanism of
action of 5-FU is through its metabolite dUMP, which
competes for the binding site of thymidylate synthase
(TYMS ), an enzyme catalysing conversion of dUMP to
dTMP during DNA synthesis. The non-responsiveness
to 5-FU therapy in MSI patients might be related to
higher expression of TYMS in these tumours [36]. In
our dataset, we have confirmed this association, as MSI
patients identified by the signature have high expres-
sion of TYMS . MSI-like patients might present an addi-
tional population of CRC patients that are unlikely to
respond to treatment with 5-FU.

Copyright  2012 Pathological Society of Great Britain and Ireland. J Pathol 2012
Published by John Wiley & Sons, Ltd. www.pathsoc.org.uk www.thejournalofpathology.com

13. Robust genomic signature for MSI

125



Genomic MSI signature 9

1.
0

R2 = 0.992
A B

0.
0

re
pl

ic
at

e 
B

-1
.0

1.
0

0.
0

-1.0 1.0

tumour A tumour B tumour C

0.0

replicate A

-1
.0

Figure 5. Reproducibility and precision of the 64-gene signature. (A) Replicate analysis of 53 tumour samples shows a very high correlation
in signature index. (B) Stability of the MSI signature read-out for three representative diagnostic samples across a time period of 20
consecutive days. In both panels, the classification threshold (MSI vs MSS) is indicated by the dashed line.

To conclude, we have developed a 64-gene signature
characterizing DNA MMR deficiency in colorectal
tumours. This signature is technically robust and can
be used as an alternative diagnostic tool to assess
MSI status. It was implemented on a diagnostic array
and validated in both fresh-frozen and FFPE tumour
samples. The results from this test provide information
on the prognosis of colorectal cancer patients and
aid decision making for the selection of appropriate
chemotherapeutic agents.
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Abstract
Background: Molecular characterization of breast and other cancers by gene expression profiling
has corroborated existing classifications and revealed novel subtypes. Most profiling studies are
based on fresh frozen (FF) tumor material which is available only for a limited number of samples
while thousands of tumor samples exist as formalin-fixed, paraffin-embedded (FFPE) blocks.
Unfortunately, RNA derived of FFPE material is fragmented and chemically modified impairing
expression measurements by standard procedures. Robust protocols for isolation of RNA from
FFPE material suitable for stable and reproducible measurement of gene expression (e.g. by
quantitative reverse transcriptase PCR, QPCR) remain a major challenge.

Results: We present a simple procedure for RNA isolation from FFPE material of diagnostic
samples. The RNA is suitable for expression measurement by QPCR when used in combination
with an optimized cDNA synthesis protocol and TaqMan assays specific for short amplicons. The
FFPE derived RNA was compared to intact RNA isolated from the same tumors. Preliminary scores
were computed from genes related to the ER response, HER2 signaling and proliferation.
Correlation coefficients between intact and partially fragmented RNA from FFPE material were
0.83 to 0.97.

Conclusion: We developed a simple and robust method for isolating RNA from FFPE material.
The RNA can be used for gene expression profiling. Expression measurements from several genes
can be combined to robust scores representing the hormonal or the proliferation status of the
tumor.
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Background
Breast cancer has been widely studied in the past and
molecular characterization has increased the understand-
ing of biological pathways that are altered during neoplas-
tic transformation of cells [1-4]. However, the findings
based on molecular profiling have not yet altered diagno-
sis, and decisions about treatment still rely mostly on his-
topathological and immunohistochemical techniques
which are at best semi-quantitative [5,6]. Currently, many
patients with primary, non-metastatic breast cancer with
positive estrogen receptor (ER) status undergo several
cycles of chemotherapy, although a substantial propor-
tion of them does not benefit from it. Presently, no con-
ventional parameters exist for many patients which allow
to identify individuals who will benefit from chemother-
apy. Personalized diagnosis on the basis of highly specific
molecular analyses has the potential to improve the situ-
ation of many patients by optimizing medication, and at
the same time, sparing others from unnecessary treatment
regimens.

DNA chip studies are based on measuring gene expression
for many genes in parallel [1,4,7,8]. Most protocols for
gene expression analysis on the basis of DNA chips are
sensitive to RNA degradation and RNA must be isolated
from freshly prepared or FF tumor material. As a conse-
quence, material is fairly limited and often originates
from convenience samples of heterogeneous patients.
Many of these studies including meta-analyses have
revealed genes and biological functions of their products
which are relevant for classification and prognosis [9,10].
However, many samples were derived from patients who
did not participate in clinical studies and their treatment
regimens were not standardized. Therefore, follow up
data must still be interpreted with caution.

Obviously, procedures based on formalin-fixed, paraffin-
embedded (FFPE) material would greatly facilitate and
speed up research in this area as large amounts of highly
valuable material and clinical data have already been col-
lected. In many cases, FFPE blocks are still available and
they could be used for a molecular analysis. Especially
material from clinical trials would allow investigating dis-
tinct clinical questions with existing material rather than
material from newly designed studies.

Many efforts are currently made to individualize diagnosis
of breast cancer by including molecular parameters into
diagnosis. Fresh frozen material would obviously be ideal
for a molecular analysis by gene expression measurements
but it may be difficult to implement novel procedures
which complicate current workflows of daily routine. Pro-
cedures based on FFPE material would be more feasible as
they do not interfere with current protocols and they do
not affect routine diagnosis as material for molecular

analysis could be collected after standard diagnosis has
been terminated. Only relatively few molecular
approaches have been described which are based on FFPE
material. For example, Paik and co-workers have estab-
lished a recurrence score (RS, Oncotype DX), it allows to
quantify the likelihood of distant recurrence and to pre-
dict the magnitude of chemotherapy benefit [11,12].

It is generally accepted that molecular profiles which
reflect primarily biological characteristics of tumor cells,
may complement clinical and histopathological diagno-
sis, resulting in a more detailed characterization of indi-
vidual tumors, a pre-requisite for better treatment
decisions. In this study we present the development of a
novel procedure for RNA isolation from FFPE material
and an optimized workflow for expression measurements
by QPCR.

Methods
Human breast cancer samples
Human breast cancer specimens were divided into two
aliquots, one of which was processed for histological diag-
nosis by fixation with formalin and embedding in paraf-
fin. FFPE material was obtained from the Institute of
Pathology (University of Bern) and the Pathology Längg-
asse, Bern. Tissue (3–5 mm thick slices of tumor) was
fixed over night in buffered formalin and processed for
paraffin embedding in a Tissue Processing Center TPC 15
(Medite Medizintechnik, Germany). The second aliquot
was frozen on dry ice and stored at -80°C. Fresh frozen
material was obtained from the Tumorbank Bern. Both,
FF and FFPE samples were checked by hematoxylin and
eosin staining and only samples with more than 50%
tumor cells were used for this study. An informed consent
to use the material for research was obtained from all the
patients.

RNA Extraction
Intact RNA was isolated from four 25 μm thick kryo-sec-
tions of approximately 0.5 cm2. The tissue was homoge-
nized in 420 μl lysis buffer (4 M guanidinium
thiocyanate, 30 mM Tris pH 8.0, 1% Triton-X-100), 8.0,1
using a TissueLyser (Mixer Mill, Retsch GmbH, Haan, Ger-
many) at 15 Hz for 3 min. Total RNA was bound to silica-
based columns (Epoch Biolabs, Huston Texas), treated
with DNase I (30 Kunitz units for 20 min. at room tem-
perature; Qiagen, Hilden, Germany), washed once with
lysis buffer (containing 30% ethanol) and once with 20
mM NaCl (containing 20% ethanol) and eluted in 50 μl
10 mM Tris pH 7.4, 0.1 mM EDTA and stored at -20°C.
RNA quantity was measured on an ND-1000 spectropho-
tometer (NanoDrop Technologies, Wilmington, DE) and
quality assessed by capillary electrophoresis with an Agi-
lent 2100 Bioanalyzer (Agilent Technologies, Inc., Santa
Clara, CA) using Agilent RNA 6000 Series Nano kits.
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RNA was isolated from ten 10 μm thick FFPE sections
according to the RNeasy FFPE protocol of Qiagen (Fig. 1,
lanes B), the ncLysis protocol of Applied Biosystems
(lanes C) and the protocol developed in our laboratory
(lanes D). Paraffin sections were de-paraffinized with
xylene, washed with ethanol and dried in a speed vac. For
our own protocol, 200 μl lysis buffer (4 M guanidinium
thiocyanate, 30 mM Tris, pH 8.0, 1% Triton-X-100) was
added to the dried sections and immediately homoge-
nized in a Mixer Mill at 20 Hz for 4 min. Proteinase K
(Roche Diagnostics, Mannheim, Germany) was added (1
mg/ml final concentration) and tissue was digested for 1
hour at 55°C. One milliliter dilution buffer (30 mM Tris,

pH 8.0, 1% Triton-X-100) was added to each lysate and
digestion continued for 1 hr after adding fresh proteinase
K (final concentration 1 mg/ml). RNA was de-modified by
adding 318 μl of de-modification solution (5 M NH4Cl)
and incubating at 94°C for 20 min or as described in the
text. RNA was bound to silica-based columns and digested
with DNase I as described for fresh-frozen tissue samples.
The reproducibility of our own procedure was tested by
isolating several independent RNAs from consecutive sec-
tions of the same tissue block. About 10 μg of total RNA
could be isolated from 5 to 10 FFPE sections (0.5–1 cm2/
section). RNA was isolated from closely matched sections
using the RNeasy FFPE kit (Qiagen) or the ncLysis system
(Applied Biosystems) according to the protocols included
with the kits. In both cases, the RNA was purified on silica-
based columns. 22 samples were available. In 14 cases suf-
ficient RNA was obtained from all 4 parallel isolations. In
2 cases of FF material (samples 4 and 11) and in 6 cases of
FFPE material (samples 1, 5, 7, 9, 12 and 21) less than 1.5
μg RNA could be isolated with the ncLysis protocol. These
samples were excluded from further analysis.

cDNA synthesis and QPCR
Aliquots of 100 to 500 ng of total RNA were reverse tran-
scribed using MultiScribe™ MuLV reverse transcriptase
(High-Capacity cDNA Archive Kit; Applied Biosystems,
Foster City, CA, USA) and random or gene-specific prim-
ers. Reverse primers were kindly provided by Applied Bio-
systems, they were used at 1 μM each, cDNAs were made
in the presence of 3, 10 or 22 reverse primers as 3-plex, 10-
plex or 22-plex, respectively. Regular Assays on Demand
(Applied Biosystems) were used for QPCR (Table 1).
Manually designed assays coding for short, medium-size
and long amplicons of the insulin growth factor-binding
protein 5 (IGBP5) were selected with Primer Express (Ver-
sion 3, Applied Biosystems). Forward primer and probe
were kept constant for all assays while reverse primers
were selected such that amplicons of different sizes were
generated [13]. QPCR reactions were carried out in tripli-
cates in a final volume of 10 μl in 1× FAST Master mix
(Applied Biosystems) and cDNA corresponding to 4 ng
total RNA. QPCR was performed on an ABI 7500 FAST
instrument (2 min at 95°C, followed by 45 cycles of 95°C
for 3 sec and 60°C for 30 sec). The quality of the assays
and the absence of contaminating DNA were assessed
with water and RNA instead of cDNA, respectively (data
not shown). Three positive controls containing cDNA
derived of ZR-7-51 cells were included on each 96-well
plate. Cycle threshold values (Ct) were determined using
the SDS software of the 7500 FAST System (Version
1.3.1). Constant threshold values were set for each gene
throughout the study.

RNA isolation and characterizationFigure 1
RNA isolation and characterization. Total RNA was 
isolated from kryo-sections (lanes A) and from paraffin sec-
tions according to the RNeasy FFPE protocol of Qiagen 
(lanes B), the ncLysis protocol of Applied Biosystems (lanes 
C) or according to our own protocol (lanes D). Aliquots of 
each RNA were separated by capillary electrophoresis (Agi-
lent Bioanalyzer) on Nano chips along with RNA ladder (L; 
Ambion). Shown are RNAs from two representative tumors 
(Tu#10 and #18).
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Data processing and determination of breast cancer 
classification scores
All the measured cycle threshold (Ct) values represent
log2 expression levels. These values need to be normalized
such that they are comparable across samples and suitable
for generating scores. For a gene, a large Ct value corre-
sponds to a low expression level, so the first processing
step needed was to reverse the sense of this relationship by
letting

Ct' = max(cut_off - Ct, 0)

be the new value for each measured gene. The cut off value
was set empirically to 35.0 as any higher raw Ct value was
deemed unreliable. This cut off was fixed a priori and kept
constant throughout all the experiments reported here.
Then, the final value of each target gene was taken to be

ΔCt = max_val*(Ct' - R + cut_off)/(2*cut_off),

where R represents the reference value and was taken as
the mean of Ct' values of 5 selected reference genes
(GAPDH, GUSB, RPLP0, TFRC, UBB, see Results section

for details). The approach guarantees that all ΔCt values
are positive and upper bounded by max_val (set to 33 for
all the results reported here).

We used the scores associated with three of the gene
groups listed in Table 1: the ER, HER2 and Proliferation
group. While for the HER2 and Proliferation groups the
scores were taken as the average ΔCt value of the genes in
the group, for the ER group more weight was given to the
ESR1 gene:

ER_score = 0.55*ESR1 + 0.15*(BCL2 + CEGP1 + PGR)

where the gene symbols stand for the corresponding ΔCt
values.

Finally, for each tumor a Total score was computed as

Total_score = (Proliferation_score + HER2_score - 
ER_score + max_val)/3

The Total score, together with the group scores as com-
puted above, are used in all subsequent discussions.

Table 1: QPCR assays. QPCR assays (Assays on Demand) were from Applied Biosystems (Palo Alto, CA). Reverse primers from each 
assay were used for the synthesis of gene-specific cDNAs. They were provided separately by Applied Biosystems. Three assays 
(IGBP5_short, IGBP5_medium, IGBP5_long) were designed manually.

AoD Assay Acc_Nr AmpliconSize Module

Hs00608023_m1 BCL2 NM_000633 81 Estrogen
Hs00221277_m1 CEGP1 NM_020974 64 Estrogen
Hs00174860_m1 ESR1 NM_000125 62 Estrogen
Hs00172183_m1 PGR NM_000926 118 Estrogen
Hs00180450_m1 GRB7 NM_005310 70 Her2
Hs01001598_g1 HER2 NM_004448 55 Her2
Hs00952036_m1 CTSL2 NM_001333 72 Invasion
Hs00171829_m1 STMY3 NM_005940 66 Invasion
Hs01030097_m1 CCNB1 NM_031966 66 Proliferation
Hs01032443_m1 MKI67 NM_002417 66 Proliferation
Hs00231158_m1 MYBL2 NM_002466 81 Proliferation
Hs00269212_m1 STK15 NM_003600 85 Proliferation
Hs00153353_m1 SURV NM_001168 93 Proliferation
Hs99999903_m1 ACTB NM_001101 171 Reference
Hs00266705_g1 GAPDH NM_002046 74 Reference
Hs99999908_m1 GUSB NM_000181 81 Reference
Hs99999902_m1 RPLP0 NM_001002 105 Reference
Hs00174609_m1 TFRC NM_003234 79 Reference
Hs00430290_m1 UBB NM_018955 120 Reference
Hs01630490_s1 RPL7A BX641050 84 Reference
Hs00817975_g1 RPS11 NM_001015 168 Reference
Hs01922548_s1 RPS23 NM_001025 90 Reference
Hs00185390_m1 BAG1 NM_004323 58
Hs00154355_m1 CD68 NM_001251 68
Hs01383449_s1 GSTM1 AY532925 65
(own design) IGBP5_short NM_000599 60 Test
(own design) IGBP5_medium NM_000599 109 Test
(own design) IGBP5_long NM_000599 147 Test
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Results
Isolation of RNA from FFPE material
Total RNA was isolated from FF human breast cancer spec-
imen which resulted in intact RNA in all samples (Fig. 1,
lanes A, shown are RNAs from two representative tumors
from a series of 14 tumors). RNA from FF tissue was used
as reference for partially fragmented RNA isolated from
FFPE material of the same tumors. RNA was assessed by
capillary electrophoresis. The size distribution of RNA iso-
lated according to our own protocol was in the range of
200 to 1000 nucleotides (Fig. 1, panel D) while the major-
ity of RNA fragments was in the range of 100 nucleotides
when RNA was isolated according to RNeasy FFPE (panel
B) or the ncLysis system (panel C). Gene expression was
measured by QPCR using 25 commercially available and
three own TaqMan assays [13] (Tab. 1). The cycle thresh-
old values (Ct values) were determined from RNAs iso-
lated according to one of the three protocols for FFPE
material and compared to Cts obtained with intact RNA of
the same tumors. Fig. 2 shows correlation coefficients
between intact RNA (A) and FFPE-derived RNAs isolated
according to the RNeasy FFPE protocol, (A vs B); the ncL-
ysis system (A vs C); or our own protocol (A vs D) for all
14 tumors using the expression levels of 5 genes (GAPDH,

GUSB, RPLP0, TFRC, UBB; see below). The cDNAs were
made in the presence of random (white boxes) or gene-
specific primers (gray boxes). Clearly, correlation coeffi-
cients between intact and partially fragmented RNA were
higher with gene-specific primers than random primers
and RNA isolated according to our own protocol resulted
in cDNA which performed better in QPCR than cDNA
made from RNA isolated according to RNeasy FFPE and
ncLysis protocols.

Parameters affecting the RNA quality and QPCR
Several parameters were systematically optimized to
improve the protocol for RNA isolation from FFPE-
derived sections. For example, QPCR made in the pres-
ence of primers specific for large amplicons (Fig. 3, dashed
line) is very sensitive to RNA fragmentation and modifica-
tion resulting in higher Ct values than primers specific for
medium-size amplicons (dotted line) or short amplicons
(non-interrupted line). In addition, the effect of de-mod-
ification of FFPE-derived RNA is apparent: the Ct deter-
mined from de-modified RNA is 3 or more units lower
than the Ct measured from the same RNA but without de-
modification. The effect was consistently observed with
several tumors and also when expression was measured

Comparison of RNAs isolated according to different protocolsFigure 2
Comparison of RNAs isolated according to different protocols. RNA was reverse transcribed in the presence of ran-
dom primers (white boxes) or gene-specific primers (hatched boxes). Gene expression was measured from an equivalent of 4 
ng of RNA by QPCR for five reference genes (GAPDH, GUSB, RPLP0, TFRC and UBB). Pearson correlations were computed 
between matched Cts for the five reference genes and each tumor RNA isolated from FF (A) and FFPE material. Shown are 
correlations between intact RNA and RNA isolated from FFPE material according to the RNeasy FFPE protocol (A versus B), 
intact RNA and RNA isolated from FFPE material according to the ncLysis system (A versus C) and intact RNA and RNA iso-
lated according to our own protocol (A versus D).
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with TaqMan assays from Applied Biosystems (data not
shown). The optimum time of demodification was 20
min, longer times led to higher Ct values (not shown).

The different protocols of RNA isolation from FFPE mate-
rial were further compared by measuring expression levels
of reference genes in the 14 tumors and by comparing the
results to Cts generated from corresponding intact RNAs
(Fig. 4). Experimental variation was reduced by compar-
ing mean Ct values from 5 reference genes (GAPDH,
GUSB, RPLP0, TFRC, UBB) instead of their single values.
Mean Cts of the five reference genes were plotted for each
tumor and each protocol (panel A) and their distribution
summarized (panel B). As expected, the Ct values gener-
ated with intact RNA resulted in the lowest and most sta-
ble Cts (diamonds). RNA prepared from FFPE tissue
according to our own protocol (circles) resulted in higher

but fairly constant Ct values (compare diamonds and cir-
cles). RNA isolated according to the RNeasy FFPE protocol
(squares) and the ncLysis protocol (triangles) resulted in
Ct values that were not only much higher than with intact
RNA, they also exhibited large variations among different
isolates when compared to corresponding Cts based on
intact RNA. This result suggests a generally poorer and
more variable quality of RNA isolated according to the
two commercial protocols than our own protocol, leading
to relatively large variations of Cts for the 5 reference
genes among the different tumors. The Ct values gener-
ated from RNA isolated according to our own protocol
were on average 2.9 units higher than Cts from intact
RNA. RNA isolated according to RNeasy FFPE and ncLysis
were 7.6 and 5.8 units higher than Cts from intact RNA of
the same tumors, respectively (Fig. 4B). Standard devia-
tions of Cts for the 14 tumors were 0.45 for intact RNA,

De-modification of RNA results in higher efficiency during subsequent QPCRFigure 3
De-modification of RNA results in higher efficiency during subsequent QPCR. RNA was isolated from FFPE material 
according to our own protocol and compared to intact RNA derived of FF tissue. RNA samples were reverse transcribed 
without previous de-modification (labeled "no") or after de-modification at room temperature (1), 94°C and pH 8.0 (2) or 
94°C and pH 5.0 (3). Each RNA was tested by QPCR using three amplicons for IGBP5. Primers used code for short (60 bp, �), 
medium-size (109 bp, ) or long amplicons (147 bp, �). Shown are raw Ct values from intact RNAs from FF material and 
from RNAs derived of FFPE material of the same tumors. The benefit of de-modification is visualized as delta Ct values. They 
are indicated for short and long amplicons (dotted lines).

14. Expression profiling of FFPE material

135



BMC Medical Genomics 2008, 1:9 http://www.biomedcentral.com/1755-8794/1/9

Page 7 of 15
(page number not for citation purposes)

and 4.21, 2.69 and 1.01 for FFPE-derived RNA isolated
according to the RNeasy FFPE, ncLysis and our own pro-
tocol, respectively.

An important aspect when working with RNA from FFPE
material relates to the reproducibility of the RNA isolation
procedure. This was directly tested for our own protocol
by isolating independent samples of RNA from closely
matched FFPE sections of the same tissue block and meas-
uring gene expression by QPCR from both RNAs (Fig. 5A
and 5B showing two representative examples). RNAs were
also isolated from two independent tumors from the
same patient, resulting in a third panel of data sets (C).
Data points are shown as polygonal diagrams of raw Cts
for each gene measured. Horizontal, parallel lines indicate
closely similar expression, crossing lines indicate discrep-
ancies between two measurements in matched samples.
The Pearson correlation of raw Cts between matched sam-
ples was 0.99 for replicates shown in panels A and B and
0.74 for results shown in panel C.

Normalization
Results generated in the presence of partially fragmented
RNA cannot be directly aligned with results produced
from intact RNA and a suitable normalization is required
to eliminate or reduce the effects of fragmentation and
residual modification in RNA from FFPE material. Nine

putative reference genes were selected from the literature
[14] and from microarray results [15]. Expression was
measured from intact and FFPE-derived RNA and raw Cts
from all the 14 tumors are plotted for each putative refer-
ence gene (Fig. 6). Analyses based on intact RNAs revealed
that 8 of the 9 tested genes performed similarly well
(panel A). RPS23 which was hardly measurable (mean Ct
in intact RNA > 37) was characterized by a large variation
between the different tumors. A slightly higher variation
was observed when expression levels were compared for
FFPE-derived RNAs (panel B): GAPDH, GUSB, RPLP0,
TFRC, RPL7A and UBB showed a similar performance and
small variations between the 14 tumors as was seen with
intact RNA. In contrast, the Ct values with RNA from FFPE
material revealed larger variations for ACTB and RPS11
and therefore, the two genes were excluded as reference
genes. The ACTB and RPS11 amplicons are larger than
amplicons for the other reference genes and also for the
test genes (Tab. 1, see also Fig. 3). Five genes were used as
reference genes: GAPDH, GUSB, RPLP0, TFRC and UBB.
For comparison, raw Ct values are shown for 4 genes
related to the ER response (BCL2, CEPG1, ESR1, PGR)
(Fig. 6, left). As expected, a high variation was observed
for these genes between the 14 tumors. Protocols B and C
did not yield enough usable data, precluding the data
from further analysis. For example, protocol B did not
have data for all the reference genes and for protocol C

Comparison of RNA isolation methodsFigure 4
Comparison of RNA isolation methods. Shown are the means of raw Cts of five reference genes (GAPDH, GUSB, RPLP0, 
TFRC, UBB) for intact RNA ( , FF) and for RNA isolated from matched FFPE material according to the protocols of Qiagen 
(�, Q), Applied Biosystems (�, AB) and our own ( , own). Individual mean Cts of the 14 tumors and summarized box plots of 
Cts are shown in panel A and panel B, respectively. Tumors are aligned according to increasing Ct in FFPE-derived RNA (Qia-
gen protocol).
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several test genes could not be measured reliably (e.g.
BCL2, PGR of the ER group).

RNAs isolated from FFPE material according to our own
protocol were also compared to RNA derived of kryo-pre-
served material of the same tumors in a different way. The
arithmetic mean of the five reference genes (GAPDH,
GUSB, RPLP0, TFRC and UBB) was used for normalizing
expression values of all the genes in each RNA. Normal-
ized expression values were compared between intact and
FFPE-derived RNA for each gene and each tumor [see
Additional File 1]. Good conservation of inter-tumor dif-
ferences were observed between kryo-preserved and FFPE
samples for most genes.

Module scores
Normalized expression values were also used to compute
scores representing ER-related genes (ESR1, PGR, BCL2,
CEPG1), HER2-related genes (HER2 and GRB7), genes
related to proliferation (STK15/AURKA, CCNB1, MYBL2,
MKI67, BIRC5/SURV) and a Total score representing all
the genes of the three scores (for details see Methods). The
computation of biologically meaningful scores with mul-
tiple genes instead of relying on just one has the scope to

reduce noise variation. Module scores and Total scores
were computed separately from normalized expression
values of intact RNAs (circles) and of RNAs isolated
according to our own protocol (triangles) and Total scores
are depicted separately for each tumor (Fig. 7). The figure
demonstrates that similar values are obtained for each
tumor irrespective of whether they are computed from
intact RNA or from RNA derived of FFPE material. This
suggests that scores can be computed with RNA from FF
samples as well as with RNA from FFPE samples. ER and
HER2 scores were visualized in scatter plots, where the ER
and HER2 scores were represented on the x- and y-axis,
respectively (Fig. 8A and 8B). It was apparent that the
three immunohistochemically ER-negative tumors have
low ER scores (#15, #18, #20) and the only immunohis-
tochemically HER2 positive tumor (#6) among the 14
tested tumors had a high HER2 score and an intermediate
ER score (see also Table 2). The remaining tumors were all
ER positive as assessed by immunohistochemistry (IHC)
and they had relatively high ER scores. ER-negative and
HER2-positive tumors all had high Proliferation scores
(visualized by the red color of the dots). A larger spectrum
of Proliferation scores (from blue to red) was found for ER
positive tumors. Similar distributions were found when

Reproducibility of RNA isolation from FFPE materialFigure 5
Reproducibility of RNA isolation from FFPE material. The RNAs were isolated from paraffin blocks according to our 
own protocol. BM33 and BM36 (panel A) are two separate RNAs isolated from tissue block "BM", D33 and D36 are RNAs iso-
lated from block "D" (panel B). For comparison, 45T and 56T originate from two distinct tumors isolated from one patient 
(panel C). Gene expression was measured by QPCR for 24 genes and raw Ct values are shown for each gene measured from 
the two matching RNAs.
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Stability of reference gene expression in RNA isolated from FF and FFPE materialFigure 6
Stability of reference gene expression in RNA isolated from FF and FFPE material. Raw Cts are shown for 9 puta-
tive reference genes (ACTB, GAPDH, GUSB, RPLP0, TFRC, RPL7A, RPS11, RPS23 and UBB). Results based on intact RNA 
derived of FF material (A) and based on RNA isolated according to our own protocol from FFPE material (B) are depicted for 
all the 14 tumors. The Ct values for 4 ER-related genes (BCL2, CEPG1, ESR1 and PGR) are shown for comparison (left).
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scores were computed from intact RNA (Fig. 8A) and
FFPE-derived RNA that was isolated according to our own
protocol (B). A different presentation of scores is shown
where ER, HER2, Proliferation and Total Scores are plot-
ted separately for each tumor [see Additional file 2]. The
scores determined from the 14 FF and FFPE-derived sam-
ples are in the same range and only few tumors were clas-
sified in a different order between intact and FFPE-derived
RNAs (leading to crossing lines).

The similarity between the results generated from intact
and partially fragmented RNA was also assessed by calcu-
lating Pearson correlation coefficients between the scores
of both RNAs. Correlation coefficients (and correspond-
ing p-values and 95% confidence intervals) were 0.966 (p
= 2.071*10-8, CI = 0.893; 0.989), 0.856 (p = 9.32*10-5,
CI = 0.597; 0.954) and 0.833 (p = 2.177*10-4, CI = 0.541;
0.946) for ER, HER2 and Proliferation scores, respectively.
The corresponding Spearman correlations were 0.938 (p <
2.2*10-16), 0.851 (p = 1.167*10-4) and 0.867 (p =
2.048*10-5), respectively.

Discussion
Methods and protocols for RNA isolation from formalin-
fixed tissues have been published since almost 20 years
[16-32].

RNA was quantified by dot blot hybridization [23], semi-
quantitative PCR [19] and more recently, by QPCR
[24,18,26,13,17,33,32] and other methods [28-30]. RNA
derived of FFPE material is not only partially hydrolyzed
but also chemically modified: formalin reacts with nucle-
otides leading to the formation of methylol groups in

nucleobases. These groups tend to further react and form
intra- and inter-molecular methylene bridges in RNA,
DNA [34,35,31] and protein [36]. As a result, reverse tran-
scription is impaired and threshold cycle values (Ct val-
ues) increase during subsequent QPCR.

The protocol for RNA isolation described here was com-
plemented by adding a separate demodification step
which involves incubation at elevated temperature in a
buffer containing ammonium chloride which favors the
reversion of methylol groups to amino groups in nucleo-
bases. It does not only improve the efficiency of down-
stream applications (mainly reverse transcription), it also
improves the recovery of RNA from FFPE sections. RNA
yield and quality can be further improved by extensive
digestion of FFPE material with protease in a buffer con-
taining guanidinium thiocyanate. Reverse transcription in
the presence of gene-specific primers prevents the initia-
tion of cDNA synthesis inside amplicons and therefore,
cDNA made in the presence of gene-specific primers is a
better template for QPCR than cDNA made from random
primers (Fig. 2). Several papers have demonstrated that
QPCR with primers coding for short amplicons are more
efficient than primers coding for long amplicons
[17,20,24,13,32].

Finally, normalization of raw data is used to eliminate or
at least reduce the effect of poorer quality of starting RNA.
Various approaches of normalization were proposed in
the literature [37,14,38,32]. They are based on calculating
relative expression values: expression levels of genes of
interest are expressed relative to the expression of one or a
panel of several suitable reference genes. An ideal refer-

Table 2: Clinical and molecular parameters of breast cancers. Clinical and molecular parameters are given for each breast cancer used 
in this study. Module scores for each tumor were calculated from the results based on intact RNA (FF material) and based on RNA 
isolated from FFPE material according to our own method. N.A., data not available.

Clinical classification Immunohistochemistry Module Score (FF/FFPE)

Tu# T N Grade ER PR ErbB2 ER HER2 Prolif. Histological type

2 2 0 3 70% pos. neg. 1+ 16.6/17.1 15.8/16.3 14.2/14.5 invasive ductal
3 2 1a 2 70% pos. pos. 1+ 17.2/17.7 16.4/16.6 14.3/14.0 mixed (duct./lob)
6 1c 3a 3 >90% pos. pos. 3+ 15.7/16.2 17.2/18.1 14.5/15.4 invasive ductal
8 2 2a 3 >90% pos. pos. 2+ 16.5/17.2 15.8/16.3 14.7/14.7 invasive ductal
10 1c N.A. 2 >90% pos. pos. 2+ 14.5/16.6 15.2/16.2 13.5/14.4 invasive ductal
13 2 3a 3 >90% pos. neg. 1+ 16.6/17.0 15.7/15.6 14.6/14.5 invasive ductal
14 1c N.A. 2 >90% pos. neg. 1+ 16.5/16.9 16.2/16.4 13.8/13.5 invasive ductal
15 N.A. 3 neg. neg. 0 11.8/13.0 14.9/15.5 14.9/15.5 invasive ductal
16 2 N.A. 1 65% pos. pos. 0 17.9/18.3 16.4/16.6 13.8/14.1 invasive ductal/cribriform
17 2 0 3 >90% pos. pos. 2+ 16.5/17.2 16.3/16.9 14.9/15.6 invasive ductal
18 2 N.A. 3 neg. neg. 0 13.0/12.9 15.1/15.9 15.2/16.0 invasive ductal
19 2 N.A. 2 >90% pos. pos. 0 17.2/17.6 15.9/16.0 13.8/14.2 invasive ductal
20 1c N.A. 2 neg. neg. 0 12.4/13.0 15.7/15.9 14.6/15.2 invasive ductal
22 2 0 2 N.A. N.A. N.A. 16.8/17.4 15.6/16.1 13.3/13.9 invasive ductal
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Comparison of Total scores computed from intact and FFPE-derived RNAFigure 7
Comparison of Total scores computed from intact and FFPE-derived RNA. Total scores were computed from nor-
malized expression values based on the results of intact RNA ( ) and FFPE-derived RNA (�, own protocol) as described in the 
Methods section. They are shown separately for each of the 14 tumors.
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Module scoresFigure 8
Module scores. ER, HER2 and proliferation scores were computed from expression values of 14 breast cancers and visual-
ized in a scatter plot. The ER score was determined from four genes, the HER2 score from 2 and the proliferation score from 
5 genes (see Methods). Tumors are positioned according to their ER score (x-axis) and HER2 score (y-axis). Proliferation 
scores are color coded. The histological ER status is indicated by a "-" or "+" sign next to the tumor numbers in the plot. The 
results were computed from intact RNA derived of FF material (A) and RNA isolated from FFPE material according to our 
own protocol (B). Individual scores for each tumor are given in Table 2.
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ence gene has a stable expression level in all the samples
under investigation. As such "ideal" reference gene nor-
mally does not exist, the mean or median expression level
of several suitably chosen reference genes is used as a rel-
atively stable reference Ct value. We used a formalized
approach to characterize all candidate reference genes.
Candidate reference genes were ranked according to their
standard deviations of raw Ct values in RNA from FF and
FFPE material. The final rank of each candidate reference
gene was taken as the mean of the two ranks obtained
with RNA from intact and FFPE material. Genes with
higher ranks were excluded as reference genes.

We also applied GeNorm [14] to characterize candidate
reference genes: ACTB and RPS11 had poorest stability
measure M [14] for FFPE-derived RNA and RPL7A had a
poor stability measure when RNA from FF material was
tested (data not shown). For these reasons GAPDH,
GUSB, RPLP0, TFRC and UBB were used as reference
genes in this study.

Our own RNA isolation protocol was compared to RNA
that was isolated from the same material but according to
commercial protocols and products (Qiagen RNeasy FFPE
and ncLysis system of Applied Biosystems). Additional
products for FFPE material from commercial providers
(e.g. Stratagene, Ambion) were tested and the results
obtained with our own protocol were superior to all tested
commercial products (data not shown).

We determined module scores for each of the 14 tumors
in this study. The limited number of samples does not
allow statements about the clinical significance of module
scores but they can be used to compare scores computed
from intact RNA from FF material and RNA isolated from
FFPE according to our own protocol. Pearson correlations
between these RNAs in the 14 tumors were 0.966, 0.856
and 0.833 for ER, HER2 and Proliferation scores, respec-
tively. As kryo-preserved RNA and RNA from FFPE mate-
rial always originated from different portions of the same
tumor, a certain variation of gene expression cannot be
excluded and, as a consequence, part of the observed var-
iability between kryo and FFPE material may be attributed
to biological heterogeneity in the tumors. The three mod-
ule scores were combined to a Total score. The Total score
is similar to the recurrence score described by Paik [11],
with high expression of genes related to proliferation and
HER2 and low expression of ER-related genes indicating
higher risk.

The data generated from FF and FFPE material were also
compared to ER and HER2 levels assessed by IHC results
from the same tumors. Three tumors (#15, #18, #20) were
ER-negative and one was strongly HER2-positive (#6)
(Tab. 2). The same tumors had low ER scores when

assessed by QPCR (Fig. 8). Tumor #6 had a high HER2
score and an intermediate ER score. These results are in
good agreement with the expected distribution of the
three scores [15,39]. By comparing QPCR based data with
well known tumor subtypes allowed to validate the proto-
cols developed here, even if no new biological findings are
provided. The primary issue of this work was to document
that stable and robust expression values can be deter-
mined from FFPE-derived RNA which are close to the val-
ues computed from intact RNA of the same tumors. The
optimization and validation of the scoring procedure
remains an important issue but obviously, the available
number of samples is not sufficient to deal with this
aspect and it will be addressed separately and on a larger
collection of samples.

While IHC results are at most semi-quantitative, QPCR-
based results reflect more accurately the expression level
of genes in question. The module scores proposed here
integrate quantitative gene expression data from several
genes, this makes the resulting scores more robust than
measurements based on single genes. QPCR is not only
quantitative, it is also very sensitive over a large dynamic
range. The number of genes which can be measured by
QPCR is not limited and additional genes and module
scores can be included in the analysis if this will be
required.

Importantly, certain predictive parameters still cannot be
determined with current technologies. For example,
breast cancers are classified into histological grade 1, 2 or
3. This grading most likely reflects the proliferative state of
tumor cells [40]. Grading may be especially important as
high grade tumors seem to respond more favorably to
chemotherapy than low grade tumors. Unfortunately,
many tumors are histological grade 2 and for those
tumors the benefit is not clear. Paik and co-workers docu-
mented that their recurrence score (RS) was also predic-
tive for a response to chemotherapy [41]. The RS defined
by Paik and coworkers is composed of 16 test genes
mainly representing ER response genes, proliferation-
associated genes, HER2-related genes and invasion genes
and 5 genes for normalization [11,41].

The genes selected for this study (Tab. 1) were selected
from published DNA chip studies with breast cancer sam-
ples [15]. They mostly coincide with the genes used by
Paik ad co-workers.

Conclusion
The results presented in this study reveal that RNA iso-
lated from FFPE material according to the protocol devel-
oped in our laboratory can be used for expression
measurements by QPCR although the RNA is partially
degraded. The optimized isolation and de-modification
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procedures combined with a normalization procedure
results in stable and robust gene expression data. Robust-
ness of results was further increased by computing scores
from several genes representing the hormonal and the
proliferation status of the tumor. Molecular profiling
from FFPE material may be of interest for routine diagnos-
tics in the near future as FFPE material is always available
[42]. Similarly, molecular profiling from FFPE material
may be of great interest in the context of existing and
newly planed clinical trials for which only formalin-fixed
samples exist.
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Abstract

Background: The purpose of the work reported here is to test reliable molecular profiles using routinely processed
formalin-fixed paraffin-embedded (FFPE) tissues from participants of the clinical trial BIG 1-98 with a median follow-
up of 60 months.

Methods: RNA from fresh frozen (FF) and FFPE tumor samples of 82 patients were used for quality control, and
independent FFPE tissues of 342 postmenopausal participants of BIG 1-98 with ER-positive cancer were analyzed by
measuring prospectively selected genes and computing scores representing the functions of the estrogen receptor
(eight genes, ER_8), the progesterone receptor (five genes, PGR_5), Her2 (two genes, HER2_2), and proliferation
(ten genes, PRO_10) by quantitative reverse transcription PCR (qRT-PCR) on TaqMan Low Density Arrays. Molecular
scores were computed for each category and ER_8, PGR_5, HER2_2, and PRO_10 scores were combined into a
RISK_25 score.

Results: Pearson correlation coefficients between FF- and FFPE-derived scores were at least 0.94 and high
concordance was observed between molecular scores and immunohistochemical data. The HER2_2, PGR_5,
PRO_10 and RISK_25 scores were significant predictors of disease free-survival (DFS) in univariate Cox proportional
hazard regression. PRO_10 and RISK_25 scores predicted DFS in patients with histological grade II breast cancer
and in lymph node positive disease. The PRO_10 and PGR_5 scores were independent predictors of DFS in
multivariate Cox regression models incorporating clinical risk indicators; PRO_10 outperformed Ki-67 labeling index
in multivariate Cox proportional hazard analyses.

Conclusions: Scores representing the endocrine responsiveness and proliferation status of breast cancers were
developed from gene expression analyses based on RNA derived from FFPE tissues. The validation of the molecular
scores with tumor samples of participants of the BIG 1-98 trial demonstrates that such scores can serve as
independent prognostic factors to estimate disease free survival (DFS) in postmenopausal patients with estrogen
receptor positive breast cancer.

Trial Registration: Current Controlled Trials: NCT00004205

Background
Clinical and histopathological factors such as lymph
node status, tumor size, histological grade, age, and
expression of estrogen receptor (ER) and Her2 have tra-
ditionally guided treatment decisions of patients with
operable breast cancer [1,2]. Various prognostic models

are based on these factors, for example the Nottingham
Prognostic Index (NPI) [3,4], Adjuvant!Online [5,6] and
others [7]. Despite providing excellent estimates of the
average risk of recurrence, there remains substantial var-
iation in outcome which may be explained by molecular
differences among these tumors [8,9].
DNA-chip based expression analyses have confirmed

the heterogeneity of breast cancer and allowed the
development of clinically relevant gene “signatures” or
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“profiles” [10-20]. Such profiles are being implemented
widely in routine patient care even though many signa-
tures were developed and validated on heterogeneous
patient cohorts with respect to stage of disease and ther-
apy. The utility of gene signatures as part of the decision
making process is being validated in ongoing studies
(TAILORx [21] and MINDACT [22]). Most profiling
studies are based on fresh-frozen (FF) or RNAlater con-
served tissue. Such material must be collected and pro-
cessed separately after surgery, complicating the
implementation of molecular analyses into the clinical
workflow. Procedures based on formalin-fixed, paraffin-
embedded (FFPE) material simplify the acquisition of
tumor material and can easily be established as part of
the routine pathological procedures. In addition, FFPE
tissues collected in the framework of clinical trials could
be a valuable resource for future research.
We prospectively selected genes from publicly avail-

able microarray data and developed molecular scores
representing the ER, progesterone receptor (PgR), Her2
and proliferation (PRO) status, and the overall risk of
recurrence (RISK). The reproducibility and robustness
of the molecular scores was validated by comparing
expression data with RNA from FF and FFPE material
of 82 tumors. Molecular scores were determined from
342 ER positive tumor samples of the BIG 1-98 clinical
trial. Multivariate Cox proportional hazard models
revealed that molecular scores are independent prognos-
tic factors to estimate disease free survival (DFS).

Methods
To assess the quality of expression profiling from FFPE
material, matched FF and FFPE samples from 82
human breast cancers were used. Histopathological
information was irreversibly anonymized according to
Swiss law. Independent FFPE blocks and corresponding
clinical data of 437 Swiss participants of the trial BIG 1-
98 were provided by the International Breast Cancer
Study Group. The ethics committees and required
health authorities of each participating institution
approved the study protocol, and all patients gave writ-
ten informed consent (ClinicalTrials.gov number,
NCT00004205) [23]. Retrospective tissue collection was
carried out in accordance with institutional guidelines
and national laws. The patient and tumor characteristics
of these patients were similar to the entire BIG 1-98
population (Table 1). BIG 1-98 is a randomized con-
trolled clinical trial of adjuvant hormonal therapy for
postmenopausal patients with endocrine-responsive
breast cancer comparing 4 arms: 5 years of tamoxifen, 5
years of letrozole, two years of tamoxifen followed by 3
years of letrozole, or vice versa [24-26]. All the patients
from the BIG 1-98 were treated by mastectomy or
breast conserving surgery [24-26]. The available paraffin

blocks contained material derived from representative
tumor regions.

Tissue samples and data processing
The RNA was isolated from 4 sections (25 μm) of FF
material and from 10 paraffin sections (10 μm thick) as
described previously [27]. After demodification, the
RNA was bound to silica-based columns, DNase I
digested and eluted with water. The protocols and
reagents for RNA isolation from FF and FFPE tissues
were recently incorporated in commercial protocols
(RNAready and FFPE RNAready, AmpTec, Hamburg,
Germany). RNA qualities were assessed on an Agilent
2100 Bioanalyzer (Agilent Technologies, Inc., Santa
Clara, CA, USA). RNA prepared from FF material had a
RIN>6 (RNA integrity number), the RIN of RNA from
FFPE was 2-3. The percentage of tumor cells in each
FFPE block was evaluated on stained tissue sections.
From 437 available FFPE samples 43 samples (9.8%)
with less than ~30% tumor cells, 10 ER-negative tumor
samples and 7 samples (1.6%) with less than 1.5 μg total
RNA recovery were excluded from further analysis.
Approximately 30% of the sections contained 30-50%
tumor cells, and about 60% contained 50-100% tumor
cells. Each of the remaining RNAs was tested by quanti-
tative reverse transcription PCR (qRT-PCR) with 3 con-
trol genes (GUSB, RPLP0 and UBB). The mean of the
three raw Cts (cycle thresholds) was determined. In 35
samples (8%) the mean Ct was >31, indicating poor
quality of the RNA. These RNAs were excluded from
further analyses. For the remaining 342 RNAs (78.3%),
the expression of 34 genes (see Table 1) was measured
by qRT-PCR on TaqMan Low Density Arrays (TLDAs)
(Applied Biosystems, Foster City, CA, USA) using a one
step protocol (Invitrogen, Basel, Switzerland) on an
Applied Biosystems 7900HT instrument. Technical
replicates were performed for several intact and several
partially degraded RNAs from FF and FFPE material,
respectively. They revealed Pearson correlation coeffi-
cients higher than 0.95 for all 34 assays.
Genes with high correlation to the expression of ER,

PgR, Her2 and proliferation related genes were prospec-
tively selected from publicly available microarray data
[28]. A complete list of microarray data sets used in the
meta-analysis is available at “.http://breast-cancer-
research.com/content/10/4/R65/table/T1[28] (Additional
File 1, Table S1). The scores were defined by giving
equal weight to each gene in the four groups (prolifera-
tion, estrogen response, progesterone response, Her2
response). Thus, a training set was not used as the
scores were based on in silico gene selection.
Raw Ct values were normalized against the mean

expression of GUSB, RPLP0 and UBB. Scores for ER
(ER_8), PgR (PGR_5), Her2 (HER2_2) and proliferation
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Table 1 Gene Identifications, Categories and Score affiliations

Gene Category Accession Nr. Description AS Score

GUSB Control NM_000181.1 glucuronidase, beta 81 control

RPLP0 Control NM_053275.3
NM_001002.3

ribosomal protein, large, P0 105 control

UBB Control NM_018955.2 ubiquitin B 120 control

AR ER NM_001011645.1
NM_000044.2

androgen receptor (dihydrotestosterone receptor; testicular feminization; spinal and
bulbar muscular atrophy; Kennedy disease)

72 ER_8

ERBB4 ER NM_001042599.1
NM_005235.2

v-erb-a erythroblastic leukemia viral oncogene homolog 4 (avian) 77 ER_8

ESR1 ER NM_000125.2 estrogen receptor 1 62 ER_8
ER_4

FOXA1 ER NM_004496.2 forkhead box A1 74 ER_8

GATA3 ER NM_001002295.1
NM_002051.2

GATA binding protein 3 80 ER_8

MAPT ER NM_016834.2
NM_016835.2
NM_016841.2
NM_005910.3

microtubule-associated protein tau 60 ER_8

MYB ER NM_005375.2 v-myb myeloblastosis viral oncogene homolog (avian) 96 ER_8

XBP1 ER NM_005080.2 X-box binding protein 1 60 ER_8

BCL2 ER NM_000633.2 B-cell CLL/lymphoma 2 81 ER_4

GREB1 PGR NM_033090.1
NM_148903.1
NM_014668.2

GREB1 protein 77 PGR_5

PGR PGR NM_000926.3 progesterone receptor 118 PGR_5
ER_4

RAB31 PGR NM_006868.2 RAB31, member RAS oncogene family 109 PGR_5

RBBP8 PGR NM_203291.1
NM_203292.1
NM_002894.2

retinoblastoma binding protein 8 75 PGR_5

SERPINA3 PGR NM_001085.4 serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 3 70 PGR_5

SCUBE2 PGR NM_020974.1 CEGP1, signal peptide, CUB domain, EGF-like 2 64 ER_4

ERBB2 HER2 NM_001005862.1
NM_004448.2

v-erb-b2 erythroblastic leukemia viral oncogene homolog 2, neuro/glioblastoma
derived oncogene homolog (avian)

120 HER2_2

GRB7 HER2 NM_005310.2 growth factor receptor-bound protein 7 70 HER2_2

CCNB2 Proliferation NM_004701.2 cyclin B2 73 PRO_10

CCNE2 Proliferation NM_057735.1
NM_057749.1

cyclin E2 70 PRO_10

CDC2 Proliferation NM_033379.2
NM_001786.2

cell division cycle 2, G1 to S and G2 to M 92 PRO_10

CENPF Proliferation NM_016343.3 centromere protein F, 350/400 ka (mitosin) 99 PRO_10

KIF20A Proliferation NM_005733.1 kinesin family member 20A 130 PRO_10

MKI67 Proliferation NM_002417.3 antigen identified by monoclonal antibody Ki-67 131 PRO_10
PRO_5

ORC6L Proliferation NM_014321.2 origin recognition complex, subunit 6 like (yeast) 78 PRO_10

PRC1 Proliferation NM_199413.1
NM_199414.1
NM_003981.2

protein regulator of cytokinesis 1 66 PRO_10

SPAG5 Proliferation NM_006461.3 sperm associated antigen 5 114 PRO_10

TOP2A Proliferation NM_001067.2 topoisomerase (DNA) II alpha 170 kDa 125 PRO_10

AURKA Proliferation NM_003600.2 STK15 aurora kinase A 85 PRO_5

BIRC5 Proliferation NM_001012271.1
NM_001168.2

baculoviral IAP repeat-containing 5 (survivin) 93 PRO_5

CCNB1 Proliferation NM_031966.2 cyclin B1 104 PRO_5

MYBL2 Proliferation NM_002466.2 v-myb myeloblastosis viral oncogene homolog (avian)-like 2 81 PRO_5

Abbreviation: AS, amplicon size
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(PRO_10) were defined as mean expression of all genes
in each category (Table 1). A RISK score comprising 25
genes was calculated as follows: RISK_25 = PRO_10
+HER2_2-(8 × ER_8+5 × PGR_5)/13. For comparison,
ER_4 and PRO_5 scores were calculated based on 4 and
5 genes described previously [27]. The genes corre-
sponding to ER_4 and PRO_5 scores corresponded to
the genes used for calculating the recurrence score (RS)
[29].

Concordance of molecular scores and pathological
parameters
Histopathological data of BIG 1-98 samples were
derived from a central review, with the exception of the
grade which was locally assessed. The ER and PgR status
were dichotomized into positive (≥ 10% immunoreactive
cells) or negative (<10%) [30]. Her2 was measured by
fluorescence in-situ hybridization or immunohistochem-
istry (IHC) and tumors were classified according to Ras-
mussen et al. [31]. The Ki-67 labeling index (LI) was
centrally assessed by IHC as described and classified
into low or high using the median LI (11%) as cut-off
[32]. The same assays and cut-offs were used for the 82
matched samples with the exception of Her2 which was
measured using the CB11 monoclonal antibody and
using a cut-off of ≥ 50% [33]. Continuous molecular
scores were compared to binary IHC parameters using
the area under the curve (AUC). The 95% confidence
intervals (CI) were estimated by a bootstrap method
(100 bootstraps). Two-sided Mann-Whitney tests were
used to assess the association between clinicopathologi-
cal factors and scores.

Statistical analyses
Primary endpoint of survival analyses was DFS as
defined previously [25]. Forty-five events were observed
in 342 patients with a median follow-up time (estimated
by reverse Kaplan-Meier [34]) of 60 months. DFS was
estimated by Kaplan Meier analysis. Patients were classi-
fied into low and high PRO or RISK scores using the
corresponding median score as cut-off. The differences
in survival experience between the two resulting groups
were assessed with log rank tests. Univariate and multi-
variate Cox proportional hazard models were used [35]
and hazard ratios (HR), CIs and p-values were obtained.
The multivariate models were assessed using the log-
likelihood and the deviance of residuals. Likelihood ratio
tests (LRT) were used to compare different nested mul-
tivariate models. No adjustments were made for multi-
ple testing. Univariate Cox proportional hazard models
were applied to estimate the rate of events and to pro-
duce corresponding plots.

Results
Reliable expression profiling from FFPE tumor tissue
Gene expression was measured from 34 genes using
TLDAs with RNA isolated from FF and FFPE material
of 82 breast cancers. These data were used solely for the
assessment of the expression profiling from FFPE mate-
rial. Pearson correlation coefficients between FF and
FFPE expression values for each tumor and all assays
ranged from 0.91 to 0.98. The mean increase of raw Ct
values derived of FFPE compared to matched FF tissues
was 1.30 units. This Ct shift was mostly compensated by
normalization (Additional File 2, Figure S1. and Addi-
tional File 3, Figure S2).
Unsupervised hierarchical clustering demonstrated the

stability of gene clusters and revealed an excellent agree-
ment between FF- and FFPE-based expression profiles
(Additional File 4, Figure S3). Molecular scores were
determined for ER, PGR, HER2 and PRO. A linear rela-
tionship of scores was found for RNA from FF and
RNA from FFPE material (Figure 1). Pearson correlation
coefficients for the four scores were 0.968, 0.974, 0.942
and 0.944, respectively. The distributions of ER_8,
PGR_5 and HER2_2 scores are shown as histograms
together with the fitted mixture of two Gaussian distri-
butions (Additional File 1, Figure S4) used for discrimi-
nating the subtypes.
The agreement between molecular scores and corre-
sponding binary IHC variables was assessed by receiver
operating characteristic (ROC) curves and AUC. AUCs
and 95% CI were calculated for ER_8 (FF = 0.940
(0.835-1.00), FFPE = 0.931 (0.804-1.00)), PGR_5 (FF =
0.919 (0.828-0.986), FFPE = 0.916 (0.806-0.987) and
HER2_2 (FF = 0.961 (0.895-1.00), FFPE = 0.963 (0.915-
0.993)). PRO_10 was compared with IHC data for Ki-67
using a cut-off of 11% and the resulting AUCs were
0.798 (0.609-0.900) for FF and 0.810 (0.660-0.907) for
FFPE, respectively. In conclusion, the agreement of the
IHC with FFPE samples was as good as with FF samples.

Concordance between pathological parameters and
molecular scores for tumors of the BIG 1-98 clinical trial
Molecular scoring was applied to an independent set of
tissue samples from Swiss patients participating in the
BIG 1-98 randomized clinical trial and scores were com-
pared to centrally assessed histopathological data by
ROC curves. From a total of 437 provided tumor sam-
ples 342 ER-positive tumors (78.3%) were suitable for
analysis. The AUC was 0.974 (95% CI = 0.946-0.995) for
HER2_2 and 0.847 (95% CI = 0.794-0.902) for PGR_5.
PRO_10 scores positively correlated with Ki-67 LI (Pear-
son correlation coefficient 0.51); the AUC was 0.815
(95% CI = 0.768-0.864) for Ki-67 binarized at 11% [32].
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The PRO_10 score correlates with histological grade and
other clinical factors
The histological grade was assessed according to Elston
and Ellis [36]. The PRO_10 score positively correlated
with Elston and Ellis scores and with grade (Pearson
correlation coefficient 0.453 and 0.409, respectively)
(Figure 2). Furthermore, PRO_10 scores were signifi-
cantly higher in Her2 positive tumors, in tumors larger
than 2 cm and in tumors with axillary lymph node
metastasis as compared to Her2 negative tumors, T1
tumors and N0 tumors (p ≤ 0.0015, Mann-Whitney
tests), respectively (data not shown).

PRO and RISK scores predict disease free survival in
lymph node positive patients and patients with grade II
breast cancer
The prognostic values of PRO_10 and RISK_25 scores
were assessed by their ability to assign patients to low
and high risk groups. Patients were stratified according
to histological grade and low or high PRO_10 and
RISK_25 scores using the corresponding medians as
cut-offs (Figure 3). As expected, patients with grade III
tumors had poorer DFS than patients with grade I or
grade II tumors (p = 0.0019, panel A). High PRO_10
scores correlated with poorer DFS compared to low

scores in all (p = 0.0043, panel B) and in histological
grade II tumors (p = 0.0024, panel C). Similarly,
RISK_25 discriminated between favorable and poor DFS
in all (p = 0.0005, panel D) and in node positive tumors
(p = 0.0009, panel E). Univariate Cox proportional
hazards regression analysis confirmed these
observations.
The PGR_5, PRO_10 and RISK_25 scores were all sig-

nificant predictors of DFS (p < 0.05) as were histological
grade, tumor size, number of positive lymph nodes and
Ki-67 LI (Table 2). The PRO_5 score was also a signifi-
cant predictor of DFS but PRO_10 score was numeri-
cally better than PRO_5 in terms of log-likelihood (L)
and deviance of residuals (D) (PRO_10: L = -223.35, D
= 225.83; PRO_5: L = -224.16, D = 227.57).
Figure 4 shows the estimated rate of recurrence as a

function of PRO_10, PGR_5 and RISK_25 scores. The
PRO_5, PRO_10 and the RISK_25 scores remained sig-
nificant predictors of DFS when applied to patients with
grade II breast cancer.

PRO_10 and PGR_5 scores are independent risk factors in
multivariate analyses
The impact of the molecular scores PRO_10 and PGR_5
was further documented in multivariate models

Figure 1 Comparison of scores computed from intact RNA and partially degraded RNA from FFPE material. Scores were determined for
RNA from FF material and RNA from corresponding FFPE tumor material of 82 patients. Scatter plots are shown between scores from FF and
FFPE tissues representing ER_8 (A), PGR_5 (B), HER2_2 (C) and PRO_10 (D) for each tumor. Pearson correlations are indicated.
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comprising clinicopathologic predictors and molecular
scores that were significant in univariate analyses.
Multivariate analyses revealed that PRO_10 is a pre-

dictor of DFS independent of tumor size (T), number of
positive lymph nodes (N), grade (G) and Ki-67 LI.
PRO_10 represents proliferation-related genes and it
was of interest to compare it to Ki-67. Table 2 shows
the results of multivariate analyses including T, N, G
and either Ki-67 (model 1) or PRO_10 (model 3) in
comparison with a model containing both markers
(model 2). The full model (model 2) was significantly
better than model 1 (LRT p = 0.0071). No significant
difference was found for PRO_10 between models 2 and
3 (LRT p = 0.8075). Thus, adding PRO_10 to T, N, G
and Ki-67 significantly improved the model. In contrast,
adding Ki-67 to T, N, G and PRO_10 did not bring
additional information.
The same procedure was used to evaluate whether

PGR_5 further improved model 6 containing T, N, G
and PRO_10 (Table 2). The full model including all 5
variables (model 5) performed better than model 4 (T,
N, G, PGR_5; LRT p = 0.0089) and model 6 (T, N, G,

PRO_10; LRT p = 0.0339). Both, PGR_5 and PRO_10
remained significant in model 5 suggesting that the two
scores contain independent information with respect to
prognosis and outcome.

Discussion
Gene expression profilings define clinically relevant gene
signatures [15,17,37,38]. For the present work, we
selected genes correlating with the ER, PgR, Her2 and
proliferative status using a meta-analysis of gene expres-
sion profiles [28]. The prognostic power of resulting
gene expression scores for ER, PgR, proliferation and
overall risk of recurrence was validated using tissues and
clinical data from a representative subset of participants
of trial BIG 1-98 confirming the correlation structure of
these genes and their association with clinical and out-
come variables.
Multiple genes representing each score were quanti-

fied by qRT-PCR. RNA from 82 matched FF and FFPE
tissues were compared by qRT-PCR on TLDAs. The
mean increase of raw Ct values between RNA from FF
and FFPE tissues was 1.3 units. This is similar to the

Figure 2 Comparison of scores and immunohistochemical analysis. Correlation of histological grading and PRO_10 score. The 342 tumors
were classified according to histological grading. The data are shown as boxplots with median (solid line), interquartile ranges (boxes) and
minimum and maximum non-outlier values (whiskers). The PRO_10 scores higher and lower than the median are indicated as red and blue dots,
respectively for each grade.

Antonov et al. BMC Cancer 2010, 10:37
http://www.biomedcentral.com/1471-2407/10/37

Page 6 of 13

15. Risk assessment of BIG 1-98

153



findings of Cronin and co-workers (+2.0 units) in a
comparable setting [39]. Duration of formalin fixation,
storage time and conditions influence the quality of
RNA derived of FFPE tissues with direct effects on the
sensitivity of subsequent PCR reactions [40]. However,
normalization effectively compensated for this shift of
Ct values (Additional File 2, Fig S1 and Additional File
3, Figure S2).
The mean expression of eight genes related to ER and

five genes related to PgR were used to calculate the
ER_8 and PGR_5 scores. Scores representing different
functional categories were combined in RISK_25 score.
The molecular scores determined from 82 paired sam-
ples of FF and FFPE tumors were highly concordant, as
were molecular scores and immunohistochemically

assessed parameters demonstrating the reliability of the
procedure.
Molecular scores were validated in an independent set

of tumor tissues from 342 participants of trial BIG 1-98.
In contrast to histological analyses which can also be
performed from tissue sections that contain considerable
normal, stromal or fat components the architecture of
the tissue is completely lost during work up for molecu-
lar analyses and therefore, it was important to exclude
samples with inadequate tumor content. A histological
section was taken from the immediate vicinity of each
sample that was used for molecular analyses. Each sec-
tion was assessed by an experienced pathologist (H.J.A.)
and molecular analyses were restricted to samples con-
taining at least 30% tumor cells. For comparison, RNA

Figure 3 Survival data based on molecular scores. Kaplan-Meier plots for DFS. Patients were stratified into grade I (blue), II (green) and III (red
line) (A), into low (blue) and high (red) PRO_10 scores in all samples (B) and in Grade II samples (C). The RISK_25 score is shown for all samples
(D) and for tumors of patients with lymph node positive (N+) cancer (E). Median values of the scores were used as cut-offs. The p-values
correspond to Log-rank test.
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Table 2 Baseline characteristics.

Characteristic Patients with FFPE profiles from Swiss
participants used in the study (N = 342)

Provided material of
Swiss participants
(N = 437)

Patients of the BIG 1-98
population not used in the
study
(N = 7573)

Overall BIG 1-
98 population
(N = 8010)

Menopausal
category - N (%)

Postmen. before
chemo

321 (93.9) 413 (94.5) 7279 (96.1) 7692 (96.0)

Postmen. after
chemo

10 (2.9) 11 (2.5) 181 (2.4) 192 (2.4)

Premenopausal
(ineligible)

0 (0.0) 2 (0.5) 21 (0.3) 23 (0.3)

Uncertain status 10 (2.9) 10 (2.3) 92 (1.2) 102 (1.3)

Unknown/
missing

1 (0.3) 1 (0.2) 0 1 (<0.1)

Age at
randomization -
years

Median 62 62 61 61

Range 41-86 41-86 38-90 38-90

Tumor size - N
(%)

≤ 2 cm 195 (57.0) 251 (57.4) 4706 (62.1) 4957 (61.9)

> 2 cm 144 (42.1) 179 (41.0) 2794 (36.9) 2973 (37.1)

Unknown/
missing

3 (0.9) 7 (1.6) 73 (1.0) 80 (1.0)

Tumor grade - N
(%)

Grade 1 94 (27.5) 124 (28.4) 2007 (26.5) 2131 (26.6)

Grade 2 196 (57.3) 251 (57.4) 3649 (48.2) 3900 (38.7)

Grade 3 49 (14.3) 59 (13.5) 1166 (15.4) 1225 (15.3)

Unknown/
missing

3 (0.9) 3 (0.7) 751 (9.9) 754 (9.4)

Nodal status - N
(%)

Negative
(including Nx)

186 (54.4) 245 (56.1) 4342 (57.3) 4587 (57.3)

Positive 152 (44.4) 188 (43.0) 3123 (41.2) 3311 (41.3)

Unknown/
missing

4 (1.2) 4 (1.0) 108 (1.4) 112 (1.4)

ER and PgR
status - N (%)

ER pos and PgR
pos.

268 (78.4) 340 (77.8) 4715 (62.3) 5055 (63.1)

ER pos and PgR
neg.

66 (19.3) 87 (19.9) 1544 (20.4) 1631 (20.4)

ER pos and PgR
unknown

1 (0.3) 1 (0.2) 1153 (15.2) 1154 (14.4)

ER neg and PgR
pos.

5 (1.5) 7 (1.6) 136 (1.8) 143 (1.8)

ER unknown,
PGR pos.

0 0 7 (0.1) 7 (0.1)

Other 2 (0.6) 2 (0.5) 18 (0.3) 20 (0.2)

Local therapy -
N (%)

BCS and RT 236 (69.0) 310 (70.9) 3987 (52.7) 4297 (53.7)

BCS and no RT 13 (3.8) 16 (3.7) 228 (3.0) 244 (3.0)
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was also isolated from tumor-surrounding cells which
led to rather poor RNA recoveries from comparable tis-
sue areas (data not shown). However, this does not
exclude that tumor-surrounding cells may have a limited
impact on molecular scores in such analyses. Contami-
nation by non-tumor cells may be reduced by macrodis-
secting tumors before RNA isolation and molecular
assessment. The same procedure would also make
tumors accessible to molecular analysis when sections
contain less than 30% tumor cells.
Classification of patients by low and high PRO_10 and

RISK_25 scores corresponded to low and high risk of
recurrence. PRO, RISK and PGR scores were prognostic
for DFS not only in the entire patient population but
also in a subpopulation of patients with node positive
disease (Figure 3D and 3E). We provide evidence inde-
pendent of Genomic Health™ that a RISK score based
on similar biological processes as the recurrence score
(RS), but with other genes selected through a different
procedure, can predict DFS [29,41,42]. In contrast to the
RS which was validated with tamoxifen-treated patients,
PRO_10, RISK_25 and PGR_5 scores were validated
with patients treated with tamoxifen, letrozole or a
sequence of both drugs; therefore, they may apply to
patients who received either of these drugs.
Histological grading is an important factor in estimat-

ing the risk of recurrence of patients with breast cancer
[2,43]. Recently, Sortiriou and colleagues have developed
the gene expression grade index (GGI) based on the
expression of 97 genes related to proliferation. They
demonstrated that grade II cancers are comprised of
tumors which are similar to genomic grade I or grade
III with corresponding clinical outcomes [16,44]. Our
findings agree with these observations as grade II
tumors could be further classified into low and high risk
of recurrence by 10 genes (PRO_10) (Figure 3C) or even
by 5 genes (PRO_5 score) (data not shown). Seven of
the PRO_10 and three of the PRO_5 genes are also part
of GGI. The PRO_5 genes (Table 1) corresponded to

the proliferation-related genes of the RS [29]. The
assessment of gene signatures related to proliferation
such as GGI or PRO scores is of special interest in ER
positive, grade II breast cancer for whom therapeutic
decisions are often difficult. Both, GGI and RS were
shown to be associated with response to chemotherapy
[45,46]. In contrast to GGI which requires FF tumor
material, PRO scores or RS can be determined from a
few microtome slices or cores such as used for tissue
microarrays [47]. Material for molecular analysis can be
taken from the same FFPE tissue block used for histolo-
gical and immunohistochemical analyses without inter-
fering with clinicopathological workflow.
The prognostic value of Ki-67 in early breast cancer

was recently confirmed [48]. However, Ki-67 is not used
uniformly in clinical practice [49,50] as it appears to be
difficult to agree on cut-off values separating high and
low proliferation tumors or on its value in assisting the
choice of adjuvant therapy [50,51]. Therefore, instead of
dichotomizing Ki-67 it may be more feasible to use Ki-
67 as continuous variable [52]. Here, we made a com-
parison between centrally assessed Ki-67 LI and a qRT-
PCR based proliferation signature. The PRO_10 score
correlated with Ki-67 LI, and both were significant pre-
dictors of DFS in univariate Cox analyses. In multivari-
ate models however, PRO_10 offered superior
prognostic value and outperformed Ki-67 LI (Table 3).
Moreover, the PRO_10 score added independent prog-
nostic information to anatomical staging.
PgR, as measured by immunohistochemistry [30] or

microarray analysis [53], was shown to positively corre-
late with prognosis. Here we show that the molecular
PGR_5 score was also positively associated with DFS
(Figure 4) and added independent prognostic informa-
tion to anatomical staging and PRO_10 (Table 3). Thus,
PGR_5 and PRO_10 scores independently predict prog-
nosis in the BIG 1-98 population.
Compared to immunohistochemically assessed para-

meters, qRT-PCR based scores are quantitative,

Table 2: Baseline characteristics. (Continued)

Mastectomy and
RT

24 (7.0) 25 (5.7) 1415 (18.7) 1440 (18.0)

Mastectomy and
no RT.

68 (19.9) 85 (19.5) 1926 (25.4) 2011 (25.1)

Other 1 (0.3) 1 (0.2) 17 (0.2) 18 (0.2)

Adjuvant or
neoadjuvant

chemo (or both)
- N (%)

Yes 133 (38.9) 159 (36.4) 1865 (24.6) 2024 (25.3)

No 209 (61.1) 278 (63.6) 5708 (75.4) 5986 (74.7)

Abbreviations: BCS, breast conserving surgery; Nx, nodal status unknown; postmen., postmenopausal; RT, radiotherapy; PgR, progesterone receptor; pos., positive;
neg., negative
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relatively independent on operator expertise and less
affected by inter-observer variability. The procedure is
simple, economical and can be standardized easily with
good control genes, reference samples and quality con-
trol procedures.
The results of this study are based on a limited num-

ber of patients and follow-up time (60 months). Similar

Figure 4 Expected rate of disease-free survival (DFS) . The
expected rate of events at 60 months (solid line) is shown as a
function of PRO_10 (A), PGR_5 (B) and RISK_25 scores (C). The 95%
confidence intervals are indicated (dashed lines). Vertical lines
represent the median of all scores (solid line) and 25% and 75%
quantiles (dashed lines).

Table 3 Cox Proportional Hazard Analyses.

Covariate P-value HR (95% CI)

Univariate Analyses*

Clinicopathological Variables

HER2 0.7816 1.18 (0.36 - 3.84)

PgR 0.5147 0.78 (0.36 - 1.66)

Histological grade 0.0032 1.99 (1.26 - 3.14)

Ki-67 LI 0.0226 1.02 (1.00 - 1.04)

Tumor size 0.0047 1.22 (1.06 - 1.39)

Number of positive nodes <0.0001 1.13 (1.08 - 1.18)

Treatment (4 categories) 0.1540 -

Molecular scores

HER2_2 0.1080 1.20 (0.96 - 1.51)

PGR_5 0.0344 0.66 (0.44 - 0.97)

PRO_5 0.0003 2.14 (1.42 - 3.22)

PRO_10 <0.0001 2.09 (1.45 - 3.00)

RISK_25 0.0001 1.54 (1.24 - 1.91)

Multivariate Analyses: Comparison of PRO_10 and Ki-67 LI**

Model 1: log-likelihood = -179.38, Deviance = 188.11

Number of positive nodes <0.0001 1.19 (1.12 - 1.27)

Tumor size 0.0370 1.19 (1.01 - 1.39)

Grade 0.4200 1.25 (0.72 - 2.17)

Ki-67 LI 0.1300 1.02 (1.00 - 1.04)

Model 2: log-likelihood = -175.75, Deviance = 180.71

Number of positive nodes <0.0001 1.19 (1.12 - 1.27)

Tumor size 0.1300 1.14 (0.96 - 1.34)

Grade 0.9600 0.99 (0.55 - 1.76)

PRO_10 0.0092 2.12 (1.20 - 3.72)

Ki-67 LI 0.8100 1.00 (0.97 - 1.03)

Model 3: log-likelihood = -175.78, Deviance = 180.77

Number of positive nodes <0.0001 1.19 (1.12 - 1.27)

Tumor size 0.1200 1.14 (0.97 - 1.34)

Grade 0.9400 0.98 (0.55 - 1.74)

PRO_10 0.0026 2.03 (1.28 - 3.23)

Multivariate Analyses: Role of PGR_5***

Model 4: log-likelihood = -215.27, Deviance = 214.30

Number of positive nodes <0.0001 1.12 (1.07 - 1.16)

Tumor size 0.2000 1.11 (0.95 - 1.30)

Grade 0.0170 1.78 (1.11 - 2.87)

PGR_5 0.0570 0.68 (0.45 - 1.01)

Model 5: log-likelihood = -211.85, Deviance = 208.03

Number of positive nodes <0.0001 1.06 (1.06 - 1.16)

Tumor size 0.4300 1.07 (0.91 - 1.26)

Grade 0.3000 1.32 (0.78 - 2.23)

PRO_10 0.0092 1.73 (1.15 - 2.62)

PGR_5 0.0360 0.65 (0.43 - 0.97)

Model 6: log-likelihood = -214.10, Deviance = 211.25

Number of positive nodes <0.0001 1.11 (1.06 - 1.16)

Tumor size 0.1700 1.13 (0.95 - 1.34)
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analyses with independent, larger sample sizes and more
mature follow-up data are planned to further consoli-
date the prognostic and possibly predictive value of the
proposed scores in each treatment arm separately.
Gene expression profiling has improved the under-

standing of molecular subtypes of breast cancer. FFPE
material is not widely used although it may facilitate
and speed up the development and validation of novel
gene signatures due to the availability of well-character-
ized tissues from numerous clinical trials [54,55]. The
same material can be used for molecular diagnostics.
The investigation of gene signatures may become more
important in the future as an increasing proportion of
agents under development for breast cancer treatment
have defined molecular targets. Early integration of bio-
marker analysis in the drug development process has
the potential to improve the specificity and efficiency of
novel therapeutics. This opens the possibility to further
individualize therapy of patients with breast cancer.

Conclusions
We define four molecular scores based on quantitative
measurement of gene expression with RNA derived of
FFPE tissues. The genes for each score were selected
from a large meta-analysis of microarrays. The genes do
not coincide with genes used for other molecular scores
like the RS (except genes that were previously used as
immunohistochemical markers such as ER, PgR or
Her2). Two of the described scores are shown to be
independent predictors of disease-free survival of post-
menopausal patients with operable, estrogen receptor
positive breast cancer. The proliferation-associated score
outperforms the Ki-67 labeling index measured by
immunohistochemistry.

List of abbreviations
AUC: area under the (ROC) curve; CI: confidence inter-
val; DFS: disease-free survival; ER: estrogen receptor; FF:
fresh frozen; FFPE: formalin-fixed, paraffin embedded;
HR: hazard ratio; IHC: immunohistochemistry; GGI:

gene expression grade index; LI: labeling index; LRT:
likelihood ratio tests; PCR: polymerase chain reaction;
RIN: RNA integrity number; PgR: progesterone receptor;
ROC: receiver operating characteristic; RS: recurrence
score; TLDA: TaqMan Low Density Arrays.
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Abstract

Background: Genomics and proteomics are nowadays the dominant techniques for novel biomarker discovery.
However, histopathology images contain a wealth of information related to the tumor histology, morphology and
tumor-host interactions that is not accessible through these techniques. Thus, integrating the histopathology images
in the biomarker discovery workflow could potentially lead to the identification of new image-based biomarkers and
the refinement or even replacement of the existing genomic and proteomic signatures. However, extracting
meaningful and robust image features to be mined jointly with genomic (and clinical, etc.) data represents a real
challenge due to the complexity of the images.

Results: We developed a framework for integrating the histopathology images in the biomarker discovery workflow
based on the bag-of-features approach – a method that has the advantage of being assumption-free and data-driven.
The images were reduced to a set of salient patterns and additional measurements of their spatial distribution, with
the resulting features being directly used in a standard biomarker discovery application. We demonstrated this
framework in a search for prognostic biomarkers in breast cancer which resulted in the identification of several
prognostic image features and a promising multimodal (imaging and genomic) prognostic signature. The source
code for the image analysis procedures is freely available.

Conclusions: The framework proposed allows for a joint analysis of images and gene expression data. Its application
to a set of breast cancer cases resulted in image-based and combined (image and genomic) prognostic scores for
relapse-free survival.

Keywords: Histopathology images, Image analysis, Biomarker discovery, Gene expression, Multimodal data mining

Background
The recent technological progress made scanning the
whole pathology slides affordable and its integration in
the routine pathology workflow feasible. This resulted
in a revived interest in developing new computational
methods for nuclear morphometry and tissue architecture
characterization, as well as for developing new tissue-
based biomarkers [1]. In the last decade, genomic and
proteomic techniques have been the methods of choice
for novel biomarker discovery. When applied to the same
sample, the pathology imaging and *omics technologies

*Correspondence: popovici@iba.muni.cz
1Institute of Biostatistics and Analyses, Faculty of Medicine, Masarykova
Univerzita, Kamenice 5, 62500 Brno, Czech Republic
Full list of author information is available at the end of the article

allow the investigation of the underlying biology from
different perspectives, increasing the chances for iden-
tifying effective biomarkers. Ideally, these perspectives
could be integrated in a common data analytical frame-
work, to enable a joint (or multimodal) data mining and
decision [2].
Traditionally, the methods for analyzing pathology

images focused on extracting quantitative measures for a
set of predefined morphological parameters (e.g. count-
ing, classifying and characterizing the nuclei) and on
reproducing the expert’s decision in diagnostic applica-
tions (for a review see Gurcan et al. [3]). More recently, a
number of applications of pathology image analysis com-
bined image-based quantitative features with genomic

© 2016 Popovici et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
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information. For example, Yuan et al. [4] showed that
nuclearmorphometry is an independent prognostic factor
that can improve a genomic signature. A similar approach
is discussed by Kong et al. [5] in the case of glioblas-
toma where they show how nuclear and cytoplasmic
features can be linked to genomic profiles and sur-
vival outcome. More advanced techniques combine sev-
eral image-derived characteristics, such as co-localization
of tumor nuclei and lymphocyte infiltration [6]. In all
these cases however, the imaging features were prede-
fined and based on previous known associations between
histopathology and diagnostic/prognostic.
Our interest is in developing a more general compu-

tational framework that would allow the integration of
the standard histopathology images in the biomarker dis-
covery workflow and in which the image features would
be learned in a data-driven fashion, enabling a prior-
free data mining. The main challenge when analyzing the
pathology images stems from their high complexity and
size, and seeming incompatibility with *omics data. In
the present work we propose to use the bag-of-features
approach [7] for reducing the dimensionality of the images
and extracting salient features. This approach has already
been used in histopathology image classification appli-
cations [8, 9] and has the main advantage of allowing
an unsupervised learning of image representation. The
features extracted describe mostly the textural appear-
ance of small neighborhoods and may be combined with
other types of features (e.g. nuclear morphometry) in later
stages of image analysis, but these approaches will not
be discussed here. As an alternative to bag-of-features,
one could use deep learning methods for learning image
features as proposed by Cireşan et al. [10] or Cruz-Roa
et al. [11]. However, these methods require a larger
sample size and were applied in a supervised learning
context.
We propose a novel representation of histopathology

images which extends the standard bag-of-features with
a number of derived measurements aimed at capturing
more global characteristics of the tissue sample. In addi-
tion, we introduce an objective criterion for optimizing
the image representation. The new computational frame-
work is demonstrated in a biomarker discovery scenario,
where prognostic features (both imaging and gene expres-
sion) for relapse-free survival in breast cancer are sought.
We see the application of this approach as a succession
of two independent steps, not necessarily performed on
the same data corpus. In the first step, a histopathol-
ogy image representation is learned from a collection of
images representative for the pathology under investiga-
tion. In the second step, the images of interest are recoded
based on the constructed representation and the resulting
image features are jointly analyzed with the molecular and
clinical data.

Methods
Data
The data used in this study is a subset of the data from
Moor et al. [12], selected solely based on the availability of
the material for analysis. Overall there were n = 196 stan-
dard pathology (haematoxylin-eosin-stained) slides with
breast tissue sections, not all containing a tumoral compo-
nent and not necessarily from different cases. All images
were obtained by whole-slide scanning of the pathology
slides at 40× magnification, resulting in color images of
about 150, 000 × 100, 000 pixels.
These data were partitioned into an image model learn-

ing set (n = 131) and a biomarker discovery/data mining
set (n = 65). In the biomarker discovery set we kept
unique cases for which the slides contained > 70 % tumor
component and the clinical, survival and gene expression
data were all available. The expression profiles of 47 target
genes (including 5 control genes) were obtained by quanti-
tative real-time PCR (qRT-PCR). A full description of the
data set is available in Moor et al. [12] and the major char-
acteristics of the biomarker discovery set used here are
given in Additional file 1.
We computed the genomic prognostic signature

(PRO_10) as described in Antonov et al. [13] for all the
cases with full genomic profiles.

Image processing
Preprocessing
All images were downscaled to an equivalent of 2.5×mag-
nification by subsampling the Gaussian-filtered higher
resolution images (the 4-th level in a Gaussian pyramid).
In the resulting images a mask corresponding to the tis-
sue regions was obtained by adaptive thresholding in the
green channel. The mask was subsequently refined by
morphological operations: erosion with a circular struc-
turing element with radius 13 followed by gap filling and
removal of small objects.
For each image we estimated the intensity of haema-

toxylin (H) staining by deconvolving the RGB-images as
described by Ruifrok et al. [14]. The intensity levels of
the haematoxylin image (H-image) were adjusted by adap-
tive histogram equalization. Finally, the background pixels
were masked out using the tissue region mask computed
as above. In all subsequent image processing steps, only
the H-images were used.

Learning the image representation
The bag-of-features [7] approach has two main stages:
(i) learning an appropriate codebook for representing the
images of interest and (ii) re-coding the images based
on the frequencies of each codeblock (codeword from
the codebook). Thus, the resulting representation of the
image is a histogram of the codeblocks. For the current
application, we extended this representation to include
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several derived features. We point out that once an appro-
priate image representation is learned, it can be applied
unchanged to other similar image collections thus this
step does not need to be repeated on each new data set.

Codebook learning The codebook is a collection of rep-
resentative local descriptors {C1, . . . ,CK } obtained as cen-
ters of K clusters resulting from k-means clustering of a
number of image local descriptors (i.e. a vector quanti-
zation procedure). For this, the images are decomposed
in a set of local neighborhoods for which descriptor vec-
tors are computed. The local descriptors range from pixels
intensities to responses to filter banks or other textu-
ral descriptor. For the histopathology images, the Gabor
wavelets provide a good set of descriptors, so they were
adopted in the present work. Each local neighborhood
of size w × w was convolved with a bank of 24 Gabor
filters [15],

G(x, y; ν, θ , σ) = exp
(

−x2 + y2

2σ 2

)
×exp

(
2πνj(x cos θ + y sin θ)

)

where j = √−1, ν was the frequency, θ the orientation and
σ the bandwidth of the Gaussian kernel. These parame-
ters were set to σ ∈ {1, 2√2}, θ ∈ {k π

4 |k = 0, . . . , 3} and
ν ∈ {3/4, 3/8, 3/16}, respectively. They were kept fixed
throughout all the experiments. For each filter response,
its mean and standard deviations were recorded, thus each
local neighborhood w × w was represented by 48 values
(24 means and 24 standard deviations). A comparison of
Gabor wavelets with other local descriptors, in the con-
text of histopathology image analysis, is given by Budinská
et al. [9].
The size of the codebook (i.e. the number of clusters in

k-means clustering), K, is a free parameter that has to be
chosen/guessed at the moment of codebook construction
[8]. It can also be optimized for the problem at hand [9]
using, for example, the Gap statistic [16]. Here we took
advantage of having available a number of examples for
different tissue components (fat, fat foamy macrophages,
comedo necrosis, connective tissue and carcinoma infil-
trating fat – for examples see Additional file 1) which we
used as reference categories. The goal was to choose the
size of the dictionary K in such a way that the represen-
tations of these categories are sparse and have a minimal
overlap. For each image i, let yi = {j | if codeblock Cj
is used in coding the sample i}, be the set of codeblocks
used in its coding. Then we define the following quantities
(where | · | denotes the cardinality of a set):

• total Jaccard index,

J(K) = 0.5
∑ |yi ∩ yj|

|yi ∪ yj| ,

where the sum is taken over all pairs (i, j) of images
from different reference categories;

• total sum of within-cluster distances,

D(K) =
K∑

k=1

∑
i∈cluster k

‖xi − Ck‖2,

where xi are the descriptor vectors.

With these quantities, we defined an (empirical) objec-
tive function:

�(K) = log
nc(nc − 1)

2
−log J(K)−log

√
D(K)−0.75 logK ,

where nc is the number of reference categories (in our case
nc = 5). The overall goal of our image recoding step is
to find a low dimensional (sparse) representation which
still bears enough information for discriminating major
tissue components. For this, we minimize J(K), i.e. the
overlap between the representations of the reference cat-
egories. At the same time, we require tight clusters (small
within-cluster total distances D(K)) and sparse represen-
tation (small K). Hence, the desired value for K is the one
that maximizes �(K), where we note that the first term is
constant (included to bring the values closer to 0) and that
the scaling factor 0.75 is used to reduce the influence of K.

Image recoding Once a suitable K is found and a code-
book is constructed by k-means clustering, the standard
bag-of-feature approach represents the images as code-
block histograms. However, in this coding, all spatial
information about the distribution of the codeblocks is
lost. Consider the situation in Fig. 1a: all four images have
the same number of patches assigned to the same code-
block, but the spatial arrangement is very different. In
order to characterize these spatial differences, we extend
the image representation with a number of statistics on
the distribution of the codeblocks. For a given image
and for each codeblock k ∈ {1, . . . ,K}, we construct
a binary image in which 1s represent regions assigned
to the codeblock and 0s everything else. In these binary
images, the connected components (4-neighbor connec-
tivity) define individual objects and for each of them we
compute the area (in pixels) and the compactness index
(ratio of the squared perimeter to the area of the object).
Finally, for each image and each codeblock, we compute
(i) the median area, (ii) the maximum area, (iii) the ratio of
the maximum area to the total area of the objects, (iv) the
skewness of the distribution of the area values and (v) the
mean compactness. Thus, for each codeblock in an image,
aside from its frequency, we add five new values aimed
at characterizing the distribution of the codeblock in the
image. We will refer to these additional quantities as the
“extended set of features”. The final representation of an
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A B

Fig. 1 Codeblocks and codebook. a An example of four different hypothetical distributions of the codeblocks leading to identical frequencies. To
cope with such situations, the distribution of codeblocks is also taken into account through extended image features. b A visual representation of the
obtained codebook. The 70 image patches are the closest to the codeblocks obtained after k-means clustering. The three groups of codeblocks (with
29, 20 and 21 elements, respectively) correspond to the major clusters in Fig. 2 and the ordering of the image patches is the same as in the clustering

image has a length of 6K : K values for the codeblock his-
togram (the standard representation) and 5K values of the
extended representation.

Joint data mining
The new representation of the images allows for direct
application of standard data mining techniques. In the
case of multi-modality data mining, the choice of a proper
similarity metric/measure is of crucial importance. Two
main strategies may be attempted for defining a proper
similarity: combination of single, modality-specific, met-
rics or building/learning a fully multi-modality metric.
The first approach has the advantage of using established
metrics usually resulting in easily interpretable mod-
els and facilitating the comparison with known results.
The second approach promises to build a similarity met-
ric that better exploits the multi-modality nature of the
data. These ideas can be implemented, for example, in
the context of kernel machines (such as Support Vec-
tor Machines) where composite kernels (based on closure
properties – see [17] p.75) would represent a possible
implementation of the first approach and multiple kernel
learning [18] an implementation of the latter.
In the present work and in order to demonstrate the

general analytical framework, we make use of standard
statistical tools. We aim at identifying image features that
could be linked to expression levels of the genes of inter-
est (genotype-phenotype association) and potential image
biomarkers that alone or in combinationwith gene expres-
sion can be used for defining a prognostic signature.
Besides the gene expression, we also used a prolifera-
tion gene signature PRO_10 [12, 13], which was shown to
be prognostic in various cohorts of patients with breast
cancer.
To test the association between image features and

tumor size (T) and grade (G) we dichotomized the clin-
ical variables (T: {T1, T2} vs {T3, T4}, and G: {G1,G2}

vs. G3, respectively) and used two-sided t-test, with 0.05
significance level. The association of image features with
gene expression was assessed based on correlation test
(Pearson) with significance level 0.05 and the condition
that the correlation coefficient was at least 0.5 (in absolute
value). We also used canonical correlation analysis (CCA)
to study the associations between image features and
molecular data with significance level of 0.05 for Wilks’
test. The association between image features and survival
outcome (relapse-free survival – RFS) was tested using
Cox proportional hazard models (log-likelihood test),
with significance level of 0.05. The hazard ratios were
estimated from interquartile range-standardized variables
(both image and genomic variables). To test if an image
feature improves the prognostic value of the gene signa-
ture, we tested the difference between the models with
and without the variable of interest using likelihood ratio
tests. To assess the difference in survival between two
groups we used log-rank tests. We binarized the variables
by their median value, into high- and low- expressions or
values. Since the work reported here is purely exploratory
and the sample size is rather small, no adjustment for mul-
tiple hypotheses testing was performed. We used hierar-
chical clustering (Ward method) with Euclidean distance
between samples to cluster the codeblocks.
All statistical analyses were performed in R package for

statistical computing (http://www.r-project.org) version
3.2.2.

Results
Codebook
The image analysis methods described above were imple-
mented in a Python package (available at https://github.
com/vladpopovici/WSItk), using the scikit-image
[19] and Mahotas [20] libraries.
For the codebook construction we used only the mod-

eling set of images, none of the image used in the data
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mining phase being used for learning the codebook. From
each image, a set of 3000 random patches of size 32 × 32
was extracted and the corresponding Gabor descriptors
computed (vectors of 48 elements). These descriptor vec-
tors were clustered using the k-means algorithm to build
the codebooks. We estimated the optimal (in the sense
of the � objective function, described above) codebook
size by evaluating �(k) for k = 10, 20, . . . , 1000. The
optimal value was found to be K = 70 (see Additional
file 1 for a plot of �(k)) leading to 420 feature vec-
tors for each image. Since the codeblocks are centers of
the clusters (the means of descriptor vectors assigned to
the respective cluster), they might not necessarily cor-
respond to observed image regions. Thus we selected
the closest regions to the codeblocks (the corresponding
descriptor vectors were the closest to the codeblocks) to
provide an approximate visual representation of the code-
book - Fig. 1b. In the following, to designate a specific
codeblock from the codebook, we will use the notation
C.xy. We have extensively investigated the stability of
the learned codebooks and the resulting image repre-
sentations and we found the process to be stable – see
Additional file 1.
The hierarchical clustering of the codeblocks

(Fig. 2) revealed a rather structured content: three
major groups of codeblocks could be identified. We
tentatively labeled them as “proliferation patterns”,
“invasion/differentiation patterns/connective tissue” and
“sparse tumor nuclei/differentiation/fat” to indicate the

major components in the clusters - without claiming a
precise histopathological characterization.
A number of codeblocks were found to be associated

with tumor size (C.10, C.18, C.29, C.38, C.41, and C.42)
and grade (C.09, C.34, C.43, C.45, C.48, and C.62).

Correlations between image features and gene expression
The association analysis between image features and gene
expression identified a number of significant (p < 0.05
and ρ > 0.5) pairwise correlations (all in the range
0.50 − 0.60). In all, eight different codeblocks were asso-
ciated with different genes, most of them with CCNE1
and CCNB2. The codeblock C.31 was associated with
most genes (CCNE1, CCNB2, BIRC5, PRC1, SPAG5)
either by its frequency of appearance in the image or
by the skewness of its distribution. By summing the fre-
quencies corresponding to image features that are highly
correlated (e.g. C.38, C.31, C.01, C.51, C.41, C.68) the
correlations coefficients were improved to 0.65 − 0.70.
CCA confirmed the association between these image fea-
tures and gene expression data (Wilks’ test p = 0.026).
The image features C.10, C.19, C.57, and C.68 and the
genes CCNE1, CCNB2, and SPAG5 had the strongest
impact on the canonical dimensions. These were also the
most stable image features-gene expression correlations
in the image representation stability experiments – see
Additional file 1.
Despite the fact that the PRO_10 gene signature is an

average of proliferation genes which were found to be

Fig. 2 Hierarchical clustering of the codebook. Clustering the codeblocks led to identification of three major clusters, to which generic terms have
been assigned. The codeblocks correlated with gene expression are marked with red dots. The codeblocks with potential prognostic value (in
univariate analysis) are marked with blue squares (dark blue for p-value < 0.01, light blue for 0.01 ≤ p-value ≤ 0.05
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correlated with image features, the correlations between
image features and PRO_10 did not reach the required
significance level in all but one case: the skewness of
codeblock C.31.

Survival analyses
The goal of the analyses performed was to assess the util-
ity of image-based variables for predicting relapse-free
survival independently, or combined with the PRO_10
signature. In the set of samples analyzed, the genomic
score is a strong prognostic marker (Cox regression:
p = 0.001,HR = 2.12, 95 % CI = (1.29, 3.51)).
Univariate Cox proportional hazards models were fit for

each of the 420 image features resulting in the identifi-
cation of several significant associations with relapse-free
survival endpoint. The most prognostic image features
were C.41, C.56, C.65, C.67, C.69, with p < 0.01 and
HR between 1.16 and 1.70. From the extended set of fea-
tures, the median area of the regions assigned to clusters
C.15 and C.26 were significantly associated with RFS (p <

0.05). The strongest predictor among the image features
was C.69 (p = 0.0018,HR = 1.7, 95 % CI = (1.22, 2.37)).
In combined models (image feature and genomic score)

a number of image features led to improved models (like-
lihood ratio test p < 0.05), most of them from the
extended set of features. From all these image features,
C.69 remained significant in the multivariate model (with
PRO_10) and had no significant interaction with the
genomic signature.
We defined an image score variable by averaging C.41,

C.56, C.65, C.67, C.69 which resulted in a stronger prog-
nostic factor (Cox regression: p = 0.0003 and HR =
1.76, 95 % CI = (1.30, 2.40) - see also Figure 3). In a
regression model including the genomic and the image
scores, both remained independent significant variables
(PRO_10: p = 0.05, image score: p = 0.007, no significant
interaction) and themodel was signficantly better than the
corresponding univariate models (p = 0.013). In Fig. 4
the Kaplan-Meier curves for binarized (by median value)
scores are shown, together with corresponding p-values
(log-rank tests) and hazard ratios. Another visualization
of the prognostic scores is given in Fig. 5 where the
expected survival at 4 years is shown as a function of
the genomic, image-based, and combined scores, respec-
tively. Two examples of high risk cases, according to the
image-based score, are given in Additional files 2 and 3.

Discussion
The main challenge in introducing the histopathology
images in the general data mining biomarker discovery
framework stems from their high complexity and low level
of information representation. Thus, while the images
contain a huge amount of data (in the order of 1010 pixels)
the extraction of information implies a considerable effort.

Fig. 3 Regions assigned to the most prognostic codeblocks.
512 × 512 regions from two different samples with high image score
(high risk of relapse), at 2.5× magnification. The image patches
represented in full color were assigned to one of the C.41, C.56, C.65,
C.67 or C.69 codeblocks. In Additional files 2 and 3, the corresponding
whole slide images are provided

Traditionally, this effort is performed by the expert pathol-
ogists or, more recently, by using quantitative methods for
measuring a set of predefined morphological aspects to
complement the pathology report. In this work, we took
a third approach, in which the image data is reduced to
a number of essential patterns (the codeblocks) whose
frequency and spatial distribution in the image is used
for data mining. The codeblocks are learned indepen-
dent of any prior knowledge about the images, potentially
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A B C

Fig. 4 Kaplan-Meier curves for binarized scores. The genomic (a), image-based (b) and combined scores (c) were binarized by the respective
median values into “low score” (low risk) and “high score” (high risk) categories. The combined score slightly improves on the genomic score

enabling the discovery of new image features not necessar-
ily assessed during the pathology review of the cases. The
obvious drawback is the difficulty of interpreting some of
the patterns and the possibility of having also artifacts in
the model. The adopted representation of local neighbor-
hoods in the image (responses to a bank of Gabor filters)
encouraged the identification of codeblocks with distinc-
tive textural appearance (Fig. 1). This local appearance
may be later on combined with a nuclei detector and clas-
sifier (as in Yuan et al. [4]), for example, to obtain a more
comprehensive characterization of the image.
By examining the similarities between codeblocks, we

identified three major aspects of the images that are cap-
tured: proliferation, invasion/differentiation (within con-
nective tissue) and isolated tumor nuclei (within regions
predominantly with fat component) (Fig. 2). This result
combined with the observation that the whole third clus-
ter did not contribute to the prognostic models, suggests a
possible refinement of the current method, in which these

regions with high fat content are discarded in an initial
preprocessing stage and a more detailed model is used to
characterize the remaining regions.
We demonstrated the integration of the image features

in a standard biomarker discovery scenario, in which
both image-genes correlations (precursors to genotype-
phenotype associations) as well as various survival prog-
nostic models were tested. Since the main purpose of this
exercise was to demonstrate the integration of image fea-
tures with genomic information and the sample size was
relatively modest, we did not adjust for multiple hypothe-
ses testing and restricted ourselves to an exploratory
analysis. Thus the associations found, while hypothesis-
generating, have to be taken with caution and more
validation is needed.
Most of the genes in the panel were related to pro-

liferation processes, thus it is not surprising that the
correlations with image features involved almost exclu-
sively these genes. The strongest associations were found

A B C

Fig. 5 Prognostic scores at 4 years. Predicting the likelihood of an event (relapse) at 4 years, based on genomic signature (PRO_10 - panel a), the
image-based score (panel b) and the combined score (panel c)
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with CCNE1 and CCNB2. Somehow surprising, no signif-
icant correlation was found with MKI67 gene, a common
marker (with Ki-67 specific staining) for proliferation.
A number of image features were found to be prog-

nostic for RFS and we proposed a simple image-based
prognostic score which averages five basic image fea-
tures. The new score is strongly prognostic and is not
correlated with the genomic score considered (PRO_10).
When combining the two scores in a multivariable
Cox regression, the two remained significant (with a
marginal significance for the genomic score) and inde-
pendent predictors (no significant interaction) leading to
an improved model. Thus, the image-based score can be
used either alone - as a first line predictor - or in com-
bination with the genomic predictor. These results also
demonstrate the complementarity of the two modalities -
histopathology imaging and genomics - and suggest
that refined predictors can be built by a combination
thereof.
It must be noted that the sample size and the num-

ber of events did not allow for more variables in the
regression models. Further analysis of the scores (either
image-based or combined) in the context of usual clin-
ical predictors (TNM-staging, hormonal status, etc.) is
required before a definite conclusion about its clinical util-
ity can be drawn. Nevertheless, the image-based score can
already be used in applications like searching or indexing
in histopathology image archives.

Conclusions
We proposed a general framework for integrating the
histopathology images in the routine genomic data anal-
ysis pipeline. The image features used are based on
the responses of Gabor filters applied to single channel
images. The approach can easily be extended to exploit
the full color information and to include other types of
features.
When applying ourmethod to a data collection of breast

cancer samples, we were able to identify a number of
associations between image features and gene expression
levels. More importantly, several prognostic image fea-
tures were identified, some of them complementary to the
genomic score. Thus, we could build an image-based and
a combined survival score, improving on the performance
of the genomic score. These results must be validated in
larger data sets.
The code implementing the methods described is

made freely available and continues to be under active
development.
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Abstract
The recognition that colorectal cancer (CRC) is a heterogeneous disease in terms of clinical behaviour and
response to therapy translates into an urgent need for robust molecular disease subclassifiers that can explain this
heterogeneity beyond current parameters (MSI, KRAS, BRAF). Attempts to fill this gap are emerging. The Cancer
Genome Atlas (TGCA) reported two main CRC groups, based on the incidence and spectrum of mutated genes,
and another paper reported an EMT expression signature defined subgroup. We performed a prior free analysis of
CRC heterogeneity on 1113 CRC gene expression profiles and confronted our findings to established molecular
determinants and clinical, histopathological and survival data. Unsupervised clustering based on gene modules
allowed us to distinguish at least five different gene expression CRC subtypes, which we call surface crypt-like,
lower crypt-like, CIMP-H-like, mesenchymal and mixed. A gene set enrichment analysis combined with literature
search of gene module members identified distinct biological motifs in different subtypes. The subtypes, which
were not derived based on outcome, nonetheless showed differences in prognosis. Known gene copy number
variations and mutations in key cancer-associated genes differed between subtypes, but the subtypes provided
molecular information beyond that contained in these variables. Morphological features significantly differed
between subtypes. The objective existence of the subtypes and their clinical and molecular characteristics were
validated in an independent set of 720 CRC expression profiles. Our subtypes provide a novel perspective on
the heterogeneity of CRC. The proposed subtypes should be further explored retrospectively on existing clinical
trial datasets and, when sufficiently robust, be prospectively assessed for clinical relevance in terms of prognosis
and treatment response predictive capacity. Original microarray data were uploaded to the ArrayExpress database
(http://www.ebi.ac.uk/arrayexpress/) under Accession Nos E-MTAB-990 and E-MTAB-1026.
 2013 Swiss Institute of Bioinformatics. Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society
of Great Britain and Ireland.
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Introduction

Current classifications of sporadic colorectal cancer
take into consideration stage, histological type and
grade [1]. Colorectal cancer (CRC) is a highly het-
erogeneous disease, with clinicopathologically simi-
lar tumours differing strikingly in treatment response
and patient survival. These differences are only partly
explained by current concepts regarding the molecular
events leading to CRC. In recent years, microsatellite

instability (MSI) emerged as an important classifier
with significant prognostic impact and potential for
patient stratification for therapy [2,3]. Some molecu-
lar markers, as well as the mutation status of BRAF
or KRAS genes (predictive for anti-EGFR [4]), are in
use for treatment decisions and patient stratification.
However, patient groups defined by these molecular
markers still differ remarkably in behaviour and ther-
apy response [5,6]. Several approaches to further sub-
type CRC have been proposed, based on combinations

 2013 Swiss Institute of Bioinformatics. Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.

17. Molecular heterogeneity of colorectal cancer

176



64 E Budinska et al

of clinical, histopathological, gene expression, CNV,
epigenetic and single gene parameters [7–13]. Each of
these different modalities provides its own perspective
on the same underlying biological reality. The CpG
island methylator phenotype (CIMP) status is emerging
as important molecular determinant of CRC hetero-
geneity [11]. The cancer genome atlas (TCGA) analysis
identified a hypermutant group not entirely captured
by MSI status [13]. Several studies have addressed
CRC subtyping using genome-wide gene expression
profiling of relatively large patient cohorts [12,14].
One study used unsupervised clustering of stage II and
III CRCs to identify three stage-independent subtypes,
with BRAF mutation and MSI status dominating one
of the subtypes [14]. A study of stage I–IV CRC sam-
ples segregated CRC into two prognostic subtypes with
epithelial–mesenchymal transition (EMT) as a main
determinant [12]. Another study on 88 stage I–IV sam-
ples identified four subtypes, one correlated with MSI,
BRAF mutation and mucinous histology, two with stro-
mal component and one with high nuclear β-catenin
expression [15].

We recently reported CRC expressing a BRAF -
mutated signature [6], which strongly overlaps with
the methylation-based group of Hinoue [11], and a
MSI-like gene expression group that captures the
hypermutant tumours of TCGA [13], indicating the
potential for identification of robust biological sub-
groups. We now describe CRC subtypes based upon
unsupervised clustering of genome-wide expression
patterns. We characterized these subtypes in terms
of biological motifs, common clinical variables,
association with known CRC molecular markers
and morphological patterns. A key element in our
approach was the use of a system of unsupervised gene
modules—groups of genes with correlated expression.
They are more resistant to noise and have a higher
chance of having at least a few members represented
on various platforms. In addition, as each gene module
is represented by its median expression, the modules
with fewer genes contribute equally to the subtype
definition. We and others have successfully used sim-
ilar strategies previously [16–18]. We validated the
existence of the subtypes and their respective clinical
and molecular marker characteristics in an independent
dataset. Ultimately, it will be mandatory to integrate
the various sources of information on CRC hetero-
geneity into an integrative, robust and reproducible
subclassifier that can become a tool for clinical use.

Materials and methods

A detailed description of all the datasets and analysis
procedures is given in Supplementary methods and
results (see Supplementary material).

Data acquisition and processing
We have built two non-overlapping data collec-
tions: a discovery collection, comprising four publicly

available (425 samples) and two previously unpub-
lished datasets (688 samples with 10 year follow-up in
a clinical trial setting and 64 normal samples) with
known stage status, and a validation collection of
eight publicly available datasets (720 CRC samples)
(see Supplementary material, Supplementary methods
and results). Observations derived from the analysis
of 64 normal samples were further validated on five
publicly available datasets, with both carcinoma and
normal samples available in one batch (totalling 205
normal/adenoma/carcinoma samples). Copy number
data was available for 154 of the PETACC3, as in [19].
Our analysis included a total of 2102 samples.

The discovery collection contained the previously
unpublished 688 CRC formalin-fixed, paraffin-
embedded (FFPE) samples of PETACC3 [6] and
64 FFPE normal colon tissue samples from Centre
Hospitalier Universitaire Vaudois’s Biobank, which
were uploaded to ArrayExpress (http://www.ebi.ac.uk/
arrayexpress/), under Accession Nos E-MTAB-990
and E-MTAB-1026, respectively. Gene expression
data were processed by standard tools to obtain
normalized, probeset-level expression data. For each
EntrezID in the datasets, the probeset with the
highest variability was selected as representative and
the number of EntrezIDs entering the analysis was
reduced to 3025 by applying non-specific filtering.
For PETACC3 and normal colon samples, patients
signed an informed consent form in which the use of
tissue specimens was included, and all marker study
proposals were subjected to the approval of the trial
steering committee.

Subtype definition and validation
For model development (gene modules and subtype
definition, classifier training, identification of subtype-
specific genes) only the 1113 CRC samples of the
discovery set were used, no sample in the validation
collection being used for any model tuning. Hierarchi-
cal clustering (complete linkage, Pearson correlation
similarity measure) and dynamic cut tree [20] were
used to produce gene modules (groups of genes with
correlated expression), from which non-robust modules
(see Supplementary material, Supplementary methods
and results) and a gender-related module were dis-
carded. Each expression profile was then reduced to
a vector of meta-genes by taking the median of the
values of genes in each gene module. The meta-genes
were then further grouped into clusters using hierarchi-
cal clustering.

The subtypes were defined in terms of core sam-
ples —those samples from the discovery collection that
were assigned to clusters by hierarchical clustering,
using a consensus distance [21] followed by prun-
ing of the dendrogram (see Supplementary material,
Supplementary methods and results). The clusters to
which the core samples were assigned were called

 2013 Swiss Institute of Bioinformatics. Journal of Pathology published by John Wiley & Sons Ltd J Pathol 2013; 231: 63–76
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subtypes . The rest of the samples from the discov-
ery collection, not assigned to subtypes by this pro-
cedure, were called non-core samples . This approach
allowed the reduction of noise in subtype-defining sam-
ples, and thus a higher consistency of the resulting
subtypes defining the ground truth for downstream
analyses. The stability of the obtained clusters was
assessed under different perturbations of the processing
pipeline (different parameters and clustering methods)
to ensure that the results were not simple artefacts
(see Supplementary material, Supplementary methods
and results). A multiclass linear discriminant (LDA)
[22] was trained on core samples with meta-genes as
variables to assign new samples to one of the sub-
types. Minimal gene sets characteristic to each subtype
were identified using ElasticNet [23] on gene-level
data.

In order to validate the existence of subtypes (and
their independence on data selection) and the mod-
elling choices in subtype discovery, we applied the
same subtyping procedure (including parameters) to the
validation collection. The clusters identified in the val-
idation collection were put in correspondence with the
subtypes in the training set by LDA predictions and
correlations of subtype-specific moderated t statistic
[24] values, corresponding to the gene-wise compar-
ison of the respective subtype with the other subtypes
(one-versus-all comparison). A simple classifier appli-
cation would have led the validation samples to be
classified as one of the subtypes, but it would have not
informed us of possible over-fitting of the data in the
discovery procedure.

Subtype characterization
If not specified differently, all the reported p values
were adjusted for multiple hypothesis testing, using
the Benjamini–Hochberg procedure. Significance level
was set at 0.1. Pathway analysis for each set of
gene modules was carried out using the Database
for Annotation, Visualization and Integrated Discov-
ery (DAVID) [25]. Gene set enrichment analysis of
gene signatures was performed using the mygsea2
tool, in each subtype and normal samples, on aver-
age expression-ordered median-centred lists of genes.
Differential expression analysis was performed using
limma [24] and sign test using BSDA [26]. The
Cox proportional hazards model was used to anal-
yse the prognostic value of interquartile range (IQR)-
standardized values of meta-genes, for overall survival
(OS), relapse-free survival (RFS) and survival after
relapse (SAR), stratified by dataset. The Wald test was
used to assess the global significance of the models.
Pairwise differences in survival were assessed using the
log-rank test. For subtype comparison, the survival was
truncated at 7 years. Subtype enrichment for clinical or
molecular markers was assessed by the Fisher test to
the baseline, defined as the proportion of the marker in
the whole dataset. Morphological pattern differences
were assessed pairwise by Fisher test.

Histology
The identified subtypes were characterized histologi-
cally in terms of six different architectural patterns:
complex tubular; solid/trabecular; mucinous; papillary;
desmoplastic; and serrated (Figure 4A), which were
called dominant or secondary depending on their pres-
ence in the histology slides (for details on immunohis-
tochemistry, see Supplementary material, Supplemen-
tary methods and results).

Results

Gene modules and subtype definition
We identified 54 gene modules, reproducible across
all datasets in the discovery collection, comprising
658 genes from an initial list of 3025 identified
as the most variable. The assignment of genes to
gene modules and gene module clusters is listed in
Table S1 (see Supplementary material); meta-gene
expression profiles for the discovery set are shown in
Figure 1A; and between meta-gene correlations in
Figure S1C (see Supplementary material). Based on
gene modules, we identified five major subtypes:
surface crypt-like (A), lower crypt-like (B), CIMP-H-
like (C), mesenchymal (D) and mixed (E), totalling 765
samples (69% of discovery data; see Supplementary
material, Supplementary methods and results).

Subtype reproducibility in an independent
validation set
In the validation set of 720 CRC samples we identified
a set of subtypes comprising 602 samples (83.6%
of the validation set) and associated them with our
discovery subtypes using the subtype classifier (see
Supplementary material, Table S2) and correlations
of subtype-specific patterns based on moderated t
statistic (see Supplementary material, Table S3). All
five major subtypes reappeared in the validation set,
confirming the robustness of our approach. Figure S2
(see Supplementary material) presents gene expression
profiles of both discovery and validation sets. Two
notable differences were observed: (i) subtype B in the
validation set was split into two subgroups (B1, B2),
as observed in the discovery set too, but only at lower
pruning height; (ii) another cluster passed the minimal
size criteria, corresponding to the small subtype (F)
which, in the discovery set, was not considered for
further characterization because of small sample size.
Validation of other subtype characteristics (to the extent
of available information) is described in each of the
respective sections.

Subtypes are characterized by distinct biological
components
We set out to assign biological labels to gene modules
that define the subtypes (Table 1; see also Supple-
mentary material, Table S1). Of the 54 meta-genes,

 2013 Swiss Institute of Bioinformatics. Journal of Pathology published by John Wiley & Sons Ltd J Pathol 2013; 231: 63–76
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Figure 1. Meta-gene expression pattern in subtypes, connected with prognostic effect of subtypes and meta-genes, in the discovery set.
(A) Two heat maps clustering normal (left) and CRC (right) samples (columns) and meta-genes (rows). Colours represent decreased (blue)
or increased (red) meta-gene expression relative to their medians. Normal samples were clustered independently on meta-genes centred
to CRC meta-gene medians. For comparative purposes, ordering of meta-genes in normal samples is imposed to correspond to that of CRC
samples. White horizontal lines denote eight unsupervised clusters of meta-genes, each assigned a colour bar on the left; meta-genes not
belonging to a cluster have no colour bar. Names of the meta-genes corresponding to gene modules with gene–gene correlations in normal
samples comparable to those in cancer samples are marked red (see Supplementary material, Figure S1D). (B) Effect of inter-quartile range
(IQR) standardized expression of meta-genes on RFS, OS and SAR. Points represent estimated hazard ratio (HR), bars represent 95% CI.
Bold lines represent effects significant at 5% without adjustment for multiple hypothesis testing; red lines represent effects significant
at FDR < 10%; details are provided in Table S6 (see Supplementary material). (C) Kaplan–Meier plots for RFS, OS and SAR, with HR for
significant pairwise comparisons (p values adjusted for FDR). Numbers below x axes represent number of patients at risk at selected time
points.

41 could be further grouped into eight gene module
clusters; 13 meta-genes remained ungrouped, each pos-
sibly representing a distinct biological motif. Pathway
analysis characterized five of eight gene module clus-
ters by the following biological motifs: chromosome

20q (cluster 2), proliferation (cluster 3), EMT/stroma
(cluster 5) and immune response (clusters 7 and 8).
Literature searching identified biological motifs asso-
ciated with other gene modules. We labelled cluster 1
as GDC (genes differentially expressed in CRC), as

 2013 Swiss Institute of Bioinformatics. Journal of Pathology published by John Wiley & Sons Ltd J Pathol 2013; 231: 63–76
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Table 1. Biological identification of gene modules

Cluster name
Number of

genes

Pathway analysis result
(number of overlapping

genes, p value) OR description
based on literature search Selected genes

1. GDC 27 Genes involved in differentiation of colon
crypt and/or whose expression was
reported to be affected in colorectal cancer
and/or with prognostic effect in CRC

Intestinal differentiation genes: CDX2[45], IHH[46],
VAV3[47], ASCL2[35], PLAGL2[48]

Genes reported altered in colorectal cancer with
prognostic effect: PITX2[49], DDC [50], PRLR[51],
SPINK1[52]

Other genes connected to CRC:
GGH –connected to CIMP+ phenotype [53]
NR1I2–connected to chemoresistance [54]

2. Chromosome 20q
genes

33 Chromosome 20 (26 genes, 9.2E-34) Other, non-20q genes: TP53RK , ANO9, NEU1, CLDN3,
PRSS8

3. Proliferation 83 Cell cycle (36 genes, 3.0E-33)
Mitosis (26 genes, 1.4E-29)
Chromosome (26 genes, 2.5E-17)
DNA metabolic process (20 genes, 4.9E-10)
Lipid synthesis (4 genes, 5.0E-2)

Mitotic checkpoint kinases: BUB1, BUB1B
Cyclins: CCNA2, CCNB2 Centromere proteins: CENPA,

CENPE , CENPN
Kinesins: KIF11, KIF23, KIF4A
Topoisomerase II (TOP2A)
Cell division cycle 2 CDC2

4. Colon crypt markers
(secretory cells)

16 AGR2[55], AGR3, MUC2, SPINK4[56], RETNLB[57],
REG4[58]

5. EMT/stroma 310 Extracellular region part (90 genes) 2.7E-36
Cell adhesion (57 genes) 1.2E-17
Extracellular matrix (44 genes) 5.3E-30
Collagen (16 genes) 1.2E-15
EGF-like domain (26 genes) 1.6E-12
Cell motion (33 genes) 7.2E-8
Blood vessel development (25 genes) 1.1E-8
Growth factor binding (6 genes) 6.0E-5
Frizzled related (5 genes) 6.7E-3
Cell junction organization (7 genes) 1.8E-2
WNT receptor signalling pathway (8 genes)

1.4E-1

Inhibitors of β-catenin-dependent canonical WNT:
SFRP1, SFRP2, SFRP4, DKK3, FZD1,7 , PRICKLE1, NXN

Mesenchymal markers: N-cadherin, OB cadherin, SPARC ,
DDR2

EMT inducers(TFs): SNAI2, ZEB1, ZEB2, TWIST1, CDH11
ECM remodelling and invasion: MMP14, VIM ECM

proteins: fibronectin 1, collagens
Angiogenesis: PLAT , PLAU, NRP1, NRP2, THBS1, THBS2,

THBS4
TGFs, their receptors and binding proteins: IGF1, IGFBP5,

IGFBP7 ,TGFB, LTBP1, LTBP2, PDGFRA, PDGFRB

6. Unidentified 14 DUSP1, EGR2, SERPINE1
7 and 8. Immune

response
103 Immune response (42 genes) 2.0E-28

Positive regulation of immune system process
(16 genes) 4.0E-9

Antigen processing and presentation via MHC
class II (6 genes) 7.5E-5

Defence response (31 genes) 3.3E-17
Chemokine signalling pathway (9 genes)

2.2E-3
Lymphocyte activation (11 genes) 2.1E-5
Regulation of programmed cell death

(14 genes) 2.1E-2

Cytokines: CCL3, CXCL5, CXCL9,CXCL10, CXCL11, SPP1,
LTB

MHC class II: HLA-DMB, HLA-DPA1, HLA-DRA, CD74
MHC class I: HLA-F , TAP1, TAP2
Anti-apoptotic: BCL2A1, CD74, BIRC3, IFI6, TNFAIP3,

TNFAIP3
Apoptotic: STAT1, XAF1
Interferon-induced proteins: IFI30, IFI16, IFI44, IFI16,

IFIH1, IFIT3

Cluster-unassigned meta-genes with colon crypt cell markers (enterocytes/top of the crypt)
Meta-gene 105 6 Top of the crypt genes FAM55A, FAM55D, MUC12 and CEACAM7[59],

SLC26A2[59], SLC26A3[59]
Meta-gene 144 5 Enterocytes, goblet cells markers LOC644844, NGEF , HEPH, KRT20[59], MUC20[59]
Cluster-unassigned meta-genes associated with chromosomal location 0
Meta-gene 81 7 Chromosome X (7 genes) 1.1E-8 CXorf15, EIF1AX , HDHD1A, MED14, PNPLA4, SCML1,

SMC1A
Meta-gene 97 6 Chromosome 20p (5 genes) 5.0E-11 CDC25B, CSNK2A1, MRPS26, PTPRA, RP5-1022P6.2,

SNRPB
Meta-gene 84 7 Chromosome 8 (7 genes) 5.4E-9 AGPAT5, FDFT1, GTF2E2, LONRF1, MTUS1, VPS37A,

ZNF395
Other cluster-unassigned meta-genes
Meta-gene 141 5 EREG AK3L1, ARID3A, EREG, LDLRAD3, ZBTB10
Meta-gene 112 6 Lipid synthesis (4 genes) 5.0E-2 DHCR7 , FASN, FGFBP1, HMGCS1, IDI1, PCSK9
Meta-gene 95 6 Homeobox genes HOXA10, HOXA11, HOXA13, HOXA5, HOXA7 , HOXA9
Meta-gene 124 5 Metallothioneins MT1E , MT1F , MT1G, MT1M, MT1X
Meta-gene 131 5 Disulphide bonds (5 genes) 1.7E-02 CXCL5, IL6, MMP1, MMP3, PTGS2
Meta-gene 143 5 Unidentified DUSP5, ERRFI1, KLF6, MXD1, PLAUR
Meta-gene 80 7 Regulation of RNA metabolic process

(6 genes) 4.9E-2
ATF3, C8orf4, FOS, JUNB, NR4A1, SIK1, ZFP36

Meta-gene 71 8 Gut development (3 genes) 3.5E-2 CCL11, CH25H, EDNRB, F2RL2, FOXF1, FOXF2, PCDH18,
WNT5A
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Table 2. Subtype-specific minimal gene set as identified by Elastic net
Minimal gene sets specifying a subtype

Subtype
Up-regulated from
population mean

Down-regulated from
population mean

A. Surface crypt-like ADTRP , B3GNT7 , CLCA1, MUC2, NR3C2, PADI2, RETNLB, STYK1 CHI3L1, FNDC1, TIMP3, SULF1
B. Lower crypt-like CCDC113, CDHR1, FARP1, GPSM2, GRM8, HNF4A, IHH, KCNK5,

KIAA0226L, MYRIP , PLAGL2, PRR15, QPRT , RNF43, RPS6KA3,
SLC5A6, TP53RK , TSPAN6, VAV3, YAE1D1

ALOX5, BASP1, CREB3L1, CXCR4,
EPB41L3, FSCN1, GFPT2, GPX8,
ITPRIP , KCNMA1, KCTD12,MT1E ,
RARRES3, RNASE1, SGK1, SOCS3

C. CIMP-H-like ANP32E , EGLN3, IDO1, PLK2, RAB27B, RARRES3, RPL22L1, TFAP2A ATP9A, C10orf99, CXCL14, KIAA0226L
D. Mesenchymal ANK2, BOC , C7 , CRYAB, DCHS1, DDR2, GEM, PRICKLE1, TAGLN HOOK1, RBM47
E. Mixed CEACAM6, CXCL5, HSD11B1, IL1B, IL6, MRPS31, PI15, RAP2A, UQCC AGR3, RAB27B, REG4

it consisted of a number of genes significantly associ-
ated with CRC. The analysis of pairwise intra-gene
module correlations in normal samples of both dis-
covery and validation set identified as cancer-specific
gene modules of chromosome 20q, several immune
response, EMT/stroma and GDC gene modules, home-
obox genes and gut development (see Supplementary
material, Figure S1D). The relationship between sub-
types and meta-genes is illustrated by the heat map
(Figure 1A), in which the major molecular motifs
and their role in subtype definition stand out. Table
S4 (see Supplementary material) contains median sub-
type values per meta-gene and the results of differ-
ential meta-gene expression testing between subtypes.
Subtypes are not determined by individual biologi-
cal components but each of them contributes to the
molecular identity of the subtypes. The EMT/stroma
cluster stands out in subtypes A + B (low expression)
and D + E (high expression), while subtype C notably
contained a high expression of immunity-associated
cluster. High expression of meta-genes representing
upper colon crypt cells in subtypes A and B, cor-
related with serrated and papillary (A) and complex
tubular (B) morphological patterns (see below). Given
the enterocyte-like morphology and retained polarity
of the neoplastic cells in these patterns, they are con-
sidered as well differentiated. Subtype C is associated
with the mucinous phenotype. Interestingly, subtypes
A and C show high expression of metallothioneins,
subtypes C and E show high expression of the home-
obox gene module, while subtypes E and B strongly
express a gene module containing the EREG gene
(Table 1). The high expression of chromosome 20q
cluster in subtype B was correlated with a significantly
higher copy number gain/amplification of all of 20q in
this subtype (see Supplementary material, Figure S8).
The low expression of lipid synthesis genes is striking
for subtype D and low expression of the gut devel-
opment gene module for subtype C. A refined picture
of differences is given by a quantitative comparison
of (meta-)gene expression between subtype pairs (see
Supplementary material, Tables S4 and S5, Figure S4).
For each subtype we also identified a minimum set
of characteristic genes (Table 2; for more details, see
Supplementary material, Supplementary methods and
results).

Normal colon mucosa in the context of subtypes
When applied to the 64 normal samples, the LDA clas-
sifier assigned them all to subtype A, with posterior
probability > 0.99, supporting the observation that A is
well differentiated and closest to normal colonic epithe-
lium in terms of gene expression pattern. For valida-
tion, we analysed five public datasets comprising 205
profiles of normal/adenoma/carcinoma samples. Most
of the normal and adenoma samples were classified by
LDA as subtype A (74.5% of 51 and 69.0% of 71,
respectively) or subtype B (28.2% and 21.6%, respec-
tively), confirming subtype A as the most normal-like.
The 80 carcinoma samples were distributed over all
subtypes (26.2% A, 30.0% B, 11.3% C, 18.7% D and
13.8% E).

Subtypes and patient survival
We assessed whether subtypes differ in survival, as a
general read-out of biological significance, and then
tested the association of each meta-gene with progno-
sis, using the complete discovery set of 1113 patients
(Figure 1B-C see also Supplementary material, Table
S6). Kaplan–Meier curves for RFS, OS, SAR, haz-
ard ratios (HRs) and p values of pairwise differences
between subtypes are shown in Figure 1C. The results
indicate that subtypes C and D are associated with poor
OS. For subtype D, this is primarily due to early relapse
correlated with high expression of EMT genes and low
expression of proliferation-associated genes. For sub-
type C it is the result of short SAR, correlated with
low expression of GDC, top colon crypt, EREG and
Chr 20q genes and high expression of meta-gene 126
(see Supplementary material, Table S1). For subtype E
the trend towards poorer OS and RFS was not statisti-
cally significant, although borderline significant poorer
SAR was found relative to subtype B. Subtypes A and
B had better prognosis than D for all three endpoints,
although for OS in subtype A this was not significant.

The analysis of clinical and molecular markers
(below) showed that subtype C is enriched for MSI
tumours and BRAF mutant tumours, the latter present
also in subtype D. The literature indicates that MSI
is associated with better RFS, while BRAF mutation
is an indicator of worse SAR [27]. To analyse how
these two contradictory components affect survival in

 2013 Swiss Institute of Bioinformatics. Journal of Pathology published by John Wiley & Sons Ltd J Pathol 2013; 231: 63–76
on behalf of Pathological Society of Great Britain and Ireland. www.pathsoc.org.uk www.thejournalofpathology.com

17. Molecular heterogeneity of colorectal cancer

181



Gene expression heterogeneity in colorectal cancer 69

Table 3. Result of additive multivariate Cox proportional hazards model, with subtype, BRAF mutation, MSI and stagea

Variable RFS HR p OS HR p SAR HR p

A 0.906 0.760 1.381 0.390 1.726 0.180
C 0.940 0.850 1.560 0.220 3.675 0.0022∗

D 1.688 0.0055∗ 2.161 0.0011∗ 1.906 0.014∗

E 1.506 0.210 2.201 0.035∗ 2.046 0.075
BRAFm 1.633 0.085 2.472 0.0034∗ 3.361 0.00072∗

MSI 0.478 0.044∗ 0.275 0.004∗ 0.356 0.036∗

Stage 3 0.770 0.190 0.943 0.820 1.780 0.062∗

aBaseline is subtype B, MSS, BRAF wt and Stage 2.
∗Variables significant in the model.
Hazard ratios (HR) for relapse-free survival (RFS), overall survival (OS) and survival after relapse (SAR).

subtypes, we built a multivariate Cox proportional
hazard model with subtype, stage, BRAF and MSI
(Table 3; see also Supplementary material, Table S6).
Subtype C remained significantly associated with poor
SAR, even after the adjustment for BRAF , MSI and
stage, but not with RFS. Subtypes B and D remained
significantly prognostic for RFS, OS and SAR. No
equivalent survival data were available for the datasets
in the validation series, hence these observations could
not be validated.

Colorectal stem cell and Wnt signatures within
subtypes
We investigated the association of subtypes with
Wnt [28–32], putative colon cancer stem cell (CSC)
[33–35] signatures, and two signatures specific for
upper and lower colon crypt compartments [36], using
gene set enrichment analysis (Figure 2; see also Sup-
plementary material, Table S7). Subtypes B and E
highly expressed canonical Wnt signalling target sig-
natures. Subtypes A and D and also normal samples,
however, showed low expression of these signatures.
This was in concordance with the differences in β-
catenin nuclear immunoreactivity at the invasion front
(IF; see Supplementary material, Figure S9 and Sup-
plementary methods and results). Subtypes B and E
showed the highest percentages, while subtypes A and
D showed significantly lower percentages of the β-
catenin-positive nuclei. Subtype C exhibited almost no
β-catenin nuclear immunoreactivity at the IF. We anal-
ysed CSC signatures derived from low colon crypt
compartment cells that had been identified either by a
Wnt reporter construct TOP GFP or by high surface
expression of EphB2 . Subtypes D and E expressed
both TOP GFP and EphB2 -derived CSC signatures,
while subtype B mainly expressed only the TOP GFP
signature (Figure 2).

Subtypes complement clinical and molecular
markers
An important goal of this study was to assess how
our molecular subtypes complement known clinical
variables and molecular markers. We found that MSI,
BRAF mutation status, site, mucinous histology and
expression of p53 were significantly associated with
various subtypes (Figure 3), but not tumour stage,

age, gender, SMAD4 or PIK3CA mutations (see Sup-
plementary material, Figure S5A). Subtype D was
not significantly enriched for any of the tested vari-
ables except for the BRAF mutated signature and
possibly represents a mixture of tumours that have
the EMT/stroma signature in common. KRAS mutants
occurred in all subtypes (see Supplementary mate-
rial, Figure S5C), supporting the emerging notion that
KRAS -mutated CRC are substantially heterogeneous
[5,6,37], the oncogenic role of KRAS varying per spe-
cific mutation and the molecular background of the
tumour in which it occurs [38]. Subtype C expressed
the BRAF mutant signature we identified earlier [6]
(87.0%), a CIMP-H signature ([11], Figure 2), and
its characteristics (enrichment for MSI, right side and
mucinous histology) corresponded with those of the
previously reported CIMP-H phenotype [9,11,39,40]
and hypermutated tumours [13]. Regarding the lat-
ter, subtype C had a similar low frequency of copy
number variations (see Supplementary material, Figure
S7). The distribution of MSI status, stage, age, gen-
der, grade and site over the subtypes in the validation
set followed the same patterns established in the dis-
covery set [cf Figures 3 and S5B (see Supplementary
material)]. A classification tree, trained with a combi-
nation of available clinical and molecular markers, did
not identify our subtypes (see Supplementary material,
Figure S5D), indicating that gene expression patterns
reveal a layer of heterogeneity that goes beyond con-
ventional CRC classification approaches.

Histological characteristics of subtypes
To study whether or not our molecular subtypes
are associated with histological patterns, we exam-
ined haematoxylin and eosin (H&E)-stained paraffin
sections of a randomly selected subset of each subtype
(23, 31, 31, 29 and 19 cases for subtypes A, B, C, D and
E, respectively). In attempting to match histological
morphotypes to molecular subtypes, architectural pat-
terns were used, as illustrated in Figure 4A, rather than
the recognized WHO classification of CRCs [1]. Not
surprisingly, given intratumour heterogeneity, none of
the tumours had a single pattern. However, the preva-
lent patterns showed appreciable differences between
the subgroups (Figure 4B, C; see also Supplementary
material, Figure S6). In subtype A, the serrated pattern
was most frequent, followed by the papillary pattern; in
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Figure 2. Subtypes and biological motifs. Subtype-specific fingerprints of biological motifs, represented either as mean values of gene set
enrichment scores of gene sets from corresponding gene modules (EMT/stroma, immune, secretory cells, proliferation, GDC, chromosome
20q, top of the crypt—meta105 and meta144) or composed gene set enrichment scores of particular signatures (canonical Wnt targets,
CSC-TopGFP, CSC-EphB2, colon crypt bottom and CIMP-H). The gene set enrichment scores represent whether the genes from the gene set
show statistically significant enrichment between the down-regulated (negative scores, light blue area) or up regulated (positive scores)
genes of a given subtype; details of score calculation can be found in the Supplementary material (Supplementary methods and results
and Table S7.).

Figure 3. Clinical and mutational characterization of subtypes. Columns represent variables and rows subtypes. Horizontal bar plots
represent proportions of the corresponding variable in each of the subtypes and non-core samples. Non-core samples were tested as one
group to ensure that they did not share a common characteristic that would set them apart. Numbers in brackets adjacent to subtype
name represent overall number of samples in the subtype. Under the title of each variable we denote the percentage representing baseline
proportion in the population, with available information, and N denotes the number of patients for which the information on the respective
feature was available. Bars in red represent significant enrichment and bars in blue significant depletion of a feature in the subtype in
comparison to baseline, at the 5% significance level. Adjacent to each bar is the percentage of samples in the subtype with the specific
feature and in brackets the overall number of samples in the subtype with the information available. We can read that, for instance,
subtype C, comprising 154 samples, is enriched for microsatellite-unstable (MSI) tumours, where 60.4% of 91 samples with available
information are MSI.
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Figure 4. Morphological CRC patterns. (A) morphological CRC patterns scored in subtypes. (B, C) Distribution of dominant (B) and secondary
(C) histological patterns in subtypes. Columns represent subtypes and widths are proportional to subtype frequency (numbers of samples
in each subtype); rows represent dominant (B) or secondary (C) patterns and heights are proportional to pattern frequency. Boxes show
adjusted p values of pairwise statistical testing of morphological pattern distribution between subtypes.

subtypes B and E, complex tubular dominated; in sub-
type C the solid pattern dominated, with mucinous as
the second; most striking was the presence of a strong
stromal reaction in subtype D.

Discussion

Our approach, using gene modules on a large panel of
samples, allowed us to identify five main CRC gene
expression subtypes (Table 4). It is relevant to note
that subtyping can be performed on FFPE tissues, an
important prerequisite for wide clinical applications.
An example is the hypermutated group identified in
the TCGA study by whole exome sequencing [13], but
according to our data also by gene expression profiling
on routinely processed tissues (CIMP-H-like subtype).

The combination of gene expression, clinical, muta-
tional, survival and morphological data contributes new
insight into the heterogeneity of CRC. While the vali-
dation confirmed the robustness of our findings across
different platforms (ALMAC versus Affymetrix), sam-
ple preparation methods (FFPE versus fresh-frozen)
and dataset collections, larger datasets are necessary
to assess and characterize the relevance of lower fre-
quency subtypes (eg F, or further segregation of B
into B1 and B2). Our data indicate that several major
biological processes are key determinants of a com-
plex subtype structure of CRC. Therefore our sub-
types defined by gene expression do not substitute
but complement groups defined by current clinico-
pathological variables and molecular markers. Notably,
morphological subclassification of CRC has clearly
reached its limits, given the often striking intratumour
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heterogeneity, which made us use a (primary and
secondary) architectural pattern approach rather than
the canonized histological subtypes (WHO). Profiling
of microdissected patterns within a single tumour might
reveal molecular mechanisms responsible for these
morphotypes. This additional heterogeneity within the
subtypes may reflect tumour polyclonality, similar to
breast cancer [41]. Ultimately, aggregating clinical,
pathological and further detailed molecular character-
istics (including CNV, miRNA and methylation) will
contribute to a more detailed perception of CRC hetero-
geneity and it is likely that more subtypes will emerge.
This, however, would need more detailed molecular
annotation of larger clinically well documented CRCs.

A striking association was found between the stro-
mal subtype D and the EMT signature. The previously
discovered EMT [12] also emerged from our analy-
sis as the largest cluster of meta-genes associated with
poor RFS (subtype D). Our histological assessment
suggests that the EMT signature is the reflection of
a strong mesenchymal stromal reaction, and this his-
tological characteristic deserves to be tested for its
capacity to predict resistance to therapy, in view of its
strong association with poor survival. Studies requiring
high tumour cell content as sample inclusion criteria
(eg [13]) could miss this poor prognosis subtype. Iden-
tification of this subtype in cell lines or xenograft mod-
els is less straightforward and would benefit from the
analysis of gene expression patterns between microdis-
sected tumour and stromal cells.

EMT, however important, only partly explains
CRC heterogeneity, as even subtypes with similar
expression of EMT-associated genes (A–C or D–E)
differ in survival, mutational, clinical and gene expres-
sion characteristics. Additional biological components,
such as differentiation, immune response, proliferation,
chromosome 20q or cluster of genes deregulated in
CRCs, are important co-determinants that underpin a
need for further subdivision of CRCs. The findings
from the analysis of CSC and WNT signatures support
the recently suggested hypothesis that the colon stem
cell signature under the condition of silenced canon-
ical WNT targets is associated with higher risk of
recurrence (subtype D) [33]. This is consistent with
subtype D showing a significantly lower percentage
of β-catenin-positive nuclei than subtype B, with its
Wnt-associated gene expression and better survival.

MSI tumours represent a subclass in most unsu-
pervised analyses and can be recognized at the gene
expression level [42]. The more recent gene expression
studies [14,15] suggest that MSI and BRAF share dis-
tinct gene expression patterns. Subtype C was enriched
for both MSI and BRAF mutants and had one of the
best outcomes for RFS, but the worse outcome in SAR,
in concordance with previously reported results [43].
Subtype C retained its poor SAR prognostic value, even
in the population of MSS and BRAF wild-type patients.
Our data suggest that subtype C represents tumours
with a common biology and a gene expression pattern
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that might best characterize a group of tumours resis-
tant to chemotherapy, once metastatic. In this sense,
our work not only agrees with the current known mark-
ers (BRAF mutation status and MSI) but clearly adds
new insight, putting together these previously unre-
lated clusters into one biologically meaningful group.
This observation is in line with recently published
work [6].

Our observations show that gene expression profil-
ing contributes substantially to our insight into CRC
heterogeneity in confirming and complementing data
from sequencing, CNV and promoter methylation
analysis. Our subtypes can be further functionally
interrogated for driving oncogenes/events by in vitro
functional screens. High-risk subtypes D and C might
contribute to therapeutic decision making in either
adjuvant or metastatic settings. Retrospective analysis
of clinical trial series may identify drug sensitivity
associated with particular subtypes, and might open
new treatment optimization strategies to be tested in
clinical trials with stratified cohorts, similar to the
I-SPY2 trial for breast cancer [44].

In conclusion, our unsupervised approach using
gene modules resulted in the identification of dis-
tinct molecularly defined CRC subtypes, which adds
a new layer of complexity to CRC heterogeneity and
opens new opportunities for understanding the dis-
ease. The challenge is now to assimilate conventional
and these new molecular approaches into a compre-
hensive consensus classification, which might then be
used in further clinical studies for patient stratification
and experimental studies to further elucidate mecha-
nisms involved in the development and progression
of CRC.
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Abstract

Motivation: Whole genome expression profiling of large cohorts of different types of cancer led to the
identification of distinct molecular subcategories (subtypes) that may partially explain the observed inter-
tumoral heterogeneity. This is also the case of colorectal cancer where several such categorizations have
been proposed. Despite recent developments, the problem of subtype definition and recognition remains
open, one of the causes being the intrinsic heterogeneity of each tumor, which is difficult to estimate
from gene expression profiles. However, one of the observations of these studies indicates that there may
be links between the dominant tumor morphology characteristics and the molecular subtypes. Benefiting
from a large collection of colorectal cancer samples, comprising both gene expression and histopathology
images, we investigated the possibility of building image–based classifiers able to predict the molecular
subtypes. We employed deep convolutional neural networks for extracting local descriptors which were
then used for constructing a dictionary–based representation of each tumor sample. A set of support vector
machine classifiers were trained to solve different binary decision problems, their combined outputs being
used to predict one of the five molecular subtypes.
Results: A hierarchical decomposition of the multi-class problem was obtained with an overall accuracy of
0.84 (95%CI=(0.79-0.88)). The predictions from the image-based classifier showed significant prognostic
value similar to their molecular counterparts.
Availability: Source code used for the image analysis is freely available from https://github.com/

higex/qpath

Contact: popovici@iba.muni.cz
Supplementary information: Supplementary data are available at Bioinformatics online.

The last two decades witnessed fundamental changes in the way
we investigate the biology of living organisms, with technological
developments fueling major breakthroughs in our understanding of
various pathologies and paving the road towards a personalized medicine.
Currently, the researchers are armed with a battery of techniques for
interrogating the same biological reality at various scales (from sub-
cellular to whole population) and from very diverse perspectives (clinical,

imaging, genomic, proteomic, etc) generating high throughput multimodal
data. The bottleneck is now represented by our limited ability to interpret
such data in an integrated way (Li et al. (2016)) and the need for a
more inter-disciplinary approach is epitomized by large scale projects
such as The Cancer Genome Atlas (TCGA). In cancer research, one
of the main goals it to identify homogeneous groups of patients -
i.e. to stratify the patient population - in the hope of finding the
common causes and tailored treatments. Traditional stratification of
cancer patients is based on histologic and morphologic assessment of
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the tumor sample and it still defines the golden standard. Lately, various
molecular biomarkers have been proposed for the same purpose. The two
perspectives are partly overlapping and partly orthogonal, making their
integration more challenging. Our present work focusses on translating
a gene expression-based cancer patient population stratification into an
image-based biomarker, thus trying to bring transcriptomics data into a
histopathologic context.

Colorectal cancer (CRC) is the third most frequent cancer worldwide
and the second leading cause of cancer mortality in Europe, with metastatic
disease accounting for 40% to 50% of newly diagnosed patients. At the
same time, it is a highly heterogeneous disease in terms of prognosis
and its response to therapy. Using whole-genome profiling of large data
collections, several systems for sub-categorization of CRC have been
proposed recently (Budinská et al., 2013; Marisa et al., 2013; Sadanandam
et al., 2013; Roepman et al., 2013; De Sousa E Melo et al., 2013). In
general, they relied on clustering the CRC tumors in order to identify
patterns of co-regulation of genes that could be indicative of common
oncogenic pathways and coherent treatment responses of these tumors.
Our own analysis (Budinská et al., 2013) identified five stable tumor
clusters (labeled as subtypes A, B,..., E), but also showed that a relatively
high proportion of cases remained unaccounted for by this system. A
recent effort (Guinney et al., 2015) to harmonize all these discoveries
confirmed the presence of four distinct and reproducible subtypes across all
studies, labeled CMS1,..., CMS4, which match closely our subtypes A,...,
D (Guinney et al., 2015). The current golden standard for the identification
of the molecular subtype of a given tumor requires the interrogation of a
large panel of genes and the application of a genomic classifier. In the
analyses reported here, we will use the subtypes as defined in Budinská
et al., 2013. There are several reasons for this choice: Firstly, since
they were derived from the same gene expression data that accompany
the images we use, it is hoped that the subtype assignment is less noisy.
Secondly, in Budinská et al., 2013 it is noted that an expert pathologist,
when presented with the molecular categorization for a set of cases, was
able to identify a number of morphological features that were preferentially
enriched in one or a few of the subtypes hence, showing preliminary
evidence that such connections exist. And thirdly, we are interested in
identifying the imaging support for the five previously identified subtypes.

The problem of recognizing the tumor subtype based on imaging data
is not new and probably the most studied is the case of breast cancer.
For these cancers, five molecular subtypes are currently considered -
Luminal A, Luminal B, basal, Her2-enriched and normal-like (Perou
et al., 2000) - and surrogate immunohistochemical stains are available
(corresponding to hormonal status of ER, PR and Her2 and the invasion
marker Ki-67, respectively). Consequently, automatic stain quantification
is the strategy of choice for molecular subtype recognition from image
data and it was shown to outperform the human expert (Stålhammar et al.,
2016). A systematic review of the connections between histological and
molecular subtypes in breast cancer is given in Weigelt et al., 2010.
Other efforts concentrated on the recognition of the high risk group of
triple negative breast cancers on various imaging platforms (Agner et al.,
2014; Dogan and Turnbull, 2012). The quantitative image analysis of
pathology slides can also serve as a main means for subtype definition. For
example, Chang et al., 2011 found five subtypes of glioblastoma, one of
which being predictive value and correlated with the expression of several
genes. Similarly, Lan et al., 2015 propose an alternative subtyping of
ovarian cancer based on quantitative analysis of tumor microenvironment.
A general approach to the identification of disease subtype based on
morphologic analysis of pathology slides is described in Cooper et al.,
2012.

In the case of CRC, Budinská et al., 2013 showed that subtype A had
either serrated or papillary architecture, subtype B represented typical
colorectal adenoma with complex tubular architecture, subtype C was

mucinous or solid trabecular, subtype D was a mixture of desmoplastic
and complex tubular architecture, and subtype E was mixed (see Budinská
et al., 2013 for example images). However, these annotations did not lead
to a strong classifier.

This observation - that associations can be found between the molecular
subtypes and morphological traits of the tumors - constitutes the starting
point of our investigations reported here. Our interest is to construct
a histopathology image-based classifier able to predict the molecular
subtype of a given tumor section without resorting to any other staining
but the standard haematoxylin-eosine. This classifier may be seen as a
surrogate image biomarker (actually, as we will see, a combination of
several biomarkers) for the molecular subtypes and, to the best of our
knowledge, it is the first such biomarker to be proposed. This constitutes
the main contribution of our work reported here and it represents a largely
improved result from our earlier explorations (Budinská et al., 2016).
Equally important, our approach does not rely on predefined morpho-
pathological features: the feature selection is guided by the prediction
task. This would allow identifying potentially unknown (or overlooked)
image features but may also make the interpretation of the models less
obvious.

There are many potential application of such a system once established
and well tested. First, since it does not require any special laboratory work,
it could be easily integrated in the diagnostic workflow to provide hints
about the molecular subtype, with no extra costs. It could also be used for
sample stratification and selection for retrospective studies, where large
collections of samples could easily be filtered for the subtypes of interest
without the need of the much more expensive molecular profiling.

Currently, the molecular subtype is established by profiling the
expression of a set of genes from the DNA/RNA extracted from the tumoral
region of a tissue section and combining their values through a genomic
classifier. The whole process involves a number of parameters (from
defining the characteristics of the region to be profiled - tumor content,
presence/absence of stroma, etc - to the cut-offs of the classifiers) that are
yet to be formalized, thus being error-prone and leading to noisy labels.
While we consider the molecular subtypes as the ground truth our image-
based classifier is measured against, one has to keep in mind the somehow
fuzzy nature of the class definition. These specific settings of our problem
make it even more challenging than the more classical applications in the
field of digital/computational pathology.

The rest of the paper is structured as follows: the data and the methods
used are described in Section 1, followed by the discussion of the results
in Section 2 and conclusions in Section 3.

1 Methods

1.1 Data

The present work is based on the data from a subset of the PETACC3
clinical trial (Van Cutsem et al., 2009) samples. The trial compared two
treatment regimens (fluorouracil/leucovorin alone or in combination with
irinotecan) in colorectal cancer and found no differences between the
two. The gene expression data for a set of n = 688 samples was used
(along with other data sets) in the derivation of the molecular subtypes of
CRC (Budinská et al., 2013) and is publicly available from ArrayExpress
under accession number E-MTAB-990. In (Budinská et al., 2013) the
molecular subtypes (denoted A-E) were assigned to a number of n = 458

cases, the rest being considered ambiguous (or representing other low-
prevalence subtypes) and were labeled as "outliers". From those 458
samples, n = 300 cases were selected for this study based purely on
technical considerations (availability of histopathology tumor section,
acceptable whole slide image quality, tissue sample not too fragmented,
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Fig. 1. Typical whole slide image from the data collection. At 10× magnification, this
image is 39936 × 22528 pixels in size. The regions marked with a "T" correspond to
tumoral component, while the "N" annotation indicate normal tissue.

etc.). The "outlier" (from a molecular subtype perspective) cases were not
considered in the present study.

All molecular subtypes were represented in this collection with the
following frequencies: A: 21, B:140, C:37, D: 81, and E: 21, respectively.
The slides were annotated by an expert pathologist and these annotations
were present in the digital versions - a typical example is given in Figure 1
(note the annotations delineating the loosely the tumoral and normal tissue
components).

From the whole collection of 300 images a subset of 100 images
was selected by stratified random sampling to form the development set.
This development set was used for selecting the image representation
model and for designing the classification approach. We did not use
the whole available data in order to reduce the likelihood of obtaining
a model too adapted to our particular collection of samples (overfitted).
For the same reason we also preferred limiting the number of experiments,
comparing only several modeling approaches.The remaining 200 images
were added at a later stage when the multi-class classifier performance was
estimated by cross-validation. Other strategies of selecting a development
set (eventually larger, equal number of cases per class, etc.) could have
been attempted, with their own advantages and drawbacks, but we found
the chosen approach to provide a reasonable trade-off.

1.2 Image acquisition and preprocessing

All whole slide images of haematoxylin-eosin stained tumor sections
were acquired at 20× magnification, using a Hamamatsu NanoZoomer
C9600 scanner. The resulting images were compressed by the image
acquisition software using JPEG standard (at80%quality) and stored in the
proprietary NDPI format. The resolution of the images was 455nm/pixel
(equivalent of 55824 DPI) for a typical size of 100, 000× 50, 000 pixels
(depending on the size of the tissue section). The images were exported in
standard TIFF format using OpenSlide software library (Satyanarayanan
et al., 2013).

The images were down-scaled to an equivalent 10× magnification
and only tumoral regions were retained from each sample (manually cut
following the pathologist’s annotations) - the pixels outside the tumors
being set to zero. For example, the image in Figure 1 contains two tumoral
regions (marked with "T"). No further preprocessing was applied to the
images.

1.3 Local descriptors

We based our sample description on the aggregation of local information
over the tumor regions in the image. The choice of image features plays a

major role in the performance of image recognition/classification system.
Traditionally, most of such features are handcrafted, consisting of some
dense sampling of local patches, like in wavelet decomposition, Scale-
Invariant Feature Transform (SIFT) (Lowe, 1999), Local Binary Patterns
(LBP) (Ojala et al., 1996), etc. These local descriptors are later pooled
into a global representations by means of methods such as Bag-of-Visual-
Words (BoVW) (Csurka et al., 2004), Fisher Vector (FV) (Perronnin
and Dance, 2007), or Vector of Locally Aggregated Descriptors (VLAD)
(Jégou et al., 2010, 2012).

More recently, Convolutional Neural Networks (CNNs) (LeCun et al.,
1989, 2015) gained momentum due to the superior performance of the
systems employing them and to the increasing availability of dedicated
software (and hardware) systems facilitating their use. While the CNNs
also require a number of design decisions (such as their structure), they
also have a large number of parameters that are learned from data, leading
to adapted image descriptions. Cimpoi et al., 2016 provide a detailed
comparison of deep image features and some standard ones in the general
context of texture classification. In biomedical imaging, there are a number
of successful recognition systems based on various CNNs architectures,
such as U-Net (Ronneberger et al., 2015). In general, training CNN-based
recognition systems requires a large number of labeled image examples,
the deeper the architecture more images being needed. For example, the
well-known image recognition systems like ImageNet (Krizhevsky et al.,
2012) or GoogleNet (Szegedy et al., 2015) were trained on millions of
images. Such large data collections are usually not available in biomedical
field, thus the interest in transferring general pre-trained CNN models to
the medical applications. For example, van Ginneken et al. (2015) and
Kawahara et al. (2016) describe such successful systems that are based on
pre-trained CNN features.

An alternate route for obtaining local descriptors is represented by the
autoencoding methods, where an identity function is learned under the
constraint of a lower dimensional (or sparse) internal representation. The
parameters of the function are obtained through an optimization process,
where the distance (usually L2) between the original and reconstructed
image is minimized, eventually with some additional constraints over the
parameters. Examples of such methods are represented predictive sparse
decomposition methods (as used in Chang et al. (2015) for example) and
deep autoencoding networks. We do not explore further this direction on
the present work.

For the problem addressed here, we chose to use a very deep CNN
trained on ImageNet data collection – imagenet-vgg-f (Chatfield et al.,
2014) – as implemented in the MatConvNet library (Vedaldi and Lenc,
2015)1. The network is trained to predict the probability of an input color
image of size 224 × 224 to belong to one of the 1, 000 categories. By
using the output of the next to last layer (relu7, before the classification
layers), a 4, 096 element description vector can be obtained. Since we
will use Gaussian Mixture Models (GMMs - see Section 1.4) for building
the coding dictionary, such a high dimensional space would require a
prohibitively large number of samples for a good fit of the models, so
we choose to perform PCA to further reduce the dimension of the local
descriptor vectors by retaining the first d = 128 coordinates (chosen to
be fixed, non-trainable). Thus, a local RGB patch of 224 × 224 pixels
was reduced to a set of 128 values corresponding to the projection of the
4, 096−value ImageNet vector onto the first 128 principal axes.

As a side note, we remark that the CNN-based descriptor vector is itself
the result of a combination of a number of filters applied to even smaller
neighborhoods. However, in this work we consider the basic neighborhood
to be the 224 × 224 patch on which the CNN is applied.

1 for the architecture see http://www.vlfeat.org/
matconvnet/models/imagenet-vgg-f.svg
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1.4 Aggregating local descriptors

Once a set of local descriptors is obtained from an image, they are pooled
into a summarizing feature vector supposed to capture the global aspects of
the image. The first step of the process involves the re-coding of the image
in terms of elements of a visual dictionary (codebook), the same for all
classes, which is followed by the computation of the image representation.

For the construction of the codebook, k−means clustering and
Gaussian Mixture Models (GMMs) are the most common choices, and
are typically used with either the standard Bag-of-Visual-Words (Csurka
et al., 2004) or other aggregators. Jégou et al., 2012 give a comprehensive
comparison of various design choices. Here we shortly remind the main
differences between BoVW, FV and VLAD:

• Bag-of-Visual-Words typically uses k−means clustering for obtaining
a codebook, with the K centroids from the clustering being the
codewords (visual words). Then the representation of an image is
simply the histogram of the number of local descriptors assigned
to each codeword, thus an image is reduced to a K−dimensional
vector. This histogram can be further normalized using Manhattan or
Euclidean normalization Jégou et al., 2012. One can also use a soft-
coding scheme in which the patches are assigned, for example, a code
based on the distance to the centroids Sivic and Zisserman, 2003.

• Fisher Vector represents a generalization of BoVW as it encodes higher
order statistics of the distribution of the codewords. In this case, the
codebook is usually obtained as a GMM with K components fitted
via expectation maximization on the training data. The FV encodes
the gradient of a given sample’s likelihood with respect to parameters
of the fitted GMM, thus it indicates the direction in the parameter
space in which the learned GMM has to be modified to accommodate
the observed data Jégou et al., 2012. For a full FV that accounts for
differences both in mean and variance between the model and observed
data, the resulting representation vector has 2Kd elements (d being
the size of the local descriptor vector).

• VLAD can be seen as a non-probabilistic version of FV Jégou et al.,
2012 and was designed to provide a low dimensional representation
of the image Jégou et al., 2010 that would allow the indexing of very
large image databases in memory. It tries to combine the simplicity of
BoVW with some ideas of FV: the codebook is learned via k−means
clustering and each patch is assigned the closest codeword as in BoVW,
but the feature vector accumulates the differences between each patch
and its corresponding codeword, similar to FV. See Arandjelovic and
Zisserman, 2013 for a detailed discussion and further extensions.

In the present work, we decided to use a common method for
constructing the visual codebook, namely the Gaussian Mixture Models.
This allowed us to test a soft-coding scheme as well, in which codes were
based on the posterior probabilities of being generated by a particular
component of the GMM.

1.5 Classifier training and performance estimation

Training the system could be summarized by the following steps:

1. for each image, extract the local descriptors (based on ImageNet) for
all non-overlapping regions corresponding to tumoral component(s);

2. construct a visual codebook by:

a. performing PCA and retain the first 128 components (the PCA model
is saved for later application on validation set)

b. fitting a K = 128-component GMM on PCA-transformed local
descriptors (the visual codebook is saved for later usage on
validation set)

Table 1. Confusion matrix for BoVW.
Empty cells correspond to null values.

Predicted
A B C D E Precision Recall

A 3 4 0.75 0.43
B 1 41 5 0.76 0.87
C 3 7 2 0.44 0.58
D 4 8 13 2 0.59 0.48
E 1 2 1 2 1 0.33 0.14

3. train the binary classifiers (save the models for validation). Each
such binary classifier was a support vector machine with a radial
basis function kernel. Two parameters were tuned in an inner cross-
validation loop: the γ parameter of the kernel and the C parameter
for the misclassification penalty. The final prediction of the subtype
label is made according to the decision tree in Figure 2. This particular
decomposition of the multi-class problem was the result of the analysis
of misclassified samples in the development set which suggested that
firstly subtypes A, B should be separated from the rest (see Sec. 2.1).

Since the ImageNet is an external model independent of the data
analyzed, it does not need to be included in the cross-validation loop,
this being an additional reason for preferring a pre-built CNN model. The
other steps, however, were repeated at each cross-validation iteration on
the corresponding training data.

1.6 Statistical analyses

For the identification of image features enriched/depleted in a subtype with
respect to the other subtypes, we used Wilcoxon rank-sum tests since the
measurements were not normally distributed. For hierarchical clustering
we used the Ward method with an Euclidean distance between feature
vectors. Survival analysis was performed using survival package
(version 2.39-4) from R statistical computing environment (version 3.3.1,
www.r-project.org). The estimation of hazard ratios was obtained
from Cox proportional hazards regression in the absence of any other
covariates, while the comparison of survival experience of different
subgroups was assessed by log-rank test (Mantel-Haenszel test). Statistical
significance level was chosen to be p = 0.01 and all tests yielding a
p−value 0.01 ≤ p ≤ 0.05 were considered marginally significant.
Finally, the 95% confidence intervals (95%CI) for binomial random
variables (such as accuracy) were estimated using the (Agresti and Coull,
1998) method.

2 Results and discussion
The results discussed here are complemented by larger images on the
project’s website:http://bias.cerit-sc.cz/somopro-subtypes.
html.

2.1 Initial experiments

As mentioned, in an attempt to avoid overfitting the available data, a
development set has been used to guide the design decisions and to set
a number of meta-parameters. We tested dictionaries with K1 = 64 and
K2 = 128 codewords and compared the performance of BoVW, FV
and VLAD representations when predicting the five molecular subtypes.
We performed this comparison under two standard decompositions of the
multi-class classification problem, namely 1-vs-all and 1-vs-1.

These tests showed that BoVW with GMM-based quantization
performed as good as the more involved representation by FV and VLAD
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C vs D
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Fig. 2. Decomposition of the multi-class classification problem. For each non-terminal
node a binary classifier was trained to split the respective groupings of molecular subtypes.

Table 2. 10-fold cross-validation confusion
matrix for the multi-class classifier and
corresponding per-class performance metrics.
Empty cells correspond to null values.

Predicted
A B C D E Precision Recall

A 21 0.95 1.00
B 1 119 13 7 0.91 0.85
C 2 29 6 0.91 0.78
D 8 1 71 1 0.75 0.88
E 2 2 5 12 0.60 0.57

see Supplement materials - Sec. 1. The small sample size definitely
influences this observation, since both FV and VLAD have much higher
dimensionality and would require more data for a better training. Table 1
shows the results for BoVW method with 1-vs-all decomposition of the
multi-class problem, on the development set (obtained by stratified 4-fold
cross-validation) - for the other approaches the results were similar, so
they are not detailed here.

Another important observation was that the 1-vs-1 and 1-vs-all
decompositions of the multi-class classification problem might not be
the best suited for the present case. By analyzing the confusion matrix
and taking into account the performance indexes (precision and recall) it
appeared that a first split would have been more advantageous between
classes A,B on one side and C,D,E, on the other. This observation is also
supported by the results in Budinská et al., 2013 where it is noted that
subtypes A, B, on one hand, and C, D, E, on the other hand, share dominant
and secondary dominant morphological features as well as similar survival
expectancy. So, the final design for the multi-class classifier was chosen
to be as depicted in Figure 2.

2.2 Prediction of molecular subtypes

Once the final decisions for the classification system were taken based on
the initial experiments described above, the performance of the system was
assessed using 10−fold cross validation, on the whole set of 300 samples.

The estimated overall accuracy of the multi-class classifier wasAcc =

0.84, 95%CI = (0.79−0.88) for a weighted average recall and precision
of R = 0.85, 95%CI = (0.80 − 0.89) and P = 0.84, 95%CI =

(0.80 − 0.88), respectively. Table 2 details the performance metrics of
the classifier. We note the good performance of the first decision level
({A,B} vs {C,D,E}) (Acc = 0.89, 95%CI = (0.85−0.92)) but also the
poor recognition of the subtype E.

We repeated the same experiments on the 200 samples not used in
the development set and the results were in line with those above (thus
not repeated here), only with subtype A being slightly worse separated
from subtype B (see Supplemental materials - Sec. 2). This indicates that
the current sample size may still be too small for some cases and some
improvements may be expected by enlarging the training set.

2.3 Associations between predictions and clinical data

The study Budinská et al., 2013 indicated that some associations could be
found between molecular subtypes and clinical variables and molecular
markers. Hence, we were interested in testing whether such associations
are transferrable to the predictions made by the image-based classifier. To
avoid overly-optimistic discoveries, we use the predictions (A-E labels)
produced during the cross-validation estimation of the system. There is
also one caveat: as explained the selection of the cases was governed by
technical constraints and thus it does not represent the true population-
based statistics for various clinical variables and the results reported here
should not be compared directly with those in Budinská et al., 2013.
Nevertheless, we investigate these associations and compare them with
those found between gene expression-based subtypes and the clinical
variables, on the same set of cases.

We first tested whether the predicted subtypes were associated with
relapse free survival (RFS). In Budinská et al., 2013, subtypes A and B have
a lower risk of relapse than subtypes C, D, and E. The same can be observed
in the set of 300 samples used here (p = 0.0014, HR = 1.75, 95%CI =
(1.24 − 2.49), Figure 3(a)). The image-based subtype predictions also
produce a statistically significant stratification of the population (p =

0.012, HR = 1.56, 95%CI = (1.10 − 2.21), Figure 3(b)).
We also found associations between microsatellite stability, BRAF

and KRAS mutations, and mucinous histology and various subtypes -
both image-based and gene expression-based. In the case of image-based
predictions, subtypes A and C were enriched in mucinous histology
compared to the sample average, while subtype E was almost depleted
of it. BRAF mutated cases (5.8% of all cases) were mostly found in
subtype C (20% of cases predicted), and rarely in subtype B (2.4%), while
KRAS mutation (38.4% of all cases) represented 77% of cases predicted
as subtype A and only 29% and 22% of cases predicted as subtypes B and
E, respectively. Finally, high microsatellite instability (MSI) was almost
exclusively found in subtype C (10 out of 13 cases). The same trends were
found in gene-expression subtypes, with some variations below statistical
significance.

A related question was whether the misclassified samples were
enriched in any particular type of tumors. The only significant association
was between the misclassified subtype B samples, which were enriched
in higher T-stage and N-stage tumors. This observation may provide hints
about further refinement of the classifier for subtype B. Detailed results
are given in Supplemental materials - Sec. 3.

2.4 Visual codebook

We explored the structure of the visual codebook as obtained by training
the model on the full data set. A visual depiction of the extracted codewords
(centers of the Gaussian components) is shown in Figure 4 and a higher
resolution image is given in Supplemental materials - Sec. 4. Note that
the visual codewords are the centers of the Gaussians in the GMM,
hence the means of feature vectors obtained by projecting the ImageNet
features in the PCA space. The patches shown are just the closest image
neighborhoods to these centers, thus they are an approximation of the
true centers (whose visual appearance would require inverting the CNN
function). We use this simplification only for visualization purposes and
to get a qualitative assessment of the results.
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Fig. 5. Top four prototypes associated with each subtype: (a-d) subtype A; (e-h) subtype B; (i-l) subtype C; (m-p) subtype D; and (q-t) subtype E. Under each image the corresponding
p-value from Wilcoxon rank-sum test is shown.

Another question we will address in the future pertains the classification
of the so-called "outliers": tumors for which no molecular subtype was
assigned. It would be interesting to see how the subtypes predicted by the
current image-based classifier correlate with the similarity between their
expression profiles and those of well assigned tumors.

One has to bear in mind that, despite recent efforts to consolidate the
molecular taxonomy of CRC, the sub-categorization of CRC is still not
definitive. Indeed, depending on the size of the cohort and parameters
chosen for cut-offs, more or less molecular subtypes can be observed, thus
this categorization is still fluid. Nevertheless, in the present work it has been
considered the golden standard to which the image-based models were
compared against. We believe that actually combining the observations
from the two modalities may led to an even more refined subtyping of
the CRC. However, this would probably involved a more supervised (by
expert pathologists) construction of the image-based models.

As they stand now, our results are clearly supporting the possibility
of translating some molecular observations into image-based models, as
it is the case of molecular subtypes. These results are reinforced by
similar observations made by an expert pathologist (Budinská et al., 2013),
where several tissue architectural patterns could be linked, in a supervised
analysis, to the molecular subtypes. It is interesting to note that some of
the the regions/patterns found representative in our data-driven analysis
are also visually similar to those hand-picked by an expert (see example
images in Budinská et al., 2013). On the other hand, the intra-tumoral
heterogeneity and pathology sampling region clearly influence sample’s
assignment to a molecular subtype (Dunne et al., 2016). In the light of the
results presented here, it can be imagined an image-analysis approach to
the delineation of the tissue sampling regions to improve the stability of
the subtype assignment.

While it is too early for considering any clinical application
of the models described here, they could, however, be used for
indexing/annotating or for retrieval of samples of interest from archives.
Consider the situation in which one would like to test for some biomarker
which is hypothesized to work in one or several subtypes on a retrospective
collection of samples. Since determining the molecular subtypes relies on
profiling hundreds of genes, it makes more sense to use a classifier such

the one proposed here, to select the most promising samples. And this
can be implemented without significant effort since more and more of the
pathology departments are adopting the digital pathology workflows, thus
the images being readily available.

Acknowledgements
The necessary computational resources were provided by the CESNET
LM2015042 and the CERIT Scientific Cloud LM2015085 projects under
the programme "Projects of Projects of Large Research, Development, and
Innovations Infrastructures".

Funding
This project is financed from the SoMoPro II programme. The research
leading to this result has acquired a financial grant from the People
Programme (Marie Curie action) of the Seventh Framework Programme
of EU according to the REA Grant Agreement No.291782. The research
is further co-financed by the South Moravian Region. This article reflects
only the authors views and the Union is not liable for any use that may be
made of the information contained therein.

References
Agner, S. C., Rosen, M. A., Englander, S., Tomaszewski, J. E., Feldman, M. D.,

Zhang, P., Mies, C., Schnall, M. D., and Madabhushi, A. (2014). Computerized
image analysis for identifying triple-negative breast cancers and differentiating
them from other molecular subtypes of breast cancer on dynamic contrast-enhanced
MR images: a feasibility study. Radiology, 272(1), 91–99.

Agresti, A. and Coull, B. A. (1998). Approximate is Better than “Exact” for Interval
Estimation of Binomial Proportions. The American Statistician, 52(2), 119–126.

Arandjelovic, R. and Zisserman, A. (2013). All About VLAD. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 1578–1585. IEEE.

Budinská, E., Popovici, V., Delorenzi, M., Tejpar, S., D’Ario, G., Lapique, N.,
Sikora, K. O., Di Narzo, A. F., Yan, P., Hodgson, J. G., Weinrich, S., Bosman,
F., and Roth, A. (2013). Gene expression patterns unveil a new level of molecular
heterogeneity in colorectal cancer. Journal of Pathology, 231(1), 63–76.

18. Image-based surrogate biomarkers

198



8 Popovici et al.

Budinská, E., Bosman, F., and Popovici, V. (2016). Experiments in molecular
subtype recognition based on histopathology images. In International Symposium
on Biomedical Imaging, pages 1168–1172. Masaryk University, Brno, Czech
Republic, IEEE.

Chang, H., Fontenay, G. V., Han, J., Cong, G., Baehner, F. L., Gray, J. W., Spellman,
P. T., and Parvin, B. (2011). Morphometic analysis of TCGA glioblastoma
multiforme. BMC Bioinformatics, 12(1), 484.

Chang, H., Zhou, Y., Borowsky, A., Barner, K., Spellman, P., and Parvin, B. (2015).
Stacked Predictive Sparse Decomposition for Classification of Histology Sections.
International Journal of Computer Vision, 113(1), 3–18.

Chatfield, K., Simonyan, K., Vedaldi, A., and Zisserman, A. (2014). Return of the
Devil in the Details: Delving Deep into Convolutional Nets. In British Machine
Vision Conference.

Cimpoi, M., Maji, S., Kokkinos, I., and Vedaldi, A. (2016). Deep Filter Banks
for Texture Recognition, Description, and Segmentation. International Journal of
Computer Vision, 118(1), 65–94.

Cooper, L. A. D., Kong, J., Gutman, D. A., Wang, F., Gao, J., Appin, C., Cholleti,
S., Pan, T., Sharma, A., Scarpace, L., Mikkelsen, T., Kurc, T., Moreno, C. S.,
Brat, D. J., and Saltz, J. H. (2012). Integrated morphologic analysis for the
identification and characterization of disease subtypes. Journal of the American
Medical Informatics Association, 19(2), 317–323.

Csurka, G., Dance, C. R., Fan, L., Willamowski, J., and Bray, C. (2004). Visual
categorization with bags of keypoints. In Workshop on Statistical Learning in
Computer Vision, ECCV , pages 59–74.

De Sousa E Melo, F., Wang, X., Jansen, M., Fessler, E., Trinh, A., de Rooij, L. P.
M. H., de Jong, J. H., de Boer, O. J., van Leersum, R., Bijlsma, M. F., Rodermond,
H., van der Heijden, M., van Noesel, C. J. M., Tuynman, J. B., Dekker, E.,
Markowetz, F., Medema, J. P., and Vermeulen, L. (2013). Poor-prognosis colon
cancer is defined by a molecularly distinct subtype and develops from serrated
precursor lesions. Nature Medicine, pages 1–8.

Dogan, B. E. and Turnbull, L. W. (2012). Imaging of triple-negative breast cancer.
Annals of oncology : official journal of the European Society for Medical Oncology
/ ESMO, 23 Suppl 6, vi23–9.

Dunne, P. D., McArt, D. G., Bradley, C. A., O’Reilly, P. G., Barrett, H. L., Cummins,
R., O’Grady, T., Arthur, K., Loughrey, M. B., Allen, W. L., McDade, S. S.,
Waugh, D. J., Hamilton, P. W., Longley, D. B., Kay, E. W., Johnston, P. G.,
Lawler, M., Salto-Tellez, M., and Van Schaeybroeck, S. (2016). Challenging the
Cancer Molecular Stratification Dogma: Intratumoral Heterogeneity Undermines
Consensus Molecular Subtypes and Potential Diagnostic Value in Colorectal
Cancer. Clinical Cancer Research, 22(16), 4095–4104.

Guinney, J., Dienstmann, R., Wang, X., de Reyniès, A., Schlicker, A., Soneson, C.,
Marisa, L., Roepman, P., Nyamundanda, G., Angelino, P., Bot, B. M., Morris, J. S.,
Simon, I. M., Gerster, S., Fessler, E., De Sousa E Melo, F., Missiaglia, E., Ramay,
H., Barras, D., Homicsko, K., Maru, D., Manyam, G. C., Broom, B., Boige, V.,
Perez-Villamil, B., Laderas, T., Salazar, R., Gray, J. W., Hanahan, D., Tabernero,
J., Bernards, R., Friend, S. H., Laurent-Puig, P., Medema, J. P., Sadanandam,
A., Wessels, L., Delorenzi, M., Kopetz, S., Vermeulen, L., and Tejpar, S. (2015).
The consensus molecular subtypes of colorectal cancer. Nature Medicine, 21(11),
1350–1356.

Jégou, H., Douze, M., Schmid, C., and Pérez, P. (2010). Aggregating local descriptors
into a compact image representation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 3304–3311. INRIA, Le Chesnay,
France, IEEE.

Jégou, H., Perronnin, F., Douze, M., Sanchez, J., Perez, P., and Schmid, C. (2012).
Aggregating Local Image Descriptors into Compact Codes. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 34(9), 1704–1716.

Kawahara, J., BenTaieb, A., and Hamarneh, G. (2016). Deep features to classify
skin lesions. In IEEE International Symposium on Biomedical Imaging, pages
1397–1400. Simon Fraser University, Burnaby, Canada, IEEE.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). ImageNet Classification
with Deep Convolutional Neural Networks. In NIPS, pages 1106–1114.

Lan, C., Heindl, A., Huang, X., Xi, S., Banerjee, S., Liu, J., and Yuan, Y. (2015).
Quantitative histology analysis of the ovarian tumour microenvironment. Scientific
Reports, 5, 16317–16317.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W.,
and Jackel, L. D. (1989). Backpropagation Applied to Handwritten Zip Code
Recognition. Neural computation, 1(4), 541–551.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521(7553),
436–444.

Li, G., Bankhead, P., Dunne, P. D., O’Reilly, P. G., James, J. A., Salto-Tellez, M.,
Hamilton, P. W., and McArt, D. G. (2016). Embracing an integromic approach to
tissue biomarker research in cancer: Perspectives and lessons learned. Briefings in
Bioinformatics.

Lowe, D. G. (1999). Object recognition from local scale-invariant features. In
Proceedings of the IEEE International Conference on Computer Vision, pages
1150–1157. The University of British Columbia, Vancouver, Canada.

Marisa, L., de Reyniès, A., Duval, A., Selves, J., Gaub, M. P., Vescovo, L.,
Etienne-Grimaldi, M.-C., Schiappa, R., Guenot, D., Ayadi, M., Kirzin, S.,
Chazal, M., Fléjou, J.-F., Benchimol, D., Berger, A., Lagarde, A., Pencreach,
E., Piard, F., Elias, D., Parc, Y., Olschwang, S., Milano, G., Laurent-Puig, P., and
Boige, V. (2013). Gene Expression Classification of Colon Cancer into Molecular
Subtypes: Characterization, Validation, and Prognostic Value. PLoS Medicine,
10(5), e1001453.

Ojala, T., Pietikäinen, M., and Harwood, D. (1996). A comparative study of texture
measures with classification based on featured distributions. Pattern Recognition,
29(1), 51–59.

Perou, C. M., Sorlie, T., Eisen, M. B., and van de Rijn, M. (2000). Molecular portraits
of human breast tumours. Nature, 406(6797), 747–752.

Perronnin, F. and Dance, C. (2007). Fisher kernels on visual vocabularies for image
categorization. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 1–8. Xerox Research Centre Europe, Meulan, France,
IEEE.

Roepman, P., Schlicker, A., Tabernero, J., Majewski, I., Tian, S., Moreno, V., Snel,
M. H., Chresta, C. M., Rosenberg, R., Nitsche, U., Macarulla, T., Capella, G.,
Salazar, R., Orphanides, G., Wessels, L. F., Bernards, R., and Simon, I. M.
(2013). Colorectal cancer intrinsic subtypes predict chemotherapy benefit, deficient
mismatch repair and epithelial-to-mesenchymal transition. International Journal
of Cancer, 134(3), 552–562.

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-Net: Convolutional Networks for
Biomedical Image Segmentation. In International Conference on Medical image
computing and computer-assisted intervention, pages 234–241, Cham. Springer
International Publishing.

Sadanandam, A., Lyssiotis, C. A., Homicsko, K., Collisson, E. A., Gibb, W. J.,
Wullschleger, S., Ostos, L. C. G., Lannon, W. A., Grotzinger, C., Del Rio, M.,
Lhermitte, B., Olshen, A. B., Wiedenmann, B., Cantley, L. C., Gray, J. W., and
Hanahan, D. (2013). A colorectal cancer classification system that associates
cellular phenotype and responses to therapy. Nature Medicine, pages 1–8.

Satyanarayanan, M., Goode, A., Gilbert, B., Harkes, J., and Jukic, D. (2013).
OpenSlide: A vendor-neutral software foundation for digital pathology. Journal
of Pathology Informatics, 4(1), 27.

Sivic, J. and Zisserman, A. (2003). Video google: A text retrieval approach to
object matching in videos. In Proceedings of the IEEE International Conference
on Computer Vision, pages 1470–1477. University of Oxford, Oxford, United
Kingdom.

Stålhammar, G., Martinez, N. F., Lippert, M., Tobin, N. P., Mølholm, I., Kis, L.,
Rosin, G., Rantalainen, M., Pedersen, L., Bergh, J., Grunkin, M., and Hartman,
J. (2016). Digital image analysis outperforms manual biomarker assessment in
breast cancer. Modern Pathology, 29(4), 318–329.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., and Rabinovich, A. (2015). Going deeper with convolutions. In
IEEE Conference on Computer Vision and Pattern Recognition, pages 1–9. IEEE.

Van Cutsem, E., Labianca, R., Bodoky, G., Barone, C., Aranda, E., Nordlinger,
B., Topham, C., Tabernero, J., Andre, T., Sobrero, A. F., Mini, E., Greil, R.,
Di Costanzo, F., Collette, L., Cisar, L., Zhang, X., Khayat, D., Bokemeyer, C.,
Roth, A. D., and Cunningham, D. (2009). Randomized Phase III Trial Comparing
Biweekly Infusional Fluorouracil/Leucovorin Alone or With Irinotecan in the
Adjuvant Treatment of Stage III Colon Cancer: PETACC-3. Journal of Clinical
Oncology, 27(19), 3117–3125.

van Ginneken, B., Setio, A. A. A., Jacobs, C., and Ciompi, F. (2015). Off-the-shelf
convolutional neural network features for pulmonary nodule detection in computed
tomography scans. In 2015 IEEE 12th International Symposium on Biomedical
Imaging (ISBI , pages 286–289. Radboud University Nijmegen Medical Centre,
Nijmegen, Netherlands, IEEE.

Vedaldi, A. and Lenc, K. (2015). MatConvNet – Convolutional Neural Networks for
MATLAB. In ACM International Conference on Multimedia, pages 1–55.

Weigelt, B., Geyer, F. C., and Reis-Filho, J. S. (2010). Histological types of breast
cancer: how special are they? Molecular Oncology, 4(3), 192–208.

18. Image-based surrogate biomarkers

199


	I Commentary
	Introduction
	Of DNA and gene expression
	 DNA and genetic information
	 DNA microarrays

	Gene expression data preprocessing
	 Data acquisition and background correction
	 Signal estimation at probeset level
	 Quality control for Affymetrix microarrays
	 A note on normalizing PCR expression data

	Comments on the performance of predictive and prognostic models built on gene expression data
	 General considerations on model learnability
	 A note on model performance estimation

	Integration of pathology images: towards a multimodal biomarker discovery
	Concluding remarks

	II Selected articles
	Selecting control genes for RT-QPCR using public microarray data
	Rgtsp: a generalized top scoring pairs package for class prediction
	Effect of training-sample size and classification difficulty on the accuracy of genomic predictors
	The MicroArray Quality control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models
	Identification of a poor-prognosis BRAF-mutant-like population of patients with colon cancer
	Identification of "BRAF-Positive" Cases Based on Whole-Slide Image Analysis
	A robust genomic signature for the detection of colorectal cancer patients with microsatellite instability phenotype and high mutation frequency
	Expression profiling with RNA from formalin-fixed, paraffin-embedded material
	Molecular risk assessment of BIG 1-98 participants by expression profiling using RNA from archival tissue
	Joint analysis of histopathology image features and gene expression in breast cancer
	Gene expression patterns unveil a new level of molecular heterogeneity in colorectal cancer
	Image-based surrogate biomarkers for molecular subtypes of colorectal cancer


