Informace o publikaci

Faster Existential FO Model Checking on Posets

Autoři

GAJARSKÝ Jakub HLINĚNÝ Petr OBDRŽÁLEK Jan ORDYNIAK Sebastian

Druh Článek ve sborníku
Konference ISAAC 2014, LNCS 8889
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
Doi http://dx.doi.org/10.1007/978-3-319-13075-0_35
Obor Informatika
Klíčová slova existential first-order logic; parameterized complexity; kernelization; poset embedding
Popis We prove that the model checking problem for the existen- tial fragment of first order (FO) logic on partially ordered sets is fixed- parameter tractable (FPT) with respect to the formula and the width of a poset (the maximum size of an antichain). While there is a long line of research into FO model checking on graphs, the study of this problem on posets has been initiated just recently by Bova, Ganian and Szeider (LICS 2014), who proved that the existential fragment of FO has an FPT algorithm for a poset of fixed width. We improve upon their result in two ways: (1) the runtime of our algorithm is O(f (|phi|, w) · n 2 ) on n-element posets of width w, compared to O(g(|phi|) · n h(w) ) of Bova et al., and (2) our proofs are simpler and easier to follow. We comple- ment this result by showing that, under a certain complexity-theoretical assumption, the existential FO model checking problem does not have a polynomial kernel.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info