Informace o publikaci

On some methods in half-linear asymptotic theory

Autoři

ŘEHÁK Pavel

Rok publikování 2016
Druh Článek v odborném periodiku
Časopis / Zdroj Electron. J. Diff. Equations
Fakulta / Pracoviště MU

Pedagogická fakulta

Citace
Obor Obecná matematika
Klíčová slova half-linear differential equation; nonoscillatory solution; regular variation; asymptotic formula
Popis We study asymptotic behavior of eventually positive solutions of the second-order half-linear differential equation $(r(t)|y'|^{\alpha-1}\sgn y')'=p(t)|y|^{\alpha-1}\sgn y$, where $r(t)$ and $p(t)$ are positive continuous functions on $[a,\infty)$, $\alpha\in(1,\infty)$. The aim of this paper is twofold. On the one hand, we show applications of a wide variety of tools, like the Karamata theory of regular variation, the de Haan theory, the Riccati technique, comparison theorems, the reciprocity principle, a certain transformation of dependent variable, and principal solutions. On the other hand, we solve open problems posed in the literature and generalize existing results. The most of our observations is new also in the linear case.