Informace o publikaci

Quantum information processing and composite quantum fields

Autoři

RAMGOOLAM Sanjaye SEDLÁK Michal

Rok publikování 2019
Druh Článek v odborném periodiku
Časopis / Zdroj Journal of High Energy Physics
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www http://dx.doi.org/10.1007/JHEP01(2019)170
Doi http://dx.doi.org/10.1007/JHEP01(2019)170
Klíčová slova 1; N Expansion; AdS-CFT Correspondence
Přiložené soubory
Popis Some beautiful identities involving hook contents of Young diagrams have been found in the field of quantum information processing, along with a combinatorial proof. We here give a representation theoretic proof of these identities and a number of generalizations. Our proof is based on trace identities for elements belonging to a class of permutation centralizer algebras. These algebras have been found to underlie the combinatorics of composite gauge invariant operators in quantum field theory, with applications in the AdS/CFT correspondence. Based on these algebras, we discuss some analogies between quantum information processing tasks and the combinatorics of composite quantum fields and argue that this can be fruitful interface between quantum information and quantum field theory, with implications for AdS/CFT.
Související projekty: