Informace o publikaci

The 3D hype: Evaluating the potential of real 3D visualization in geo-related applications

Autoři

JUŘÍK Vojtěch HERMAN Lukáš SNOPKOVÁ Dajana GALANG Adrianne John STACHOŇ Zdeněk CHMELÍK Jiří KUBÍČEK Petr ŠAŠINKA Čeněk

Rok publikování 2020
Druh Článek v odborném periodiku
Časopis / Zdroj PLoS ONE
Fakulta / Pracoviště MU

Filozofická fakulta

Citace
www https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0233353
Doi http://dx.doi.org/10.1371/journal.pone.0233353
Klíčová slova real 3D visualization; pseudo 3D visualization; geovisualization; 3D vision; depth perception; interactive visualization; navigational interactivity; user testing
Popis The use of 3D visualization technologies has increased rapidly in many applied fields, including geovisualization, and has been researched from many different perspectives. However, the findings for the benefits of 3D visualization, especially in stereoscopic 3D forms, remain inconclusive and disputed. Stereoscopic “real” 3D visualization was proposed as encouraging the visual perception of shapes and volume of displayed content yet criticised as problematic and limited in a number of ways, particularly in visual discomfort and increased response time in tasks. In order to assess the potential of real 3D visualization for geo-applications, 91 participants were engaged in this study to work with digital terrain models in different 3D settings. The researchers examined the effectivity of stereoscopic real 3D visualization compared to monoscopic 3D (or pseudo 3D) visualization under static and interactive conditions and applied three tasks with experimental stimuli representing different geo-related phenomena, i.e. objects in the terrain, flat areas marked in the terrain and terrain elevation profiles. The authors explored the significant effects of real 3D visualization and interactivity factors in terms of response time and correctness. Researchers observed that the option to interact with a virtual terrain and its depiction with real 3D visualization extended the participants’ response times. Counterintuitively, the data demonstrated that the static condition increased response correctness. Regarding detailed analysis of data, an interactivity factor was proposed as a potential substitute for real 3D visualization in 3D geographical tasks.