Publication details

An ab initio study of mechanical and dynamical stability of MoSi2

Authors

FRIÁK Martin HOLEC D. ŠOB Mojmír

Year of publication 2018
Type Article in Periodical
Magazine / Source Journal of Alloys and Compounds
MU Faculty or unit

Faculty of Science

Citation
Web https://www.sciencedirect.com/science/article/pii/S0925838818302482?via%3Dihub
Doi http://dx.doi.org/10.1016/j.jallcom.2018.01.241
Keywords Transition-metal silicides; Ab initio calculations; theoretical strength; structural stability; phonon spectra; semi-metal to metal transition
Description We present a quantum-mechanical study of changes in the electronic structure, total energy, elastic properties, phonon spectra and structure of molybdenum disilicide (MoSi2) with tetragonal C11(b) structure due to uniaxial strains along the [001] direction, biaxial (epitaxial) loads within the (001) plane as well as triaxial (volumetric) strains/stresses. Total energies and optimized structural parameters are computed by the Vienna Ab initio Simulation Package (VASP) using the local density approximation (LDA). When simulating extreme loading conditions that may be relevant for highly-strained regions we predict a semi-metal to metal phase transition that is connected with the onset of mechanical instability for higher values of triaxial loads as well as many other multi-axial loading conditions. The instability is assessed by both rigorous Born-Huang's criteria connected with elastic stiffness coefficients as well as by phonon spectra computed for all three straining modes. The values of theoretical tensile strength of MoSi2 for uniaxial, biaxial and triaxial loading corresponding to the first phonon instability amount to 30, 41 and 35 GPa, respectively. We show that the semi-metal to metal transition is connected with the softening of acoustic phonons at the G point rather than with the instability of other phonon modes. (C) 2018 Elsevier B.V. All rights reserved.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.

More info