Publication details

Generation of novel AupAgqTer clusters via laser ablation synthesis using Au-Ag-Te nano-composite as precursor: Laser desorption ionisation with quadrupole ion trap time-of-flight mass spectrometry

Investor logo
Investor logo
Authors

MAWALE Ravi AMATO Filippo ALBERTI Milan HAVEL Josef

Year of publication 2014
Type Appeared in Conference without Proceedings
MU Faculty or unit

Faculty of Science

Citation
Description Gold, tellurium and silver are found in nature either in their native state or in alloy with other metals. Gold tellurides are known as various minerals such as calaverite, krennerite (AuTe2) and montebrazite (Au2Te3). Silver tellurides are known as hessite (Ag2Te) and empressite (AgTe). Sylvanites (AuAgTe4) and mutmannite (AuAgTe2) are the ores of gold, silver and telluride. Laser ablation synthesis (LAS) was proved to be powerful technique for the generation and study of clusters from various materials. In addition, structural fragments of solid materials have been identified using laser desorption ionisation time-of-flight mass spectrometry (LDI-TOF-MS) for example. The aim of this work was to study the formation of binary AupAgq, AgqTer, AupTer and ternary AupAgqTer clusters generated via LAS of Au-Ag-Te mixture and/or composite material. Gold and silver nanoparticles were mixed with powder of metallic tellurium in different ratio and formation of clusters was followed with a mass spectrometer equipped with quadrupole ion trap, reflectron and time of flight analyser. The stoichiometry of the detected AupAgqTer clusters was found via modelling of the isotopic patterns and around 70 different binary and ternary clusters were identified. Generation of AupAgqTer clusters and knowledge of the stoichiometry might be important for the development of new materials with specific properties.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.

More info