Publication details

Estimation of the detected background by the future gamma ray transient mission CAMELOT

Authors

RIPA J. GALGOCZI G. WERNER Norbert PAL A. OHNO M. MESZAROS L. MIZUNO T. TARCAI N. TORIGOE K. UCHIDA N. FUKAZAWA Y. TAKAHASHI H. NAKAZAWA K. HIRADE N. HIROSE K. HISADOMI S. ENOTO T. ODAKA H. ICHINOHE Y. FREI Z. KISS L.

Year of publication 2019
Type Article in Periodical
Magazine / Source Astronomische Nachrichten
MU Faculty or unit

Faculty of Science

Citation
Web https://arxiv.org/abs/1909.00339
Doi http://dx.doi.org/10.1002/asna.201913673
Keywords (ISM; ) cosmic rays; gamma rays; bursts; instrumentation; detectors; X-rays; diffuse background
Description This study presents a background estimation for the CubeSats Applied for MEasuring and LOcalising Transients (CAMELOT), which is a proposed fleet of nanosatellites for the all-sky monitoring and timing-based localization of gamma ray transients with precise localization capability at low Earth orbits. CAMELOT will allow us to observe and precisely localize short gamma ray bursts (GRBs) associated with kilonovae, long GRBs associated with core-collapse massive stars, magnetar outbursts, terrestrial gamma ray flashes, and gamma ray counterparts to gravitational wave sources. A fleet of at least nine 3U CubeSats is proposed to be equipped with large and thin CsI(Tl) scintillators read out by multipixel photon counters (MPPC). A careful study of the radiation environment in space is necessary to optimize the detector casing, estimate the duty cycle due to the crossing of the South Atlantic Anomaly and polar regions, and minimize the effect of the radiation damage of MPPCs.

You are running an old browser version. We recommend updating your browser to its latest version.

More info