Publication details

Optimal Sobolev embeddings for the Ornstein-Uhlenbeck operator

Investor logo


Year of publication 2023
Type Article in Periodical
Magazine / Source Journal of Differential Equations
MU Faculty or unit

Faculty of Informatics

Keywords Ornstein-Uhlenbeck operator; Gauss space; embeddings; optimality
Attached files
Description A comprehensive analysis of Sobolev-type inequalities for the Ornstein-Uhlenbeck operator in the Gauss space is offered. A unified approach is proposed, providing one with criteria for their validity in the class of rearrangement-invariant function norms. Optimal target and domain norms in the relevant inequalities are characterized via a reduction principle to one-dimensional inequalities for a Calderon type integral operator patterned on the Gaussian isoperimetric function. Consequently, the best possible norms in a variety of spe- cific families of spaces, including Lebesgue, Lorentz, Lorentz-Zygmund, Orlicz and Marcinkiewicz spaces, are detected. The reduction principle hinges on a preliminary discussion of the existence and uniqueness of generalized solutions to equations, in the Gauss space, for the Ornstein-Uhlenbeck operator, with a just integrable right-hand side. A decisive role is also played by a pointwise estimate, in rearrangement form, for these solutions.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.

More info