Publication details

Water-borne pharmaceuticals reduce phenotypic diversity and response capacity of natural phytoplankton communities

Authors

POMATI Francesco JOKELA Jukka CASTIGLIONI Sara THOMAS Mridul K. NIZZETTO Luca

Year of publication 2017
Type Article in Periodical
Magazine / Source Plos one
MU Faculty or unit

Faculty of Science

Citation
Web http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0174207
Doi http://dx.doi.org/10.1371/journal.pone.0174207
Keywords TANDEM MASS-SPECTROMETRY; PERSONAL CARE PRODUCTS; WIDELY USED BIOCIDE; LIQUID-CHROMATOGRAPHY; MULTICLASS DETERMINATION; ORGANIC CONTAMINANTS; FUNCTIONAL DIVERSITY; AQUATIC ENVIRONMENT; FIELD-MEASUREMENTS; THERAPEUTIC DRUGS
Description Chemical micropollutants occur worldwide in the environment at low concentrations and in complex mixtures, and how they affect the ecology of natural systems is still uncertain. Dynamics of natural communities are driven by the interaction between individual organisms and their growth environment, which is mediated by the organisms' expressed phenotypic traits. We tested whether exposure to a mixture of 12 pharmaceuticals and personal care products (PPCP) influences phenotypic trait diversity in lake phytoplankton communities and their ability to regulate biomass production to fit environmental changes (response capacity). We exposed natural phytoplankton assemblages to three mixture levels in permeable microcosms maintained at three depths in a eutrophic lake for one week, during which the environmental conditions were fluctuating. We studied individual-level traits, phenotypic diversity and community biomass. PPCP reduced individual-level trait variance and overall community phenotypic diversity, but maintained higher standing phytoplankton biomass compared to untreated controls. Estimated effect sizes of PPCP on traits and community properties were very large (partial Eta-squared > 0.15). The PPCP mixture antagonistically interacted with the natural environmental gradient in habitats offered by different depths and, at concentrations comparable to those in waste-water effluents, prevented communities from converging to the same phenotypic structure and total biomass of unexposed controls. We show that micropollutants can alter individual-level trait diversity of lake phytoplankton communities and therefore their capacity to respond to natural environmental gradients, potentially affecting aquatic ecosystem processes.

You are running an old browser version. We recommend updating your browser to its latest version.

More info