Project information

Project information
Phage replication in bacterial biofilm (BioPhage)

Project Identification
LL1906
Project Period
1/2020 - 12/2022
Investor / Pogramme / Project type
Ministry of Education, Youth and Sports of the CR
MU Faculty or unit
Central European Institute of Technology

In 2017, the World Health Organization declared Staphylococcus aureus to be an antibiotic-resistant pathogen for which new therapeutics are urgently needed. Upon infection, S. aureus forms biofilms that can only be treated by the long-term application of several antibiotics in high doses or the surgical removal of the infected tissues. An alternative approach, phage therapy, has not been approved for clinical use, because the effects of phage infection on a biofilm are not sufficiently characterized.
We propose to study the dynamics of the propagation of Herelleviridae phage phi812 in a S. aureus biofilm and molecular details of phi812 replication in a cell. We integrated a microfluidic system into a light-sheet microscope to enable continuous multi-day observation of the phage infection of a biofilm. We will determine how sub-populations of metabolically dormant or phage-resistant cells in a biofilm provide herd immunity against phi812 infection. Our system enables the fixation of biofilm segments for subsequent correlative imaging by serial block-face scanning electron microscopy to identify the interactions of phages with bacterial cells. We will use focused ion beam milling together with cryo-electron microscopy and tomography to determine high-resolution structures of previously uncharacterized phi812 replication and assembly intermediates in S. aureus cells. We will study the function of bacterial membranes and macromolecular complexes in the initiation and completion of phage genome delivery, the assembly of phage portal complexes and heads, and the mechanisms of genome packaging and head-tail attachment.
This proposal’s biological significance lies in its focus on the as-yet uncharacterized interactions of phages and bacteria under biologically and clinically relevant conditions. Our analyses of phage spread in a biofilm, herd immunity against phage infection, and phage replication in cells may identify approaches for making phage therapy more effective.

Sustainable Development Goals

Masaryk University is committed to the UN Sustainable Development Goals, which aim to improve the conditions and quality of life on our planet by 2030.

Sustainable Development Goal No.  3 – Good health and well-being

Publications

Total number of publications: 17


Previous 1 2 Next

You are running an old browser version. We recommend updating your browser to its latest version.

More info