Publication details

Cyanine-Flavonol Hybrids for Near-Infrared Light-Activated Delivery of Carbon Monoxide

Authors

ŠTACKOVÁ Lenka RUSSO Marina MUCHOVA Lucie OREL Vojtěch VITEK Libor ŠTACKO Peter KLÁN Petr

Year of publication 2020
Type Article in Periodical
Magazine / Source Chemistry - A European Journal
MU Faculty or unit

Faculty of Science

Citation
Web https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202003272
Doi http://dx.doi.org/10.1002/chem.202003272
Keywords CO release; cyanine; near-infrared light; photoCORM; photorelease
Description Carbon monoxide (CO) is an endogenous signaling molecule that controls a number of physiological processes. To circumvent the inherent toxicity of CO, light-activated CO-releasing molecules (photoCORMs) have emerged as an alternative for its administration. However, their wider application requires photoactivation using biologically benign visible and near-infrared (NIR) light. In this work, a strategy to access such photoCORMs by fusing two CO-releasing flavonol moieties with a NIR-absorbing cyanine dye is presented. These hybrids liberate two molecules of CO in high chemical yields upon activation with NIR light up to 820 nm and exhibit excellent uncaging cross-sections, which surpass the state-of-the-art by two orders of magnitude. Furthermore, the biocompatibility and applicability of the system in vitro and in vivo are demonstrated, and a mechanism of CO release is proposed. It is hoped that this strategy will stimulate the discovery of new classes of photoCORMs and accelerate the translation of CO-based phototherapy into practice.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.

More info