Informace o publikaci

Classification of Interpretation Differences in String Quartets Based on the Origin of Performers

Autoři

SPURNÝ Lubomír IŠTVÁNEK Matěj MIKLÁNEK Štěpán

Rok publikování 2023
Druh Článek v odborném periodiku
Časopis / Zdroj Applied Sciences-Basel
Fakulta / Pracoviště MU

Filozofická fakulta

Citace
www https://www.mdpi.com/2076-3417/13/6/3603
Doi http://dx.doi.org/10.3390/app13063603
Klíčová slova classification; interpretation; machine learning; music analysis; music information retrieval; origin; string quartet; synchronization
Popis Music Information Retrieval aims at extracting relevant features from music material, while Music Performance Analysis uses these features to perform semi-automated music analysis. Examples of interdisciplinary cooperation are, for example, various classification tasks—from recognizing specific performances, musical structures, and composers to identifying music genres. However, some classification problems have not been addressed yet. In this paper, we focus on classifying string quartet music interpretations based on the origin of performers. Our dataset consists of string quartets from composers A. Dvořák, L. Janáček, and B. Smetana. After transferring timing information from reference recordings to all target recordings, we apply feature selection methods to rank the significance of features. As the main contribution, we show that there are indeed origin-based tempo differences, distinguishable by measure durations, by which performances may be identified. Furthermore, we train a machine learning classifier to predict the performers’ origin. We evaluate three different experimental scenarios and achieve higher classification accuracy compared to the baseline using synchronized measure positions.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info