Zde se nacházíte:
Informace o publikaci
A sharp characterization of the Willmore invariant
| Autoři | |
|---|---|
| Rok publikování | 2023 |
| Druh | Článek v odborném periodiku |
| Časopis / Zdroj | International Journal of Mathematics |
| Fakulta / Pracoviště MU | |
| Citace | |
| www | https://doi.org/10.1142/S0129167X23500544 |
| Doi | https://doi.org/10.1142/S0129167X23500544 |
| Klíčová slova | Extrinsic conformal geometry; hypersurface embeddings; Willmore invariant |
| Popis | First introduced to describe surfaces embedded in R3, the Willmore invariant is a conformally-invariant extrinsic scalar curvature of a surface that vanishes when the surface minimizes bending and stretching. Both this invariant and its higher-dimensional analogs appear frequently in the study of conformal geometric systems. To that end, we provide a characterization of the Willmore invariant in general dimensions. In particular, we provide a sharp sufficient condition for the vanishing of the Willmore invariant and show that in even dimensions it can be described fully using conformal fundamental forms and one additional tensor. |
| Související projekty: |