Informace o publikaci

On semidirectly closed non-aperiodic pseudovarieties of finite monoids

Autoři

KAĎOUREK Jiří

Rok publikování 2020
Druh Článek v odborném periodiku
Časopis / Zdroj Proceedings of the Edinburgh Mathematical Society
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://www.cambridge.org/core/services/aop-cambridge-core/content/view/BEA1B1BACC3E25204309D46CFF1E00DF/S0013091520000218a.pdf/on_semidirectly_closed_nonaperiodic_pseudovarieties_of_finite_monoids.pdf
Doi http://dx.doi.org/10.1017/S0013091520000218
Klíčová slova pseudovarieties of finite monoids; pseudovarieties of finite groups; semidirect products of monoids; semidirectly closed pseudovarieties; finite inverse monoids; finite aperiodic monoids; finite R-trivial monoids; finite p-groups; solvable groups
Popis It is shown that, for every prime number p, the complete lattice of all semidirectly closed pseudovarieties of finite monoids whose intersection with the pseudovariety G of all finite groups is equal to the pseudovariety Gp of all finite p-groups has the cardinality of the continuum. Furthermore, it is shown, in addition, that the complete lattice of all semidirectly closed pseudovarieties of finite monoids whose intersection with the pseudovariety G of all finite groups is equal to the pseudovariety Gsol of all finite solvable groups has also the cardinality of the continuum.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info