GPU-Based Sample-Parallel Context Modeling for EBCOT in JPEG2000

Autoři MATELA Jiří — RUSŇÁK Vít — HOLUB Petr
Druh Článek ve sborníku
Citace MATELA, Jiří, Vít RUSŇÁK a Petr HOLUB. GPU-Based Sample-Parallel Context Modeling for EBCOT in JPEG2000. In Sixth Doctoral Workshop on Mathematical and Engineering Methods in Computer Science -- Selected Papers. Dagstuhl, Germany: Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik, 2011. s. 77--84, 8 s. ISBN 978-3-939897-22-4.
Originální jazyk angličtina
Obor Informatika
Klíčová slova EBCOT;JPEG2000;Tier-1;GPU;context modeller

Embedded Block Coding with Optimal Truncation (EBCOT) is the fundamental and computationally very demanding part of the compression process of JPEG2000 image compression standard. EBCOT itself consists of two tiers. In Tier-1, image samples are compressed using context modeling and arithmetic coding. Resulting bit-stream is further formated and truncated in Tier-2. JPEG2000 has a number of applications in various fields where the processing speed and/or latency is a crucial attribute and the main limitation with state of the art implementations. In this paper we propose a new parallel approach to EBCOT context modeling that truly exploits massively parallel capabilities of modern GPUs and enables concurrent processing of individual image samples. Performance evaluation of our prototype shows speedup 12 times for the context modeller, and 1.4--5.3 times for the whole EBCOT Tier-1, which includes not yet optimized arithmetic coder.

Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info