Informace o publikaci

Biautomata for k-Piecewise Testable Languages

Název česky Biautomaty pro po částech testovaltelné jazyky stupně k
Autoři

KLÍMA Ondřej POLÁK Libor

Druh Článek ve sborníku
Konference Developments in Language Theory
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
Doi http://dx.doi.org/10.1007/978-3-642-31653-1_31
Obor Obecná matematika
Klíčová slova biautomaty; po částech testovatelné jazyky
Popis An effective characterization of piecewise testable languages was given by Simon in 1972. A difficult part of the proof is to show that if L has a J -trivial syntactic monoid M(L) then L is k-piecewise testable for a suitable k. By Simon’s original proof, an appropriate k could be taken as two times the maximal length of a chain of ideals in M(L) . In this paper we improve this estimate of k using the concept of biautomaton: a kind of finite automaton which arbitrarily alternates between reading the input word from the left and from the right. We prove that an appropriate k could be taken as the length of the longest simple path in the canonical biautomaton of L. We also show that this bound is better than the known bounds which use the syntactic monoid of L.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info