Informace o publikaci

Asymptotic problems for functional differential equations via linearization method

Autoři

DOŠLÁ Zuzana LIŠKA Petr MARINI Mauro

Rok publikování 2019
Druh Článek v odborném periodiku
Časopis / Zdroj JOURNAL OF FIXED POINT THEORY AND APPLICATIONS
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://link.springer.com/article/10.1007/s11784-018-0642-2
Doi http://dx.doi.org/10.1007/s11784-018-0642-2
Klíčová slova Second order nonlinear differential equation; Kneser solution; zero-decaying solution; super-linear equation; sub-linear equation
Popis We study the existence of positive decreasing solutions (the so-called Kneser solutions) for a class of second-order functional differential equations with a damping term. A linearization approach based on a general fixed point theorem is used to achieve this goal. The existence of zero-decaying Kneser solutions is also proved. Finally, the role of the deviating argument to the asymptotic behavior of solutions is illustrated together with some discrepancies between equations with or without delay.
Související projekty: