Informace o publikaci

Asymptotic behavior of increasing solutions to a system of n nonlinear differential equations

Název česky Asymptotické chování rostoucích řešení systému n nelineárních diferenciálních rovnic
Autoři

ŘEHÁK Pavel

Rok publikování 2013
Druh Článek v odborném periodiku
Časopis / Zdroj Nonlinear Analysis, Theory, Methods & Applications
Fakulta / Pracoviště MU

Pedagogická fakulta

Citace
Doi http://dx.doi.org/10.1016/j.na.2012.08.019
Obor Obecná matematika
Klíčová slova Increasing solution; Asymptotic formula; Quasilinear system; Emden–Fowler system; Elliptic system; Regular variation
Popis We consider system a system of n nonlinear differential equations of Emden-Fowler type. We analyze the asymptotic behavior of the solutions to this system whose components are eventually positive increasing. In particular, we derive exact asymptotic formulas for the extreme case, where all the solution components tend to infinity (the so-called strongly increasing solutions). We offer two approaches: one is based on the asymptotic equivalence theorem, and the other utilizes the theory of regular variation. The above-mentioned system includes, as special cases, two-term nonlinear scalar differential equations of arbitrary order n and systems of n/2 second-order nonlinear equations (provided n is even), which are related to elliptic partial differential systems. Applications to these objects are presented and a comparison with existing results is made. It turns out that some of our results yield new information even in the simplest case, a second-order Emden–Fowler differential equation.
Související projekty: