Informace o publikaci

Value Iteration for Simple Stochastic Games: Stopping Criterion and Learning Algorithm

Autoři

KELMENDI Edon KRÄMER Julia KŘETÍNSKÝ Jan WEININGER Maximilian

Rok publikování 2018
Druh Článek ve sborníku
Konference Computer Aided Verification (CAV 2018)
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
Doi http://dx.doi.org/10.1007/978-3-319-96145-3_36
Klíčová slova Value Iteration; Simple Stochastic Games; Stopping Criterion; Learning
Popis Simple stochastic games can be solved by value iteration (VI), which yields a sequence of under-approximations of the value of the game. This sequence is guaranteed to converge to the value only in the limit. Since no stopping criterion is known, this technique does not provide any guarantees on its results. We provide the first stopping criterion for VI on simple stochastic games. It is achieved by additionally computing a convergent sequence of over-approximations of the value, relying on an analysis of the game graph. Consequently, VI becomes an anytime algorithm returning the approximation of the value and the current error bound. As another consequence, we can provide a simulation-based asynchronous VI algorithm, which yields the same guarantees, but without necessarily exploring the whole game graph.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info