Informace o publikaci

SECOND ORDER SYMMETRIES OF THE CONFORMAL LAPLACIAN

Autoři

MICHEL Jean-Philippe RADOUX Fabian ŠILHAN Josef

Rok publikování 2015
Druh Článek ve sborníku
Konference PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL CONFERENCE ON GEOMETRY, INTEGRABILITY AND QUANTIZATION
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://projecteuclid.org/download/pdf_1/euclid.pgiq/1436815747
Doi http://dx.doi.org/10.7546/giq-16-2015-231-249
Klíčová slova Laplacian; Quantization; Conformal geometry; separation of variables
Popis Let (M, g) be an arbitrary pseudo-Riemannian manifold of dimension at least three. We determine the form of all the conformal symmetries of the conformal Laplacian on (M, g), which are given by differential operators of second order. They are constructed from conformal Killing two-tensors satisfying a natural and conformally invariant condition. As a consequence, we get also the classification of the second order symmetries of the conformal Laplacian. We illustrate our results on two families of examples in dimension three. Besides, we explain how the (conformal) symmetries can be used to characterize the R-separation of some PDEs.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info