Zde se nacházíte:
Informace o publikaci
Geometric bloch vector solution to minimum-error discriminations of mixed qubit states
| Autoři | |
|---|---|
| Rok publikování | 2023 |
| Druh | Článek v odborném periodiku |
| Časopis / Zdroj | Quantum Information Processing |
| Fakulta / Pracoviště MU | |
| Citace | |
| www | https://doi.org/10.1007/s11128-023-04080-4 |
| Doi | https://doi.org/10.1007/s11128-023-04080-4 |
| Klíčová slova | Quantum state discrimination; Minimum-error discrimination; Qubit states; Bloch vector |
| Popis | We investigate minimum-error (ME) discrimination for mixed qubit states using a geometric approach. By analyzing positive operator-valued measure (POVM) solutions and introducing Lagrange operator G, we develop a four-step structured instruction to find G for N mixed qubit states. Our method covers optimal solutions for two, three, and four mixed qubit states, including a novel result for four qubit states. We introduce geometric-based POVM classes and non-decomposable subsets for constructing optimal solutions, enabling us to find all possible answers for the general problem of minimum-error discrimination for N mixed qubit states with arbitrary a priori probabilities. |
| Související projekty: |