Informace o publikaci

Divisibility of spheres with measurable pieces

Autoři

CONLEY Clinton T GREBÍK Jan PIKHURKO Oleg

Rok publikování 2024
Druh Článek v odborném periodiku
Časopis / Zdroj ENSEIGNEMENT MATHEMATIQUE
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www https://ems.press/journals/lem/articles/14255106
Doi https://doi.org/10.4171/LEM/1058
Klíčová slova Euclidean sphere; divisibility under a group action; measurable set; special orthogonal group
Popis For an r-tuple (y 1 , ... , y r ) of special orthogonal d x d matrices, we say that the Euclidean (d - 1) -dimensional sphere S d-1 is (y 1 , ... , y r ) -divisible if there is a subset A c S d-1 such that its translations by the rotations y 1 , ... , y r partition the sphere. Motivated by some old open questions of Mycielski and Wagon, we investigate the version of this notion where the set A has to be measurable with respect to the spherical measure. Our main result shows that measurable divisibility is impossible for a "generic" (in various meanings) r-tuple of rotations. This is in stark contrast to the recent result of Conley, Marks and Unger which implies that, for every "generic" r-tuple, divisibility is possible with parts that have the property of Baire.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info