Informace o publikaci

Single-Agent vs. Multi-Agent LLM Strategies for Reflection Assessment

Autoři

LI Gen CHEN Li TANG Cheng ŠVÁBENSKÝ Valdemar DEGUCHI Daisuke YAMASHITA Takayoshi SHIMADA Atsushi

Rok publikování 2025
Druh Článek ve sborníku
Konference Proceedings of the 29th Pacific-Asia Conference on Knowledge Discovery and Data Mining
Citace
www https://link.springer.com/chapter/10.1007/978-981-96-8186-0_24
Doi http://dx.doi.org/10.1007/978-981-96-8186-0_24
Klíčová slova educational data mining, LLMs, reflection, grade prediction
Přiložené soubory
Popis We explore the use of Large Language Models (LLMs) for automated assessment of open-text student reflections and prediction of academic performance. Traditional methods for evaluating reflections are time-consuming and may not scale effectively in educational settings. In this work, we employ LLMs to transform student reflections into quantitative scores using two assessment strategies (single-agent and multi-agent) and two prompting techniques (zero-shot and few-shot). Our experiments, conducted on a dataset of 5,278 reflections from 377 students over three academic terms, demonstrate that the single-agent with few-shot strategy achieves the highest match rate with human evaluations. Furthermore, models utilizing LLM-assessed reflection scores outperform baselines in both at-risk student identification and grade prediction tasks. These findings suggest that LLMs can effectively automate reflection assessment, reduce educators' workload, and enable timely support for students who may need additional assistance. Our work emphasizes the potential of integrating advanced generative AI technologies into educational practices to enhance student engagement and academic success.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info