Informace o publikaci

PAC Statistical Model Checking of Mean Payoff in Discrete- and Continuous-Time MDP

Autoři

AGARWAL Chaitanya GUHA Shibashis KŘETÍNSKÝ Jan MURUGANANDHAM Pazhamalai

Rok publikování 2022
Druh Článek ve sborníku
Konference Computer Aided Verification - 34th International Conference, CAV 2022, Haifa, Israel, August 7-10, 2022, Proceedings, Part II
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
Doi https://doi.org/10.1007/978-3-031-13188-2_1
Popis Markov decision processes (MDP) and continuous-time MDP (CTMDP) are the fundamental models for non-deterministic systems with probabilistic uncertainty. Mean payoff (a.k.a. long-run average reward) is one of the most classic objectives considered in their context. We provide the first algorithm to compute mean payoff probably approximately correctly in unknown MDP; further, we extend it to unknown CTMDP. We do not require any knowledge of the state space, only a lower bound on the minimum transition probability, which has been advocated in literature. In addition to providing probably approximately correct (PAC) bounds for our algorithm, we also demonstrate its practical nature by running experiments on standard benchmarks.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info