Informace o publikaci

Learning Model Checking and the Kernel Trick for Signal Temporal Logic on Stochastic Processes

Autoři

BORTOLUSSI Luca GALLO Giuseppe Maria KŘETÍNSKÝ Jan NENZI Laura

Rok publikování 2022
Druh Článek ve sborníku
Konference Tools and Algorithms for the Construction and Analysis of Systems - 28th International Conference, TACAS 2022, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part I
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
Doi https://doi.org/10.1007/978-3-030-99524-9_15
Popis We introduce a similarity function on formulae of signal temporal logic (STL). It comes in the form of a kernel function, well known in machine learning as a conceptually and computationally efficient tool. The corresponding kernel trick allows us to circumvent the complicated process of feature extraction, i.e. the (typically manual) effort to identify the decisive properties of formulae so that learning can be applied. We demonstrate this consequence and its advantages on the task of predicting (quantitative) satisfaction of STL formulae on stochastic processes: Using our kernel and the kernel trick, we learn (i) computationally efficiently (ii) a practically precise predictor of satisfaction, (iii) avoiding the difficult task of finding a way to explicitly turn formulae into vectors of numbers in a sensible way. We back the high precision we have achieved in the experiments by a theoretically sound PAC guarantee, ensuring our procedure efficiently delivers a close-to-optimal predictor.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info