Informace o publikaci

Gaussian-Based Runtime Detection of Out-of-distribution Inputs for Neural Networks

Autoři

HASHEMI Vahid KŘETÍNSKÝ Jan MOHR Stefanie SEFERIS Emmanouil

Rok publikování 2021
Druh Článek ve sborníku
Konference Runtime Verification - 21st International Conference, RV 2021, Virtual Event, October 11-14, 2021, Proceedings
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
Doi https://doi.org/10.1007/978-3-030-88494-9_14
Popis In this short paper, we introduce a simple approach for runtime monitoring of deep neural networks and show how to use it for out-of-distribution detection. The approach is based on inferring Gaussian models of some of the neurons and layers. Despite its simplicity, it performs better than recently introduced approaches based on interval abstractions which are traditionally used in verification.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info